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ABSTRACT

Mobile platforms commonly support an event-driven model of concurrent pro-

gramming. In an event-driven system, the flow of a program is controlled by asyn-

chronous events. Events processed sequentially in the same thread can be logically

concurrent to each other, as they may not be ordered by any programmer-specified

ordering operations. The lack of programmer-defined order between multiple non-

commutative concurrent events — that is, only certain execution orders between

these events yields correct results — leads to a unique class of concurrency bugs

in event-driven programs.

Unfortunately, the state of the art for detecting concurrency errors in event-driven

systems is significantly weaker than that in traditional thread-based systems. This

thesis aims to fill this important gap by developing models, algorithms and tools that

aid programmers to analyze and diagnose event-driven programs to improve software

reliability. Specifically, this thesis presents the following three techniques to detect

concurrency errors in event-driven programs:

1. A new causality model for event-driven program is defined to infer ordering

invariants between events across different executions.

2. An efficient and scalable single-pass algorithm to identify concurrent asyn-

chronous events that may lead to concurrency errors.

3. A statistical commutativity analysis to find likely non-commutative events that

contains concurrency bugs.

The techniques we have developed are broadly applicable to many event-driven plat-

forms. To translate our techniques into real-world impact, we develop a set of tools

xii



in the context of Android to help build up a more robust and reliable platform for

event-driven computing.
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CHAPTER 1

Introduction

Mobile computers are increasingly important computing platforms in the last few

years. It is estimated that 10 billion mobile devices are in use globally in 2016,

and there would be over 268 billion downloads of mobile applications by 2017 [8].

For many people, phones and tablets are the primary platform for interacting with

computer systems and the data they store. Mainstream mobile devices have a rich

array of sensors and user input modalities, which provide large asynchronicity to the

input stream of mobile applications. As a result, event-driven programming models

arise naturally among popular mobile platforms, as they are better in handling I/O

concurrency [20]. Figure 1.1 illustrates the design of an event-driven programming

model, where events are generated from event sources (such as user actions, sensor

inputs, or messages from other programs or threads) and sent to an event dispatcher,

and the dispatcher asynchronously processes these events and executes corresponding

event handlers. The flow of the program is determined by the execution of the event

handlers.

Compared to a traditional thread-based model, an event-driven model uses asyn-

chronous execution instead of concurrent execution to manage I/O concurrency, makes

it easy to integrate input from diverse sources such as touchscreens, accelerometers,

microphones, and other sensors to write interactive applications. Programmers are

responsible to implement their own event handlers to process specific types of events,

and do not need to worry about the orchestration of the program flow or handling

1



Dispatcher

Event

Handler 1

Event

Handler 2

Event

Handler n
…

Event

Source

Events

Figure 1.1: Illustration of an Event-Driven Model [27]

synchronization between threads.

1.1 Software Reliability in Event-Driven Programs

Although event-driven programming models provide an ease for programmers to

write interactive applications, the wide use of asynchrony in these models leads to

a unique type of pernicious concurrency bugs that is hard to find and debug. As

events could be generated from multiple concurrent sources, they may not be ordered

by any programmer-specified ordering operations, and thus the order of execution of

certain event handlers becomes nondeterministic, even if these events are processed

sequentially in a single thread. In other words, many events are logically concurrent

to each other in an event-driven program, which may lead to concurrency errors. Fig-

ure 1.2 shows a concurrency bug between two logically concurrent events in Google’s

MyTracks app. In this example, the onResume and onDestroy events are generated in

response to user actions, and onServiceConnected is generated from another thread in

the program. Since they are generated concurrently, their processing order is non-

deterministic, and a buggy result would manifest when onDestroy is processed before

onServiceConnected.

2



onResume() {
    bind(TrackRecordingService);
}

onServiceConnected() {
    // Start recording a new track
    Track track = new Track();
    providerUtils.updateTrack(track);
}

onDestroy() {
    providerUtils = null;
}

RPC

onBind() {
    send(onServiceConnected, 0);
}

MyTracks

(Looper Thread)

TrackRecordingService

(Regular Thread for IPC)

(a)

onResume() {
    bind(TrackRecordingService);
}

onServiceConnected() {
    // Start recording a new track
    Track track = new Track();
    providerUtils.updateTrack(track);
}

onDestroy() {
    providerUtils = null;
}

MyTracks

(Looper Thread)

TrackRecordingService

(Regular Thread for IPC)

RPC

onBind() {
    send(onServiceConnected, 0);
}

Exception thrown!

(b)

Figure 1.2: A concurrency bug between the onServiceConnected and onDestroy events in

Google’s MyTracks app. (a) A correct execution. (b) An incorrect execution occurs

when onServiceConnected and onDestroy are processed in the reversed order.

Such concurrency bugs between asynchronous events, just like any other concur-

rency errors, are hard to find and reproduce, so being able to identify these concur-

rency bugs can help programmers to improve software reliability. Unfortunately, most

existing tools for finding concurrency errors focus on detecting data races (conflict-

ing memory accesses between different threads without proper synchronization) in

thread-based programs, and are not applicable to event-driven programs. For exam-

ple, dynamic data race detectors such as FastTrack [28] cannot find race conditions

between asynchronous events that are processed in one thread, and usually assume a

bounded number of concurrent tasks, which is also not true in event-driven programs.

As event-driven program developers become a dominant population in software pro-

gramming, it is imminent to develop new algorithms and tools to help developers

deliver reliable software.

3



1.2 Challenges in Detecting Concurrency Bugs for

Event-Driven Programs

Asynchrony differs event-driven programming models from conventional thread-

based models, and brings new challenges in developing new program analyses to

find concurrency bugs. This section summarizes the challenges we encountered and

addressed in this dissertation.

Inferring Event Ordering Invariants. In event-driven programming models,

events generated from concurrent sources are processed in a nondeterministic or-

der. However, a shared memory event-driven system with no ordering guarantee for

events generated by the same source would result in a “state explosion” problem for

both software programming and verification [22]. To reduce the complexity of event-

driven programming, mainstream event-driven platforms, including Android, iOS and

HTML5, guarantee partial order of events from the same event source. For example,

the HTML5 specification regulates the event loop to process all tasks from the same

task source in a timely order [63], and Android also implements a first-in-first-out

manner of processing events [3], so in Figure 1.2, onDestroy always comes after onRe-

sume. With the partial-order guarantees provided by the runtime systems, it is much

easier for programmers to reason about the behavior of their applications. Program-

mers also rely on such guarantees to orchestrate multiple events to perform certain

tasks.

Therefore, understanding the ordering invariants between asynchronous events in

an execution is an important step to identify concurrency bugs in an event-driven

program, since these bugs could not exist between ordered events. Conventional

data race detectors [14, 34, 55, 28] takes a similar approach in finding data races in

thread-based programs: a data race is redefined as a pair of unordered conflicting

memory accesses with respect to the conventional causality model for a thread-based

program [14, 34]. Unfortunately, naively applying these tools for event-driven systems

works poorly, because they implicitly assume that events handled in one thread are

4



Local ThreadRemote Thread

invoke(A)

wait(A)

begin(A)

end(A)

begin(B)

end(B)

invoke(B)

wait(B)

Synchronous Call

(a)

Asynchronous Call

Local ThreadRemote Thread

invoke(A)
begin(A)

end(A)

begin(B)

end(B)

invoke(B)

(b)

Figure 1.3: Synchronous versus asynchronous executions.

ordered by the program order. Thus, a causality model that accounts for the unique

causal relation in a event-driven system, and a race detector based on it has been

lacking.

Efficiency and Scalability. We observe that inferring the happens-before relation

for an event-driven program is fundamentally harder than that for thread-based pro-

gram. A thread-based program consists of synchronous calls, and the happens-before

relation is defined by pairs of synchronization operations (signal-wait, release-acquire,

fork-joins) that operate on common handles (thread IDs and synchronization vari-

ables). As can be seen in Figure 1.3a, the ordering invariant “A happens before B”

can be trivially inferred by deriving the logical times of begin and wait operations

from the times of its immediate causal predecessors (invoke and end operations)

through the common handles (A and B) they operate on. Past research [28] has

developed efficient algorithms to maintain logical times and happens-before relation

between memory accesses to identify data races, based on the fact that there are

usually a bounded number of concurrent threads and synchronization handles in a

thread-based program.

In an event-driven program consisting of asynchronous events, however, it is more
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challenging to infer ordering invariants between two events, such as A and B in

Figure 1.3b. Since there is no explicit program handle to relate them, it is hard to

identify the immediate causal predecessors of B among past events. A naive approach,

as presented in related work [54, 57, 44, 15], is to build a happens-before graph of all

events and synchronization operations, and iteratively traverse this graph for every

event. Apparently, this approach is not efficient and scalable, especially as the graph

size grows with the program execution.

Another challenge in designing a scalable algorithm for inferring ordering invari-

ants for an event-driven program is keeping track of logical times of events such that it

scales in terms of performance and space with the program execution length. Unlike a

thread-based program that executes only dozens of threads, an event-driven program

may execute hundreds to thousands of events every minute. Since the times of past

events cannot be simply discarded as they will be used to compute the logical time of

their future succeeding events, it is important to identify events that have no future

immediate causal successors and reclaim their metadata to achieve good scalability.

Identifying Non-Commutative Events. Past research [41] has showed that most

non-deadlock concurrency bugs in thread-based programs are either atomicity viola-

tions (i.e., the programmer-intended serializability among certain operations could be

violated during execution) or order violations (the programmer-intended execution or-

der among two operations is not enforced during execution). Most concurrency bug

detectors for thread-based programs focus on finding data races, as data races are

good indicators of these two types of concurrency bugs. However, since events from

the same event queue are processed non-preemptively by a single looper thread, they

are atomic with respect to each other. As a result, there are no atomicity violation

within a event, and most data races are in commutative events and thus harmless,

where two events are commutative if they produce correct results irrespective to

their execution order. Figure 1.2 shows two non-commutative events, onServiceCon-

nected and onDestroy, in Google’s MyTracks app, and they constitute a concurrency

bug because they are not causally ordered. Figure 1.4 shows another example of

6



non-commutative events, onUpdateResults and onPause, in the same app, which also

constitute a concurrency bug. To find concurrency bugs in event-driven programs,

we need to distinguish harmful data races in non-commutative events from harmless

races in commutative events, which is a new and challenging problem.

onResume() {
    dataHub = getInstance();
    dataHub.registerListener(this);
}

onUpdateResults() {
    dataHub.isRecordingSelected();
}

onPause() {
    dataHub = null;
}

MyTracks
(Looper Thread)

(a)

onResume() {
    dataHub = getInstance();
    dataHub.registerListener(this);
}

onUpdateResults() {
    dataHub.isRecordingSelected();
}

onPause() {
    dataHub = null;
}

MyTracks
(Looper Thread)

Exception thrown!

(b)

Figure 1.4: Two non-commutative events in Google’s MyTracks app constitute a con-

currency bug. The arrows show the causal order between onResume and onUpdateRe-

sults. (a) A correct execution where onResume and onUpdateResults are not interleaved

with onPause. (b) An incorrect execution occurs when onPause is executed between

onResume and onUpdateResults.

1.3 Thesis Statement

Despite the high popularity of event-driven programming models, tools for detecting

concurrency bugs due to asynchrony for event-driven programming models is still lack-

ing. This dissertation aims to fill this important gap by developing a causality model

and an efficient and scalable algorithm to infer ordering invariants for asynchronous

events, and a new commutativity analysis for asynchronous events to identify concur-

rency bugs in event-driven programs.
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1.4 Contributions of and Organization

We have developed techniques to help programmers to find concurrency bugs in

event-driven applications. The techniques we have developed are broadly applicable

many event-driven platforms. To translate our techniques into real-world impact, we

have implemented and evaluated a set of tools in the context of Android to help build

up a more robust and reliable platform for event-driven computing.

In Chapter 3, we present the first causality model for event-driven programs that

infers the happens-before relation between asynchronous events. A unique aspect of

this model is that it accounts for the happens-before relation that are enforced by

mainstream event-driven runtime systems, for example, the first-in-first-out order of

event processing. In addition, our causality model also accounts for the happens-

before relation due to conventional synchronization operations, so it is useful in any

runtime system that is a mixture of both thread-based and event-based models. We

also present a specialization of our causality model for Android to show that our

causality model is adequate for real-world applications. We implement the first data

race detector for Android based on our new causality model and show that our new

model could find real concurrency bugs in popular open-source Android applications.

In Chapter 4, we develop the AsyncClock algorithm to efficiently infer the

happens-before order between asynchronous events based on the causality model pre-

sented in Chapter 3. Since the logical time of a newly created event is derived from

the times of its causally preceding events in the past, we introduce a new primitive

called AsyncClock to keep track of these causal predecessors in a succinct data

structure, and design an efficient non-iterative algorithm to infer its logical time. We

also design optimizations to efficiently identify events whose metadata is no longer

needed for driving the logical times of its causal successors in the future, and reclaim

their metadata to ensure scalability. The resulting algorithm enables us to build

the first single-pass, non-graph-based dynamic data race detector for event-driven

programs, with a performance comparable to the state-of-the-art dynamic data race

detectors for thread-based programs [28].
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onResume() {
    this.dataHub = getInstance();
}

Preconditions: ∅

Generated conditions:

    this.dataHub != null

onResume

S
0
: this.dataHub == null

onUpdateResults() {
    this.dataHub.isSelected();
}

Preconditions:

    this.dataHub != null

onUpdateResults

onPause() {
    this.dataHub = null;
}

Preconditions: ∅

Killed conditions:

    this.dataHub != null

onPause

S
1
: this.dataHub != null S

2
: this.ataHub == null

Figure 1.5: Illustration of non-commutative events in Google’s MyTracks app. The

arrows show the happens-before relation between onResume and onUpdateResults. Since

onUpdateResults and onPause are not ordered and onPause violates the “dataHub != null”

precondition of onUpdateResults, these two events are non-commutative.

Chapter 5 addresses the problem of false alarms due to benign data races in

event-driven programs. In an event-driven program, most data races defined under

our new causality model are harmless, because although different execution orders

of the racing events might result in different program states, both states follow pro-

grammer’s intention, and thus these races lead to no concurrency bug. On the other

hand, although invariant-based bug detectors have been successful for thread-based

programs [26], they have not been applied to find concurrency errors in event-driven

systems. Therefore, we combine the ideas of a happens-before race detector and an

invariant-based bug detector, and present a new technique — a statistical commu-

tativity analysis — to find non-commutative events in event-driven programs and

concurrency bugs within them. Figure 1.5 shows an example of non-commutative

events. Since onUpdateResults and onPause are not properly ordered, onPause could vi-

olate the “dataHub != null” condition, which is required by onUpdateResults, indicating

that these two events are non-commutative.

Finally, to translate our techniques into real-world impact, we developed a set of

tools in the context of the widely-used Android platform [1], to help build up a more

robust and reliable platform for event-driven computing.
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CHAPTER 2

Background and Related Work

In this chapter, we give an overview of the event-driven programming models, and

discuss closely related work, including concurrency bug detection in thread-based and

event-based programs in the literature.

2.1 Event-Driven Programming Models

We first describe introduce a simplified event-driven programming model that

captures the salient features of most mainstream event-driven platforms, and then

present how a real-world event-driven framework is designed in Android. We also

briefly discuss other programming models designed for event-driven systems.

2.1.1 Generic Model for Mobile Platforms

Mainstream event-driven platforms, such as Android, iOS, and HTML5 web apps,

provide event-driven runtime frameworks running on shared memory architectures.

An execution of an event-driven program developed in such a runtime framework

consists of several threads. A subset of these threads are designated to process events

from event queues. Depending on the relationships between these threads and the

event queues, they are referred to as looper threads or binder threads. The other

threads, which are referred to as worker threads, are spawned by application code

and behave like conventional threads. We describe each of these components below.
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Event. An event is a lightweight asynchronous task, which can be generated by the

operating system in response to an external input (e.g., user actions, sensor input,

network, or IPC from other applications), or by another worker thread or event in the

application through send operations. Every event is associated with a message when

they are generated, which provides information to determine what event handlers to

call and what are the arguments of the calls when the event is processed. In many

event-driven platforms, events may also be associated with other properties such as

time constraints that would affect the order they are processed. We will describe a

concrete realization in Section 2.1.2.

Event queue. Once an event is generated, it is not processed synchronously. In-

stead, it is placed in a specific event queue, and later processed by the event processing

thread. Generally, events from the same queue are processed in the order they are

queued, also known as the first-in-first-out (FIFO) order. Although certain event-

driven platforms provide mechanisms to change the processing order of events, FIFO

order is usually used as a tiebreaker for the sake of fairness among events.

Looper thread. An event queue is bound with a single thread, called the looper

thread (Figure 2.1a). Events that access shared data are usually placed in such event

queues. The role of a looper thread is to continuously check its event queues, select

and process one event at a time. A looper thread can have multiple queues, and

when it does, the event can be selected from any of its queues, so there is no ordering

guarantee between events from different queues, even if they are processed by the

same looper thread. To process the event, the looper thread first runs the event

dispatcher in the runtime framework to determine which event handlers to call and

what are the arguments of the calls based on the event’s message, and then call each

event handler with appropriate arguments. All events processed in a looper thread

are atomic with respect to each other. This is an important property of event-driven

systems that programmers often rely on. However, events processed in a looper thread

are not atomic with respect to other events in another looper thread.
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(a) Looper threads (b) Binder threads

Figure 2.1: Event queues can be bound with: (a) a single looper thread, which

guarantees FIFO order and atomicity between events, or (b) multiple binder threads,

which have no ordering and atomicity guarantee.

Event handler. When designing an application, the programmer may want to

change the states of multiple components in their application when certain events

are processed. This can be done by registering user-defined event handlers to the

system’s event dispatcher in advance, such that when these events are processed, the

event dispatcher can invoke multiple user-defined event handlers. Each event handler

invocation, although triggered by the same event, usually perform its own task for

distinct components in the application. The programmer may also unregister any

user-defined event handlers once they are no longer needed.

2.1.2 Case Study: Android’s Event-Driven Framework

In this section, we study a real-world implementation of an event-driven pro-

gramming model — Google’s Android OS [1]. Android’s framework is a mixture

of thread-based programming (with worker threads) and event-driven programming,

and it complicates the event-driven programming model by adding additional features

listed below to the generic model.

Event with priority tag. Android provides the ability to overrule FIFO order of

processing events by allowing programmers to assign the following priority tags to

events to change their queuing policy:
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• Delayed and AtTime events: In Android, an event may be associated with a time

constraint that determines when it can be processed. The time constraint can

be either a delay with respect to when the event is generated (Delayed) or an

absolute time (AtTime). An event can only be processed after its time constraint

has been met. When there are multiple events from the same queue whose time

constraints have been met, the looper thread would select an event according

to FIFO order. Other event-driven platforms, such as iOS and HTML5, also

support these types of events.

• AtFront events: Android allows programmers to place an event at the front of

an event queue through a special sendAtFront API. Such an event becomes last-

in-first-out (LIFO) and would be processed immediately after the looper thread

finish processing its current event. However, as pointed out by the Android’s

developer manual, these events “can easily starve the event queue, cause ordering

problems, or have other unexpected side-effects” [10], and thus they are rarely

used by programmers.

• Sync and Async events: To improve responsiveness of an application, program-

mers can specify events with asynchronous messages (Async) to precede ordi-

nary events (Sync) when a barrier message is placed in the event queue [11].

Although these events are processed out of order with respect to ordinary events,

all events with asynchronous messages are still processed in FIFO order.

Binder thread. Android supports event queues that are bound with multiple event

processing threads called binder threads [2] (Figure 2.1b). Each binder thread continu-

ously check its event queue and select one event to process at a time according to FIFO

order, just like what a looper thread does. However, although events from the same

queue are still selected in FIFO order, they are not atomically processed with respect

to each other, because these events may be processed by different threads in parallel.

Using event queues with binder threads is more efficient for exploiting concurrency

in multi-core processors, but extra synchronizations are required for accessing shared
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data. Android programmers usually use event queues with binder threads to han-

dle inter-process communications (IPCs) or process events that perform independent

tasks and access no shared data.

2.1.3 Other Programming Models

The generic event-driven programming model described in Section 2.1.1 captures

the essence of mainstream event-driven platforms. However, there are other event-

driven programming models developed for programming device drivers and service

protocols in distributed systems. P [22] is a domain-specific language to write asyn-

chronous event-driven code, and P# [21] is an asynchronous programming language

that integrates P into C#. Both P and P# represent event-driven programs as state

machines, and programs written in these languages can be fully verified using model

checking. However, it is not easy to represent interactive event-driven applications

as state machines, as mobile applications usually have complex component structures

and lead to state explosion. Therefore, their techniques cannot be easily applied to

mobile systems like Android.

2.2 Data Race Detection for Thread-Based Programs

Many studies have been done in the literature to detect data races in thread-based

programs, either statically [25, 62], or dynamically based on locksets [18, 58], causality

models [14, 34, 28, 24, 53], or hybrid techniques [55, 50, 64]. This section reviews

various dynamic techniques based on causality models, as these techniques are most

closely related to our work.

Data Races

Conventionally, a data race is defined as a pair of memory access to the same

location, at least one of them is a write, and they are not properly synchronized. A

thread-based program with data races can yield different program states in different
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executions, even with the same program input. Therefore, most modern programming

languages assume a data-race-free-0 memory model [13] and provide no semantic

guarantee for programs containing data races.

Causality Model and Happens-Before Race Detection

A causality model, or Lamport’s happens-before model [39], defines a partial order

relation, called happens-before relation (≺), over all operations in a dynamic execu-

tion. The causality model used by prior happens-before data race detectors [14, 34,

55, 28] employs the following causality rules:

Program order: Two operations executed in the same thread are ordered.

Release-acquire: For a lock variable l, unlock(l) happens before its next lock(l)

in the execution.

Signal-wait: For a condition variablem, signal(m) happens before its next wait(m)

in the execution.

Fork-join: the fork operation happens before all operations in the forked thread,

which happens before the join operation of the thread.

Under the happens-before relation, if a pair of accesses are properly synchronized,

these accesses will be ordered. Therefore, past work [14, 34] redefine a data race as

a pair of memory accesses to the same location, at least one of them is a write, and

they are not ordered under the causality model. In our work, we use this definition

of data race.

Happens-before data race detectors have been very successful for finding concur-

rency bugs in thread-based programs. However, they work poorly for event-based

programs. For example, FastTrack [28] assumes that all memory accesses from the

same thread are totally ordered, thus no race will be reported for accesses executed in

the same thread. This assumption is too strict (missing potentially races) for event-

based programs since events executed in the same thread in an event-based program

can be logically concurrent.
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Vector Clock, Epoch and Chain Decomposition

Vector clock [45] is a succinct data structure to express a happens-before relation,

and thus a standard way to maintain logical times of all operations in happens-before

data race detectors. A vector clock VC : Threads → Z+ is a vector of logical times-

tamps, where each timestamp identifies the time of the causally preceding operation

in a thread. It supports the following operations:

VC v VC ′ iff ∀i.VC (i) ≤ VC ′(i)

VC t VC ′ = λi. max(VC (i),VC ′(i))

⊥VC = λt. 0

inci(VC ) = λj. if j = i then VC (j) + 1 else VC (j)

The logical time VC x of an operation x in thread i is maintained in a way such that it

is greater than the logical times of any causally preceding operations. This is achieved

through inheriting the vector clocks of the causally preceding operations of x:

VC x = inci(
⊔
y≺x

VC y).

For any two operations x and y, x � y if and only if VC x v VC y.

To maintain the happens-before relation between operations, past happens-before

data race detectors [14, 34, 55, 28] keep track of a vector clock for each thread any

synchronization variable. However, it is inefficient to keep track of a vector clock for

every data access. FastTrack [28] resolve this problem by tracking epochs instead of

full vector clocks for data accesses. An epoch c@t records the timestamp c for an

access executed in thread t, and c@t happens before a vector clock VC (c@t � VC )

if and only if c ≤ VC (t). Our work also use this optimization for race detection.

Naively adapting vector clocks for event-driven programs, however, requires dedi-

cating a distinct timestamp for each event in a vector clock. Since there could be an

unbounded number of events in an execution, this approach clearly does not scale.

This scalability problem could be partly alleviated using chain decomposition [35, 57],

where events are partitioned into chains, each consisting of a sequence of causally or-

dered events. Each chain can be thought of as a logical thread, so only one timestamp
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Figure 2.2: Illustration of chain decomposition. The optimal chain decomposition

partitions the 4 events into 2 chains, while an online greedy approach might partition

them into 3 chains.

is needed for each chain of events in a vector clock. Figure 2.2 shows an optimal

chain decomposition partitioning 4 events into 2 chains, so it is sufficient to use 4

timestamps in a vector clock to track the logical times in all threads and chains.

Unfortunately, computing an optimal chain decomposition requires the knowledge of

the entire happens-before relation, and thus it cannot be done in an online manner.

Instead, past work [35, 57] takes an online greedy approach to assign each event to

an existing chain ending with one of its immediate causal predecessors, or to a new

chain if there exists no such chain.

Our work adapts the above approach and uses vector clocks with chain decomposi-

tion to track the logical time of an operation, where a vector clock VC : Chains → Z+

is now defined over all chains. Here we make no distinction between a chain of events

or a worker thread, and refer to both as “chains.”

Predictive Race Detection

The problem with happens-before race detection is that races can be missed due to

accidental happens-before ordering. For instance, the ordering critical sections may

transitively order conflicting accesses that are not properly synchronized. Another

example is that in event-driven programs, the program order is too strict as it order all

events executed in the same thread. To increase the coverage, prior work [37, 59, 17,

61] takes a predictive approach to detect data races by relaxing the causality model.
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In this thesis, we also take this approach and develop a relaxed causality model for

event-driven programs. As a result, predictive analyses can find more concurrency

bugs, but at the cost of reporting benign races, unlike a sound happens-before race

detector such as FastTrack [28]. Smaragdakis et al. [61] discussed a sound predictive

race detection technique, but it is for thread-based programs and not applicable to

event-based programs.

2.2.1 Addressing Benign Races

Data races are not necessarily harmful. Many data races are benign races and do

not compromise program’s correctness. Since predictive analyses report data races

in a relaxed causality model, they are likely to report more benign races, hence the

usability of these tools is reduced. However, it is hard to figure out if a data race is

harmful, even for those with domain expertise. Some prior work tries to address this

problem through record and reply [49]. In this section, we focus on techniques that

are closely related to our work.

Commutativity Analysis

Two operations are said to be commutative if executing them in different orders

leads to the same program state. Benign races defined under a relaxed causality model

usually consists of commutative memory accesses. Therefore, to improve the accuracy

of a predictive race detector, techniques for commutativity analysis are desirable.

Huang et al. [33] discussed a few heuristics in the past to check if two critical

sections are commutative or not. However, their heuristics are designed for thread-

based programs, and are neither sound nor complete. Dimitrov [23] introduced the

concept of commutativity races, and developed a framework to systematically describe

high-level operation commutativity for library functions. We adapt their idea and

come up with a simplified commutativity specification that helps us to remove benign

races between events in the same thread in Chapter 4.
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Effect-Oriented Race Detection

Instead of detecting concurrency bugs through identifying common bug triggers

such as data races, effect-oriented approaches [67, 66] focus on certain operations

that can lead to severe program errors (e.g., memory errors or assertion violations),

and find the triggers that cause the errors. For example, ConMem [67] looks for

races between dereference and nullification of a pointer in thread-based programs.

We also take effect-oriented approaches in our predictive analyses for event-driven

programs to avoid a large volume of benign races: In Chapter 3, we focus on use-

after-free violations; and Chapter 5 presents a new technique by combining predictive

race detection and invariant-based bug detection, which is also an effect-oriented

approach.

2.3 Bug Detection for Event-Driven Programs

Since event-driven computing has become increasingly popular recently, a few

researchers have shifted their focuses, and start looking at race detection techniques

as well as other techniques to detect various kinds of bugs in event-driven programs.

This section reviews these recent techniques, which are independently developed from

our work.

2.3.1 Data Race Detection

WebRacer [54] and EventRacer [57] are two recent studies focusing on detecting

races for one type of event-based programs: web applications. A web application is

typically executed by the browser in a single thread in an event-driven style. These

authors have shown that even if there is only one thread executing, races are still pos-

sible; and they have presented a causality model for web applications and successfully

found races in many popular web sites. Though closely related, our work differs with

theirs in the following aspects. First, our causality model is more comprehensive, as it

captures ordering constraints enforced by the event queue, and can handle programs
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that are mixture of thread-based and event-driven model. Second, the types of bugs

they targeted are also web application specific. In contrast, we focus on a more gen-

eral type of concurrency bugs. DroidRacer [44] independently proposes a causality

model for Android similar to the one described in Chapter 3. Our causality model

is more complete since it handles AtFront events and provides a more generic rule for

event atomicity.

EventRacer for Android [15] (referred to as EventRacer in this thesis) is one

of the most closely related work. It presents a refined causality model specialized for

Android based on our causality model presented in Chapter 3 to model the causal

order provided by specific Android APIs; in contrast, we propose a generalized model

in Chapter 3 that is not specific to any system, and our model can be easily specialized

to model a wide variety of event-driven systems. The authors also have developed a

new data race detection algorithm based on both happens-before graph and vector

clock with chain decomposition: EventRacer finds immediate causal predecessor

of an event by tracking the entire happens-before graph of all past events with their

logical time. When an event is about to begin, it traverses the happens-before graph

backward from its send operation to find causally preceding send operations. The

events sent by these operations are its causal predecessors. To speed up the search

of predecessors, EventRacer uses graph traversal pruning to stop the search along

certain paths when a send is encountered. However, in the worst case, the entire

graph may need to be traversed. We empirically show that EventRacer solution

does not scale as the number of events increases with the program trace length in

Chapter 4.

2.3.2 Bug Detection for Mobile Applications

Performance bugs are a class of bugs that received wild interests lately as mobile

applications are usually user facing and latency critical. Performance bug detection

tools like AppInsight [56] and Panappticon [65] analyze critical paths in the system

to identify performance bottlenecks in the applications that could potentially cause
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user perceived delays. Energy bugs are another type of bugs that have been studied

recently. Pathak et al. have performed a series of studies [51, 52] on classifying and

characterizing energy bugs in Android applications. Lide et al. have developed a tech-

nique that uses taint-tracking to find computations that never influence applications’

outputs and thus are unnecessary and cause energy leaks.
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CHAPTER 3

Race Detection for Event-Driven Mobile

Applications

In this chapter, we present a new generic causality model for event-driven pro-

grams, which we use to infer the happens-before relation between events. This model

abstracts away the details of different event-driven platforms, and focuses on the

causal relation between events due to the event queues. We also present a specialized

model for the widely-used Android platform [1], as the system and many of its ap-

plications are open-sourced. Based on our new causality model, we implemented the

first race detection tool named CAFA for event-driven applications.

We find that naively reporting races between assembly-level read and write ac-

cesses to a memory location in concurrent events leads to thousands of benign races.

The reason is that concurrent events processed in the same looper thread could be

commutative with respect to each other. Two events are commutative if they produce

a correct result irrespective of the order in which they are executed by the looper

thread. If two concurrent events processed in the same looper thread are commuta-

tive, then any conflicting memory accesses executed within them are not indicative

of a race error. Thus, only the conflicting operations in non-commutative events are

indicative of race errors.

Automatically determining if two events are commutative is a challenging problem,

because it depends on high-level semantics of those events. Therefore, in this study,

22



we limit our focus to finding race errors that lead to use-after-free violations, where

pointers are dereferenced (used) after they no longer point to any object (freed). To

improve the accuracy of CAFA, we employ two simple heuristics, if-guard and intra-

event-allocation, to remove benign races.

We studied several Android applications, which included applications such as

FireFox and MyTracks (Google’s GPS tracker). We found 67 previously unknown harm-

ful races (races that may lead to incorrect outputs when their accesses are executed in

certain orders). We also detected 2 known harmful races. 60% of the races detected

were harmful.

3.1 Modeling Causality

The event-driven programming model described in Chapter 2 differs substantially

from the thread-based concurrency model that is assumed by most concurrency tools.

Unlike in conventional thread-based causality models, we cannot assume that all the

events executed in a thread are ordered by program order. We present a generic

causality model for the event-driven programs that relaxes this order, but accounts

for additional happens-before relation due to the event queues.

3.1.1 Overview

An execution of an event-driven program involves looper threads that process

many events, as well as worker threads orchestrated by programmer-specified syn-

chronizations such as locks, thread forks, and joins. Therefore, the causality model

should account for the following 2 types of causal orders.

• Synchronous causal orders including program order in a worker thread or an

event, and the orders due to programmer-specified synchronization operations,

thread forks and joins, and event-related operations (send operations and event

handler registrations). This type of causal orders is similar to what we have

in the conventional thread-based causality model described in Section 2.2, ex-
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cept for two major differences. First, there is no program order between events

processed by a looper thread, because programmers do not intend to provide

orders between events that are generated concurrently. Second, no causal order

is assumed between unlocks to succeeding locks. That is because programmers

do not intend to provide orders using locks in most scenarios, so assuming or-

ders between critical sections protected by the same lock may introduce false

happens-before relation.

• Asynchronous causal orders due to the event queues. Events sent to the same

event queue are atomically processed in FIFO order by one looper thread, so

it is incorrect to assume that there is never any order between events.

3.1.2 Event-driven Program Trace

We start with a definition of an execution trace of an event-driven program. A

program trace is a sequence of operations listed below, where T is a thread, E is an

event, S and S ′ is either a thread or an event. If an operation is part of an event, it

is attributed to that event instead of its looper thread.

• begin(S), end(S): start or end of S.

• rd(S, x), wr(S, x): read or write to data variable x in S.

• fork(S, T ), join(S, T ): S spawns or waits for T .

• signal(S,m) and wait(S ′,m) S ′ waits till S signals through handle m. Reg-

istering event handlers and their invocations are also modeled as signals and

waits, respectively. We omit S and S ′ when there is no ambiguity.

• send(S, q, E): S enqueues event E to queue q. We omit S and/or q when there

is no ambiguity.

While we account for mutual exclusion between the critical sections protected by

the same lock, we do not assume a happens-before relation due to locks, as discussed in

3.1.1. Instead, we check the locksets for mutual exclusion, assuming that the critical

sections are race-free since programmers handle them explicitly through locks.
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3.1.3 Generic Causality Model

A program trace defines a sequential order for it operations. For two operations α

and β in a trace, we say α < β if α is executed before β. This order is not preserved

across executions, however, due to nondeterminism of concurrent programs. Given

an execution trace of an event-driven program, to identify potential concurrency bugs

in other executions, we define a new causality model for event-driven programs.

The causality model defines a happens-before relation (≺), which is the smallest

transitive closure over the operations in the trace based on the causality rules in

Figure 3.1, which we explain as follows. In the following text, we use the terms

causally precedes and happens before interchangeably. And for two events E and E ′

from the same queue, we shorten end(E) ≺ begin(E ′) as E ≺ E ′.

The first set of rules account for the synchronous causal orders in an event-driven

program:

Program order rule (PO): In an event-driven program, program order is assumed

only for operations within a worker thread or an event, but not between events

executed in the same looper thread. This is because the order of events in a

looper thread may differ across executions.

Fork-join rules (Fork, Join): A thread begins after its fork operation and ends

before its join operation.

Signal-wait rule (Signal): For a condition variable m, signal(m) happens before

its next wait(m) in the trace.

Event send rule (Send): The send operation of an event happens before its exe-

cution.

Event loop rules (LoopBegin, LoopEnd): Any event is executed after its looper

thread begins and before its looper thread ends.

The second set of rules account for the asynchronous causal orders due to the

event queues:
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task(α) = task(β)

α < β

α ≺ β (PO)

α = end(E1)

β = begin(E2)

send(_, q, E1) ≺ send(_, q, E2)

α ≺ β (FIFO)

α = begin(T )

β = begin(E)

looper(E) = T

α ≺ β (LoopBegin)

α = end(E)

β = end(T )

looper(E) = T

α ≺ β (LoopEnd)

α = fork(_, T )

β = begin(T )

α ≺ β (Fork)

α = end(T )

β = join(_, T )

α ≺ β (Join)

α = signal(_,m)

β = wait(_,m)

α < β

α ≺ β (Signal)

α = send(_,_, E)

β = begin(E)

α ≺ β (Send)

α = end(E1)

begin(E1) ≺ β

∃E2. E2 ∈ Events ∧ E2 = task(β) ∧ looper(E2) = looper(E1)

α ≺ β (Atomic)

Figure 3.1: Causality rules for event-driven programs. task(α) is the worker thread or

event that executes operation α. looper(E) is the looper thread that executes event

E. _ is a don’t-care.
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begin(B)

end(B)

Looper Thread T

begin(T)

send(A)

send(B)

end(T)

begin(A)

end(A)

A    

A    B

B    

   

A ≺ B

(a)

begin(A)

fork(A, T)

end(A)

begin(B)

wait(m)

end(B)

begin(T)

signal(m)

end(T)

Looper Thread T

A ≺ wait(m)

(b)

Figure 3.2: Illustration of asynchronous causality rules. The derived happens-before

orders are noted in each figure, and the dotted arrows indicate these derived relation.

(a) The event queue rule. The statuses of the event queue are shown at right. (b)

The atomicity rule.

Event queue rule (FIFO): Two events must be causally ordered, if they are from

the same queue, and their sends are causally ordered. An example is shown in

Figure 3.2a.

Atomicity rule (Atomic): Two events in a looper thread are atomic with respect

to each other, and thus are causally ordered by the synchronization operations

they perform. For example, in Figure 3.2b, we only order E1 with the part

after wait(m) in E2, since the synchronization operations provide no ordering

semantics before wait(m).

In addition to the above rules, we also assume a closed system and thus a total

order between input events:

External input rule: If events E1 and E2 are generated from the external world

and E1 < E2, we have E1 ≺ E2.
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α = end(E1)

β = begin(E2)

send(_, q, E1) ≺ send(_, q, E2)

priority(E1, E2)

α ≺ β (Priority)

α = end(E1)

β = begin(E2)

send(_, q, E2) ≺ send(_, q, E1, AtFront) ≺ β
α ≺ β (AtFront)

Figure 3.3: Extended causality rules for Android. priority is the priority function

defined in Table 3.1.

3.1.4 Case Study: Android’s Causality Model

In this section, we study how to adapt our generic causality model to Android.

As described in Section 2.1.2, Android provides the ability to overrule FIFO order of

processing events by allowing programmers to assign priority tags and time constraints

to events to change their queuing policy. To precisely model the happens-before

relation in Android, we add the causality rules in Figure 3.3, which we explain below.

Rule Priority orders two events A and B, if their send operations are ordered,

provided that priority(A,B) is true (Table 3.1). For example, in Figure 3.4a, a

worker thread sends two Delayed events A, B in program order. Enqueued events

with nondecreasing delays are processed in the FIFO order, guaranteeing that A ≺ B.

However, as can be seen in Figure 3.4b, even when events A and B are sent in order, if

the delay of the earlier event is even slightly greater than the delay of the latter event,

then we cannot infer any happens-before order between the two events, because there

is a chance that the later event can execute before the earlier event.

Rule AtFront accounts for the happens-before orders between ordinary events

and AtFront events. As shown in Figures 3.4d and 3.4e, although send(A) ≺

send(B), the ordinary event A and the AtFront event B are not ordered, because

both execution orders are possible as shown in the figures. However, there is one
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begin(B)

end(B)

Looper Thread T

begin(T)

send(A, Delayed, 

           time = 1)

send(B, Delayed, 

           time = 1)

end(T)

begin(A)

end(A)

time t

time t+2

time t+4

A    

A    B

B    

   

t+1

t+1 t+3

t+3

time t+8

A ≺ B

(a)

begin(B)

end(B)

Looper Thread T

begin(T)

send(A, Delayed, 

           time = 5)

send(B, Delayed, 

           time = 0)

end(T)

begin(A)

end(A)

time t

time t+2

time t+4

A    

A    B

A    

   

t+5

t+5 t+2

t+5

time t+8

B ⊀ A

(b)

begin(B)

end(B)

Looper

begin(C)

send(A)

send(B, AtFront)

end(C)

begin(A)

end(A)

time t

time t+2

time t+5

   

A    

t

B    A

t+2 t

A    

t

time t+8

B ≺ A

(c)

begin(B)

end(B)

Looper Thread T

begin(T)

send(A)

send(B, AtFront)

end(T)

begin(A)

end(A)

time t

time t+2

time t+4

A    

B    A

A    

   

t

t+2 t

t

time t+8

B ⊀ A

(d)

begin(A)

end(A)

Looper Thread T

begin(T)

send(A)

send(B, AtFront)

end(T)
begin(B)

end(B)

time t

time t+2

time t+4

A    

B    

   

t

time t+8

t+2

A ⊀ B

(e)

Figure 3.4: Illustration of Rules Priority and AtFront. The happens-before

orders that can or cannot be derived are noted in each figure, and the dotted arrows

indicate these derived orders. The statuses of the event queue are show at right, and

for each event, the earliest time when it can be processed is marked on top of each

cell. (a) A ≺ B as their send operations are ordered and their delays are the same.

(b) A is processed after B owing to its higher delay, and thus no happens-before order

can be derived between A and B. (c) Since send(B) ≺ begin(A), B is guaranteed to

be enqueued in the front of the queue before A can be processed, so we have B ≺ A.

(d) and (e) show two scenarios where send(B) ≺ begin(A) is not true, and thus no

happens-before order can be derived between A and B.
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HHH
HHH

HH
E1

E2
Delayed, Async Delayed, Sync AtTime, Async

Delayed, Async E1.time ≤ E2.time E1.time ≤ E2.time false
Delayed, Sync false E1.time ≤ E2.time false
AtTime, Async false false E1.time ≤ E2.time

AtTime, Sync false false false
AtFront, Async true true true
AtFront, Sync false true false

HHH
HHH

HH
E1

E2
AtTime, Sync AtFront, Async AtFront, Sync

Delayed, Async false false false
Delayed, Sync false false false
AtTime, Async E1.time ≤ E2.time false false
AtTime, Sync E1.time ≤ E2.time false false

AtFront, Async true false false
AtFront, Sync true false false

Table 3.1: The priority function for Rule Priority. E1 ≺ E2 if send(E1) ≺ send(E2)

and the corresponding cell is true.

special condition under which we can derive a happens-before order between an

ordinary event A and an AtFront event B. This is when it is guaranteed that

send(B) ≺ begin(A). Figure 3.4c shows one such instance where such a guaran-

tee can be made. In this example, send(A) and send(B) are both executed within

event C. Also, event C is executed by the same looper thread as the one that pro-

cesses events A and B. Since it is guaranteed that C ends before any other event can

be processed, it in turn guarantees that send(B) ≺ begin(A). This rule is the only

one showing that a causally later send could create a causal predecessor of an event

sent earlier.

For events executed in binder threads in Android, since there is no ordering guar-

antee between these events, they are modeled as short-lived threads in our causality

model.
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3.1.5 Generalized Asynchronous Causality Rule

Rules FIFO, Atomic and Priority all follow the following form of generalized

asynchronous causality rule:

α ∈ Λ γ(α) ≺ η(β) ρ(α, β)

α ≺ β

defined on the set of operations Op in a trace with parameters Λ ⊆ Op, γ : Λ →

Op, η : Op → Op, ρ : Op × Op → {true, false} such that ∀α ∈ Λ. γ(α) � η(α) and

∀β ∈ Op. η(β) � β. For example, for Rule Priority, Λ is the set of end operations

of all events from a queue, γ, η return the send operation of the containing event,

and ρ is the priority function; for Rule Atomic, Λ is the set of event ends in a

looper thread, γ returns the begin operation of the containing event, η is the identity

function, and ρ checks if both operations are in the same looper thread.

Intuitively speaking, this generalized asynchronous causality rule says that, any

asynchronous causality rule takes the following form: the order between a pair of

earlier operations (γ(α) and η(β)) can asynchronously decide the order between a

pair of later operations (α and β). This generalized form describes causalities in a

wide range well-behaved shared-memory event-driven systems, and thus techniques

developed in this thesis are broadly applicable to these systems. However, for ill-

behaved APIs (such as sendAtFront), special treatments such as Rule AtFront are

required.

3.2 Race Detection

Data races are common concurrency bugs in multithreaded programs. Our ini-

tial study of bugs reported for open-source Android applications indicates that race-

related bugs are prevalent in event-driven programs as well. However, conventional

data races are poor indicators of concurrency bugs in event-driven mobile applications.

In this section, we briefly discuss the problem of conventional data races, and present

an offline algorithm to find use-after-free violations. Also, to reduce false alarms, we

present two effective heuristics, if-guard and intra-event-allocation. They check for the
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onLayout() {
    if (!manager.resizeAllowed) {
        return;
    }
    ... // Calculate the new size.
    this.columns = newColumns;
    this.rows = newRows;
    redraw();
}

onPause() {
    manager.resizeAllowed = false;
}

R-W conflict!

Figure 3.5: A read-write race in the ConnectBot application. The memory write in

onPause cannot be executed between the if statement and the succeeding statements

that update the size information in onLayout because the two events in the same looper

thread are executed atomically with respect to each other. Thus, this read-write race

is not a bug.

common cases of benign races and filter the race warnings.

3.2.1 Use-Free Races

Conventionally, a data race is defined as a pair of memory accesses, of which at

least one is a write, and are not ordered by a happens-before relation. This definition,

however, is not useful for detecting bugs in a mobile application. For example, there

are 1,664 such races in a 30-second trace of ConnectBot, and most of them are benign

races. One major reason is that we find many read-write and write-write races between

concurrent events that are commutative. Two concurrent events are commutative if

they produce correct results irrespective of the order in which they are executed.

Figure 3.5 shows a false positive example in ConnectBot.

We tackle this problem by limiting our focus on finding use-after-free violations due

to races between concurrent events, and devising two heuristics to check if the racing

events are commutative or not. A free is a write operation that sets an object pointer

to null. A use is a read operation to an object pointer that would be dereferenced

later. There is a use-free race if a use and a free are not ordered by the happens-before
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onResume() {
    bind(TrackRecordingService);
}

onServiceConnected() {
    // Start recording a new track
    Track track = new Track();
    providerUtils.updateTrack(track);
}

onDestroy() {
    providerUtils = null;
}

RPC

onBind() {
    send(onServiceConnected, 0);
}

MyTracks

(Looper Thread)

TrackRecordingService

(Regular Thread for IPC)

onResume() {
    bind(TrackRecordingService);
}

onServiceConnected() {
    // Start recording a new track
    Track track = new Track();
    providerUtils.updateTrack(track);
}

onDestroy() {
    providerUtils = null;
}

MyTracks

(Looper Thread)

TrackRecordingService

(Regular Thread for IPC)

RPC

onBind() {
    send(onServiceConnected, 0);
}

Exception thrown!

Figure 3.6: A use-after-free violation in Google’s MyTracks application. (a) A correct

execution. (b) An incorrect execution where an use-after-free violation manifests

owing to the lack of happens-before order between onServiceConnected and onDestroy.

relation according to the causality model. Note that a use-free race is a special kind

of read-write race, and may trigger a use-after-free violation if the free is executed

before the use. By limiting our focus on this special kind of data race, we can find

meaningful bugs without introducing lots of false positives.

Figure 3.6 shows a typical example of a use-free race: the use of providerUtils

in onServiceConnected is racy with the free to provideUtils in onDestroy. In this case,

reversing their execution order would cause a harmful program behavior and thus it

is a use-after-free violation.

3.2.2 Finding Use-Free Races

We describe the following offline algorithm to find use-free races. Given an exe-

cution trace of an event-driven program, the algorithm first builds a happens-before

graph for the collected trace based on the causality model described in Section 3.1.

The happens-before graph is a directed acyclic graph consisting of all operations in

the trace as its vertices. Any two operations are causally ordered if and only if there is

a path between them in the graph. For any use operation, the algorithm then checks

if it is ordered with its previous and next free operations to the same pointer by per-
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onPause() {
    handler = null;
}

onResume() {
    handler = new Handler();
    handler.run();
}

onFocus() {
    if (handler != null)
        handler.run();
}

Looper

Figure 3.7: An example of commutative events that contain uses and frees.

forming reachability tests on the happens-before graph, and reports any concurrent

use-free pairs. This algorithm guarantees to report at least the first use-free race on

each pointer.

3.2.3 Pruning False Positives

Even if two events contain use-free races, it is possible for the racing events to

be commutative for two reasons. The first reason is that if the use is not executed

when the event containing the free is processed first, then no use-after-free violation

would occur. For example, as can be seen in Figure 3.7, onPause and onFocus are

commutative, because it is guaranteed that when onFocus is processed before onPause,

the use in onPause will not be executed owing to the if-condition guarding the use.

The second reason is that, if the pointer accessed by the use is assigned to a valid

object address before the use is executed, then no use-after-free violation would be

triggered. We call such an assignment an allocation to the pointer. For example, in

Figure 3.7, onPause and onResume are commutative, because within onResume, there is

always an allocation before the use.

To reduce the number of false alarms due to the above reasons, we present two

simple heuristics: if-guard and intra-event-allocation. These heuristics recognize two
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common programming patterns that make concurrent events containing use-free races

commutative. Both heuristics are only applicable to events that are sent to the same

event queue and processed by the same looper thread.

If-Guard Check Programmers often check if a pointer is null before using it.

Branch instructions used to perform this check can be leveraged to check if a use

is safe or not. Therefore, in addition to log the operations described in Section 3.1.2,

we also log the following branch instructions that test on object pointers: if-eqz (jump

if a pointer is null), if-nez (jump if a pointer is not null), and if-eq (jump if two pointers

are equal).

The if-guard check for if-eqz and if-nez is illustrated in Figure 3.8. The heuristic

works as follows. Suppose there is an if-eqz instruction at address pc, and it performs

a forward jump to address pc + offset if pointer is null. Then we assume that the code

between pc and pc + offset is executed only if the branch is not taken at runtime, which

guarantees that pointer would be non-null, and any use of pointer in this code region

would thus be safe. Therefore, any use-free races involving such uses are ignored.

Similar arguments can be applied to backward jumps, and to if-eqz instructions.

Note that the if-guard check is neither sound nor complete. Harmless use-free races

can elude the check if the nullity check is not done through if-eqz and if-nez instructions,

but this is rare in compiler-generated code. Harmful use-fee races might be mistakenly

classified as harmless because we have assumed that the code between pc and pc +

offset is executed only if the branch is not taken, but this assumption is not always

true. However, for compiler-generated code in most applications, this assumption is

usually true and hence we design the if-guard check based on this assumption.

In addition, we have found that the if-eq instruction that tests on two object

pointers is often used to check if an object pointer is equal to this object in Java.

Therefore, the if-eq instruction provides the same safety guarantee as if-nez does, and

it is included in the if-guard check as well.
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Figure 3.8: An illustration of the if-guard check. In each case, the branch instruction

is located at pc and conditionally jumps forward or backward to pc + offset or pc -

offset respectively. ∞ indicates the end of the current function. If a use of pointer in

the shadowed area is executed after the branch instruction at runtime, pointer would

be guaranteed non-null, so the use would be safe.

Intra-event-allocation If there is an allocation after a free in an event, then the

null value written by the free will never become visible to any other event executed

in the same looper thread. Therefore, use-free races involving such a free are ignored.

Similarly, if there is an allocation before a use within the same event, then it is

guaranteed that the use cannot read any null value written by a free outside the

event. Any use-free races involving such a use are also filtered.

3.3 Implementation

We built the first use-free races detector for mobile applications called CAFA. We

chose to implement CAFA for Android [1], as the system and many of its applications

are open-source. CAFA consists of a customized Android ROM and an offline analysis

tool. The customized ROM instruments several key components in Android (e.g., the

Dalvik Virtual Machine (DVM), and the core framework libraries) to collect execution

traces for target applications and system services. The collected traces are later used
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by the offline analysis tool to reconstruct the happens-before graphs and detect use-

free races. The customized ROM can be directly installed on some of the Android

devices such as Google Nexus 4. CAFA is completely transparent, and thereby can

trace and analyze unmodified Android applications.

In this section, we mainly discuss our instrumentation framework. We omit the

details of the offline analysis tool as its implementation is straightforward. This

section is organized as follows. We first provide an overview for our instrumentation

framework. Then, we provide details about how we instrument various components

in Android that allows us to capture the causalities described in Section 3.1. Finally,

we discuss how we find and instrument potentially racy operations to capture use-free

races.

3.3.1 Overview

Figure 3.9 shows the architecture of CAFA. We introduce a new logger device

in Android kernel. All execution traces are sent to this logger device. The CAFA

offline analyzer, which may reside in a remote server, can directly read traces from

this logger device through the Android Debug Bridge (ADB). One can also choose to

dump traces into a flash storage and process them later. We add a new native library

called CAFA which provides interfaces for writing traces to the logger device. Each

component in Android that needs instrumentation is linked with this native library

(e.g., the Dalvik Virtual Machine and the core native utility library). We also add a

Java binding for the CAFA native library to provide interfaces for Java programs (e.g.,

Java core library and Android core framework).

Inter-Process Communications (IPC) are heavily used in Android. For example,

whenever an application wants to access system services like the GPS and camera

services, it should initiate Remote Procedure Calls (RPC) with a remote process

called system_server. If we only collect traces for the target application just like most

conventional race detectors do, we may miss many causalities caused by IPCs. For

instance, an application may initiate an RPC call with the GPS service asking for the
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Figure 3.9: CAFA architecture overview. RED represents newly added components,

BLUE represents unmodified components, and GREEN represents instrumented com-

ponents.

current location. Later, it receives a message from the GPS service containing the

coordinates of the current location. If we do not collect traces for the GPS service,

we may miss the causality between the RPC call and the receipt of the message in

this case. Therefore, we collect traces not only for target applications, but for system

services as well. We also instrument the IPC framework in Android (called Binder)

which enables us to establish causalities across process boundaries.

3.3.2 Instrumentation for Capturing Causalities

As we described above, we need to instrument various components in Android

to collect execution traces so that the offline analysis tool can later reconstruct the

happens-before graph based on these traces. The following lists the major components

that we have instrumented.

• Java Core Library. To track thread forks and joins, we instrument the Java

core library in Android (i.e., we modify the java.lang.Thread class) to emit a trace

entry every time a thread is forked or joined.

• Dalvik Virtual Machine. We also need to instrument all the thread be-

gins and ends, as well as all synchronization primitives used by Java programs
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(e.g., java.lang.Object.wait and synchronized{...}). We achieve that by modifying

the Dalvik Virtual Machine in Android. We assign a unique object ID for each

object created by the virtual machine. This unique ID will later be used by the

offline analyzer to capture those causalities caused by threading and synchro-

nizations.

• Android Core Library. We also instrument the Android core framework

library at both the native and the Java layer to capture traces like event

begins and ends as well as sending of events (e.g., in android.os.Handler and

android.os.Looper). These traces are crucial for us to analyze the causalities

caused by event queues as we discussed in Section 3.1. In addition, the causali-

ties caused by event listeners are done by instrumenting the listener registration

functions and the internal functions that invoke the listeners. Currently we in-

strument for all event listeners in the android.app, android.view, android.widget, and

android.content packages. Although we have accounted for most causalities due

to event listeners, the packages listed above do not contain all event listeners

and thus some causalities would be missed by CAFA.

• Binder IPC Framework. For the offline analyzer to capture the causalities

caused by IPCs, we instrument the Binder IPC framework in Android. In fact,

all the Remote Procedure Calls in Android are handled by the Binder IPC

framework. A unique transaction ID is generated each time a process initiates

a RPC call. The Binder transaction data is piggybacked with this transaction

ID and sent to the remote process that handles this RPC call. All transaction

related operations are also recorded and tagged with the corresponding transac-

tion IDs. Later, the offline analyzer can capture the causalities caused by those

IPCs by correlating transaction operations with the same transaction ID.

• Other IPC Channels. In Android, some latency critical IPCs, such as the

display events and the input events, are performed through pipes (or Unix

domain sockets), instead of the Binder IPC framework. CAFA handles these

IPCs similarly by tagging those messages sent through pipes (or Unix domain
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sockets) with uniquely generated IDs.

3.3.3 Logging Potentially Racy Operations

Logging the low-level read and write operations as well as certain branch in-

structions is mainly done by instrumenting the DVM bytecode interpreter to log all

related Dalvik bytecode instructions. In addition, method invocation/return and cer-

tain branch instructions are also instrumented for logging. All the instrumentation is

done in the portable interpreter mode, and we are also porting CAFA to the fast inter-

preter mode for better efficiency. Currently we don’t support CAFA in JIT interpreter

mode due to the complexity of tracing accesses in native code. The detailed instru-

mentation in the DVM bytecode interpreter for use-free race detection is described

as follows.

• Frees. The Dalvik instruction set provides a set of instructions to write values

to object pointers (e.g., i-put-object, s-put-object, and a-put-object). We instrument

the DVM bytecode interpreter to emit a trace entry when such an instruction

is executed. The log includes the ID of the object being dereferenced (if any),

the address of the object pointer, and the written value. If the written value is

null, then the instruction is a free; otherwise it is an allocation.

• Uses. Unlike frees, uses are harder to detect. A use involves a read from an

object pointer (e.g. i-get-object, s-get-object, and a-get-object) to get an object,

followed by an instruction that dereferences the object. The dereference instruc-

tion can be either an access to a field of the object, or a method invocation on

the object. We instrument the DVM bytecode interpreter to emit a trace entry

for the former read instruction to log the address of the pointer and the ID of

the object it gets, and another entry that logs the ID of the dereferenced object

for the latter field access or method invocation. The difficulty is that without

a dynamic data flow analysis (which is expensive to perform at runtime so we

choose not to do it), when we see a dereference instruction, we only know the

ID of the dereferenced object, but have no idea which pointer it dereferences.
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Therefore, we assume that a dereference instruction reads the object ID from

its closest previous pointer read that gets the same object ID, which is usually

true for compiler-generated code.

• Calling Context Stack. The calling context stack is traced for 3 purposes:

(1) To provide context information for reasoning about races. (2) To compute

the relative address of each instruction so they can be mapped to the static

Java code. (3) To log method invocations that dereference objects. For each

method invocation, its method and return addresses are logged. We only log

the name of a function upon its first invocation to reduce the size of a trace.

For a method return, the method and return addresses are logged again. In

addition, method exits through exception throwing are also logged.

• If-Guard Check. We instrument the DVM bytecode interpreter to log the

if-eqz, if-nez, or if-eq instructions that test on object pointers. For an if-eqz

instruction, a trace entry is emitted only when the branch is not taken; for an

if-nez or if-eq instruction, a trace entry is emitted only when the branch is taken.

The entry contains the current and target addresses of the branch instruction,

as well as the ID of the testing object. Since we only have the object ID but

no pointer address, we use a heuristic similar to the one that recognizes uses: a

branch instruction is matched with its nearest previous pointer read to decide

which pointer it tests on.

3.4 Evaluation

In this section, we describe our experience on using CAFA to find use-after-free

violations, and then provide the accuracy and performance evaluation of CAFA.

3.4.1 Experimental Setup

We built CAFA on the Android Open Source Project 4.3 r1.1. and applied CAFA

on 10 open-source Android applications picked from the built-in applications of the
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Android Open Source Project, the list of free and open-source Android applications

in Wikipedia [9] and the F-Droid repository [7]. All our experiments were conducted

on the latest 16GB model of Google Nexus 4, which is equipped with a Qualcomm

Snapdragon S4 Pro quad-core ARMv7 processor. Each trace was collected through

an execution of 10–30 seconds on the instrumented system.

3.4.2 A Survey of Use-After-Free Violations

We have found several use-after-free violations among the tested applications.

Most of these violations might be triggered when the application switches to the

paused state. Typically, a clean-up procedure (e.g., freeing pointers) is called at this

moment. As a result, any event that is scheduled after the pause event, which might

be sent from another thread or process, would crash the application if it tries to use

the freed pointers. For example, BarcodeScanner contains a bug of this kind.

Usually use-after-free violations would cause exceptions when they are triggered.

Some of these exceptions would be caught to prevent the applications from crashing.

However, sometimes these exceptions are not handled properly such that the behav-

iors of the applications do not meet a user’s expectation. We consider such races

buggy and believe that programmers should take care of such races more carefully.

For example, CAFA reported that MyTracks contains use-after-free violations in the

following method in MyTracks.java:

public void onServiceConnected(...) {
...
try {

// TODO: Send a start service intent and broadcast
// service started message to avoid the hack below
// and a race condition.
...
startRecordingNewTrack(...);

} finally {
...

}
}

The startRecordingNewTrack method contains the racy code illustrated in Figure 3.5.
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As described in the TODO comment, instead of fixing the program state in the finally

block to avoid a crash, a more appropriate way is to enforce a happens-before order

between this event and the racing event.

Another example of improperly handled exceptions can be found in ToDoList,

where the author simply resolved the exception with the following code:

try {
...
db.updateNote(...);

} catch (NullPointerException npe) { /* do nothing */ }

Although the above code prevents the application from crashing, the latest user input

would not be written to the database and the data would be lost.

3.4.3 Accuracy and Performance

Table 3.2 shows the use-free races detected by CAFA in the tested applications.

CAFA reported 115 use-free races, among which, 69 of them could lead to use-after-

free violations and thus are harmful. These violations are further classified into 3

categories: (a) in-thread violations due to races that happen between events in a looper

thread; (b) inter-thread violations due to races that happen between threads but

cannot be detected by a conventional data race detector; (c) conventional violations

due to races that happen between threads and can be detected by a conventional

detector. Here the “conventional” detector assumes a total order for all events in

the same looper thread, but no causal order between unlock operations and their

succeeding lock operations. Because we relax the event order within the looper

thread, we can capture more inter-thread races than a conventional detector. In

summary, 60% of the reported races are harmful. Note that the in-thread violations

are bugs, and the inter-thread and conventional violations are considered bugs in a

DRF0 memory model [13], but may not necessarily be bugs in a stronger memory

model such as SC [40].

We also analyzed the causes of false positives, including false races and benign

races, and classified them into three major categories.

43



Type I false positives are false races due to missing happens-before orders for event

listeners. As described in Section 3.3, currently we only instrumented the event

listeners in specific packages of the Android library. Having a more thorough instru-

mentation, we could infer the happens-before orders more accurately and remove this

kind of false positives.

Type II false positives are benign races that happen primarily because the if-guard

and intra-event-allocation heuristics we used are not able to precisely check if two events

are commutative. For example, the if-guard check infers that a use is safe only if there

is a pointer test, but if the programmer uses a boolean flag to indicate that the pointer

is safe for dereference, if-guard would not infer this information.

Type III false positives are false races that happen because CAFAmistakenly matched

dereference instructions to incorrect pointer reads. When such mismatches happen,

the pointer reads would be incorrectly recognized as uses, and false races would be

reported if there are racing frees. Currently CAFA only uses the traces to recognize

use operations. It can be improved by performing a static data flow analysis on the

Dalvik bytecode of the applications to accurately match the dereference instructions

to the corresponding pointer reads.

Although the if-guard check may miss harmful use-free races, we did not find any

such instance among the applications we studied. Since this study focuses on use-free

races, we did not investigate how many harmful races there are in the large volume

of non-use-free races.

Figure 3.10 shows the slowdown of CAFA when collecting traces for each applica-

tion. The slowdown is between 2x to 6x compared to their uninstrumented executions.

The running time of the offline analysis is slow, since we did not focus on optimizing

the offline analysis. In Chapter 4, we will present a new algorithm to speed up the

offline analysis drastically.
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Application Events Races reported
True races False positives

(a) (b) (c) I II III
ConnectBot 3,058 3 0 2 0 1 0 0
MyTracks 6,628 8 1 3 0 0 4 0

BarcodeScanner 4,554 5 0 2 0 1 1 1
ToDoList 7,122 9 8 0 0 0 1 0
Browser 3,965 35 0 8 19 1 7 0
Firefox 5,467 25 0 6 10 4 5 0

VLCPlayer 2,805 7 0 0 1 0 5 1
FBReader 3,528 9 1 3 1 2 2 0
Camera 7,287 9 1 1 0 0 5 2
Music 6,684 5 2 0 0 0 2 1

Overall 115 13 25 31 9 32 5

Table 3.2: Races reported by CAFA. (a) Races that lead to in-thread violations.

(b) Races that lead to inter-thread violations. (c) Races that lead to conventional

violations.
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Figure 3.10: The slowdown for CAFA to collect traces on various applications.
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3.5 Summary

Mobile applications are increasingly popular and are written by common program-

mers. These applications are written in an asynchronous event-driven model, which is

prone to concurrency errors. Unfortunately, currently we do not have adequate tools

to help programmers find races in these event-driven mobile systems. This chapter

presented the first causality model for event-driven programs, and a tool that detects

use-after-free races for Android applications. Our study showed that a significant

number of harmful races could be found with adequate accuracy.
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CHAPTER 4

AsyncClock: Scalable Inference of Asynchronous

Event Causality

In this chapter, we introduce a primitive called AsyncClock to realize an efficient

non-iterative algorithm to infer the happens-before relation between events on the fly.

An AsyncClock keeps track of causally preceding events for a newly created event,

so we can compute its logical time efficiently by inheriting the end times of all events

in the AsyncClock. We show that AsyncClock can be generalized to handle a

wide variety of causality rules for event-driven programs.

We also provide several solutions to improve scalability of AsyncClock. We

propose methods to efficiently identify heirless events that can no longer have imme-

diate successors, and free their metadata to achieve good scalability. Unfortunately,

not all heirless events can be identified efficiently. To address this issue, we exploit

the intuition that an old event and a recent event are unlikely to be re-ordered in

an alternative execution. Any concurrency error between two such events is unlikely

to manifest, and thus low priority for developers to fix. Based on this assumption,

we choose to free old events. We conservatively set the time threshold for classifying

old events so high that this optimization does not result in any false negatives in

our empirical evaluation. Finally, to further reduce the space overhead, we propose a

sparse representation for an AsyncClock to take advantage of our observation that

an event often have few predecessors.
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We built the first single-pass, non-graph-based data race detector for event-driven

programs. Compared to a recent solution, EventRacer [15], we show that Async-

Clock is 8x faster, used 87% less memory, and scales well in terms of both perfor-

mance and space. The average performance overhead of collecting and analyzing the

traces of 20 common Android applications is about 6x. Thus, we also meet our goal

in realizing a tool for asynchronous programs that is as efficient as conventional data

race detectors [28].

4.1 AsyncClock Design

In this section, we describe the AsyncClock algorithm that efficiently estab-

lishes happens-before relations between asynchronous events for the generic causality

model for event-driven programs described in Section 3.1.3. For simplicity, we omit

Rule Atomic in this section. In Section 4.3, we will generalize our solutions to

handle Rule Atomic and the generalized asynchronous causality rule described in

Section 3.1.5.

4.1.1 Overview

To establish happens-before relations between any operations, we could maintain

the logical time at each operation via vector clocks. The vector clock (VC ) at an

operation inherits the vector clocks at its immediate causal predecessors. According

to Rule FIFO, the immediate causal predecessors of an event E must be posted to

the same queue by the immediately causally preceding send operations of send(E).

Therefore, at a send operation, we seek to determine the set of events posted by

its immediately causally preceding sends to the same queue. AsyncClock helps

track this information in each chain. The vector clock of an event is then computed

at its begin operation, where the times of its immediate causal predecessors are

guaranteed to have been resolved, by inheriting the end times of the events tracked

in the AsyncClock at its send.

48



Figure 4.1: Illustration of AsyncClock. The AC s depict the AsyncClock of

T1 and T2 after processing their preceding operations. ε indicates that there is no

predecessor in the corresponding chain.

4.1.2 AsyncClock Primitive

For any send operation, there is at most one immediately causally preceding send

to the same queue in each chain. Therefore, an AsyncClock (AC ) for a queue can

be represented as a vector of events posted by the latest causally preceding send to

the queue in each chain.

Figure 4.1 illustrates AsyncClock using an example with a single queue. AC

at send(D) consists of A and B as they are posted by the immediately causally

preceding sends in the two threads. AC at send(E) contains only C, as send(B)

does not immediately precedes send(E) in T2, and there is no causally preceding send

in T1.

Formal Definition For an event queue q, the AsyncClock AC q : Chains →

Events at operation x is formally defined as a vector of events, one for each chain,

such that

AC q(i) =


E, if send(_, q, E) is the latest send operation in chain i

s.t. send(_, q, E) ≺ x;
ε, otherwise.

Note that for an event E, AC at send(E) may track more than the immediate

causal predecessors of E, since not all the latest causally preceding sends in every
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chain are immediately causally preceding sends of send(E). For example, in Fig-

ure 4.1, if send(A) happens after wait(m) in T1, then send(B) would no longer be

an immediately causally preceding send of send(D), but B is still tracked in AC at

send(D). In Section 4.1.3, we will describe a simple optimization to avoid tracking

such events.

Resolving Event Time The logical time of an event E from queue q is resolved

at begin(E), where all immediate causal predecessors of E are guaranteed to have

finished. VC at begin(E) must inherit: 1. VC at send(E), and 2. VC at end(E ′)

for each E ′ in AC q at send(E).

4.1.3 Maintaining AsyncClocks

For each chain, we maintain a AsyncClock for each queue to keep track of

the events posted by the immediately causally preceding sends in all chains. The

following defines the join operation (t) to inherit another AsyncClock, and the

identity function (IAC ) which constructs an AsyncClock containing only one event.

They are used to maintain AsyncClocks at synchronization operations, sends and

begins. Here, sender(E) denotes the chain that send(E) is in.

AC t AC ′ = λi. if send(AC (i)) ≺ send(AC ′(i))

then AC ′(i) else AC (i)

IAC (E) = λi. if i = sender(E) then E else ε

Synchronization Operations For each event queue q, AC q of chain i at a wait

operation is joined with AC q at the corresponding signal operation. Note that since

the join operation performs happens-before queries only between respective send

operations in the same chain, each query can be implemented as a simple integer

comparison between their logical times in that chain. So, the join takes only O(n)

time, where n is the number of chains.
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Event Creation The AsyncClock data structure described above sometimes

tracks more than immediate causal predecessors. For example, in Figure 4.1, any

event sent from T1 after send(D) would have only one immediate causal predecessor,

D. So it is redundant and inefficient to keep B in AC of T1 after send(D). Instead of

maintaining the full AsyncClock, our algorithm maintains a “reduced” AC , which

becomes 〈D, ε〉, for T1 after send(D). More generally, after an event E from queue q

is sent from chain i, our algorithm reduces its AC q to IAC (E).

Event Begin At the beginning of an event E from queue q, its AsyncClock needs

to be computed to track the immediate causal predecessors of any event sent from E.

For each queue q′, AC q′ at begin(E) must inherit: 1. AC q′ at send(E), and 2. AC q′

at end(E ′) for each E ′ in AC q at send(E). Especially, our algorithm removes all

causal predecessors of E from AC q, as their logical times have been already inherited

by VC of E. For a system having n chains and l queues, the computation takes

O(n2l) time.

4.1.4 Race Detection

Our race detector maintains a vector clock and a set of AsyncClocks, one for

each queue, for each chain, past event, and synchronization variable, to resolve the

logical time of an event. Once the time of an event is resolved, our algorithm uses

greedy chain decomposition [57] to choose the chain that the event should be part

of according to its time. Read and write operations inherit the logical time of their

attributed chains. We use the epochs (Section 2.2) to optimize metadata stored for

data variables and find races between their accesses.

4.2 Improving Scalability

The AsyncClock algorithm described in Section 4.1 maintains VC s and AC s

for all past events, as these metadata might be used to compute the logical times of

immediate causal successors of past events in future. However, this algorithm has the
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same problem as previous work [15]: it does not scale since the memory profile grows

with the program execution length.

To address this problem, we present several solutions to identify heirless events

— events that have no immediate causal successors in future — and reclaim their

metadata. We also describe optimizations to make the metadata slim, thus improving

memory efficiency of our algorithm.

4.2.1 Reclaiming Heirless Events

An heirless event cannot have any immediate causal successor in future. That

means, its send operation cannot be an immediately causally preceding send of:

1. any ongoing thread or event; 2. any future event. Since this condition is hard to

check, we present two efficient solutions, reference counting and multi-path reduction,

to find most heirless events based on two sufficient but not necessary conditions.

Unfortunately, these solutions do not fully address the problem of memory scal-

ability because: 1. they cannot find all heirless events; 2. there could be unbounded

number of events that are not heirless. Figure 4.2 shows a such example, where

A2, B2, C2, ... are not heirless, as a possible future execution (shown in gray) creates

immediate causal successors (A3, B3, C3, ...) for each of them.

We propose time window approximation to resolve this issue. It exploits the fol-

lowing intuition: events that are far apart in time are unlikely to be re-ordered in

alternative executions. Concurrency bugs between such events are unlikely to mani-

fest, and hence low priority for developers to fix. We assume happens-before relations

between such events to make old events heirless and reclaim their metadata, thus

ensuring constant memory usage.

Reference Counting If an event is not heirless, it would be in the AC of some

chain or future event, whose AC is also computed from the AC s of past events. Hence

events that are not in any AC must be heirless. So, an AC can be implemented as a

vector of reference counting pointers to the metadata of events. For a newly created

event, the reference count of its metadata is 1, as it is in the AC of the sending
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Thread T

send(A1)

send(A2)

send(B1)

send(B2)

A1

A2

send(C1)

send(C2)

B1

B2

…

send(A3)

send(B3)

A3

send(C3)

B3

…

Figure 4.2: Example of infinitely many non-heirless events. The executed trace is

shown in black, and a possible future execution is shown in gray.

chain. This count may increment when a containing AC is inherited by another AC ,

and may decrement when a containing AC inherits another AC , or is reclaimed, or

an immediate causal successor is created. When the reference count becomes 0, the

event is heirless and its metadata is reclaimed.

Multi-path Reduction Not all heirless events can be reclaimed by reference count-

ing, as can be seen in Figure 4.3a. In this example, A1 is in AC q of B1 and thus has

a positive reference count. However, since B1 does not send any event, its immediate

causal successor can only be sent from either T , A2, or some causal successor of A2 in

future. This means that send(A2) causally precedes any future event sent to queue

q. Therefore, A1 becomes heirless once B1 finishes.

Such heirless events could be identified as follows. If an event E is not heirless, it

would be in the AC of a chain (this case is already handled by reference counting),

or in the AC of a future event F . In the latter case, E is either in the AC at

send(F ), or in the AC at the end of some immediate causal predecessor of F (say,

F ′). Especially, when send(E) ≺ send(F ′) (Figure 4.3b), E is in the AC of F

only if there is no causal successor of E created along both paths from send(F ′) to
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send(q, A1)

send(q', B1)

q

A1

q'

send(q, A2)

A2

B1

ACq = ⟨A1⟩
ACq' = ⟨B1⟩ ACq = ⟨A2⟩

ACq' = ⟨B1⟩

(a)

send(q, F')

send(q, F)

qsend(_, E)

F'

F

(b)

Figure 4.3: (a) A heirless event (A1) with positive reference count. Only nonempty

AC s are shown. (b) Illustration of multi-path reduction.

begin(F ), and thus the reference count of E’s metadata is at least 2, one for each

path. Therefore, for any two events E and F ′ (not necessarily from the same queue)

such that send(E) ≺ send(F ′) and E is in the AC at end(F ′), if E’s reference count

is 1, then E is heirless, and thus we can remove E from the AC to relinquish E’s

metadata.

Time Window Approximation Since an old event and a recent event are unlikely

to be executed in reversed order in alternative executions, we assume a happens-

before relation between these two events, making the old event heirless. Figure 4.4

illustrates this idea. For each looper thread, we maintain a sliding time window of

recently finished events, up to a predefined time threshold t, and a time window clock

(TC ). Happens-before relations between events in the time window are precisely

maintained. When an event is moved out from the time window (E2) it becomes

old, so TC is updated to TC ′ by inheriting the end time and AC of the old event.

The newly started event (En+1) then inherits TC ′. Since TC ′ is a causal successor of

every old event and a causal predecessor of every new event, an old event no longer

has any immediate causal successor in future and thus becomes heirless.
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Figure 4.4: Illustration of time window approximation.

To actively reclaim the metadata of old events, the reference counting pointers

to the metadata are implemented with an invalidate operation: when an event be-

comes old, we invalidate an arbitrary pointer to its metadata, so that the metadata

is immediately relinquished, and all other pointers to the same metadata become null

pointers.

Time window approximation ensures memory scalability in twofold. First, it limits

the number of events tracked by the algorithm: if a looper thread processes events

with rate r, at most (rt + 1) events are tracked for this looper thread. Second, the

number of chains required to place all events in the looper thread (and hence the size

of VC s and AC s) is also bounded by (rt+ 1).

4.2.2 Reducing AsyncClock Size

Another important factor that affects both time and space efficiency of the Async-

Clock algorithm is the size of AsyncClocks. In the following, we present opti-

mizations to reduce the size of the metadata.

Sparse Vectors The number of chains, which affects the dimension of VC and AC ,

is unbounded, as the example in Figure 4.2 also shows that. However, as described
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in Section 4.1.3, the size of an AC of a chain is reset to 1, once the chain sent

a new event to the corresponding queue. Therefore, most AC s are rather sparse.

So, we implemented a sparse vector representation [19] with hash tables for AC s to

significantly reduce the space, and also the time of join operations.

Garbage Collection Time window approximation and removal of events (dis-

cussed in Section 4.3) leave residual null pointers in the AsyncClocks and thus

reduce their sparsity. Therefore, we perform a garbage collection process periodically

to scan through every AsyncClock maintained in the system and remove all null

pointers.

FIFO Chain Decomposition Different chain decompositions may affect both the

total number of chains and the sparsity of AsyncClocks, and thus time and memory

performance. We propose a new chain decomposition method, FIFO chain decom-

position, that improves AsyncClock’s performance. It is based on the following

two observations: 1. our empirical study shows that many events in mobile applica-

tions are ordinary events (events without any priority tag) that are either children or

grandchildren of worker threads or input events; 2. All ordinary events sent from a

chain to an event queue are sequentially ordered.

The chain decomposition works as follows. For an event queue, all ordinary events

sent from a worker thread are placed in a level-1 FIFO chain. All input events also

form a level-1 FIFO chain. Ordinary events sent from a level-1 FIFO chain are placed

in a level-2 FIFO chain, and so on. Among all events, about 54% are in level-1 FIFO

chains, 4.8% are in level-2 FIFO chains, and 1.7% are in level-3 FIFO chains. Since

there are very few ordinary events sent from level-3 chains, we fall back to greedy

chain decomposition for other events.
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4.3 Generalizing AsyncClock

In this section, we present a generalization of AsyncClock that can handle any

causality rule that follows the generalized asynchronous causality rule (Section 3.1.5).

In the end, we describe a realization of AsyncClock to support events with priority

tags that overrule FIFO ordering and other features such as event removal and events

executed in binder threads in Android’s causality model (Section 3.1.4).

4.3.1 Generalized AsyncClock

Section 3.1.5 describes the generalized asynchronous causality rule, which we list

below:
α ∈ Λ γ(α) ≺ η(β) ρ(α, β)

α ≺ β

defined on the set of operations Op in a trace with parameters Λ ⊆ Op, γ : Λ →

Op, η : Op → Op, ρ : Op × Op → {true, false} such that ∀α ∈ Λ. γ(α) � η(α) and

∀β ∈ Op. η(β) � β.

For any causality rule following the above generalized form, we can generalize

AsyncClock to track the immediately causally preceding γ-operations of η(β) to

find the immediate causal predecessors of β as follows: at operation x, the generalized

AsyncClock ACΛ : Chains → Λ is a vector over Λ, one for each chain, such that

ACΛ(i) =


α, if γ(α) is in chain i s.t. γ(α) ≺ x and γ′ ≺ γ(α) for all

γ′ ∈ γ(Λ) in chain i;
ε, otherwise.

If ρ is a function satisfying that: 1. ρ is commutative and transitive, and 2. ∀α, α′ ∈

Λ. γ(α) ≺ γ(α′) =⇒ ρ(α, α′), then one can show that for any operations α, α′

and β, if γ(α) ≺ γ(α′), then either both of α, α′ or none of them are β’s causal

predecessors. Intuitively speaking, the above property indicates that there is at most

one immediately causally preceding γ-operations of η(β) in each chain. So one can

easily generalize the algorithm described in Section 4.1 to compute the logical time

of β. Moreover, since γ(α), η(β), α and β form a “diamond-structure” similar to the

one in Figure 4.3b, multi-path reduction can also be generalized.
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Figure 4.5: Illustration async-before lists for Delayed events. The causal predecessors

of an event with time = 3 are shown in gray.

If ρ does not satisfy the above properties, we can still use ACΛ with a helper data

structure, async-before lists, to find immediate causal predecessors. We illustrate

async-before lists with an example for Delayed events shown in Figure 4.5. We store

all Delayed events sent from each chain in a list ordered by their sends (e.g., events

Ai form a list, and Bi form another). To find the immediate causal predecessors of

an event E with time = 3, we traverse each list, starting from the events in the AC

at send(E) (A4, B2, C3, ...), to visit all events whose sends happens-before send(E).

The set of visited events satisfying the priority function (shown in gray) would contain

all immediate causal predecessors of E.

4.3.2 Case Study: Realizing AsyncClock for Android

Here we describe how to use generalized AsyncClocks to handle Rule Atomic,

and Rule Priority for Android described in Section 3.1.4. We use the rule evaluation

order described in [15] to obtain the minimal closure of all causality rules. We also

describe solutions for Rule AtFront, event removal, and events in binder threads.

Event Atomicity For an operation β in an event, we use generalized Async-

Clocks to track its immediately causally preceding begin operations, thus their cor-
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responding end operations are the immediate causal predecessors of β. Then, the

logical time of β is resolved by inheriting the time of these ends.

Events with Priority Tags For each tag combination in Table 3.1, we use gener-

alized AsyncClocks to track immediately causally preceding send operations along

with async-before lists to find immediate causal predecessors. A Sync event should

inherit the time from both its Sync and Async predecessors. For a Delayed or AtTime

event E, we can speed up the search of predecessors by early-stopping the traversal

of each list after visiting some event E ′ in the list such that 1. E ′.time = E.time,

or 2. E ′′.time ≤ E ′.time for all preceding events E ′′ in the list. For example, in

Figure 4.5, we can prune A1 (Case 1) and B1 (Case 2), since they happen-before A3

and B2 respectively and thus not immediate causal predecessors of the new event.

The search of AtFront predecessors can also be avoided by caching the join of the

logical times of all AtFront events sent along a chain.

Sent-at-Front Events Rule AtFront does not follow the form of generalized

asynchronous causality rule, and thus cannot be addressed with AsyncClock. In-

stead, we maintain a sent-at-front list for each event in a queue. When an AtFront

event is executed, it is added to all sent-at-front lists. When an event is dequeued,

we iterate through its sent-at-front list to find its causal predecessors.

Event Removal An event removed explicitly by the programmer cannot be relin-

quished, since it might have an immediate causal successor. In such case, we first

resolve the time of this removed event, and use it to resolve the time of the succes-

sor. Removed events are reclaimed through reference counting, or along with garbage

collection when all its predecessors are old.

Events in Binder Threads We apply the speculative causality rules in [15] (sum-

marized in Figure 4.6) to order events executed in binder threads. These speculative

rules are heuristics observed from empirical program runs. Since they also follow the

form of generalized asynchronous causality rule (Rule IpcHandle checks the sequen-
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α = end(E1)

β = begin(E2)

send(_, q, E1) < send(_, q, E2)

process(send(_, q, E1)) = process(send(_, q, E2))

E1.Sync ∨ E2.Async

binder(E1) = binder(E2)

α ≺ β (IpcHandle)

α = end(E1)

β = begin(E2)

send(_, q, E1) ≺ send(_, q, E2)

thread(send(_, q, E1)) = thread(send(_, q, E2))

E1.Async ∧ E2.Async

binder(E1) = binder(E2)

α ≺ β (IpcAsync)

Figure 4.6: Speculative causality rules for events in binder threads [15]. Functions

process and thread return the process and thread of an operation. Function binder

returns the binder thread of an event.

tial order (<) between send operations, but this can be easily modeled in the causal

relation), we can also use generalized AsyncClocks for these causality rules.

4.4 Race Detection

To detect data races under our causality model, we use the AsyncClock algo-

rithm to derive the logical time for each memory access, and keep track of the epochs

of recent read and write accesses, similar to FastTrack [28], to find races between a

memory access and its previous and next write accesses to the same location. This

guarantees us to find at least the first data race for each memory location.

As discussed in Section 3.2.1, data races reported by AsyncClock are either

harmful races that lead to order violation bugs, or harmless races that produce “cor-

rect” results irrespective of their execution order and do not lead to any concurrency
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bug. Android applications usually incur many harmless races, which significantly

reduce the usability of a race detector.

However, without a formal correctness specification for any Android program,

we have to rely on manual reasoning of a race and its events to determine if it

is harmful or harmless, which is a common approach used in similar tools such as

EventRacer [15]. We manually investigated the races reported by our tool, and

observed that the following races are usually harmless:

1. Races in Android’s framework that are not induced by the user code.

2. Races in certain OS-generated events that are commutative with other events

(e.g., screen refresh events).

3. Race in libraries that provides commutative operations (e.g., increments to size

when adding two items into a list).

Therefore, our tool only reports races between user-induced accesses (accesses in user

code, or in libraries called by user code), and uses a race filter that whitelists pairs

of commutative accesses and events described above to remove races that are highly

likely to be harmless. We built the whitelist conservatively such that the filter did

not remove harmful races in our experience. Our whitelist currently contains around

400 entries that mark commutative operations and events in the Android framework,

OS, and libraries, but not in the user code. So, the manual effort required to create

this whitelist is not necessary for every application.

To further improve usability, our tool reports races in race groups, similar to

EventRacer: races that are induced by the same library invocations in the user code

are grouped together. This reduce a fair amount of work for manual investigations

on race reports.

4.5 Evaluation

In this section, we evaluate the performance AsyncClock and the effectiveness

of the proposed solutions.
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4.5.1 Experimental Setup

We used a Google Nexus 4 device with an instrumented Dalvik runtime of An-

droid OS v4.3 to record the execution traces, then offloaded the traces to a ma-

chine equipped with 2.67G Intel Xeon X5650 CPU and 48GB of memory for race

detection. We evaluated AsyncClock on 20 popular Android applications picked

from [31, 44, 5, 15, 6]. We used Android Monkey [12] to generate traces that run in

10–30 minutes on an uninstrumented system (longer traces were collected for appli-

cations that generated fewer events per minute.)

4.5.2 Overall Performance

Trace Collection The statistics of collected traces and the overheads of trace

recording for all 20 applications are shown in Table 4.1. The overhead is primar-

ily incurred by recording all read and write accesses to heap objects. On average,

instrumented runs were about 5x slower than uninstrumented runs with respect to

CPU time.

Offline Analysis Column Analysis in Table 4.1 shows the time and memory of

our race detector based on AsyncClock, with a 2-minute time window and FIFO

chain decomposition. Note that we run the offline analyses on a local machine. The

analysis overhead is computed as the analysis time (on local machine) normalized by

the application CPU time (on phone), indicating how much slowdown a user would

experience to use our tool to analyze an application. All analyses finished in 9 minutes,

and averaged 3 minutes and around 700MB of memory.

4.5.3 Comparison with EventRacer

EventRacer [15, 6] is the state-of-the-art race detector for Android applications.

Since it is close-sourced, we could not use its publicly available binary executable for

various reasons. First, we were unable to adapt our causality model (Section 3.1.4) to

EventRacer’s implementation. Second, we wanted to compare AsyncClock and
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Application
CPU
Time

Operations Threads Events Trace
Overhead

Analysis vs. EventRacer
Sync Mem L B W Looper Binder Overhead Mem Speedup −Mem%

AnyMemo 145s 760k 67M 24 5 158 244584 1110 5.49x 2.41x 2095M 28.33x 81%
ConnectBot 279s 722k 166M 3 6 60 86056 4819 4.58x 0.69x 474M 17.03x 97%
Firefox 1448s 720k 195M 7 4 269 78719 2673 2.31x 0.16x 248M 10.38x 97%
NPRNews 283s 556k 198M 8 5 87 77619 50011 5.48x 0.79x 672M 9.38x 85%
K9Mail 369s 507k 164M 6 5 46 48493 8136 2.95x 0.44x 785M 5.85x 87%
OpenSudoku 216s 651k 121M 1 4 20 47062 2810 4.39x 0.55x 478M 5.17x 87%
SGTPuzzles 188s 702k 115M 3 5 65 42110 1938 4.95x 0.74x 592M 5.49x 90%
AardDict 148s 382k 80M 3 4 117 37345 4331 4.10x 1.04x 963M 4.78x 82%
BarcodeScanner 114s 208k 127M 2 3 17 34792 949 7.61x 1.24x 197M 5.49x 98%
FlymNews 251s 338k 122M 4 6 151 31690 1579 4.21x 0.81x 982M 4.08x 81%
RemindMe 157s 280k 56M 10 6 57 31637 1391 2.83x 0.34x 310M 2.49x 87%
AdobeReader 216s 418k 75M 14 4 307 31301 1751 3.47x 0.61x 831M 3.95x 79%
FlipKart 387s 811k 242M 34 4 233 31054 1264 10.78x 0.92x 1438M 2.92x 71%
OIFileManager 205s 593k 124M 76 5 227 30841 6694 5.05x 0.84x 723M 2.70x 76%
VLCPlayer 170s 1045k 90M 31 25 360 26241 28133 5.34x 0.98x 616M 3.44x 87%
ASQLiteManager 78s 421k 64M 1 4 34 25597 1529 6.27x 0.87x 455M 4.43x 88%
Twitter 273s 355k 159M 128 9 149 24333 2615 8.34x 0.61x 1134M 2.92x 70%
Tomdroid 143s 465k 70M 2 6 104 22121 3441 4.01x 0.72x 429M 2.21x 82%
FBReader 223s 632k 107M 14 5 56 21300 4064 3.85x 0.61x 548M 2.32x 73%
ATimeTracker 112s 291k 52M 1 6 22 19620 1880 3.35x 0.57x 462M 2.48x 67%
Average 270s 543k 120M – 49626 6556 4.97x 0.80x 722M 7.99x 87%

Table 4.1: Summary of trace collection and analysis sorted by looper events. Columns

L, B and W under Column Threads stand for looper, binder, and worker threads. Col-

umn Analysis shows the performance of AsyncClock with a 2-minute time window

and FIFO chain decomposition. Column −Mem% shows the percentage of reduced

memory usage (larger is better). All analyses are run offline on a local machine.
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EventRacer for the exact same trace, and this was not possible without access to

their source code. Also, we couldn’t get to run or obtain long enough traces for several

applications used in our analysis. Therefore, we re-implemented its happens-before

graph construction algorithm in our framework, including graph traversal pruning and

other optimizations presented in [15]. This enabled us to do an end-to-end comparison

between the two algorithms with the same trace and the same framework overheads.

Column vs. EventRacer compares the performance in time and memory be-

tween our tool and EventRacer. Since EventRacer scales super-linearly (Fig-

ure 4.7), its overhead is not fixed, but grows with the number of events, so our tool

achieved greater speedup when more events were analyzed. For the collected traces,

our tool was at least twice as fast as EventRacer, and averaged 8x faster. The mem-

ory performance was also significant: with heirless events reclaimed and a 2-minute

time window, our tool used only 0.7GB of memory on average, where EventRacer

used 5.5GB.

We further studied the scalability of EventRacer and AsyncClock in Fig-

ure 4.7. As can be seen, EventRacer scaled super-linearly in time. We observed

that its graph traversal pruning did not handle the scenario in Figure 4.8 well because:

1. It nearly pruned nothing for AtTime events since their times are usually differ-

ent.

2. The entire parent chain of B3 (i.e., I1, I2, I3) in Figure 4.8 was traversed to find

its predecessors, which is proportional to the trace length.

In contrast, the time spent in finding predecessors of an event in our tool remained

low due to the sparsity of AsyncClocks and early-stopping in the async-before

lists of Delayed, AtTime, and AtFront events. EventRacer also does not scale in

memory with number of events because it maintains the whole happens-before graph,

where our tool shows better memory scalability due to storing only AsyncClocks for

events and aggressively reclaiming events with our scalability optimizations described

in Section 4.2.

Since both EventRacer’s graph traversal algorithm and AsyncClock (with
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Figure 4.7: Comparison between EventRacer and AsyncClock. The x-axes

show the number of looper events. The top row shows the average time spent per

event. The bottom row shows total memory used during the analyses. The results

of 3 configurations of AsyncClock are shown: no event reclaiming (4), reclaiming

heirless events (�), and reclaiming events with a 2-minute time window (#).

send(A1, AtTime,

           time = 5)

send(A2, AtTime,
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send(B2)

send(B3)
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Figure 4.8: An event pattern in BarcodeScanner, where In are input events. Event-

Racer traversed the shaded area to find predecessors of B3.
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no time window) are sound, the races reported by both methods are the same under

our causality model. However, both methods use an additional step that employs

different heuristics to classify the found races into harmless and harmful races, which

is orthogonal to finding races under a causality model and thus not part of the per-

formance analysis.

4.5.4 Scalability Improvements

Effectiveness of Reclaiming Events

Figure 4.7 also shows how effective the event reclaiming optimizations are in 5

applications. As can be seen, AsyncClock had good time performance even with-

out any scalability optimization described in Section 4.2, but the memory usage grew

with the number of events being processed. The two sound optimizations for re-

claiming heirless events (reference counting and multi-path reduction) reduced half

of the memory usage for Firefox and VLCPlayer. But for AardDict and ConnectBot,

there were too many non-heirless concurrent events, which made the number of chains

and metadata kept in memory increase rapidly. These two applications showed the

need of time window approximation. With a 2-minute time window, our tool scaled

reasonably well in memory.

Recall of Time Window Approximation

We evaluated how many false negatives were introduced by assuming happens-

before relations between old and recent events in time window approximation. Fig-

ure 4.9 shows the trade-off between its recall and resource usage with different window

sizes for 8 applications (listed in Table 4.2). As can be seen, only 4% of the races

were missing when we used a 2-minutes or larger window. Most of these missing races

are between the onCreate events of the benchmark applications and some later events,

such as onPause or onDestroy events. After manual investigations, all the missing races

in the benchmark applications are identified as harmless races. Therefore, we used a

2-minute time window in all other experiments.
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Figure 4.9: The percentages of races reported from 8 selected applications versus the

total time and memory used for various time windows. The memory axis is in log

scale.

FIFO Chain Decomposition

We compared FIFO chain decomposition with a naive greedy approach [57]. Our

method achieved 5% improvement in memory, and 10% in time (due to finding chains

with table-lookups for ordinary events).

4.5.5 Reported Races

Our tool found 1437 user-induced race groups in 8 selected applications. All of

them are true races under the causality model, but many are harmless races and

removed by our race filter. The results are shown in Table 4.2. As can be seen,

1106 race groups are removed by the filter (Row Filtered), and of the remaining

race groups (Rows Harmful and Harmless), 44% of them are harmful. Compared to

EventRacer [15], our tool reported more harmless races. We speculate the following

reason: EventRacer reported only uncovered races and assumed that those races

are potentially custom synchronization operations that order covered races. Since this

heuristic does not guarantee soundness and could lead to false negatives, we decided

not to apply this heuristic but only employed a conservative race filter. Therefore,

our tool reported more true and false positives.
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Application Aard
Dict

Barcode
Scanner

Connect
Bot

FB
Reader

Firefox OIFile
Manager

Tom
droid

VLC
Player

All Races Groups 184 33 218 190 282 74 79 377
Filtered 99 25 175 164 217 51 65 310
Harmful 67 5 22 9 28 6 2 8

Harmless
Type I 6 0 8 0 10 2 1 7
Type II 4 1 8 3 20 1 4 30
Other 8 2 5 14 7 14 7 22

Table 4.2: The user-induced race groups reported in 8 applications. Row Filtered

shows how many race groups were removed by our filter. Rows Harmful and Harmless

are the actual number of race groups reported by our tool.

Harmful Races After manual inspection, we found 147 harmful races from the 8

applications listed in Table 4.2, including one that was confirmed by the developers

of Firefox. Here are some harmful races we discovered:

• Firefox uses the main UI thread to process user input, and another compositor

thread to render web pages. While rendering a page, the compositor thread

would read the locale settings, which might be been updating by a UI event.

So, the browser might render locale-specific contents incorrectly till the next UI

refresh.

• BarcodeScanner initializes the CameraManager in the onResume event. The Cam-

eraManager is then used in the surfaceCreated event, which usually comes after

onResume, but the order is not guaranteed by the Android system, and it might

use a wrong CameraManager object, which is not cleaned up correctly in a pre-

vious onPause event, to initialize the camera.

• VLCPlayer switches from the audio player mode to the video player mode when

the next item in the playlist is a video without checking if the next item has

been nullified because of loading a new playlist, which would lead to a NullPoint-

erException.

Harmless Races Although the problem of identifying harmless races is orthogonal

to this work, we manually investigated the types of harmless races to understand
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the causes to give us some insights to develop better heuristics in the future. In our

experience, over 50% of the harmless fall in the following two categories:

Type I (Delayed update): Many races are between an event that modified the UI

components or internal data structures in reaction to user input, and an event

independently generated by Android to update the UI. The changes made in

the earlier events would not be observed until the later event executed.

Type II (Control-dependent races): Since events are executed atomically with re-

spected to each other, programmers usually write to a flag variable in an earlier

event to change the execution of a later event. Some of the races in this cate-

gories might be able to remove by the If-Guard check proposed in CAFA [31].

4.6 Summary

In this chapter, we presented a new primitive, AsyncClock, to infer happens-

before relations between asynchronous events for a wide variety of causality models for

event-driven systems. We also addressed an important scalability problem: reclaiming

heirless events. We built the first single-pass, non-graph-based Android data race

detector, and show that our algorithm is scalable in time and space. We used it to

find 147 previously unknown harmful races in popular Android applications.
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CHAPTER 5

Statistical Commutativity Analysis for

Asynchronous Events

Previous studies [58, 64, 14, 34, 28] detect concurrency errors in thread-based

programs through finding data races under the conventional causality model [14, 34],

where a data race is a pair of memory accesses at a shared data, where at least one

of them is a write, and they are not ordered by the causality model. Although data

races have been good indicators of concurrency errors in conventional thread-based

programs, this is not true for data races defined by a causality model for event-

driven programs. For thread-based programs, many data races can easily lead to

incorrect results in some thread interleavings, and are prohibited in the data-race-

free-0 (DRF0) memory model [13]. In contrast, in event-driven programs, since events

from the same queue are non-preemptively processed by the same looper thread, these

events are atomic with respect to each other. As a result, data races in these events

are allowed in the DRF0 model, and data races in commutative events are harmless,

in the sense that they produce programmer-intended results, no matter what order

they are executed. Therefore, the major challenge in identifying harmful data races

is to determine if two events are commutative.

In this chapter, we present a way to use invariant-based bug detection to address

this challenge and identify concurrency bugs in event-driven programs. Although

invariant-based bug detectors have been successful for thread-based programs [26],
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onResume() {
    dataHub = getInstance();
    dataHub.registerListener(this);
}

onUpdateResults() {
    dataHub.isRecordingSelected();
}

onPause() {
    dataHub = null;
}

MyTracks
(Looper Thread)

(a)

onResume() {
    dataHub = getInstance();
    dataHub.registerListener(this);
}

onUpdateResults() {
    dataHub.isRecordingSelected();
}

onPause() {
    dataHub = null;
}

MyTracks
(Looper Thread)

Exception thrown!

(b)

Figure 5.1: A concurrency bug in Google’s MyTracks app. (a) The precondition

“dataHub != null” of onUpdateResults is always true in a correct execution. (b) The

precondition is falsified by onPause in an incorrect execution.

they have not been applied to find concurrency errors in event-driven programs. We

built a new concurrency bug detector for event-driven programs named Licorice, which

combines the ideas of invariant-based bug detection and happens-before race detection

based on the following observation: programmers usually assume certain preconditions

for events to be correctly executed, but some of these preconditions are violated

when concurrency bugs manifest. For example, “dataHub != null” is assumed for event

onUpdateResults in Figure 5.1a, and is violated by event onPause in Figure 5.1b. For any

pair of events, if executing them in a certain order would violate any precondition of

some event, then this pair of events are non-commutative and contain a concurrency

bug.

Licorice is a statistical commutativity analysis. It works in two phases: learning

and detection. In the learning phase, Licorice analyzes a large number of correct

executions to statistically learn likely preconditions of each event handler. These

likely preconditions usually indicate programmers’ assumptions for the event handlers

to be executed correctly. In the detection phase, Licorice analyzes a new execution and

identifies if there are two concurrent events such that they could be reordered to falsify
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a precondition of any event. These two events are therefore likely non-commutative

and may constitute a concurrency bug.

5.1 Running Examples

We show how to identify non-commutative events via their preconditions with two

examples in Figure 5.2. In the figure, the arrows indicate the happens-before relation

between the events. As can be seen, there is a data race on variable this.dataHub

between events onUpdateResults and onPause in Figure 5.2a, and another data race

on variable manager.resizeAllowed between events onLayout and onPause in Figure 5.2b.

However, although these data races lead to different program states when the racing

events are reordered, it is hard to reason if they lead to incorrect program states.

If we have the knowledge of the preconditions of each event (which we will discuss

how to find later), we could use it to reason if reordering two concurrent events gener-

ates incorrect program states. In Figure 5.2a, onUpdateResults is executed on program

state S1. S1 satisfies “this.dataHub != null,” which is a precondition of onUpdateResults.

If we reorder the two events onUpdateResults and onPause, onUpdateResults will be exe-

cuted on program state S2 where “this.dataHub != null” is violated, so onUpdateResults

cannot be correctly executed. Therefore, by observing how onPause affects the precon-

dition of onUpdateResults, we can tell that these two events are non-commutative and

thus contain a concurrency bug. If we reorder the two events onLayout and onPause

in Figure 5.2b, however, there is no precondition violation since the preconditions of

onLayout agree with both program states S0 and S1, and thus no error.

As can be seen in the two examples, we usually do not care if an event is executed

on the same program state in different executions, as long as the program states do

not violate any of its preconditions. Therefore, we can think the preconditions of an

event as a high-level description that summarizes all valid program states this event

can be executed on. If two events are non-commutative, there is an execution order

such that one event is executed on an invalid program state, hence an error would

manifest.
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onResume() {
    this.dataHub = getInstance();
}

Preconditions: ∅

Generated conditions:

    this.dataHub != null

onResume

S
0
: this.dataHub == null

onUpdateResults() {
    this.dataHub.isSelected();
}

Preconditions:

    this.dataHub != null

onUpdateResults

onPause() {
    this.dataHub = null;
}

Preconditions: ∅

Killed conditions:

    this.dataHub != null

onPause

S
1
: this.dataHub != null S

2
: this.ataHub == null

(a)

onLayout() {
    if (!manager.resizeAllowed) {
        return;
    }
    … // Calculate the new size.
    this.columns = newColumns; 
    this.rows = newRows;
}

Preconditions: ∅

onLayout

S
0
: manager.resizeAllowed == true

onPause() {
    manager.resizeAllowed = false;
}

Preconditions: ∅

Killed conditions:

    manager.resizeAllowed == true

onPause

S
1
: manager.resizeAllowed != true

(b)

Figure 5.2: Illustration of non-commutative events. The solid arrows show the

happens-before relation between the events. (a) In Google’s MyTracks app, events

onUpdateResults and onPause contain a harmful data race on variable this.dataHub and

these two events are non-commutative as reordering them violates the precondition

“this.dataHub != null of onUpdateResults.”. (b) In the ConnectBot app, onLayout and

onPause contain a harmless data race on variable manager.resizeAllowed but no precon-

dition of any event is violated when they are reordered.
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5.2 Event Commutativity Analysis

In this section, we formally describe event preconditions and how to use them

to identify non-commutative events. Conceptually, if two events are commutative,

then none of their execution order would affect the correctness of any event, so no

preconditions should be violated. In other words, if two events can be scheduled in

a way such that a precondition of some event is likely to be violated, then these two

events are non-commutative, and there would be a concurrency bug between these

two events.

5.2.1 Event Precondition

An event handler is usually implemented as a function in a high-level programming

language. When implementing an event handler, programmers access shared data

through symbolic names, such as manager.resizeAllowed in Figure 5.2b. A symbolic

condition is a valid Boolean expression in the programming language that involves

one or more shared data. For example, in the same figure, “manager.resizeAllowed

== true” is a symbolic condition involving one shared datum, and “this.columns <=

this.rows” is another symbolic condition involving two shared data. To simplify the

design, we consider only atomic symbolic conditions, which is defined in Section 5.3.1

The precondition specification P (h) of an event handler h is a set of atomic

symbolic conditions that must be satisfied to ensure a correct execution of the event

handler h.

The execution of an event consists of one or more event handler invocations. When

executing each event handler, their symbolic names are bound to memory locations

at runtime. A condition is a runtime realization of a symbolic condition in which

the symbolic names are replaced by their memory locations. For example, suppose

variable manager in event onLayout in Figure 5.2b is bound to a dynamic object instance

obj1 , then “obj1 .resizeAllowed == true” is a condition that realizes “manager.resizeAllowed

== true.” Given a program state S that contains the values of all shared data, we

can evaluate if it satisfies any condition c. We say that S |= c if S satisfies c. In the
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same figure, S0 |= “obj1 .resizeAllowed == true” but S1 6|= “obj1 .resizeAllowed == true”.

With a proper symbolic naming mechanism (which will be discussed in Section 5.3.2),

the dynamic binding between symbolic names and memory locations in an event han-

dler is fixed during its dynamic execution. Given a dynamic execution η of event

handler h, denote the condition that realizes a symbolic condition φ as φ[η], then its

set of preconditions is defined as the set of conditions that realize P (h):

P [η] = {φ[η] : φ ∈ P (h)}

P [η] is the set of conditions that must be satisfied to ensure that η is a correct

execution.

To ensure the correct execution of an event, however, not all the preconditions

of its event handler invocations need to be satisfied at the beginning of the event,

because a former event handler invocation might modify shared data to satisfy some

preconditions of a latter event handler invocation. Therefore, only preconditions that

involves live-in shared data need to be satisfied at the beginning of the event, where a

live-in shared datum is a shared datum such that the event read its value from a write

in another event. Therefore, for an event e, we can define its set of preconditions P [e]

as follows:

P [e] =
⋃
η∈e

{φ[η] ∈ P [η] : φ[η] contains only live-in shared data of e}

For e to be correctly executed on program state S, every condition in P [e] must be

satisfied, which we mathematically write as S |= P [e].

5.2.2 Event Commutativity

Given an event e, suppose that the program states before and after its execution

are S and S ′ respectively. For any condition c, we say that e requires c, or e is a REQ

event of c, if c ∈ P [e]. Also, e generates condition c, or e is a GEN event of c, if S 6|= c

but S ′ |= c; e kills c, or e is a KILL event of c if S |= c but S ′ 6|= c. e is a NOP event

of c if it is neither a REQ, GEN nor a KILL event of c. Note that an event can be a

REQ and KILL event of c at the same time.
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Consider two concurrent events. If for all precondition c of all events, both events

are GEN events of c, then these two events would result in a program state S such

that S |= c irrespective to their execution order, so their order does not make any

difference to any later REQ events. Thus, they are commutative with respect to those

REQ events. Similarly, if they are both KILL events of c, or one of the two events is

a NOP event of c, then these two events are also commutative with respect to later

REQ events. If there is a precondition c of some event such that these two events are

a GEN-REQ, GEN-KILL or REQ-KILL pair for c, then these two events are likely

non-commutative, and there is a high chance that they would contain a concurrency

error.

For a condition c, however, not all GEN-KILL event pairs are non-commutative.

For example, if every event requiring condition c happens before an event e that kills

c, then there is no way that reordering e makes an event requiring c executed on

a program state that does not satisfy c. So, any GEN-KILL pairs involving e are

commutative. Similarly, some GEN events of c are commutative to all KILL events

of c. We call such events minor GEN and minor KILL events of c. An event e is

a minor GEN of condition c if every event e′ requiring c satisfies one of the following

statements:

1. e′ � e.

2. e � e′ and ∃ event e∗ such that e∗ kills c and e � e∗ � e′.

Likewise, an event e is a minor KILL of condition c if every event e′ requiring c

satisfies one of the following statements:

1. e′ � e.

2. e � e′ and ∃ event e∗ such that e∗ generates c and e � e∗ � e′.

Figure 5.3 illustrates the idea of minor GEN events. In Figure 5.3a, Gc is an

event that generates condition c. If all events requiring c are either happens before

Gc, or happens after Gc with some Kc that kills c in between, then Gc has no effect

on whether these events are executed on valid program states. Similarly, as shown
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Figure 5.3: Illustration of minor GEN and minor KILL events. Gc, G′c are events

that generate condition c, and Kc, K ′c are events that kill condition c. The triangles

above and below an event indicates the “area” that happens before and after that

event respectively. (a) If all events that require c are in the gray area, then Gc is a

minor GEN of c. (b) If all events that require c are in the gray area, then Kc is a

minor KILL of c.

in Figure 5.3b, a minor KILL event Kc of condition c has no effect on whether any

event requiring c is executed on a valid program state. Since minor GEN and minor

KILL events have no effect on the correctness of the execution they are commutative

to all other events for condition c.

5.3 Learning Precondition Specifications

A challenge of the event commutativity analysis described in Section 5.2 is how

to obtain the precondition specification of each event handler in an event-driven

program. Asking programmers to provide such specification is not practical, since

it requires substantial manual effort, is prone to human errors, and is not possible

for existing programs. Obtaining through symbolic execution [38] is viable, but this

approach has two problems: 1. it suffers from the path explosion problem and does

not scale when analyzing complex functions in real-world applications; 2. it can only
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find preconditions that prevent obvious errors (e.g., no exceptions or assertion errors),

and cannot be used to detect other types of errors.

Our idea to obtain the precondition specification for each event handler is to

use a dynamic likely invariant detector [26] to statistically learn the precondition

specification from multiple correct executions of an event handler. In each correct

execution, programmers’ assumptions for the event handler must be true, and it is

likely that if we analyze a sufficient amount of executions, preconditions that are

always true are likely assumed to be so by programmers.

Therefore, Licorice first runs a learning phase that uses the Daikon invariant detec-

tor [26] to learn likely precondition specifications for all event handlers from training

executions, and then use the learned specifications to analyze the commutativity of

events when analyzing a new execution in its detection phase. In this section, we

describe how we use Daikon to implement Licorice’s learning phase.

5.3.1 Types of Atomic Symbolic Conditions

Since we use Daikon to learn the atomic symbolic conditions in a precondition

specification, the types of atomic symbolic conditions are limited by Daikon’s prede-

fined types of likely invariants. We summarize the types of atomic symbolic conditions

we consider below, where x and y are symbolic names, and a, b and c are constants.

• Pointer conditions: For pointer variables, the conditions we consider includes

being null (x == null) and equivalence (x == y), and their negations.

• Numerical conditions: For numerical variables (integers and float-point num-

bers), we consider the following conditions: being constant (x == a), being in

a range (a <= x <= b), being nonzero (x != 0), being one of specific values

(x ∈ {a, b, c}), equivalence (x == y) and its negation, ordering (x < y) and its

negation, linear (y = a * x + b), being divisible (x % y == 0), and being square

(y = x * x).
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• Integral conditions: For integer variables, in additional to the numerical con-

ditions, we consider these extra conditions, since they are commonly used for

bitwise flags: bitwise exclusion (x & y == 0) and being a bitwise subset (x & y

== x).

5.3.2 Symbolic Naming

A symbolic condition uses symbolic names, similar to what programmers do in

the source code, to refer to shared data it conditions on. A good symbolic naming

mechanism should satisfy the following two properties:

• Execution independence: A shared variable in the program source code could

be bound to different memory locations across executions. To successfully learn

symbolic conditions of a shared variable from multiple training executions, its

symbolic name should remain the same, independent from dynamic executions.

• Event consistency: Suppose the program states before and after the execution

of event e are S and S ′ respectively. To check if e generates or kills condition

c, Licorice requires that every symbolic name in c is bound to the same shared

data at both S and S ′. For example, in Figure 5.2b, if the object referred to by

variable manager is changed from obj1 to obj2 during the execution of onLayout,

then “manager.resizeAllowed == true” would refer to “obj1 .resizeAllowed == true” at

S but “obj2 .resizeAllowed == true” at S ′, thus we cannot check if either condition

is generated or killed by onLayout. Therefore, we cannot use the variable names

in the source code as their symbolic names.

Therefore, Licorice names a heap object by its allocation context, as suggested by

Smaragdakis, et al. [60], to fulfill the above two requirements. If multiple heap objects

sharing the same allocation are accessed in the event, they are further numbered

according to the order of their creation.
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5.3.3 Daikon Trace Generation

Licorice uses Daikon as a backend engine to learn the precondition specifications

of all event handlers. For each event handler, Daikon requires multiple samples,

each consisting of symbolic names and their live-in values. It first enumerates all

possible atomic symbolic conditions, and remove any symbolic condition that cannot

be satisfied by at least one sample. Since the atomic symbolic conditions we consider

involve at most 2 shared data, the time complexity of Daikon’s learning process is

quadratic with respect to the size of each sample. Clearly, dumping a complete

snapshot of all shared data in the program for a sample is impractical. To resolve

this problem, Licorice dynamically infers abstract types for each shared data, where

two shared data are of the same abstract type if they are involved in a comparison

or arithmetic operation during execution [30]. For each sample, Licorice only output

the following data:

(1) Shared data that are accessed during the execution of the event handler.

(2) For each shared datum in (1), the other fields in the same heap object that are

of the same abstract type are also outputted.

5.3.4 Obtaining Training Executions

To accurately learn the precondition specifications of all event handlers, we need a

sufficient number of correct and different training executions: the training executions

need to be correct so that we do not miss any symbolic conditions; they need to be

sufficiently different so that we do not learn false symbolic conditions. To reduce

human effort on collecting correct trace, we suppose that concurrency bugs rarely

manifest even with bug-exposing inputs. This assumption is generally believed for

thread-based programs, and is used in past work [42]. We believe this is also true

for event-based programs, and assume that executions with no self-evident errors are

correct.

To obtain sufficiently different executions, we use the following two methods:
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1. Each training execution is generated by running the application with random

user actions.

2. For half of the training executions, we randomly shuffle the event schedule.

We shuffle the event schedule by inserting delays when generating half of the events,

where the delays are drawn from an exponential distribution with a predefined mean.

The reason is that, for two concurrent events e1 and e2, if e1 is always executed

before e2 in every training execution, then the conditions generated by e1 may be

falsely treated as preconditions of e2. To avoid this, we need executions such that

e2 is executed before e1. Since they are concurrent, we simply assume that they are

independently generated, so the time gap between the generations of these two events

would be an exponential distribution. By delaying e1 with sufficiently, we can create

the desired executions to remove false preconditions.

To avoid reducing the responsiveness and performance of the application, when e1

is being delayed and its event queue is empty, the delay would be canceled. However,

we will not be able to shuffle events with large time gaps, and thus it is hard to remove

false preconditions generated by those events.

5.4 Detecting Non-Commutative Events

This section describes Licorice’s detection phase for finding event likely concurrent

non-commutative events in a new execution. The detection algorithm is a modified

version of FastTrack [28]. but instead of finding data races on shared datum, we

treat every condition c as a logical boolean variable, then REQ events of c can be

thought of as reads to the logical variable, and non-minor GEN and KILL events can

be considered as writes to the logical variable. Then, we find GEN-REQ, GEN-KILL,

and REQ-KILL races between these logical operations as follows.

The algorithm first use the AsyncClock algorithm described in Chapter 4 to

compute a vector clock with chain decomposition for each asynchronous event. For

each condition c, the algorithm maintain its satisfactory state Sc, a list of requiring
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epoch R(i)
c , one for each chain, that records the epoch of the last REQ event of c in

chain i, and a modification epoch Mc that records the epoch of the last GEN or KILL

event of c. For each event e with vector clock Ve, Licorice performs the following

checks to find likely non-commutative events:

1. When e is a REQ event of c, Licorice first checks if Sc is true. If not, it reports

that there is a precondition violation in the execution. Otherwise, we know

that Mc records the epoch of some GEN event e′ of c. If Mc 6� Ve, there is a

GEN-REQ race between the e′ and e, and e′ and e are likely non-commutative.

2. When e is a non-minor KILL event of c, Sc must be true prior to the execution

of e (otherwise there must be a data race between threads), so we know thatMc

records the epoch of some GEN event e′ of c. Licorice first checks if R(i)
c � Ve for

each chain i. If not, a REQ-KILL race is reported between the corresponding

event and e, meaning that these two events are likely non-commutative. Then

it checks if Mc � Ve. If not, there is a GEN-KILL race between e′ and e, so

they are likely non-commutative.

3. When e is a non-minor GEN event of c, Sc must be false prior to the execution

of e, so we know that Mc records the epoch of some KILL event e′ of c. If

Mc 6� Ve, there is a GEN-KILL race between e′ and e and they are likely

non-commutative.

Note that it is not necessary to check for REQ-KILL races in Step 1, because,

if there is a race between an earlier event killing c and a later event requiring c,

there must be another event in between that generates c, and that event must be

concurrent with at least one of the two events. Similarly, it is not necessary to check

for GEN-REQ races in Step 3.

To avoid reporting false positives, Licorice also uses the whitelist of commutative

operations and events in system libraries described in Section 4.4 to check if the events

requiring, generating, or killing a condition due to these commutative operations, and

remove these known false positives.
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5.5 Limitations

Licorice finds concurrency bugs in event-drive programs by detecting likely non-

commutative events. A pair of likely non-commutative events (e1, e2) only indicates

that in the current execution, some precondition of an event e′ is satisfied because

the two concurrent events are executed in the observed order, so either a causal

order is suggested between e1 and e2, or e′ should not rely on the precondition.

However, we cannot tell if the precondition of e′ would be falsified when e1 and e2

are actually reordered. Therefore, there is no guarantee that e1 and e2 are actually

non-commutative, so they may incur no concurrency bug.

Licorice assumes that concurrency bugs always involve some conditions that would

be broken in buggy executions. While it is largely true, this assumption is a heuristic,

so it cannot detect any concurrency bug that does not share this property. Further-

more, if the involving conditions cannot be detected by the backend dynamic invari-

ant detector, then Licorice also cannot detect such bugs. However, Licorice provides a

framework that can be easily extended to include new types of conditions.

As described in Section 5.3.4, if two concurrent events are always executed in

the same order in all executions, Licorice may learn false preconditions for the event

handlers called in the later event, and thus mistakenly consider two commutative

events as non-commutative. Although Licorice alleviates this problem by shuffling

events, concurrent events that are far apart in time are still hard to be reordered, so

they can still cause this problem.

5.6 Evaluation

In this section, we evaluate the effectiveness of Licorice using the following mea-

sures. First, we evaluate the sensitivity of the learning phase to learn the amount of

training executions required. Second, we show the improvement in accuracy of race

detection with Licorice, compared to the AsyncClock data race detector for event-driven

programs described in Chapter 4. We also discuss the experience of using Licorice to
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find concurrency bugs, and the reasons for false positives and false negatives.

5.6.1 Experimental Setup

We picked 7 popular Android applications to evaluate Licorice. Each application

was run on an instrumented Android 4.3 ROM on a Google Nexus 4 device for trace

collection, with random user actions generated by Android Monkey [12]. The training

execution traces were generated with a random amount of user actions, averaged

at 1000 actions, and the testing execution traces were generated with exactly 2000

random user actions. We modified Daikon v5.4 [26, 4] to learn the precondition

specifications of the event handlers in each application.

5.6.2 Sensitivity of Precondition Specification Learning

We evaluated the sensitivity of the learning phase as follows. For each applica-

tion, we varied the number of training executions to learn different versions of likely

precondition specifications, then use another set of correct executions (the testing

executions) to verify if how many likely preconditions are falsified by the testing

executions.

Figure 5.4 shows the results of the sensitivity study. As can be seen in Figure 5.4a,

the number of likely preconditions may either increase or decrease when we have more

training executions. On one hand, more executions expose more program behaviors

and more event handler invocations, enabling us to learn more preconditions; on the

other hand, false preconditions can also be invalidated when more program behaviors

are observed. For most applications, the precondition specifications become stable

when we have more than 40 training executions.

Figure 5.4b shows how many preconditions were failed on the testing executions.

Unsurprisingly, the failure rate of preconditions decreases as more training executions

are used for most applications. OIFileManager shows an increment in the failure rate

between 40 and 50 training executions, because some false preconditions are learned

from the last few training executions, and there were not enough samples to invalidate
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Figure 5.4: Sensitivity study for the learning phase. (a) The number of learned pre-

conditions versus the size of training executions. The number of learned preconditions

at each training size are normalized with respect to that at 50 executions. (b) The

percentage of preconditions failed by the testing executions versus the training size.

these preconditions.

To expose more program behaviors, we replaced half of the 50 training executions

with shuffled executions (Section 5.3.4), and compared the resulting precondition

specifications with those trained from 50 regular executions. Figure 5.5 shows the

comparison. In Figure 5.5a, we can see that for most applications, Licorice actually

learned more preconditions from the shuffled executions, because more program be-

haviors that rarely manifest in regular executions could occur when events are shuffled.

And despite more preconditions are learned, the quality of the learned preconditions

does not drop, as can be seen in Figure 5.5b. Not only the percentages, but also the

actual numbers of failed preconditions are reduced for all applications, showing that

event shuffling is a useful technique.

5.6.3 Accuracy

We compare the improvement in accuracy of Licorice with the AsyncClock data race

detector for event-driven programs described in Chapter 4 in Table 5.1. AsyncClock

reported a total of 569 data races in all applications, including 328 in-thread data
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Figure 5.5: Regular versus shuffled executions for precondition specification learning.

(a) The percentage of learned preconditions from shuffled executions with respect

to regular executions. (B) The percentage of preconditions failed by the testing

executions.

races between concurrent events. In contrast, Licorice only reported 94 races, therefore

reduced the human effort by 71%. The overall accuracy, including both reported

inter-thread and in-thread races, is improved from 44% to 75%.

When inspecting the race reports, we found that many races detected by Licorice

point out critical conditions that affect the correctness of the applications. For ex-

ample, in the 13 races in BarcodeScanner, 11 of them are critical for correctness,

including one that leads to a warning when violated. Although most of them are

Application Aard
Dict

Barcode
Scanner

Connect
Bot

FB
Reader

OIFile
Manager

Tom
droid

VLC
Player Total

AsyncClock
Reported 8 48 32 93 21 28 98 328
Harmful 0 3 0 0 2 1 4 10

Licorice
Reported 3 13 8 13 5 1 51 94
Harmful 0 0 0 0 2 1 4 7

Table 5.1: Reduction in the amount of human effort needed in inspecting the races

reported by Licorice, compared to those by a data race detector.
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correctly handled due to the well-written application code, the races still provide use-

ful information about where in the code a bug may be easily introduced in future

development.

5.6.4 False Alarms

We also investigated the causes of false alarms. Most of the false alarms are due

to the following reasons:

• Insufficient event shuffling: We observed that many concurrent events that are

far apart in time creates many false preconditions in the learning phase. And

it is hard to reorder these events through our random event shuffling technique.

Therefore, a systematic approach for probabilistic testing of event-driven pro-

grams is required to address this issue in the future.

• Control-flow dependency: Some event handlers are only invoked by the event

dispatcher under certain conditions, and Licorice would mistakenly learn those

conditions as the preconditions of the event handlers, generating false alarms.

This could be resolved by learning predicates of event handlers: under what the

conditions the event handlers will only be invoked. By differentiating predicates

from preconditions, we could hopefully remove such false alarms.

5.6.5 False Negatives

We have also observed that 3 harmful races are missing by Licorice. After further

investigation, we found that these races are missed due to a type of preconditions that

cannot be learned by the current Daikon implementation, and we can easily extend

Daikon to recognize new types of preconditions and hopefully report all harmful

races.
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5.7 Summary

In this chapter, we presented a new statistical commutativity analysis for asyn-

chronous events in event-driven programs to find concurrency bugs. The analysis com-

bines the ideas of invariant-based bug detection and happens-before race detection:

it statistically learn likely preconditions of all events from many correct executions,

and identify likely non-commutative events that are not causally ordered and thus

could lead to concurrency errors. Our study reduced a significant amount of human

effort needed in finding concurrency bugs through race detection, thus improved its

usability.
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CHAPTER 6

Conclusion

Event-driven programming models are commonly used today for building com-

puting systems that range from mobile and web applications to distributed systems

to sensor networks, yet there is a short in software reliability tools for these systems.

The research in this dissertation focuses on filling this gap by developing algorithms

and tools to find order violation bugs for event-driven applications. It addresses three

important problems in this area: inferring ordering invariants between asynchronous

events, efficient and scalable race detection based on the ordering invariants, and im-

proving the usability of race detection for event-driven programs. The contribution

of this dissertation includes: a new causality model that accounts the asynchronous

causal order between events, the first efficient dynamic race detection algorithm that

can infer the happens-before relation based on the new causality model, and a new

concept of high-level races that can more accurately identify atomicity violations and

order violations in event-driven programs. While we developed our tools and con-

ducted the evaluations on the Android platform, the techniques we have developed

can be easily adapted to include other event-driven platforms, as well as web appli-

cations and other event-driven systems.

There are many challenges arising from this research. The most fundamental one

is: what is the best programming model for a shared-memory event-driven system?

Through empirical study of mainstream event-driven platforms, we have developed

the concept of asynchronous causality in Chapter 3, which provides good ordering
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guarantees between events for programmers to reason about the behavior of event-

driven programs. It is desirable to understand what general guarantees an event-

driven platform should offer in the programming model for programmers to develop

reliable software more easily. For example, we have observed that control-flow depen-

dencies between events has been abused in event-driven applications, which constitute

many false alarms in our race detector. Programming and debugging techniques might

benefit from formulating such a paradigm in an event-driven programming model.

Due to the asynchronous nature of event-driven systems, many techniques for de-

bugging thread-based programs cannot be easily adapted for event-driven programs.

We have developed an efficient race detection algorithm for event-driven programs

based on asynchronous causality in Chapter 4, but there are more to be done along

the line, such as systematic testing [48, 46, 47] and probabilistic concurrency test-

ing [16], which are powerful testing techniques for thread-based programs, but there is

only limited development for event-driven programs [36, 43]. Deterministic replay is

another important technique that shows recent development [29, 32]. The techniques

we have developed in this dissertation could benefit from future development in these

areas. Our work is just a small step in filling the gap of software reliability between

thread-based and event-driven programming, and we hope the contribution of this

work could enable a broader development for event-driven programming.
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