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ABSTRACT

Location Privacy Protection
in the Mobile Era and Beyond

by

Kassem Fawaz

Chair: Kang G. Shin

As interconnected devices become embedded in every aspect of our lives, they accompany

many privacy risks. Location privacy is one notable case, consistently recording an individ-

ual’s location might lead to his/her tracking, fingerprinting and profiling. An individual’s

location privacy can be compromised when tracked by smartphone apps, in indoor spaces,

and/or through Internet of Things (IoT) devices. Recent surveys have indicated that users

genuinely value their location privacy and would like to exercise control over who collects

and processes their location data. They, however, lack the effective and practical tools to

protect their location privacy. An effective location privacy protection mechanism requires

real understanding of the underlying threats, and a practical one requires as little changes to

the existing ecosystems as possible while ensuring psychological acceptability to the users.

This thesis addresses this problem by proposing a suite of effective and practical privacy

preserving mechanisms that address different aspects of real-world location privacy threats.

First, we present LP-Guardian, a comprehensive framework for location privacy protec-

tion for Android smartphone users. LP-Guardian overcomes the shortcomings of existing

approaches by addressing the tracking, profiling, and fingerprinting threats posed by dif-
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ferent mobile apps while maintaining their functionality. LP-Guardian requires modifying

the underlying platform of the mobile operating system, but no changes in either the apps

or service provider. We then propose LP-Doctor, a light-weight user-level tool which al-

lows Android users to effectively utilize the OS’s location access controls. As opposed to

LP-Guardian, LP-Doctor requires no platform changes. It builds on a two year data collec-

tion campaign in which we analyzed the location privacy threats posed by 1160 apps for

100 users. For the case of indoor location tracking, we present PR-LBS (Privacy vs. Re-

ward for Location-Based Service), a system that balances the users’ privacy concerns and

the benefits of sharing location data in indoor location tracking environments. PR-LBS

fits within the existing indoor localization ecosystem whether it is infrastructure-based

or device-based. Finally, we target the privacy threats originating from the IoT devices

that employ the emerging Bluetooth Low Energy (BLE) protocol through BLE-Guardian.

BLE-Guardian is a device agnostic system that prevents user tracking and profiling while

securing access to his/her BLE-powered devices. We evaluate BLE-Guardian in real-world

scenarios and demonstrate its effectiveness in protecting the user along with its low over-

head on the user’s devices.
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CHAPTER I

Introduction

Since the smartphone was introduced, a revolution started; users discovered the conve-

nience of getting driving directions before asking for them, and the comfort of a connected

thermostat adjusting the temperature on their way home. The mobile market is expanding

rapidly; the number of smartphones expected to exceed the world’s population by the end of

2020 [5]. People use these devices to connect with others, read the news, check the weather,

find nearby points of interest (PoIs), perform localized search, or even do shopping.

These and other context-aware services are enabled by the wealth of collected sensory

data and inferred personal habits – a trend that will not slow down with the rise of the in-

ternet of things (IoT) computing paradigm. Beyond the smartphone era, the IoT promises

new applications that will further improve the quality of life. With the number of connected

devices, sensors, and actuators expected to hit 50 billion in 2020 [6], fitness devices, ther-

mostats, door locks, heart pacemakers, cars, and appliances are becoming connected.

This convenience, however, comes at a considerable privacy cost. Our Devices, apps

and advertisement libraries leak our movements to location-based service providers, as

well as curious and malicious parties. Recording location over time risks our privacy by

revealing the places that we visit [7], such as in the following cases:

• Location-aware apps running on smartphones access location to provide an array of

location-based services. While useful, such services do not come for free. Service
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providers use collected location information to push location-based advertisements

and analyze the behavior of their customers through location-based analytics. A

weather app, for instance, continuously accesses fine-grained location, while run-

ning. This weather app indeed uses location to provide weather information but does

not need continuous fine-grained tracking to perform its functionality.

• In the past few years, major retailers have been investing in infrastructure to monitor

shoppers’ movements. An app such as Shopkick allows customers to check-in inside

the store; for which in return, they receive coupons or promotions. At the same time,

the retailer analyzes the shoppers’ mobility to learn more about their aisles of interest

and behaviors.

• More recently, there has been an ongoing trend of wearable devices. A health moni-

toring device, such a Bluetooth Low Energy (BLE) powered Glucose monitor, broad-

casts unencrypted periodic beacons to let a gateway device connect to it. Any party

monitoring Bluetooth traffic can track the bearer of the health monitor over time as

well as identify a his/her sensitive health condition.

In these situations, a curious or even a malicious entity observes and potentially records our

movements over time. Beyond tracking, such an entity by using our location data can draw

inferences about our behavior, preferences, interests, or identities – all which we refer to as

location privacy threats. In this thesis, we define the different scenarios where individuals’

electronic location privacy is compromised, highlight state of the art in location privacy

protection along with their shortcomings, and propose a set of location privacy-enhancing

mechanisms that address those deficiencies.

1.1 System Model

In the current smartphone and the evolving IoT eras, there are three major scenarios

where our location privacy is compromised, as evident from Fig. 1.1.
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Figure 1.1: Location access scenarios in the mobile environments.

1.1.1 Location-aware Apps

Smartphone platforms (Fig. 1.1a), such as iOS and Android, offer location as a service

for the mobile apps. A mobile device estimates the user’s outdoor location via GPS or

triangulation of nearby cell towers and/or access points. The mobile platform exposes the

estimated user’s location through a set of APIs for the mobile apps. In addition, the mobile

platform provides location access controls to limit the user’s location exposure. These

controls come in the form of install-time permissions or run-time prompts.

The location-aware app can link user’s location over time through the use of consistent

identifiers. Depending on its location access pattern, each app will have a unique snapshot

of the user’s mobility. Advertisement and Analytics (A&A) libraries constitute another lo-

cation access dimension that runs across the different location-aware apps. These libraries

can aggregate the location traces of the set of apps in which they are packed.

1.1.2 Indoor Scenarios

In indoor environments (Fig. 1.1b), traditional localization techniques are inapplicable

due to their poor coverage and inaccuracy [8]. Advanced localization technologies utilize a

multitude of sensors (e.g., accelerometer, WiFi, Bluetooth low energy, and RFID) to locate

the user with an error less than 10m in indoor environments, such as retail stores, malls,
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airports, museums, and hospitals.

An indoor service provider (e.g., retail store owner) works with a localization solution

provider (e.g., Cisco, Apple, HP) to track customers’ location. The service provider col-

lects the customers’ indoor location information to infer their preferences and interests. It

then uses the inferred information to deliver improved services back to the customers. Re-

tail shopping is one notable example; the retailer (service provider in this case) tracks the

shoppers’ mobility inside the store to learn more about their regular routes in the store, wait

and dwell times, aisles of interest, etc. The retailer aims to provide a more personalized

service to the shopper (coupons, deals, promos, etc.) which helps improve the shopping

experience and eventually increasing sales [9].

In indoor environments, localization could be infrastructure-based in which the loca-

tion is computed outside the user’s device. The localization provider uses wireless beacons

(e.g., WiFi or Bluetooth) emitted from the user’s device(s) to estimate her location [10]. Al-

ternatively, indoor localization could be a device-based in which the device utilizes sensed

data from infrastructure (e.g., BLE or WiFi) to compute its location (without other entities’

involvement).

1.1.3 The Internet of Things

Bluetooth Low Energy [11] has emerged as the de facto communication protocol in the

new computing paradigm of the Internet of Things (IoTs) [12, 13, 14, 15, 16, 17]. The BLE

(Bluetooth 4.0 and newer) protocol has been developed by the Bluetooth SIG to support low

power devices such as sensors, fitness trackers, health monitors, etc. Currently, more than

75,000 devices in the market support this protocol along with most of more capable devices

such as smartphones, tablet, PCs, and recently access points [18]. BLE-equipped products

are embedded and used in every aspect of our lives (Fig. 1.1c); they sense nearby objects,

track our fitness, control smart appliances and toys, and provide physical security.

Advertisements (periodic wireless beacons) are instrumental to the operation of the
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BLE protocol and constitute the only means by which others can discover the BLE-equipped

device. Each advertisement message contains the device’s address, along with some of the

services offered by the device and their respective values, such as its name and type.

1.2 Privacy Threats

Any party that systematically observes and records the user’s mobility has the potential

to pose an array of privacy threats. In the following, we discuss the different sources of

location privacy threats and their implications for the mobile users.

1.2.1 Sources of Threats

In this thesis, we focus on two major parties capable of posing the location privacy

threats: the location-based service providers and the entities eavesdropping wireless traffic

from wearable and mobile devices. In particular, we are concerned with the systems (apps,

libraries and devices) leaking location information, as opposed to the mobile users publicly

revealing, posting or sharing their location information with others.

1.2.1.1 Location-Based Services

To provide a location-based service, be it in the indoor or outdoor cases, the service

provider has to be aware of the user’s location. In the outdoor case, a service provider

obtains the users’ location samples through the apps running on their devices. In the indoor

case, on the other hand, the service provider can either record users’ mobility through mo-

bile apps running on their devices or through the deployed infrastructure. Through utiliz-

ing long-term identifiers, such as phone number, IMEI, MAC address, software-generated

identifiers, service providers can link different user interactions over time [19]. Linking

user’s mobility over time enables the service provider to track the user’s whereabouts, and

hence his/her behavior, creating many privacy issues [20].
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While it is safe to assume that a significant fraction of service providers are trustful,

many are curious and interested in drawing inferences, that reveal sensitive attributes about

the users. Others, to the users’ dismay, may share location information with third parties,

such as advertisement and analytics libraries. Some service providers may misuse the data

or may not employ sufficient safeguards to protect the confidentiality of the users’ location

information. The mobile users’ location traces might fall into the wrong hands, such as an

adversary hijacking this information from the service provider’s databases.

1.2.1.2 Eavesdropping Wearable Traffic

A wearable device, such as BLE-equipped one, advertises its presence to let interested

parties initiate connections and glean relevant information. These advertisements, however,

are a double-edged sword. An unauthorized, potentially malicious, party can collect these

advertisements through an off-the-shelf 2.4 GHz radio (e.g., Ubertooth) or range extending

antenna (e.g., BlueSniper1). Such a party can use these advertisements to learn more about

the BLE-equipped devices of a certain user or in a particular environment [21]. Enumer-

ating the set of devices that the user is employing is generally referred to in literature as

the inventory attack [22]. BLE advertisements, due to poor design, implementation or

configuration, leak an alarming amount of information that allows the tracking, profiling,

and fingerprinting of the users.

1.2.2 Types of Threats

The privacy implications of systematically monitoring an individual’s locations extend

well beyond low-level tracking; they include fingerprinting the users as well as profiling

their interests and behaviors.
1http://www.tomshardware.co.uk/how-to-bluesniper-pt1,review-1224-9.html
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1.2.2.1 Tracking Threat

The most primary privacy threat arising from collecting user’s location over time is that

of tracking. The adversary might receive continuous location updates that enable locat-

ing the user in real time. The adversary might also be able to identify the user’s mobility

patterns (frequently traveled routes) and predict his/her future location with high accuracy

by leveraging the typical consistency of people’s movement patterns [23]. The tracking

threat arises from all three scenarios of Section 1.1 through: a location-aware app regu-

larly accessing the user’s location (e.g., weather app) in the background; an indoor service

provider utilizing infrastructure-based localization mechanisms (e.g., WiFi based local-

ization); or an eavesdropper collecting BLE advertisements leaking consistent identifiers

(e.g., Bluetooth address).

1.2.2.2 Fingerprinting Threat

Another issue pertaining to the long-term tracking of location information is the finger-

printing of users. Through sporadic location access, the adversary might isolate spatiotem-

poral patterns representing the locations that a user visits frequently and are consistent in

time. These spatiotemporal patterns define a user’s points of interest, including home and

work locations among others. The adversary can use these places as quasi-identifiers [24]

to fingerprint the users from anonymous location traces [20, 25, 26].

Golle and Partridge [20] showed that home and work locations can be used to identify

most of the US residents from the census records. Bettini et al. [27] applied this concept

to mobile networks, showing that a sequence of spatiotemporal patterns serves as quasi-

identifiers. Researchers at Sprint [28] analyzed users’ location records and tried to assess

the anonymization level sufficient to publish the operator’s location information without

risking the identification of users. They concluded that a city-level anonymization is re-

quired to achieve a decent privacy level. De Montjoye et al. [26] performed a similar study

and concluded that a handful of location samples are enough to identify a user.
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In the particular case of BLE advertisements, we show later that the device types, typ-

ically part of the advertisement, can help fingerprint the user by revealing the types of de-

vices s/he is carrying. We found that the combination of the devices a user carries can serve

as a “quasi-identifier” for him/her. They enable user tracking and fingerprinting regardless

of whether the Bluetooth address is randomized or not. Moreover, BLE advertisements

might contain identifying information (the owner’s name). The advertisements can enable

unauthorized access to the device’s attributes that reveals the user’s identity as well.

1.2.2.3 Profiling Threat

The user’s mobility trace might not include places that would reveal his/her identity, but

information that the adversary can use to draw inferences about him/her; we refer to such

inference as location-based profiling. In the outdoor location monitoring case, places with

special significance can reveal sensitive attributes of the users. Examples include health

clinics, religious places, certain entertainment venues, ethnic grocery shops, among others.

The same applies to indoor scenarios where the user mobility patterns are tightly cou-

pled with potentially private personality traits and/or shopping habits. For example, a re-

tailer can infer from the frequently-visited aisles the shopper’s gender (men’s vs. women’s

clothing), ethnicity (ethnic food aisles), socioeconomic status (expensive vs. inexpensive

clothing and accessories), health condition (pharmacy aisles), sensitive interests (sporting

goods, adult magazines and films), or religious beliefs (clothing, particular food aisles).

Even in the case of Bluetooth Low Energy, devices that users wear or deploy reveal a

considerable amount of information about them. Different BLE-equipped devices2 serve

different purposes, typically coupled with various personal aspects, behaviors or needs.

Through advertising its presence, each device leaks its type and attributes. Monitoring

these advertising messages allows for profiling the user by revealing: a health condition

(e.g., glucose monitor), personal lifestyle (e.g., fitness trackers), preferences (brands of

2http://www.bluetooth.com/Pages/Bluetooth-Smart-Devices-List.aspx
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devices), interests (toys, cameras, Pet activity trackers, etc.),or user behavior (e.g., smart

home sensors).

1.3 State of the Art

Location privacy protection has received considerable attention, mostly from research,

in the past decade. Unfortunately, state of the art in location privacy research for mobile

systems fails on the fronts of deployability, providing theoretical guarantees, and/or bal-

ancing between the privacy and utility requirements of users.

1.3.1 Deployability

One of the most important requirements of a location privacy protection mechanism

(LPPM) is its deployability in a mobile system. An LPPM must be compatible with the

ecosystem it targets and has to be practical to employ within the ecosystem.

1.3.1.1 Compatibility with the Target Ecosystem

To start with, an LPPM must operate in an online fashion in a manner compatible

with the ecosystem. It should control every location access while maintaining a long-term

privacy objective. For example, an LPPM targeting Android must intercept, and potentially

modify, each location access by a location-aware app. Many of the existing approaches,

however, have been evaluated on traces but were neither implemented on mobile platforms

nor tested with actual apps.

These include offline private publishing of mobility traces such as the works of Rastogi

and Nath [29], Abul et al. [30], Terrovitis and Mamoulis [31], and Chen et al. [32]. An

online LPPM does not have the privilege of knowing the entire location trace beforehand.

It has to enact privacy protection one location access at a time.

Moreover, some of the LPPMs hinge on unrealistic assumptions, such as trusted infras-

tructure to provide the privacy protection [33, 34], requiring a set of users of the same app
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at the same time and same place (e.g., mixzones [35, 36]), or focusing on a small subset of

location accessing apps [37].

1.3.1.2 Practicality

Even when LPPMs are compatible with the mobile ecosystem, they might require in-

troducing changes to the ecosystem itself, the APIs or the apps making them unpractical for

the average user to deploy. For example, Koi [38] relies on a cloud-based service to achieve

location privacy protection. It also requires developers to use a different API for location

access. Other mechanisms, such as Caché[39] and the work by Micinski et al. [40], provide

apps with coarsened locations but require modifications to the apps.

Similarly, approaches proposed to improve the privacy of BLE device owners neces-

sarily include changes to the protocol itself or to the way the BLE-equipped devices func-

tion [41, 42]. Amending the operation of such devices, post-production, requires their

patching by securely pushing a firmware update. With thousands of manufacturers and

developers around the world, it is very challenging, sometimes impossible, to guarantee

firmware patches to the millions of already deployed devices [43]. Even a security-aware

user might lack the ability to update the firmware of a BLE-equipped device. As such,

these privacy enhancements for the BLE protocol are highly unpractical to employ.

1.3.2 Privacy criteria

Almost all of the proposed online LPPMs focus on low-level location tracking as the

single location privacy threat. They ignore the longer term implications of location access,

namely location-based fingerprinting and profiling. Addressing the higher-level privacy

threats requires designing novel location privacy threat models and criteria. Such privacy

models and criteria have to satisfy two requirements: (1) they have to adapt for the online

operation, i.e. mitigate the risk on-the-go; and (2) not place a usability burden on the user

by frequently prompting for privacy-related decisions.
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Influenced by offline mobility datasets (vehicular traces, cellular traces, etc.), location

privacy studies focus only modeling on the tracking threat by viewing mobile location

privacy as if there were only one party continuously accessing a user’s location [26, 28, 33,

27, 44, 45, 46]. These proposals lack the models for higher-level privacy threats.

Researchers proposed mechanisms to address the resulting tracking threats [33, 47, 48,

44, 49, 50, 51, 35] by hiding the user’s raw location. In particular, they try to maximize the

error between and adversary’s estimate of the user’s location and the real location. These

mechanisms still reveal the high-level features of the user’s mobility [28], thus becoming

not or less useful. These higher-level movement patterns could eventually lead to user

profiling and even identification [46, 26].

As for BLE, we find that the built-in address randomization scheme fails to combat

device tracking in practice due to poor design and/or implementation. An adversary can still

utilize information from the advertisements to track the user in many cases, regardless of

the (randomized) address. Furthermore, some devices allow external connections without

an existing trust relationship. Unauthorized entities can access unsecured data on the BLE-

equipped devices that might leak sensitive information about their owners.

1.3.3 Privacy vs. Utility

Last but not least, a location privacy enhancing technology must offer a balance be-

tween the privacy protection and utility requirements for users. In both indoor and outdoor

location tracking scenarios, proposed solutions to protect mobile users’ location privacy

fail to provide such balance. They often consider only one extreme of the privacy–utility

spectrum. They provide coarse location access controls; the user either enjoys full privacy

without utility or vice versa.

For the outdoor case, MockDroid [52] provides users with OS-based controls to dis-

able access to certain resources in Android, including location. The app will never receive

location updates. This is a solution that provides full privacy but zero utility. Similarly,
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Micinski et al. [40] coarsen the location supplied to the apps without considering the threat

level or the location granularity required by the app. Last but not least, mobile apps such

as PlaceMask [53] and Fake GPS Location Spoofer allow users to supply fake locations

for apps rendering them unusable, and hindering the apps’ functionality. Even the location

access controls of Android and iOS allow the users two options of either enabling or dis-

abling location access. The users lack the usable tools enabling them to decide when and

where should an app be allowed to access location, and with which granularity.

In the indoor case, existing approaches [54, 55, 56, 57] attempt to blindly prevent in-

door location tracking for the sake of privacy. They, however, fail to recognize the mutual

benefits between users and the service provider through proper location sharing. Complete

blocking of tracking deprives the service provider from understanding the users and the

users from receiving more useful services.

1.4 Thesis Contributions

Although users repeatedly express concern about the location privacy threats associ-

ated with their mobile and wearable devices [58, 59, 60, 61, 62], they still lack the effec-

tive and practical tools to mitigate these threats. Effective privacy protection mechanisms

should provide theoretically sound tools to address threats. Practical mechanisms should

implement effective theoretical tools with as little changes to the ecosystems they target as

possible, while ensuring psychological acceptability to the users. As indicated above, the

state of the art in location privacy protection fails meet these requirements. In this thesis,

we address the following question:

Can we bring usable, practical, and theoretically sound location privacy protection mech-

anisms for mobile users in the different scenarios of location-aware smartphone apps, in-

door location-based services, and for the Internet of Things manifested by prevalent BLE-

equipped devices?

To answer this question, we improve over the state-of-the-art by proposing a set of
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Table 1.1: A summary of the thesis contributions.

System Target Ecosystem Tracking
Protection

Fingerprinting
Protection

Profiling
Protection Deployment

LP-Guardian Outdoor Smartphone
Apps 4 4 4

platform
changes

LP-Doctor Outdoor Smartphone
Apps — 4 4 user-level app

PR-LBS Indoor Localization 4 4 4
platform
changes

BLE-Guardian BLE-equipped Devices 4 4 4
external

hardware

online location privacy protection mechanisms (Table 1.1) that target location-aware apps

in outdoor scenarios: LP-Guardian and LP-Doctor, indoor location-based services:

PR-LBS, and BLE-equipped devices: BLE-Guardian. These location privacy protec-

tion mechanisms reduce the privacy threats from exposing the user’s location. Each of them

pushes state of the art in location privacy protection research by providing theoretical pri-

vacy guarantees, practical and usable protection, and a balance between the user’s privacy

and utility.

1.4.1 LP-Guardian [1]:

Most location privacy protection mechanisms, proposed in the literature, do not handle

the privacy threats as posed by location-aware apps. To fill this gap in location privacy

research, we propose LP-Guardian, the first app-aware framework for location privacy

protection on Android platforms, including, but not limited to, smartphones. LP-Guardian

anonymizes the user’s location before the app can access it. It guarantees that the ob-

served (by the service provider) mobility pattern, modeled as the frequency of visits to

locations, of a certain user is indistinguishable from a general set of individuals. An adver-

sary cannot attribute the observed location information to the real user. LP-Guardian

only patches the Android framework, so that users have to employ a custom ROM or root

their devices. It, however, requires no changes in the apps or the service providers. As

such, privacy-aware users can install LP-Guardian and use the same mobile apps from
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Google Play. LP-Guardian overcomes the shortcomings of existing approaches by ad-

dressing the tracking, profiling, and identification threats. We have implemented and eval-

uated LP-Guardian on Android 4.3.1. Our evaluation results show that LP-Guardian

thwarts the privacy risks, without deteriorating the user’s experience (less than 10% over-

head in delay and energy). Also, LP-Guardian’s achieves privacy protection at a the

tolerable loss in app functionality.

1.4.2 LP-Doctor [2]:

In a follow-up project, we investigate the deployment challenges facing location pri-

vacy protection mechanisms. They all require changes either to the underlying platform

or the infrastructure making them untenable to be deployed. Therefore, users are left with

the location access control of mobile operating systems. We analyze the efficacy of these

controls in combating the location privacy threats. For this analysis, we conducted the

first location measurement campaign of its kind, analyzing more than 1000 free apps from

Google Play and collecting detailed usage of location by more than 400 location-aware

apps and 70 Advertisement and Analytics (A&A) libraries from more than 100 participants

over a period ranging from 1 week to 1 year. We found that, without a location-privacy

protection mechanism, 70% of the apps and the A&A libraries pose significant profil-

ing threats even when they sporadically access the user’s location. Existing OS controls

(those that are built-in the mobile operating systems) are found ineffective and inefficient

in mitigating these threats, thus calling for a finer-grained location access control. We pro-

pose LP-Doctor, a lightweight and open-source Android tool3 which enables users to be

aware of the underlying location privacy threats and exercise fine-grained location access

control. As opposed to LP-Guardian, LP-Doctor runs completely in the user-level,

and requires no changes to the underlying platform in the mobile operating system. This,

however, entails a trade-off between usability and privacy. To run completely in user-level,

3https://github.com/kmfawaz/LP-Doctor
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LP-Doctor sacrifices the ability to protect against the tracking threat posed by apps run-

ning in the background. LP-Doctor picks a novel privacy criterion that limits information

leakage from the location data released to different apps. A user study of 227 participants

indicated LP-Doctor’s ease of deployability and usability.

1.4.3 PR-LBS [3]:

While LP-Guardian and LP-Doctor focus on outdoor location privacy, indoor en-

vironments exhibit different dynamics between users and service providers. Our survey of

200 individuals highlighted their concerns about this tracking for potential leakage of their

personal/private traits, but also showed their willingness to accept reduced tracking for im-

proved service. We propose PR-LBS (Privacy vs. Reward for Location Based Service),

a system that addresses these seemingly conflicting requirements by balancing the users’

privacy concerns and the benefits of sharing location information in indoor location track-

ing environments. PR-LBS includes three novel online location release mechanisms that

achieve differential privacy guarantees and ensure that the user engages in a fair location-

service exchange with the service provider. PR-LBS is a general framework; it acts as

a broker between users and service providers when the service provider monitors users’

mobility through tracking their wearable devices. We implement and evaluate PR-LBS

extensively with various real-world user mobility traces. Results show that PR-LBS has

little overhead, protects the users’ privacy, and makes a good tradeoff between the quality

of service for the users and the utility of shared location data for service providers.

1.4.4 BLE-Guardian [4]:

Our study of more than 200 types of BLE-equipped devices has revealed that the BLE

protocol, despite its privacy provisions, fails to address the most basic threat of all – hid-

ing the device’s presence from curious and malicious eavesdroppers. To combat these

threats, we propose BLE-Guardian, a novel device-agnostic system that protects ac-
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cess to BLE-equipped devices and prevents unauthorized eavesdroppers from tracking

them. BLE-Guardian opportunistically invokes reactive jamming to determine the enti-

ties that can observe the device existence through the BLE advertisements (device hiding

module), and those that can issue connection requests in response to advertisements (ac-

cess control module). BLE-Guardian combats security and privacy threats, has little

overhead, and incurs minimal or no disruption to the legitimate BLE devices of the user.

BLE-Guardian achieves its objectives with minimum requirements from an external ra-

dio that offers only the basic capabilities of reception and transmission on the 2.4GHz band.

As a result, it avoids employing sophisticated and customized (thus impractical) radios and

signal processing approaches.

This thesis is organized as follows. The first chapter presents LP-Guardian and the

second proposes LP-Doctor. The third chapter discusses indoor location privacy and

presents PR-LBS. The fourth chapter considers location privacy in the new era of Internet

of Things and proposes BLE-Guardian. Finally, we conclude the thesis in the fifth

chapter where we also discuss future research directions.

16



CHAPTER II

LP-Guardian

2.1 Introduction

Location privacy has been a hot topic in research and media over the last decade

or so [58, 63, 64, 65, 26, 28]. The popularity of location-aware smartphones has led

to the prevalence of apps that access users’ location in order to provide them personal-

ized/customized services. As we indicated before, location access has introduced a new

class of privacy threats that users are increasingly becoming aware of. These threats range

from an adversary’s ability to localize an individual to fingerprinting and profiling him/her

based on the places s/he visits.

Motivation:

To assess users’ perceptions of location privacy and location-aware apps, we surveyed1

180 smartphone users. We recruited 70 participants through social network announcements

and the rest through Amazon Mechanical Turk. We chose Mechanical Turk workers who

have achieved “master qualification,” i.e., those who have shown high competency of per-

forming tasks.

We find the survey results supporting the deployment of a location privacy protection

1https://docs.google.com/forms/d/1VFKlSa3Heq7Wz_mY4MmL7YNu8D74Gtl-lDNlnXesUTo/
viewform
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mechanism. 78% of the participants believe that apps accessing their location can pose

privacy threats. Also, 85% of them reported that they care about who accesses their loca-

tion information, compared to 87% reported by a Microsoft survey [58] in 2012. Users are

even expected to be more sensitive towards this issue in relation to the recent revelations

on government accessing their location as collected by apps [64]. Interestingly, 52% of the

surveyed individuals stated no problem in supplying apps with imprecise location informa-

tion to protect their privacy. Only 18% of the surveyed people objected to supplying apps

with imprecise location information.

There have been numerous research proposals for location privacy protection from vari-

ous angles and in various scenarios. Unfortunately, the vast majority of them have not found

their way to the common users. Existing mechanisms (e.g., see surveys by Krumm [63]

and Shin [65]) suffer several shortcomings that hinder their deployment in the real world.

These shortcomings can be best described in terms of effectiveness, efficiency, and prac-

ticality as will be more evident in Section 2.2. Existing mechanisms address the tracking

threats without guaranteeing protection against profiling or fingerprinting threats. Also,

they impose the same protection measures regardless of the app and the privacy threat it

poses. Finally, most of these mechanisms rely on unrealistic assumptions, making their

real-world deployment difficult.

In this chapter, we present the design, implementation, and evaluation of a new location

privacy protection framework, called the Location Privacy Guardian (LP-Guardian), that

addresses the shortcomings of the existing mechanisms. We show that privacy protection

can be brought to the masses through a client-side solution at a minimal cost. Although we

focus on the Android platform, LP-Guardian is applicable to other platforms that utilize

the permission model to authorize location access (e.g., Windows Phone, BlackBerry OS)

as well as those that rely on explicit user authorization for every location access (iOS).

Our design philosophy is based on seven main features as discussed below.

A. The app only accesses location when the user expects it to do so: A user ex-
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pects the app to access his/her location only when a location-based functionality is re-

quired, e.g., localized-search, place check-in, etc. Most Android apps, however, engage

in location acquisition without explicit user authorization/awareness. LP-Guardian ad-

dresses this issue by anonymizing location access in the background and enabling the user

to choose the appropriate anonymization strategy for foreground location access. Finally,

LP-Guardian feeds Advertising and Analytics (A&A) libraries anonymized location

samples to prevent tracking through third parties.

B. The app only accesses location with a granularity sufficient to produce the

location-based functionality: A majority of Android apps request location with a finer

granularity than actually required to deliver necessary service to the user. Our analysis

of the top 1150 location-aware apps in Google Play revealed that 68% of them can ac-

commodate coarser location without significannot losses in quality of service. As a result,

LP-Guardian feeds every app with the location granularity necessary to serve the user.

LP-Guardian can thus safely anonymize location for the majority of the apps without

hindering their functionality.

C. An anonymous app cannot identify/fingerprint the user based on his/her fre-

quently visited places: As not all apps can afford an anonymized location, feeding them

with an accurate location might lead to user identification or fingerprinting from frequently

visited places (e.g., home and work) [27, 20, 25]. This is applicable even in apps that do not

require explicit user identity to function, such as games, search apps, etc. In this chapter,

we formalize this fingerprinting threat and propose a novel mechanism that addresses this

threat.

D. A single app alone poses no significant profiling threats based on the collected

location information: Some places the user visits are not sensitive to his/her identity/privacy

but might assist in profiling him/her (e.g., health clinics, religious places, bars, etc.). LP-Guardian

relies on the user to learn these places and anonymize the location, if needed, by applying

the mechanism of Andrés et al. [66].
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E. An app cannot track the user all the time even when tracking is required to per-

form functionality: Some apps might require constant monitoring of the user’s location,

such as fitness or speed-monitoring apps. The absolute location matters less than relative

mobility. LP-Guardian reacts by replacing the real location samples with dummy ones

that belong to a synthetic route. This route preserves the actual route properties (mainly

speed) and does not reveal the actual user’s location to thwart tracking.

F. Privacy protection fits within the existing mobile ecosystem: We implement

LP-Guardian in the Android framework by instrumenting the Location object. Our

implementation can be easily incorporated in custom ROM or even in a rooted device

through the Xposed framework [67]. Moreover, it neither requires modification of the apps

nor it relies on additional entities. Most importantly, it is app-aware as it applies different

anonymization strategies independently for different apps.

G. Privacy protection comes at a minimal cost in usability and app functionality:

Anonymization naturally comes at a cost in terms of usability, delay, energy, and loss of

app functionality. LP-Guardian minimizes the interaction with the user and makes the

anonymization decisions on his/her behalf. It also incurs minimal delay and energy over-

head (less than 10%). Finally, LP-Guardian minimizes the instances of anonymization

to preserve app functionality (more than 60% of the sessions are not anonymized). Ac-

cording to a user study that we performed, such loss of app functionality is tolerable as it

comes in places where users do not usually require location-based functionality. This is

the first time that a location privacy protection mechanism is evaluated on real-world app

usage data.

Contributions:

This chapter makes the following main contributions: LP-Guardian

1. provides privacy protection on a per-app basis; the protection level is proportionate

to the threat posed and location granularity requirements of the app;
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2. prevents fingerprinting by leveraging the notion of indistinguishability; and

3. is relatively practical to deploy as it achieves protection for each app independently

without modifying the apps or the service provider’s infrastructure.

Organization:

The chapter is organized as follows. Section 2.3 defines the threat model, while Sec-

tion 2.2 reviews the related work. Section 2.4 gives an overview and then details the design

of the components of LP-Guardian. Section 2.5 details the architecture of LP-Guardian,

while Section 2.6 describes its implementation. We evaluate LP-Guardian in Section 2.7

and make concluding remarks and discuss future work in Section 2.8.

2.2 Related Work

Approaches addressing location privacy fall into two categories: theoretical and practi-

cal.

Theoretical Approaches

These are the approaches that have been evaluated on traces, but were neither imple-

mented on mobile platforms nor tested with actual apps. Most of these mechanisms address

the tracking threat [33, 47, 48, 44, 49, 50, 51] in that they hide the user’s raw location while

still revealing the high-level features of the user’s mobility [28], thus becoming not or less

effective. These mobility patterns could eventually lead to user profiling and even iden-

tification. LP-Guardian protects user’s privacy at three levels: tracking, profiling, and

identification as will be evident later.

Moreover, some of these mechanisms hinge on unrealistic assumptions, such as trusted

infrastructure to provide the privacy protection [33, 34], requiring a set of users of the same
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app at the same time and same place (e.g., mixzones [35, 36]), or focusing on a subset of

location accessing apps [37].

Practical Approaches

Researchers have also proposed more practical approaches that fit within the existing

mobile platforms. MockDroid [52] provides users with OS-based controls to disable access

to certain resources in Android, including location. The app will never receive location

updates. This is a solution that provides full privacy but zero utility. Similarly, Micinski et

al. [40] coarsen the location supplied to the apps without considering the threat level or the

location granularity required by the app. Last but not least, PlaceMask [53] allows users to

supply fake locations for apps rendering it unusable. LP-Guardian has the advantage of

balancing between privacy requirements, usability, and quality of service.

Other proposed systems require changes to the existing mobile ecosystem to provide

the privacy guarantees. Koi [38] relies on a cloud-based service to achieve location privacy

protection. It also requires developers to use a different API for location access that is based

on a location matching criterion, rather than the raw location. Similarly, Caché[39] requires

developers to change the way they access location in the apps. LP-Guardian requires no

modification to the existing apps or infrastructure (it is a completely device-based solution),

facilitating its deployment.

Finally, several researchers have studied the problem of private information leakage in

mobile devices. For example, TaintDroid [68] tracks the information propagation in mo-

bile devices and detects whether private information (including location) has been leaked.

LP-Guardian is complementary to such approaches; it controls what location informa-

tion the app gets access to, while taint tracking reveals how the apps are managing the

accessed location information.
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2.3 Threat Model

We assume an honest-but-curious and passive adversary who is interested in inferring

more information about the user from collected location information. Apps constitute the

only mechanism by which the adversary can access the user’s location through the avail-

able location APIs. The adversary will not attempt to hack into the system or circumvent

any privacy controls. We view the security challenges as orthogonal to our work. Our ob-

jective is not to implement a solution that prevents a determined adversary from overriding

the operating system’s controls. The existence of such a solution will further strengthen

LP-Guardian.

The adversary will collect user’s location as part of the app’s operation. The collected

location information will enable the adversary to pose the following three types of threats:

• Tracking Threat: the adversary might receive continuous location updates that enable

him/her to locate the user in real time. The adversary might also be able to identify

the user’s mobility patterns (frequently traveled routes) and predict his/her future lo-

cation with high accuracy by leveraging the typical consistency of people’s mobility

patterns [23].

• Identification/Fingerprinting Threat: Even if the adversary sporadically accesses

user’s location, s/he might still be able to isolate the user’s frequently visited loca-

tions, such as home and work. The adversary can use these places as quasi-identifiers

to reveal the user’s identity from anonymous location traces [20, 25].

• Profiling Threat: The user’s mobility trace might not include places that would reveal

his/her identity, but places that the adversary can use to profile him/her. Examples

include some health clinics, places with religious significance, etc.

We treat all apps belonging to the same developer or having the same signature as one

sink of location information. We choose to trust the underlying operating system, since
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Figure 2.1: The decision diagram highlighting LP-Guardian’s main operations when an
app receives a new location update

no practical solution can be implemented without such a trust. The user also trusts his/her

device, including the underlying OS, to manage and store all his/her personal information.

2.4 Design

2.4.1 High-Level Overview

Before delving into the inner-workings of LP-Guardian, we present a high-level

overview as shown in Fig. 2.1. This diagram highlights the main operations performed

whenever a new location sample is to be delivered to an app (Section ??).

LP-Guardian first determines if an A&A library or the core app is receiving the lo-

cation update (Section 2.4.4). If the A&A library receives the location update, then the lo-

cation is automatically coarsened to the city-level. If the app is running in the background,
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the location is also coarsened to the city-level (Section 2.4.3). We base this design decision

on our analysis of the location-accessing apps. The analysis revealed that only 3% of the

apps access user’s location while running in the background. Thus, location coarsening in

the background has little effect on the functionality of most apps. If the core app, while

running in the foreground or perceptible states, is receiving the location update, we rely

on the user’s preference. The location can be released without modification, completely

blocked, or anonymized. In the case of anonymization, there are three available options as

follows.

1. The app can accommodate coarsening without loss of service (weather apps), in

which case the location is automatically coarsened to the city-level (the location is

replaced by a pair of coordinates representing the center of the city).

2. The app is monitoring the user’s mobility (fitness app), where LP-Guardian feeds

the app a synthetic route that preserves some features of the user’s actual route (Sec-

tion 2.4.7).

3. The app requires location with high granularity (e.g., geo-search app). LP-Guardian

applies a novel mechanism to control release of the location to prevent any possible

identification (Section 2.4.5).

If the location is safe to be released, LP-Guardian consults with the user to check if

s/he is comfortable with release of the location. If the user isn’t comfortable, the location

is obfuscated (noise added) to hide the visited place (Section 2.4.6), else the location is

released as is. On the other hand, if LP-Guardian decides that it is not safe to release

the location, it replaces the real location with a fake location as described in Section 2.4.5.

Finally, LP-Guardian minimizes user interaction as much as possible, in order not to

hinder the user experience. At the same time, it keeps the user in the loop by informing

him/her of the anonymization process and asking for his/her feedback only when needed

(Section 2.6.1).
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In what follows, we elaborate on the main design decisions that address the various

location privacy threats.

2.4.2 Location Sources

The location APIs are not the only way by which apps can access location information.

Scanning the nearby WiFi access points (APs) and cellular towers might help locate the

user. Skyhook, for example, is an online service that maps the signature of nearby APs

to location coordinates. Such location can be fairly accurate (<30 m accuracy). Google

localization service relies on a similar concept to provide network-based location samples.

LP-Guardian addresses this issue by preventing apps from scanning nearby APs to limit

the apps’ location access to Android’s location APIs.

2.4.3 Foreground vs. Background

In Android, an app can assume multiple states depending on its execution status. An-

droid recognizes four app states, three of which are important to us: running in the fore-

ground, background, and perceptible to the user. A foreground app is the one that occupies

the screen and the user can interact with. When the user exits the app, Android caches it for

faster re-execution and is thus moved to the background. An app can also run persistently

and show the user a notification indicating that it is perceptible. For example, apps like

Google Now run persistently as a service and are not considered background apps.

Because of elongated periods of location access, tracking threats are more pronounced

in apps accessing location in the background or when running as a persistent service. We

handle the former case of background location access by coarsening the location to the

city-level. That way, the app will still receive relevant location updates, but will not be able

to pose any viable location privacy threats. We will also specify how we handle location

access in the foreground and as a persistent service.
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Figure 2.2: The stack trace for a location request by WebMD app with the analytics library
method calls highlighted.

2.4.4 A&A Libraries

Most free apps pack A&A libraries to generate revenue by displaying targeted ads to the

user running the app. Hence, the apps need to feed these libraries some information about

the user, including location [69]. As the number of A&A libraries is limited as compared

to the number of apps, an A&A library is most certainly to be packed in multiple apps.

Instead of looking at apps as independent sources of the user’s location trace, A&A

libraries can aggregate location traces from multiple apps. This implies that the location

privacy threats posed by these libraries is more critical. However, apps can thus easily ac-

commodate feeding these libraries with coarsened location samples to the city-level. These

libraries will still receive relevant location information to display ads to users, but will not

be able to pose any viable tracking/identification/profiling threats.

Theoretically, it is plausible to coarsen location for A&A libraries, but the challenge is

how to separate between location requests coming from the A&A library and those coming

from the core app. To deal with this challenge, we studied more than 100 A&A libraries

in Android. We collected these libraries from the top 1100 apps in Google Play and from

different literature sources [70, 69, 71, 72]. It turns out that 98% of these libraries access

location information from their code space through two mechanisms: the app (1) enables

location collection, or (2) passes them a location object that they can access. In both cases,
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the stack trace of every location access request should reveal whether the request is coming

from the app or the packed library. Fig. 2.2 shows an example of the stack trace of a location

access request from WebMD app; it is evident how the request originates from Medialets

Analytics.

2.4.5 Identification/Fingerprinting Protection

As LP-Guardian coarsens location accessed in the background, accurate location

access is limited to the foreground. The apps will thus only sample the user’s location

only when running in the foreground. Foreground sessions are short, sporadic, and occur

mostly within the same place. These facts will be shown later in Section 2.7 based on three

datasets that measure app usage patterns. This implies that there is a one-to-one mapping

between an app session and a visited location. For these apps, the mobility information can

be best viewed in the form of a histogram of visited places. We model the city which the

user is visiting as divided into a 2D grid, where every cell refers to a city block. The set

of city blocks is Bl = {bl1, bl2, bl3, . . .}. Every resident has a probability distribution of

visiting the blocks in the city as pi = P (bli); this probability will be 0 for blocks the user

never visits. After a period of app usage, the app records the number of user visits to every

block, thus forming the histogram. Each bin in the histogram is the number of times, cbli ,

the app observes that the user was at the block bli.

Even if the location information is anonymous, an adversary can map the user’s his-

togram to the user’s identity given the background information at the adversary’s side. This

is widely referred to as the identification or inference attack in literature [25, 27]. In what

follows, we provide the first formal treatment of this attack. We assume that the adversary

has access to background information in the form of a mapping between a set of indi-

viduals’ identities and the probability distribution of visiting each block in the city. The

adversary aims to match the anonymous mobility histogram from the app to one of the

individuals in its database.
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Specifically, the adversary is interested in the probability of the histogram belonging

to any of the individuals, x, in its database, P (happ|x). If the app records N user ses-

sions, P (happ|x) is the probability of observing the individual x being at each bli for cbli

times out of a total of N observations, where this individual has a probability pi of visiting

block bli. As a result, the probability distribution of the histogram follows the multinomial

distribution, assuming that different app sessions are independent, and is given as:

P (happ|x) =
N !∏Bl
i=1 cbli!

Bl∏
i=1

pcblii . (2.1)

This model holds when cbli = 0 as cbli! = 1 and pcblii = 1.

If the app cannot accommodate coarsened location (e.g., geo-search app), then LP-Guardian

releases the user’s location as long as the user’s histogram cannot be mapped to his/her iden-

tity. In other words, the probability of the histogram originating from the real user should

be close to the probability of the histogram originating from another individual within the

same city. We define the “closeness” of probability distributions in terms of Eq. 2.2 which

is similar to the δ disclosure criterion [73]. We use this notion as a measure of indistin-

guishability between two histograms. Below, we elaborate on how we leverage this notion

to establish an indistinguishability criterion over a theoretical set of individuals. For two

individuals x and y, the histogram maps to both individuals with a close probability:

e−ε ≤ P (happ|x)
P (happ|y)

≤ eε. (2.2)

Plugging the probability expression of Eq. 2.1 into Eq. 2.2 we get for two individuals x

and y:

e−ε ≤
∏|Bl|

i=1 (P (bli|x))cbli∏|Bl|
i=1 (P (bli|y))cbli

≤ eε. (2.3)

For the rest of this chapter, we assume ε = 0.5. The user’s histogram must obey the
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property of Eq. 2.3 to satisfy the privacy criterion. As LP-Guardian operates solely on

the client side, it has no information about other individuals in the city, and thus cannot

fill in the probabilities for other potential individuals. Alternatively, we consider a crite-

rion that other individual must satisfy in the form of a minimum probability of visiting the

blocks that the user visits. So, we replace the P (bli|y) values in Eq. 2.3 with a value of

pmin. Now, the privacy criterion states:

The user is indistinguishable within a theoretical set of individuals who have a

minimum probability of pmin of visiting all the places in the user’s histogram.

The value of pmin is a tunable parameter that controls the level of the user’s privacy;

the higher pmin the lower the privacy guarantee, as less people will visit the same places

as the user with high probability. On the other hand, a lower value of pmin will indicate a

stricter privacy guarantee as the user will be potentially indistinguishable within a larger set

of individuals. We rearrange Eq. 2.3, after applying the logarithm, to satisfy the following

inequality:

−ε ≤
Bl∑
i=1

cbli (ln (P (bli|x))− ln (pmin)) ≤ ε. (2.4)

This inequality provides a test for releasing the location from a session or not. For every

new app session, the expression of Eq. 2.4 is evaluated given the past released histogram,

the user’s mobility model, and the value of pmin. If the summation value in Eq. 2.4 exceeds

ε or falls below −ε, then the location can be released; otherwise, a dummy location within

the city is released. Eq. 2.4 provides an important insight on locations the user visits. If we

view ε as a privacy budget, places that users frequently visit will exhaust part of the budget.

On the other hand, if the user visits a place with a probability lower than pmin, this will

increase the available privacy budget. The released dummy location is one that the user

visits with a very low probability which helps increase the available privacy budget.
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So far we have assumed the protection mechanism is blind of background information

regarding other users. The availability of such information, however, can assist in improv-

ing the trade-off between app functionality and privacy. Our idea is based on hiding the user

among a theoretical set of people who have to satisfy a minimum probability constraint of

the visiting the places that the user visit. If we know that an actual set of people satisfy a

more relaxed constraint, then we can achieve the same privacy level with much improved

usability.

Our mechanism relies on the census data that specifies the population in every city

block [74]. It identifies the user’s home location as the most frequently visited place during

night time. It then assigns the home block location a value of pmin consistent with the pop-

ulation in the same block. If the number of block residents is above 500, we automatically

assign pmin for the home location the same value of the user’s probability of visiting the

home location. The privacy criteria then transforms to the subset of the home block resi-

dents who have a minimum probability of pmin of visiting the other user places of interest.

In that sense, the user enjoys a natural protection level resulting from the fact that s/he lives

in a crowded place. Our mechanism can be relaxed more in releasing the home location.

This insures protection against the identification threat; the user will still have the option

of hiding his/her location (or any other location) as will be evident later.

If a user lives in a sparsely populated area, then s/he naturally suffers lower privacy

guarantees. LP-Guardian reacts by assigning very low pmin values for these users, meaning

they will not be able to release locations from frequently visited places (e.g., home or work)

for apps that require location with high precision (e.g., Yelp). Nevertheless, one could also

argue that people who live in sparsely populated areas have a lower need for location-based

services at home or work as they will tend to be more familiar with the area.

Finally, our modeling of the user’s mobility as a histogram removes two pieces of rel-

evant information: the timing information and the ordering between the visits. We can

address the first issue of the timing information by associating each histogram bin with a
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visit time, such as weekday versus weeknight or daytime versus nighttime. This, however,

results in sparser histograms and requires more stringent privacy criteria (lower pmin) to

avoid underestimating the privacy threat. In this chapter, we do not address the second

issue of the ordering between visits. This issue, however, is addressed in the fourth chapter

in the context of PR-LBS.

2.4.6 Profiling Protection

A user could be profiled based on the places that s/he visits, albeit at a low frequency. A

user might not be willing to reveal that s/he is visiting a particular church, a health clinic, a

certain bar, or some hotel. Revealing these places might enable an entity with access to the

user’s location to profile him/her. LP-Guardian addresses these threats by putting the

user in control, as s/he is the best judge of determining the places which profile him/her.

Each time the user invokes an app from a new place, the user has to decide whether s/he

is willing to hide the place s/he is currently visiting (more details in Section 2.6). If the

user opts to hide his/her place, we leverage the solution of Andrés et al. [66] to anonymize

his/her location. According to our datasets of app usage (more on that in Section 2.7), this

prompt appears for each location-aware app, on average, for 16 times during its lifetime. It

is worth noting that LP-Guardian applies only to one-fifth of the user’s apps, those that

are location-aware apps requiring fine location to function correctly.

This approach is well-suited for sporadic location access. It adds noise drawn from a

polar Laplacian distribution to make the reported location provably indistinguishable from

the actual location within a given radius. Given the user’s actual location as a pair <

x, y > and an anoymization radius r, the added noise can be computed in terms of a pair

< rad, θ > as follows [66]:

• Draw θ from the uniform distribution [0, 2π);

• Draw p from the uniform distribution [0, 1], and set rad = − r
l
(W−1(

r(p−1)
l

) + 1),

where W−1 is the -1 branch of the Lambert W function and l is a privacy level
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typically chosen close to 1.

The new location is just a translation of the original location by rad and θ. The noise

level, r, determines the underlying privacy – utility trade-off. In LP-Guardian, we rely

on a noise value of 200m; the user’s actual location is hidden among location within a range

of 200m. Still, the location will be of some utility to maintain some app functionality. As

long as the user is visiting the same place, the anonymized location reported to the app is

kept the same to prevent any additional leakage of information.

Finally, the user’s IP address can reveal the place s/he is visiting, especially if s/he ac-

cesses the Internet from a public hotspot [75]. Although not included as part of LP-Guardian,

TOR (Android app is available on Google Play) could be used to anonymize the user’s IP

address and protect his/her location.

2.4.7 Synthetic Route

Fitness apps track the exercise activity of the users. They provide the user with feed-

back on the path and distance covered during an exercise session. These apps monitor the

user’s location in the background for elongated periods of time and with high location pre-

cision, thus posing a tracking threat. We approach this type of apps by separating the two

objectives: (1) distance and the (2) path of the exercise. Instead of crudely anonymizing

location, which will render these apps useless, we sacrifice the second objective to provide

privacy while maintaining the first. In other words, we provide the app with a synthetic

route that has the same distance of the original route, but has a different shape.

LP-Guardian anonymizes the location for these apps by keeping the distance the

user covered the same while modifying the actual route. It essentially feeds the fitness

app a synthetic route that has the same length of the actual route. Whenever a new fitness

tracking session starts (such an app is running as persistent service and location update

rate is high), LP-Guardian feeds the app with a random location within the current city.

Then, as the app receives new location updates, LP-Guardian reacts by calculating the
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Figure 2.3: LP-Guardian’s architecture and interactions of its components

distance covered since the last update, and calculates a new location sample based on this

distance and the last reported location.

2.4.8 Navigation Apps

Navigation apps are the most challenging. They require elongated location access peri-

ods with high precision. The current version of LP-Guardian doesn’t handle this case,

but we provide some remedies that balance usability and privacy in navigation apps. Offline

navigation (e.g., Garmin, Google Maps) can handle part of the problem by preventing the

app from sharing the user’s location in real time. However, there are no guarantees against

an app leaking this information when it comes online. A possible remedy is to run the

navigation app in a “private mode”, where it’s disbarred from connecting to the Internet,

and the stored data is wiped after the session ends. The downside is that the app will be

deprived of access to the real-time traffic information that is useful for navigation.

2.5 Architecture

Fig. 2.3 shows the block diagram that implements LP-Guardian. Described below

are the main components of LP-Guardian and their interactions.
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Location Interceptor

The location interceptor, as its name implies, is responsible for diverting the app’s con-

trol flow to our service in the event of a location access. This module blocks the app, ex-

tracts the newly acquired/created location, and sends it (along with the app’s package name)

to our service for further processing. It is also responsible for delivering the anonymized

location to the app so that the control flow can be resumed. We describe the implementation

of this module in Section ??.

Rule Manager

This module selects the appropriate rule—via interaction with the user—to apply de-

pending on the situation. The rule indicates an appropriate strategy for the location anonymizer

module to follow. The rule manager module takes as input the app, location sample, app

state (foreground or background), and whether this is a new or ongoing session from the

session acquisition module. A foreground/background session is the time period during

which the app is continuously executing in the foreground/background. The rule manager

also takes input from the place detector module to know which place/city/block the user

is currently visiting. This module caches the rule from the database for use in subsequent

location accesses of the same session. We define two types of rules as follows.

• Global Rules: indicate the protection mechanisms invoked for both the foreground

and background states. There is only one global rule per app.

• Per-place Rules: control the protection level of individual places the user might be

visiting. There is one per-place rule for every app–place combination.

The global rule is always given preference over the per-place rule as it considers the big

picture of the user’s released location traces. Invoking this rule will determine whether the

current location is safe to be released. If it is to be released, the per-place rule is invoked to

decide if any further protection is needed.

35



Place/City Detector

This module is responsible for identifying the current place the user is visiting and for

maintaining the user’s mobility model. It performs online processing of the user’s real

location trace to identify spatio-temporal clusters, in a manner similar to that proposed by

Bamis et al. [76]. Formally, we define a place as a cluster of locations within a radius of

100m and over a minimum duration of 5 minutes. Whenever the place detector receives a

new location sample, it tries to map it to one of the existing places in the database. If the

mapping is successful, it updates the total visiting time of that place, else it creates a new

place. The mobility model is the set of places the user visited along with the total visiting

time of every place. This enables computation of the probability of visiting every place.

This module also maps the user’s location to the nearest city/block.

Location Anonymizer

The location anonymization module is the cornerstone of LP-Guardian. It takes

as an input the location, the app state (foreground or background), and the rule from the

rule manager module, and outputs the anonymized location back to the location intercep-

tor module. The rule dictates the appropriate anonymization strategy to be followed as

indicated in Section 2.4.

2.6 Implementation

Android provides apps with two mechanisms with which they can access the user’s

location: the older Location Manager Service and the newer Google Play Services. In both

mechanisms, the apps request regular updates by registering a location listener which acts

as a callback function (Fig. 2.4 – left). Whenever a new location is ready, the callback

function is invoked, and the app receives a new location object.

To enforce any kind of location protection mechanism, the location passed to the app
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Figure 2.4: Location access mechanisms in Android (left & middle) and LP-Guardian’s
deployment within Android (right)

has to be modified. Moreover, such a mechanism has to be app-aware so that it may modify

the location on a per-app basis. There are two options for modifying the location on a

per-app basis. The first involves instrumenting the app’s location accessing interfaces and

intercepting location updates before they reach the app. While the other option involves

instrumenting the platform and changing the location object before reaching the app.

The first option could be implemented with a mechanism similar to Aurasium [77].

Albeit effective, this mechanism requires unpacking, instrumenting, and then repackaging

the app. Repackaging the app will change its signature. This will break any future updates

to the app, and affect any functionality requiring an authentic app signature. Moreover, the

users will have to download the app from a different app store that requires an entity to

manage and keep it up-to-date. Instead, we opted to implement a platform-based solution

that treats the apps as black boxes and maintains their full functionality.

Android relies on two mechanisms to relay location updates to the apps. So, any

platform-based solution has to instrument both mechanisms to intercept and then mod-

ify the location object before reaching the app. Nevertheless, Android ships Google Play

Services as a closed-source app, and hence, its instrumentation is not straightforward. For-

tunately, both mechanisms create a location object prior to propagating it to the app. The
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location class is included in Android code and can be altered easily (Fig. 2.4 – middle).

The location object is merely a data holder, but has to be created within the app process

space before delivering it to the app. We added a static context field to the location class

that is populated when the app is invoked, particularly when a context is created for the app.

A context is what enables an app in Android to interact with the OS resources. Enabling

the location object with a context enabled us to (1) know what app is currently creating a

location object, and (2) communicate with OS or other processes, if needed. We instru-

mented the location object and pushed the location privacy logic to an independent system

app that can be easily updated, if needed. Since the location object has a reference to the

app’s context, it can communicate with that external service (Fig. 2.4 – right) whenever a

new location object is created.

Anonymization incurs a processing cost. It might be prohibitive subjecting every loca-

tion update to the anonymization operation, especially in case of very high location update

rates. It is unlikely that the user’s position will change within a second, even with speeds up

to 100 mph. Consequently, LP-Guardian only communicates with the anonymization

service once every 750ms.

2.6.1 User Interface

Our design philosophy is to rely on the user’s input as infrequently as possible. LP-Guardian

makes decisions on his/her behalf to control different configuration and anonymization pa-

rameters. Nevertheless, there are some situations where the user needs to interact with

LP-Guardian to enable three features: bootstrapping, per-place, and per-session con-

trols. Each of these features is elaborated next.

2.6.1.1 Bootstrapping

Initially, the mechanism is blind and doesn’t have enough information to function. The

two main missing pieces of information are user mobility data and per-app anonymization
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Figure 2.5: The displayed prompts to set the global (left) and per-place (right) rules

rules. As explained earlier, our identification protection mechanism requires mobility data

to function. LP-Guardian cannot collect mobility data at run-time, as by the time we

have this information, other apps will have access to it. At the very first time when the

LP-Guardian boots, the user has to set his/her top N visited places by tapping on a map

(the user still has the option of adding places later through an advanced settings menu). We

then set the initial probabilities of visiting these places according to the model proposed

by González et al. [78]. Specifically, LP-Guardian assigns every place a probability of

visit inversely proportional to its rank of visit, then normalizes the probabilities to form a

PDF.

The second piece of the bootstrapping includes setting the rule for every app. The

first time the app accesses location, LP-Guardian present prompts (Fig. 2.5 – left) the

user to set the app’s anonymization rule. The user only gets to choose one of two self-

explanatory options: “Do nothing” and “Hide Me.” When the user chooses the second

option, LP-Guardian chooses the appropriate anonymization mechanism depending on

the app. It applies city-level coarsening for apps that accommodate such granularity. For

the rest of the apps, it chooses identification protection with a default value of pmin =

0.0005. Additionally, LP-Guardian sets the per-place rule for the location the user is

currently visiting. We use 0.0005 as the default value, which amounts to spending 30

minutes at a certain place each 40 days. LP-Guardian also has an advanced settings

menu that allows the user to set fine-grained pmin for each app.
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Figure 2.6: The displayed notifications when anonymization is disabled (left) and enabled
(right)

2.6.1.2 Per-place/session controls

The per-place rules control the profiling protection level. As LP-Guardian cannot

infer places sensitive to the user, it relies on explicit user input to set these rules. Whenever

an app attempts to access the user’s location from a new place (one the app hasn’t seen

before), LP-Guardian will prompt the user to ask for his/her decision (Fig. 2.5 – right).

The user has to choose one of three options: hide the place every time (Section 2.4.6, reveal

this place only during the current session, and reveal this place always. If the user chooses

the second option, LP-Guardian will keep on issuing the prompt from the same place

until the user chooses a permanent option (either the first or third option).

Finally, LP-Guardian always ensures that the user is aware of the anonymization

if it takes place. Whenever the user is running an app and anonymization takes place, a

notification is displayed (Android notifications are placed in the top left corner and are

non-intrusive). This notification, shown in Fig. 2.6, displays the app, a note to the user,

and an option to temporarily disable the anonymization during the current session. If the

user disables anonymization, the notification will include an option to re-enable location

anonymization.

2.6.1.3 Properties of the prompts

Authorizing resource access in software has been studied before. Livshits [79] proposed

a set of four requirements for valid placement of user prompts that control for resource

access (including location) in mobile platforms. They are: safety, frugality, visibility, and
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non-repetitiveness. To achieve safety, a user prompt must precede every resource access. A

prompt is frugal if it is only displayed in the event of a resource access. Visibility indicates

that a user prompt must only be displayed if the app currently executing in the foreground

is attempting to access a resource. Finally, a user prompt is not repetitive if it is never

displayed for a resource access when a more critical resource of the same type has already

been authorized.

LP-Guardian satisfies the last three constraints by prompting the user only in the

event of a location request and while running in the foreground thus satisfying both fru-

gality and visibility. As for non-repetitiveness, it is already ensured through Android’s

permission model. If an app is granted fine location permission, it is automatically allowed

access for coarse location, but the inverse doesn’t hold.

The safety requirement ensures that no location access goes un-checked. Theoreti-

cally, this is an optimal requirement to protect the user’s privacy. Nevertheless, the users

cannot be expected to assess the implications of every resource access and thus cannot

always make informed decisions. Second, protecting every resource access with a user

prompt will affect the user experience negatively as the app execution will be interrupted

frequently. One option, as implemented in iOS, is to prompt the user at the first time lo-

cation access with an option to remember the decision. Still, that doesn’t appropriately

address the two issues. If the user chooses to remember the decision, this will certainly

reduce the frequency of the prompts but will not necessarily protect the user’s privacy.

LP-Guardian addresses the above two issues by balancing between the frequency of

prompts and privacy guarantees. Only the first location access from every newly visited

place is preceded by a prompt to allow the user to make a choice. LP-Guardian then

makes the subsequent decisions on the behalf of the user. It asks users to make decisions in

terms of hiding or revealing places rather than asking them to authorize location accesses.

Needless to say, users can relate better to places rather than raw location samples. It is

worth noting that the frequency of prompting might be high at the beginning. It should,
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Figure 2.7: The delay overhead (left) and battery depletion rate (right) of LP-Guardian
for Galaxy Nexus

however, decrease after LP-Guardian learns the places the user visits as people tend to

exhibit consistency in their mobility.

2.7 Evaluation

We now evaluate LP-Guardian in terms of performance, privacy guarantees, and

usability.

2.7.1 Performance

First, we validated that LP-Guardian can effectively obfuscate the location delivered

to the apps and verified that it doesn’t cause the apps to crash. We manually installed, ran,

and verified 40 representative location-accessing apps. We then evaluated delay and energy

overheads on three devices: Google Galaxy Nexus, Samsung Galaxy S3, and Samsung

Galaxy S4 running Android 4.3.1.

To evaluate the delay overhead, we simulated location access through an app that ac-

cesses location with a varying frequency. We then measured the delay between the time

the location is created and the time the modified location is delivered to the app. The left
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Figure 2.8: The delay overhead (left) and battery depletion rate (right) of LP-Guardian
for Galaxy S3

plots of Figs. 2.7–2.9 show the average delay for each of the three devices versus the inter-

request interval. Bearing in mind that LP-Guardian temporarily caches location, the

delay value increases with the increase of the inter-request interval.

We also measured the anonymization delay for the worst-case scenario where the anonymiza-

tion actually takes place (i.e., communication with the anonymization service). The delay

was less than 20ms for two devices and less than 30ms for the Galaxy S3 (the curve

labeled “inside” in every plot of the delay overhead plots (left plots of Figs. 2.7–2.9).

LP-Guardian imposes a maximum delay of 30ms every 750ms, which shouldn’t im-

pact the app usability.

To evaluate the energy overhead, we considered two scenarios: no location access, and

a load of location access of one request per 5 seconds. We measured the rate of battery

depletion for each scenario with LP-Guardian running and compared it with the rate

when the framework is not running. The right plots of Figs. 2.7–2.9 show the rate of

battery depletion for each of the three devices and for the two loads.

For a location access rate of 1/5 Hz (one request per 5 sec), the battery depletion rate

when LP-Guardian is running is very close to the case when it is not. This is evident
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Figure 2.9: The delay overhead (left) and battery depletion rate (right) of LP-Guardian
for Galaxy S4

from the the curves close to the y-axis in the energy overhead plots (the right plots of

Figs. 2.7–2.9) for each of the three devices, with an energy overhead less than 10% for the

three devices. In the case of no location access, while LP-Guardian was running, the

battery lasted more than 24 hours for Galaxy Nexus (Fig. 2.7 – right) and more than 60

hours for both Samsung Galaxy S3 (Fig. 2.8 – right) and S4 (Fig. 2.9 – right). Actually,

LP-Guardian doesn’t do any processing in the background except for location acqui-

sition to maintain the mobility model. All other processes are invoked in response to a

location request by the app.

2.7.2 Privacy

In Section 2.4, we proposed a set of mechanisms to cope with the identification and

tracking threats. In what follows, we evaluate the privacy protection mechanisms and their

impact on quality of service.
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2.7.2.1 Datasets

We evaluated LP-Guardian over three datasets that contain app usage information

for 100 users over a period varying between 1 week and 1 year in three different cities. The

first dataset includes 25 Android users (running Android 4.0.3 or higher) that we recruited

from our institution over the period of 8 months. We collected app sessions and whether

the app collected location while running. The second dataset consists of 49 Android users

whom we recruited through PhoneLab [80], a smartphone measurement testbed from the

State University of New York, Buffalo. We also collected app sessions from these users

over 4 months. Finally, we relied on the dataset from the LiveLab project from Rice Uni-

versity [81]. They collected app sessions from 30 iPhone users for a period of one year. The

subsequent analysis assumes a worst-case scenario of an app accessing location whenever

it runs and then sharing it with the service provider.

2.7.2.2 Fingerprinting Protection

We evaluate the loss in app functionality when LP-Guardian is applied in two sce-

narios: a conservative privacy requirement of pmin = 0.0005, and more relaxed one of 0.05.

In what follows, we report the percentage of sessions in which app functionality is neg-

atively affected. For every scenario, we report the distribution of the percentage loss of

sessions for every app–user combination. We report this distribution when the mechanism

is applied plainly, when we add dummy queries, and when we add the mobility data from

the US census data [74].

Figs. 2.10–2.12 show the potential loss in app functionality for each of the three datasets,

ours, LiveLab’s and PhoneLab’s datasets consecutively. We can draw the following con-

clusions from observing these figures.

• More relaxed privacy constraints will enable releasing more of the user’s location

(comparing the left and right plots in every figure).
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Figure 2.10: The distribution of the released sessions for our dataset

• Adding dummy locations and including the mobility data greatly increases the num-

ber of released sessions (comparing the dashed and dotted lines in every plot).

• Users with more diversity in their mobility patterns (visit more places) enjoy natu-

rally higher privacy protection and can thus release more sessions (comparing our

and LiveLab’s datasets with PhoneLab’s).

• The number of unreleased sessions with potential loss in functionality is low. More

than 60% of the sessions are released for more than 60% of the users in the more

privacy-constraint scenario of pmin = 0.0005.

• Although not shown in the figures, most of the unreleased sessions belong to top

visited places (mostly home and work) for each user. These places are more critical

to the user’s identity.
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Figure 2.11: The distribution of the released sessions for LiveLab’s dataset
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Figure 2.12: The distribution of the released sessions for PhoneLab’s dataset

2.7.2.3 Tracking

As for the tracking threat, our mechanism blocks location access in the background,

which leaves tracking limited to foreground sessions that are sporadic (mostly invoked at

most once a day), short (average session length less than 5 minutes) and invoked from

the same location for more than 98% of the time. Furthermore, our high-level privacy

protection schemes hide locations in some sessions that are critical to the user’s privacy.

However, as noticed above, a considerable number of the sessions will be released. We

evaluated the tracking threat each app could pose through the time tracked per day (similar

to the time-to-confusion metric [82]). We evaluate the total time (in seconds) per day during
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Figure 2.13: The distribution of the time tracked per day metric for our dataset
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Figure 2.14: The distribution of the time tracked per day metric for LiveLab’s dataset

which an app receives accurate location updates. We focus only on the case where most of

the sessions will be released (pmin = 0.05) as it constitutes the worst-case scenario in terms

of tracking.

Figs. 2.13–2.15 show the distribution of the time tracked per day for each of the three

datasets (ours, LiveLab, and PhoneLab respectively). In all three plots, the approach with

dummy and mobility data (labeled dummy+mob) releases the most of the sessions and thus

has the most tracking threat. In all of the cases, 90% of the user–app combinations have

tracked time per day of less than 500sec/day; most apps cannot track the user for more

than 8 minutes a day. It is important to note that most of the foreground sessions happen

when the user is stationary, which prevents the adversary from tracking the user while
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Figure 2.15: The distribution of the time tracked per day metric for PhoneLab’s dataset

moving. This limits tracking to counting the places that the user visits. LP-Guardian’s

identification and profiling prevention schemes handle threats resulting from the inference

attacks based on the patterns of visited places.
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2.7.3 User Study

LP-Guardian achieves theoretical guarantees on privacy with an inevitable loss of

quality of service, albeit kept to a minimum. Most of these hidden sessions belong to home

and work locations. To assess the user’s perception of such loss in app functionality, we

asked the participants (same as those of Section 2.3) whether they could accommodate

reduced functionality of their apps from home and work locations for six classes of apps.

• Geo-search (e.g., Yelp): We asked participants (107 have such an app installed) about

the level of comfort (scale 1–5) if they receive inaccurate search results while per-

forming a search from either home or work. The majority of the participants (57%)

indicated a comfort level larger than or equal to 3.

• Social networking (e.g., Facebook): We asked the participants (156 have such an app

installed) whether they share location while being either at home or work. Most of the

participants (62%) answered that they do not, 29% answered that would sometimes

invoke this feature from either places. Also, 82% of the participants answered that

they have no problem with sharing a city-level location instead of the actual home or

work locations. The rest of participants either had no idea (5%), or prefer sharing the

actual location (13%).

• Messaging/chatting (e.g., Whatsapp): The participants who reported installing such

apps (123) do not normally invoke the location sharing feature from home and work.

Only 6% perform such location sharing regularly, and 14% perform it sometimes.

Also, most participants (78%) indicated that they have no problem in sharing a city-

level location instead of home or work actual locations.

• Sports/fitness tracking (e.g., Runkeeper): Users rely on these apps to monitor their

exercising activity. Thirty participants have reported installing and running a fitness

tracking app. Only 6% of the participants care about viewing their actual tracks,

50



while the rest either care more about the distance (36%) or both the distance and

viewing the tracks (58%).

• Gaming (e.g., Angry Birds): Most of these apps access location to feed A&A li-

braries in order to generate revenue. Of the participants who play games on their

smartphones (131/180), 88% reported that their gaming experience will not be dif-

ferent despite possible location anonymization.

• Weather (e.g., Weather Bug): More than half the participants reported that weather

information will not differ inside the same city, indicating that coarsening location

information supplied for weather apps will not hinder their functionality.

It is evident from the survey that users generally will not mind some loss of app func-

tionality at home and work. This is actually expected as users would rely more on location

based functionality at unfamiliar places as opposed to places that they live or work at. For

example, the user study shows that users would have no problem searching for relatively

far places from their home or work locations when utilizing geo-search apps. Also, users

seldom share their home or work locations while using social networking or chatting apps.

Moreover, users are relatively open to the possibility of loss of quality of service when

using sports tracking apps. In summary, LP-Guardian provides users with privacy at a

tolerable loss of app functionality.

2.8 Conclusion & Future Work

In this chapter, we proposed LP-Guardian, a novel location privacy protection frame-

work for Android smartphone users that is practical, effective, and efficient.

• Practical: We fully implemented LP-Guardian on Android 4.3. It does not break

the functionality of the apps, and is not difficult to deploy. LP-Guardian also

incurs acceptable energy and delay overheads.
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• Effective: LP-Guardian addresses location privacy threats over three levels. It ad-

dresses the tracking threats through reducing the time tracked per day. It addresses

the profiling threat by enabling the user to hide sensitive places. Finally, it addresses

identification threats through a novel mechanism that makes the user’s mobility pat-

tern indistinguishable from a set of theoretical individuals satisfying a minimum con-

straint on all the places the user visits.

• Efficient: LP-Guardian provides privacy guarantees at a tolerable loss in app func-

tionality. User’s location is hidden for a small number of sessions and at places where

location-based functionality is less needed.

In the next chapter, we pursue the deployment challenges related to location privacy

protection. In the longer term, we are planning to deploy LP-Guardian in the phones of

a set of diverse participants with limited technical background for a period of six months.

This usability study will allow us to fine-tune LP-Guardian and identify areas where

the privacy–usability tradeoff could be improved. Finally, we will consider incorporating

LP-Guardian as a part of a custom ROM (e.g., CyanogenMod) to reach a larger audi-

ence.
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CHAPTER III

LP-Doctor

3.1 Introduction

Mobile users are increasingly aware of the privacy threats caused by apps’ access

of their location [60, 59]. According to recent studies [61, 62, 59], users are also tak-

ing measures against these threats ranging from changing the way they run apps to dis-

abling location services all together on their mobile devices. How to mitigate location-

privacy threats has also been researched for some time. Researchers have proposed and

even implemented location-privacy protection mechanisms (LPPMs) for mobile devices

[52, 39, 40, 38]. However, few of them have been deployed as they require app or system-

level modifications, both of which are unappealing/unrealistic to the ordinary users.

In Chapter II, we presented LP-Guardian which enacts privacy protection for smart-

phone users but requires modifying the Android platform. In this chapter, we investigate

pushing privacy protection to the user-level by leveraging OS-based location controls. In

particular, we propose LP-Doctor, a user-level tool, that requires no modification to the

underlying operating system.

Faced with location-privacy threats, users are left only with whatever controls the apps

and OSes provide. Some, but not all, apps allow the users to control their location access.

OSes have been improving on this front. iOS includes a new permission to authorize loca-

tion access in the background, or when the app is not actively used. Also, iOS, Windows
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OS, and Blackberry (Android to follow suit) utilize per-app location-access permissions.

The user authorizes location access at the very first time an app accesses his/her location

and has the option to change this decision for every subsequent app invocation. We want

to answer two important questions related to this: (i) are these controls effective in protect-

ing the user’s location privacy and (ii) if not, how can they be improved at the user level

without modifying any app or the underlying OS?

To answer these questions, we must understand the location-privacy threats posed by

mobile apps. This consists of understanding the apps’ location-access patterns and their

usage patterns. For this, we instrumented and analyzed the top 1165 downloaded free apps

(that require location-access permissions) from Google Play to study their location-access

patterns. We also studied the behavior of Advertisement and Analytics (A&A) libraries,

such as Flurry, embedded in the apps that might access location. We analyzed only those

apps/libraries that access location through Android’s official location APIs. While some

apps/libraries might circumvent the OS in accessing location, it is an orthogonal problem

to that addressed in this chapter.

We then analyzed the users’ app-usage patterns by utilizing three independent datasets.

First, we collected and analyzed app-tagged location traces through a 10-month data col-

lection campaign (Jan. 2013—Nov. 2013) for 24 Android smartphone users. Second, we

recruited 95 Android users through PhoneLab [80], a smartphone measurement testbed at

New York State University at Buffalo, for 4 months. Finally, we utilized the dataset from

Livelab at Rice University [83] that contains app-usage and location traces for 34 iPhone

users for over a year.

Ultimately, we were able to evaluate the privacy threats posed by 425 apps and 77 third-

party libraries. 70% of the apps are found to have the potential of posing profiling threats

that have not yet been adequately studied or addressed before [84, 28, 46, 85]. Moreover,

the A&A libraries pose significant profiling threats on more than 80% of the users as they

aggregate location information from multiple apps. Most of the users are unaware of these
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threats as they cannot keep track of exposure of their location information. The issue

becomes more problematic in the case of A&A libraries where users are oblivious to which

apps these libraries are packed in and whether they are receiving location updates.

Given the nature of the threats, we studied the effectiveness of the existing OS controls.

We found that these controls are capable of thwarting only a fraction of the underlying

privacy threats, especially tracking threats. As for profiling, the user only has the options

of either blocking or allowing location access. These two options come at either of the two

extremes of the privacy–utility spectrum: the user either enjoys full privacy with no utility,

or full utility with no privacy. As for A&A libraries, location accesses from a majority of

the apps must be blocked to thwart the location-privacy threats caused by these libraries.

The main problem arises from the user’s inability to exercise fine-grained control on

when an app should receive a location update. The interface provided by existing controls

makes it hard for the user to enforce location-access control on a per visited place/session

basis. Even if the user can dynamically change the control of location access, s/he cannot

estimate the privacy threats at runtime. The location-privacy threat is a function of the

current location along with previously released locations. This makes it difficult to estimate

the threat for apps and even harder for A&A libraries.

To fill this gap, we propose LP-Doctor, a user-level app, to protect the location pri-

vacy of smartphone users, which offers three salient features. First, LP-Doctor evaluates

the privacy threat that the app might pose before launching it. If launching the app from the

current location poses a threat, then it acts to protect the user’s privacy. It also warns the

user of the potential threat in a non-intrusive manner. Second, LP-Doctor is a user-level

app and does not require any modification to the underlying OS or other apps. It acts as

a control knob for the underlying OS tools. Third, LP-Doctor lets the user control, for

each app, the privacy–utility tradeoff by adjusting the protection level while running the

app.

LP-Doctor, however, fails to thwart the tracking threat posed by mobile apps con-
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sistently accessing user’s location in the background. This highlights a privacy versus

usability trade-off between LP-Guardian and LP-Doctor. LP-Guardian requires

modification to the underlying operating system and can offer stronger protection. On the

other hand, LP-Doctor sacrifices tracking protection in favor of a usable implementation.

Nevertheless, we show that the vast majority of the apps do not engage in background lo-

cation tracking. Also, a native background location access control (such as the one offered

by iOS) can complement the operation of LP-Doctor.

We implemented LP-Doctor as an Android app that can be downloaded from Google

Play. The privacy protection that LP-Doctor provides comes at a minimal performance

overhead. We recruited 227 participants through Amazon Mechanical Turk and asked them

to download and use LP-Doctor from Google Play. The overwhelming majority of the

participants reported little effect on the quality of service and user experience. More than

77% of the participants indicated that they would install LP-Doctor to protect their lo-

cation privacy.

In summary, we make the following main contributions:

• The first location data collection campaign of its kind to measure, analyze, and model

location-privacy threats from the apps’ perspectives (Sections 3.3–3.6);

• Evaluation of the effectiveness of OS’s location privacy controls by anatomizing the

location-privacy threats posed by the apps (Sections 3.7–3.8);

• Design, implementation and evaluation of a novel user-level app, LP-Doctor, based

on our analysis to fill the gaps in existing controls and improve their effectiveness

(Section 3.9).

3.2 Related Work

App-Based Studies: To the best of our knowledge, this is the first attempt to quantify

and model location privacy from the apps’ perspective. Researchers already concluded

56



that many mobile apps and A&A libraries leak location information about the users to the

cloud [86, 87, 88]. These efforts are complimentary to ours; we study the quantity and

quality of location information that the apps and libraries locally gather while assuming

that they may leak this information outside the device.

Analysis of Location Privacy: Influenced by existing location datasets (vehicular

traces, cellular traces, etc.), most of the existing studies view location privacy in smart-

phones as if there were only one app continuously accessing a user’s location [26, 28, 33,

27, 44, 45, 46]. Researchers also proposed mechanisms [49, 35, 33] (their effectiveness an-

alyzed by Shokri et al. [89]) to protect against the resulting tracking-privacy threats. Such

mechanisms have shown to be ineffective in thwarting the profiling threats [28] which are

more prevalent as we will show later.

Researchers started considering sporadic location-access patterns as a source of location-

privacy threat that calls for a different treatment than the continuous case [90]. Still, ex-

isting studies focus mostly on the tracking threat [51, 66]. The only exception to this is

the work by Freudiger et al. [84]. They assessed the erosion of the user’s privacy from

sporadic location accesses as the portion of the PoIs identified after downsampling the con-

tinuous location trace. In this chapter, we propose a formal metric to model the profiling

threats. Also, we show that an app’s location-access behavior cannot be modeled as simply

downsampling the user’s mobility.

Location-Privacy Protection Proposals: Several solutions have been proposed to pro-

tect mobile users’ location privacy. MockDroid [52] allows for blocking apps’ location

access to protect the user’s location privacy. LP-Guardian [60] is another system aiming

at protecting the user’s location privacy by incorporating a myriad of mechanisms. Both

systems require platform modifications, hindering their deployment. Other mechanisms,

such as Caché[39] and the work by Micinski et al. [40], provide apps with coarsened loca-

tions but require modifications to the apps. Koi [38] proposed a location privacy enhancing

system that utilizes a cloud service, but requires developers to use a different API to access
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location. Apps on Google Play such as PlaceMask and Fake GPS Location Spoofer rely on

the user to manually feed apps with fake locations, which reduce their usability.

Finally, researchers have proposed improved permission models for Android [91, 92].

In their models, the users are aware of how much the apps access their location and have the

choice to enable/disable location access for each app (AppOps provided such functionality

in Android 4.3). LP-Doctor improves on these in three ways. First, it provides a privacy

model that maps each app’s location access to a privacy metric. This model includes more

information than just the number of location accesses by the app. Second, LP-Doctor

makes some decisions on behalf of the users to avoid interrupting their tasks and to make

privacy protection more usable. Third, LP-Doctor employs per-session location-access

granularity which achieves a better privacy–utility tradeoff.

3.3 Background and Data Collection

To study the efficacy of location-access controls of different mobile OSes, we had to

first analyze location-privacy threats from the apps’ perspectives. This includes studying

how different apps collect the user’s location. We conduct a data collection campaign to

achieve this using the Android platform. Our results, however, can be generalized to other

mobile platforms like iOS.

3.3.1 Location-Access Controls

Each mobile platform provides users with a set of location-access controls to mitigate

possible location-privacy threats. Android (prior to Android M) provides a one-time per-

mission model that allows users to authorize location access. Once the user approves the

permission list (Fig. 3.1–left) for the app, it is installed and the permissions cannot be re-

voked. It also provides a global location knob (Fig. 3.1–right) to control location services.

The user cannot exercise per-app location-access control.
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Figure 3.1: Android’s permission list (left) and location settings (right).

Other platforms, such as Blackberry OS and iOS, provide finer-grained location per-

missions. Each app has a settings menu (Fig. 3.2–left) that indicates the resources it is

allowed to access, including location. The user can at any point of time revoke resource

access by any app. The first time an app accesses location, the OS prompts the user to au-

thorize location access for the app in the current and future sessions (Fig. 3.2–right). Also,

Google, starting from Android M, will provide a similar permission model (an evolution of

the previously deployed AppOps in Android 4.3) to control access of location and other re-

sources. At present, iOS provides the users with an additional option to authorize location

access in the background to prevent apps from tracking users.

In the rest of this chapter, we study the following controls: (1) one-time location permis-

sions, (2) authorization of location access in the background, and (3) finer-grained per-app

permissions.

3.3.2 System Model

We study location-privacy threats through apps and A&A libraries that access the user’s

location. These apps and libraries then provide the service, and keep the location records

indexed by a user ID, such as MAC address, Android ID, IMEI, etc.
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Figure 3.2: iOS’s location settings (left) and prompts (right).

We assume that the app/library communicates all of the user’s location samples to

the service provider.1 This allows us to model the location-privacy threats caused by

apps/libraries in the worst-case scenario. The app is the only means by which the ser-

vice provider can collect the user’s location updates. We do not consider cases where the

service provider obtains the user’s location via side channels other than the official API,

e.g., an app reads the nearby access points and sends them to a localization service, such as

skyhook.

We preclude system and browsing apps from our study for the following reasons. Sys-

tem apps are part of the OS that already has access to the user’s location all the time. Hence,

analyzing their privacy implications isn’t very informative. As for the browsing apps, the

location sink might be a visited website as well as the browser itself. We decided not to

monitor the user’s web history during the data collection for privacy concerns. Also, app-

usage patterns differ from browsing patterns. The conclusions derived for the former do

not necessarily translate to those for the latter.

1We refer to both the app developers and A&A agencies as the service provider.
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3.3.3 App and A&A libraries Analysis

In February 2014, we downloaded the top 100 apps of each of Google Play’s 27 app

categories. We were left with 2588 unique apps, of which 1165 apps request location

permissions. We then instrumented Android to intercept every location access invoked by

both the app and the packed A&A libraries.

The main goal of this analysis was to unravel the situations in which an app accesses

location and whether it feeds a packed A&A library. In Android, the app could be running

in the foreground, cached in the background, or as a service. Using a real device, we ran

every app in foreground, moved it to background, and checked if it forked a service, while

recording its location requests.

Apps running in the foreground can access location spontaneously or in response to

some UI event. So, we ran every app in two modes. In the first mode, the app runs for a

predefined period of time and then closes, while in the second, we manually interact with

each app to trigger the location-based functionality. Finally, we analyzed the functionality

of every app and the required location granularity to achieve this functionality.

3.3.4 Data Collection

As will be evident in Section 3.4, the app-usage pattern is instrumental in determining

the underlying location-privacy threats. We collected the app-usage data using an app that

we developed and published on Google Play. Our study was deemed as not-requiring an

IRB oversight by the IRB at our institution; all the data we collected is anonymous. Also,

we clustered the participants’ location on the device to extract their visited places. We

define the “place” as a center location with a radius of 50m and a minimum visit time of 5

min. Then, we logged place IDs instead of absolute location samples to further protect the

participants’ privacy.

PhoneLab: PhoneLab [80] is a testbed, deployed at the NY State University at Buffalo,

composed of 288 smartphone users. PhoneLab aims to free the researchers from recruiting
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participants by providing a diverse set of participants, which leads to stronger conclusions.

We recruited 95 participants to download and run our app for the period between Febru-

ary 2014 and June 2014. We collected detailed usage information for 625 apps, of which

218 had location permissions and were also part of the apps inspected in the app-analysis

stage.

University of Michigan: The second set consists of 24 participants whom we recruited

through personal relations and class announcements. We launched this study from January

2013 till November 2013, with the participation period per user varying between 1 week

and 10 months. From this set, we collected usage data of 256 location-aware apps.

We also collected location access patterns of some apps from a subset of the partic-

ipants. We handed 11 participants Galaxy Nexus devices with an instrumented Android

(4.1.2) that recorded app-tagged location accesses. We measured how frequently do or-

dinary users invoke location-based functionality of apps that do not spontaneously access

location (e.g., Whatsapp).

LiveLab: Finally, we utilize the Livelab dataset [83] from Rice University. This dataset

contains the app usage and mobility records for 34 iPhone users over the course of a year

(2010). We post-processed this dataset to map app-usage records to the location where

the apps were invoked. We only considered those apps that overlapped with our Android

dataset (35 apps).

3.4 Location-Access Patterns

We address the location-access patterns by analyzing how different apps collect location

information while running in foreground and background. The former represents the state

where the user actively interacts with the app, while the latter represents the case where the

app runs in the background either as cached by Android or as a persistent service.

As evident from Table 3.1, 74% of the apps solely access location when running in

the foreground, while only 3% continuously access the user’s location in the background.
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Table 3.1: Location-access patterns for smartphone apps according to Android location
permissions

Fore. (%) Cached (%) Back. (%) None (%) Gran.
Coarse (%)

Coarse 71 6 1 22 100
Fine 74 14 4 12 48
All 74 12 3 14 66

Table 3.2: Location-access patterns for A&A libraries

Total No Location Access App Feeds Location
Auto Location Access

Coarse Fine Both

77 22 17 3 2 33

Around 70% of the apps accessing location in the foreground spontaneously perform such

access preceding any user interaction. Examples of these apps include Angry Birds, Yelp,

Airbnb, etc.

Android caches the app when the user exits it; depending on the app’s behavior it might

still access location; only 12% of the apps access the user’s location when they are cached.

Interestingly, for 14% of the apps, we didn’t find any evidence that they access location in

any state.

We also analyzed the location-based functionality of every app and the required location

granularity to achieve such functionality. We focused on two location granularity levels:

fine and coarse. A fine location sample is one with block-level granularity or higher, while

coarse location is that with zipcode-level granularity or lower. We manually interacted with

each app to assess the change in its functionality while feeding it locations with different

granularity. We show the percentage of the apps that can accommodate coarse location

without noticeable loss of app functionality in Table 3.1 under the column titled Gran.

Coarse. One can notice that apps abuse the location permissions: 48% of the apps request-

ing fine location permissions can accommodate locations with coarser granularity without

loss of functionality.
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Figure 3.3: The distribution of app session lengths (left) and inter-session intervals (right)
for the three datasets.

Finally, we analyzed the packed A&A libraries in these apps. We were able to iden-

tify 77 of such libraries packed in these apps. Table 3.2 shows basic statistics about these

libraries. Most (more than 70%) libraries require location access where some are fed lo-

cation from the apps (22%). The rest of the libraries automatically access location where

3 of them require coarse location permissions, 2 require fine permissions, and the rest do

not specify a permission. Also, these libraries are included within more than one location-

aware app giving them the ability to track the user’s location beyond what a single app can

do. For example, of 1165 analyzed apps, Google Ads is packed within 499 apps, Flurry

within 325 apps, Medialets within 35 apps, etc.

3.5 App-Usage Patterns

As apps mostly access users’ location in the foreground, the app-usage patterns (the

way that users invoke different apps) help determine how much location information each

app collects. Apps are shown to sporadically sample the user’s location based on two facts.

First, an app session is equivalent to the place visited during the session. Second, apps’

inter-session intervals follow a Pareto-law distribution.

For foreground apps, we define a session as a single app invocation—the period of time
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in which a user runs the app then exits it. The session lengths are not long enough to cover

more than one place the user visits, where 80% of these app sessions are shorter than 10

minutes (the left plot of Fig. 3.3). We confirmed this from our PhoneLab dataset; 98% of

the app sessions started and ended at the same place.

This allows for collapsing an app session into one location-access event. It doesn’t

matter what frequency the app polls the user’s location with. As long as the app requests

the user’s location at least once, while it is running in the foreground, it will infer that the

user visited that location. We thus ignore the location-access frequency of foreground apps,

and instead focus on the app-usage patterns.

We define the inter-session time as the interval separating different invocations (ses-

sions) of the same app by the same user. The right plot of Fig. 3.3 shows the distribution of

the inter-session intervals for the three datasets. More than 50% of the app sessions were

separated by at least one hour.

We also found that the inter-session intervals follow a Pareto-law distribution rather

than a uniform distribution. This indicates that apps do not sample the user’s location

uniformly, indicating that existing models for apps’ location access do not match their

actual behavior.

Fig. 3.4 shows the distribution of the inter-session intervals of a user running Facebook.

It is evident that the distribution of the inter-session intervals decays linearly with respect

to the increase of inter-session intervals. We observed a similar trend with all other apps.

This suggests that the data decays according to a Pareto law (QQ plot in Fig. 3.4). We

followed the guidelines outlined by Clauset et al. [93] to fit the data to the truncated Pareto

distribution. Three parameters (L, H , and α) define the truncated Pareto law distribution:

pX(x)


(−α−1)L−α−1xα

1−( LH )
−α−1 if L ≤ x ≤ H

0 otherwise.
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Figure 3.4: The distribution of the inter-session times for Facebook in Livelab dataset (left),
and the QQ plot of this distribution versus a Pareto law distribution (right).

After fitting the data, more than 97% of the app-usage models are found to have α

between -1 and -1.5. According to Vagna et al. [94], Pareto law fits different human activity

models with α between -1 and -2.

3.6 Privacy Model

Here we model the privacy threats caused by mobile apps’/libraries’ access of the user’s

location.

3.6.1 Preliminaries

Below we describe the models of user mobility, app-usage, and adversaries that we will

use throughout the chapter.

User Mobility Model: We assume there is a region (e.g., city) of interest which in-

cludes set of places that the user can visit. So, a domain of interest is represented by the set

Pl of all the places available in that domain: Pl = {pl1, pl2, pl3 . . .}. Under this model, the

user visits a set of places, UPl ⊆ Pl, as part of his/her daily life, spends time at pli running

66



some apps and then moves to another place plj . We alternatively refer to these places as

the user’s Points of Interest (PoIs).

We associate every place pli with a visit probability of pi, reflecting the portion of time

the user spends at pli. The user’s mobility profiles are defined as the set, Upl, of places

s/he visited and the probability, pi, of visit to each place. The mobility profile is unique to

each user since a different user visits a different set of places with a different probability

distribution [28].

App-Usage Model: In Section 3.5, we showed that each app session is equivalent to

an observation of the user’s visit to a place. The app accumulates observations of the set

of places that the user visits. The app will eventually observe that a user visited a certain

place pli for cpli times. So, we view the app as a random process that samples the user’s

entire location trace and outputs a histogram of places of dimension |UPl|. Each bin in the

histogram is the number of times, cpli , the app observes the user at that specific place. The

total number of visits is represented as N =
∑|UPl|

i=1 cpli .

The histogram represents the app’s view of the user’s mobility. Most apps do not con-

tinuously monitor user’s mobility as they do not access location in the background. As

such, they cannot track users; the most these apps can get from a user is the histogram of

the places s/he visited, which constitutes the source of location-privacy threats in this case.

Adversary Model: The adversary in our model is not necessarily a malicious entity

seeking to steal the user’s private information. It is rather a curious entity with possession of

the user’s location trace. The adversary will process and analyze these traces to infer more

information about the user that allows for a more personalized service. This is referred to

as authentic apps [95]. The objective of our analysis is to study the effect of the ordinary

apps collecting location on the user’s privacy.

Apps accessing location in the foreground cannot track the user (Section 3.8). So,

the adversary seeks to profile the user based on locations s/he visited. We use the term

profiling to represent the process of inferring more information about the user through

67



Table 3.3: The metrics used for evaluating the location privacy threats.

Metric Description

PoItotal Fraction of the user’s PoIs
PoIpart Fraction of the user’s infrequently visited PoIs
Profcont Distance between the user’s histogram and mobility profile
Profbin χ2 test of the user’s histogram fitting the mobility profile

the collected location data. The profiling can take place at multiple levels, ranging from

identifying preferences all the way to revealing the user’s identity. Instead of modeling the

adversary’s profiling methods/attacks, we quantify the amount of information that location

data provides the adversary with. The intuition behind our analysis of the profiling threat

is that the more descriptive the app’s histogram of the actual user’s mobility pattern, the

higher the threat is.

3.6.2 Privacy Metrics

Table 3.3 summarizes the set of metrics that we utilize to quantify the privacy threats

that each app poses from its location access. The simplest metric is the fraction of the

users’ PoIs the app can identify [84]. We evaluate this metric by looking at the apps’ actual

collected location traces, rather than a downsampled location trace. We will henceforth

refer to this metric as PoItotal.

We also consider a variant of the metric (referred to as PoIpart) as the portion of the

sensitive PoIs that the apps might identify. We define the sensitive PoIs as those that have

a very low probability of being visited. These PoIs will exhibit abnormalities in the user’s

behavior. Research results in psychology [96, 97] indicated that people regard deviant

(abnormal) behavior as being more private and sensitive. Places that an individual might

visit that are not part of his/her regular patterns might leak a lot of information and are thus

more sensitive in nature.

The histogram, as we mentioned before, is a sample of the user’s mobility pattern. The
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second aspect of the profiling is quantifying how descriptive of the user’s mobility pattern

(original distribution) the app’s histogram (sample) is.

For the purpose of our analysis and the privacy-preserving tool we propose later, we

need two types of metrics. The first is a continuous metric, Profcont, that quantifies the

profiling threat as the distance between the original distribution (mobility profile) and the

sample (app’s histogram). The second is a binary metric, Profbin, that indicates whether a

threat exists or not.

For Profcont, we use the KL-divergence [98] as a measure of the difference (in bits)

between the histogram (H) and the user’s mobility pattern. The K-L divergence is given by

DKL(H‖p) =
∑|UPl|

i=1 H(i) ln H(i)
pi

, where H(i) is the probability of the user visiting place

pli based on the histogram, while pi is the probability of the user visiting that place based

on his/her mobility profile. The lower (higher) the value of Profcont, the higher (lower) the

threat will be since the distance between the histogram and mobility pattern will be smaller

(larger).

Profcont is not useful in identifying histograms that pose privacy threats. There is

no intuitive way by which a threshold can separate values that pose threats and those not

posing any threat. So, we need a criterion indicating whether or not a threat exists based

on the app’s histogram. We use Pearson’s Chi-square goodness of fit test to meet this need.

This test indicates if the observed sample differs from the original (theoretical) distribution.

Specifically, it checks if the null hypothesis of the sample originating from an original

distribution can be accepted or not.

The test statistic, in our context, is χ2 =
∑|UPl|

i=1

(cpli−Ei)
2

Ei
where Ei = N.pi is the ex-

pected number of visits to the place pli. The statistic converges to a Chi-squared distribution

with |UPl|−1 degrees of freedom when the null hypothesis holds. The test yields a p-value

which if smaller than the significance level (α) then the null hypothesis can be rejected

(Profbin = 0—no threat), else Profbin = 1, where null hypothesis cannot be rejected,

indicating the existence of a threat. In Sections 3.7 and 3.8, we employ the widely-used
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value of 0.05 as the significance level.

Here, we have to highlight the same issue of the second chapter of this thesis. Our

modeling of the user mobility drops timing information which could leak additional in-

formation to the adversary. Nevertheless, the metrics adopted in this chapter can easily

accommodate tagging each bin of the histogram with time information (time of the day

or day of the week). Still, they (the metrics) cannot consider the order of user visits to

different locations. Modeling privacy threats, while taking the ordering information into

account, is studied in the next chapter of this thesis.

A&A libraries: can aggregate location information from the different apps in which

they are packed and allowed to access location. We can thus view the histogram pertaining

to an A&A library as the aggregate of the histograms of the apps in which the library is

packed. We evaluate the same metrics for the aggregated histogram.

For the case of PoItotal and PoIpart metric, the aggregate histogram will be represen-

tative of the threat posed by the libraries. As for Profcont and Profbin, we consider the

aggregate histogram as well as the individual apps’ histograms. The threat per library is

the highest of that of the aggregate and individual histograms. The privacy threat posed by

the library is at least as bad as that of any app that packs it in.

3.7 Anatomy

We now present the major findings from our measurement campaign. We analyze the

location trace of each app and user, and hence, every data point in the subsequent plots

belongs to an app–user combination. We constructed each app’s histogram by overlaying

its location-access pattern on its usage data for every user.

Privacy Threat Distribution: Fig. 3.5 shows the distributions of PoItotal, PoIpart, and

Profcont for both the apps and A&A libraries. As to PoItotal, most of the apps can identify

at least 10% of the user’s PoIs; while for 20% of the app–user combinations, apps were

able to identify most of the user’s PoIs. Apps cannot identify all of the user’s PoIs for two
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Figure 3.5: The distributions of PoItotal (top), PoIpart (middle), and Profcont (bottom) for
the apps (left) and A&A libraries (right) from our datasets.

reasons: (1) not all apps access the user’s location every time, as highlighted in Section 3.4,

and (2) users do not run their apps from every place they visit. On the other hand, A&A

libraries can identify more of the user’s PoIs, with most of the libraries identifying at least

20% of the user’s PoIs. Moreover, as the middle plots of Fig. 3.5 indicate, around 30% of

the apps were able to identify some of the user’s sensitive (less frequently visited) PoIs.

More importantly, A&A libraries were able to identify more of the user’s sensitive PoIs,

indicating the level of privacy threats they pose.

The two bottom plots of Fig. 3.5 show the distributions of the profiling metric Profcont
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for the foreground apps in the three datasets. The lower the value of the metric, the higher

the privacy threat is. There are two takeaways from these two plots. First, apps do pose

significant privacy threats; the distance between the apps’ histogram and the user’s mobility

pattern is less than 1 bit in 40% of the app–user combinations for the three datasets. The

second observation has to do with the threat posed by A&A libraries. It is clear from the

comparison of the left and right plots that these libraries pose considerably higher threats.

In more than 80% of user–library combinations, the distance between the observed his-

tograms and the user’s mobility profile is less than 1 bit.

Apps tend to even pose higher identification threats. As evident from Fig. 3.5, some

apps can identify a relatively minor portion of the user’s mobility which might not be

sufficient to fully profile the user. Nevertheless, the portion of PoIs tend to be those users

frequently visit (e.g., home and work) which may suffice to identify them [28, 46, 20].

This might not be a serious issue for those apps, such as Facebook, that can learn the user’s

home and work from other methods. Other apps and libraries (e.g., Angry Birds), however,

might infer the user’s identity even when s/he anonymously uses them (without providing

an identity or login information).

Fig. 3.5 also confirms our intuition in studying the location traces from the apps’ per-

spective. If apps were to uniformly sample the user’s mobility as has been assumed in

literature, Profcont should be mostly close to 0 (indicating no difference between the his-

togram and the mobility pattern), which is not the case.

Privacy Threats and App-Usage: We also evaluated the posed privacy threats vs. the

app-usage rate as shown in Fig. 3.6. As evident from the plots, there is little correlation

between the amount of posed threats and the app-usage rate. Apps that are used more

frequently, do not necessarily pose higher threats, as user mobility, the app’s location-

access pattern, and the user’s app-usage pattern affect the privacy threat.

With lower usage rates, both PoItotal and Profcont vary significantly. Users with little

diversity in their mobility pattern are likely to visit the same places more frequently. Even
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Figure 3.6: The distribution of PoItotal (left) and Profcont (right) vs. the number of app
sessions.
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Figure 3.7: The distribution of Profcont vs. app categories.

the same user could invoke apps differently; s/he uses some apps mostly at unfamiliar

places (navigation apps), while using other apps more ubiquitously (gaming apps), thus

enabling the apps to identify more of his/her PoIs.

Finally, we studied the distribution of the threat in relation to app categories. Fig. 3.7

shows that the threat level is fairly distributed across different app categories and the same

category. This confirms, again, that privacy threats result from multiple sources and are

a function of both apps and users. Some app categories, however, pose lower threats on

average. For example, transportation apps (including navigation apps) pose lower threats

as users tend to use from unfamiliar places.
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Spontaneous (18%)

Group E:
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All Apps
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Coarse Location Needed (36%)

Figure 3.8: App categorization according to threat levels, location requirements, and
location-access patterns.

Threat Layout: Given the three datasets, we were able to analyze the profiling threats

as posed by 425 location-aware apps (Fig. 3.8). For this part, we use Profbin metric to

decide which apps pose privacy threats and those which do not. As apps pose different

threats depending on the users, we counted an app as posing a threat if it poses a privacy

threat to at least one user. Only a minority of the apps (30%) pose negligible threats.

The rest of the apps pose a varying degree of profiling threat. We analyzed their

functionality: 52% of such apps do not require location with high granularity to provide

location-based functionality. For these apps, a zipcode- or city-level granularity would be

more than enough (weather apps, games). This leaves us with 34% of the apps that require

block-level or higher location granularity to provide usable functionality. These apps either

spontaneously access location (18%) or in response to a UI event (16%).

3.8 OS Controls

Having presented an anatomy for the location-privacy threats posed by mobile apps,

we are now ready to evaluate the effectiveness of existing OSes’ location access controls in

thwarting these threats.

Global Location Permissions: Android’s location permissions attempt to serve two

purposes: notification and control. They notify the user that the app s/he is about to install
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Figure 3.9: The distribution of PoItotal (left) and Profcont (right) for PhoneLab apps with
different permissions.

can access his/her location. Also, permissions aim to control the granularity by which apps

access location. Apps with coarse-grained location permission can only access location

with both low granularity and frequency.

Fig. 3.9 compares the profiling threats (PoItotal and Profcont) posed by apps with fine

location permissions and those with coarse location permissions. It also plots the distri-

bution of the privacy metrics for apps without location permissions assuming that they

accessed location when running. While this might seems oblivious at a first glance, we

aim to compare the location-based usage of apps with different location permissions. This

allows us to study if the location permissions are effective as a notification mechanism so

that users use apps from different places depending on the location permissions.

The apps with fine-grained location permissions exhibited very similar usage pattern

to those apps without location access. The users ran the app from the same places regard-

less of whether they have location permissions or not. We conclude that this notification

mechanism does little to alert users on potential privacy threats and has no effect on the

app-usage behavior. Similar observations have also been made by others [61].

Almost a half of the apps (Table 3.1) that request fine-grained location permissions

are found to be able to achieve the location-based functionality with coarser-granularity
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Figure 3.10: The distribution of the tracking threat posed by the foreground apps (left) and
A&A libraries (right).

location. This suggests that apps abuse location permissions. If used appropriately, permis-

sions can be effective in thwarting the threats resulting from apps’ abuse of location access

(∼40% of the apps — Group B — according to Fig. 3.8).

Background Location Access: Background location access is critical when it comes

to tracking individuals. It enables comprehensive access to the user’s mobility information

including PoIs and frequent routes. Recently, iOS 8 introduced a new location permission

that allows users to authorize location access in the background for apps on their devices.

This permission strikes a balance between privacy and QoS. We showed in Section 3.4

that apps rarely access location in the background. Thus, this option affects a very low

portion of the user’s apps, but is effective in terms of privacy protection, especially in

thwarting tracking threats. We evaluated the tracking threat in terms of tracking time per

day [82, 60] for the three datasets for foreground location access.

Fig. 3.10 (left) shows that in 90% of the app–user combinations, blocking background

location access will limit the location exposure to less than 10 minutes a day (from fore-

ground location access). The third-party libraries tend to pose slightly higher tracking

threats than apps (Fig. 3.10 – right).

Per-app Location Permissions: To improve over static permissions, iOS enables the
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Figure 3.11: The fraction of the user’s apps that must be blocked from accessing location
to protect against privacy threats posed by A&A libraries.

user to allow/disallow location access on a per-app basis. The users gain two advantages

from this model: (i) location access can be blocked for a subset, but not all, of the apps,

and (ii) the apps retain some functionality even when the location access is blocked.

Even if the user trusts an app with location access, the app can still profile him/her

through the places s/he visited (Groups D and E in Fig. 3.8). To combat these threats,

the user has to either allow location access to fully exploit the app and lose privacy, or

gain his/her privacy while losing the location-based app functionality. Currently, mobile

platforms offer no middle ground to balance privacy and QoS requirements.

In Section 3.7, we showed that A&A libraries pose significant threats that users are

completely unaware of as they access location from more than one app. The user cannot

identify which apps s/he must disallow to access location in order to mitigate threats from

third-party libraries. Fig. 3.11 shows the portion of the user’s apps that must be disbarred

from accessing location to thwart threats from packed A&A libraries. It turns out (left plot

of Fig. 3.11) that in order to protect the user from privacy threats posed by a single library,

at least 50–70% of the apps carrying the library must be disbarred from accessing location.

This amounts to blocking location for more than 10% of the apps installed on the device.

In conclusion, a static permission model suffers serious limitations, blocking location

access in the background is effective in mitigating the tracking threat but not the profiling
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one, and per-app controls exhibit an unbalanced tradeoff between privacy and QoS. Also,

they are ineffective against the threats caused by A&A libraries. Thus, a finer-grained

location access control is required, allowing control for each app session depending on the

context. Per-session location access control allows users to leverage better and more space

in the privacy–QoS spectrum.

3.9 LP-Doctor

Users cannot utilize the existing controls to achieve per-session location-access controls

for two reasons. First, these controls are coarse-grained (providing only per-app controls

at best). For finer-level controls, the user has to manually modify the location settings

before launching each app, which is quite cumbersome and annoying. Second, even if

the user can easily change these settings, making an informed decision is a different story.

Therefore, we propose LP-Doctor that helps users utilize the existing OS controls to

provide location-access control on a per-session basis.

3.9.1 Design

LP-Doctor trusts the underlying OS and its associated apps; it targets user-level apps

accessing location while running in the foreground, as we found that most apps do not

access location in the background. LP-Doctor focuses on the apps with fine location

permissions as they could pose higher threats. LP-Doctor automatically coarsens loca-

tion for apps requesting coarse location permissions to ensure a commensurate privacy-

protection level.

The main operation of LP-Doctor consists of two parts. The first involves the user-

transparent operations described below, while the second includes the interactions with the

user described in Section 3.9.2.

We bundled LP-Doctor with CyanogenMod’s app launcher.2 It runs as a background

2Source code: https://github.com/kmfawaz/LP-Doctor.
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Figure 3.12: The execution flow of LP-Doctor when a location-aware app launches.

service, intercepts app-launch events, decides on the appropriate actions, performs these

actions, and then instructs the app to launch. Fig. 3.12 shows the high-level execution flow

of LP-Doctor. Next, we elaborate on LP-Doctor’s components and their interactions.

App Session Manager: is responsible for monitoring app launch and exit events.

LP-Doctor needs to intercept app-launch events to anonymize location.

Fortunately, Android (recently iOS as well) allow for developing custom app launchers.

Users can download and install these launchers from the app store which will, in turn, be

responsible for listening to the user’s events and executing the apps. We instrumented

CyanogenMod’s app launcher (available as open source and under Apache 2 license) to

intercept app launch events.

Particularly, before the app launcher instructs the app to execute, we stop the execution,

save the state, and send an intent to LP-Doctor’s background service (step 1 in Fig. 3.12).

LP-Doctor takes a set of actions and sends an intent to the app launcher, signaling the

app can launch (steps 2 and 3 in Fig. 3.12). The app launcher then restores the saved state

and proceeds with execution of the app (step 4 in Fig. 3.12). In Section 3.9.4, we will report
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the additional delay incurred by this operation.

In the background, LP-Doctor frequently polls (once every 10s) the current fore-

ground app to detect if the app is still running. For this purpose, it uses getRecentTasks

on older versions of Android and AppUsageStats class for Android L. When an app is

no longer running in the foreground, LP-Doctor executes a set of maintenance operations

to be described later (steps 5 and 6 in Fig. 3.12).

Policy Manager: fetches the privacy policy for the currently visited place and the

launched app as shown in Fig. 3.13.

At installation time, the user specifies a privacy policy to be applied for the app. We

call this the per-app policy which specifies three possible actions: block, allow, and protect.

If the per-app policy indicates privacy protection, LP-Doctor asks the user to specify a

per-place policy for the app. The per-place policy indicates the policy that LP-Doctor

must follow when the app launches from a particular place. The policy manager passes the

app’s policy and the current place to the threat analyzer.

Place Detector & Mobility Manager: The place detector monitors the user’s actual

location, and applies online clustering to extract the spatio-temporal clusters which repre-

sent places that the users visit. Whenever the user changes the place s/he is visiting, the

place detector module instructs the mobility manager to update the mobility profile of the

user as defined in Section 3.6.
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Histogram Manager: maintains the histogram of the places visited as observed by

each app. It stores the histograms in an SQLite table that contains the mapping of each

app–place combination to a number of observations. The threat analyzer module consults

the histogram manager to obtain two histograms whenever an app is about to launch. The

first is the current histogram of the app (based on previous app events) which we refer to as

the “before” histogram. While the second one is the potential histogram if the app were to

access location from the currently visiting place; we call this histogram as the “after” one.

Threat Analyzer: decides on the course of action regarding apps associated with a

protect policy. It basically performs the decision diagram depicted in Fig. 3.14 to decide

whether to release the location or add noise.

The threat analyzer determines whether the “after” histogram leaks more information

than the old one through computing Profcont for each histogram. If Profcont increases

LP-Doctor decides to release the location to the app. On the other hand, if Profcont

decreases, LP-Doctor uses Profbin to decide if the “after” histogram fits the user’s mo-

bility pattern and whether to release or anonymize location.

Profbin depends on the significance level, α, as we specified in Section 3.6. In LP-Doctor,

α is a function of the privacy level chosen by the user. LP-Doctor recognizes three pri-

vacy levels: low, medium, and high. Low privacy corresponds to α = 0.1; medium privacy

corresponds to α = 0.05; and high privacy protection corresponds to the most conservative
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α = 0.01.

The procedure depicted in Fig. 3.14 will not hide places that the user seldom visits but

are sensitive to him/her. The per-place policies allow the user to set a privacy policy for

each visited place, effectively allowing him/her to control the places s/he wants revealed to

the service providers. Also, LP-Doctor can be extended to support other privacy criteria

that try to achieve optimal privacy by perturbing location data [99, 100].

Anonymization Actuator: receives an action to perform from the threat analyzer. If

the action is to protect the current location, the actuator computes a fake location by adding

Laplacian noise [66] to ensure location indistinguishability. The privacy level determines

the amount of noise to be added on top of the current location. One the other hand, if the

action is to block, the actuator computes the fake location of < 0, 0 >.

As specified by Andrés et al. [66], repetitive engagement of Laplacian noise mech-

anism at the same location leaks information about the location. To counter this threat,

LP-Doctor computes the anonymized location once per location and protection-level

combination, and saves it. When the user visits the same location again, LP-Doctor em-

ploys the same anonymized location that was previously computed to prevent LP-Doctor

from recomputing a fake location for the same place.

After computing/fetching the fake location, the actuator module will engage the mock

location provider. The mock location provider is an Android developer feature to modify

the location provided to the app from Android. It requires no change in the OS or the app.

The actuator then displays a non-intrusive notification to the user, and signals the session

manager to start the app.

End-of-Session Maintenance: When the app finishes execution, the actuator disen-

gages the mock location provider, if engaged. The location-access detector will then detect

if the app accessed location to update the app’s histogram accordingly. The location access

detector performs a “dumpsys location” to exactly detect if the app accessed location or

not while running. If it did access location, the location-access detector module updates
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the app’s histogram (increment the number of visits from the current location). It is worth

noting that LP-Doctor treats sessions of the same app within 1 min as the same app

session.

3.9.2 User Interactions

LP-Doctor interacts with the user to communicate privacy-protection status. It also

enables him/her to populate the privacy profiles for different apps and places. As will be

evident below, the main philosophy guiding LP-Doctor’s design is to minimize the user

interactions, especially intrusive ones. We satisfy two design principles proposed by Felt

et al. [101] that should guide the design of a permission granting UI. The first principle is

to conserve user attention by not issuing excessively repetitive prompts. The second is to

avoid interrupting the user’s primary tasks.

Bootstrapping Menu: The first communication instance with LP-Doctor takes place

upon its installation. LP-Doctor will ask the user to set general configuration options.

These options include (1) alerting the user when visiting a new location to set the per-place

policies and (2) invoking protection for A&A libraries. The menu will also instruct the

user to enable the mock location provider and grant the app “DUMP” permissions through

ADB. This interaction takes place only once per LP-Doctor’s lifetime.

Installation Menu: LP-Doctor prompts the user when a new (non-system and location-

aware) app is installed. The menu enables the user to set the per-app profiles. Fig. 3.15

shows the displayed menu when an app (“uber” in this case) has finished installation. The

user can choose one of three options which populates three app sets: appallow, appblock, and

appprotect.

Logically, this menu resembles the per-app location settings for iOS, except that it

provides users with an additional option of privacy protection. The protection option acts

as a middle-ground between completely allowing and blocking location access to the app.

The user will interact with this menu; only once per app, and only for non-system apps that
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Figure 3.15: The installation menu.

requests the fine location permission. Based on our PhoneLab dataset, we estimate that the

user will be issued this menu on average for one app s/he installs per five installed apps on

the device.

Per-Place Prompts: LP-Doctor relies on the user to decide its actions in different

visited places, if s/he agrees to get prompted when visiting new places. Specifically, when-

ever the user visits a new place, LP-Doctor prompts him/her to decide on actions to

perform when running apps that the user chose to protect. We call these per-place policies

(Fig. 3.13).

The per-place policies apply for apps belonging to the set appprotect. The user has the

option to specify whether to block location access completely, or apply protection. Apply-

ing protection will proceed to execute the operations of the threat analyzer as defined in

Fig. 3.14. LP-Doctor allows the user to modify the policies for each app–place combi-

nation.

LP-Doctor issues this prompt only when the user launched an app of the set appprotect

from a new location. From our PhoneLab dataset, we estimate that such a prompt will be

issued to the user at most once a week.
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Figure 3.16: LP-Doctor’s notification when adding noise.

Notifications: As specified earlier, the threat actuator displays a non-intrusive notifica-

tion (Fig. 3.16) to the user to inform him/her about the action being taken.

If the action is to allow location access (because the policy dictates so or there is no

threat), LP-Doctor notifies the user that there is no action being taken. The user has

the option to invoke privacy protection for the current app session. If the user instructs

LP-Doctor to add noise for a single app over two consecutive sessions from the same

place, LP-Doctor will create a per-place policy for the app and move it to the appprotect

set if it were part of appallow.

On the other hand, if LP-Doctor decides to add noise to location or block it, it will

notify the user of it (Fig. 3.16). The notification includes two actions that the user can make:

remove or reduce noise. If the user overrides LP-Doctor’s actions for two consecutive

sessions of an app from the same place, LP-Doctor remembers the decision for future

reuse.

LP-Doctor leverages the user’s behavior to learn the protection level that achieves

a favorable privacy–utility tradeoff. Since the mapping between the chosen privacy and

noise levels is independent of the running app, the functionality of certain apps might be

affected. LP-Doctor allows the user to fine-tune this noise level and then remembers

his/her preference for future reuse.

Reducing the noise level will involve recomputing the fake location with a lower noise

value (if no such location has been computed before). One could show that leak of infor-

mation (from lowering noise level successively) will be capped by that corresponding to
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the fake location with the lowest noise level released to the service provider.

Using our own and PhoneLab’s datasets, we estimate LP-Doctor’s need to issue such

non-intrusive notification (indicating protection taking place) for only 12% of the sessions

on average for each app.

3.9.3 Limitations

The user-level nature of LP-Doctor introduces some limitations related to certain

classes of apps. First, LP-Doctor, like other mechanisms, is inapplicable to apps that

require accurate location access such as navigation apps for elongated period of times.

Second, LP-Doctor cannot protect the user against apps utilizing unofficial location

sources such as “WeChat.” Such apps might scan for nearby WiFi access points and then

use scan results to compute location. LP-Doctor cannot anonymize location fed to such

apps, though it can warn the user of the privacy threat incurred if the user is to invoke the

location-based functionality. Also, it can offer the user the option to turn off the WiFi on

the device to prevent accurate localization by the app when running.

Finally, LP-Doctor doesn’t apply privacy protection to the apps continuously ac-

cessing location while running in the background. Constantly invoking the mock location

provider affects the usability of apps that require fresh and accurate location when running.

Fortunately, we found that the majority of the apps do not access location in the background

(Section 3.4). Nevertheless, this still highlights the need for OS support to control apps’

location access in the background (like the one that iOS currently provides).

It is worth noting that LP-Guardian does not suffer from the last two limitations,

because of its implementation. This design choice highlights the trade-off between deploy-

ability and privacy protection. LP-Guardian goes a bit deeper into the smartphone to

provide more comprehensive privacy protection at the cost of ease of installation. On the

other hand, LP-Doctor is easy to install but cannot cover all the location-access scenar-

ios.
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Figure 3.17: The app launch delay caused by LP-Doctor.

3.9.4 Evaluation

We now evaluate and report LP-Doctor’s overhead on performance, Quality of Ser-

vice (QoS), and usability.

3.9.4.1 Performance

LP-Doctor performs a set of operations which delay the app launching. We evalu-

ate this delay on two devices: Samsung Galaxy S4 running Android 4.2.2, and Samsung

Galaxy S5 running Android 4.4.4. We recorded the delay in launching a set of apps while

running LP-Doctor. We partitioned those apps into two sets. The first (set 1) includes

the apps which LP-Doctor doesn’t target, while the second (set 2) includes non-system

apps that request fine location permissions.

Fig. 3.17 plots the delay distribution for both devices and for the two app sets. Clearly,

apps that belong to the first set experience very minimal delay, varying between 1 and 3ms.

The second set of apps experience longer delays without exceeding 50ms for both devices.

We also tested LP-Doctor’s impact on the battery by recording the battery depletion

time when LP-Doctor was running in the background and when it was not. We found

that LP-Doctor has less than 10% energy overhead (measured as the difference in battery

depletion time). Besides, LP-Doctor runs the same logic as our PhoneLab survey app in

the background which 95 users ran over 4 months and reported no performance or battery
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issues.

3.9.4.2 User Study

To evaluate the usability of LP-Doctor and its effect on QoS, we conducted a user

study over Amazon Mechanical Turk. We designed two Human Intelligence Tasks (HITs),

each evaluating a different representative testing scenario of LP-Doctor.

Apps that provide location-based services (LBSes) fall into several categories. On one

dimension, an app can pull information to the user based on the current location, or it can

push the user’s current location to other users. On another dimension, the app can access the

user’s location continuously or sporadically to provide the LBS. One can then categorize

apps as: pull-sporadic (e.g., weather, Yelp, etc.), pull-continuous (e.g., Google Now), push-

sporadic (e.g., geo-tagging, Facebook check-in, etc. ), or push-continuous (e.g., Google

Latitude). As LP-Doctor isn’t effective against apps continuously accessing the user’s

location (which are a minority to start with), we focus on studying the user’s experience

of LP-Doctor while using Yelp, as a representative example of pull-sporadic apps, and

Facebook, as representative example of push-sporadic apps.

We recruited 120 participants for the Yelp HIT and another 122 for the Facebook HIT3;

we had 227 unique participants in total. On average, each participant completed the HIT

in 20min and was compensated $3 for his/her response. We didn’t ask the users for any

personal information and nor did LP-Doctor. We limited the study to Android users.

Of the participants: 28% were females vs. 72% males; 32% had high school education,

47% with BS degree or equivalent; and 37% are older than 30 years. Also, 52% of the

participants reported that they have taken steps to mitigate privacy threats. Interestingly,

93% of the participants didn’t have mock locations enabled on their devices indicating the

participants are not tech-savvy.

We constructed the study with a set of connected tasks. In every task, the online form

3https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/
lp-doctor-survey-fb.pdf
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displays a set of instructions/questions that the participant user must follow/answer. After

successfully completing the task, LP-Doctor displays a special code that the participant

must input to proceed to the next task. In what follows, we describe the various tasks that

we asked users to perform and how they responded.

Installing and configuring LP-Doctor: The participants’ first task was to download

LP-Doctor from Google Play and enable mock locations. We asked the users to rate how

difficult it was to enable mock locations on the scale of 1 (easy) to 5 (difficult). 83% of the

participants answered with a value of 1 or 2 implying that LP-Doctor is easy to install.

Installation menu: In their second task, the participants interacted with the installation

menu (Fig. 3.15). The users had to install (re-install if already installed) either Yelp or

Facebook. Just when either app completes installation, LP-Doctor presents the user

with the menu to input the privacy options. The participants reported a positive experience

with this menu; 83% reported it was easy to use (rated 1 or 2 on a scale of 1 (easy) to

5 (hard)); 86% said it was informative; 83% thought it provides them with more control

than Android’s permission; 79% answered it is useful (rated 1 or 2 on a scale of 1 (useful)

to 5 (useless)); and 74% would like to have such menu appearing whenever they install a

location-aware app (12% answered with not sure).

Impact on QoS: The survey version of LP-Doctor adds noise on top of the user’s

location regardless of his/her previous choice. This allowed us to test the impact of adding

noise (Laplacian with 1000m radius) to the location accessed by either Yelp or Facebook.

We didn’t ask the participants to assess the effect of location anonymization on the QoS

directly. Rather, we asked the Yelp respondents to report their satisfaction with the list

of restaurants returned by the app. While we asked the Facebook respondents to indicate

whether the list of places to check-in from is relevant to them. The participants in the

first HIT indicated that Yelp ran normally (82%), the restaurant search results were rele-

vant (73%), the user experience didn’t change (76%), and Yelp need not access the user’s

accurate location (67%).
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Figure 3.18: The distribution of percentage of sessions where apps maintain QoS for apps
(left) and A&A libraries (right).

The Facebook HIT participants exhibited similar results: Facebook ran normally (80%),

the list of places to check-in was relevant (60%), user experience didn’t change (80%), and

Facebook need not access the user’s accurate location (80%).

Fig. 3.18 shows the percentage of sessions (for all app–user combinations) that will not

experience any noise addition according to our datasets. It is obvious that the percentage of

sessions with potential loss in QoS (when LP-Doctor adds noise) is minimal (less than

20%, a bit higher if the user opts for A&A libraries protection). Our user study shows that

more than 70% of the users will not experience loss in QoS in these sessions. For those

users who do face loss in QoS, LP-Doctor provides them with the option of adjusting

the noise level at runtime through the notifications.

Notifications: In the final task, we asked the participants to test the noise reduction

feature that allows for a personalized privacy–utility trade-off. After they reduced the noise

level, they would invoke the location-based feature in both Yelp and Facebook and check

if the results were improved. Indeed, most of the participants who reported loss in QoS

reported the Yelp’s search results (64%) and Facebook’s check-in places (70%) improved

after reducing the noise.

The participants also indicated the the noise reduction feature is easy to use (75%). 86%
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of the participants will not mind having this feature whenever they launch a location-aware

app.

Post-study questions: As we couldn’t control the per-place prompts given our study

design, we asked the participants for their opinion about being prompted when visiting

new places (per-place prompts). Only 54% answered they would prefer prompted, 37%

answered negatively, and the rest answered “I am not sure.” These responses are consis-

tent with our design decision; the user has to approve per-place prompts when initially

configuring LP-Doctor as they are not automatically enabled.

Also, 82% of the participants felt comfortable that Facebook (80%) and Yelp (85%)

didn’t access their accurate location. Finally, 77% of the participants answered “Yes” when

asked about installing LP-Doctor or other tool to protect their location privacy. Only

11% answered “No” and the rest answered with “I am not sure.” This result comes at an

improvement over the 52% who initially said they took steps in the past to address location-

privacy threat.

In summary, we conducted one of the few studies (e.g., [102]) that evaluate a location-

privacy protection mechanism in the wild. We showed that location-privacy protection is

feasible in practice where a balance between QoS, usability, and privacy could be achieved.

3.10 Conclusion

In this chapter, we posed a question about the effectiveness of OS-based location-access

controls and whether they can be improved. To answer this question, we conducted a

location-collection campaign that considers location-privacy threats from the perspective

of mobile apps. From this campaign, we observed, modeled, and categorized profiling as

being the prominent privacy threat from location access for both apps and A&A libraries.

We concluded that controlling location access per session is needed to balance between

loss in QoS and privacy protection. As existing OS controls do not readily provide such
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functionality, we proposed LP-Doctor, a user-level tool that helps the user better utilize

existing OS-based location-access controls. LP-Doctor is shown to be able to mitigate

privacy threats from both apps and A&A libraries with little effect on usability and QoS.

In future, we would like to test LP-Doctor in the wild and use it to explore the dynamics

that affect users’ decisions to install a location-privacy protection mechanism.
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CHAPTER IV

PR-LBS

4.1 Introduction

Localization technologies [10], tailored for indoor spaces such as retail stores, malls,

airports, museums, and hospitals, are gaining popularity. An indoor service provider (SP)

(e.g., retail store owner) utilizes the customers’ indoor location information to study their

behaviors and infer their preferences and interests. In the best case, this should be a win-

win for both customers and SPs; the SPs collect location data and deliver better service

to the customers which leads to enhanced customer satisfaction and eventually increased

revenues.

Unfortunately, indoor localization has not been realized to its full potential. Customer

resistance is forcing SPs to either sideline the technology (e.g., Nordstrom ceased customer

tracking after public outrage [103]) or rely solely on anonymous data collection [104]. An-

alyzing customers’ location data anonymously prevents the service provider from offering

them personalized services that would result in revenue-generation/increase .

To gain a better understanding of the users’ perspectives towards indoor localization,

we surveyed 200 shoppers in two major retailers: Walmart and Nordstrom. The survey

shows that customers have both privacy and utility concerns.

A. Privacy Concerns: Users cited privacy concerns for not accepting this technology

(consistent with other surveys [105]). An SP, tracking users’ mobility, has the potential
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to infer personality traits and/or habits that could be private to them. For example, a re-

tailer can infer from the frequently-visited aisles the shopper’s gender (men’s vs. women’s

clothing), ethnicity (ethnic food aisles), socioeconomic status (expensive vs. inexpensive

clothing and accessories), health condition (pharmacy aisles), sensitive interests (sporting

goods, adult magazines and films), religious beliefs (clothing, specific food aisles), etc.

Unlike the outdoor case, the indoor SP is directly involved in the user’s localization

through the deployed infrastructure such as Wi-Fi and Bluetooth. Unless the users turn

off their devices, the SP does not provide an opt-out mechanism by which users can exert

control over how much of their mobility is being tracked. According to our survey, users

are not comfortable with the SP storing their mobility information even when it is processed

anonymously.

B. Utility Concerns: Users expressed interest in receiving rewards for sharing some of

their mobility information. This is referred to in the literature as a fair transaction [106];

a user shares some data proportionately with the received rewards. In the indoor case, the

users might find it challenging to engage in a fair transaction with the SP. First, it is hard

for them to associate their mobility with a privacy cost in the typically public indoor space

(in the outdoor case there is some notion of a private location such as home). Second,

although the location information might help the user indirectly, through improving store

layout, product placement, or waiting time in checkout lines, but these are not personalized

and tangible services that would make users feel satisfied for revealing their mobility.

In this chapter, we first pose a question: can the seemingly conflicting requirements of

the users and SPs be effectively resolved? To answer this question, we propose PR-LBS (Pri-

vacy vs. Reward in Location Based Service); a novel framework that addresses the user’s

privacy concerns and enables them to receive the right reward from their location sharing

on one side. On the other side, it provides the indoor SPs with enough information to

perform aggregate and more personalized analysis of the customers.

PR-LBS puts the users in control, allowing them to specify a privacy setting that trans-
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lates into a provable privacy guarantee. PR-LBS packs in an online private location release

mechanism that achieves differential privacy guarantees in indoor environments. Addition-

ally, PR-LBS enables the users to set high-level policies that provide their utility definition

as a function of the privacy “cost” of sharing location and “benefit” received from the SP.

To estimate the cost of sharing the user’s indoor mobility, we introduce a new privacy

criterion, which is based on information disclosure.

PR-LBS improves on the current approaches of take-it or leave-it; it ensures a fair

transaction of the user’s location information with the SP by abstracting the interactions

between the user and the SP as a repeated play model [107]. PR-LBS employs the strate-

gic experts algorithm [108] to choose, at run-time, the action (hide, reveal, or anonymize

location) sequence that maximizes the user’s utility.

PR-LBS is a generic framework that supports various practical deployment scenarios.

A user can simply download and install it to the device, which we call device mode, if

localization is device-based, such as iBeacons [109]. Also, a localization provider can

employ PR-LBS as a broker between the user and the SP, which we call infrastructure

mode, in case localization is infrastructure-based such as CUPID [10]. PR-LBS could act

as a privacy guarantee/seal in this case [110], which will make users more comfortable to

share their location. In this chapter, we design and evaluate PR-LBS in both modes and

present a full real-life implementation on Android for the device mode.

PR-LBS has a low energy footprint when running on the user’s device and is easy to use

as our user study (100 respondents) shows. Our survey also indicates that users are more

comfortable with location tracking technology with PR-LBS being deployed. Further,

our evaluations of PR-LBS in 8 different scenarios show that PR-LBS strikes a balance

between the user and the SP. It controls the release of location information to protect the

users’ privacy, rewards them with commensurate service, and maintains data utility for the

SP.

The chapter is organized as follows. Section 4.3 reviews the related work. Section 4.4
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presents our survey. Sections 4.5 and 4.6 present our system and privacy models, respec-

tively. Section 4.7 details the design of PR-LBS. Section 4.8 describes our implementation

and evaluation of PR-LBS. Section 4.9 lists some limitations of PR-LBS. Section 4.10

comments on the applicability of PR-LBS in outdoor scenarios. Finally, Section 4.11 con-

cludes the chapter.

4.2 Specifics of the Indoor Environments

Although one could find the privacy threats similar between the indoor and outdoor

cases, the privacy protection mechanisms of Chapters II and III do not apply to the indoor

case. The indoor environment presents with a set of unique challenges that make models

and treatments available for other outdoor scenarios inapplicable.

Monitoring location in an outdoor environment has the potential of profiling the users,

as we indicated earlier. Nevertheless, an indoor location service provider does not nec-

essarily have access to the user’s outdoor mobility. It is, from the user’s perspective, an

additional entity that has the potential of posing profiling threats. Existing models and

techniques for the location privacy protection in the outdoor case, such as LP-Guardian

and LP-Doctor can do little in addressing the indoor location privacy threats for the

following reasons:

• Hiding the user’s private locations (home, work, etc.) prevents an outdoor loca-

tion service provider from inferring sensitive information (e.g., identity). The indoor

space, on the other hand, is typically a public space where there is no notion of a

private location.

• The outdoor mobility tends to be more relaxed in time; transitions between different

areas take place in the order of minutes. There is ample time to incorporate user’s

feedback to inform the privacy valuation. In contrary, the user’s mobility is more
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time-constrained in the indoor case, and users cannot reasonably provide timely feed-

back to a privacy protection service.

• Adding to the difference between both environments is the service vs. location access

ecosystem. In the outdoor case, the service providers do not engage in continuous

tracking. The user sporadically reveals his/her location and receives some service in

return. It is not the case in the indoor case where user’s location can be continuously

monitored with no tangible return.

• In the outdoor case, the user’s device typically estimates the current position inde-

pendently of the service provider. On the other hand, the service provider is involved

in computing the user’s location mainly through the deployed infrastructure (e.g.,

WiFi, iBeacons).

4.3 Related Work

There have been numerous efforts to mitigate the privacy risks in indoor environments.

Retailers provide customers with opt-out options and claim to analyze their data in aggre-

gate [104]. Our survey showed that users are likely to opt-out if provided with the option.

Also, aggregate processing does little to protect the users’ privacy. The SP still stores

mobility data that is tagged with a MAC address (or a hashed form thereof). The hashed

MAC can link the user to his/her traces [111] and can be reverse-mapped to the original

MAC [112]. Alternatively, PR-LBS provides provable privacy guarantees by limiting the

additional knowledge the SP attains from observing the user’s mobility.

Other approaches rely on complete prevention of localization [57, 55, 56, 54]. PR-LBS

capitalizes on these mechanisms by acting as a control knob to opportunistically decide

when to activate/deactivate them. PR-LBS exercises fine-grained location control to pro-

tect users’ privacy while allowing them to interact with the SP. Recently, there have been

mobile apps (such as that by Placed and Shopkick) that allow the users to receive rewards
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for location check-ins. PR-LBS automates this process; it acts on the user’s behalf to de-

cide when it is beneficial to share location or not. The user only specifies a privacy setting

and high-level policy while PR-LBS takes care of deciding the privacy cost, service level,

and sharing/hiding/anonymizing the location.

Researchers have proposed mechanisms to appraise private data before sharing it so

that the user is properly rewarded (e.g., the architectures of Riederer et al. [113] and Ghosh

and Roth [114]). These mechanisms typically require cooperation from both users and SPs.

PR-LBS does not change the communication between the user and the SP and targets the

case of a non-cooperative SP. Finally, Shokri [115] proposes a theoretical framework that

optimizes user-side obfuscation to maintain both differential and distortion privacy with the

impact on utility not being greater than the case of optimizing for a single privacy criterion.

PR-LBS takes a different approach; it provides concrete mechanisms that achieve differ-

ential privacy. Moreover, it maximizes the user’s rewards by adapting actions to the SP’s

services. PR-LBS is also a practical system that users can run in real-world environments.

4.4 Survey

We designed two surveys to study individuals’ behavior and privacy preferences when

shopping in Walmart (104 respondents) and Nordstrom (100 respondents) using Amazon

Mechanical Turk. We compensated each participant with $3 and the average time for survey

completion was 24 minutes. To protect the privacy of the participants, we did not collect

any personal information and processed the data in aggregate. We also introduced a set of

questions to weed out inconsistent responses.

The participants are diverse; they are uniformly distributed among genders, 42% are

between 15 and 29 years old, while 43% fall between 30 and 44 years of age, half with a

university/college degree, 29% with a high school degree, and 75% visit a brick-and-mortar

shop at least once a week (97% at least once a month).

In the first section of the survey, we presented the respondents with the disclaimer
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We are always looking for ways to improve our 
customers’ experience. We gather 
publiclybroadcasted information your smartphone or 
other WiFienabled device sends out when it is 
attempting to connect to a WiFi network in and around 
this store. This provides us with anonymous, 
aggregate reports that give us a better sense of 
customer foot traffic. We do not gather such things as 
your name, email address, phone number, your 
device's browsing activity or text, email or voice 
messages. 

Figure 4.1: The disclaimer presented at the start of the survey.

(Fig. 4.1) that Nordstrom displayed to the shoppers in 2013. We then asked them, after

reading the disclaimer, whether they would hypothetically consent to either Nordstrom

or Walmart gathering Wi-Fi information assisting in their localization. This was the first

mentioning of indoor localization-related terminology in the survey; we used the same

language of a retailer to avoid any bias.

Interestingly, the participants responded with a preference to prevent the store from

gathering information assisting in their localization (70%), 18% indicated that they would

consent to the store gathering parts of their Wi-Fi information. Only 10% of the participants

consented to full gathering of Wi-Fi information broadcasted by their devices. We then

posed the same question differently by indicating that the disclaimer effectively asks for

the user’s consent for indoor location tracking. The response distribution shifted a bit; 61%

chose to prevent location tracking entirely, 24% chose to allow the store to gather part of

their mobility, while the rest (15%) consented to full location tracking.

In the rest of this chapter, we refer to the first set of individuals (rejecting tracking) as

privacy-oriented, the second set (consenting to only part of tracking) as neutral, while

we refer to the third set of individuals as service-oriented. These categories are akin

to Westin’s [116] categorization of privacy orientations of individuals as fundamentalists

(privacy-oriented), pragmatists (neutral), and unconcerned (service-oriented).

Privacy-oriented Participants: These participants cited a set of privacy-related reasons
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as to why they reject location tracking. The most recurring reason was that they do not

trust the store with mobility data (49%), the second being they do not feel comfortable with

their mobility information being gathered (43%), and the third was that the store provides

nothing in return for gathered mobility data (41%).

We also asked these respondents about their perception of the difference between smartphone-

based and other tracking technologies such as monitoring purchase history (through credit

card or rewards program) and using CCTV cameras. Regarding purchase history, only 10%

indicated that purchase history reveals the same information as their mobility. The rest of

the participants indicated that they do not want the store to know what items they are inter-

ested in but did not end up buying or that they use cash for their purchases. We observed a

similar trend with CCTV cameras; only 20% of the participants indicated that cameras and

location tracking reveal the same information while the others felt that it is harder to track

them using CCTV cameras.

Neutral Participants: The second set of participants cited similar reasons as to why they

want some part of their mobility to be hidden. As for which parts of their mobility they

want to be hidden, they responded with those areas that they deem private (65%), areas of

the store that include items they browse but do not buy (44%), and areas where they receive

nothing in return from the service provider (25%).

Service-oriented Participants: Individuals belonging to this set of survey respondents

do not feel threatened by the store owner tracking their mobility. When asked whether

they would change this perspective if the store owner would treat them differently based on

mobility data, 30% indicated that would choose to prevent tracking, 37% still consented to

full tracking, and the rest (33%) answered by not being sure. The participants’ perspective

further shifted when we indicated that the store owner might share their mobility with a

third-party entity (an advertisement agency for example). 50% indicated that they do not

consent to location tracking anymore and only 26% responded that they have no problem

with their location being tracked.
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In the second part of the survey, we asked participants to trace their path, on a map of

the store, the last time they went shopping at either Walmart or Nordstrom if they remember

it well. We then asked them to indicate the parts of the path they would hide from either

store. Interestingly, even privacy-oriented respondents did not choose to hide all zones of

their paths. In the last part of the survey, we asked participants to input their satisfaction

level in different situations. More than 40% of the privacy-oriented users indicated that

they would be satisfied if they were to share some of their mobility and receive very good

service in return.

4.5 System Model

PR-LBS addresses the case of a user’s location tracking exclusively in constrained

public (including indoor) spaces, such as retail stores, malls, museums, theme parks, etc.,

where a localization system is installed. We consider the following main entities involved

in the ecosystem:

• User: the individual moving around in the space of interest while carrying a mobile

device.

• Service Provider (SP): the entity owning the space in which the user moves. It

manages a set of application servers that analyze the user’s location and push service

in the form of coupons, directions, deals, promos, etc.

• Localization Provider (LP): an entity contracted by the SP to localize the users. It

relies on the deployed Wi-Fi access points or Bluetooth beacons to track users via the

devices they carry. The LP can reside either on the device side or on the infrastructure

side.

The SP deploys a mobile app (e.g., Shopkick) that acts as its communication channel

with the user. The SP uses a consistent identifier such as the MAC address to map the
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(a) Infrastructure mode (b) Device mode

Figure 4.2: PR-LBS deployment options

location updates to the user running the app. The SP then pushes the tailored location-

based content to the user through the app.

Logically, PR-LBS runs between the LP and the SP. It is a trusted module that controls

the release of the location information to the SP in a privacy-aware manner. It is very

important to note that the SP only views that mobility of the user that has been released by

PR-LBS. PR-LBS runs in device or infrastructure mode:

Infrastructure mode (Fig. 4.2a): fits infrastructure-based localization where the LP has

to install and run PR-LBS as the device can not control location sharing. This, however,

could only happen if the SP has enough incentives to do so. Given users’ privacy concerns,

the SP has an incentive to deploy a solution that mitigates these concerns. For example,

European companies have to apply for a privacy certification before collecting users’ data

(including indoor location) [110].

Device mode (Fig. 4.2b): fits device-based localization that computes the location on

the device and then shares it with the SP. The user installs and runs PR-LBS that controls

location release from the device.
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Figure 4.3: The high-level operations of PR-LBS.

4.5.1 High-Level Description

Fig. 4.3 shows the high-level operations that PR-LBS performs when deployed in in-

frastructure mode. In device-mode deployment, PR-LBS performs the same operations

while running on the device.

In the view of PR-LBS, the area of interest is partitioned into a set of zones: Z = {zk}.

The zones are semantic sub-areas within the area of interest which the SPs are typically

interested in mapping the user’s location to. For example, a zone could refer to an aisle in

a supermarket, a department in a store, or an entertainment station in a theme park.

As the user moves from a zone zi to another zone zj , PR-LBS decides whether to

release, hide, or anonymize zi from the SP (Section 4.7.1). This action will result in a po-

tential privacy cost to the user, leak(zi), as estimated by the privacy analyzer as described

in Section 4.6.3. While spending time at zi and then moving to zj , the SP will be pushing

a service to the user’s device. When the user visits zj , the QoS analyzer (Section 4.7.3)
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estimates the value of the service, servi, the user received as a result of hiding, releasing,

or anonymizing zi to the SP.

A transaction between the user and the SP takes place during the time period spanning

the user reaching zi and just before arriving at zj . The utility estimator (Section 4.7.2)

module of PR-LBS computes the utility (user-defined) the user gained after incurring a

cost=leak(zi) and receiving a benefit= servi. The exchange module employs a set of pri-

vacy preserving mechanisms (Section 4.6.2) as “experts” that dictate the action to perform.

This module utilizes the history of the user–SP transactions to decide the best expert (max-

imizing users’ utility) to follow when reaching zj .

Finally, PR-LBS has a collector module that runs on the device and collects the privacy

preferences of the user. While PR-LBS is running, the collector module gathers informa-

tion to assist the QoS analyzer in computing the service that the user receives.

4.6 Privacy Model

From the users’ perspective, any entity collecting their location has the potential of

posing privacy threats. We make a natural choice to trust the user’s device as no solution

is feasible without such a trust. We also choose to trust the LP only if it deploys PR-LBS,

as it will indicate a willingness to provide privacy protection to the user. Thus, we assume

that the privacy threats originate from the SP’s analysis of the collected location data and

the resulting treatment of the user.

The SP is an honest-but-curious entity that passively profiles the user through location

information. These SPs will not collude with the LP (infrastructure-based case) if they

choose to deploy PR-LBS. While the privacy threats are evident for an infrastructure-based

LP, device-based localization might be perceived as less threatening. Proximity beacons

can not track the user’s mobility, but smartphone apps scanning for beacons pose tracking

threats. We found that several shopping apps, including Shopkick, scan for nearby beacons

and upload them along with consistent identifiers allowing them to track the user’s mobility.
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In this chapter, we only consider the threats to the user’s privacy from location tracking that

originate from the user’s smartphone. An SP might utilize other channels to localize a user,

e.g., CCTV cameras, which the user and PR-LBS, unfortunately, can not control. We also

view security challenges as orthogonal to this work.

Intuitively, any privacy loss that the user suffers from the SP accessing his/her location

takes place through processing and analyzing this collected mobility information. Privacy

loss is then a function of the information disclosed from observing the user’s mobility. In

what follows, we define the mobility model, the privacy mechanisms of PR-LBS, and the

cost function which enables the location–service exchange of PR-LBS as will be evident

later.

4.6.1 Mobility Model

Topology: PR-LBS views the topology of the area as an unweighted and undirected

graph G = (Z,E), where Z, the set of zones represents the nodes and E is the set of

edges of the graph representing the transitions between neighboring zones. Each edge,

e, is associated with the time, t(e), the user takes to travel along it. In a typical public

space, all zones are reachable from the entrance, making the graph connected. We can

then define a path as the sequence of visited zones (of interest to the user) in the graph as:

pl = 〈zk〉zk∈Z,zk 6=zk+1
, where l is the path length (number of zones) and zk is the kth zone

of the path. To count a zone as part of the path, the user must visit the zone and stay there

for at least 30 seconds, not just passing through.

We define two functions in the graph G: the distance between two zones in the graph

dG(zi, zj) is the length (number of edges) of the shortest path between zi and zj; and the

time between two zones tG(zi, zj) as the shortest time it takes the user to travel between

two zones (taken as the shortest path when the weights in the graph are considered as t(e)

instead of 1).

PR-LBS only releases the path defined above (pl) or a variant thereof. Therefore, it
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Table 4.1: The symbols table.

Symbol Meaning

Z set of zones in the area of interest
N number of sessions
p path traversed in a session
l[p] length of traversed path in a session
n[p] number of observations of path p
P (p) = n[p]/N probability of traversing a path p
pl a single path p of length l
Pl the set of paths of length l (all paths pl)
dG(zi, zj) distance between two zones: zi and zj
tG(zi, zj) shortest time to travel between two zones

hides the intra-zone as well as low-level mobility and only releases significant changes in

the user’s location (when visiting a new zone). As such, consecutive zones in the path need

not be geographical neighbors; the path, as we define it, is not equivalent to the actually

traversed path, but rather a part of it. For example, the user might have traveled along the

zones A-B-C-D, but only spent time at A and C. PR-LBS releases the path (or a variant of)

A-C.

Sessions: The user’s mobility is broken down into sessions. In each session, the user

enters the area, traverses a path, and then leaves; i.e., a session maps to one traversed

path. We focus on the path as it embodies all the information about the user’s mobility

including the zones of interest, their priority and importance to the user, and other tracking

information. The path starts at the beginning of a session and ends at the end of the session;

subpaths do not count as independent paths. Therefore, each session will be associated with

one path p of length l[p].

We model the user’s mobility as the probability distribution of a set of paths s/he tra-

verses. PR-LBS populates this mobility model empirically based on the SP’s observa-

tions (zones that PR-LBS revealed to the SP). After N sessions, the SP observes the user

traversing a path p for n[p] times. Each path in the mobility model is a distinct event; the

probability of the user traversing each path (as observed by the SP), P (p), is simply the
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count of the path divided by the number, N , of the user’s sessions, P (p) = n[p]
N

.

The set of paths of equal lengths (Pl = {p|l[p] = l}) forms a probability distribution:

∀p ∈ Pl, P (p) = n[p]
N

. The probability of each path is the probability of the user following

a path of the same length in a session. As some sessions will not have a path of length l,

the probability distribution will include the event of the user not following a path of such

length denoted by P (〈φl〉) = 1−
∑

p∈Pl P (p).

4.6.2 Private Location Release Mechanisms

PR-LBS protects the privacy of the user’s mobility by anonymizing the traversed paths

at runtime. PR-LBS has to guarantee an entire path’s privacy while sequentially releasing

zones along the said path, i.e., before it knows what the path is going to be. This is very

different from most of the existing approaches that consider offline private publishing of

mobility traces including the works by Rastogi and Nath [29], Abul et al. [30], Terrovitis

and Mamoulis [31], and Chen et al. [32]. Moreover, adding noise, drawn from a distri-

bution [66, 117], on the user’s visited location does not apply in the indoor case. In most

cases, the user’s location is defined in terms of a zone, such as a UUID of an iBeacon, rather

than a geographical location (< x, y >) so that noise drawn from some planar Laplacian

distribution can not be added to a UUID value of an iBeacon.

The main privacy protection of PR-LBS comes from anonymizing the user’s path, i.e.,

releasing a path, pathobs, instead of the actual traversed path. In particular, PR-LBS aims

to provide (ε, dm) differential privacy [115, 118, 119, 120, 121] such that:

P (pathobs|path) ≤ eεP (pathobs|path′), (4.1)

where d(path, path′) ≤ dm and P (pathobs|pathtr) is the probability of observing pathobs

given the user traversed pathtr.

The criterion of Eq. (4.1) states that the privacy preserving mechanism releases a path,

pathobs, (observed by the SP), such that the probability of this path being the result of
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applying the privacy mechanism on the actually traversed path is indistinguishable (to an

exponential factor) from that of applying the same mechanism on another path at most a

distance dm from the actual path. In other words, the SP, after observing pathobs, can not

identify the user’s actual path. The user’s actual path is indistinguishable among the set of

paths within a distance dm from the user’s actual path – we refer to this set as pathdm .

The main challenge here is that PR-LBS can not treat the user’s path as a series of zones

devoid of any geographical significance. Blindly attempting to satisfy Eq.(4.1) will help

the SP narrow down the search space by eliminating some implausible paths from pathdm ,

given the released path. For example, a user enters a tunnel that can only be traversed in

one direction: A-B-C-D. If PR-LBS releases any path of length 4, then the SP will directly

infer the user’s original path as A-B-C-D (the only plausible path in pathdm regardless of

the value of dm in this case).

This challenge arises from the fact that for a certain path pa ∈ pathdm , P (pa|pathobs) =

0 (implausible given the observation) so that by Bayes’ rule P (pathobs|pa) = 0, which

violates the promised differential privacy guarantees. PR-LBS ensures that for ∀pa ∈

pathdm , the probability P (pa|pathobs) > 0 so that the SP can not reduce the size of the

search space after observing pathobs. PR-LBS’s privacy preserving mechanism need not

ensure the observed path to be plausible per-se, but any path in pathdm must plausibly be

the actual path, given the released pathobs.

Recalling that a path is a sequence of zones associated with time, a plausible path is one

which the time separating each two consecutive zones allows for a person to travel between

them. While the SP has access to the area’s map, PR-LBS relies on previously recorded

user mobility to populate the graph G describing the layout. Each time PR-LBS observes

a new transition, it adds the newly observed edge to the graph along with the travel time.

Eventually, PR-LBS populates the graph and uses it to compute the travel time between

any two zones in the graph.
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4.6.2.1 Differential Privacy (D.P.) Mechanism

PR-LBS chooses to release the user’s visited zone with a probability q0 and chooses a

zone at a distance of i with a probability qi = αi.q0 such that
∑

i α
i.qo = 1 and i < dm,

where dm is the indistinguishability threshold. We define the distance between two equal-

length paths (d(path, path′)) as the edit distance with a non-negative weight. The only

operation we consider in the edit distance is substitution so that the weight/cost of each

substitution is the distance (dG(z1, z2)) between the two substituted zones. For example,

the distance between two paths A− B − C −D and A− E − C − F is: 0 (cost of sub A

with A) + dG(B,E) (cost of sub B with E) + 0 (cost of sub C with C)+ dG(D,F )(cost of

sub D with F). Since the weight between two zones is symmetric (dG(z1, z2) = dG(z2, z1)),

the distance between two paths satisfies the axioms of a metric.

So, this mechanism achieves differential privacy such that (proof in Appendix A):

q0 ≤
1∑
αi

s.t. α ≥ |Z|dm
eε/m

, i < dm, (4.2)

where |Z|dm is the number of zones within a distance dm of the user’s visited zones.

When the user moves from a zone zal to zal+1 (with a travel time ta), s/he would have

traversed a path pa of length l + 1 so far. The D.P. mechanism releases a zone z instead

of zal+1 according to probability distribution described above. At the same time, PR-LBS

keeps track of pathdm , the set of paths of equal length of pa and of a distance less than dm

from pa. For each path pr (comprised of zones zri) in pathdm , PR-LBS estimates the travel

time of the transition from zrl to zrl+1 as tr = tG(zrl, zrl+1). If there is at least one path of

pathdm where tr >> ta, then PR-LBS hides zal+1 completely (and does not release any

anonymized zone). Therefore, PR-LBS avoids releasing a path to the SP that violates the

indistinguishability criterion. At the end of Section 4.8, we will show that PR-LBS can

effectively distort the distribution of the zone visit time for privacy-oriented users. This

prevents the SP from utilizing timing information to infer more probable paths from the set
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pathdm .

The value of dm controls the trade-off between privacy and utility. A lower value of dm

will allow the privacy criterion to be more relaxed (a higher value of q) so that the observed

path will be closer to the actual path, thus becoming indistinguishable among a smaller set

of paths.

Learning: While PR-LBS is populating the graph, it can not apply the above mecha-

nism as it will not have a full view of the area’s topology (a list of zones without transitions).

In such a case, it applies a variant of the D.P. mechanism. In this variant, PR-LBS releases

the user’s visited zone, zv, with a probability q or any other zone z ∈ Z \ zv with a proba-

bility 1 − q. We define the distance, d(path, path′), between two paths path and path′ as

the edit distance with weight 1 (=the number of different zones between two paths). This

mechanism achieves (ε, dm) differential privacy (proof in Appendix A), where

q ≤ eε/dm

|Z| − 1 + eε/dm
. (4.3)

This mechanism is not very efficient in terms of the privacy–utility tradeoff; it treats

all the other zones as being equidistant to the current zone. Once the full topology of the

graph is known, PR-LBS applies the full D.P. mechanism which exhibits a finer-grained

privacy–utility tradeoff by providing indistinguishability over topologically close paths.

4.6.2.2 Anonymity Set (A.S.) Mechanism

In some scenarios, PR-LBS runs on a device with no capability of feeding the SP app

with a fake zone instead of the user’s visited zone; it can control whether to release or hide

the currently visited zone. Therefore, PR-LBS can not apply the D.P. mechanism described

above.

Instead, PR-LBS resorts to the A.S. mechanism that releases the user’s visited zone

with a probability q and hides it with a probability 1− q. This mechanism can not provide

differential privacy guarantees since there will always be a path such that the observation
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probability will be 0. For example, if PR-LBS releases the path pobs =< a, b >, then the

probability of observing this path given the user traversed < c, a, d > is 0. The expression

of Eq. (4.1) can not be satisfied. Therefore, we focus on another privacy indicator which is

the size of the anonymity set. The anonymity set is defined as the set of paths from which

the released path could have possibly resulted, i.e., ∀p|P (pathobs|p) > 0. In appendix A,

we derive the expected size of the anonymity set for a traversed path of length m as:

E(S) =
m∑
k=0

k∑
r=0

(
k

r

)2

qr(1− q)k−r (|Z| − r)!
(|Z| − k)!

(4.4)

As evident from the expression of Eq. (4.4), the value of q controls the uncertainty at

the SP side. For instance, when q = 0, the value of E(S) assumes the maximum value

since the adversary will not observe any of the user’s mobility. The mobility inside a zone

and between two released zones (zi and zj in this case) is always hidden. During this gap,

the user could have spent time at zi or in one or more zones in between (on path pl). The

SP can not definitely decide whether the user actually visited a zone in between (on path

pl) or spent the entire time between at zi.

4.6.2.3 Path Diversity

Both D.P. and A.S. mechanisms rely on hiding the user’s visited path within an anonymity

set of other paths. The size of this set provides the privacy guarantees to the user and is

mainly controlled by the number of zones in the area and the possible transitions between

these zones as recorded by previous user mobility. It is very important to note here that

while mobility can be restricted in an indoor case, our definition of a zone visit relaxes

this restriction. In particular, in an indoor space, the graph depicting the area’s topology is

connected so that every zone is reachable from any other zone.

Since consecutive zones in a path are not geographically adjacent, the number of zones

reachable from the currently visited zone is not restricted to neighboring zones, but by their

feasible transitions. PR-LBS copes with the issue of limited feasible transitions, which
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takes place at the bootstrapping stage, by maintaining the size of the anonymity set for

both mechanisms. When the size of the anonymity set is small, PR-LBS hides the currently

visited zone.

4.6.3 Information Disclosure

In what follows, we analyze the (privacy) cost incurred from PR-LBS’s release of a

path to the SP (even if it is anonymized). Any observation (a zone visit) will necessarily

change the probability distribution spanning the mobility model. The amount of change

introduced to the mobility model is what we attempt to quantify. Even when PR-LBS

releases an anonymized path, this path will still carry information of the actual mobility.

We first quantify the information disclosure (alternatively leak) for the entire user’s path

after observing a new zone visit and then state our information leak model for the specific

zone visit.

4.6.3.1 Per-path Criterion

To quantify the information leak for observing a path, we follow the lead of Miklau and

Suciu [122] by considering a metric of positive information disclosure. We focus on the

improvement of the probability of the user traversing a certain path as being indicative of

the amount of information released:

lk(s, v) = sup
s

P (S = s|v)− P (S = s)

P (S = s)
. (4.5)

In Eq. (4.5), P (S = s) is the prior probability distribution of a secret s that the adver-

sary attempts to identify, v is the observation, and P (S = s|v) is the probability distribution

of S after observing v.

In our setting, the secret that the adversary wants to unravel is the user’s probability

distribution of the paths traversed. When PR-LBS is about to release a new zone zl to

the SP, after releasing a path pl−1, it estimates the information leak of the total observed
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path being pl = 〈pl−1, zl〉. The information disclosure considers the improvement of the

SP’s observation probability of the user traversing a path as being indicative of the amount

of information released. If the observation of a path does not improve the adversary’s

knowledge, it leaks little/no information about the user to the SP (the SP already expects

the user to traverse such a path), and vice versa.

If the user has visited the area N times (number of sessions), out of which s/he tra-

versed the path pl for n[pl] times, then the per-path information leak is (see the derivation

in Appendix A):

lk(pl, z) =
1− a

a(N + 1)
, a =

n[pl]

N
. (4.6)

4.6.3.2 Per-zone Criterion

We can rewrite the leak function of Eq. (4.6) to to represent the information leak in bits

as: leak(pl, z) = log2 (lk(pl, z) + 1) = log2

(
N(n[pl]+1)
n[pl](N+1)

)
.

It is worth noting that leak(pl, z) represents the improvement of the observer’s knowl-

edge of traversing a path, pl, directly after the observation of z. Having visited N sessions,

of which a path pl has been traversed n[pl] times, the probability of visiting path pl is origi-

nally P (pl) = n[pl]/N . For the (N +1)th session, if pl is traversed, it will be the only path

(of the user’s mobility model) experiencing a positive information disclosure as P (pl|z)

will be (n[pl]+1)/(N +1), which represents P (S = s|v) of Eq. (4.5). It is straightforward

to show that for N > n[pl] (which is always the case since N is the total number of ses-

sions), n[pl]+1
N+1

> n[pl]
N

so that the information disclosure will always be positive. Therefore,

applying the logarithm to compute leak(pl, z) is always feasible.

For N > 0, n[pl] > 0 and n[pl] ≤ N , the value of leak(pvn, z) varies between 0

(minimum leak) and 1 (maximum leak). In the initial case where no mobility has been

observed about the user (N = 0 or n[pl] = 0), we associate leak(pl, z) with the maximum

value of 1. We define the information leak per observed zone as the difference between the

113



leaks resulting from the paths pl and pl−1:

leak(z) = leak(pl, z)− leak(pl−1, z)

= log2

(
n[pl−1](n[pl] + 1)

n[pl](n[pl−1] + 1)

)
. (4.7)

A closer look at Eq. (4.7) reveals that the leak per zone is the leak defined by the

conditional probability distribution P (zl|pl−1) which is n[pl]
n[pl−1]

. Since PR-LBS considers

the user mobility one zone at a time, by the time the user reached zl, the entire path pl−1

must have been observed by the SP. Hence, leak(zl) focuses on the additional leak incurred

from releasing zl given that the SP has already observed the user’s path pl−1. Appendix B

provides an example of how PR-LBS computes the privacy cost of a traversed path.

This information leak is especially crucial for the case of the A.S. mechanism which

will release raw location data. We rely on the information disclosure as a cost metric to cap

the additional knowledge leaked about the user to the service provider.

Finally, the information leak as defined in Eq. 4.6 offers a nice property. If the value of

N is large enough then the information leak from observing path pl can be approximated

by 1
n[pl]

. This implies that the first observations of a path will have higher leaks compared to

future observations. On the other hand, when the value of N is low, there is always going

to be a leak of information, as the probabilities of following paths will be changing more

abruptly. For a fixed N , a lower probability P (pl) of traversing a path will always lead

to a higher information leak. Individuals tend to perceive behaviors with low probability

as being more private because they indicate unexpected (thus conspicuous) behaviors [96,

123].

4.7 PR-LBS

In what follows, we describe PR-LBS, its different components, and their interactions.
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4.7.1 The Location-Service Exchange

We model the interactions between the user and the SP as a repeated play model [107]

composed of the user (player) and the SP (opponent). The user, with PR-LBS acting on

his/her behalf, chooses one of three actions: hiding, releasing, or anonymizing the location.

In return, the SP pushes a service with varying value.

We rely on the SEA algorithm [108] to decide on which action to take at each phase

(when visiting a new zone). In this model, the player has access to a set of experts each

offering an advice for the action to take at each interaction. The algorithm is akin to re-

inforcement learning and is based on a combination of exploration and exploitation. The

exploration phase will enable the player to learn the opponent’s response to the different

actions, while the exploitation phase enables the player to follow the expert’s advice who

has accumulated the highest average utility.

SEA has some nice properties that make it suitable for our context. First, it assumes a

non-oblivious opponent whose actions might (or might not) depend on the player’s actions

(as in our case) as opposed to minimum regret algorithms [107]. SEA, also, avoids being

short-sighted in its objective and instead focuses on the asymptotic behavior of the player.

Finally, it can achieve a stricter bound if the opponent is assumed flexible. A flexible

opponent is one who forgets the player’s actions after a while. Analytics and advertisement

servers constitute a relevant example, their user recommendations are usually based on

recently observed behavior.

The user–SP interaction takes place when PR-LBS detects the user has visited a new

zone. PR-LBS has a set of three experts with each recommending an action to follow as

defined in Table 4.2.

The mechanism invoked by the second expert of the exchange module will depend

on the capabilities available to PR-LBS. If PR-LBS can change the zone reported to the

SP’s app, then it can rely on the D.P. mechanism (while running in device-based mode on

a rooted device or in infrastructure-based mode). Otherwise, the second expert uses the
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Table 4.2: The experts utilized by PR-LBS.

Expert Advice

First Hides location all time
Second Release location according to privacy mechanism
Third Release location all time

A.S. mechanism when PR-LBS can only enable/disable location release (while running in

device-based mode on an unrooted device).

The player can designate an interaction as either an exploration or exploitation stage

according to a biased probability distribution. Specifically, PR-LBS designates the ith in-

teraction as an exploration stage with a probability 1/i and as an exploitation stage with

probability equal to 1− 1/i. In the exploration stage, the player chooses one expert at ran-

dom. This ensures that every expert is sampled infinitely many times. In the exploitation

stage, the player simply chooses to follow the advice of the expert with the highest accu-

mulated average utility. At the earlier interactions, where the value of i is small, PR-LBS

chooses exploration with a higher probability as to learn the utilities of the different experts.

With more interactions, the behavior of PR-LBS stabilizes and it chooses exploitation with

a higher probability as it would have accumulated enough average utility for each expert.

After PR-LBS chooses an expert, it follows its advice for the coming interaction be-

tween the user and SP. Every interaction involves deciding on an action (based on the

expert’s advice), computing the privacy cost of the performed action, estimating the ser-

vice value of the whole interaction, and computing the utility resulting from the interaction

(a function of the cost and reward). After the interaction ends, PR-LBS updates the av-

erage utility for the chosen expert. PR-LBS, then, chooses another expert for the next

interaction.
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Table 4.3: The privacy profile of a privacy-oriented user.

No Service Some Service Full Service

No Privacy 0 0 1
Some Privacy 0 0 1
Full Privacy 1 1 2

4.7.2 Utility Estimator

Deriving a utility estimate from the privacy and QoS estimates is not straightforward; it

is like comparing apples to oranges. Besides, the utility function is subjective as it depends

on the user’s perception. A privacy-oriented user will suffer lower utility if more location

samples are released, while a service-oriented user will suffer lower utility if s/he does not

receive services.

In PR-LBS, the user defines a privacy profile which indicates his/her tradeoff between

the cost of releasing location and the benefit from the received service. The utility estimator

module converts this “high-level” profile to a utility function that maps the privacy cost and

service quality pair to a value between 0 (no utility) and 1 (full utility). Table 4.3 shows an

example of the privacy profile of a privacy-oriented user (from our survey). In the survey,

we asked respondents to fill in their privacy profile through a table similar to Table 4.3.

Each entry specifies the respondent’s satisfaction (0 – not satisfied, 1 – somehow satisfied,

and 2 – fully satisfied) value for each of the privacy and service combination. It is clear

how this respondent favors curbing location sharing.

Given a privacy profile (one that looks like Table 4.3), the utility estimator module

converts it to a numerical function. The resulting function takes two inputs: privacy cost

(leak(zi)) and estimated service quality values (servi); it returns an output which is the

utility value such that utility = f(leak(zi), servi). As the concepts of the privacy profiles

(privacy, QoS, utility) are defined in qualitative (or humanistic) terms, a fuzzy inference

system (FIS) [124] is thus suitable to derive the utility function out of these values.

We rely on a Mamdani-type fuzzy inference system; such a system has two main com-
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Figure 4.4: Utility estimator illustration.

ponents: rules (defining relationship between inputs and outputs) and membership func-

tions. In our context, the rules are defined as per the privacy profile (similar to Table 4.3).

For example, the top left entry of the table defines this rule: No Privacy AND No Service

=⇒ Not satisfied.

The membership function defines the value’s relevance to the property it is claiming

over a domain. For example, instead of defining a hard threshold between what is a low

threat path and a high threat one, one can define softer thresholds, as evident from Fig. 4.4a.

A path definitely poses a low threat (full privacy) when leak(p) = 0, as the value of 0 has

a membership of 1 in the low function. The membership value decreases gradually as the

privacy value increases until it hits 20%. Similar membership functions can be defined for

medium, high threat. A similar logic applies for the service and utility values.

The second step in the fuzzy inference system is mapping the inputs to the output; this is

achieved through the fuzzy operators, which results in a fuzzy utility value. The final stage

is the conversion of a fuzzy utility value to a crisp output to determine the actual utility

to feed the SEA algorithm through the defuzzification step. Ultimately, the FIS will result

in a continuous and smooth 2D function mapping both the privacy and service values to a

utility value. Fig. 4.4b shows the final utility function for the privacy profile of Table 4.3.
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The utility takes its maximum value at maximum privacy and reward levels. The utility,

smoothly, decreases as the privacy level or reward decrease.

4.7.3 QoS Analyzer

Measuring the quality of service the user received from interactions with the SP’s app is

essential to the operation of PR-LBS. Market research literature has a wealth of studies that

analyze the user’s retail app usage and its effect on user satisfaction and purchases [125,

126, 127, 128, 129, 130, 131, 132, 133]. This literature leads to the following conclusions

regarding retail apps:

1. Retail apps rely heavily on push notifications to communicate retail services to users,

which we confirmed from our analysis of multiple retail apps. In 2014, more than

80% of the notifications pushed by the retail apps were consumed by users [130, 134].

2. Continued app usage and interaction inside the store (during shopping) directly re-

lates with user’s satisfaction during the shopping experience [125, 126, 127, 128,

129].

3. Higher retail app usage rate (on-screen time) during shopping is correlated with

more brick-and-mortar store visits, longer shopping visits, and increased purchase

rates [131, 132, 133].

Consistent with market research literature, we utilize user interaction with the SP’s app

as an indicator of the user’s satisfaction with the services provided by the app. An interac-

tion with a typical retail app takes place in three stages: (1) the app pushes a service to the

user through a notification, (2) the user consumes the notification (by checking and reading

it), and (3) the user opens and interacts with the SP’s app. To measure user interaction with

the SP’s app, PR-LBS observes if the user consumed a push notification from the app and

measures the time s/he interacted with the app.
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PR-LBS monitors the level of user–app interactions through the collector module to

compute the QoS metric: servi. It observes the time the user spent interacting with the

SP’s app, denoted by timeforeground, that was preceded by a consumed push notification

from the SP’s app. Particularly, if the user consumed a push notification by opening the

SP’s app, then PR-LBS measures the fraction of time the user spent actively interacting

with the app as:

servi =
timeforeground
timezi−zj

, (4.8)

where timezi−zj denotes the time spent in the last zone(zi), before moving to the new

zone(zj).

To further assess whether servi is a good indicator of user satisfaction with retail apps,

we analyzed retail app usage data from two datasets: the LiveLab dataset of Rice Uni-

versity [81] and our dataset of participants whom we recruited from PhoneLab [80]. The

Livelab dataset contains the app usage data, along with other data, for 34 iPhone users over

a 12–18 month period. Our dataset has app usage data for 95 Android users over 4 months.

We identified retail apps from their app category in either Google Play or iTunes. For every

retail app and user combination, we calculated servi as the app total usage time (in sec-

onds) normalized by the installation time (in days). We then associated every app session

with its average rating on the app store. We categorized apps into two categories, in terms

of rating: low (rating ≤ 2.5) and high (rating ≥ 4).

Fig. 4.5 plots the distribution of the servi for each of the two categories (low and high)

for both datasets. There is a large discrepancy between the high and low distributions

suggesting that highly rated apps tend to enjoy higher usage rates. For the apps with a low

rating, 80% of the apps are used at most 0.1 sec/day, while 80% of the highly used apps

have more usage rate than that. The discrepancies of values between both datasets relates to

the duration of each dataset (Livelab is much longer than PhoneLab). It is clear that servi

correlates with the average user rating of the app at the app store (iTunes/Google Play) –
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Figure 4.5: The distribution of QoS metric for the LiveLab (left) and PhoneLab (right)
datasets.

app user rating acts as an indicator of user satisfaction of its service [135].

The proposed reward metric offers several advantages in terms of practicality and us-

ability. First, it limits interactions with the user. Existing methods that rely on surveys

to measure user satisfaction do not apply in our context. PR-LBS needs to measure user

feedback at a “micro-scale” as the user is moving from one zone to the other, not after

the visit is completed. It is impractical to continuously ask the user for feedback about

the received service as s/he moves from one zone to the other. Second, the reward met-

ric is app-agnostic; it does not require specific knowledge of the semantics of the service

provider’s app. Otherwise, PR-LBS has to tailor its estimation methodology of the service

rewards to every service provider app, which is impractical. Finally, servi is practical to

measure as it can be extracted from user-level information on the user’s device. It requires

neither intercepting network traffic nor instrumenting the user’s mobile operating system.

4.8 Implementation and Evaluation

We now present the implementation of PR-LBS in device mode and the evaluation of

its effectiveness.
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Figure 4.6: The architecture of PR-LBS in device mode.

4.8.1 Implementation

We implement the device mode of PR-LBS as a standalone Android (4.4) app, which is

compatible with beacon-based localization. Fig. 4.6 shows the architecture of the PR-LBS

app. PR-LBS runs as a background service that detects if the user is visiting a place where

localization is deployed. When the user starts the visit, PR-LBS prompts him/her to set

the privacy preferences and executes the logic of Fig. 4.6. The privacy preferences include

setting the privacy level and the privacy profile of Fig 4.8. The privacy level (privlvl) is a

slider between no privacy privlvl = 0 and full privacy (privlvl = 1) that sets the parameters

of the privacy mechanisms as such:

D.P. Mechanism: if the maximum distance (length of shortest path) between any to zones

in the area is d, then dm = privlvl.m.d. When its learning variant is running, then dm is set

as: dm = privlvl.m, where m is the average path length.

A.S Mechanism: the probability controlling the release of location is simply set as q =

1− privlvl.

BLE Scanner: PR-LBS utilizes Android’s Bluetooth Low Energy (BLE) APIs to scan

regularly for BLE beacons. During the scan duration, PR-LBS receives advertisements
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from multiple beacons. It decides on the beacon with the lowest power attenuation as the

closest to the user. It extracts the identifying fields from the beacon advertisement to maps

a zone id. If the new zone is different from the last detected zone, the scanner alerts the QoS

and Privacy analyzers. PR-LBS uses the scanned zones to populate the topology graph.

Collector: This module records app execution events and keeps track of the time the

user spent for interacting with the service provider’s app. As Android does not provide a

public API for this purpose, the collector module frequently polls (once a second) the run-

ning tasks to find which apps the user is currently running in the foreground. It also runs an

an Accessibility Service to intercept the SP app’s notifications and the resulting

user actions. Whenever a new zone is detected, the collector passes this information to the

QoS analyzer that calculates the QoS metric.

Actuator: The actuator is responsible for performing the action decided by the ex-

change module. The action could be hide, release, or anonymize the visited zone. While

running on an unrooted device and with the absence of any other support, the only ac-

tions available are to release or hide the currently visited zone (A.S. mechanism). In such

case, PR-LBS uses the Android’s Bluetooth Admin permission to globally control Blue-

tooth scanning on the device. This will prevent the service provider’s app (and potentially

other apps) from tracking the users. On the other hand, when running on a rooted device,

PR-LBS will be able to apply the anonymize action. We instrument the Bluetooth scanning

function in Android’s framework to so that PR-LBS changes the Bluetooth Low Energy

scan results that the SP’s app will receive. We are currently exploring using the user’s

smartwatch to advertise dummy beacons to anonymize the currently visited zone which

will not require rooting the user’s smartphone.

4.8.2 App-Based Evaluation

We evaluate the energy overhead of PR-LBS when it runs on Samsung Galaxy S5

(Android 4.4.4). We deployed a set of iBeacons in a lab environment with one iBeacon
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Figure 4.7: The energy consumption by PR-LBS.

(closest to the device) continuously changing its identifiers, making PR-LBS believe a

new zone was detected upon each BLE scan. Each new zone event triggers PR-LBS to

execute its components (Fig. 4.6). Hence, the frequency of detecting new zones along with

the scanning interval (frequency) and duration (length of the scan) determine PR-LBS’s

energy consumption. We report on the battery energy consumption (which includes the full

operation of PR-LBS with all of its components) in Fig. 4.7 when PR-LBS runs under

two scanning intervals: 5s and 30s. For each scanning interval, we vary the scan duration

to study its effect as shown in Fig. 4.7. We also compare the battery loss with the base

case, with PR-LBS turned off. We run all the experiments for 10 minutes with the screen

fully lit while turning off background apps, Wi-Fi, and data connections. It is clear from

Fig. 4.7 that PR-LBS incurs limited energy overhead since PR-LBS is a lightweight app

that incurs little processing overhead.

We also test the usability of the privacy profile input interface (Fig. 4.8). We deployed

PR-LBS on Google Play and asked 100 participants (recruited over Amazon Mechanical

Turk) to test the app and answer a set of questions. We paid each participant $1 and the av-

erage time for tasks completion was 7 minutes. When the participant completed interaction

with the app, it displayed a special code to input in the survey to ensure completion of the

required task. Furthermore, we provided the participants with the following instructions on

how to interact with UI:
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Figure 4.8: The UI to input the privacy profile in PR-LBS.

Columns constitute the service level you might receive from the store, while

rows denote the privacy level you are enjoying. Please tap on each of the nine

squares to indicate how much are you satisfied in different scenarios (privacy

- service configuration). Every time you tap a square, it changes its color.

93% of the participants considered that the interface is easy to use and 85% of them

indicated that it is clear.

4.8.3 Trace-Based Evaluation

Datasets: We utilize 6 datasets from the CRAWDAD data repository to evaluate PR-LBS.

These datasets represent the mobility of individuals in public constrained spaces that PR-LBS

operates in. We also utilize two other datasets that belong to respondents from our survey.

In both surveys (Walmart and Nordstrom), we displayed a map of the store with labeled

zones. We asked each participant to trace the path s/he traversed during the last visit. Ta-

ble 4.4 shows a list of the datasets.

To evaluate PR-LBS, we transform each dataset into a stream of location samples.

PR-LBS processes every location sample regardless of whether it came from the real world

or a location trace, which indicates that our evaluation is representative of PR-LBS’s op-

eration in the real world. We further partitioned every stream into sessions or paths. The

last two datasets, Walmart and Nordstrom, had one path per user and no time information
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Table 4.4: The eight datasets used for the evaluation.

Dataset Location Duration (days) # zones # users

HOPE 2008 [136] Hotel 3 21 1273
HOPE 2010 [137] Hotel 3 26 1119

State Fair [138] Fair 5 32 19
Orlando [138] Theme park 61 44 41
NCSU [138] Campus 80 49 35
KAIST [138] Campus 78 44 92

Walmart Retailer - 29 93
Nordstrom Retailer - 34 76

associated with the location trace.

Scenarios: We simulated four classes of SPs that reward the user for sharing location

information differently, while not rewarding for hiding location. In our model, the SP will

offer the user a service with a reward value (servi) between 0 and 1. This abstracts both

the SP and the QoS analyzer module. The SP classes are:

1. None: No reward for the user.

2. Low: Low reward (below 0.3) for sharing.

3. Med: Medium reward (≥ 0.3 and ≤0.8) for sharing.

4. High: High reward (higher than 0.8) for sharing.

We consider the three privacy profiles defined in Section 4.4: service-oriented, neutral,

and privacy-oriented, which we constructed based on our survey results. Each respondent

filled a table exactly like Table 4.3 where each response corresponds to the privacy profile

of the respondent. To generate the three privacy profiles, we average the profiles of each

(as defined in Section 4.4) respondent (in the three profiles) and then round the values to

the nearest integer.

We execute PR-LBS for each user in each dataset for each scenario (service class and

privacy profile combination). At the end of each run, PR-LBS would have released some

of the user’s mobility. Our evaluation is based on comparing, for each user and in each

scenario, the released paths with their original counterparts.
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Figure 4.9: User satisfaction distribution with high service.

PR-LBS Feasibility: In Section 4.6.2.3, we indicate that even in a constrained indoor

area, the number of feasible transitions (not necessarily from geographically neighboring

nodes) is what matters for PR-LBS’s operation. For the eight mobility datasets of Ta-

ble 4.4, the number of geographical transitions is indeed limited by the area’s topography.

Nevertheless, the size of the set of feasible transitions (measured from user mobility) is

near perfect for all the datasets. In particular, the “NCSU” dataset has 1912 feasible tran-

sitions out of 2352 possible ones, “State Fair” has 992 out of 992, “Orlando” has 1724 out

of 1892, “KAIST” has 1892 out of 1892, “Walmart” has 812 out of 812, “Nordstrom” has

1122 out of 1122, “Hope 2008” has 420 out of 420 and “HOPE 2010” has 650 out of 650.

The number of possible transitions in an area is simply |Z|.(|Z| − 1), where |Z| is the total

number of zones.

Since PR-LBS considers only the visited zones as composing a path, it is able to over-

come constraints in an area’s topology. It exploits the larger set of feasible transitions to

provide a larger anonymity set for both the D.P. and A.S. mechanisms. PR-LBS need not

hide zones because of infeasible transitions, which maintains utility for the user and service

providers.

User satisfaction: To study whether PR-LBS matches user expectations, we execute

PR-LBS over each path of both Walmart and Nordstrom datasets with the different SP
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models (low, medium, and high). At the end of each run, we capture the path that PR-LBS

releases and we compute the privacy metric (leak(path)) according to Section 4.6. We also

compute the average service value received per zone. We end up, for each user, with the

service value that the user received and privacy loss experienced.

We follow the same procedure as Section 4.7.2 to build a utility function for each user

in both the Walmart and Nordstrom datasets from the table containing their privacy profile.

Recall that these profiles are nothing else than a mapping between a privacy – service pair to

a utility metric (reflecting satisfaction). We then use the privacy and service values of each

path as inputs to each user’s profile to estimate his/her satisfaction. We round the output

to the nearest integer reflecting three satisfaction levels: “not satisfied at all”, “somehow

satisfied”, and “fully satisfied”.

Fig. 4.9 shows the user satisfaction distribution for each privacy profile and for the high

service level. The percentage of unsatisfied users is close to 0 in all the situations. Also,

service-oriented users (and neutral users to a lesser degree) tend to be more satisfied than

other users because they accommodate more location sharing. Although not shown due

to space limitation, service levels correlate with user satisfaction for all three profiles; the

higher the service is the more satisfied the users are.

Privacy Protection: We study PR-LBS’s effect on protecting users’ privacy through

norm length: the number of zones that PR-LBS released and the user actually visited

divided by the total length of the original path. This metric indicates how much of the

user’s actual mobility information has been released.

Fig. 4.10 shows the distribution of norm length for users with a privacy-oriented pro-

file for the “NCSU” and “Nordstrom” datasets (other datasets show similar results, but

are omitted due to space limitation). It is evident that PR-LBS curbs location sharing for

privacy-oriented users with 60% of the paths hidden completely regardless of the service

level and even when p = 1. PR-LBS shares some non-private location data (according to

the cost metric) as part of its exploration stage.
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Figure 4.10: norm length for a privacy-oriented profile.
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Figure 4.11: norm length for a a service-oriented profile.

Fig. 4.11 shows the distribution of norm length for service-oriented users in the “HOPE

2008” and “Orlando” datasets. The amount of sharing is higher than that for privacy-aware

users and roughly corresponds to the SP’s service level. There is one caveat: sharing is

mobility-dependent. PR-LBS hides more of the user’s location for the HOPE 2010 dataset

than the State Fair dataset. In the State Fair dataset, the environment is more constrained.

Individuals exhibited less diverse paths and the portion of paths leaking information ac-

cording to the metric of Section 4.6 were negligible. The mobility in “HOPE 2010” dataset

is diverse with most of the paths exhibiting a high privacy threat. In such a case, even if the

rewards provided by the SP are high, PR-LBS reduces sharing to protect the user’s privacy.

Service Provider Perspective: Currently, SPs focus solely on aggregate analysis in
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Figure 4.12: Utility metrics for realistic service levels. Some metrics in Walmart and
Nordstrom datasets are not available.

Table 4.5: The utility metrics description.

Metric Description

first Portion of paths with correctly identified start zones.
last Portion of paths with correctly identified end zones.

dwellarea Portion of zones with accurate estimate of percentage time spent over all the
users.

transitions Portion of correctly identified zone transitions.

retention Portion of zones with accurate estimate of retention (number of customers in a
zone at a one time).

dwelltime The portion of the zones in the area with accurate estimate of the dwell time.
The dwell time of a zone is the average time spent at the zone.

an effort to comfort users. PR-LBS improves on the status-quo by enabling SPs with the

capability to perform personalized analysis. In what follows, we evaluate the SP’s utility

using seven metrics [139, 140] as defined in Table 4.5. The closer these metrics are to

1.0, the higher is the utility that the SP enjoys. To model the SP’s service level, we relied

on the service value estimates of Fig. 4.5 from our Phonelab dataset, instead of using the

synthetic values. We normalized the service values to fall between 0 and 1. Fig. 4.12 shows

the metrics for each dataset and user privacy profile for these realistic service values.

First, the performance of PR-LBS is consistent among the different datasets which

shows it can adapt to different environments and settings. Second, PR-LBS ensures a

decent utility level even a significant portion of the users’ mobility is not shared. Fig. 4.11

(left) shows that PR-LBS hides a significant portion of users’ paths to protect their privacy
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for HOPE 2010 dataset (the results are similar to HOPE 2008). Still, the utility metrics

are fairly accurate as they represent an aggregate of users’ mobility. Third, as shown in

Figs 4.15 and 4.14 (in Appendix C for space considerations), PR-LBS adapts sharing to

the service level; when the server is more rewarding, PR-LBS will react by sharing more

of the user’s mobility, and vice versa. PR-LBS can incentivize the SP to reward the user

with better service as it reflects with improved utility. The SP’s utility decreases when it

provides lower service to the users.

Finally, PR-LBS effectively protects the privacy of the privacy-oriented users by re-

leasing fewer data about them. More importantly, the SP’s accuracy in deciding the user’s

dwell time is always less than 10%. This indicates that the SP can not use the dwell time

distribution for these users to identify possibly hidden zones from the timing information

in the observed path.

4.9 Limitations

Lack of User Feedback: To achieve a usable and practical user experience, we made

a conscious decision not to require user feedback regarding privacy decisions and rewards

estimation. While PR-LBS attempts to estimate the privacy cost objectively and provide

privacy guarantees, it does not capture the user’s stance towards hiding or revealing every

visited zone. Similarly, the reward metric of Section 4.7.3 might not be very accurate in

describing the user’s satisfaction with the provided service. In the future, we will investi-

gate mechanisms to incorporate user feedback, in a usable manner, to improve the privacy

and service estimations.

Evaluation Methodology: Our evaluation methodology suffers an inherent limitation.

It assumes that user’s privacy preferences are stationary, while they are prone to change if

the user is presented with information about the SP’s access to his/her location. Although

our survey (see Section 4.4) results indicate the respondents’ privacy preferences did not

change before and after we informed them about retailers accessing their location, we be-
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Figure 4.13: Location tracking metrics of smartphone apps running in the foreground.

lieve this part warrants additional investigation in the future.

4.10 Relation to Outdoor Location Privacy

Before we conclude this chapter, we address the relevance of the mobility model of

Section 4.6.1 to the outdoor scenarios as manifested by smartphone apps. In this chapter,

we model an individual’s movement, in an indoor environment, as a series of traversed

(with minimum staying time) zones during a single visit. This model applies to modeling

the user’s mobility in an outdoor scenario as a series of visited PoIs during a single day.

We opt not to utilize this model for the outdoor case; instead, we focus on modeling the

user’s mobility in terms of frequency of visits to the different PoIs. The main reason for this

choice is the nature of the adversary we are considering. In the indoor scenario, the service

provider is monitoring the entire mobility of an individual in a constraint environment

comprising less than 50 zones (Table 4.4). The outdoor case (of smartphone apps), on

the other hand, exhibits a scenario of different nature. A single smartphone app, running

in the foreground, accesses location only in a sporadic manner as we indicated earlier in

Chapters II and III.

To put this in context, we show, in Fig. 4.13 the amount of information an app collects
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about users over extended periods. In particular, Fig. 4.13a shows the time per day during

which the app gathers the user’s location. It depicts the distribution of time tracked per day

over user-app combinations in the three datasets. Each data point (or a user-app combina-

tion) corresponds to a single user utilizing a single app for the data collection period. As

evident from the figure, the 90th percentile of the tracking time falls below 10 minutes per

day which is comparable to a single app session (Section 3.5). A single app can identify

only a small snapshot of the user’s mobility during a single day. In Fig. 4.13b, we also

show the portion of the total observed user’s PoI a single app can identify over the course

of the data collection period (a few weeks to few months). It is evident a single app cannot

accumulate more than 40% of the user’s total number of PoIs even over an extended period.

A service provider cannot trace even a part of the user’s daily path using a location-aware

foreground app. This implies that the model mobility of this chapter is inapplicable for

foreground apps accessing the user’s location sporadically. As we indicated earlier, our

models of Chapters II and III ignore the order information between the visits and their

timings. One could explore amending the ordering and timing information to a location-

access model outdoor case in future work. Opposed to earlier research, such a model must

consider tracking threats as well as profiling and identification threats.

We still have to handle the issue of the apps accessing user’s location while running in

the background. In Chapter II, we address this issue by passing them coarsened location

samples. In Chapter III, we claim that those apps constitute a tiny minority of the user’s

installed apps. Recently, there has been a rise of a newer class of AI-based digital assistants

that continuously run in the background to provide location-based service; Google Now is

one example of such apps. These apps require accurate location access to provide users

with services based on the locations they visit. As such, they resemble the case of an

indoor service provider with comprehensive access to an individual’s mobility inside an

area. We can then apply the mobility model of this chapter to model the location access

(and the privacy threats) of apps running in the background; this could be a venue for future
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research.

4.11 Conclusion

In this chapter, we have designed, implemented, and evaluated PR-LBS, a system that

balances between privacy and rewards in an indoor environment. It creates a win–win sit-

uation for both the users and service providers. PR-LBS packs in two mechanisms for

private location release in indoor environments as well as a novel privacy criterion to es-

timate the cost of sharing location. It subjects the user’s mobility to a location–service

exchange that is based on the repeated play model to ensure the users are rewarded for

sharing some aspects of their mobility. Our evaluations show that PR-LBS is easy to de-

ploy, has low energy overhead, is usable, effectively remedies the user’s concerns, and does

not affect the SP’s utility. In future, we would like to conduct a field study of PR-LBS’s

device-based prototype. We also want to explore options to providing APIs for the SPs to

access aggregate information privately without releasing any raw location data.

Appendix A

In the following, the user traverses a path of a length m in an area containing |Z| zones.

PR-LBS releases a path, pathobs, to the service provider.

D.P. Mechanism Variant Privacy Guarantees

For the mechanism to achieve (ε, dm) differential privacy, it must satisfy:

P (pathobs|path) ≤ eεP (pathobs|path′) (4.9)

such that d(path, path′) ≤ dm and P (pathobs|pathtr) is the probability of observing
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pathobs given the user traversed pathtr. P (pathobs|path) is given by:

P (pathobs|path) = qm−d(1− q)d 1

(|Z| − 1)d
(4.10)

such that d = d(pathobs|path) is the edit distance between the two paths.

Then, we have:

P (pathobs|path)
P (pathobs|path′)

≤ eε (4.11)

qm−d(1− q)d 1
(|Z|−1)d

qm−d′(1− q)d′ 1
(|Z|−1)d′

≤ eε (4.12)

(
1− q

q(|Z| − 1)

)d−d′
≤ eε (4.13)

When d(path, path′) ≤ dm, then d − d′ ≤ dm, because d > 0 and d′ > 0 then

d(pathobs, path)−(pathobs, path′) < |d(pathobs, path)−(pathobs, path′)| < d(path, path′)

by using the reverse triangle inequality for the metric spaces (the edit distance is a metric).

Then we have:

(
1− q

q(|Z| − 1)

)d−d′
≤
(

1− q
q(|Z| − 1)

)dm
≤ eε (4.14)

Finally, this mechanism will achieve (ε, dm) differential privacy for:

q ≤ eε/dm

|Z| − 1 + eε/dm
(4.15)

D.P. Mechanism Privacy Guarantees

After releasing m zones, the D.P. mechanism satisfies the expression in Eq. (4.9) for

any value of dm. The probability of observing a path given some other traversed path is

given by:
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P (pathobs|path) =
∏

(qi/|Z|i)ni (4.16)

Where |Z|i represents the number of zones at a distance i from user’s zones and qi/|Z|i

the probability to choose a zone from those at a distance i from the visited zone. ni rep-

resents the number of released zones that are a distance i from the actual zones. For two

paths at a distance dm from each other, we need to satisfy the following:

∏
(qi/|Z|i)ni∏
(qj/|Z|j)nj

≤ eε; i, j ≤ dm (4.17)

The expression of Eq. (4.17) will assume its maximum value when the observed path

is the user’s actual path and path′ is a path at a distance dm. In such a case we have (for a

path of length m):

qdm0
(αdmq0/|Z|dm)dm

≤ eε (4.18)

Where |Z|dm is the maximum number of zones at a distance of dm from any of the zones

of the released path.

We can then derive an lower bound for α and upper bound for q0 as:

α ≥ |Z|dm
eε/m

; q0 ≤
1∑
αi

A.S. Mechanism Anonymity Set

The size of the anonymity set is a random variable, S, depends on the length of the

released path. Let R be a random variable that represents the length of the released path

and k represent the possible value of the traversed path length such that k ≤ m. Our

objective is to compute the expected size of the anonymity set E(S).
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E(S) =
m∑
k=0

k∑
r=0

E(S|R = r).P (R = r)

=
m∑
k=0

k∑
r=0

(
k

r

)(
|Z| − r
k − r

)
(k − r)!

(
k

r

)
qr(1− q)k−r

=
m∑
k=0

k∑
r=0

(
k

r

)2

qr(1− q)k−r (|Z| − r)!
(|Z| − k)!

Per-Path Information Disclosure

When the user moves to a new zone zl, PR-LBS estimates the information leak if the

SP is to observe that the user visited zl, with total observed path being pal = 〈pal−1, zl〉.

Let visit(z) be the event that the SP observed user visited the zone z. P (pal|visit(zl)),

then, refers to the probability distribution of the user visiting the current path pal of length

l after observing the visit to zone zl. By definition, a new observation will necessarily

change P (pl) (the SP’s existing belief about the user’s mobility); the amount of change in

this PDF is what we refer to as the information leak. The amount of leaked information can

be defined as:

lk(pl, z) = sup
pl∈Pl

P (pl|visit(z))− P (pl)
P (pl)

. (4.19)

Since we focus on the positive information disclosure, the only path that will experience

a positive improvement in the amount of information is pal, the path the user is currently

visiting. This reduces Eq. (4.19) to:

lk(pal, z) =
P (pal|visit(z))− P (pal)

P (pal)
. (4.20)

If the user has visited the area N times (number of sessions), out of which s/he tra-

versed the path pal for n[pal] times, then P (pal) =
n[pal]
N

. When observing a new visit, the

probability will be P (pal|visit(z)) = n[pal]+1
N+1

. The information leak will then be:
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lk(pal, z) =
1− a

a(N + 1)
, a =

n[pal]

N
.

Appendix B

Suppose the user visits an area comprised of four zones: “A”, “B”, “C”, and “D”. After

10 sessions, the user’s mobility model is as follows:

1. Paths of length=4: P(A−B−C−D)= 2/10, P(A−C−B−D)=3/10, P(A−D−

B−A)=1/10, P(B−D−C −B)=1/10, P(B−D−C −A)=1/10, and P(φ)=2/10.

2. Paths of length=3: P(A−B−C)= 2/10, P(A−C−B)=3/10, P(A−D−B)=1/10,

P(B −D − C)=2/10, and P(φ)=2/10.

3. Paths of length=3: P(A − B)= 2/10, P(A − C)=3/10, P(A − D)=1/10, P(B −

D)=2/10, and P(φ)=2/10.

4. Paths of length=3: P(A)= 6/10, P(B)=2/10, and P(φ)=2/10.

During the 11th session, the user traverses the path B −D − C − A.

1. First visited zone is B; the path will only comprise B at this point. At the beginning

of the visit, the SP expects the user (based on previous mobility) to visit either A or

B. Since the user visited B, there is an information leakage.

2. Second visited zone is D; the new path will be B − D. This path leaks some infor-

mation because there are multiple expected paths of length 2. But the visited zone

leaks no information according to our criterion. The only expected visited zone after

B is D. The user conformed to the SP’s expectations and leaked no information. It

is worth noting that the information leak of the path thus far is equal to information

leak from the first visited zone, which is B. The same applies for the third visited

zone C.
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Table 4.6: Privacy cost of visited path.

Zone (z) Path (pl) P (pl) P (pl|z) lk(pl, z) leak(z)

B B 2/10 3/11 log2(
15
11

) log2(
15
11

)

D B −D 2/10 3/11 log2(
15
11

) 0

C B −D − C 2/10 3/11 log2(
15
11

) 0

A B −D − C −A 1/10 2/11 log2(
20
11

) log2(
4
3
)
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Figure 4.14: Utility metrics for high service level. Some metrics in Walmart and Nordstrom
datasets are not available.

3. Last visited zone is A’; the path comprises B −D−C −A. The newly visited zone

leaks some information since there are two possibilities after traversing B −D−C,

either A or B. By visiting D, the user offered the SP new information that resulted in

a shift of its belief about the user mobility.

Appendix C

Figs 4.14 and 4.15 show that PR-LBS adapts sharing to the service level. When the

server is more rewarding, as in Fig. 4.14, PR-LBS shares more of the user’s mobility. All

the utility metrics for the neutral and service-oriented users are close to 1. While those for

the privacy oriented users are lower so that PR-LBS protects their privacy. On the other

hand, Fig. 4.15 shows the utility metrics for a low-rewarding server. It is evident that the

utility metrics drop considerably when compared to the high-rewarding service provider.
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Figure 4.15: Utility metrics for low service level. Some metrics in Walmart and Nordstrom
datasets are not available.

140



CHAPTER V

BLE-Guardian

5.1 Introduction

In this chapter, we consider the second source for location privacy threats as defined

in Section 1.2.1. We particularly focus on the BLE protocol as the representative wireless

technology for wearable devices.

Bluetooth Low Energy (BLE) [11] has emerged as the de facto communication protocol

in the new computing paradigm of the Internet of Things (IoTs) [12, 13, 14, 15, 16, 17]. In

2013, over 1.2 billion BLE products were shipped [16], with this number expected to hit

2.7 billion in 2020 [141]. BLE-equipped products are embedded and used in every aspect

of our lives; they sense nearby objects, track our fitness, control smart appliances and toys

provide physical security, etc. The BLE protocol owes this proliferation to its low energy

and small processing footprint as well as its support by most end-user devices [142], such

as PCs, gateways, smartphones, and tablets.

A BLE-equipped device advertises its presence to let interested nearby devices initiate

connections and glean relevant information. These advertisements, however, are a double-

edged sword. An unauthorized, potentially malicious, party can use these advertisements

to learn more about the BLE-equipped devices of a certain user or in a specific environ-

ment [21]. Enumerating the user’s employed devices is generally referred to in literature

as the inventory attack [22]. Revealing the device’s presence is the stepping stone toward
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more serious privacy and security attacks with grave consequences in the case of medical

devices for example, especially for high-value targets [143].

The BLE specification contains some privacy provisions to minimize the effects of

inventory attacks and ensuing threats, namely address randomization and whitelisting. A

BLE device is supposed to randomize its address to prevent others from tracking it over

time. Moreover, only devices with a pre-existing trust relationship (whitelisted devices)

are supposed to access the BLE-equipped device.

In this chapter, we first analyze how existing BLE’s privacy measures fare in the real-

world deployments through our own data-collection campaign. To the best of our knowl-

edge, this is the first study that systematically analyzes threats to the BLE-equipped devices

in the wild. We recruited participants from our institution and the PhoneLab testbed [80]

to collect the BLE advertisements in their vicinity. We have collected and analyzed the

advertisements from 214 different types of BLE-equipped devices. Analyzing our dataset

has led to a surprising discovery: BLE advertisements, due to poor design and/or imple-

mentation, leak an alarming amount of information that allows the tracking, profiling, and

fingerprinting of the users. Furthermore, some devices allow external connections without

an existing trust relationship. Unauthorized entities can access unsecured data on the BLE-

equipped devices that might leak sensitive information and potentially inflict physical harm

to the bearer.

Almost all of the existing approaches addressing some of the above threats rely on

mechanisms that necessarily include changes to the protocol itself or to the way the BLE-

equipped devices function [41, 42]. Changing the operation of such devices, post-production,

requires their patching by securely pushing a firmware update. With thousands of manu-

facturers and developers around the world, it is very challenging, sometimes impossible,

to guarantee firmware patches to the millions of already deployed devices [43]. Even

a security-aware user might lack the ability to update the firmware of a BLE-equipped

device. Patch management is, therefore, the leading security challenge in the emerging
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IoTs [144, 145] (including BLE-equipped devices) for many reasons:

• Manufacturers might lack the ability to apply OTA updates [146] for some deployed

BLE-equipped devices because they (such as a BLE-equipped pregnancy test) are

neither programmable nor equipped with an Internet connection.

• Customers might neither receive news about the update nor be able to apply an update

even if available. For example, a month after the 2013 “Foscam” webcams hacking

incident, 40,000 of 46,000 vulnerable cameras were not updated although a firmware

update was available [147].

• Companies do not have enough financial incentives or resources to maintain the de-

vices post deployment [148]. For example, Samsung discontinued two lines of smart

refrigerators after 2012 so that customers cannot receive updates for their purchased

refrigerators [149].

There is, therefore, a need for a new class of practical approaches to mitigate the privacy

threats to BLE-equipped devices. In this chapter, we seek to answer the following related

question: can we effectively fend off the threats to BLE-equipped devices: (1) in a device-

agnostic manner, (2) using COTS (Commercial-Off-The-Shelf) hardware only, and (3) with

as little user intervention as possible?

We present BLE-Guardian as an answer to the above question. It is a practical

system that protects the user’s BLE-equipped devices so that only user-authorized entities

can discover, scan, or connect to them. BLE-Guardian relies on an external and off-the-

shelf Bluetooth radio as well as an accompanying application. Therefore, a user can easily

install (and control) BLE-Guardian to any BLE gateway, be it a smartphone, tablet, PC,

Raspberry PI, Artik-10, etc. The external radio achieves the physical protection, while the

application, running on the gateway, enables the user to interact with BLE-Guardian.

BLE-Guardian provides privacy and security protection by targeting the root of the

threats, namely the advertisements. In particular, BLE-Guardian opportunistically in-
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vokes reactive jamming to determine the entities that can observe the device existence

through the advertisements (device hiding module), and those that can issue connection

requests in response to advertisements (access control module). In a typical BLE environ-

ment, however, achieving BLE-Guardian’s objective is rather challenging. Many BLE-

equipped devices, including the ones to be protected, advertise on the same channel; while

at the same time other devices, in response to advertisements, issue scan and connection

requests. The timing is of an essence for BLE-Guardian; it invokes jamming at the right

time for the right duration. Therefore, BLE-Guardian does not inadvertently harm other

devices, preserves the ability of authorized entities to connect the BLE-equipped device,

and always hides the BLE-equipped device when needed.

More than one device might be authorized to connect to the BLE-equipped device.

BLE-Guardian differentiates the scan and connection requests originating from autho-

rized devices versus those that are fraudulent. This is particularly challenging as the BLE

advertisement channel lacks any authentication mechanism for the advertisements and con-

nections. BLE-Guardian utilizes Bluetooth classic as an out-of-band (OOB) channel to

authorize a device after obtaining the user’s permission. It uses the OOB channel to in-

struct the connecting device to issue ordinary connection requests with (varying) special

parameters that other unauthorized devices cannot predict. It also alerts the user when

unauthorized parties attempt connection to the user’s BLE devices.

BLE-Guardian achieves its objectives with minimum requirements from the external

radio. Effectively, BLE-Guardian operates with a radio that offers only the basic capa-

bilities of reception and transmission on the BLE channels. As a result, BLE-Guardian

avoids employing sophisticated and customized (thus impractical) radios and signal pro-

cessing approaches.

We implement BLE-Guardian using the commercially available Ubertooth One1

USB dongle so that BLE-Guardian can be easily installed on any BLE gateway. We also

1https://greatscottgadgets.com/ubertoothone/
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implement accompanying apps for different BLE gateways, such as Android and Raspberry

PI. We evaluate BLE-Guardian using several BLE devices for different real-world sce-

narios, where we assess its effectiveness in combating privacy threats, its low overhead on

the channel and devices, and little disruption to the operation of legitimate BLE devices.

In particular, BLE-Guardian is able to protect up to 10 class-2 target BLE-equipped

devices within a 5m range with less than 16% energy overhead on the gateway.

The rest chapter is organized as follows. Section 5.2 discusses the related work. Sec-

tion 5.3 provides the necessary BLE background. Section 5.4 states the privacy threats aris-

ing from BLE advertisements through our data-collection campaign. Section 5.5 details the

design of BLE-Guardian. Section 5.6 presents the implementation of BLE-Guardian

and evaluates its effectiveness. Finally, the chapter concludes with Section 5.7.

5.2 Related Work

There have been limited efforts related to BLE devices that target the security and pri-

vacy threats resulting from the devices revealing their presence. The only exception is the

work by Wang [42], where a privacy enhancement is proposed for BLE advertisements to

ensure confidentiality and prevent replay attacks as well as tracking. This enhancement is

based on providing an additional 3-way handshake between the peripheral and the gateway.

Unarguably, this enhancement changes both the protocol and the peripheral which is highly

impractical as we argued before.

Another related field of research includes wearable and body-area networks. The work

by Leonard [41] uses a honeypot to lure in adversaries that attempt to attack the user’s

wearable devices. The honeypot uses a set of helper nodes to expose fake services with

known weaknesses so that the attacker connects to them. This work, however, doesn’t

handle the privacy threat arising from BLE advertisements. A determined attacker will be

able to distinguish fake traffic from legitimate one based on RF signatures from the devices

and issue connections to the user’s real devices.
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Other relevant work includes approaches to protecting medical devices. Mare et al. [150]

propose a mechanism that protects health sensors when communicating with a gateway.

The proposed system, albeit relevant, doesn’t apply for the BLE ecosystem. It also man-

dates changing the medical devices. Gollakota et al. [151] propose an external device,

called Shield, that the user wears to control access to his/her embedded medical device.

Shield implements friendly jamming so that only an authorized programmer can commu-

nicate with the medical device.

BLE-Guardian takes an entirely different approach by targeting the control plane of

the BLE protocol instead of the data plane. BLE-Guardian does not need to continually

protect an ongoing authorized connection and more importantly need not invoke jamming

signal cancellation that requires accurate estimation of channel condition in a dynamic

mobile indoor environment as well as a full duplex radio. BLE-Guardian constitutes

a reference design that can function with any radio that has reception and transmission

capabilities on the 2.4 GHz band. BLE-Guardian, also, considers far less restrictive sce-

narios than Shield. It does not have to be within centimeters of the device-to-be-protected

as the case with Shield. Moreover, BLE-Guardian’s practical design allows scaling up

protection for multiple devices (multiple connectors and protected devices) simultaneously,

which is not the case for Shield that considers a two-device scenario only [152].

Finally, researchers have explored ways to reduce information leaks from sensors in a

smart home environment [153, 154]. Srinivasan et al. [153], Park et al. [154], and Schurgot

et al. [155] propose a set of privacy enhancements that include perturbing the timing of

broadcasted sensory data along with padding the real sensory data with fake data to confuse

the adversary. These protocols fail to address the threats resulting from BLE advertisements

and have the shortcoming of requiring changes to the sensors as well.
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Table 5.1: The four types of BLE advertisements.

Type Advertising Interval

ADV IND 20ms − 10.24s
ADV DIRECT IND 3.75ms
ADV NONCONN IND 100ms − 10.24s
ADV SCAN IND 100ms − 10.24s

5.3 BLE Primer

The BLE (Bluetooth 4.0 and newer) protocol has been developed by the Bluetooth

SIG to support low power devices such as sensors, fitness trackers, health monitors, etc.

Currently, more than 75,000 devices in the market support this protocol along with most of

more capable devices such as smartphones, tablet, PCs, and recently access points [18].

5.3.1 BLE States

A BLE device assumes either a central or peripheral role. A peripheral device is typ-

ically the one with lower capabilities and with the information to advertise. The central

device, typically an AP, PC, or smartphone, scans for advertisements and initiates connec-

tions.

The BLE specification places a higher burden on the central device. It is responsible for

initiating the connection and thus has to keep scanning until it receives an advertisement.

Conversely, the peripheral (prior to its connection) sleeps for most of the time and only

wakes up to advertise, which helps save its limited energy.

5.3.2 Advertisements

BLE advertisements are instrumental to the operation of the protocol, and constitute the

only means by which a device can be discovered. The specification defines 4 advertisement

message types as shown in Table 5.1, and 3 advertisement channels: 37 (2402MHz), 38

(2426MHz), and 39 (2480MHz).
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ch.1 ch. 2 ch. 3

Advertising session

tw tw tw

Advertising interval Random delay

Figure 5.1: The advertisement pattern in BLE.

ADV DIRECT IND (introduced in Bluetooth 4.2) is a special advertisement; it en-

ables fast reconnection between the central and the peripheral devices. The peripheral,

when turned on, will broadcast advertisements at a fast rate (once every 3.75ms, for 1.28

seconds) that are directed to the client (with a pre-existing trust relationship) before assum-

ing the central role. The advertisement message only contains the message type, source,

and destination addresses.

The other three advertisements are similar to each other in that they are periodic. The

advertisement interval determines the frequency with which each device advertises. This

interval has to be chosen, at configuration time, between 20ms and 10.24 seconds (at incre-

ments of 0.625ms) for the ADV IND advertisement and between 300ms and 10.24 seconds

for the other two advertisements. To prevent advertisements of different devices from col-

liding with each other, each device waits for a random amount of time between 0 and 10ms

(in addition to the advertisement interval) before it advertises (Fig. 5.1).

The advertisement session constitutes the period when the device is actually advertis-

ing. During each advertisement session, the device advertises on the three advertisement

channels given a pre-configured channel sequence. Before switching to the next channel,

the device has to wait for a preset period of time (less than 10ms) for scan and connection

requests (tw in Fig. 5.1). We will henceforth refer to the advertisement interval, the channel

sequence, and the waiting time as the advertisement pattern.
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Each advertisement message contains the message type, source address, along with

some of the services offered by the device and their respective values. The specification

defines a set of services that have unique UUIDs, such as device name. The message

is limited in length, and hence, to get more information about the device, an interested

device can either issue a scan request to which the advertising device responds with a scan

response or connect to the advertising device.

5.3.3 Connections

Not all BLE devices accept connections; devices that use ADV NONCONN IND ad-

vertisement messages run in transmit mode only and they do not accept any scan or con-

nection requests such as iBeacons.

Also, devices advertising with ADV SCAN IND messages do not accept connections

but accept scan requests. Particularly, when the device broadcasts an advertisement mes-

sage on some channel, it listens on the same channel for some time (less than 10ms) before

switching to the next channel. It waits for scan requests from clients wanting to learn more

information to which it responds with a scan response.

Devices that advertise using ADV IND messages are scannable and connectable; they

respond to scan messages and connection requests. After sending an advertisement mes-

sage, the device listens for connection requests. The connection request contains the source

and destination addresses along with other connection parameters. These parameters con-

tain the connection interval, the timeout, and the slave interval. When connected, the device

starts frequency hopping according to a schedule negotiated with the central. If the device

(now peripheral) doesn’t receive any communication from the central over the period de-

fined by the “timeout interval”, it drops the connection.

While connected, the device must not broadcast connectable advertisement messages

(the first two types of Table 5.1). It can, however, still broadcast non-connectable adver-

tising messages to share information (the last two types of Table 5.1) with other clients
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in its transmission range which still leaks information about the device’s name, type, and

address.

5.3.4 Privacy and Security Provisions

The BLE specification borrows some security provisions from classical Bluetooth to

establish trust relationships between devices, a process known as pairing. When the device

boots for the first time, it will advertise using ADV IND with its public Bluetooth address.

The user can then pair a smartphone (or other BLE-equipped device) so that the two devices

exchange a secret key that will enable future secure communication.

Once a BLE-equipped device is paired with another device, it can invoke more privacy

and security provisions. The first provision is whitelisting, and the device will only accept

connections from devices it has been paired with before, i.e., those that are whitelisted.

Also, the device might accept connections from any client but might require higher security

levels for some of the services it exposes so that only authorized users access sensitive

content.

Finally, the BLE specification defines a privacy provision based on address randomiza-

tion to prevent device tracking. When two devices are paired, they exchange an additional

key called the Identity Resolution Key (IRK). The device uses this key to generate a random

address according to a timer value set by the manufacturer, which it will use to advertise.

This random address will be resolved by the paired device using the same key. As this

random address is supposed to change regularly, curious parties shouldn’t be able to track

a BLE-equipped device. Devices that do not utilize address randomization can resort to

direct advertising (ADV DIRECT IND) to enable fast and private reconnections.

These privacy provisions are akin to those proposed earlier in the context of WiFi net-

works. Researchers have long identified privacy leaks from the consistent identifiers broad-

casted by wireless devices. They proposed privacy enhancements that include randomizing

or frequent disposing of MAC addresses [156, 56] and hiding them through encrypting the
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entire WiFi packets [157]. These enhancements require introducing changes for the client

devices.

5.4 Threats from BLE Devices

While, in theory, BLE’s privacy provisions might be effective to thwart threats to the

user’s privacy, whether or not various manufacturers and developers properly implement

them is an entirely different story. In what follows, we investigate how the BLE privacy pro-

visions fare in the wild using a dataset collected in our institution and using the PhoneLab

testbed [80] of SUNY Buffalo.

We developed an Android app that collects the content of the advertisement messages.

We recruited users from our institution and from the PhoneLab testbed. We didn’t collect

any personal information about the users and thus obtained non-regulated status from the

IRB of our institution. One could view this study as crowdsourcing the analysis of BLE

devices; instead of purchasing a limited set of devices and analyzing them, we monitored

the behavior of a broad range of devices in the wild. Analyzing the advertisements we

collected from 214 different types of devices (sample of these devices shown in Tables 5.2

and 5.3), we observed:

1. Two advertisement types (ADV NONCONN IND and ADV SCAN IND) require a

fixed address which would enable tracking of a mobile target.

2. Devices that are bonded to the users advertise using ADV IND messages instead of

the more private ADV DIRECT IND.

3. Some devices, albeit not expected to do so, use their public Bluetooth addresses

in advertisements. This also enables tracking as well as identifying of the device

manufacturer.

4. Other devices implement poor address randomization by flipping some bits of the

address rendering them ineffective against tracking. This has also been identified in
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Table 5.2: A sample of devices with revealing names.

Name Type

LG LAS751M(27:5D) music streaming
JS00002074 digital pen
ihere key finder
spacestation battery/storage extension
Jabra PULSE Smart smartbulb
DEXCOMRX Glucose monitor
Clover Printer 0467 printer
Frances’s Band ea:9d LE smartband
Gear Fit (60ED) activity tracker
Lyve Home-00228 photo storage
Matthias-FUSE headset
Richelle’s Band b2:6a LE smartband
vivosmart #3891203273 activity tracker
KFDNX key fob
OTbeat heart rate monitor
Thermos-4653 Smart Thermos
POWERDRIVER-L10C3 smart power inverter

other studies of BLE devices [21].

5. A large number of devices advertise their names (Table 5.2), revealing sensitive in-

formation about them, the user, and the environment. Also, some of the device names

contain personal information or unique identifiers that may enable user tracking.

6. Some devices use a consistent Bluetooth address for long periods of time which

renders address randomization ineffective (Table 5.3). Examples include various

types of wristbands (Fitbit Flex, Forerunner 920, etc.), headsets, smartwatches (Ap-

ple Watch or Samsung Gear), etc. This has also been identified by Das et al. [158],

where they analyzed the advertisements of BLE-equipped fitness trackers. Das et al.

found the fitness trackers constantly advertising with consistent (non-private) BLE

addresses. In our experiments, we observed that Flex and One kept the same address

for 37 days, so did One and Charge for 30 days.

7. Some devices accept connections from non-bonded devices. This allows access to

the services on the device including the unique manufacturer ID, for instance, which

allows for user tracking regardless of the device’s address. For example, we were
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Table 5.3: A sample of devices with consistent addresses for more than a day.

Name Type Days observed

One activity tracker 37
Flex activity tracker 37
Zip activity tracker 37
Surge activity tracker 36
Charge activity tracker 36
Forerunner 920 smartwatch 36
Basis Peak sleep tracker 25
MB Chronowing smartwatch 15
dotti pixel light 7
UP MOVE fitness tracker 2
GKChain laptop security 2
Gear S2 (0412) smartwatch 2
Crazyflie quadropter 1
Dropcam camera 1

able to connect to various devices and access data from them without any existing

trust relationship, such as various Fitbit devices (One, Zip Flex, Charge), Garmin

Vivosmart, digital pens, etc. It is worth noting that we connected to these devices

under controlled experimental settings, not in the wild. As a result, an external access

control mechanism is necessary to protect such devices.

The above observations indicate that the address randomization, part of the BLE spec-

ifications, fails to provide the promised privacy protection. Various developers and man-

ufacturers do not implement it properly; they rely on public Bluetooth addresses, apply

weak randomization, or keep a consistent address for a long time. On the other hand, even

if address randomization is properly implemented, other information in the advertisement

or in the device might contain unique information (device name or id) that allows for its

tracking.

Moreover, data accessed from an advertisement or the device (once connected) might

reveal sensitive information about the user or the environment. Through our data collection

campaign, we were able to detect different types of glucose monitors, wristbands, smart

watches, fitness trackers, sleep monitors, laptops, smartphones, laptop security locks, secu-

rity cameras, key trackers, headsets, etc. Knowing which type of glucose monitor the user
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Figure 5.2: Example deployments of BLE-Guardian.

is carrying or the type of physical security system s/he has installed could lead to serious

harm to the user. Finally, an adversary might use such advertisement data as side informa-

tion to infer more about the user’s behavior. For example, a temperature sensor constantly

reading 60 ◦F in winter would indicate a vacant property [159] which may invite in a thief.

5.5 BLE-Guardian

BLE-Guardian addresses the aforementioned privacy threats by allowing only au-

thorized clients to discover, scan, and connect to the user’s BLE-equipped device. Before

delving into the inner workings of BLE-Guardian, we first describe the system and threat

models.
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5.5.1 System and Threat Models

5.5.1.1 System Model

A typical BLE scenario involves two interacting entities: the client and the BLE-

equipped device. The BLE device broadcasts advertisements to make other nearby clients

aware of its presence along with the services/information it is offering. A client can then

connect to the device to access more services/information and control some of its attributes,

in which case it will be the BLE-device’s gateway to the outside world.

The user’s mobile device (e.g., smartphone or tablet) acts a gateway where BLE devices

are wearable (e.g., fitness trackers), or mHealth devices (e.g., Glucose monitor) (Fig. 5.2a).

In a home environment, the user’s access point, PC, or even mobile device, serves as a gate-

way for BLE devices that include smart appliances, webcams, physical security systems,

etc. Last but not least, a smart vehicle or the driver’s mobile device operate as gateways

(Fig. 5.2b) for the different BLE-equipped sensors in the vehicle, such as tire pressure.2 An

interested reader could consult the work of Rouf et al. [160] for a discussion on the security

and privacy risks of a wireless tire pressure sensor.

BLE-Guardian leverages the existence of gateways near the BLE-equipped devices

to fend off unauthorized clients scanning and connecting to them. It comprises both hard-

ware and software components. The hardware component is an external Bluetooth radio

that connects physically to the gateway, while the software component is an accompanying

application that runs on the gateway. BLE-Guardian requires another software compo-

nent to run on the clients willing to discover and connect to the user’s BLE devices. The

user, be it an owner of the BLE-equipped device or a client, interacts with BLE-Guardian

through its software components.

5.5.1.2 Threat Model

BLE-Guardian only trusts the gateway on which it is running. Otherwise, the entire
2https://my-fobo.com/Product/FOBOTIRE
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operation of BLE-Guardian will be compromised and will fail to provide the promised

privacy provisions. BLE-Guardian achieves privacy protection at the device level, so

that if it authorizes a client to access the BLE device, all applications running on that

device will have same access privileges. This security/privacy dimension is orthogonal to

BLE-Guardian and has been addressed elsewhere [161]. It also requires the user’s BLE

device — the one to be protected — to comply with the BLE specifications.

BLE-Guardian protects a target BLE-equipped device against an adversary or an

unauthorized/unwanted device that sniffs the device’s advertisements, issues scan requests

and attempts to connect to the device. The adversary aims to achieve three objectives based

on the BLE devices that the user is deploying:

1. Profiling: The adversary aims to obtain an inventory of the user’s devices. Based

on this inventory, the adversary might learn the user’s health condition, preferences,

habits, etc.

2. Tracking: The adversary aims to monitor the user’s devices to track him/her over

time, especially by exploiting the consistent identifiers that the devices leak as we

observed in Section 5.4.

3. Harming: The adversary aims to access the user’s BLE device to learn more sen-

sitive information or even to control it. Both will have severe consequences for the

user, especially if a certain device is known to have some vulnerabilities that allow

remote unauthorized access [162].

This adversary can have varying passive and active capabilities, from curious individ-

uals scanning nearby devices (e.g., using a mobile app), to those with moderate technical

knowledge employing commercial sniffers, all the way to sophisticated adversaries with

software-defined radios.

A passive attacker is capable of sniffing all the communications over advertisement

channels including those that fail the CRC check. This includes all commercial Blue-

156



tooth devices and existing Bluetooth sniffers in the market, such as the Texas Instruments

CC2540 chip. The adversary might possess further capabilities by employing MIMO re-

ceiver that could recover the original signal from the jammed signal [163], especially in

stationary scenarios. We refer to this adversary as the strong passive attacker.

Furthermore, the adversary is capable of injecting traffic into any Bluetooth channel at

any given point of time, but will “play” within the bounds of the BLE specifications when

attempting communication with the BLE device. This is a reasonable assumption, as the

device will not otherwise respond to any communication. We refer to such an adversary as

the active attacker. On the other hand, the attacker might be able to transmit with higher

power than allowed by regulatory bodies, in which case we refer to as the strong active

attacker.

Thus, we have four classes of attackers referring to the combinations of their passive

and active capabilities as shown in the first column of Table 5.4.

Attacks, including jamming the channel completely, masquerading as fake devices to

trick the users to connect to them, or attacking the bonding process are orthogonal to our

work. Such attacks have been addressed by O’Connor and Reeves [164] and Ryan [165].

Finally, once BLE-Guardian enables the authorized client to connect to the BLE device,

it will not have any control over what follows later.

5.5.2 High-Level Overview

BLE-Guardian is a system the user can use out of the box; it only requires installing a

hardware component (an external Bluetooth radio) to the gateway and running an app on the

gateway to control and interface with the Bluetooth radio. Conceptually, BLE-Guardian

consists of device hiding and access control modules. The device hiding module ensures

that the BLE device is invisible to scanners in the area, while the access control module

ensures that only authorized clients are allowed to discover, scan, and connect to the BLE

device.
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Figure 5.3: The modules of BLE-Guardian and their underlying interactions.

Fig. 5.3 shows the high-level operation of BLE-Guardian from the moment a user

designates a BLE device to be protected all the way to enabling authorized client connection

to the protected device. The high-level operation of BLE-Guardian takes the following

sequence:

1. The user installs the hardware component along with the accompanying app on the

gateway.

2. The user runs the app, which scans for BLE devices nearby. The user can then choose

a device to hide.

3. The device hiding module of BLE-Guardian starts by learning the advertisement

pattern of the target BLE device along with that of the other devices in the area. The

device hiding module then applies reactive jamming to hide the device.

4. When a new client enters the area and wants to discover the user’s devices, it com-

municates with the access control module so that the user can either grant or reject

authorization.

5. If the user authorizes the client, the access control module advertises privately on

behalf of the BLE device to let the authorized client scan and connect to it.
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6. BLE-Guardian monitors if other unauthorized entities are attempting to connect

to the BLE device; in such a case, it blocks the connection and alerts the user.

5.5.3 Device Hiding

The hiding module is responsible for rendering the BLE device invisible to other scan-

ning devices. The hiding module jams the device’s advertisement session to achieve this in-

visibility. In particular, it targets three types of advertisements, ADV IND, ADV NONCONN IND,

and ADV SCAN IND of Table 5.1, which are periodic and leak more information about

the user as we indicated earlier.

Hiding the BLE device is, however, challenging for two reasons. The hiding module

must jam the BLE device precisely at the moment it is advertising. Also, it must not disrupt

the operation of other devices advertising in the same area.

5.5.3.1 Learning

The hiding module first learns the target BLE device’s advertising pattern before jam-

ming to hide its presence. The device’s advertisement pattern comprises the advertising

interval, advertising channel sequence, and the time to listen on the individual channels.

Fortunately, the latter two parameters are deterministic and can be observed directly, which

is not the case for the advertising interval. The BLE specification leaves it to the device to

determine the advertising pattern, so that there are 15 possible permutations of the channel

sequence.

As shown in Fig. 5.4, BLE-Guardian follows a process of elimination to identify the

advertising sequence of the BLE device using a single antenna. In the worst case, it will

take three advertising intervals to learn the entire advertising sequence of a BLE-equipped

device. This corresponds to the longest path of Fig. 5.4, where BLE-Guardian monitors

each channel for the maximum advertising interval of 10.24 seconds. At the same time,

it would have identified the time the BLE device spends listening on each channel before
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Figure 5.4: The learning algorithm followed by BLE-Guardian. The blue boxes refer to
monitoring each channel either for a short period of time (less than 10ms) or for a longer
period of 10.24 seconds. Depending on whether an advertisement is detected on the channel
some sequences are eliminated till a sequence is decided on (gray boxes).

switching to the next channel.

While observing the advertising sequence of the BLE device, the hiding module keeps

track of the interval separating the consecutive advertisements sessions. The hiding module

observes a set of inter-advertisement intervals, ti = adv + p, where adv is the actual

advertisement interval as set by the device and p is a random variable representing the

random delay such that p ∈ unif(0, 10ms). Also, BLE-Guardian will perform the

same process for all advertising devices in the same area at the same time to learn their

advertising parameters as well. Learning other devices’ advertising at the same time will

be useful as evident below.

5.5.3.2 Actuation

After identifying the advertising pattern, the hiding module needs to just detect the start

of the advertisement session. Then, it jams the advertising channels according to their
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advertisement sequence. There is a caveat, though; the hiding module needs to detect the

advertisement before it can be decoded. Otherwise, the rest of the jamming will not be

effective.

From monitoring earlier advertisements, the hiding module obtains a set of ti’s of dif-

ferent devices’ advertisements, including the BLE device to be hidden. The advertisement

interval will be adv = ti−p for each observed inter-advertisement interval. Each observed

advertisement will be used to improve the estimation of the advertisement interval. For N

observed intervals, we have:

adv =
1

N

N∑
i=1

(ti − p) =
1

N

N∑
i=1

ti −
1

N

N∑
i=1

p. (5.1)

Let P = 1
N

∑N
i=1 p, the random variable P is drawn from the distribution 1

N
p ∗ 1

N
p ∗

1
N
p . . . 1

N
p. Since the single random delays p are i.i.d., the mean of P will be equal to 5

(mean of the original distribution of p) and the standard deviation of
√∑N

i=1 σp = 5

N
√

(3)
.

The hiding module estimates adv as:

adv′ = E(adv) =
1

N

N∑
i=1

ti − 5. (5.2)

The standard deviation of P will get lower as N increases; it defines the error in

the estimate of adv as defined by Eq. (5.1). Given previous N observed advertisements

from the BLE device, the hiding module can predict the next advertisement to happen at

advnext ∈ [advlow, advhigh] such that:

advlow = TN + adv′ − e (5.3)

advhigh = TN + adv′ + e+ 10, (5.4)

where TN is the time of the last advertisement and e is the 90th percentile value of P
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Figure 5.5: RSSI at channel 37 when a device is advertising at a distance of 1m at the
interval of 960ms.

(symmetric around the mean) which approaches 0 as N increases (so that advhigh− advlow

approaches 10ms).

Starting from the last observed TN of the target BLE device, the advertisement hiding

module computes advlow and advhigh. Also, it enumerates the list of other devices expected

to advertise within the interval [advlow, advhigh].

The device hiding module always listens on the first channel of the advertising sequence

of the BLE device to be hidden. During the interval [advlow, advhigh], the device hiding

module will sample the RSSI of the channel very frequently (every 25µs). When the re-

ceived RSSI is −90dBm or higher (the peaks of Fig. 5.5a), BLE-Guardian determines

that there is a transmission currently starting to take place. The device hiding module moves

immediately to jam the channel on which it is listening. Since the transmission of a typical

advertisement message takes 380µs to finish [166], jamming the channel will prevent the

message from being decoded by other receivers.

At this point, two situations might arise; (1) the target BLE device is the only device

expected to be advertising at this time instant, or (2) some other device is expected to

be advertising in the same interval. In the first situation, the target BLE device is most
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probably responsible for this transmission as part of its advertisement session. The device

hiding module repeats the same process (sample RSSI and jam) over the rest of the channels

to confirm that transmissions follow the device’s advertising pattern. Fig. 5.5b shows an

example interval where there is only one device advertising.

In the second situation, the device hiding module cannot readily ascertain whether the

transmission belongs to the target BLE device or not. This will take place when the ob-

served transmission sequence matches the advertising sequence of the target BLE device

and some other device that is expected to advertise at the same interval. To resolve this

uncertainty, immediately after jamming the advertising message (400µs after commencing

jamming on the channel), the device hiding module lifts jamming and sends scan requests

for devices other than the target device. The device hiding module then listens on the chan-

nel to observe if a scan response is received. Despite its advertisement being jammed, any

device will still be listening on and will respond to scan requests. Depending on whether a

scan response is received or not, BLE-Guardian can associate the transmission with the

correct device, be it the target BLE device or some other device.

The device hiding module then adjusts the next monitoring interval according to the

observed transmissions in the current intervals as follows:

advlow = min(TN) + adv′ − e (5.5)

advhigh = max(tN) + adv′ + e+ 10, (5.6)

where TN represents the instants of the transmissions possibly matching the advertisement

of the target BLE device in the current monitoring interval.

Note that we do not utilize the power level per se, or any physical-layer indicator, to

indicate whether the same device is transmitting or not, as it is sensitive to the environment

and the distance between BLE-Guardian and the target BLE device. To actually perform

the jamming, the device hiding module continuously transmits at the maximum power for

163



the specified interval.

BLE-Guardian may jam the advertisements of non-target devices which might dis-

rupt their operation, which we referred to as the second situation above. Nevertheless,

because of the random delay introduced by the device before each advertisement, the afore-

mentioned “collision” events become unlikely. In Appendix 5.7.1, we use renewal theory

to show that the expected number of another device’s advertisements within the expected

advertising interval of the target BLE-equipped device will always be less than 1. This

applies when BLE-Guardian protects a single BLE-equipped device. Our evaluation in

Section 5.6 confirms this observation.

5.5.4 Access control

So far, BLE-Guardian has hidden the target BLE device, so neither authorized nor

unauthorized entities have access to the device. It is the access control module that autho-

rizes client devices and enables their access to the target BLE device.

5.5.4.1 Device Authorization

BLE-Guardian utilizes Bluetooth classic (BR/EDR) as an out-of-band (OOB) chan-

nel to authorize end-user devices intending to scan and access the target BLE device.

BLE-Guardian runs in server mode on the gateway waiting for incoming connections,

while the “authenticating” device will have BLE-Guardian running in client mode to

initiate connections and ask for authorization. The choice of Bluetooth Classic as an OOB

channel is natural; most end-user devices (such as smartphones) are dual-mode, support-

ing both BLE and Bluetooth classic. Moreover, Bluetooth classic already contains pairing

and authentication procedures, eliminating the need for a dedicated authentication proto-

col. Last but not least, a Bluetooth-equipped end-user device will be able to communi-

cate simultaneously over Bluetooth classic and BLE so that it can communicate with both

BLE-Guardian and the target BLE device.
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Figure 5.6: The sequence diagram of the access control module. Thin green lines from
the target device designate the advertisements. Thick green lines from BLE-Guardian
designate the jamming signal.

Fig. 5.6 depicts the interactions between BLE-Guardian and a client device when

they connect for the first time. BLE-Guardian will be listening on the gateway over

a secure RFCOMM channel with a specified UUID. The gateway, however, will not be

running in discoverable mode so as to prevent others from tracking the user. It is up to

the party interested in authenticating itself to obtain the Bluetooth address of the user’s

gateway as well as the UUID of the authentication service.

Once the client end-user device obtains the Bluetooth address and UUID, it can initiate

a secure connection to the gateway. This will trigger a pairing process to take place if

both devices are not already paired. BLE-Guardian relies on Bluetooth pairing process
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to secure the connections between the gateway and the client device. For future sessions,

an already paired client device can connect to BLE-Guardian without the need for any

user involvement. The owner can also revoke the privileges of any client device by simply

un-pairing it.

5.5.4.2 Connection Enabling

The device hiding module of BLE-Guardian jams the entire advertising sequence

of the target BLE device, including the period it listens for incoming scan or connection

requests so that it cannot decode them. Therefore, both unauthorized and authorized clients

cannot access the target BLE device (the case of an adversary using high transmission

power will be discussed later). Fig. 5.6 shows the procedure that BLE-Guardian follows

to enable only the authorized clients access to the target BLE device.

Immediately after the last advertisement of a single advertisement session, when the

target device is the only one expected to be advertising, the access control module lifts

the jamming. This ensures that the BLE device will not be advertising until the next

adverting session, and it is currently listening for scan and connection requests. Then,

BLE-Guardian advertises on behalf of the target BLE device on the same channel. The

advertisement message contains only the headers and the address of the previously hidden

device. It is stripped of explicit identifiers, hence leaking only limited information about

the BLE device for a brief period.

At the same time, BLE-Guardian will communicate to the authenticated client app

the address of the BLE device and a secret set of connection parameters over the OOB

channel. BLE-Guardian’s app running on the client device will use the address and the

parameters to initiate a connection to the BLE device. The connection initiation procedure

is handled by the Bluetooth radio of the client device, which scans for the advertisement

with the provided address. After receiving such an advertisement, it sends a connection

request after which both devices will be connected.
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The above procedure will not break the way BLE scans and connections take place.

It doesn’t matter from which radio the actual advertisement was coming. From the per-

spective of the BLE device, it will receive a scan or connection request while waiting for

one. On the other hand, the client device will receive an advertisement message while also

expecting one.

5.5.5 Security and Privacy Features

BLE-Guardian addresses the tracking and profiling threats discussed in Section 5.5.1.2.

It hides the advertisements, which are used as the main means to track users. It only exposes

the advertisement for a very short period when enabling others to connect. Furthermore,

BLE-Guardian greatly reduces the profiling threat by hiding the contents of the adver-

tisement which leak the device name, type, and other attributes.

A strong passive attacker [163] can still detect the “hidden” peripheral by recovering the

real advertisement, so that it can connect to the BLE-equipped device. Distinguishing le-

gitimate connection requests based on the Bluetooth address of the initiator is not effective;

an attacker could easily spoof its Bluetooth address to impersonate the authorized client.

Therefore, BLE-Guardian uses the connection parameters of the connection request to

distinguish fraudulent connection requests from legitimate ones. Legitimate connection re-

quests contain the set of “secret” connection parameters communicated earlier to the client.

The probability of the attacker matching a particular set of connection parameters is

very low. According to the specification, there are more than 3 million possible combi-

nations of values for the connection, slave, and timeout intervals. If the connection is

established based on a fraudulent connection request, then BLE-Guardian prevents the

connection from taking place. The connection request already contains the hopping se-

quence initiation. BLE-Guardian hops to the next channel and jams it so as to prevent

the BLE device from receiving any message from the connected unauthorized device. The

BLE device drops the connection since it receives no message on the channel.
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Table 5.4: The protections offered by BLE-Guardian.

Adversary Profiling
Protection

Tracking
Protection

Access
Control User Alert

Passive & Active 4 4 4 4

Strong Passive & Active – 4 4 4

Passive & Strong Active 4 4 – 4

Strong Passive & Strong
Active – 4 – 4

An attacker might abuse this connection process by constantly attempting to connect

to the BLE device, thus depriving the authorized client of access. This will always be

possible, even when BLE-Guardian is not deployed. BLE-Guardian observes such

a situation from a high frequency of fraudulent connection requests and alerts the user of

this threat. As it will be evident in Section 5.6, an active attacker injecting messages to the

advertising channel cannot affect the operations of BLE-Guardian.

A strong active adversary, however, can override BLE-Guardian’s jamming and

issue connection requests that the BLE-equipped device will decode. While jamming,

BLE-Guardian runs in transmit mode and can not monitor the channel for incoming

requests. Nevertheless, it detects that the BLE device is missing its advertising intervals,

signifying that it was connected without BLE-Guardian’s approval. In such a case,

BLE-Guardian alerts the user of the existence of a strong adversary nearby.

Finally, Table 5.4 summarizes BLE-Guardian’s capabilities when faced with the var-

ious adversaries described in Section 5.5.1.2.

5.6 Implementation and Evaluation

We now present a prototype of BLE-Guardian along with its evaluation.

5.6.1 Implementation

We implement BLE-Guardian using Ubertooth One radio which is an open platform

for Bluetooth research and development. It can connect to any host that supports USB
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Figure 5.7: The deployment scenario for BLE-Guardian for a mobile user (left) and the
main UI (right).

such as Raspberry Pi, Samsung’s Artik-10, PC, smartphone (Fig. 5.7 (left)), etc. Since

communication over USB incurs latency in the order of a few milliseconds, we implement

most of BLE-Guardian’s functionalities inside Ubertooth One’s firmware to maintain

real-time operation.

We also implement the software component of BLE-Guardian on Linux and An-

droid. Fig. 5.7 (right) shows a screenshot of the BLE-Guardian app while running on

Android in server mode where the user can choose the device to protect and control its

authorized client list. The app communicates the Bluetooth address of the chosen device to

the Ubertooth One radio.

BLE-Guardian requires running in privileged mode on the client device in order

to be able to connect with modified connection parameters. This is easily achievable

on Linux-based clients, but might not be the case for mobile devices. In other words,

BLE-Guardian, while running in client mode on Android, requires root access to be able
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to issue connection requests with a set of specified connection requests. Also, BLE-Guardian

(if running in privileged mode on the client device) can modify content of the advertise-

ment message from the BLE scanner to the user-level application to reconstruct the original

hidden advertisement. As such, user-level applications (on the trusted client) will receive

the original advertisement, which does not break their functionality.

Maintaining BLE-Guardian is easy; it only requires updating the application running

on the gateway which usually takes place without the user’s intervention (e.g., mobile app

updates). This application interacts with the hardware component and applies updates, if

necessary, through pushing firmware updates, a process which is also transparent to the

users.

5.6.2 Evaluation

To evaluate BLE-Guardian, we utilize Broadcom BCM20702A0 and Nordic nRF51822

chips as the target BLE devices (both transmitting at 4dBm) and the TI CC2540 dongle as

the sniffer node. CC2540 is able to decode the messages on the three advertisement chan-

nels, even on those that fail the CRC check. We evaluate using Nordic and Broadcom

chips instead of actual BLE products, because these products (such as Fitbits) are mostly

powered by the same (Nordic and Broadcom) BLE chips.

5.6.2.1 Impact of Distance

Due to transmission power limitations (battery or regulatory bodies’ constraints), there

would always be a small area around the target BLE device where BLE-Guardian will

not be able to enact the privacy protection. The transmission from the target BLE device

covers the jamming signal of BLE-Guardian. Nevertheless, as the sniffer moves farther

away from the target BLE device (in any direction), the jamming signal will cover the

advertisements, provided that the BLE device and BLE-Guardian are not very far apart.

So, there is a cutoff distance beyond which the adversary cannot scan, and connect to the
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Figure 5.8: The cutoff distance as a function of the distance between BLE-Guardian and
the target device.

target BLE device.

We study the cutoff distance of a target BLE device (advertising at 20ms) at different

distances separating it from BLE-Guardian (between 0 and 3m). At each position, we

move the sniffer node (either a CC2540 dongle or Samsung Galaxy S5) around the BLE

device, and record the farthest distance at which it received any advertisement from the

BLE device as to study the hidden terminal effect. Furthermore, we repeat each experiment

twice, the first with BLE-Guardian clear of any obstacles and the second with it inside

a backpack.

It is evident from Fig. 5.8 that the cutoff distance increases as BLE-Guardian and

the BLE device become farther apart. In all of the cases, however, the cutoff distance is

less than 1m, even when BLE-Guardian and the BLE device are 3m apart. This also

applies when BLE-Guardian is inside the backpack which should reduce the effective-

ness of its jamming. Sniffing with a smartphone has a shorter cutoff distance because the

smartphone’s BLE chip filters out advertisements failing the CRC check so that they are

not reported to the OS.

The cutoff distance is enough to thwart tracking and profiling in several scenarios, es-

pecially when the user is moving (walking, jogging, biking or driving). In these scenarios,
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BLE-Guardian is not farther than 1m from the target BLE device. An adversary has to

get very close to the user, even if BLE-Guardian is covered in a coat or bag, to be able

to scan or connect to the BLE device.

In other cases, the user has to keep his/her BLE devices (to be protected) close to

BLE-Guardian in order to get the best privacy protection possible. Our experiments

showed that BLE-Guardian and the target BLE device must be separated by a maximum

distance of 5m so that an attacker beyond the cutoff distance will not be able to decode the

advertisements. If BLE-Guardian and target BLE device are farther apart than this,

then BLE-Guardian’s jamming will not be able to cover the entire transmission area

of the BLE device. In all circumstances, however, BLE-Guardian detects unauthorized

connections and alerts the user accordingly.

5.6.2.2 Evaluation Setup

Beyond the cutoff distance, BLE-Guardian is capable of hiding the advertisements

and controlling access to any target BLE device regardless of its advertising frequency. This

protection, however, comes at a cost. In what follows, we evaluate BLE-Guardian’s im-

pact on other innocuous devices, the advertising channel, and the gateway. In the evaluation

scenarios, we deploy the target BLE devices at distance of 1.5m from BLE-Guardian,

and the sniffer between BLE-Guardian and the BLE devices (at a distance of 0.5m from

BLE-Guardian). We evaluate BLE-Guardian when protecting up to 10 target devices

with the following advertising intervals: 10.24 sec (highest possible), 5 sec, 2.5 sec, 1.25

sec, 960ms, 625ms, 312.5ms, 100ms, 40ms, and 20ms (lowest possible). Note that evalu-

ating with 10 target devices constitutes an extreme scenario; according to our dataset, the

average user is bonded to less than 4 devices, which would indicate the number of target

devices (i.e. those to be protected).
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Figure 5.9: Portion of jammed advertisements of an innocuous BLE device when
BLE-Guardian is running and protecting up to 10 advertisers.

5.6.2.3 Advertisement Hiding

Impact on Other Devices: We first evaluate the number of advertisements, not belong-

ing to the target BLE device(s), BLE-Guardian will jam (Fig. 5.9). While accidentally

jamming other devices doesn’t affect the privacy properties of BLE-Guardian, it hinders

the services they offer to other users. In particular, we study four scenarios with an innocu-

ous (not the target) BLE device advertising at 20ms, 960ms, 5s, and 10.24s, and a varying

number (between 1 and 10) of target devices, which BLE-Guardian protects. Each sub-

set of target devices of size N (≤ 10) contains the top N advertising intervals from the list

of Section 5.6.2.2.

There are two takeaways from Fig. 5.9. First, BLE-Guardian has little effect on

other devices when it protects a relatively low number of devices, or when the advertising

interval of the target BLE device(s) is larger than 500ms; in these cases, BLE-Guardian

will be less active (bars corresponding to less than 6 target devices in the four plots of

Fig. 5.9). Second, BLE-Guardian has a higher effect on the innocuous device with
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Figure 5.10: The delay of an authorized client in successfully connecting to the target
device when BLE-Guardian is running.

higher advertising frequencies as observed from top-left plot of Fig. 5.9, especially when

protecting a large number of devices (including those with 20 ms advertising interval).

In the latter case, BLE-Guardian is active for at least half of the time, representing

the worst-case scenario of BLE-Guardian’s overhead where up to 50% of other devices’

advertisements are jammed. However, since the advertisement frequency is high, even with

a relatively high rate of jammed advertisements, the user’s experience will not be drastically

affected. On the other hand, when the target BLE device advertises at lower frequencies,

the effect on the advertising channels and consequently other devices will be limited as

evident from the rest of the plots of Fig. 5.9.

Impact on Authorized Access: To enable authorized connections, BLE-Guardian

advertises on the behalf of the target BLE device only when it is confident that the target de-

vice is listening for connections. BLE-Guardian skips some advertising sessions which

will introduce delays to authorized clients attempting connections as reported in Fig. 5.10.

174



37 38 39

Channel

0

5

10

#
 u

n
n

e
c
c
e

s
s
a

ry
 j
a

m
s

Adv=20ms

37 38 39

Channel

0

5

10
Adv=960ms

37 38 39

Channel

0

5

10
Adv=10240ms

Figure 5.11: Unnecessary jamming instances with two advertisers at 20ms.

In this scenario, an authorized client is attempting connection to a target device advertising

at 20ms, 960 ms, 5s, and 10.24 s, with an additional number of protected devices varying

from 1 to 10. In the majority of the cases, the client has to wait for less than a second before

successfully receiving an advertisement and issuing a connection. The only exception is

the worst case consisting of BLE-Guardian protecting all of the 10 target devices (in-

cluding devices advertising at intervals less than 100ms). The client might have to wait for

up to multiple advertisement intervals before being able to connect. This is evident from

the rightmost bar in each of the four plots of Fig. 5.10.

Impact on Advertising Channels Last but not least, we evaluate BLE-Guardian’s

impact on the advertising channel, which, if high, might leak information about the exis-

tence of sensitive device(s). In this experiment, BLE-Guardian protects a single target

device advertising at 20ms (the lowest possible), 960ms, and 10240ms (the highest possi-

ble). At the same time, two innocuous devices advertise at 20ms, in addition to other 15

devices not under our control advertising at different frequencies (minimum advertisement

interval 30ms). In this scenario, BLE-Guardian will be active all the time since the

two innocuous advertisers will force it to enlarge its monitoring interval between 20–30ms

(while the advertising interval of the target device is only 20ms).
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Fig. 5.11 shows the distribution of the number of unnecessary jammed instances in

each interval when the target BLE device is expected to advertise. It is evident that in more

than 50% of the intervals when BLE-Guardian is active, the number of unnecessary

jamming instances events is 0, indicating a low overhead on the channel. When the target

BLE device advertises at a lower frequency, BLE-Guardian is less active (middle and

left plots of Fig. 5.11). These plots match the real-world scenarios observed from our data-

collection campaign. Most commercial BLE devices advertise at relatively low frequencies

(at intervals between 1 and 10s).

Finally, we evaluate the accuracy of predicting the next advertisement event of the tar-

get BLE devices. In all the experiments (including all scenarios), BLE-Guardian can

predict the device’s advertisements, i.e., the target BLE device advertised in the interval

it is expected to. BLE-Guardian is also able to jam all the advertisements of the BLE

device over the three advertising channels. This indicates that an attacker cannot modify

the behavior of BLE-Guardian by injecting traffic into the advertising channels.

5.6.2.4 Energy Overhead

BLE-Guardian incurs no energy overhead for both the target BLE devices and the

authorized clients. Nevertheless, energy overhead is a concern when BLE-Guardian is

attached to a smartphone. We measured the energy overhead of BLE-Guardian using

a Monsoon power monitor while running on a Samsung Galaxy S4 with Android 4.4.2.

In the idle case, BLE-Guardian consumes 1370mW on average. The average power

consumption rises to 1860mW while transmitting and 1654mW while receiving as shown

in Fig. 5.12a. Fortunately, BLE-Guardian doesn’t sense the channel or perform jam-

ming frequently. Fig. 5.12b shows the average energy overhead when BLE-Guardian

is protecting the set of ten devices (we described earlier) at different advertising intervals.

In the worst case of 10 target BLE devices, including a couple advertising at the highest

frequency possible, the energy overhead is limited to 16% regardless of whether there are
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Figure 5.12: The energy overhead of BLE-Guardian running on Samsung Galaxy S4.

other advertisers in the area. In other cases, when there are less target devices and/or target

devices are advertising at a lower frequency, the energy overhead is negligible.

5.7 Conclusion

BLE is emerging as the most prominent and promising communication protocol be-

tween different IoT devices. It, however, accompanies a set of privacy risks. An adversary

can track, profile, and even harm the user through BLE-equipped devices that constantly

advertise their presence. Existing solutions are impractical as they require modifications to

the BLE-equipped devices, thereby making their deployment difficult. In this chapter, we

presented a device-agnostic system, called BLE-Guardian, which addresses the users’

privacy risks brought by BLE-equipped devices. BLE-Guardian doesn’t require any

modification to the protocol and can be implemented with off-the-shelf Bluetooth hard-

ware. We implemented BLE-Guardian using Ubertooth One radio and Android, and

evaluated its effectiveness in protecting the users’ privacy. In future, we plan to explore
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the data plane by analyzing and reducing the data leaks from BLE devices to unauthorized

clients. We further plan to extend BLE-Guardian to other wireless technologies tailored

for IoT devices such as Zigbee.

Appendix A: A More Detailed BLE Primer

The BLE (Bluetooth 4.0 and newer) protocol has been developed by the Bluetooth

SIG to support low power devices such as sensors, fitness trackers, health monitors, etc.

Currently, more than 75,000 devices in the market support this protocol along with most of

more capable devices such as smartphones, tablet, PCs, and recently access points [18].

5.7.1 BLE States

A BLE device assumes a central or peripheral role. A peripheral device is typically

the one with lower capabilities and with the information to advertise. The central device,

typically an AP, PC, or smartphone, scans for advertisements and initiates connections.

Fig. 5.13 shows the states (and transitions between them) of a BLE device during its life-
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time. A device can be in the standby, scanning, advertising, initiating, or connection state,

depending on its role.

• Standby state: is the low power state of the device with both the transmitter and

the receiver switched off. The BLE device wakes up to advertise or scan and then

connect, depending on its role.

• Advertising: The device with information to offer, typically the one with fewer

capabilities, will periodically broadcast advertisements to make other devices aware

of its presence.

• Scanning: The device, typically with more capabilities, looking for information or

services will run in the scanning state to listen for advertisements from other devices.

If the device wants more information on others nearby, it issues scan requests in

response to the advertisement message.

• Initiating: To connect to the advertising device, the initiating device sends a con-

nection request message after receiving an advertisement.

• Connection: When the advertising device responds to the connection request from

the initiating device, both will move to the connection state where they exchange

messages at a negotiated time schedule and frequency-hopping sequence.

The BLE specification places a higher burden on the central device. It is responsible for

initiating the connection and thus has to keep scanning until it receives an advertisement.

Conversely, the peripheral (prior to its connection) sleeps for most of the time and only

wakes up to advertise, which helps save its limited energy.

Appendix B: Fingerprinting Threat

The device analyzer dataset from Cambridge University [167] includes detailed smart-

phone usage statistics from more than 23K Android users. We had access to the data of
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Figure 5.14: Percentage of users having a certain anonymity set size.

700 users spanning at least six months. It contains Bluetooth scan records; each record

comprises the hashed Bluetooth address, the device’s type (part of the advertisement), and

whether the device is bonded to the user.

We analyzed these Bluetooth scan records to study the fingerprinting potential of Blue-

tooth devices about the user. We assume that if a user is bonded to a Bluetooth device, then

s/he owns the device. We focused on the device types which are part of the advertisements

and do not change when address randomization is employed. The question we aim to an-

swer is whether the combination of the types of devices the user owns, regardless of any

other information, is enough to identify the user. Device types include robots, peripherals,

phones, PCs, wearables, cameras, toys, etc.

For each user, we enumerated the combination of device types (such as robots, peripher-

als, phones, PCs, wearables, cameras, toys, etc) s/he owns based on the scanned Bluetooth

devices that s/he is bonded to. We then enumerated the number of users who share the

same combination of device types. We found that around 20% of the users are uniquely

identifiable just by the device type. Also, 45% of the users have an anonymity set of size

less than 10.

This indicates that the types of devices users carry and interact with are enough to
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identify them, thus acting as their “quasi-identifiers”. They enable user tracking and fin-

gerprinting regardless of whether the Bluetooth address is randomized or not.

Appendix C: Analysis of Device Hiding

BLE-Guardian may jam the advertisements of non-target devices which might dis-

rupt their operation, which we refer to as the second situation in Section 5.5.3.2. Never-

theless, because of the random delay introduced by the device before each advertisement,

the aforementioned “collision” events become unlikely. In what follows, we show that the

expected number of another device’s advertisements within the expected advertising inter-

val of the target BLE-equipped device will always be less than 1, when BLE-Guardian

protects a single BLE-equipped device.

One could view the advertising process of a single BLE-equipped device as a renewal

process [168], where each event corresponds to an advertising session. The inter-arrival

times, Xi, are nothing but the inter-advertising intervals defined as i.i.d. random variables

such that Xi ∼ unif(adv, adv + 10). The nth advertisement time Tn =
∑n

i=1Xi has

the distribution defined by the n-fold convolution of distribution of Xi. As n increases, the

probability distribution of the n-th advertisement spreads over a larger time interval defined

as A = [n.adv, n.(adv + 10)].

The device hiding module attempts jamming at an interval of width 10ms, as specified

before. If this jamming interval falls within the expected advertising interval of some other

device, A, then the second situation of Section 5.5.3.2 might occur. Nevertheless, as n

increases the length of intervalA increases and thus the expected number of advertisements,

from a single device within 10ms should be less than 1. We show below how the expected

number of advertisements in a 10ms interval drops between n = 1 and n = 2. We consider

m(t), the expected number of events up to time t, defined as FX(t)+
∫ t
0
m(t−x)fX(x) dx,

where fS(s) is the probability distribution ofXi which is equal to unif(adv, adv+10) and
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FX(t) is the cumulative distribution function given as:

FX(t) =


0 t < adv

t−adv
10

adv ≤ t ≤ adv + 10

1 t > adv.

(5.7)

During the first advertising interval, t ∈ [adv, adv + 10], the expected number of ad-

vertisements is t−adv
10

+
∫ t
adv

m(t − x) dx after substituting FX(t) and fX(x) with their

corresponding expressions. After performing a substitution of variable of y = t − x, and

since m(t) = 0 for t < adv, then m(t) = t−adv
10

. So, if the expected advertising interval of

the device hiding module overlaps with the first advertising interval of another advertising

device, the expected number of events,m(adv+10)−m(adv), will be 1, which is intuitive.

The second advertisement will take place at the intervalB = [2.adv, 2.(adv+10)], and

we use a similar procedure to derive the expressions form(t) for t ∈ [2.adv, 2.adv+10] and

t ∈ [2.adv, 2.(adv + 10)]. If the expected advertising interval of the device hiding module

overlaps with interval, B, then the expected number of advertisements m(t + 10) −m(t)

will drop to 1
2
. The same trend will follow for the subsequent advertising intervals; the

expected number of another device’s advertisements within the expected advertising of the

target BLE device will always be less than 1. Our evaluation in Section 5.6. confirms this

observation.

Finally, even if another device, with the same advertising parameters, starts advertis-

ing with the target BLE device at the same time, their advertising events will eventually

diverge. After N advertisements from both devices, the distribution of TaN+1 − TbN+1,

the difference in time between the N + 1 advertising instants of both devices will be a

random variable with mean 0 but with σ = 2.N. 5√
3
. As N increases, the standard deviation

increases, which in turn decreases the probability of both advertising events taking place

within 10ms. The 10ms-advertising interval is the length of interval that the device hiding
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module expects the target BLE device to advertise.
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CHAPTER VI

Conclusions

In this thesis, we study the location privacy threats in our electronic age. We focus

on three representative scenarios: location-aware smartphone apps, indoor location-based

services, and wearable devices in the context of the Internet of Things. In each of these

scenarios, we highlight the shortcomings of state of the art in location privacy protection

and propose four systems to address those deficiencies. We summarize the contributions of

this thesis and present some future research directions.

6.1 Thesis Contributions

This thesis presents four systems, LP-Guardian, LP-Doctor, PR-LBS and BLE-Guardian

that provide practical, theoretically sound, and usable location privacy protection.

Privacy Guarantees

All four proposed systems deliver privacy guarantees to thwart the tracking, profiling,

and fingerprinting threats. LP-Guardian ensures location indistinguishability at both the

low and high levels. At the low level, it limits apps’ capability from continuously record-

ing the user’s mobility. Both LP-Guardian and LP-Doctor ensure that an adversary

cannot identify the user’s location within a specified area, eliminating the profiling threats.

On the higher level, both guarantee the user’s mobility pattern is indistinguishable from a
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general set of individuals, thus thwarting the fingerprinting threat. PR-LBS employs differ-

ential privacy guarantees to prevent an indoor service provider from continuously tracking

and profiling the shoppers. Last but not least, BLE-Guardian uses jamming to com-

pletely prevent an eavesdropper from tracking and profiling the bearer of BLE-equipped

devices.

Practicality

The privacy guarantees that the proposed systems of this thesis provide do not come at

the cost of practicality. LP-Guardian requires only modifying the Android’s frameworks

which can be achieved through rooting the Android device but requires no modification to

the apps or APIs. LP-Doctor further improves the practicality of LP-Guardian by

running completely in the user-level, without any further modifications. PR-LBS is com-

patible with the different modes of indoor localization. It acts as a broker between the

localization engine and the service provider in the case of infrastructure-based localiza-

tion. Also, it is fully compatible with the BLE-based localization in indoor environments

through a user-level solution. BLE-Guardian protects the privacy of BLE users without

introducing any modifications to the BLE-equipped devices or gateways, through the user

of commercial-of-the-shelf hardware only.

Usability

Finally, the four proposed systems are user-centric as usability is a core design di-

mension mind. LP-Guardian and especially LP-Doctor minimize the frequency of

prompting the users for privacy-related decisions. PR-LBS goes one step further by defin-

ing privacy profiles that allow the users to specify their privacy–utility trade-off at the boot-

strapping stage. PR-LBS makes privacy-related decisions on behalf of the users and re-

quires no run-time interactions from them. Similarly, using BLE-Guardian, the user has

only to specify the BLE-equipped device to be hidden. Beyond that, BLE-Guardian
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provides all the privacy protection with little burden on the users

6.2 Future Research Directions

Here, we discuss future research directions that can be built on top of this thesis.

6.2.1 Usable Privacy

On the shorter term, we will investigate the deployment challenges facing location pri-

vacy enhancing technologies. Proposed system might be effective, practical and usable, but

will have little impact if users do not employ them on a daily basis. We plan to address these

deployment challenges on two fronts. First, we will research mechanisms to increase the

awareness of the privacy threats to regular users. Second, we will conduct field studies of

some location privacy enhancing technologies to understand the psychological acceptabil-

ity of these systems in real-world settings. In this study, we will also investigate whether a

favorable privacy vs. utility trade-off be achieved in practice with different apps, users and

scenarios.

On the longer term, a significant challenge related to the mass proliferation of intercon-

nected devices is that of usable security and privacy. Traditional notice and choice mech-

anisms fail to protect users’ privacy. Users are increasingly frustrated and overwhelmed

with complex privacy policies, unreachable privacy settings, and a multitude of emerging

standards. We will explore utilizing Conversational Privacy Bots (PriBots) [169] as a new

way of delivering notice and choice through a two-way dialogue between the user and a

chatbot. PriBots will improve on state-of-the-art by offering users a more intuitive interface

to inquire about their privacy settings, thus allowing them to control their privacy. In addi-

tion to investigating the potential applications of PriBots, We will undertake the different

challenges of the underlying system including the user interface (UI) and natural language

processing (NLP) aspects. Pribots will be part of a more general direction related to au-

tomated privacy. We will explore mechanisms that make privacy decisions on the users’
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behalf that meet their needs while reducing unnecessary user interactions.

6.2.2 Data Privacy beyond Location

In the growing computing paradigm of IoT, privacy threats will present unique chal-

lenges, mainly due to device and service provider heterogeneity as well as the lack of a

unified privacy and security control design language and primitives. A vast and diverse

set of manufacturers, developers, and service providers will dominate the IoT ecosystem,

giving rise to different device architectures, communication technologies and paradigms,

data types, and data sources and sinks.

Reducing the privacy threats from exposing specific user’s data lies at the core of any

privacy preserving mechanism. Quantifying the privacy risks in a particular setting is fea-

sible because the data type and structure are well-defined. Device- and service provider-

heterogeneity implies that we have to rethink the problem of privacy protection as the data

source, sink, syntax, and semantics will vary from one device to the other. The current

approaches to per-application privacy protection will not apply in for future device deploy-

ments.

Quantifying the privacy threats is only the first step toward building the privacy preserv-

ing mechanisms of the future. While privacy protection is a must, it should not come at the

expense of the potential benefits of the IoT. Towards this, we plan to develop privacy threat

models that could be either semantics-aware or semantics-agnostic to quantify the privacy

threats from the ubiquitous data. These models will inform the design and implementation

of online and practical privacy-preserving mechanisms that balance between user privacy

and data utility. For example, security techniques such homomorphic encryption, privacy

guarantees such differential and conditional privacy, information disclosure-based privacy

metrics, and anonymization strategies could be employed and adapted to enable the design

of such mechanisms.
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6.2.3 Privacy through Service Provider Diversity

Device- and SP-heterogeneity presents an opportunity for privacy protection. We pro-

pose a novel concept of privacy, which is privacy through provider diversity. This approach

relies on dispersing queries over multiple equivalent non-colluding service providers to

minimize the amount of information each provider has for a single user. In this realm, we

seek two orthogonal types of diversity: subquery diversity and inter-query diversity. In

subquery diversity, the main query is partitioned into a set of subqueries, each subquery

is evaluated at an independent service provider, and results are combined on the client

side. While in inter-query diversity, our approach uses different providers across queries to

minimize the amount of information a single provider has about a user.

In the current mobile ecosystem, it is usual to see multiple service providers competing

in the same market. Different independent service providers offer similar services. For

example, there are multiple navigation services for mobile devices (Google Maps, Bing

Maps, MapQuest Mobile), localized search engines (Google, Bing, Yahoo), restaurant rec-

ommendation services (Google Places, Yelp, Urbanspoon), multiple online shopping ser-

vices (Amazon, eBay), and news services (CNN, NYTimes). These providers offer an

acceptable quality of service, so it is feasible to use them interchangeably. The primary

motivation behind the idea of privacy through diversity comes from the concept of data

minimization [170]. Data minimization is a good provider security practice because it

limits the amount of information that can be leaked about the user in the case of a secu-

rity breach. Our approach enforces this practice through query partitioning and dispersion

among several non-colluding service providers.

Sub-query Diversity We exploit subquery diversity by exploiting the observation that

a user’s access to the service provider iss a join query, and that similar providers of the

same service can be viewed as replicated databases. In distributed databases, a join query

combines results from several tables based on a certain condition from each table, and the
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final result is an intersection of the corresponding results. We adopt the same model in the

mobile setting; we first identify different subqueries of a request to the service provider,

decide to which provider each subquery will be sent, and finally transform this subquery

into a format the service provider understands.

Navigation is an obvious example; a user might not be willing to expose her entire trip

plan to a particular route planner. Suppose, for simplicity; this user is requesting a route

from A to B that passes through C. She can ask one navigation provider for a path between

A and C and another for a path between C and B, then combine the two routes on the client

device. That way, neither providers can independently infer the user’s entire path. Another

example is a user looking for a restaurant in her vicinity that serves a particular type of food

and satisfies a price range. A provider with these two pieces of information might be able

to associate the user with some group affiliation and socio-economic status. Alternatively,

a user might send the first provider a subquery specifying restaurants serving some food

and send the other provider another subquery about restaurants satisfying the price range

of interest. Then, the user can choose from the intersection of the answers to the query.

Inter-query Diversity In some situations, we can exploit an orthogonal type of diver-

sity, namely inter-query diversity. In inter-query diversity, each query is sent to a different

service provider depending on the current query context. This aims to minimize side infor-

mation leakage, as a service provider poses a privacy threat when it can associate different

contexts with the same user. For example, a user using the same search engine to look for

nearby local business, do health-related searches, follow political and religious news and

topics, and shop for specific merchandise will leak sensitive information about her. More

importantly, by combining this information, the search engine may be able to identify the

user uniquely.

Diversifying access to service providers will reduce the amount and utility of the infor-

mation available to each provider. If a user opts to send queries to a different provider de-
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pending on the context, then each provider will associate the user with a minimum number

of contexts, preferably one, thus reducing the probability of identifying the user. Building

on the above example, if a user wants to find a nearby local business, she can use Yellow

Pages at home and Yelp at work, to prevent either provider from deducing the identifying

<home,work> location pair. Moreover, a user can diversify her queries, depending on

their contents, among similar providers such as following political news on CNN and reli-

gious news on NYTimes or doing health-related online shopping on Amazon and clothes

shopping on eBay.

Both diversity mechanisms can be combined to provide a higher level of privacy, es-

pecially in location-based services. If for an LBS, there are a sufficient number of service

providers, then they can be grouped into sets. Each set of providers can be used at a differ-

ent PoI to achieve inter-query diversity. Furthermore, the user can split her query among the

providers within the set to achieve subquery diversity. Such a technique prevents a service

provider from both detecting the user’s sensitive PoIs and inferring her personal interests,

thus protecting her location and query privacy.

In all, we propose a novel approach to protecting the user’s privacy in the mobile setting.

This method constitutes a client-side framework which does not rely on any third-party in-

frastructure or cooperation between multiple users. The proposed framework scales better

than existing approaches and is resistant to mistrust issues and selfish behaviors. This

framework protects both the users’ privacy and the service providers’ liability by reducing

the utility of location information they store if they are leaked or hijacked.

190



Bibliography

[1] Kassem Fawaz and Kang G. Shin. Location privacy protection for smartphone users.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, pages 239–250, New York, NY, USA, 2014. ACM.

[2] Kassem Fawaz, Huan Feng, and Kang G. Shin. Anatomization and protection of mo-
bile apps’ location privacy threats. In 24th USENIX Security Symposium (USENIX
Security 15), pages 753–768, Washington, D.C., August 2015. USENIX Associa-
tion.

[3] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. Privacy vs. reward in in-
door location-based services. Proceedings on Privacy Enhancing Technologies,
2016(4):102–122, 2016.

[4] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting privacy of ble device
users. In 25th USENIX Security Symposium (USENIX Security 16), pages 1205–
1221, Austin, TX, August 2016. USENIX Association.

[5] Ericsson. Ericsson Mobility Report. https://www.ericsson.com/res/docs/2015/ericsson-
mobility-report-june-2015.pdf, June 2015.

[6] D. Evans. The internet of things. http://www.cisco.com/web/about/ac79/docs
/innov/IoT IBSG 0411FINAL.pdf, April 2011.

[7] Andrew J. Blumberg and Peter Eckersley. On Locational Privacy, and How to Avoid
Losing it Forever. https://www.eff.org/files/eff-locational-privacy.pdf, August 2009.

[8] Jie Xiong and Kyle Jamieson. Arraytrack: A fine-grained indoor location system.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdi’13, pages 71–84, Berkeley, CA, USA, 2013. USENIX Asso-
ciation.

[9] Elizabeth Dwoskin and Greg Bensinger. Tracking technology sheds light
on shopper habits mall operators, retailers monitor patterns and actions.
http://online.wsj.com/news/articles
/SB10001424052702303332904579230401030827722, December 2013.

[10] Souvik Sen, Jeongkeun Lee, Kyu-Han Kim, and Paul Congdon. Avoiding multipath
to revive inbuilding wifi localization. In Proceeding of MobiSys ’13, pages 249–262,
2013.

191



[11] Bluetooth SIG. Specification of the Bluetooth System. Version 4.2, December 2014.
https://www.bluetooth.org/en-us/specification/adopted-specifications.

[12] Gagan Luthra. Embedded controllers for the Internet of Things.
http://www.edn.com/design/sensors/4440576/Embedded-controllers-for-the-
Internet-of-Things/, Oct 2015.

[13] VICTORIA TURK. The internet of things has a language problem.
http://motherboard.vice.com/read/the-internet-of-things-has-a-language-problem,
Jul. 2014. Accessed: 03-02-2016.

[14] Andrii Degeler. Bluetooth low energy: Security issues and how to over-
come them. https://stanfy.com/blog/bluetooth-low-energy-security-issues-and-how-
to-overcome-them/, Jun. 2015. Accessed: 02-02-2016.

[15] Leslie Hart. Telit Acquires Wireless Communications Assets
to Boost Capabilities in Low-Power Internet of Things Market).
http://www.businesswire.com/news/home/20160113005310/en/, Jan. 2016. Ac-
cessed: 01-02-2016.

[16] Digi-Key Technical Content. Cypress PSoC 4 BLE (Bluetooth Low En-
ergy). http://www.digikey.com/en/articles/techzone/2015/dec/cypress-psoc-4-ble-
bluetooth-low-energy, Dec. 2015. Accessed: 12-01-2016.

[17] Pushek Madaan. IoT for the smarter home.
http://www.ecnmag.com/article/2015/05/iot-smarter-home, May. 2015. Accessed:
11-01-2016.

[18] Aruba Networks. Data Sheet: Aruba 320 series access points.
http://www.arubanetworks.com/assets/ds/DS AP320Series.pdf.

[19] Scott Thurm and Yukari Iwatani Kane. Your Apps Are Watching You.
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html,
December 2010.

[20] Philippe Golle and Kurt Partridge. On the anonymity of home/work location pairs.
5538:390–397, 2009. 10.1007/978-3-642-01516-8 26.

[21] Scott Lester. The Emergence of Bluetooth Low Energy.
http://www.contextis.com/resources/blog/emergence-bluetooth-low-energy/, May
2015.

[22] Jan Henrik Ziegeldorf, Oscar Garcia Morchon, and Klaus Wehrle. Privacy in the
internet of things: threats andchallenges. Security and Communication Networks,
7(12):2728–2742, 2014.

[23] Oliver Jan, Alan J. Horowitz, and Zhong-Ren Peng. Using global positioning sys-
tem data to understand variations in path choice. Transportation Research Record:
Journal of the Transportation Research Board, 1725(2000):37–44, 2000.

192



[24] T. Dalenius. Finding a needle in a haystack-or identifying anonymous census record.
Journal of Official Statistics, 2(3):329–336, 1986.

[25] John Krumm. Inference attacks on location tracks. In In Proceedings of the Fifth In-
ternational Conference on Pervasive Computing (Pervasive), volume 4480 of LNCS,
pages 127–143. Springer-Verlag, 2007.

[26] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and Vincent D.
Blondel. Unique in the crowd: The privacy bounds of human mobility. Sci. Rep., 3,
Mar 2013.

[27] C. Bettini, X. Wang, and S. Jajodia. Protecting privacy against location-based per-
sonal identification. Secure Data Management, pages 185–199, 2005.

[28] Hui Zang and Jean Bolot. Anonymization of location data does not work: a large-
scale measurement study. In Proceedings of MobiCom ’11, pages 145–156, New
York, NY, USA, 2011. ACM.

[29] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10, pages
735–746, New York, NY, USA, 2010. ACM.

[30] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone: Uncertainty
for anonymity in moving objects databases. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, ICDE ’08, pages 376–385, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[31] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the publication of
trajectories. In Proceedings of the The Ninth International Conference on Mobile
Data Management, MDM ’08, pages 65–72, Washington, DC, USA, 2008. IEEE
Computer Society.

[32] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private sequential
data publication via variable-length n-grams. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS ’12, pages 638–649, New
York, NY, USA, 2012. ACM.

[33] Joseph Meyerowitz and Romit Roy Choudhury. Hiding stars with fireworks: location
privacy through camouflage. In Proceedings of MobiCom ’09, pages 345–356, New
York, NY, USA, 2009. ACM.

[34] B. Gedik and Ling Liu. Protecting location privacy with personalized k-anonymity:
Architecture and algorithms. IEEE TMC, 7(1):1–18, January 2008.

[35] B. Palanisamy and Ling Liu. Mobimix: Protecting location privacy with mix-zones
over road networks. In Proceedings of ICDE ’11, pages 494 –505, april 2011.

193



[36] J. Freudiger, M.H. Manshaei, J.-P. Hubaux, and D.C. Parkes. Non-cooperative loca-
tion privacy. IEEE TDSC, 10(2):84–98, March 2013.

[37] K.P.N. Puttaswamy, Shiyuan Wang, T. Steinbauer, D. Agrawal, A. El Abbadi,
C. Kruegel, and B.Y. Zhao. Preserving location privacy in geosocial applications.
IEEE TMC, 13(1):159–173, Jan 2014.

[38] Saikat Guha, Mudit Jain, and Venkata N. Padmanabhan. Koi: A location-privacy
platform for smartphone apps. In Proceedings of NSDI’12, pages 14–14, Berkeley,
CA, USA, 2012. USENIX Association.

[39] Shahriyar Amini, Janne Lindqvist, Jason Hong, Jialiu Lin, Eran Toch, and Norman
Sadeh. Caché: Caching location-enhanced content to improve user privacy. In Pro-
ceedings of MobiSys ’11, pages 197–210, New York, NY, USA, 2011. ACM.

[40] Kristopher Micinski, Philip Phelps, and Jeffrey S. Foster. An Empirical Study of
Location Truncation on Android. In Mobile Security Technologies (MoST ’13), San
Francisco, CA, May 2013.

[41] Andrew Leonard. Wearable Honeypot. PhD thesis, Worcester Polytechnic Institute,
2015.

[42] Ping Wang. Bluetooth low energy-privacy enhancement for advertisement. 2014.

[43] Federal Trade Commission. Internet of Things, Privacy & Security in a Con-
nected World. https://www.ftc.gov/system/files/documents/reports/federal-
trade-commission-staff-report-november-2013-workshop-entitled-internet-things-
privacy/150127iotrpt.pdf, Jan. 2015.

[44] John Krumm. Realistic driving trips for location privacy. In Proceedings of Perva-
sive ’09, pages 25–41, Berlin, Heidelberg, 2009. Springer-Verlag.

[45] Aniket Pingley, Nan Zhang, Xinwen Fu, Hyeong-Ah Choi, S. Subramaniam, and
Wei Zhao. Protection of query privacy for continuous location based services. In
INFOCOM’11. IEEE, April 2011.

[46] John Krumm. Inference attacks on location tracks. In Proceedings of PERVASIVE
’07, pages 127–143. Springer-Verlag, 2007.

[47] R. Shokri, G. Theodorakopoulos, J. Le Boudec, and J. Hubaux. Quantifying location
privacy. In IEEE Symposium on Security and Privacy (SP),2011, pages 247 –262,
May 2011.

[48] Joseph Meyerowitz and Romit Roy Choudhury. Realtime location privacy via mo-
bility prediction: Creating confusion at crossroads. In HotMobile, 2009.

[49] Hua Lu, Christian S. Jensen, and Man L. Yiu. PAD: privacy-area aware, dummy-
based location privacy in mobile services. In Proceedings of MobiDE ’08, pages
16–23, New York, NY, USA, 2008. ACM.

194



[50] Tun-Hao You, Wen-Chih Peng, and Wang-Chien Lee. Protecting moving trajectories
with dummies. In Mobile Data Management, 2007 International Conference on,
pages 278 –282, may 2007.

[51] Reza Shokri, George Theodorakopoulos, George Danezis, Jean-Pierre Hubaux, and
Jean-Yves Le Boudec. Quantifying location privacy: the case of sporadic location
exposure. In Proceedings of PETS ’11, pages 57–76, Berlin, Heidelberg, 2011.
Springer-Verlag.

[52] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mock-
droid: Trading privacy for application functionality on smartphones. In Proceedings
of HotMobile ’11, pages 49–54, New York, NY, USA, 2011. ACM.

[53] PlaceMask. Placemask location privacy, May 2014.

[54] Mingyan Li, Krishna Sampigethaya, Leping Huang, and Radha Poovendran. Swing
& swap: User-centric approaches towards maximizing location privacy. In Proceed-
ings of WPES ’06, pages 19–28, 2006.

[55] Marco Gruteser and Dirk Grunwald. Enhancing location privacy in wireless LAN
through disposable interface identifiers: A quantitative analysis. Mob. Netw. Appl.,
10(3):315–325, June 2005.

[56] Tao Jiang, Helen J. Wang, and Yih-Chun Hu. Preserving location privacy in wireless
LANs. In Proceedings of MobiSys ’07, pages 246–257, 2007.

[57] Apple - privacy built in. https://www.apple.com/privacy/
privacy-built-in/.

[58] Microsoft Trustworthy Computing. Location based services and privacy.
http://www.microsoft.com/en-us/download/confirmation.aspx?id=3250, January
2011.

[59] Kathryn Zickuhr. Location-based services.
http://pewinternet.org/Reports/2013/Location.aspx, September 2013.

[60] Kassem Fawaz and Kang G. Shin. Location privacy protection for smartphone users.
In Proceedings of CCS ’14, pages 239–250, New York, NY, USA, 2014. ACM.

[61] Huiqing Fu, Yulong Yang, Nileema Shingte, Janne Lindqvist, and Marco Gruteser.
A field study of run-time location access disclosures on android smartphones. In
Proceedings of USEC 2014.

[62] Drew Fisher, Leah Dorner, and David Wagner. Short paper: Location privacy: User
behavior in the field. In Proceedings of SPSM ’12, pages 51–56, 2012.

[63] John Krumm. A survey of computational location privacy. Personal Ubiquitous
Computing, 13(6):391–399, August 2009.

195



[64] James Ball. Angry birds and ’leaky’ phone apps targeted by NSA and GCHQ for
user data. http://www.theguardian.com
/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-personal-data, January
2014.

[65] K.G. Shin, Xiaoen Ju, Zhigang Chen, and Xin Hu. Privacy protection for users of
location-based services. Wireless Communications, IEEE, 19(1):30 –39, february
2012.

[66] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and Catus-
cia Palamidessi. Geo-indistinguishability: Differential privacy for location-based
systems. In Proceedings of CCS ’13, pages 901–914, New York, NY, USA, 2013.
ACM.

[67] rovo89. Xposed module repository, May 2014.

[68] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of OSDI
’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[69] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Investi-
gating user privacy in android ad libraries. In Mobile Security Technologies (MoST
’12), May 2012.

[70] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe expo-
sure analysis of mobile in-app advertisements. In Proceedings of WISEC ’12, pages
101–112, New York, NY, USA, 2012. ACM.

[71] Theodore Book, Adam Pridgen, and Dan S. Wallach. Longitudinal analysis of an-
droid ad library permissions. In Mobile Security Technologies (MoST ’13), San
Francisco, CA, May 2013.

[72] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid:
Privilege separation for applications and advertisers in android. In Proceedings of
ASIACCS ’12, pages 71–72, New York, NY, USA, 2012. ACM.

[73] Justin Brickell and Vitaly Shmatikov. The cost of privacy: Destruction of data-
mining utility in anonymized data publishing. In Proceedings of KDD ’08, pages
70–78, New York, NY, USA, 2008. ACM.

[74] U.S. Census Bureau. US Census Bureau 2010 Census Interactive Population Map.
http://www.census.gov/2010census/popmap/, 2014.

[75] Nevena Vratonjic, Kvin Huguenin, Vincent Bindschaedler, and Jean-Pierre Hubaux.
How others compromise your location privacy: The case of shared public ips at
hotspots. In Emiliano Cristofaro and Matthew Wright, editors, Privacy Enhancing
Technologies, volume 7981 of Lecture Notes in Computer Science, pages 123–142.
Springer Berlin Heidelberg, 2013.

196



[76] A. Bamis and A. Savvides. Lightweight extraction of frequent spatio-temporal activ-
ities from GPS traces. In Proceedings of RTSS ’10, pages 281 –291. IEEE, December
2010.

[77] Rubin Xu, Hassen Saı̈di, and Ross Anderson. Aurasium: Practical policy enforce-
ment for android applications. In Proceedings of USENIX Security ’12, pages 27–27,
Berkeley, CA, USA, 2012. USENIX Association.
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