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ABSTRACT 

 

One of the main engines driving the new era of industrial data analytics is advanced 

sensing technologies and distributed computing. Although a vast amount of data can be garnered 

with the aid of these sensing and computing technologies, several challenges aggravating the 

data analysis arise at the same time. One important question to pose is how to develop the new 

data analysis and modeling methodologies that can be applied to the new set of complex datasets 

containing functional and tensorial data as instances moving away from the conventional data 

structures. 

The objective of this dissertation is to study and address three major challenges typically 

occurring when working with complex multi-stream and functional sensing data. First, while the 

classical data analysis tools are designed to work with single-sensor data represented by matrices 

or vectors, sometimes the multisensory data are more efficiently represented by high-order arrays 

to preserve the original structure of the data. A dataset is said to have a multi-stream structure, 

meaning that it contains more than two informative dimensions.  In Chapter 2 of this dissertation, 

a high-order-based monitoring method is suggested for monitoring a tensorial dataset of tool 

wear measurements. In addition to achieving high monitoring performance, the developed 

tensor-based chart is capable of providing correlation pattern analysis. This is useful in 

discerning assignable causes of unusual patterns of tool wear to enhance the process diagnosis 

ability. 
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The second challenge addressed in this dissertation is to deal with outlier observations 

that are inevitable when collecting sensor data. Chapter 3 develops a new robust decomposition 

method that can handle the outlier observations. The critical point in this study is that the 

proposed method is the first decomposition technique considering both correlated noise 

components and outlier observations. The correlated noise can be seen in time series, 

longitudinal and image data. The chapter starts with developing a robust low-order matrix 

decomposition method, and it proceeds to extending the concepts and mathematical formulas to a 

high-order tensor setting. The method is applied to a dataset with the purpose of surface defect 

monitoring using real billet images taken from a hot rolling process.  

The third challenge studied in this dissertation is how to find a mathematical relationship 

between a quality response variable and some process variables that are not necessarily scalar or 

functional. Indeed, some of the predictors are in the form of tensors in addition to the regular 

functional or scaler predictors. The challenge is how to estimate the parameters of such general 

regression models. Chapter 4 focuses on developing a flexible yet parsimonious model for 

predicting scalar response variable utilizing some tensorial and functional predictors. The 

developed model is called functional linear regression with tensorial predictor (FLRTP). The 

advantage of this methodology compared to classical functional data analysis and linear 

regression methods is that it can handle both functional and tensorial predictors without 

performing vectorization on the tensorial predictors. This is helpful since the multi-stream 

structure of the predictor is preserved and the number of parameters to be estimated is kept at a 

reasonable amount. The performance of all methods is evaluated using simulation and real-world 

studies. 
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  CHAPTER 1

INTRODUCTION 

1.1 Motivation 

The advent of advanced sensing and computing techniques creates a great opportunity of 

garnering a substantial amount of information during manufacturing system operations. On one 

hand, this is a magnificent breakthrough, for it provides practitioners with a more apposite 

viewpoint regarding the various aspects of manufacturing process operations and product quality. 

On the other hand, the analysis of such significant amount of complicated sensing data during 

continuous production has become a considerable challenge. Examples of such complex datasets 

include multi-stream sensing signals for tooling conditional monitoring, image data for non-

contact product quality inspection, multi-stream sensing signals as the functional or tensorial 

predictors used for quality prediction in a manufacturing process. 

Studying the variation pattern of process sensing signals or product quality 

measurements is tremendously helpful in providing essential insight regarding the unobtrusive 

root causes of process operational variability and poor product quality. That serves as an 

essential basis for manufacturing system monitoring and diagnosis to ensure product quality. 

Moreover, process modeling of the relationship between product quality and process variables 

can provide valuable insights about the newly established processes. This can help reduce 

process ramp-up time and ensure quality control at an early production stage.  
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Although there are several methodologies that are often utilized for variation pattern 

analysis and process modeling, most existing methods are not always or directly applicable for 

multi-stream sensor data. In fact, there are several critical issues that must be accounted for. The 

first issue is that the collected dada are usually introducible in more than one dimension 

represented by a multi-stream, high-order array data structure. In these cases, if a simple low-

order (one-dimensional vector or two-dimensional matrix) representation is used to represent the 

dataset by stacking up the high dimensional data attributes, it would change the original cross-

correlation structure among those higher dimensional attributes; thus leading to a loss of data 

cross-correlation information among different dimensions. Therefore, this dissertation will study 

a general method for variation patterns analysis, which can be applied to both a low-order matrix 

representation and a high order multi-stream data representation.  

The second issue is that, in practice, the measurements of sensing signals are often mixed 

with complex noises that are not independently and identically distributed (i.i.d). These sorts of 

noise components are called structured noises with either columnwise or rowwise dependencies 

or both. Such structured noises are often observed in spatiotemporal measurements, time series 

data, network structured data, and image sensor data (Allen et al. 2014), etc. For instance, the 

background noise in a set of consecutive images captured in a short time interval has a 

spatiotemporal correlation structure. In most of the existing variation pattern analysis methods, 

the assumption of i.i.d. noise components is so crucial that if violated, the extracted features 

would not be appropriate to reflect the true signal characteristics; thus leading to an incorrect 

decision. Furthermore, there are always some outlier observations (samples) which are 

differently distributed from the anticipated distribution of the bulk of other normal data. In the 

most existing variation pattern analysis methods, if keep those outliers in the existing analysis 
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methods, they would severely affect the variation pattern analysis results (Huber 1981). 

Therefore, this dissertation will study a new robust variation analysis method to be insensitive to 

outlier samples in the dataset while addressing the problem of structured noise simultaneously. 

The third critical issue is how to find the relationship between a quality response variable 

and a set of unconventional predictors that contain process sensing signals that depend on a 

spatial, temporal or spatiotemporal index. The functional data analysis (FDA) methods have 

emerged to suggest a variety of approaches, like functional linear regression for modeling these 

variables when they play the role of a response variable or predictor. As it will be discussed later, 

in some applications, in addition to the functional predictors, there are some tensorial predictors 

(predictors in the format of high-order arrays). Treating these predictors as functional variables 

(or scalar variables) will not only increase the dimensionality of the problem but also break the 

high-order structure of the multi-stream data. Therefore, this dissertation will suggest a new 

modeling approach considering both tensorial and functional predictors to predict scalar response 

variables. 

In summary, this dissertation aims to develop new methodologies that can be applied for 

variation pattern analysis and monitoring for multi-stream sensing data when they consist of 

outliers and structured noise. Furthermore, it will also develop a new approach for modeling a 

scalar quality response using a regression model consisting of complex predictors. The three 

major research topics to be studied in this dissertation are: 

(1) to develop a new monitoring method using a high-order decomposition that can 

effectively model the multi-stream sensor data to achieve a superior monitoring and fault 

diagnosis performance compared to the other traditional control charts using a stack-up 

low-order decomposition.        
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(2) to develop generic  data dimension reduction methods that are robust to the outliers 

and are capable of considering structured noise for both low-order and high-order 

representations. The advantage of the proposed methods can be seen in two folds: one is 

that there is no need for data cleaning process, and the other is having modeling 

flexibility without restrictive assumptions on the i.i.d. noise components and outlier-free 

data. The high-order decomposition method can be utilized for dimension reduction and 

feature extraction for multi-stream datasets. This is useful when applying a low-order 

decomposition method is ineffective due to the multi-stream structure of the data and 

high dimensionality. 

(3) to develop a generic, parsimonious regression model for predicting scalar quality 

response variables with mixed types of predictors including functional, tensorial and 

scalar variables.  

1.2 Overview of Dissertation 

In this section, a brief overview of the dissertation research topics will be provided. The 

section is organized by giving specific manufacturing process examples to illustrate the research 

motivation, objectives and challenges. A brief discussion of the methodology to be employed for 

addressing the research challenges is provided.       

1.2.1 Feature Extraction Using High-order Decomposition for Tool Wear Monitoring 

Ultrasonic welding process is a rather new technology developed for performing high-

quality welds when working with light and thin workpieces having different materials. For 

instance, the lithium-ion battery cells assembled in electric vehicles use ultrasonic welding to 

join copper and aluminum materials. The core factor in ultrasonic welding process is high-

frequency vibration.  Figure 1-1 schematically demonstrates the ultrasonic welding mechanism. 
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The thin metal sheets to be welded are held together by a clamping force perpendicular to the 

welding surface. The vibrational movements augment oscillating shear parallel to the 

workpieces. The material deformation is a result of the combination of clamping force and 

oscillating shears.  

Ultrasonic metal welding machine typically consists of a controller, a transducer, a 

booster, a horn and an anvil. The horn and anvils are considered as the major tools consisting of 

pyramid-shaped teeth called knurls. The vibrations are transmitted to the workpieces using these 

knurls, and, hence, the wear of knurls over time is inevitable.  

 

Figure  1-1: Ultrasonic welding machine (Shao et al. 2013) 

The tool wear in ultrasonic welding has drastic effects on the quality of welds since the 

vibrations and the clamping force are not appropriately transmitted to the materials through the 

worn knurls. Defective welds can cause the malfunction of the whole battery pack (Shao et al., 

2016).  Therefore, an efficient monitoring system is needed to quickly detect the knurls’ wear 

during the welding operation. Figure 1-2 (a) shows a set of normal knurls with healthy tips and 

complete body shape. In contrast, the knurls in Figure 1-2 (b) are worn completely.    

The tool wear in ultrasonic welding can be monitored based on the changes in the profiles 

of the knurls’ shape. The knurls profiles measurements are used for assessing tool wear. Figure 

1-3 shows a cross-sectional view of the measurements regarding (a) a row of a new knurl and (b) 
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a row of worn knurls corresponding to Figure 1-2 (a) and (b), respectively. The measurements 

are all made using a 3D laser scanning device.  

 
(a) new knurl 

 
(b) worn knurl 

Figure  1-2: Pyramid-shape knurls 

 
(a) new knurl 

 
(b) a row of knurls’ profiles 

Figure  1-3: knurls’ profiles measurements 

Although there are several methods developed for tool wear monitoring, the process 

control for ultrasonic welding is more challenging due to the following three issues that will be 

addressed in Chapter 2 of this dissertation. The first challenge is how to systematically identify 

the unusual wear pattern of knurls in different rows, which can be related to the root causes of a 

malfunction in the welding operation. One effective way to analyze the tool wear pattern and the 

associated root causes is to study the cross correlation of knurls’ profiles among different rows of 

the anvil. High correlation between two rows, for instance, means that these rows are worn in a 

similar way, which is high likely linked to underlying common root causes. To study the 

correlation structure, we can apply SVD method to the data and scrutinize the singular vectors, 

but the data must be represented by a matrix form. That means either the rows or columns of 
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knurls of an anvil must be stacked up in a matrix. This will lead to losing the spatial correlation 

structure among different rows (columns) of the data; consequently, the data correlation structure 

is not fully captured.   

The second challenge is how to ensure that the monitoring method is able to quickly 

detect tool wear characterized by knurls’ profiles changes. Some of the methods in the literature, 

like fast Fourier transform (FFT) fail to detect such slight wear in the peaks of knurls particularly 

when not all knurls are worn in a row or a column of knurls in an anvil. To overcome these 

shortcomings, a high-order array is used to represent the dataset. The high-order SVD (HOSVD) 

method is then applied to the array to analyze the correlation structure of the rows. In the second 

step, a multivariate control chart (T
2
 chart) is constructed based on the features extracted using 

the HOSVD method to monitor the changes in the knurls’ profiles shapes.  

A simulation study is done to evaluate the performance of the proposed method in both 

capturing the correlation structure of the data and monitoring performance in detecting the 

knurls’ wear. The method is applied to a real tool wear dataset to illustrate its advantages over 

the existing methods lacking this diagnostic capability due to their inability of representing 

multi-stream data.  

1.2.2 Robust Generalized SVD with Correlated Noise and Outliers 

As discussed in Section 1.1, high dimensionality is an indispensable issue in analyzing 

and monitoring image data. One way to tackle high dimensionality is to reduce the data 

dimension by extracting a low-dimensional set of the relevant features for process monitoring. 

SVD forming the basis of PCA is an effective way to decompose a low-order array of data. The 

estimated singular vectors can project the original high dimensional dataset to a low-dimensional 

space which is easier to work with. The counterpart of SVD in the high-order settings is the 
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HOSVD method that is used for dimension reduction.  Although SVD (HOSVD) is a 

nonparametric method in the sense that it does not require any distribution assumption for the 

observations, it imposes some assumptions about the noise components (random error terms) of 

the observations, that if violated, the results will be unreliable. This dissertation would firstly 

introduce the problem for low-order arrays and then extend it to a high-order formulation.  

To specifically illustrate the point, the dataset is assumed to be represented by matrix 

 𝐗 = 𝐌+ 𝐄, where 𝐌 = ∑ 𝐚𝑗𝐛𝑗
𝑇𝑘

𝑗=1  is the true signal matrix that must be recovered or estimated 

from 𝐗, the 𝑗th left and right singular vectors are denoted by 𝐚𝑗 and 𝐛𝑗, respectively, and 𝐄 is the 

noise matrix embedded in the true signal 𝐌.  

The SVD method tries to estimate the true matrix 𝐗 by minimizing the 𝐿2 norm of the 

residuals matrix 𝐑 = 𝐗 −𝐌. One key assumption in SVD is that the columns and rows of the 𝐄 

matrix must be independent; otherwise, the SVD method does not provide accurate estimates. 

For this reason, Allen et al. (2014) proposed the generalized SVD (GSVD) method replacing the 

𝐿2 norm with a weighted norm (similar to weighted least square problem) to account for 

structured noise matrix 𝐄. The weighted residuals matrix 𝐑𝑤 is given as 𝐑𝑤  = �̃�𝑇𝐑�̃� where 𝐐 

and 𝐂 are the row-wise and column-wise weights, respectively, 𝐐 = �̃��̃�𝑇 and 𝐂 = �̃��̃�𝑇. The 

GSVD method, as a result, minimizes the 𝐿2 norm of  𝐑𝑤 matrix.  

If a high-order method like HOSVD is used for feature extraction, similar to SVD, the 

problem will be to minimize the 𝐿2 norm of the tensor of residuals ℛ = 𝒳 −ℳ, where 𝒳 is the 

tensor representing the dataset and ℳ = 𝐯(1) ∘ 𝐯(2) ∘ … ∘ 𝐯(𝑁) is an approximation of 𝒳. Using 

the 𝐿2 norm in the objective function, HOSVD suffers the same drawbacks as SVD for 

structured noise. The generalized high-order SVD (GHOSVD) is developed (Allen et al. 2012) to 

consider the multi-steam correlation structure in the noise tensor. Moreover, similar to GSVD, 
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the GHOSVD lacks the ability to handle outlier observations. This is true due to the fact that the 

objective function in the GHOSVD method is the 𝐿2 norm of the weighted tensor of residuals, 

defined as  ‖𝒳 −ℳ‖𝐂1,𝐂2,…,𝐂𝑁 with 𝐂1, 𝐂2, … , 𝐂𝑁 be the weights matrices for all 𝑁 modes 

(dimensions) of data.  

A potential problem affecting the performance of both SVD (HOSVD) and GSVD 

(GHOSVD) methods is the existence of outliers in the dataset, which is an inevitable problem in 

most practical cases. The outliers are some observations distributed differently from the majority 

of observations. The difference among outliers and regular observations is defined with regard to 

the context being studied. In the low-order decomposition context, if it is presumed that the 𝑗th 

left singular vector 𝐚𝑗 is known, then the GSVD (SVD) problem changes to a linear regression 

problem with the right singular vector 𝐛𝑗 (coefficients) to be estimated. From the linear 

regression literature, the outliers in the decomposition context can be defined as the observations 

lying distant from the linear relationship between the predictors (𝐚𝑗) and the response variable 

(𝐗). The large distance between the outliers and the fitted line is reflected by the residuals matrix 

𝐑𝑤(𝐑), and the 𝐿2 norm overemphasizes this distance. The first right singular vector �̂�1, as a 

result, will be heavily pulled by the outliers. Since other singular vectors are perpendicular to the 

first one, they will all be affected likewise. The same problem also exists in the high-order 

setting.   

One example of the aforementioned problem can be found in the image-based surface 

defect monitoring for hot rolling products. The semi-finished products, such as ingots, slabs, 

billets, etc., are intermediate workpieces requiring further operations to be final products. For 

example, billets are pieces of metal with a desired rounded shape as shown in Figure 1-4 (a). One 

critical quality characteristic in billets is to have a surface free of defects usually appearing in the 
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form of cracks (openings) on the surface of billets. In the literature of image-based monitoring, 

PCA (SVD) is widely used for reducing the dimension and extracting the image features used for 

monitoring (Lin et al. 2008, Lu and Tsai 2005, Liu and MacGregor 2006, Yan et al. 2015). These 

methods are not applicable in some cases due to following three challenges. Firstly, in some 

datasets like images, it is reasonable to assume that the noise components (matrix 𝐄) have one-

way (or two-way) dependencies due to the spatial correlation of the pixel intensities in a 

neighborhood.  

  
 (a) normal billet  

(high quality image 𝐿2 norm = 1235.8) 

 
(b) outlier billet  

(overexposed 𝐿2 norm = 4386.9) 

Figure  1-4: A normal and outlier billet image with associated 𝐋𝟐 norms 

Secondly, when cameras are used to capturing the images in harsh production conditions, 

sometimes the captured images are abnormal (overexposed/underexposed) as shown in       

Figure 1-4 (b). The abnormality of such images can be characterized by the changes in the mean 

vector and/or covariance matrices (row-wise and/or column-wise covariance matrices) of the 

noise matrix 𝐄. Hence, it is reasonable to consider these low-quality images with a poor visibility 

as outliers since they lie distant from the majority of normal images. This distance can be 

modeled by the difference among the mean and covariance matrix of the outlier noise 

components and those of the normal noise components.  

Thirdly, the analysis sometimes has to be performed on a group of 𝑚 collected samples 

of 𝑛 × 𝑝 images where 𝑚 ≪ 𝑛𝑝. When setting up an imaged-based monitoring system to 
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monitor the products surface quality or the defects, the monitoring baseline of image features 

must be estimated using a group of collected images at the initial Phase I. For image feature 

extraction, a conventional technique is to vectorize all images to have a stack-up matrix with 

each row representing one image. The next step is to apply a decomposition method like SVD or 

GSVD to obtain the singular vectors and to compute the baseline features. The first drawback of 

using a stack-up low-order array is that it leads to a high dimensional matrix and the number of 

rows (𝑚) will be less than the number of columns (𝑛𝑝). In these cases, both GSVD and SVD 

methods will not be efficient. The second drawback is that when vectorizing an image, the 

spatial correlation of the pixels is broken, and as a result, the singular vectors will not accurately 

reflect the true correlation structure. In this dissertation, a high-order array is used to represent 

the data, and then, a new robust high-order decomposition method considering the structured 

noise is developed.     

 As discussed, the first two problems will dampen the performance of the SVD (GSVD) 

and any other least-square based model fitting procedure, like HOSVD. The effect of outliers can 

be seen in the 𝐿2 norms computed for both the normal and outlier billet images in Figure 1-4 (a) 

and Figure 1-4 (b), respectively. The 𝐿2 norm of the outlier image is clearly larger than that of 

the normal image, and this will unfavorably affect the singular vectors estimates. To overcome 

this shortcoming, the first part of Chapter 3 of this dissertation focuses on developing a robust 

generalized SVD method that is insensitive to the outliers; thus giving estimates for the main 

features. The word “robust” in this context means having a decomposition method not affected 

by the outliers in the dataset. To the best of our knowledge, the proposed RGSVD method is the 

first robust decomposition method that can account for outlier observations and structured noise 
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at the same time. The regular decomposition methods are either sensitive to outliers or unable to 

model structured noise.  

To account for the third problem, one naïve way is to rewrite the high-order objective 

function in a two-dimensional format over each mode, and then apply the RGSVD method on 

each of the 𝑁 (number of modes in the data) sub-problems. A potential problem in this case is 

that the RGSVD method can handle the outliers when the whole sample (whole row in a matrix) 

is contaminated. The method crashes when some of the elements in a row are outliers, or when 

reformatting a high-order objective function, there will be elementwise outliers in some of the 

sub-problems. For this reason, the aforementioned approach will not be effective. The second 

part of the third chapter of this dissertation extends the RGSVD method to high-order setting. 

The robust GHOSVD method (RGHOSVD) is developed and the capabilities of the proposed 

method are demonstrated using a simulation study and a real dataset.   

1.2.3 Functional Linear Regression with Tensorial Predictor 

Finding the relationship between the quality of products with different associated process 

variables can be specifically helpful for process quality control. In practice, there are some 

situations where process variables cannot be considered as scalar variables; i.e., a variable is a 

function of time, space, etc. It is critical to consider the functional structure between this variable 

and its temporal (spatial) index.  

In this dissertation, the friction stir blind riveting (FSBR) process is used as an example 

to illustrate the need for the proposed model. FSBR is relatively a new joining technology 

combining two conventional joining operations, namely, the friction stir riveting and blind 

riveting. A blind rivet is stirred inside the workpieces by a pre-specified feed rate, spindle speed 

and the configuration of the materials (the sequence of materials), which are called process setup 
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variables. The penetration force which is a function of blind rivet location inside the workpieces 

is measured and recorded using a sensor. In addition, the temperature of the environment is 

captured using infrared cameras. The last two variables are not controllable and are called 

process sensing variables. At the end of the process, the mandrel is pulled up inside the 

workpieces to fasten them and the notch is broken at the end. The quality of the joined workpiece 

is tested using a standard tensile test where the maximum tolerated load right before the join is 

disassembled is used as the quality metric.  

An important objective of modeling the FSBR process is to study how the product quality 

is affected by the variables involved in the process. To find a Mathematical model of the FSBR 

process is to regress the maximum tensile load on process set up variables (feed rate, spindle 

speed and configuration) and process sensing variables (penetration force and the environment’s 

temperature obtained from infrared images).  

In the above FSBR process, there are three types of predictors including the process setup 

variables as scalar predictors, the penetration force as a functional predictor, and the 

environment’s temperature (infrared images) as tensorial predictors. As mentioned before, 

treating the tensorial variables as either a stack-up scalar or functional variables will lead to 

inaccurate estimates. Although in the literature there exist several papers considering the 

problem of regressing continuous or categorical response variables on tensorial predictors 

(please see Guo et al. 2012, Zhou et al. 2013, Li et al. 2013), none of the proposed models take 

into account both the functional and tensorial predictors. The existing algorithms, as a result, will 

not be able to handle the functional linear regression with a tensorial predictor.  

Chapter 4 of this dissertation tries to develop a new model considering both tensorial and 

functional predictors. A new algorithm is also developed to compute the regression coefficients. 
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The performance of the developed method is evaluated using both a simulation study and a real-

world dataset in the FSBR process.                

1.3 Outline of Dissertation  

In this dissertation, new methodologies are proposed for variation pattern analysis; data 

dimension reduction, feature extraction and process modeling. The features extracted using the 

proposed decomposition methods can be used for process monitoring. The developed process 

modeling approach that is developed can be used for predicting the product quality based on 

process setups and sensing signals. In each chapter, the performance of the proposed methods is 

evaluated through simulations and real case studies. The organization of the dissertation is shown 

in Figure 1-5.     

 

      

 
Figure  1-5: Outline of dissertation  
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  CHAPTER 2

FEAUTURE EXTRACTION USING HIGH-ORDER DECOMPOSITION FOR TOOL 

WEAR MONITORING 

2.1 Introduction 

Ultrasonic welding has been well used for joining lithium-ion battery cells in electric 

vehicle manufacturing. Ultrasonic welding tool wear has a significant impact on the weld quality 

of lithium-ion batteries (Shao et al., 2016), because the failure of a single weld may lead to the 

malfunction of the entire battery pack. To ensure the weld quality, a commonly used preventive 

maintenance practice in most plants is to replace tools when the number of welding operations 

reaches a preset limit. Such limit is often set very conservatively, resulting in waste of useful tool 

life. Therefore, an accurate tool wear monitoring algorithm is critically needed to reduce the 

unnecessary maintenance cost induced by inappropriate tool replacements. 

 Tool wear monitoring has received tremendous attention over the last several decades. 

Most of papers have focused on machining, where some sensing signals, such as vibration, force, 

acoustic emission, and electric current are often collected and analyzed. A data transform, like 

fast Fourier transformation (FFT), wavelet decomposition, principal component analysis (Jolliffe 

2005), and dominant feature identification (DFI) can be applied to extract relevant features for 

tool life prediction, classification or tool wear monitoring. For instance, Zhou et al. (2011) use 

the DFI method to extract the features from an acoustic emission signal. An autoregressive 

moving average (ARMA) model was then utilized for predicting tool wear in a ball-nose cutter 

of a high-speed milling machine. Shi and Gindy (2007) employed the PCA method on multiple
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 sensor signals represented by a data matrix for the purpose of extracting important features 

related to tool wear. A least squares support vector machine (LS-SVM) method was further used 

to build a tool wear prediction model based on the extracted features. The methodology was 

applied to predict the wear in the teeth of a high-speed steel broaching tool. Li et al. (1999) 

applied a discrete wavelet transform to extract the features from acoustic emission and electric 

current signals. The extracted features were used for detecting the breakage of the tool in a 

drilling machine. A thorough review on different tool wear monitoring techniques can be found 

in Abellan and Subiron (2010).  

Tool wear monitoring of ultrasonic welding is more challenging than that of machining 

processes, as the former tool wear mechanism is more complicated and has not been thoroughly 

understood. In ultrasonic welding, high-frequency energy is used to produce acoustic sound 

waves. The generated vibration produces oscillating shears between thin metal sheets held 

together under a clamping force perpendicular to the interface between the workpieces. The 

clamping force and the oscillation lead to deforming the material and forming the final joining. 

Because of the high frequency oscillation and workpiece material deformation, a small relative 

movement of the contacting surfaces between the tool (anvil in Figure 2-1) and the workpiece is 

inevitable. This interaction will lead to anvil wear during the repeated welding operations.   

Figure 2-1 shows major components in an ultrasonic welding machine consisting of a 

controller, a transducer, a booster, a horn and an anvil. Both horn and anvil contain pyramid-

shaped teeth called knurls. The tool wear in ultrasonic welding is characterized based on the 

profile change of knurls’ shape. Figure 2-2 (a) shows an optical image of knurls in an anvil. The 

highlighted area (4 rows) shows the major welding area that is underneath the horn pads. Figure 

2-2 (b) gives the cross-sectional view of the knurl profiles at the highlighted area.  
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Figure  2-1: Ultrasonic welding system (Shao et al. 2013)  
 

 

(a) Optical image of an anvil 

 

 (b) Cross-sectional view of knurls profiles at the highlighted 4 rows 

Figure  2-2: Optical image of an anvil and knurl profiles 

The first purpose of this chapter is to develop an effective monitoring strategy for early 

detection of tool wear based on the knurls profile measurements (e.g. Figure 2-2 (b)) in an 

ultrasonic welding process. The second aim of the chapter is to analyze tool wear variation 

pattern and to identify unusual patterns caused by the misalignment of the anvil with respect to 

the horn. This would help improve the tool setup to increase the tool life. In the remainder of this 

section, existing research papers related to tool wear monitoring for ultrasonic metal welding will 

Row 3 

Row 4 

Row 1 
Row 2 
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be reviewed; moreover, the research challenges in using multidimensional data to early detect 

tool wear and unusual wear pattern will be summarized.  

Some previous research was conducted to use indirect process sensing signals for the tool 

wear monitoring in the ultrasonic welding. Shao et al. (2014) studied the relationship between 

the online vibration signals and tool conditions for predicting the remaining lifetime of an anvil. 

They constructed a prediction model using the FFT method to extract the dominant frequency of 

vibration signals as the response variable and the number of welds performed by the anvil as the 

predictor. The remaining tool life was predicted based on the prediction of the dominant 

frequency feature exceeding a preset threshold. This approach has two major drawbacks: one 

problem is that the preset threshold is sensitive to the materials and operating conditions. The 

other drawback is that even if the indirect process sensing signal shows dramatic change when 

the knurls are worn, it is impossible to analyze the spatial cross-correlation among knurls on the 

anvil. In practice, the information of wear pattern in the anvil would help find the root causes of 

unusual tool wear at an early stage to prevent severe production loss.    

Shao et al. (2016) used the FFT method to extract the monitoring features from the knurls 

profiles measurements. They subsequently built various classifiers on the extracted features to 

classify each anvil to one of four wear statuses predefined based on operating experience and 

engineering knowledge. Instead of their classification approach, another alternative way is to 

simply build a monitoring control chart based on the extracted FFT features (Kisic et al. 2015). 

However, some early slight wear appearing on the knurls’ profile shoulders (Figure 2-3) or the 

knurls’ peaks may not significantly affect the FFT features. Furthermore, if only one or a few 

knurls are worn in the same column of knurls, and the rest of knurls are normal, the FFT features 
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would not significantly change. Therefore, the FFT features are not sensitive in detecting the 

early or local wear of an anvil.  

In addition to the FFT features, two other features, which can be directly extracted from 

the knurl profile, were suggested by Shao et al. (2016) for classification. The first feature was the 

variability of the knurls’ heights. A decreasing trend in the knurls’ height variability indicates 

that the knurls start to wear off. The second feature was the average of the widths of the right and 

left shoulders as shown in Figure 2-3. The larger these shoulders are the more the knurls are 

worn. As it is shown in Subsection 2.3.2, using these simple features for tool wear monitoring is 

not always effective. This inefficacy reveals itself, for instance, when the peaks are slightly 

worn, or small wear occurs at only one side of a knurl (one shoulder). For the aforementioned 

reasons, an alternative method with the ability of detecting slight wear or asymmetric wear in the 

shape of knurls is needed (please see Subsection 2.3.2 for performance comparison).  

 

Figure  2-3: A knurl with shoulders appearing on both sides 

There are two key challenges in establishing an appropriate methodology for monitoring 

and analysis of tool wear in an ultrasonic metal welding process: the monitoring method must be 

able to promptly detect slight wear in the shape of knurls. The other challenge is to have the 

ability to systematically analyze spatial cross-correlation among different rows of knurls profiles. 



22 

 

Wear pattern analysis is very useful in identifying the associated root causes. For example, as 

shown in Figure 2-2, if the first two rows have more wear than that of Row 3 and Row 4, this 

may indicate a misalignment of the anvil with respect to the horn. Early correction of such a tool 

misalignment problem will help save production loss.    

To understand the shape difference between normal and worn knurls, a set of normal 

knurls profiles and worn knurls profiles are shown in Figure 2-4 (a) and Figure 2-4 (b), 

respectively. It can be clearly seen that normal knurls have a consistent profile shape change that 

is quite different from that of worn knurls. Therefore, the monitoring method can be set based on 

the change pattern (variation pattern) of the knurls profile shapes.   

 
(a) Overlap of four healthy knurls on an anvil 

 
(b) Overlap of four worn out knurls on an anvil 

Figure  2-4: Illustration of normal and worn knurl profiles  

PCA using singular value decomposition is one possible solution to analyze the 

multivariate variation pattern. In order to use PCA, the dataset must be represented by a matrix. 

For the tool wear analysis, the knurls’ profiles measured at one specific sampling time on an 

anvil should be sequentially stacked up and represented by a row vector. Hence, different rows 

of the matrix represent different anvil samples. As discussed before, the spatial correlation 

among the knurls at different rows of an anvil should be considered in the analysis. However, 

stacking up all knurls’ profiles will destroy such a spatial cross-correlation structure. To 
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overcome this shortcoming, a high-order array called tensor is suggested in the chapter to 

represent the multidimensional structure of tool wear data. Specifically, the ultrasonic tool wear 

dataset is represented by a three-way tensor including three dimensions defined as follows: the 

first dimension is the positional row index of knurls, the second dimension is the positional 

column index of knurls, and third dimension is the data point index of each knurl profile. Using 

such a multidimensional representation, the spatial correlation structure among different rows is 

clearly preserved. Analysis of this spatial correlation pattern can facilitate process fault 

diagnosis. For instance, if the knurls profiles wear in the first and second rows are positively 

correlated, it means that the knurls in these two rows are getting worn with a similar pattern. On 

the other hand, a negative correlation between two rows indicates that one row is getting worn 

faster than the other row. This unusual wear pattern is an indicator for the existence of a tool 

installation problem.  

Several authors have favored the use of a multidimensional array (tensor) representation 

when the dataset has more than two dimensions (He et al. 2005; Paynabar et al. 2013; Yan et al. 

2015). In this chapter, a high-order decomposition method called high-order singular value 

decomposition (HOSVD) is used to factorize the tensor representing the data and extract 

effective monitoring features afterwards. A multivariate monitoring chart will be constructed 

based on those extracted features.  

To sum up, the method suggested in this chapter aims at systematically analyzing the 

variation pattern of knurls profiles wear and extracting effective monitoring features for tool 

wear monitoring and root cause inference. In order to capture the spatial cross-correlation 

structure of the knurls among different rows, a high-order array is employed to represent the 

knurls’ profile measurements. For variation pattern analysis of such a tensorial dataset, the 
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HOSVD method is employed. The HOSVD method can systematically check whether spatial 

correlation exists among rows of knurls in the anvil (please see Subsection 2.3.1). Furthermore, a 

𝑇2 control chart is constructed to monitor the extracted features based on the HOSVD results. 

This will be discussed in detail in Subsection 2.2.2.   

The reminder of this chapter is organized as follows: Section 2.2 provides a brief review 

of different strategies including a high-order array for representing the data; additionally, the 

HOSVD method and the multivariate 𝑇2 control chart constructed based on the extracted 

monitoring features are discussed. A simulation study is conducted in Section 2.3 to show the 

superiority of the HOSVD method to the PCA and FFT methods in two aspects, namely, (1) 

effectively capturing the true variation pattern of the data, and (2) accurately detecting 

slight/early wear in the knurls. A case study is also performed in Section 2.4 to demonstrate the 

effectiveness of the proposed method.  

2.2 A Brief Review of Tensor Data Representation and the HOSVD-based 𝑻𝟐 Control 

Chart   

In this section, firstly, different data representation strategies are discussed. The basic 

notation relating to the tensor representation used throughout the chapter is introduced in 

Subsection 2.2.1 followed by some useful multilinear algebraic operations. Secondly, the 

HOSVD method and the 𝑇2 control chart constructed upon the extracted features from HOSVD 

are elaborated in Subsection 2.2.2. 

2.2.1 Data Representation and Basic High-order Algebraic Operations  

Table 2-1 lists all the symbols used in this chapter. Two fairly different strategies are 

used to represent the tool wear data. A simple matrix representation called low-order 

representation is a classical way to represent a dataset. A matrix  𝐗 ∈ ℝ24×924 is used to 
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represent the knurls’ profiles shown in Figure 2-2. In the following analyses, this is called 

Representation I. The number of rows in this matrix indicates that each anvil has 24 columns of 

knurls, and the number of columns (4 × 231 = 924) represents the stacked-up rows of knurls’ 

profiles with each knurl profile having 231 data points. As discussed before, the spatial cross-

correlation among different rows of knurls on an anvil breaks down in Representation I. 

Alternatively, a different low-order representation 𝐘 ∈ ℝ96×231 denoted as Representation II can 

also be used, where each knurl profile is considered as a row in matrix 𝐘, and 96 (24 × 4 = 96) 

rows of matrix 𝐘 correspond to stacked-up rows of 24 columns of knurls. In this way, the cross-

correlations among different rows and different columns are mixed together and cannot be 

distinguished.  

Table 2-1: List of symbols 

x Scalers 

x Vectors 

X Matrices 

𝐗(𝑛) the 𝑛th matrix in a group of matrices 

𝓧 𝐼1×𝐼2×…×𝐼𝑁  An 𝑁-dimensional (𝑁th-order) tensor 

𝐼𝑛 the number of elements in the 𝑛th order 

𝑥𝑖1𝑖2…𝑖𝑛 𝑖1𝑖2… 𝑖𝑛th element in tensor 𝓧 𝐼1×𝐼2×…×𝐼𝑁  

The tool wear dataset shown in Figure 2-1 (b) can be, furthermore, represented by a 3
rd

-order 

tensor 𝓧4×231×24 with 4 rows as Mode 1, 231 data points of each knurl profile as Mode 2, and 

24 columns of knurls on an anvil as Mode 3. Some commonly used multilinear algebraic 

operations for tensors are introduced as follows: 

(1) Tensor matricization: It is used to transform a tensor into a matrix. Specifically, for 

mode-𝑛 matricization, each row vector of the new matrix is obtained by stacking up the elements 

of all other modes, and the number of rows is equal to In, i.e., the resultant matrix 𝐗(𝑛) has the 

dimension of  𝐼𝑛 × 𝐼1𝐼2… 𝐼𝑛−1𝐼𝑛+1…𝐼𝑁. That is, when matricizing a tensor, the 𝑖1𝑖2…𝑖𝑁th 
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element in the tensor 𝓧 𝐼1×𝐼2×…×𝐼𝑁 is mapped to element (𝑖𝑛, 𝑗) of matrix 𝐗(𝑛), where 𝑗 = 1 +

∑ (𝑖𝑘 − 1)
𝑁
𝑘=1
𝑘≠𝑛

𝐽𝑘 and 𝐽𝑘 = ∑ 𝐼𝑚
𝑘−1
𝑚=1
𝑚≠𝑛

.  

(2) Tensor vectorization: Tensor vectorization is simply the process of rearranging the 

tensor 𝓧 𝐼1×𝐼2×…×𝐼𝑁 to produce a vector 𝐯 with size 𝐼1𝐼2…𝐼𝑁.  

(3) Tensor-matrix product: It generally yields a new tensor. Specifically, mode-𝑛 product 

of a tensor 𝓧 𝐼1×𝐼2×…×𝐼𝑁 by a matrix 𝐔 ∈ ℝ𝐽×𝐼𝑛  is denoted 

by 𝓨 = 𝓧×𝑛 𝐔 ∈ ℝ
𝐼1×𝐼2×…×𝐼𝑛−1×𝐽×𝐼𝑛+1×…×𝐼𝑁. Each element of the resulting new tensor is 

obtained as 

                                               𝒴𝑖1𝑖2…𝑖𝑛−1𝑗𝑖𝑛+1…𝑖𝑁 = ∑ 𝑥𝑖1𝑖2…𝑖𝑁𝑢𝑗𝑖𝑛
𝐼𝑛
𝑖𝑛=1

                                     (2-1) 

where 𝑢𝑗𝑖𝑛 is element (𝑗, 𝑖𝑛) in matrix 𝐔.  

(4) Tensor-vector product: It is a special case of tensor-matrix product. Specifically, the 

mode-𝑛 product of a tensor 𝓧 𝐼1×𝐼2×…×𝐼𝑁  by a vector 𝐯 ∈ R𝐼𝑛 is defined as                                                    

(𝓧 ×𝑛 𝐯)𝑖1𝑖2…𝑖𝑛−1𝑖𝑛+1…𝑖𝑁 = ∑ 𝑥𝑖1𝑖2…𝑖𝑁𝑣𝑖𝑛
𝐼𝑛
𝑖𝑛

, where 𝑣𝑖𝑛is the 𝑖𝑛th element of vector 𝐯. This mode-

𝑛 tensor-vector product changes the tensor order from 𝑁 into 𝑁 − 1. For a comprehensive 

review regarding the multilinear algebra and high-order decomposition methods, the interested 

readers can refer to Kolda and Bader (2009).   

2.2.2 HOSVD Method and HOSVD-based 𝐓𝟐 Control Chart Construction 

The general idea in HOSVD known as Tucker decomposition is to factorize a tensor            

𝓧𝐼1×𝐼2×…𝐼𝑁 into a core tensor denoted by  𝜳𝑘1×𝑘2×…×𝑘𝑁 using a set of factor matrices 𝐕(𝑛) ∈

ℝ𝐼𝑛×𝑘𝑛; n = 1, 2,…, N, where 𝑘𝑛 < 𝐼𝑛 is the number of components in mode 𝑛. In the context of 

ultrasonic welding dataset, a tensor 𝓧4×231×24 is used to represent the dataset. The factor 

matrices 𝐕(1) ∈ ℝ4×𝑘1, 𝐕(2) ∈ ℝ231×𝑘2 and 𝐕(3) ∈ ℝ24×𝑘3 are the matrices of singular vectors 
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for Mode 1, Mode 2 and Mode 3, respectively.  Note that the HOSVD method enables the 

practitioners to choose different number of components 𝑘𝑛 for each mode 𝑛, and the number of 

components can be determined based on a predefined threshold of the explained variability. To 

obtain the optimal orthogonal singular vectors for HOSVD, the objective function defined in Eq. 

(2-2) is to minimize the 𝐿2 norm of the residuals which are the difference between the original 

tensor 𝓧  and the approximated tensor �̂� = 𝜳 ×1 𝐕
(1) ×2 𝐕

(2) ×3 …×𝑁 𝐕
(𝑁) (De Lathauwer et 

al. 2000); i.e.,  

Minimize ‖𝓧 −𝜳 ×1 𝐕
(1) ×2 𝐕

(2) ×3 …×𝑁 𝐕
(𝑁)‖

2

2
, or equivalently 

Maximize 𝜳 = 𝓧×1 𝐕
(1)𝑇 ×2 𝐕

(2)𝑇 ×3 …×𝑁 𝐕
(𝑁)𝑇 

                                                  s.t: 𝐕(𝑛)
𝑇
𝐕(𝑛) = 𝐈; 𝑛 =  1, 2, … ,𝑁,                                     (2-2) 

Unlike the regular low-order SVD, there is no closed-form solution for the high-order 

decomposition problem in Eq. (2-2). In practice, the problem is solved iteratively by fixing all 

factor matrices but one factor matrix in mode 𝑛; 𝑛 =  1, 2, … , 𝑁, and obtaining the solution for 

mode-n’s factor matrix. This procedure can be repeated for all other factor matrices in different 

modes. Figure 2-5 gives the high-order orthogonal iterations (HOOI) algorithm proposed by De 

Lathauwer et al. (2000).  

Initialize 𝐕(𝑛) ∈ ℝ𝐼𝑛×𝑘𝑛, for n =1, 2, ..., N 

Repeat until convergence or maximum iteration reached 

For n = 1, 2, ..., N do 

𝓖 = 𝓧×1 𝐕
(1)𝑇…×𝑛−1 𝐕

(𝑛−1)𝑇 ×𝑛+1 𝐕
(𝑛+1)𝑇…×𝑁 𝐕

(𝑁)𝑇 ∈ ℝ𝑘1×𝑘2×…𝑘𝑛−1×𝐼𝑛×𝑘𝑛+1×…𝑘𝑁 

matricize tensor 𝓖, apply SVD, and choose 𝐕(𝑛) to be the left leading 𝑘𝑛 singular vectors   

End for
  
 

 𝜳 = 𝓧 ×1 𝐕
(1)𝑇 ×2 𝐕

(2)𝑇…×𝑁 𝐕
(𝑁)𝑇 

Convergence criterion: in each iteration k, stop if for all n =1, 2, …,N,  ‖𝐕𝑘
(𝑛)
− 𝐕𝑘−1

(𝑛)
‖
2
< 휀 , 

where 휀 is a        small value                   

Return 𝜳,𝐕(1), 𝐕(2), … , 𝐕(𝑁) 
 

End procedure                                 

Figure  2-5: High-order orthogonal iteration algorithm (De Lathauwer et al. 2000) 
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After decomposing the original tensor of data 𝓧4×231×24 (𝐼1 = 4, 𝐼2 = 231, and 𝐼3 =

24), the monitoring features can be obtained by projecting the centralized tensor 𝓧4×231×24 

using the knurls profiles factor matrix 𝐕(2) ∈ ℝ231×𝑘2; that is, the tensor of scores is obtained as        

                                                                𝓩 = 𝓧×2 𝐕
(2)𝑇                                                         (2-3) 

where 𝓩 ∈ ℝ4×𝑘2×24 is the tensor of scores. The number of components 𝑘𝑛; 𝑛 = 1, 2, 3, can be 

determined based on the explained variance defined as 
‖𝜳‖2

2

‖𝓧‖2
2, where 

𝜳 = 𝓧 ×1 𝐕
(1)𝑇 ×2 𝐕

(2)𝑇 …×𝑁 𝐕
(𝑁)𝑇 is the core tensor, 𝓧 is the original tensor representing the 

data, ‖𝓧‖2
2 is the squared Frobenious norm of tensor 𝓧, and it is defined as 

‖𝓧‖2
2 = ∑ ∑ …

𝐼2
𝑖2=1

𝐼1
𝑖1=1

∑ 𝑥𝑖1𝑖2…𝑖𝑁
2𝐼𝑁

𝑖𝑁=1
. Tensor 𝓩 can be transformed into a matrix 𝐙 ∈ ℝ24×4𝑘2  via 

tensor matricization over Mode 3. Rows of matrix 𝐙 are considered as samples used to estimate 

the mean vector and covariance matrix of the extracted features.  

As discussed, the construction of the HOSVD-based 𝑇2 control chart involves two steps. 

(1) Using the algorithm in Figure 2-5 to estimate the matrix of singular vectors (factor matrices) 

based on the data from normal anvils. The features are computed as in Eq. (2-3), and a 24 × 4𝑘2 

matrix of features is obtained. (2) An appropriate control chart is constructed for monitoring the 

extracted features. Since there is usually more than one feature, a multivariate 𝑇2 control chart is 

set up to monitor these 𝑝 = 4𝑘2 extracted features. The details will be shown in the case study 

provided in Section 2.5. Let  𝐳𝑖 ∈ ℝ
4𝑘2×1 denote the ith row of matrix 𝐙, then the 𝑇𝑖

2 statistic can 

be computed as  
 
 

                                 𝑻𝑖
2 = (𝐳𝑖 − �̅�)

𝑇𝐒−1(𝐳𝑖 − �̅�); 𝑖 =  1, 2, … , 𝐼3 = 24,                               (2-4)  

where the 𝑗th element of mean vector �̅� is 
∑ 𝑧𝑖𝑗
24
𝑖=1

24
, 𝑧𝑖𝑗 is the 𝑗th element of the vector 𝐳𝑖 for 

𝑗 = 1,2, … , 𝑝 = 4𝑘2, and 𝐒 ∈ ℝ𝑝×𝑝 is the sample covariance matrix of features estimated using 
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in-control 24 samples represented by matrix 𝐙 (Hotelling 1947). Provided that the features follow 

a normal distribution, the upper control limit is computed as UCL =
𝑝( 𝐼3+1)(𝐼3−1)

𝐼3(𝐼3−𝑝)
𝑓𝛼,𝑝,𝐼3−𝑝 in 

Phase II and UCL =
(𝐼3−1)

2

𝐼3
𝛽
𝛼,
𝑝
2⁄ ,
(𝐼3−𝑝−1)

2⁄
 for Phase I, where 𝑓𝛼,𝜈1,𝜈2 is the (1 − 𝛼)100

th
 

percentile of an F distribution with 𝜈1 and 𝜈2 degrees of freedom, and 𝛽𝛼,𝑎,𝑏  is the (1 − 𝛼)100
th

 

percentile of a Beta distribution with parameters 𝑎 and 𝑏 (Tracy, Young, and Mason 1992). In 

case the features do not follow a normal distribution, the upper control limit can be obtained 

using the empirical distribution of 𝑇𝑖
2’s. When the PCA transform is used for a low-order data 

representation, a similar procedure is followed for constructing a  𝑇2 chart using the transformed 

PC features. 

2.3 Performance Comparison of the HOSVD, PCA and FFT Methods 

In general, there are two key aspects to be considered when analyzing tool wear data in 

an ultrasonic welding process. The first important issue is studying the correlation structure of 

the knurls across different rows of an anvil. This is helpful in understanding the knurls’ wear 

pattern on an anvil. For this purpose, Subsection 2.3.1 shows the superiority of HOSVD to PCA 

in capturing the true correlation structure of the data. The second favorable aspect is that the 

monitoring method can effectively detect worn knurls at an early wear level. Subsection 2.3.2 

provides a performance comparison among four control charts established based on the HOSVD, 

PCA, FFT and the knurls’ height methods. 

2.3.1 Comparison of HOSVD and PCA in Capturing the Correlation Structure  

In this subsection, a surrogated simulation study is conducted to compare the 

performance of HOSVD and PCA in explaining the spatial cross-correlation among the rows of 

knurls on an anvil. Since FFT does not provide any information regarding the variation pattern of 

the data, it is excluded from this comparison. A set of tensorial data represented by tensor 
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𝓧 ∈ ℝ4×231×24 is generated to represent an anvil having 4 rows of knurls with each row 

containing 24 columns of knurls. Each knurl is represented by a profile having 231 data points. 

The elements of tensor 𝓧 are denoted by 𝑥𝑖𝑗𝑘 corresponding to the 𝑗th point of a knurl profile 

located on Row 𝑖 and Column k on an anvil. The simulation condition is set such that Row 1 and 

Row 2 have the same high variance. Row 3 and Row 4 have equal low variances. Furthermore, 

Row 1 and Row 2 are positively correlated while there is a negative correlation between Row 3 

and Row 4. These parameters are specifically represented by                                 

                                    𝜎𝑅1
2 = 𝜎𝑅2

2 > 𝜎𝑅3
2 = 𝜎𝑅4

2 , 𝜌𝑅1𝑅2 > 0 and 𝜌𝑅3𝑅4 < 0                               (2-5) 

where σ𝑅𝑖
2  is the variance of Row 𝑖, and 𝜌𝑅𝑖𝑅𝑗is the correlation between Row 𝑖 and Row 𝑗. In this 

simulation, these parameters are specified as σ𝑅1
2 = σ𝑅2

2 = 100 > σ𝑅3
2 = σ𝑅4

2 = 60, 𝜌𝑅1𝑅2 = 𝜌, 

 𝜌𝑅3𝑅4 = −𝜌, and 𝜌 = 0.5. In order to simulate the knurls profiles, a mixed-effect model is used, 

which is defined as                                  

                           𝐲𝒌
(𝒊)
= 𝐁(𝒊)(𝛃(𝒊) + 𝐫𝒌

(𝒊)
) + 𝛆𝒌

(𝒊)
       𝒌 =  𝟏, 𝟐, … , 𝟐𝟒; 𝒊 =  𝟏, 𝟐, 𝟑, 𝟒              (2-6) 

where 𝐲
𝑘
(𝑖) is the 231×1 vector of the 𝑘th knurl profile in Row 𝑖, 𝐁(𝑖) is the 231× 𝐿 matrix of B-

spline basis values with 𝐿 knots. The vector of fixed-effect coefficients is denoted by 𝛃(𝑖) ∈

ℝ𝐿×1, and it is computed as follows: a set of normal knurls is selected from the dataset, and each 

knurl profile is regressed on B-spline basis values stored in matrix 𝐁(𝑖). The coefficients are 

computed using the least-square method. The mean vector of the computed coefficients is 

considered as the vector of fixed-effect B-spline coefficients 𝛃(𝑖). 𝐫𝑘
(𝑖) ∈ ℝ𝐿×1 is the vector of 

random-effect coefficients that are normally distributed with a zero mean vector and the 

covariance matrix 𝐔 ∈ R𝐿×𝐿 with elements given in Eq. (2-5). The vector of random errors 

𝛆𝑘
(𝑖)
∈ ℝ231×1 is assumed to follow a normal distribution with a zero mean vector and the 
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diagonal covariance matrix 𝜎ε
2𝐈. In this chapter, the random errors’ variability is 𝜎ε

2 = 0.1 and 

𝐈 ∈ ℝ231×231 is an identity matrix. An important property of the mixed-effect model in Eq. (2-6) 

is that it has a high flexibility in modeling the cross-correlation among different rows of an anvil.  

Both the HOSVD and PCA methods are applied to the simulated data. Table 2-2 gives 

the percentage of explained variance by the first three components of each method. PCA I and 

PCA II denote the PCA method applied to Representation I (𝐗 ∈ ℝ24×924) and Representation II 

(𝐘 ∈ ℝ96×231) defined in Subsection 2.2.1, respectively.  

Table  2-2: Percentage of explained variance by the components of HOSVD and PCA methods 

 Method 

Number of components HOSVD (%) PCA I (%) PCA II (%) 

1 30.22 27.33 40.33 

2 24.66 23.40 28.3 

3 12.05 15.61 21.01 

Total explained variability 66.93 66.34 89.64 

Figure 2-6 (a) shows the first singular vector of HOSVD method for Mode 1, where Row 

1 and Row 2 have the largest weights among all 4 rows. This result is expected because the first 

two rows are set to have the highest variability in the simulation. Moreover, the simulated 

positive correlation between Row 1 and Row 2 is well captured by this singular vector. The 

second singular vector computed by HOSVD is plotted in Figure 2-6 (b). It can be observed that 

the HOSVD method gives almost zero weights to Row 1 and Row 2, while Row 3 and Row 4 

have a large weight with an opposite sign reflecting the negative correlation between Row 3 and 

Row 4.  
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(a) First Mode-1 singular vector 

 

(b) Second Mode-1 singular vector 

Figure  2-6: First and second singular vectors computed by HOSVD method 

Figure 2-7 uses the eigentensors of HOSVD to illustrate the variation pattern in Mode 1 

and Mode 2 simultaneously, where the eigentensor for the 𝑙th component is calculated as 

𝐯(1) ∘ 𝐯(2)  with 𝐯(1) ∈ ℝ4×1 and 𝐯(2) ∈ ℝ231×1 corresponding to the 𝑙th columns of factor 

matrices 𝐕(1)and 𝐕(2), respectively, and " ∘ " denoting the outer product between two vectors. As 

expected, in the first eigentensor (Figure 2-7), Row 1 and Row 2 have the highest weights with a 

positive correlation, while in the second eigentensor shown in Figure 2-7 (b), Row 3 and Row 4 

are highlighted with a negative correlation.  

For comparison, the PCA method is further applied to the simulated dataset with 

Representation I (𝐗 ∈ ℝ24×924) and Representation II (𝐘 ∈ ℝ96×231). The first and second 

eigenvectors estimated by PCA I are plotted in Figure 2-8 (a) and Figure 2-8 (b), respectively.  

 
(a) First eigentensor 

 
(b) Second eigentesor 

Figure 2-7: Eigentesors estimated by the HOSVD method 
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Different from the HOSVD’s results in Figure 2-7, Figure 2-8 shows that both eigenvectors of 

PCA I reflect the large variability of Row 1 and Row 2, and the negative correlation between 

Row 3 and Row 4 is not obviously reflected by the second eigenvector. This shows that PCA 

cannot fully capture the correlation of Rows 3 and 4. 

 
(a) First eigenvector obtained using PCA 

 
(b) Second eigenvector obtained using PCA 

Figure  2-8: First and second eigenvectors estimated by PCA I 

Figure 2-9 shows the first and second eigenvectors of PCA II results. As expected, PCA 

II cannot provide any information regarding the correlation structure of the rows due to the way 

the data are represented.  

 
Figure  2-9: First and second eigenvectors estimated by PCA II 
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The above comparison suggests that the HOSVD method has been able to more 

effectively capture the true spatial cross-correlation structure among the rows of knurls on an 

anvil. In practice, this correlation structure is sensitive to the relative position of the anvil to the 

workpiece/horn in the ultrasonic welding machine, and it can reflect the fact whether the anvil is 

properly set up or not. Therefore, the HOSVD method is suggested in this chapter to monitor the 

tool wear with a diagnostic capability of identifying the anvil’s misalignment problem.  

2.3.2 Monitoring Performance Comparison  

A 3D microscope was utilized to measure the tool surfaces, and the knurl heights were 

extracted from the surface measurements. In this subsection, four different methods for 

monitoring the tool wear data are compared: (1) the HOSVD-based 𝑇2 control chart, (2) PCA-

based control chart, (3) FFT-based control chart, and (4) a control chart to monitor the knurls’ 

height. The FFT method is applied to each column containing four knurls on an anvil in order to 

extract the frequency-domain features for representing the repeated pattern. Frequency-domain 

features are the amplitudes corresponding to the dominant frequencies obtained from FFT 

method applied to each column of knurls profiles. Figure 2-10 (a) shows one column of 4 knurls 

profiles, and the frequency-domain profile is plotted in Figure 2-10 (b) with sampling frequency 

set to 5.5. For the fourth method, to calculate the height of the knurls profiles, firstly, a general 

baseline is determined as the lowest point of knurls profiles on an anvil. Secondly, using this 

baseline, for the normal knurls, the height of the knurls is calculated as the distance between the 

peak (the highest point on the knurl profile) and the baseline point. For a worn knurl with 

shoulders as shown in Figure 2-3, the height is the difference between the lower shoulder and the 

baseline. Finally, for a completely worn knurl, the height is the distance between the flat line on 

the top and the baseline.      
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(a) Knurls profiles in one column 

 
(b) Frequency-domain profile 

Figure 2-10: A column of knurls for FFT and FFT result 

The monitoring performance of all methods is assessed using a simulation study 

performed in two different scenarios. In the first scenario (Scenario I) as shown in Figure 2-11 

(a), all four rows of knurls located in one column are worn, while in Scenario II as shown in 

Figure 2-11 (b), two rows of knurls are completely healthy and the other two rows of knurls are 

slightly worn. The in-control knurls are all simulated using the mixed-effect model in Eq. (2-6). 

A set of slightly-worn knurls are used to calculate the fixed-effect coefficients in the mixed-

effect model to simulate the out-of-control knurls. Four different values of correlation coefficient 

𝝆 = 0.1, 0.5, 0.7 and 0.95 are considered for the cross-correlation among the rows. The cross-

correlation between Row 1 and Row 2 is positive while Row 3 and Row 4 have negative 

correlation. Either the correlation between Row 1 and Row 3 or the correlation between Row 2 

and Row 4 is negligible. A set of 400 anvils is simulated using the above-mentioned procedure. 

Each anvil contains 4 rows with each row having 24 columns of knurls. Note that in Scenario II 

as shown in Figure 2-11 (b), two out of four rows in each column are arbitrarily selected. Then, 

in each simulation run, a set of slightly-worn knurls are simulated. This way of the simulation 

enables us to generate a completely random wear pattern on the anvils.  
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As discussed in Subsection 2.2.1, the dataset can be represented in three ways. Based on 

Representation I, a 9600 × 924 matrix can represent the whole simulated dataset. Following 

Representation II, the dataset is represented using a 38400 × 231 matrix. The third way is to use 

a tensor representation with the dimension of 4 × 231 × 9600 . The PCA method is applied to 

above two matrix representations.  

 
(a) Scenario I: all knurls are worn 

 
(b) Scenario II: two out of four knurls are worn 

Figure 2-11: Simulated in-control and out-of-control knurls in a column of anvil 

For PCA I method, 7 components are used for constructing the monitoring chart since 

they are sufficient to cover 90% of the data variability. For PCA II method, four PC features can 

explain about 90% of the data variability. When the HOSVD method is applied to the tensor of 

data directly, in order to represent 90% of the variability of the data, we need to use 4 

components for the row’s mode, 3 for the knurls profiles mode, and 6 for the columns of knurls 

mode. For the FFT method, since the first frequency feature is sufficient to explain about 99% of 

the signal’s energy, only this feature is used for constructing the associated control chart. After 

extracting the monitoring features using each method, a 𝑇2 control chart is used for monitoring 

the features extracted from the PCA and HOSVD methods. A Shewhart control chart is used for 

monitoring the magnitude of the dominant frequency in the FFT method. In addition, the knurls’ 

heights are monitored using a Shewhart control chart.  
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 To compare the monitoring performance, in each simulation run, 400 in-control anvils 

are generated, and the Type-I error rate of each method is computed as the proportion of out-of-

control samples to all simulated samples. In this study, 10000 simulation runs are conducted. The 

final estimation of the Type-I error rate is computed by averaging the Type-I error rates of the 

10000 runs’ results. The upper control limit is then set in such a way resulting in an overall 

Type-I error rate equal to 0.5%. The probability of triggering an alarm for detecting worn knurls, 

i.e., detection power, is used as a criterion for comparing the detection performance of 

aforementioned three methods.   

Figure 2-12 (a) gives the detection power of all four methods under different correlation 

coefficients 𝜌 in Scenario I. The HOSVD-based method outperforms all other methods except 

when the cross-correlation among the rows is 𝜌 = 0.1. In this case, the FFT method performs 

slightly better than HOSVD-based 𝑇2 chart. The detection power of the HOSVD-based 𝑇2 chart 

increases with the increase of the cross-correlation since the tensor data representation can truly 

preserve the actual data cross-correlation structure among the rows as discussed in Subsection 

2.3.1. The two PCA-based charts perform almost similarly in detecting the out-of-control 

situation and their performance is also not affected significantly by the amount of correlation 

among the rows. As expected, the control chart constructed based on the knurls’ heights has 

shown poor performance in detecting slightly-worn knurls. In Scenario II, it is observable in 

Figure 2-12 (b) that the HOSVD-based 𝑇2 chart significantly outperforms all other methods. 

Based on these findings, it can be concluded that the HOSVD-based method is a more reasonable 

option for monitoring the tool wear data when a strong cross-correlation exists.  
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(a) Scenario I 

 

(b) Scenario II 

Figure 2-12: Probability of signal with regard to different correlation coefficients 

2.4 Case Study 

This section presents the results of applying the HOSVD-based method for monitoring 

the wear of knurls using a real production dataset. The dataset consists of five anvils: Anvil 1 is 

new, and Anvils 2~5 are ordered with increasing wear levels. The HOSVD method is used to 

extract the features followed by a 𝑇2 control chart constructed based on the extracted features. 

To explain 90% of the data variability, the number of components in Mode 1, Mode 2 and Mode 

3 are chosen as 𝑘1 = 4, 𝑘2 = 3 and 𝑘3 = 2, respectively. Hence, the tensor scores 𝓩 given in Eq. 

(2-3) is a 4 × 3 × 24 tensor, and the matrix of extracted monitoring features is represented 

by 𝐙 ∈ ℝ24×12 for constructing the 𝑇2 control chart Figure 2-13 shows the 𝑇2 control chart for 
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all five anvils. Each point on the control chart represents the 𝑇2 statistic computed for a column 

of knurls on an anvil; as a result, a set of 24 points represents one anvil. The control limit and the 

parameters are estimated using the new Anvil 1 with all the 24 𝑇2 statistics being within the 

control limit. Since some of the knurls on Anvil 2 are slightly worn, there are some out-of-

control points in the chart. In Anvil 3, most of knurls are severely and completely worn; as a 

result, all points are out of control, and this is the same for Anvil 4 and Anvil 5. The 

aforementioned observations show that the proposed control chart can effectively detect the worn 

knurls at different statuses.  

  
Figure 2-13: 𝐓𝟐 control chart to monitor knurls’ wear in all five anvils 

To further verify the accuracy of the proposed method, Column 56’s knurls are compared 

to those of Column 57 marked in Figure 2-13.  Since the 56
th

 𝑇2 statistic is much higher than the 

57
th

 𝑇2 statistic, it is expected that the knurls in the 56
th

 Column are more worn than those in the 

57
th

 Column. Figure 2-14 compares the knurls for Column 56, Column 57 and a normal knurl 

without any wear, in which the 4 rows of knurls are compared separately in Figure 2-14 (a)~(d), 

respectively. Figures 2-14 (a) and  2-14 (b) clearly show that the knurls in Row 1 and Row 2 of 

Column 56 are completely worn. In contrast, Column 57’s knurls are only slightly worn. The 

knurls of Row 3 and Row 4 shown in Figures 2-14 (c) and 2-14 (d) do not show a significant 
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difference in the wear levels between Column 56 and Column 57. Hence, it is concluded that the 

severe wear level in Row 1 and Row 2 is responsible for the high value of 𝑇2 statistic in Column 

56.  

 
   (a) Row 1                                       (b) Row 2 

 
    (c) Row 3                                     (d) Row 4 

Figure  2-14: Visual comparison of Column 56 versus Column 57 

As discussed in Subsection 2.3.1, one of the strengths of the HOSVD method is its 

superior capability in the analysis of the variation pattern for the tensor data, or specifically in 

this case,  explicit analysis of the cross-correlation among different rows of knurls in an anvil. 

This can help provide information regarding the knurls’ wear pattern on the anvil and show 

whether the anvil is misaligned or not. As an example, Figure 2-15 shows completely worn 

knurls in Row 1 and Row 2 while less wear can be seen in Row 3 and Row 4. The proposed 

HOSVD method is applied to this anvil data using the tensor representation. The resultant Mode-

1 singular vectors are plotted in Figure 2-16, in which the first singular vector gives an average 

of all four rows while the second singular vector clearly shows the negative cross-correlation of 
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Rows 1 and 2 with Rows 3 and 4. This negative cross-correlation, as pointed out, reflects the 

unusual wear pattern on the anvil due to the misalignment in the anvil installation. 

 

Figure 2-15: Visualization of a misaligned anvil 

 
(a) first component 

 
(b) Second component 

Figure 2-16: Mode-1 singular vectors obtained using HOSVD method 
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  CHAPTER 3

ROBUST GENERALIZED SVD WITH CORRELATED NOISE AND OUTLIERS 

3.1 Introduction 

Using images for monitoring the quality of a process is nowadays appealing due to the 

rich information that can be provided by these images about a product. In many industrial 

applications, the type of information typically needed for quality control is mainly about some 

characteristics of the products, such as geometry, aesthetic features, surface defects, etc. 

Analyzing images can provide updated information regarding the critical quality characteristics 

with high precision. One practical example of image analysis for process quality monitoring can 

be found in billets defect monitoring. Billets are manufactured by solidifying the liquefied metal 

in a hot rolling process. The billets are further operated to be final products. A critical feature 

that must be inspected to ensure that the billets are qualified for use in the next stage is the 

quality of the surface which must be free of defects (see Figure 3-1).  

Although human visual inspection conventionally was an admitted strategy for finding 

the defects, it is a cumbersome procedure, because the number of images that must be evaluated 

is very large due to the high production rate. This problem affects both the accuracy and speed of 

the evaluations. Having such problems in human-vision inspections led to the emergence of 

machine-vision system (MVS) which is basically a computer performing all the required steps 

for image analyses including data acquisition, preprocessing, feature extraction and monitoring 

(Megahed et al., 2011).   
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 (a) a faultless billet 

 
(b) a defective billet 

Figure  3-1: Images of billets 

All MVSs consist of some common steps that must be performed sequentially. Data 

acquisition is basically the utilization of cameras in order to capture the images. After the data-

acquisition step, a preprocessing step which typically includes noise reduction, compression and 

contrast increase is performed on the images. In the next step, the images are analyzed in order to 

extract the useful features, and finally a control chart is used for monitoring the extracted 

features. It is worth mentioning that in some cases the purpose of image analysis is to locate the 

defects and to determine the boundaries of the defects on an image (Yan et al., 2015). However, 

this chapter focuses mainly on developing a general methodology for feature extraction and 

dimension reduction, which can be a vehicle for image-based monitoring. 

Several techniques are developed in the imaged-based process monitoring literature with 

a vast variety of applications. Megahed et al. (2011) provided a thorough review about the 

methods typically used for image-based monitoring. In some applications where the geometric 

features of a product must be monitored, image processing techniques can be applied as an 

intermediate tool for extracting the required features. For instance, using edge detection methods, 

Tan et al. (1996) extracted the length, width, and the area of extruded food like corn puffs from 

some images. X-bar control charts, subsequently, were used to monitor the extracted features. 

Defect 
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Nembhard et al. (2003) used an integrated method for monitoring the color quality in plastic 

products. An EWMA control chart is used to monitor hue as a metric representing the color 

quality, which is determined using some images taken from a strip of high-density polyethylene 

tape.  

Another interesting application of image-based monitoring is in the flotation process 

widely used for concentrating metal-bearing mineral in an ore. The color and structure of froth 

flotation on the surface can be indicators for the type of minerals in the froth and some flotation 

characteristics, such as degree of mineralization. Liu et al. (2005) applied the principal 

component analysis (PCA) method to the image data and extracted the first two important 

principal components (PC). A masking process was developed in the PC scores’ space to extract 

the color features corresponding to the froth. Wavelet decomposition method was subsequently 

applied to the PC features to determine the structural features of the froth, like the histogram of 

bubble size. To detect any abnormality in the new images, a control chart is used to monitor the 

residuals obtained from a new image and the image reconstructed using the PCA model in Phase 

I.   

A Hotelling’s  𝑇2 control chart was suggested by Liu and MacGregor (2006) to monitor 

aesthetic and visual appearance of products like countertop stones. The idea was to apply the 

wavelet texture analysis method based on a 2D discrete wavelet transform with the purpose of 

extracting the textural features. A dimension reduction method such as PCA was afterwards 

employed to reduce the dimension of extracted features. The extracted PC scores were monitored 

using the  𝑇2 control chart. With a rather similar purpose, Lin (2007) took advantage of wavelet 

decomposition method to extract the textural features of the images taken from surface barrier 

layer chips of ceramic capacitators. A  𝑇2 control chart was constructed based upon the extracted 
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features for monitoring the surface for detecting ripple defects. Lin et al. (2008) combined the 

wavelet decomposition method with PCA in order to detect the defects in a light-emitting diode 

(LED) chip and concluded that the combined wavelet-PCA chart has favorable monitoring 

abilities. Using singular value decomposition (SVD), Lu and Tsai (2005) removed the 

background texture of LCD panels by reconstructing the images using the eigenvectors 

corresponding to the small eigenvalues. An X-bar control chart was subsequently used for 

monitoring the defects on the surface of LCD panels.  

As it can be seen in the image-based monitoring literature, the decomposition methods, 

such as SVD (PCA) play an essential role in forming the basis for process monitoring. The 

rationale behind using a decomposition method for image data analysis in addition to dimension 

reduction can be explained based on the fact that the singular vectors are informative sources for 

analyzing the variation pattern of the images’ pixel intensities. Pixel intensity reflects the gray 

intensity in the texture of an image, and it usually ranges from 0 to 255. The low intensity of a 

pixel shows that the color is almost black while high intensity in a pixel means that the color is 

closer to white in that pixel. The important point is that when there is no defect in a specific area 

of an image, the pixel intensities should not dramatically vary from one pixel to another; as a 

result, the corresponding singular vector must demonstrate the random (natural) variability of the 

pixel intensities in that area depending on the amount and type of noise in the image. However, 

the pixel intensities around the defective area shows higher variability, and the associated 

singular vector must demonstrate this fact by assigning higher loads on the involved variables 

(Figure 3-2).The discrepancy in the singular vector space of the defective and faultless areas 

gives the motive for basing the defect monitoring scheme on the features extracted by a 

decomposition method, such as SVD.     



48 

 

 

 
Figure  3-2: Pixel intensities’ variation patterns for normal and defective areas 

Due to some issues, such as sensor errors, technical faults in data acquisition equipment, 

abrupt system failures, inappropriate illuminations, etc., some of the images might have 

unfavorable visibility. These abnormal images are typically called outliers whose existence is 

problematic in the sense that they drastically influence the accuracy of the estimates (Figure 3-3). 

In the context of decomposition methods like SVD, since some images are used for estimating a 

baseline singular vector in phase I, which will be used as a reference for online monitoring in 

Phase II, the abnormal images in the initial dataset will misrepresent the true singular vector, and 

the characteristics of a normal image will not be correctly captured.    

defective area 
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(a) normal image 

 
(b) underexposed image (too dark) 

 
(b) overexposed image (too bright) 

Figure  3-3: Different types of outlier images 

Many authors have addressed the problem of outliers when using the SVD or PCA 

methods (Maronna and Yohai 2008, Hubert et al. 2005). One possible way to overcome this 

problem is to detect and eliminate all the outlier points. However, this is a cumbersome task even 

if it is possible due to the massive amount of data. In addition, some of the images might not be 

very unclear; thus not detectable, but they still affect the estimates of the singular vectors. These 

images are not usually detected by the outlier detection methods. An alternative yet not efficient 

strategy is to substitute the covariance matrix by a robust scatter matrix like minimum covariance 

determinant and decompose the scatter matrix, e.g., Naga and Antille (1990), Croux and 

Haesbroeck (2000). This approach is restricted to low-dimensional data because of the high 

computational cost for calculating a high-dimensional covariance matrix. Another way to address 

the issue of outliers is to optimize a robust dispersion estimate of the variability. These methods 

are generally called projection pursuit (please see Croux and Ruiz-Gazen 2005, Maronna (2005), 

and Ke and Kanade 2005). A rather different approach was proposed by Hubert et al. (2005). 

The proposed method was called ROBPCA, and it combines the projection pursuit method with 

a robust scatter matrix estimate.  

When working with outliers, usually the whole sample is considered as an outlier; i.e., the 

whole row in the data matrix is contaminated. This type of outliers is called rowwise outliers. 

The problem of outliers sometimes, however, appears in a rather different format. In the second 
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type, some but not all the elements of a row are outliers. These types of outliers are called 

elementwise outliers, and they frequently happen in high dimensional images. Liu et al. (2003) 

developed a regularized robust function using Huber function to account for the elementwise 

outliers. Having developed a robust M-estimation algorithm, De la Torre and Black (2001) used 

a gradient descent algorithm to solve the robust PCA problem considering elementwise outliers 

in images. Rey (2007) addressed the problem of elementwise contamination and proposed 

weighted singular value decomposition. Maronna and Yohai (2008) proposed an M-estimation 

algorithm following the regression MM estimates developed by Yohai (1987). Their proposed 

approach can account for both rowwise and elementwise outliers.  

All the aforementioned robust decomposition methods are based on either SVD or PCA 

method. It is worth to mention that a crucial assumption of the SVD method is that the noise 

components in the data are independently distributed. In the imaging context, this means that the 

noise for one specific pixel is independent from those in other pixels. This assumption does not 

necessarily hold in imaging owing to the fact that the noise components in the neighboring pixels 

are spatially correlated. Under these circumstances, the regular PCA method fails to capture the 

true structure of the dataset (true variation pattern) due to the presence of correlation in the noise. 

Allen et al. (2014) proposed a generalized PCA (GPCA/GSVD) method to effectively consider 

the correlation among the noise components in the dataset. A detailed elaboration on the GSVD 

method will be provided in Section 3.2. Similar to the SVD method, the GSVD method is 

sensitive to the presence of outliers in the dataset, and the estimated singular vectors will be 

different from the true singular vectors if the data are contaminated. Hence, a robust GSVD 

method must be developed in order to account for the outliers in the dataset.  
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This chapter suggests a robust generalized singular value decomposition method that can 

be used for decomposition, dimension reduction and feature extraction purposes. The proposed 

method accounts for the spatial/spatiotemporal correlation structure in the noise components; as 

a result, denoising (prewhitening) is not necessary. It, furthermore, automatically accounts for 

the outliers, so there is no need for prior data analysis and outlier removal before applying the 

method.  

In order to apply the low-order decomposition methods, such as SVD, GSVD, and 

RGSVD to extract the image features in Phase I, each image must be reordered and represented 

as a vector. This will lead to a matrix with each row representing an image collected in Phase I. 

The baseline features for Phase II monitoring are extracted from this stack-up matrix. Although 

frequently used in practice, this strategy has some drawbacks. First, the dimension of the 

resulting matrix will be high, and as it will be discussed later, this issue increases the running 

time of the algorithm used for obtaining the solutions of the decomposition. Second, the spatial 

correlation structure which typically exists in the images is broken, leading to inaccurate 

estimates of the baseline features. For these reasons, a high-order array (tensor) is suggested to 

represent the images in Phase I. The advantages of employing a high-order array are (1) it 

preserves the correlation structure of the images, and (2) it avoids the high dimensionality issue 

caused by vectorizing the images. A robust generalized high-order SVD (RGHOSVD) method is 

developed, which can be used for decomposing the tensor of image data in the presence of 

outliers and spatially correlated noise components (see Section 3.4 for further details).  

To sum up, the major strategies that can be used for image-based monitoring are control 

charts constructed upon the features extracted using (1) wavelet decomposition methods 

followed by PCA for further dimension reduction, and (2) A decomposition method, like SVD 
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for feature extraction followed by a control chart to monitor the features. In both strategies, the 

outlier images and the correlated noise in the images affect the accuracy of the estimates. As a 

result, the baseline features which are estimated in Phase I will be far from the true features; thus 

leading to poor monitoring performance in Phase II.   

This chapter is laid out as follows. Section 3.2 explains the GSVD method. Section 3.3 

introduces the robust GSVD (RGSVD) method along with an iterative algorithm to obtain the 

solutions. In Section 3.4, the RGHOSVD method is proposed for high-order feature extraction, 

and an algorithm is developed for solving the problem.  A comprehensive simulation study is 

conducted to investigate the accuracy of the estimates in different decomposition methods; 

moreover, the monitoring performance of the image-based monitoring charts is further evaluated 

in Section 3.5. Section 3.6 applies the RGHOSVD method (which proves to be the most effective 

method) to monitor the defects on the surface of billets in a real image dataset in rolling bar 

process.  

3.2 Model Formulation  

If we assume that m images are collected in Phase I with each image represented by a matrix 

𝐘 ∈ ℝ𝑛×𝑝, then each image is modeled as 

                                                            𝐘 = ∑ 𝑎𝑙𝛂𝑙𝛃𝑙
𝑇𝐿

𝑙=1 + 𝛜                                                      ( 3-1) 

where 𝐿 is the number of components (number of signals), 𝑎𝑙 is the intensity of the 𝑙th signal, 

𝛂𝑙 ∈ ℝ
𝑛 and 𝛃𝑙 ∈ ℝ

𝑝 are the 𝑙th left and right singular vectors (signals), respectively, 𝛜 ∈ ℝ𝑛×𝑝 

is the noise matrix with a matrix-variate distribution i.e. 𝛜~𝑭(�⃡�, ∆, 𝚺), where 𝑭 is an unknown 

distribution, �⃡� is a zero-valued mean matrix, ∆ ∈ ℝ𝑛×𝑛 is the rowwise covariance matrix, and 

𝚺 ∈ ℝ𝑝×𝑝 is the columnwise covariance matrix. To apply a decomposition method for feature 
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extraction in Phase I, all the m images are vectorized and stacked up in a matrix 𝐗 ∈ ℝ𝑚×𝑛𝑝 

modeled as 

                                                           𝐗 = ∑ 𝑑𝑙𝐮𝑙𝐯𝑙
𝑇𝐿

𝑙=1 + 𝐄                                                      (3-2) 

where 𝑑𝑙 is the intensity of the 𝑙th signal, 𝐮𝑙 ∈ ℝ
𝑚 represents the 𝑙th left singular vector 

of matrix 𝐗, 𝐯𝑙 ∈ ℝ
𝑛𝑝 denotes the 𝑙th right singular vector, and 𝐄 ∈ ℝ𝑚×𝑛𝑝 is the noise matrix 

with correlated columns. Each row of the noise matrix 𝐄 in Eq. (3-2) follows a vectorized 

matrix-variate distribution with zero mean vector and covariance matrix 𝛙 ∈ ℝ𝑛𝑝×𝑛𝑝 which is 

the Kronecker product of the rowwise and columnwise covariance matrices of the matrix 𝐘 

(Gupta and Nagar 1999); i.e. 𝛙 = ∆⊗ 𝚺 where ⊗ denotes the Kronecker product. It is assumed 

that the noise components in one image are independent from those in other images. That is, the 

rows of matrix 𝐄 are independent of each other. However, the correlated noise in the columns of 

matrix 𝐄 if not correctly modeled, it adversely affects the estimation of the singular vectors.  

To overcome the problem of correlated columns in matrix 𝐄, which typically occurs in 

datasets involving imaging, longitudinal data, time series etc., a weighted SVD method was 

proposed by Allen et al. (2014). The main strategy was to replace the 𝐿2 norm in SVD method 

by a 𝑄 & 𝑅 norm in order to account for rowwise and columnwise correlations in the noise 

matrix. The 𝑄 & 𝑅 norm of a matrix 𝐀 is defined as ‖𝐀‖𝑄,𝑅
2 = 𝑇𝑟(𝐐𝐀𝐑𝐀𝑇), where 𝐐 and 𝐑 are 

called quadratic operators weighting the elements of matrix 𝐀 based on the correlation structure 

of the elements. The stronger the correlation between two rows (columns) is, the larger their 

corresponding weight in the quadratic operator matrix 𝐐(𝐑) is. In this sense, the quadratic 

operators can be regarded as covariance matrices and estimated from the data. However, this 

might not be the most efficient solution to determine the quadratic operators when dealing with 

spatiotemporal data.  
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To estimate the quadratic operators in such applications, some ideas, like the covariance 

functions can be borrowed from the spatial statistics literature to estimate the covariance 

matrices. For spatially correlated data, the main assumption is that if two points are spatially 

close to each other, they are most likely have similar characteristics; thus having high 

correlation. As a result, the covariance function which significantly depends on the distance 

between the variables is a reasonable option for estimating the covariance matrix. The Matern, 

rational, piecewise polynomial, exponential and squared exponential covariance functions are all 

examples of parametric covariance functions typically used as estimators for the covariance 

matrix of spatially correlated data. One issue that must be considered when using the covariance 

function is how to choose the parameters in the function. In practice, depending on the 

application, the parameters are determined by optimizing an appropriate criterion, like the total 

variability explained by the extracted features.  

One important point to mention is that the quadratic operators must be determined based 

on the matrices of images 𝐘’s. The final quadratic operator used in the solution is a columnwise 

quadratic operator 𝐂 ∈ ℝ𝑛𝑝×𝑛𝑝 weighting the columns of matrix 𝐗. In other words, the 

columnwise quadratic operator is defined as 𝐂 = 𝐐⊗𝐑, where 𝐐 ∈ ℝ𝑛×𝑛 and 𝐑 ∈ ℝ𝑝×𝑝 are the 

rowwise and columnwise quadratic operators of the image matrix 𝐘, respectively. The rowwise 

quadratic operator of matrix 𝐗 is an 𝑚 ×𝑚 identity matrix since the rows of matrix 𝐗 are 

assumed to be independent. Having obtained the quadratic operator 𝐂, the solution of the 

problem in Eq. (3-2) is computed by an iterative block-wise algorithm (Allen et al. 2014). The 

estimation of the quadratic operators will be further discussed in Section 3.3.  
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3.3 Robust Generalized Singular Value Decomposition Method (RGSVD) 

In this section, the RGSVD method is proposed for decomposing the matrix of images 𝐗. 

In the linear regression literature, there are several robust procedures that can be employed to 

estimate the parameters when the data contain outliers. The appropriate method can be selected 

by considering two essential properties of the resulting estimates. The first one is the degree of 

robustness of an estimator, which is typically measured by the breakdown-point criterion. The 

breakdown-point of an estimator is defined as the smallest fraction of outliers that can break the 

estimator down in the sense of providing inaccurate estimates.  

An estimator with high breakdown point is favorable since it shows more robustness to 

the existence of outliers. Maximum-likelihood-type estimates (M estimates) proposed by Huber 

(1973) to estimate the regression parameters tend to have breakdown point of zero when there 

are some outliers in the predictors. High breakdown-point estimators, such as least trimmed 

squares (LTS) or least median of squares (LMS), on the other hand, suffer from low efficiency, 

as the second important property of the robust estimators, meaning that in case there are no 

outliers in the data the estimates are inaccurate. Rousseeuw and Yohai (1984) developed the S 

estimator by minimizing an M-estimate of the regression residual scale. A potential problem of 

the S estimator reveals itself when the errors in the regression model are normally distributed. In 

this case, the estimates are inefficient. In other words, these estimates cannot achieve high 

efficiency and high breakdown point simultaneously. The MM estimators are initially proposed 

by Yohai (1987) with the purpose of overcoming the shortcomings of other robust estimators. In 

this chapter, the approach of Yohai (1987) is developed to estimate the right and left singular 

vectors in GSVD and GHOSVD problems.  
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There are three major steps in obtaining the MM estimators (1) start with high 

breakdown-point but not necessarily efficient estimates (initial solutions), (2) obtain a robust M-

estimate of the residual scale, and (3) attain the final M estimates known as MM estimates using 

the initial solutions and the robust scale estimator computed in Step 1 and Step 2, respectively. In 

the following subsections, a detailed elaboration is provided for each of the steps.  

3.3.1 Initial estimates   

To obtain high breakdown-point (50%) initial estimates for the left and right singular 

vectors, the repeated median method proposed by Siegel (1982) is utilized. The method was 

mainly used to provide a nonparametric estimate of the slope parameter in linear regression when 

the data is contaminated. A similar approach can be employed to obtain the initial estimates for 

the left and right singular vectors in the RGSVD method. Consider a single-component (𝐿 = 1) 

version of the model in Eq. (3-2) with 𝐮 and 𝐯 to be estimated. If either 𝐮 or 𝐯  is known, 

estimating the other singular vector is similar to determining the slope of a linear regression 

model. Therefore, the repeated median method can be employed in this framework for singular 

vector estimation.  For each column 𝑗; 𝑗 = 1, 2, … , 𝑛𝑝, of matrix 𝐗 define 𝑚𝑒𝑑𝑖; 𝑖 = 1,2, … ,𝑚, as 

the median of the slopes  
𝑥𝑖𝑗−𝑥𝑙𝑗

𝑢𝑖−𝑢𝑙
; 𝑙 ≠ 𝑖 = 1,2… ,𝑚. Then, the 𝑗th element of the right singular 

vector 𝐯 can be obtained as                           

                                  𝑣𝑗 = median{𝑚𝑒𝑑1,𝑚𝑒𝑑2, … ,𝑚𝑒𝑑𝑚}; 𝑗 = 1, 2, … , 𝑛𝑝,                         (3-3) 

Similarly, the 𝑖th element of the left singular vector 𝐮 with known and fixed 𝐯 can be computed 

as                              

           𝑢𝑖 = median{𝑚𝑒𝑑1,𝑚𝑒𝑑2, … ,𝑚𝑒𝑑𝑛𝑝}; 𝑖 = 1, 2, … ,𝑚,                              (3-4) 
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where 𝑚𝑒𝑑𝑗; 𝑗 = 1, 2, … , 𝑛𝑝, is defined for each row 𝑖, 𝑖 = 1,2, … ,𝑚, as the median of the 

slopes 
𝑥𝑖𝑗−𝑥𝑖𝑝

𝑣𝑗−𝑣𝑝
; 𝑝 ≠ 𝑗 = 1, 2, … , 𝑛𝑝. Starting with an arbitrary vector for 𝐮, we update 𝐯 using Eq. 

(3-3). Then the left singular vector 𝐮 is updated in a similar way as in Eq. (3-4). Since this 

algorithm does not converge, after 𝑁 (𝑁 = 1000) iterations the solutions minimizing ‖𝐗 − �̂�‖ 

with �̂� = 𝐮𝐯𝑇 can be considered as the initial estimates for the singular vectors. This algorithm 

provides initial estimates with high breakdown-point.   

3.3.2 M-estimate of the residuals’ scale 

The second step of the MM-estimate method aims at acquiring a robust estimate of the 

residuals’ scale. If the 𝑖th row of matrix 𝐗 is denoted by 𝐱𝑖, the objective function of the GSVD 

method (Allen et al. 2014) can be rewritten as 

                                                   ∑ ‖𝐱𝑖 − 𝒖𝑖𝐯𝑙
𝑇‖𝐶

2𝑛
𝑖=1                                                       (3-5) 

where ‖𝐀‖𝐶
2 = 𝑇𝑟(𝐀𝐂𝐀𝑇), and 𝐂 is the column-wise quadratic operator.  Based on the objective 

function in Eq. (3-5), the 𝑖th residual can be defined as 𝑟𝑖 = ‖𝐱𝑖 − 𝑢𝑖𝐯𝑘
𝑇‖𝐶

2  with scale parameter 

𝜏(𝑟). The M-estimate of the residuals’ scale is defined as the solution of                                                               

                                                             
1

𝑚
∑ 𝑓0 (

𝑟𝑖

𝜏
)𝑚

𝑖=1 = 𝛿                                                         (3-6) 

where δ is a constant and can be defined as 𝐸𝜙𝑓0(𝑟) = 𝛿  with 𝜙 standing for standard normal 

distribution, and 𝑓0(∙) is a bounded loss function with the following properties (Huber 1981): 

(1) 𝑓0 is symmetric, continuously differentiable, and 𝑓0(0) = 0.  

(2) There exists 𝑎 >  0 such that 𝑓0 is strictly increasing on [0, 𝑎] and constant on [𝑎,∞).  

(3) 
𝛿

𝑓(𝑎)
= 0.5.    

As shown by Huber (1981), the last condition guarantees that the scale estimator in Eq. (3-6) has 

a 50% breakdown point. The reason for standardizing the residuals by their scale 𝜏 in Eq. (3-6) is 
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to ensure that the M-estimator will be scale equivariant meaning that changing the scale of the 

residuals does not change the estimates.  Using the initial estimates for the left and right singular 

vectors, an M-scale estimate would be the solution of Eq. (3-6). In this chapter, we use the 

Tuckey bisquare function 𝑓0 defined as                                  

                                  𝑓0 (
𝑟

𝜏
) = 𝑚𝑖𝑛 {1,1 − (1 −

r

τ
)
3

}                                                    (3-7) 

There are several robust loss functions, such as Welsch, Cauchy, Huber etc. However, the 

performance of the MM estimator is not significantly affected by the choice of the loss function 

as long as it satisfies Properties 1 to 3.    

3.3.3 Analytical Solution for the RGSVD Problem  

The MM estimates are defined as the solution to the single-component RGSVD problem 

defined as                                                        

                                                      Minimize ∑ 𝑓1 (
‖𝐱𝑖−𝑢𝑖𝐯

𝑇‖
𝐶

2

𝜏
)𝑚

𝑖=1                                              (3-8) 

St: 

𝐯𝑇𝐂𝐯 = 1  

where 𝑓1(∙) ≤ 𝑓0(∙), and must satisfy the first and second properties stated in Subsesction 3.3.2.  

Theorem 3-1: Assume that 𝑓0 and 𝑓1 are selected appropriately, the optimal solutions to the 

RGSVD problem in Eq. (3-8) denoted by 𝐮∗ and 𝐯∗ (left and right singular vectors, respectively) 

are computed as 

                         𝐯∗ =
∑ 𝑢𝑖𝐱𝑖𝜔𝑖
𝑚
𝑖=1

√[∑ 𝑢𝑖𝐱𝑖𝜔𝑖
𝑚
𝑖=1 ]

𝑇
𝐂∑ 𝑢𝑖𝐱𝑖𝜔𝑖

𝑚
𝑖=1

 & 𝑢𝑖
∗ =

𝐱𝑖𝐂𝐯

√∑ (𝐱𝑖𝐂𝐯)
2𝑚

𝑖=1

; 𝑖 = 1, 2, … ,𝑚,                    (3-9) 

where 𝜔𝑖 =
𝑑𝑓1(𝑟𝑖)

𝑑𝑟𝑖
; 𝑖 = 1, 2, … ,𝑚. The proof of the theorem can be found in Appendix 3-A.    

There is no closed-form solution to the RGSVD problem; however, one possible way is to 
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assume that one of the singular vectors is known and solve the problem for the other singular 

vector. This procedure can be repeated until a convergence criterion is satisfied. In the next 

subsection, a blockwise power algorithm with deflation approach is proposed for obtaining the 

RGSVD problem’s solutions.    

3.3.4 Computational Algorithm  

A blockwise algorithm is proposed to obtain the solutions for the RGSVD problem. The 

power method with deflation approach is used to estimate the singular vectors (Golub and Van 

loan 1996). The idea of the deflation approach is that after estimating the singular vectors for the 

𝑙th component, the original matrix of data 𝐗 is approximated by matrix �̂� = 𝐮𝑙𝐯𝑙
𝑇, and the 

singular vectors are obtained for the residual matrix 𝐗 − �̂�.  It is straightforward to show that this 

will give the (𝑙 + 1)th singular vectors.  

Lemma 3-1: The objective function in the RGSVD problem in Eq. (3-8) is a nonconvex 

function. Lemma 1 implies that the power algorithm converges to a local optimum solution (see 

Appendix 3-B). Figure 3-4 demonstrates the proposed algorithm for solving the RGSVD 

problem.  

Initialize the algorithm using 𝐮0 and 𝐯0 computed based on the repeated median method introduced in Subsection 3.1 

For 𝑙 =  1, 2, … , 𝐿 components: 

a. Set �̂� = 𝐗, and repeat until 𝑒1
𝑘 < 휀, 𝑒2

𝑘 < 휀, and 𝑒3
𝑘 < 휀 for each iteration k 

1.  Compute 𝑟𝑖
𝑘 = ‖𝐱𝑖 − 𝑢𝑖𝐯

𝑇‖𝐶
2 ; 𝑖 =  1,2, … ,𝑚 

2. Obtain  𝜏𝑘 as the solution of  
1

𝑚
∑ 𝑓0 (

𝒓𝑖
𝑘

𝜏𝑘
)𝑚

𝑖=1 = δ 

3. Calculate 𝜔𝑖
𝑘’s ; 𝑖 =  1,2 …  𝑚 

4. Update the singular vectors as 

𝐯𝑘 =
∑ 𝑢𝑖

𝑘𝐱𝑖𝜔𝑖
𝑘𝑚

𝑖=1

√[∑ 𝑢𝑖
𝑘𝐱𝑖𝜔𝑖

𝑘𝑚
𝑖=1 ]

𝑇
𝐂∑ 𝑢𝑖

𝑘𝐱𝑖𝜔𝑖
𝑘𝑚

𝑖=1

 & 𝑢𝑖
𝑘 =

𝐱𝑖𝐂𝐯
𝑘

√∑ (𝐱𝑖𝐂𝐯
𝑘)
𝟐𝑚

𝑖=1

; 𝑖 =  1, 2, … ,𝑚 

5. Compute 𝑒1
𝑘 = |𝜏𝑘 − 𝜏𝑘−1|, 𝑒2

𝑘 = ‖𝐯𝑘 − 𝐯𝑘−1‖2, and 𝑒3
𝑘 = ‖𝐮𝑘 − 𝐮𝑘−1‖2. 

b. �̂� = �̂� − 𝐮𝑙𝐯𝑙
𝑇 

Figure  3-4: Blockwise power algorithm with deflation for solving RGSVD problem 
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3.4 Extension to Robust Generalized High-order Decomposition (RGHOSVD)  

As discussed, one drawback of using the stack-up RGSVD method is that the resulting 

matrix 𝐗 ∈ ℝ𝑚×𝑛𝑝 has a large number of columns. Furthermore, the spatial correlation structure 

within each image is broken when vectorizing and stacking up the images in one matrix. To 

avoid such complications, several authors suggest using a high-order array or a tensor to 

represent the data. In this case, the RGSVD method must be extended to be applicable to the 

high-order arrays. A brief introduction to multilinear algebra is given in Subsection 3.4.1. The 

robust generalized high-order SVD method and an algorithm to obtain the solutions are provided 

in Subsection 3.4.2.  

3.4.1. Basic High-Order Notation and Algebraic Operations   

A tensor is a high-order array used to represent a dataset with more than two dimensions. 

Each dimension of a tensor is called a mode or order. For example, a vector is a 1
st
 order tensor, 

and a matrix is a 2
nd

 order tensor. An 𝑁th order tensor is denoted by 𝒳𝐼1×𝐼2×…×𝐼𝑁 with 𝐼𝑛 giving 

the number of elements in mode 𝑛. In the rolling-bar dataset, the images can be all represented 

by a 3
rd

 order tensor denoted by 𝒳𝑛×𝑝×𝑚 where 𝑛 is the number of rows, 𝑝 is the number of 

columns in the image, and  𝑚 denotes the number of images collected in Phase I. Sometimes it is 

useful to work with a subarray of a tensor. For instance, the (𝑁 − 1)th order subarrays of tensor 

𝒳𝐼1×𝐼2×…×𝐼𝑁 are denoted by 𝒳 ::…:𝑖𝑁;  𝑖𝑁 = 1,2, … , 𝐼𝑁 , where a colon means that all the elements 

of a specific mode are included in the subarray. Some useful algebraic operations are (Kolda and 

Bader 2009): 

Tensor to matrix multiplication: the mode-𝑛 product of a tensor 𝒳𝐼1×𝐼2×…×𝐼𝑁 by a matrix 

𝐔 ∈ ℝ𝐽×𝐼𝑛 is denoted by 𝒵 = 𝒳 ×𝑛 𝐔. Each element of tensor 𝒵 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛−1×𝐽×𝐼𝑛+1×…×𝐼𝑁 is 

obtained as                                             



61 

 

                                           𝑧𝑖1𝑖2…𝑖𝑛−1𝑗𝑖𝑛+1…𝑖𝑁 = ∑ 𝑥𝑖1𝑖2…𝑖𝑁𝑢𝑗𝑖𝑛
𝐼𝑛
𝑖𝑛

                                             (3-10) 

where 𝑢𝑗𝑖𝑛 is the (𝑗, 𝑖𝑛)th element of matrix 𝐔.  

Norm of a tensor: the norm of a tensor 𝒳𝐼1×𝐼2×…×𝐼𝑁  is the square root of sum of squares of all 

the elements 𝑥𝑖1𝑖2…𝑖𝑁;  𝑖n = 1, 2, … , 𝐼𝑛, and 𝑛 = 1,2, … ,𝑁. That is,  

                                            ‖𝒳‖ = √∑ ∑ …
𝐼2
𝑖2

𝐼1
𝑖1

∑  𝑥𝑖1𝑖2…𝑖𝑁
2

𝐼𝑁
𝑖N

                                                   (3-11) 

The inner product of tensors:  the inner product of two tensors 𝒳𝐼1×𝐼2×…×𝐼𝑁 and 𝒴𝐼1×𝐼2×…×𝐼𝑁 is 

the sum of the elementwise products of all the elements, i.e.  

                                             〈𝒳,𝒴〉 = ∑ ∑ …
𝐼2
𝑖2

𝐼1
𝑖1

∑  𝑥𝑖1𝑖2…𝑖𝑁
 𝑦𝑖1𝑖2…𝑖𝑁

𝐼𝑁
𝑖N

                                    (3-12)  

3.4.2. Robust Generalized High-Order SVD Solutions    

The GHOSVD method is proposed by Allen et al. (2012) and it is a generalization of the 

GSVD method. The image data can be represented by a 3
rd

 order tensor; however, in this 

subsection, the RGHOSVD method is developed for a generic 𝑁th order tensor. For example, 

when the color of an image carries important information regarding the quality of the product, in 

addition to the spatial resolution of the pixels, it is useful to consider the color as the third mode, 

which forms a 4
th

 order tensor of image data. A general 𝑁th order tensor of image data 

𝒳𝐼1×𝐼2×…×𝐼𝑁 is modeled as                     

                                         𝒳 = 𝒢 ×1 𝐕
(1) ×2 𝐕

(2) ×3 …×𝑁 𝐕
(𝑁) + ℰ                                    (3-13) 

Where 𝒢𝐿×𝐿×…×𝐿 is a core tensor, 𝐕(𝑛) ∈ ℝ𝐼𝑛×𝐿 (𝑛 = 1,2, … ,𝑁) is the factor matrix for the 𝑛th 

mode with 𝐿 as the number of components, and ℰ𝐼1×𝐼2×…×𝐼𝑁  is the tensor of noise components. It 

is assumed that ℰ𝐼1×𝐼2×…×𝐼𝑁  has a tensor-variate distribution with tensor mean zero and mode-𝑛 

covariance matrix ∆(𝑛); 𝑛 = 1,2, … ,𝑁. The last mode in tensor 𝒳 represents independent 
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samples of images. That is, the mode-𝑁 covariance matrix ∆(𝑁) is a diagonal matrix. the single-

component RGHOSVD problem is defined as                                                

                                          Minimize 𝑓 (
‖𝒳−𝐯(1)∘𝐯(2)∘…∘𝐯(𝑁)‖

𝐂1,𝐂2,…,𝐂𝑁

2

𝜉
)                                     (3-14)  

S.t: 

       𝐯(𝑛)
𝑇
𝐂𝑛𝐯

(𝑛) = 1; 𝑛 =  1, 2, … ,𝑁 − 1                                                                                

where 𝐯(𝑛) ∈ ℝ𝐼𝑛 is the mode-n singular vector, 𝐂𝑛 ∈ ℝ
𝐼𝑛×𝐼𝑛 is the quadratic operator for mode 

n, and 𝜉 is a robust M-estimate of the residuals’ scale. In case the last mode represents different 

sample images, the quadratic operator 𝐂𝑁 can be set to the identity matrix since different images 

are assumed to be independent. The objective function in Eq. (3-14) can be rewritten 

as ∑ 𝑓 (
‖𝒳∷⋯:𝑖𝑁−𝑣𝑖𝑁

(𝑁)
𝐯(1)∘𝐯(2)∘…∘𝐯(𝑁−1)‖

𝐂1,𝐂2,…,𝐈

2

𝜉
)

𝐼𝑁
𝑖𝑁=1

, where 𝒳∷⋯:𝑖𝑛 is a (𝑁 − 1)th order subarray of 

tensor 𝒳, and 𝑣𝑖𝑁
(𝑁)

 is the 𝑖𝑁th element of the mode-𝑁 singular vector 𝐯(𝑁).   

Theorem 3-2: The solution to the RGHOSVD problem in Eq. (3-14) can be obtained as (See 

Appendix 3-B). Let’s define 𝐛 ∈ ℝ𝐼𝑛 as 

𝐛 = ∑ 𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯
(1) ×2 …×𝑛−1 𝐂𝑛−1𝐯

(𝑛−1) ×𝑛+1 𝐂𝑛+1𝐯
(𝑛+1)…×𝑁 𝜔𝑖𝑁𝑣𝑖𝑁

(𝑁)𝐼𝑁
𝑖𝑁=1

  

                      𝐯(𝑛) =
𝐛

√𝐛𝑇𝐂𝑛𝐛
 & 𝑣𝑖𝑁

(𝑁) =
𝓧∷⋯:𝑖𝑁

×1C1v
(1)×2…×𝑁−1C𝑁−1v

(𝑁−1)

√∑ [𝒳∷⋯:𝑖𝑁×1C1v
(1)×2……×𝑁−1C𝑁−1v

(𝑁−1)]
2𝐼𝑁

𝑖𝑁=1

                  (3-15) 

𝑖𝑁 = 1, 2, … , 𝐼𝑁; 𝑛 = 1, 2, … ,𝑁 − 1  

Similar to the RGSVD method, a blockwise algorithm based on tensor power method with 

deflation is suggested to compute the singular vectors. A high breakdown-point robust solution is 

needed to initialize the algorithm; hence, in this section, the repeated median method is extended. 
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Consider a single-component (𝐿 = 1) form of Eq. (3-13) expressed as 𝒳 = 𝐯(1) ∘ 𝐯(2)…∘ 𝐯(𝑁) +

ℰ. Each element of tensor 𝒴 is given by 

                               𝑥𝑖1𝑖2…𝑖𝑁 = 𝑣𝑖1
(1)
𝑣𝑖2
(2)
…𝑣𝑖𝑛−1

(𝑛−1)𝑣𝑖𝑛+1
(𝑛+1)…𝑣𝑖𝑁

(𝑁)𝑣𝑖𝑛
(𝑛) + 휀𝑖1𝑖2…𝑖𝑁                       (3-16) 

𝑖𝑛 = 1, 2, … , 𝐼𝑛; 𝑛 = 1, 2, … ,𝑁      

Provided that all singular vectors are known except for 𝐯(𝑛), the model in Eq. (3-16) turns into a 

simple linear regression model with unknown coefficient 𝑣𝑖𝑛
(𝑛)

. The 𝑖𝑛th element of the mode-𝑛 

robust initial singular vector is defined as 

𝑣𝑖𝑛
(𝑛)

=  

𝑚𝑒𝑑𝑖𝑎𝑛 𝑖𝑚=1,2,…,𝐼𝑚
𝑚≠𝑛=1,2,…,𝑁

 {𝑚𝑒𝑑𝑖𝑎𝑛𝑗𝑚≠𝑖𝑚=1,2,…,𝐼𝑚
𝑚≠𝑛=1,2,…,𝑁

{
𝑥𝑖1𝑖2…𝑖𝑛…𝑖𝑁−𝑥𝑗1𝑗2…𝑖𝑛…𝑗𝑁

𝑣
𝑖1

(1)
𝑣
𝑖2

(2)
…𝑣𝑖𝑛−1

(𝑛−1)
𝑣𝑖𝑛+1
(𝑛+1)

…𝑣𝑖𝑁
(𝑁)

−𝑣
𝑗1

(1)
𝑣
𝑗2

(2)
…𝑣𝑗𝑛−1

(𝑛−1)
𝑣𝑗𝑛+1
(𝑛+1)

…𝑣𝑗𝑁
(𝑁)}}   

                                                  𝑖𝑛 = 1,2… 𝐼𝑛; 𝑛 = 1,2, … ,𝑁                                                  (3-17) 

where 𝑣𝑖𝑛
(𝑛)

 is the initial, robust estimate of the 𝑖𝑛th element of the mode-𝑛 singular vector 

𝐯(𝑛); 𝑛 = 1,2, … ,𝑁. The initial solution is used to start the algorithm provided in Figure 3-5.  

One advantage of the blockwise tensor power algorithm over the regular power algorithm 

(RGSVD problem) is having faster running time. It is shown in Appendix 3-D that for each 

iteration of the algorithm, the computational complexity is of order 𝑂(𝑛2𝑝𝑚 + 𝑝2𝑛𝑚), which is 

a fourth-degree polynomial. On the other hand, the complexity of the blockwise power algorithm 

is a fifth-degree polynomial with order 𝑂(𝑛2𝑝2𝑚). Although the number of iterations of the 

algorithm depends on some parameters, like the signal intensity, the amount of noise in the data 

etc., in similar conditions, the blockwise tensor power algorithm terminates with a higher speed 

(see Section 3.5, Table 3-2). 
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Initialize the algorithm with 𝐯0
(𝑛);  𝑛 = 1,2, … , 𝑁,  

For 𝑙 = 1,2, … , 𝐿, components: 

a. Set �̂� = 𝒳, and repeat until 𝑒𝑘 < 휀, 𝑒𝑛
𝑘 < 휀; 𝑛 = 1,2, … , 𝑁, for each iteration k 

1.  Compute 𝑟𝑖𝑁
𝑘 = ‖𝒳∷⋯:𝑖𝑁 − 𝑣𝑖𝑁

(𝑁)
𝐯(1) ∘ 𝐯(2)…∘ 𝐯(𝑁−1)‖

C1,C2,…,I

2

; 𝑖𝑁 = 1,2, … , 𝐼𝑁 

2. Obtain  𝜉𝑘 as the solution of  
1

𝐼𝑁
∑ 𝑓0 (

𝒓𝑖𝑁
𝑘

𝜉𝑘
)

𝐼𝑁
𝑖𝑁=1

= δ. 

3. Calculate 𝜔𝑖𝑁
𝑘 ’s ; 𝑖𝑁 = 1,2, … , 𝐼𝑁 

4. Update the singular vectors as  

𝐛 = ∑ 𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯𝑘
(1) ×2 …×𝑛−1 𝐂𝑛−1𝐯𝑘

(𝑛−1) ×𝑛+1 𝐂𝑛+1𝐯𝑘
(𝑛+1)…×𝑁  𝜔𝑖𝑁

𝑘 𝑣𝑘𝑖𝑁
(𝑁)𝐼𝑁

𝑖𝑁=1
  

𝐯𝑘
(𝑛) =

𝐛

√𝐛𝑇𝐂𝑛𝐛
 & 𝑣𝑘𝑖𝑁

(𝑁) =
𝒳∷⋯:𝑖𝑁×1𝐂1𝐯𝑘

(1)
×2…×𝑁−1𝐂𝑁−1𝐯

(𝑁−1)

√∑ [𝒳∷⋯:𝑖𝑁×1𝐂1𝐯𝑘
(1)
×2…×𝑁−1𝐂𝑁−1𝐯𝑘

(𝑁−1)
]
2𝐼𝑁

𝑖𝑁=1

 

𝑛 = 1,2, … , 𝑁 − 1; 𝑖𝑁 = 1,2, … , 𝐼𝑁 

5. Compute 𝑒𝑘 = |𝜉𝑘 − 𝜉𝑘−1|, 𝑒𝑛
𝑘 = ‖𝐯𝑘

(𝑛) − 𝐯𝑘−1
(𝑛) ‖

2
; 𝑛 = 1,2…𝑁   

b. �̂� = 𝒳 − 𝐯𝑙
(1)
∘ 𝐯𝑙

(2)
∘ … ∘ 𝐯𝑙

(𝑁)
 

Figure 3-5: The blockwise tensor power method with deflation for solving RGHOSVD problem 

3.5 A Simulation Study  

In this section, first, the accuracy of the estimates is appraised and compared to that of 

other methods when the noise in the images is correlated and there are outlier images in the 

dataset. Second, the monitoring performance of the proposed methodologies in detecting the 

defective images is compared with some frequently-used methods in the literature. 

3.5.1 A Performance Comparison to Evaluate the Accuracy of the Estimates 

The accuracy of singular vectors estimates for five decomposition methods is compared 

under different scenarios. The methods that are considered for estimation are SVD, GSVD, 

Robust SVD (Marrona 2005), RGSVD and RGHOSVD. The image matrix 𝐘  is simulated using 

Eq. (3-1) with one component; i.e. 𝐿 = 1. The left singular vector 𝛂 ∈ ℝ30 is generated using a 

sinusoidal signal 𝛂 = cos (π𝐱𝑙) with 𝐱𝑙 taking 𝑛 = 30 equidistant values in (0,1). For the right 

singular vector 𝛃 ∈ ℝ30, a triangular signal is used to generate the vector 

𝛃 = {

|𝐱𝑟−0.5|

0.5
    − 0.5 < 𝐱𝑟 < 0.5

0                       o.w               
. To construct the correlated noise matrix 𝛜 ∈ ℝ30×30, first, a 

white noise matrix 𝐙 ∈ ℝ𝑛×𝑝 is simulated with independent elements 𝑧𝑖𝑗
′  (𝑖 = 1,2, … , 𝑛 =
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30;  𝑗 = 1,2, … , 𝑝 = 30) following normal distribution with mean zero and variance 𝜎2 = 0.01. 

Second, the noise matrix 𝛜 is computed as 𝛜 = ∆
𝟏

𝟐𝐙𝚺
𝟏

𝟐, where ∆
𝟏

𝟐 and 𝚺
𝟏

𝟐 are any matrix square 

roots (Cholesky decomposition) of ∆ and 𝚺, respectively.  

To model the correlation structure in the noise matrix, the Toeplitz correlation structure is 

admitted. In the Toeplitz correlation model, the assumption is that the closer the two vectors lie 

in a subspace, the higher the correlation between these vectors is. This structure is employed to 

have a more realistic simulation of the images where the noise components are spatially 

correlated, and the correlation is high in a small neighborhood. The elements of the Toeplitz 

matrix 𝐇 ∈ ℝ𝑝×𝑝 (𝐇 ∈ ℝ𝑛×𝑛) are defined as 

                          ℎ𝑖𝑗 = ℎ𝑖+1𝑗+1 = ℎ𝑖−𝑗;  ℎ0 = 1; 𝑖, 𝑗 = 1,2…𝑝 (𝑖, 𝑗 = 1,2…𝑛),                     (3-18) 

Using the Toeplitz matrix calculated in in Eq. (3-18), we obtain the column-wise covariance 

matrix as 

                                             𝚺 = 𝜃𝐇 = [

𝜃   𝜃2 … 𝜃𝑝     

𝜃2  𝜃 … 𝜃𝑝−1

⋮ ⋮       ⋱ ⋮
𝜃𝑝 𝜃𝑝−1 … 𝜃

]                                                 (3-19) 

where 0 ≤ 𝜃 ≤ 1 controls the amount of autocorrelation in the noise. The row-wise covariance 

matrix ∆ is generated in a similar way. Figure 3-6 shows two simulated images before and after 

adding the noise shown in Figure 3-6 (a) and Figure 3-6 (b), respectively.   
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 (a) without noise  

 
(b) after adding noise 

Figure  3-6: Simulated images 

Fifty images (𝑚 = 50) are simulated using Eq. (3-1). All the images are vectorized and 

stacked up in matrix 𝐗 ∈ ℝ50×900. The SVD, RSVD, GSVD and RGSVD methods are applied to 

decompose matrix 𝐗 and estimate the right singular vectors. For the high-order setting, a 3
rd

 

order tensor 𝒳30×30×50 is used to represent the images. The RGHOSVD, GHOSVD and high-

order SVD (HOSVD) are the high-order decomposition methods utilized to estimate Mode-1 and 

Mode-2 singular vectors.  

To account for the correlated noise in the images, the row-wise and column-wise 

quadratic operators denoted by 𝐐 and 𝐑 (𝐂1 and 𝐂2 for the high-order decomposition) must be 

estimated using faultless images with clear visibility. One important assumption is that the 

structure (the distribution and the distributional parameters) of the noise components does not 

dramatically change from one image to another. In this chapter, it is assumed that all the images 

are taken at almost the same environmental conditions by one hot-eye camera from a fixed angle, 

distance and direction with respect to the subject. All images’ properties on the quality, size, 

brightness, etc., are previously set in the camera and kept unchanged for all images. These 

conditions help ensure all the images share a reasonably similar noise structure. The quadratic 

operators are both estimated using the 𝛾-exponential covariance functions with parameters 

determined to maximize the explained variability by the first component. The 𝑖𝑗th element of the 
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row-wise quadratic operator 𝑞𝑖𝑗; 𝑖, 𝑗 = 1,2, … , 𝑛 = 30, estimated by the 𝛾-exponential covariance 

function is defined as                                            

                                               �̂�𝑖𝑗 = 𝑒
−(

𝑑𝑖𝑗

𝜂
)
𝛾

;  𝑖, 𝑗 = 1,2, … , 𝑛 = 30                                        (3-20) 

where 𝑑𝑖𝑗 is the distance between row 𝑖 and row 𝑗 in matrix 𝐘, 𝛾 controls the smoothness of the 

function and 𝜂 > 0 is the scale parameter that can be adjusted to achieve a desired amount of 

explained variability by the first component. When 𝛾 = 2, the 𝛾-exponential covariance function 

is called squared exponential function which is the most widely-used kernel function for 

estimating the covariance function (Rasmussen and Williams 2005). The column-wise quadratic 

operator is determined in a similar way as 

                                                �̂�𝑠𝑡 = 𝑒
−(

𝑑𝑠𝑡
𝜈
)
𝛾

;  𝑠, 𝑡 = 1,2, … , 𝑝 = 30                                      (3-21) 

where �̂�𝑠𝑡 is the 𝑠𝑡th element of the quadratic operator 𝐑, 𝑑𝑠𝑡 is the distance between the 𝑠th and 

𝑡th columns in matrix 𝐘, and 𝜈 is the scale parameter. The column-wise quadratic operator for 

matrix 𝐗 is calculated as 

                                                                     �̂� = �̂� ⊗ �̂�                                                          (3-22) 

In this chapter, 𝛾 is set to 2 to have smooth quadratic operators, and the scale parameters are set 

to 𝜂 = 𝜈 = 10 resulting in at least 70% explained variability by the first component of the 

GSVD, RGSVD, GHOSVD and RGHOSVD methods.    

As pointed out, the white noise matrix 𝐙 is simulated using a multivariate normal 

distribution with mean vector zero and covariance matrix 𝜎2𝐈. To generate outlier images, the 

white noise matrix is simulated with different mean vector and/or covariance matrix. If 𝑃 is the 

percentage of outlier images (contamination percentage) in the 𝑚 collected images, then each 
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white noise matrix 𝐙 is obtained by sampling (𝑛 times) from a 𝑝-dimensional multivariate 

normal mixture distribution defined as                                      

                                            𝑃𝒩𝑝(𝛍,  𝛿
2𝜎2𝐈) + (1 − 𝑃)𝒩𝑝(�⃗⃗� , 𝜎

2𝐈)                                        (3-23) 

Where 𝑃 = 0.1, 𝛍 = �⃗⃗� + 𝜆�⃗⃗� , 𝛿 = 1.2,  𝜆 = {±0.5, ±1}, �⃗⃗�  and �⃗⃗�  are 𝑝-dimensional vectors of 

zeros and ones, respectively.  The structured noise matrix containing the outliers is calculated 

as 𝛜 = ∆
𝟏

𝟐𝐙𝚺
𝟏

𝟐. Figure 3-7 gives outlier images generated under different scenarios. As it is 

noticeable, negative shifts in the mean of the noise distribution underexposes the images (Figure 

3-7 (b) and Figure 3-7 (c)) while the positive mean drifts overexpose the image as shown in 

Figure 3-7 (e).    

After generating the image data, all methods are applied to the data and the singular 

vectors are estimated. The accuracy of the estimates is evaluated using the canonical angle 

metric. Let 𝒲 and 𝒯 denote two subspaces defined over real or complex numbers. If dim(𝒲) =

𝑘, dim(𝒯) = 𝑙, and 𝑞 = min(𝑘, 𝑙), the canonical angles between the subspaces 𝒲 and 𝒯 is given 

by 

             𝜑𝑖 ∈ [0,
𝜋

2
] = 𝑚𝑖𝑛𝐰𝑖∈𝒲 {𝑚𝑖𝑛𝐭𝑖∈𝒯 {arccos(

𝐰𝑖
𝑇𝐭𝑖

√𝐰𝑖
𝑇𝐰𝑖√𝐭𝑖

𝑇𝐭𝑖

)}} ;  𝑖 = 1,2, … , 𝑞             (3-24) 

where 𝐰𝑖 and 𝐭𝑖 are called principle vectors. Based on this metric, 𝑐𝑜𝑠 (𝜑𝑖) ∈ [0,1] is used as a 

criterion to measure the closeness of the estimated factor matrix �̂� to the true factor matrix 𝐕. 

The more accurate the estimates are, the larger 𝑐𝑜𝑠(𝜑𝑖) is.  
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(a) 𝜆 = 0, 𝛿 = 1 (normal image) 

 
(b) 𝜆 = −1, 𝛿 = 1 

 
(c) 𝜆 = −1, 𝛿 = 1.2 

 
(d) 𝜆 = 0, 𝛿 = 1.2 

 
(e) 𝜆 = 1.5, 𝛿 = 1.2 

Figure 3-7: Simulated outlier images 

Note that the high-order decomposition methods are able to estimate the left and right 

singular vectors denoted by �̂�𝑙
(1)

 and �̂�𝑙
(2)

, respectively. However, the low-order decomposition 

methods estimate the right singular vector �̂�𝑙 corresponding to the matrix of stacked-up 

images 𝐗. For the high-order methods, �̂�𝑙 is computed as �̂�𝑙 = �̂�𝑙
(1)
⊗ �̂�𝑙

(2)
 to facilitate the 

comparison between the low-order and high-order decomposition methods.   

Table  3-1: Canonical angles computed for estimated right singular vector with parameters 𝜆 = ±1; 
𝑃 = 0.1, and 𝜃 = 0.9 

 Signal intensity 𝑑 

Method 0.8 0.9 1 1.5 2 

SVD 0.1224 (0.0103) 0.1598 (0.0174) 0.1964 (0.0199) 0.9518 (0.0049) 0.9821 (0.0010) 

GSVD 0.2082 (0.0189) 0.2626 (0.0243) 0.3096 (0.0254) 0.5144 (0.0330) 0.7820 (0.0278) 

RSVD 0.1800 (0.0159) 0.3229 (0.0329) 0.4667 (0.0327) 0.9660 (0.0023) 0.9847 (0.0007) 

RGSVD 0.9168 (0.0035) 0.9347 (0.0024) 0.9507 (0.0020) 0.9773 (0.0008) 0.9866 (0.0006) 

HOSVD 0.2254 (0.0529) 0.5356 (0.0656) 0.6720 (0.0619) 0.8745 (0.0450) 0.9565 (0.0274) 

GHOSVD 0.0433 (0.0108) 0.1184 (0.0375) 0.4330 (0.0630) 0.8992 (0.0410) 0.9607 (0.0255) 

RGHOSVD 0.9823 (0.0018) 0.9849 (0.0015) 0.9891 (0.0011) 0.9943 (0.0006) 0.9967 (0.0003) 

Table 3-1 shows the canonical angles (𝑐𝑜𝑠 (𝜑)) computed for both low-order and high-order 

decomposition methods used to estimate the first right singular vector �̂�. The most effective 
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method in each condition (each signal intensity) is highlighted in Table 3-1. Both the 

RGHOSVD and RGSVD methods outperform other decomposition methods in providing highly 

accurate estimates for the right singular vector.  The RGHOSVD method is preferable to 

RGSVD particularly when the signal intensity is low. For high values of signal intensity (𝑑 ≥ 2 

here) all methods perform similarly with RGHOSVD slightly outperforming the others.  

As discussed, another important aspect of every algorithm is time spent to generate the 

results. To compare convergence rate of the high-order-based algorithm with the blockwise 

power method (low-order-based algorithm) the running time of the algorithms are computed and 

compared. Table 3-2 gives the average running time ratio 𝑡𝑟 =
𝑡𝐿

𝑡𝐻
 for different image dimensions 

and signal intensities, where 𝑡𝐿 is the running time for the RGSVD method, and 𝑡𝐻 represents the 

time spent to obtain the solutions using the RGHOSVD method. 

Table  3-2: Average running time ratio  𝐭𝐫 
 Signal intensity 𝑑 

(𝒏, 𝒑, 𝒎) 0.8 2 

(60,60,50) 1.3 3.5 

(70,70,50) 5.8 2.6 

(80,80,50) 10.1 3.6 

(100,100,50) 18.3 5.02 

(150,150,50) 5.8 6 

(60,60,100) 3.2 1.4 

(70,70,100) 4.1 2.6 

(80,80,100) 6.2 3.1 

(100,100,100) 6.7 2.7 

(150,150,100) 4.2 3.2 

As it is notable in Table 3-2, the blockwise tensor power algorithm converges faster than the 

blockwise power algorithm in all cases. This is more obvious when the signal intensity is 

relatively weak (𝑑 = 0.8).  

3.5.2 Monitoring Performance Comparison for Detecting Defective Images  

In this subsection, the monitoring performance of several image-based monitoring 

methods is evaluated and compared to the proposed methodologies. Using Eq. (3-1), 𝑚 = 50 
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faultless 30 × 30 images are simulated (see Figure 3-7 (a) for a faultless image). Similar to 

Subsection 3.5.1, 10% of the data are assumed to be contaminated i.e. 𝑃 = 0.1. The outlier 

images are generated by changing 𝜆 from 0 to ±0.5 and/or inflating the variability of noise 

components i.e. δ = 1.2. Furthermore, 𝜃 is set to 0.9, 𝜎2 = 0.01, and 𝑑 = 5. The in-control 

dataset is used in Phase I to estimate the covariance matrix of the baseline image features. For 

the out-of-control data, three different types of defects are considered in order to have more 

realistic defect types which might exist on the surface of billets in the rolling-bar dataset. Figures 

3-8 (b) ~ 3-8 (d) give transverse, longitudinal and rectangular defects, respectively.  

 
(a) Faultless image 

 
(b) Transverse defect 

 
(c) Longitudinal defect 

 
(d) Rectangular defect 

Figure  3-8: Simulated defective and faultless images 

For the decomposition methods, the features can be computed by projecting the 

centralized matrix or tensor of the data using the estimated singular vectors. For example, the 𝑙th 

extracted feature can be defined as                                     

                                                        𝐥𝐟𝑙 = 𝐗�̂�𝑙; 𝑙 = 1,2, … , 𝐿,                                                    (3-

25) 

where 𝐥𝐟𝑙 ∈ ℝ
𝑚 is the 𝑙th extracted feature, �̂�𝑙 is the 𝑙th estimated right singular vector using 

Phase I  image data represented by matrix 𝐗, and 𝐿 is the number of components. The extracted 

features have mean vector zero and diagonal covariance matrix ∑lf ∈ ℝ
𝐿×𝐿 with the 𝑙th diagonal 

element defined as the sample variance of 𝐥𝐟𝑙. For the high-order decomposition methods, the 

features are computed as 
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                                ℎ𝑓𝑙 = 𝒳∷𝑖3 ×1 �̂�𝑙
(1)
×2 �̂�𝑙

(2)
; 𝑙 = 1,2…𝐿, 𝑖3 = 1, 2, … , 𝐼3,                             (3-26) 

where ℎ𝑓𝑙 is the 𝑙th extracted feature, 𝒳∷𝑖3 is the 𝑖3th two-dimensional subarray of the tensor 

𝒳, �̂�𝑙
(1)

 and �̂�𝑙
(2)

 are the 𝑙th estimated left and right singular vectors, respectively.  

In addition to the regular decomposition techniques, a control chart based on wavelet 

transform is used for image-based monitoring. A discrete wavelet transform (Daubechies 1990) 

is used to estimate the wavelet coefficients for each row of matrix 𝐗 in Phase I. The PCA method 

is further applied to the matrix of coefficients and the PC scores are computed. A Hotelling’s 𝑇2 

control chart can be used to monitor the mean vector of the extracted features. After ensuring 

that all points (𝑚 images in Phase I) are in-control statistically, we can monitor the 𝑖th image 

using 𝑇𝑖
2 statistic given by 

                                                    𝑇𝑖
2 = (𝐠)𝑇∑𝑔

−1(𝐠); 𝑖 = 1,2, …                                              (3-27) 

where 𝐠 ∈ ℝ𝐿×1 is the vector of features calculated in Phase II, and 𝚺𝑔 is the covariance matrix 

of the baseline features estimated in Phase I.  If a low-order decomposition method is used in 

Phase I, 𝐠 = 𝐥𝐟 is calculated using Eq. (3-25) and Σ𝑔 = 𝚺𝑙𝑓. Otherwise, Eq. (3-26) is used to 

compute 𝐠 = 𝐡𝐟, and 𝚺𝑔 = 𝚺ℎ𝑓. Provided that the features follow a normal distribution, the 

upper control limit is computed in Phase I as UCL =
𝐿(𝑚)(𝑚−2)

(𝑚−1)(𝑚−1−𝐿)
𝑓𝛼,𝐿,𝑚−1−𝐿, where 𝑓𝛼,𝜈1,𝜈2 is 

the (1 − α) 100th percentile of an F distribution with ν1 and ν2 degrees of freedom. In case the 

features do not follow a normal distribution, the upper control limit can be obtained using the 

empirical distribution of 𝑇𝑖
2’s ; 𝑖 = 1,… ,𝑚, computed in Phase I. When the number of 

components is 𝐿 = 1, the 𝑇2 chart boils down to a simple Shewhart control chart used for 

monitoring individual observations. 
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The monitoring performance is evaluated using the out-of-control average run length 

(ARL) criterion. The in-control ARL (ARL0) is set to 200 for all methods. To calculate the ARL 

values, the simulations are performed in two phases. In Phase I, all the images are assumed to be 

faultless with some outlier images. The feature extraction methods are applied and the baseline 

features are obtained. The number of components is set to one 𝐿 = 1, which results in at least 

70% explained variability for all methods. The control limits are computed to achieve 0.5% 

Type-I error rate (ARL0 = 200). To achieve ARL0 = 200, the control limits for each chart are set 

to an arbitrary value and the run length variable (RL) is calculated for each simulation run which 

starts with generating a series of faultless images and terminates when an alarm is triggered by 

the associated control chart (See Table 3-3). After 10000 simulation runs, we calculate ARL 

as ARL =
∑ RL𝑗
10000
𝑗=1

10000
. In Phase II, the simulated images contain one of the defects shown in 

Figures 3-8 (b) ~ 3-8 (d). The out-of-control ARL is calculated as described above.  

Table 3-3: Lower control limits (LCL) and upper control limits (UCL) obtained using simulation 

Feature extraction method (LCL, UCL) Calculated ARL0 

RGHSVD (-1.58, 1.58) 198.7 

RGSVD (-7, 7) 199.9 

GSVD (-2.8, 2.8) 202.3 

RSVD (-7.5, 7.5) 198.6 

SVD (-7.55, 7.55) 201.5 

DWT - PCA (-7.8, 7.8) 200.5 

The out-of-control ARLs for detecting transverse, longitudinal and rectangular defects 

are plotted in Figure 3-9 (a) ~ Figure 3-9 (c), respectively. For all different types of defects, the 

RGHOSVD – based chart uniformly outperforms other methods in detecting the defects. After 

the RGHOSVD-based chart, the RGSVD – based method is superior to other methods for all 

types of defects. Clearly, all methods perform more similarly when the signal is strong.   
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(a) Transverse defect 

 
(b) Longitudinal defect 

 
(c) Rectangular defect 

Figure  3-9: Out-of-control ARL comparisons for detecting different types of defects 

3.6 Case study  

This section presents the results of applying the RGHOSVD method for image-based 

defect monitoring in semi-finished casting products. The semi-finished casting products, such as 
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ingots, slabs, billets, etc. are intermediate castings needing more operations to be considered as 

finished products. Billets are pieces of metal with a desired rounded or squared cross section, and 

they are further processed to produce bar stock or wire as final products. One critical quality 

characteristic in the billets is to have a surface free of defects usually appearing in the form of 

cracks (openings) on the surface of billets (see Figure 3-1 (a)). If a defect is in the direction of 

the metal’s extraction, it is called a longitudinal defect, while those defects which are across the 

extraction are called transverse defects (Figure 3-1 (b)).    

Since billets are semi-finished products, it is necessary to detect the defective units at an 

early stage of production to avoid the additional replacement costs incurred due to substituting a 

final defective product. As a result, a control chart to monitor the defects on the surface of billets 

is required. Using a hot-eye camera, a vision sensing system is set up to take snapshots of billets 

at short time intervals. The RGHOSVD-based chart is subsequently applied in order to illustrate 

how this method can be used for image-based monitoring in practice. Figure 3-10 shows the 

estimated mode-1 singular vectors (left singular vectors) for (a) faultless image, (b) an image 

with a single transverse defect, and (c) an image with double transverse defects.  

As it is obvious in Figure 3-10, the singular vectors for the defective billets show 

different variation pattern in comparison to that of the faultless billet, and this dissimilarity forms 

the basis for the decomposition-based monitoring schemes. For the rolling-bar dataset, 𝐼3 = 𝑚 =

30 faultless images containing 10% contamination i.e. 𝑃 = 0.1 (three outliers as shown in Figure 

3-3) are used to compute the baseline mode-1 and mode-2 singular vectors and the associated 

high-order features ℎ𝑓𝑙; 𝑙 = 1,2, … , 𝐿, as in Eq. (3-26). The scale parameters for mode-1 and 

mode-2 quadratic operators (𝐂1 and 𝐂2) are set to 𝜂 = 𝜈 = 10.  
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(a) faultless image 

 
(b) single transverse defect 

 
(c) double transverse defect 

Figure  3-10: Mode-1 singular vectors for different type of images 

The explained variability for the first component 𝐿 = 1 is 90%; as a result, only one component 

suffices for constructing the control chart. The robust minimum absolute deviation estimator 

(𝑚𝑎𝑑) is used to estimate the standard deviation of ℎ𝑓1 i.e. �̂�ℎ𝑓1 = 1.4826 𝑚𝑎𝑑ℎ𝑓1 = 65.66. A 

simple Shewhart control chart is considered for monitoring with 𝐿𝐶𝐿 = −196.6 and 𝑈𝐶𝐿 =

196.6. After ensuring that all 𝐼3 = 30 points are statistically in control (no defective image), we 

used the established control chart for monitoring a set of images with two defective units shown 

in Figure 3-10 (b) and Figure 3-10 (c). Figure 3-11 plots the simple Shewhart statistics (𝑥 values) 

calculated using ℎ𝑓1 values. Point 31 on the chart belongs to the single transverse defective billet 

shown in Figure 3-10 (b), and the 32nd point represents Figure 3-10 (c).  
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Figure  3-11: The RGHOSVD-based control chart applied to the rolling-bar dataset 

Appendix 3-A: Proof of Theorem 3-1 

To minimize the objective function in Eq. (3-8), we begin with adding the constraint to 

the objective function using the Lagrange multiplier 𝜆. This gives us  

Minimize 

                                              
1

𝑚
∑ 𝑓1 (

‖𝐱𝑖−𝑢𝑖𝐯
𝑇‖

𝐶

2

𝜏
)𝑚

𝑖=1 + 𝜆(𝐯𝑻𝐑𝐯 − 1)                                   (3-A-1) 

We can further extend the objective function in Eq. (3-A-1) to have 

                                
1

𝑚
∑ 𝑓1 (

𝑡𝑟𝑎𝑐𝑒(𝐱𝑖𝐂𝐱𝑖
𝑇)−2𝑡𝑟𝑎𝑐𝑒(𝐱𝑖𝐂𝐯𝑢𝑖)+𝑢𝑖

2

𝜏
)𝑚

𝑖=1 + 𝜆(𝐯𝑇𝐂𝐯 − 1)                   (3-A-2) 

Taking derivative from (3-A-2) with respect to 𝐯 and setting to zero gives 

                                                         
−1

𝑚𝜏
∑ 𝑢𝑖𝐱𝑖𝐂𝜔𝑖
𝑚
𝑖=1 + 2𝜆𝐂𝐯𝑇 = 0                                    (3-A-3) 

where 𝜔(𝑥) =
𝑑𝑓1(𝑥)

𝑑𝑥
 is called the weight function. Based on Karush-Kuhn-Tucker condition, If 

𝜆 > 0, the right singular vector is computed as  

                                                           𝐯∗ =
1

𝑚𝜏
∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1

2𝜆
                                                       (3-A-4) 

If 𝜆 is selected to satisfy 𝐯𝑇𝐂𝐯 = 1, we have  
1

(𝑚𝜏2𝜆)2
[∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1 ]𝑇𝐂∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1 = 1,  

and 𝜆 =
1

2𝑚𝜏
√[∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1 ]𝑇𝐂∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1 .    
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Finally, we can plug in 𝜆 in (3-A-4), and calculate 𝐯∗ as  

                                                   𝐯∗ =
∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1

√[∑ 𝑢𝑖𝐱𝑖𝜔𝑖
𝑚
𝑖=1 ]𝐂[∑ 𝑢𝑖𝐱𝑖

𝑇𝜔𝑖
𝑚
𝑖=1 ]

                                            (3-A-5)  

Similarly, the left singular vector is calculated by setting the derivative of Eq. (3-A-2) with 

respect to 𝑢𝑖 to zero. The vector format of the left singular vector is calculated as 

                                                                      𝐮 = 𝐗𝐂𝐯                                                           (3-A-6) 

The normalized left singular vector is finally given by 𝐮∗ =
𝐗𝐂𝐯

√𝑡𝑟𝑎𝑐𝑒((𝐗𝐂𝐯)𝑇𝐗𝐂𝐯)
. 

Appendix 3-B: Proof of Lemma 3-1 

𝐱𝑖 − 𝑢𝑖𝐯
𝑇 is an affine function of  𝑢𝑖 when 𝐯𝑇 is fixed. Furthermore, the quadratic 

function 𝐀𝐂𝐀𝑇 is convex since C is a positive semidefinite matrix. It follows that ‖A‖C is a 

convex function, because Frobenius norm is a convex function. Hence, ‖𝐱𝑖 − 𝑢𝑖𝐯
𝑇‖C

2 is convex 

in 𝑢𝑖 when 𝐯𝑇 is fixed. This is also true when 𝑢𝑖 is fixed. Since 𝑓(𝑟) is a concave and non-

decreasing function, the problem in Eq. (3-8) is not convex.  Using the same logic, it is 

straightforward to show that the objective function in Eq. (3-14) is also nonconvex.         

Appendix 3-C: Proof of Theorem 3-2  

To prove Theorem 3-2, first, we must show that    

‖𝒳∷⋯:𝑖𝑁 − 𝐯
(1) ×2 𝐯

(2) ×3 …×𝑁 𝑣𝑖𝑁
(𝑁)
‖
𝐂1,𝐂2,…,𝐈

2

= ‖𝒳∷⋯:𝑖𝑁 ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1‖
2
+                                

                   𝑣𝑖𝑁
(𝑁)2

− 2𝑣𝑖𝑁
(𝑁)𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯

(1) ×2 𝐂2𝐯
(2) ×3 …×𝑁−1 𝐂𝑁−1                              (3-C-1) 

To begin with, we need to show that 𝐂1, 𝐂2, … , 𝐂𝑁-norm of an 𝑁th-order tensor ℬ can be 

obtained as 

‖ℬ‖𝐂1,𝐂2,…,𝐂𝑁 = ‖ℬ ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁 �̃�𝑁‖ =         

                            √𝑇𝑟{(𝐂𝑁⊗… ⊗ 𝐂𝑛−1⊗𝐂𝑛+1⊗…⊗𝐂1)𝐁(𝑛)
𝑇 𝐂𝑛𝐁(𝑛)}                       (3-C-2) 
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where �̃�𝑛; 𝑛 = 1,2, … ,𝑁, is any matrix square root, such as Cholesky decomposition, and 

𝐂𝑛 = �̃�𝑛
𝑇�̃�𝑛. In terms of matricized tensors, we can write  

𝓓 = ℬ ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁 �̃�𝑁 ⟺𝐃(𝒏) = �̃�𝑛  𝐁(𝑛)(�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)
𝑇 

‖𝓓‖ = ‖𝐃(𝒏)‖ = ‖�̃�𝑛𝐁(𝑛)(�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)
𝑇‖ = 

√𝑇𝑟 {(�̃�𝑛𝐁(𝑛)(�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)𝑇)
𝑇
�̃�𝑛𝐁(𝑛)(�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)𝑇} =  

√𝑇𝑟 {(�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)𝐁(𝑛)
𝑇 �̃�𝑛

𝑇
�̃�𝑛𝐁(𝑛) (�̃�𝑁

𝑇
⊗… ⊗ �̃�𝑛−1

𝑇
⊗ �̃�𝑛+1

𝑇
⊗…⊗ �̃�1

𝑇
)} =  

√𝑇𝑟 {(�̃�𝑁
𝑇
⊗… ⊗ �̃�𝑛−1

𝑇
⊗ �̃�𝑛+1

𝑇
⊗…⊗ �̃�1

𝑇
) (�̃�𝑁⊗… ⊗ �̃�𝑛−1⊗ �̃�𝑛+1⊗…⊗ �̃�1)𝐁(𝑛)

𝑇 �̃�𝑛
𝑇
�̃�𝑛𝐁(𝑛)} =  

Based on the mixed-product property of Kronecker product, we have 

= √𝑇𝑟 {(�̃�𝑁
𝑇
�̃�𝑁⊗… ⊗ �̃�𝑛−1

𝑇
�̃�𝑛−1⊗ �̃�𝑛+1

𝑇
�̃�𝑛+1⊗…⊗ �̃�1

𝑇
�̃�1)𝐁(𝑛)

𝑇 �̃�𝑛
𝑇
�̃�𝑛𝐁(𝑛)} 

= √𝑇𝑟{(𝐂𝑁⊗… ⊗ 𝐂𝑛−1⊗𝐂𝑛+1⊗…⊗𝐂1)𝐁(𝑛)
𝑇 𝐂𝑛𝐁(𝑛)} = ‖ℬ‖𝐂1,𝐂2,…,𝐂𝑁 

Using the results of Eq. (3-C-2), we can extend (3-C-1) as 

‖𝒳∷⋯:𝑖𝑁 − 𝐯
(1) ∘ 𝐯(2) ∘ … ∘ 𝐯(𝑁−1)𝑣𝑖𝑁

(𝑁)
‖
𝐂1,𝐂2,…,𝐈

2

 

= ‖(𝒳∷⋯:𝑖𝑁 − 𝐯
(1) ∘ 𝐯(2) ∘ … ∘ 𝐯(𝑁−1)𝑣𝑖𝑁

(𝑁)
) ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1‖

2

 

= ‖𝒳∷⋯:𝑖𝑁 ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1‖
2
+ ‖�̃�1𝐯

(1) ∘ �̃�2𝐯
(2) ∘ … ∘ �̃�𝑁−1𝐯

(𝑁−1)𝑣𝑖𝑁
(𝑁)‖

2

  

−2〈𝒳∷⋯:𝑖𝑁 ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1, �̃�1𝐯
(1) ∘ �̃�2𝐯

(2) ∘ … ∘ �̃�𝑁−1𝐯
(𝑁−1)𝑣𝑖𝑁

(𝑁)〉 

Since we know that 𝐯(𝑛)
𝑇
𝐂𝑛𝐯

(𝑛) = 1 for 𝑛 =  1, 2, … ,𝑁 − 1, we have    

‖�̃�1𝐯
(1) ∘ �̃�2𝐯

(2) ∘ … ∘ �̃�𝑁−1𝐯
(𝑁−1)𝑣𝑖𝑁

(𝑁)‖
2

= 

𝑇𝑟 {(�̃�1𝐯
(1) ∘ �̃�2𝐯

(2) ∘ … ∘ �̃�𝑁−1𝐯
(𝑁−1)𝑣𝑖𝑁

(𝑁))
𝑇

(�̃�1𝐯
(1) ∘ �̃�2𝐯

(2) ∘ … ∘ �̃�𝑁−1𝐯
(𝑁−1)𝑣𝑖𝑁

(𝑁))} =   



80 

 

𝑣𝑖𝑁
(𝑁)2

𝑇𝑟 {(𝐯(1)
𝑇
𝐂1𝐯

(1) ∘ 𝐯(2)
𝑇
𝐂2𝐯

(2) ∘ … ∘ 𝐯(𝑁−1)
𝑇
𝐂𝑁−1𝐯

(𝑁−1))} = 𝑣𝑖𝑁
(𝑁)2

 

So (3-C-1) can be computed as  

‖𝒳∷⋯:𝑖𝑁 − 𝐯
(1) ∘ 𝐯(2) ∘ … ∘ 𝐯(𝑁−1)𝑣𝑖𝑁

(𝑁)
‖
𝐂1,𝐂2,…,𝐈

2

= ‖𝒳∷⋯:𝑖𝑁 ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1‖
2
+  

𝑣𝑖𝑁
(𝑁)2

− 2𝑣𝑖𝑁
(𝑁)𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯

(1) ×2 𝐂2𝐯
(2) ×3 …×𝑁−1 𝐂𝑁−1 

Based on Eq. (3-C-1) and Eq. (3-C-2), we can reformulate the RGHOSVD problem as 

Minimize ∑ 𝑓 (
𝐴

𝜉
)

𝐼𝑁
𝑖𝑁=1

 

S.t: 

                                             𝐯(𝑛)
𝑇
𝐂𝑛𝐯

(𝑛) = 1      𝑛 =  1, 2, … ,𝑁 − 1,                                 (3-C-3) 

where 𝐴 = ‖𝒳∷⋯:𝑖𝑁 ×1 �̃�1 ×2 �̃�2 ×3 …×𝑁−1 �̃�𝑁−1‖
2
+  

𝑣𝑖𝑁
(𝑁)2

− 2𝑣𝑖𝑁
(𝑁)𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯

(1) ×2 𝐂2𝐯
(2) ×3 …×𝑁−1 𝐂𝑁−1 

We add the constraints in Eq. (3-C-3) to the objective function using the Lagrange multipliers 

𝜆𝑛; 𝑛 = 1,2, … ,𝑁 − 1, as a result, we have 

Minimize 

                                        ∑ 𝑓 (
𝐴

𝜉
)

𝐼𝑁
𝑖𝑁=1

+ ∑ 𝜆𝑛(𝐯
(𝑛)𝑇𝐂𝑛𝐯

(𝑛) − 1)𝑁−1
𝑛=1                                    (3-C-4) 

Take the derivative of Eq. (3-C-4) with regard to 𝐯(𝑛)and set it to zero 

−2𝜔𝑖𝑁𝑣𝑖𝑁
(𝑁) [𝒳∷⋯:𝑖𝑁×1𝐂1𝐯

(1)×2…×𝑛−1𝐂𝑛−1𝐕𝑖𝑛−1
(𝑛−1)

×𝑛𝐂𝑛×𝑛+1𝐂𝑛+1𝐕𝑖𝑛+1
(𝑛+1)

…×𝑁−1𝐂𝑁−1𝐕𝑖𝑁−1
(𝑁−1)

]

𝜉
+ 2𝜆𝑛𝐯

(𝑛)𝐂𝑛 = 0  

           𝐯(𝑛) =
[𝒳∷⋯:𝑖𝑁×1𝐂1𝐯

(1)×2…×𝑛−1𝐂𝑛−1𝐯𝑖𝑛−1
(𝑛−1)

×𝑛+1𝐂𝑛+1𝐯𝑖𝑛+1
(𝑛+1)

…×𝑁−1𝐂𝑁−1𝐯𝑖𝑁−1
(𝑁−1)

×𝑁𝜔𝑖𝑁𝑣𝑖𝑁
(𝑁)

]

𝜉𝜆𝑛
        (3-C-5) 

To obtain the Lagrange multiplier 𝜆𝑛, we define 
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𝐛

= 𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯
(1) ×2 …×𝑛−1 𝐂𝑛−1𝐯𝑖𝑛−1

(𝑛−1) ×𝑛+1 𝐂𝑛+1𝐯𝑖𝑛+1
(𝑛+1)…×𝑁−1 𝐂𝑁−1𝐯𝑖𝑁−1

(𝑁−1) ×𝑁 𝜔𝑖𝑁𝑣𝑖𝑁
(𝑁)

 

Based on the constraints in Eq. (3-C-3), we have 

𝐛𝑇𝐂𝑛𝐛

(𝜉𝜆𝑛)2
= 1  

𝜆𝑛 =
√𝐛𝑇𝐂𝑛𝐛

𝜉
  

Finally, we compute the singular vectors as 

                                                                  𝐯(𝑛) =
𝐛

√𝐛𝑇𝐂𝑛𝐛
                                                       (3-C-6) 

Taking derivative with respect to 𝑣𝑖𝑁
(𝑁)

; 𝑛 = 1,2…𝑁 − 1, and setting to zero gives 

𝜔𝑖𝑁
𝜉
2𝑣𝑖𝑁

(𝑁) − 2
𝒳∷⋯:𝑖𝑁×1𝐂1𝐯

(1)×2…×𝑛−1𝐂𝑛−1𝐕𝑖𝑛−1
(𝑛−1)

×𝑛𝐂𝑛×𝑛+1𝐂𝑛+1𝐕𝑖𝑛+1
(𝑛+1)

…×𝑁−1𝐂𝑁−1𝐕𝑖𝑁−1
(𝑁−1)

×𝑁𝜔𝑖𝑁

𝜉
= 0  

𝑣𝑖𝑁
(𝑁) = 𝒳∷⋯:𝑖𝑁 ×1 𝐂1𝐯

(1) ×2 …×𝑛−1 𝐂𝑛−1𝐕𝑖𝑛−1
(𝑛−1) ×𝑛 𝐂𝑛 ×𝑛+1 𝐂𝑛+1𝐕𝑖𝑛+1

(𝑛+1)…×𝑁−1 𝐂𝑁−1𝐕𝑖𝑁−1
(𝑁−1)

 

                 𝐯(𝑁) =
𝒳×1𝐂1𝐯

(1)×2…×𝑛−1𝐂𝑛−1𝐕𝑖𝑛−1
(𝑛−1)

×𝑛𝐂𝑛×𝑛+1𝐂𝑛+1𝐕𝑖𝑛+1
(𝑛+1)

…×𝑁−1𝐂𝑁−1𝐕𝑖𝑁−1
(𝑁−1)

‖𝒳×1𝐂1𝐯
(1)×2…×𝑛−1𝐂𝑛−1𝐕𝑖𝑛−1

(𝑛−1)
×𝑛𝐂𝑛×𝑛+1𝐂𝑛+1𝐕𝑖𝑛+1

(𝑛+1)
…×𝑁−1𝐂𝑁−1𝐕𝑖𝑁−1

(𝑁−1)
‖
              (3-C-7) 

Appendix 3- D: Computational Complexity 

Table 3-D-1 gives the number of flops in each operation for every step of the algorithm in 

the 𝑘th iteration in the blockwise tensor power algorithm with 𝐾 iterations. Let’s denote the 𝑖th 

algebraic operation in Step 𝑗 by 𝑠𝑖
𝑗
. The operations needed in each step are given as 

Step 1: Calculating the residuals  

𝑟𝑖3
𝑘 = ‖𝒳::𝑖3 − 𝑣𝑖3

(3)
𝐯(1) ∘ 𝐯(2)‖

C1,C2,I

2

; 𝑖3 = 1,2…𝑚  

𝑠1
1 = 𝐯(1) ∘ 𝐯(2) 

𝑠2
1 = 𝑣𝑖3

(3)
𝐯(1) ∘ 𝐯(2)  
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𝑠3
1 = 𝒳::𝑖3 − 𝑣𝑖3

(3)
𝐯(1) ∘ 𝐯(2) 

𝑠4
1 = (𝒳::𝑖3 − 𝑣𝑖𝑁

(3)
𝐯(1) ∘ 𝐯(2)) ×1 �̃�1 

𝑠5
1 = (𝒳::𝑖3 − 𝑣𝑖3

(3)
𝐯(1) ∘ 𝐯(2)) ×1 �̃�1 ×2 �̃�2  

𝑠6
1 = ‖𝑠5

1‖2  

Step 2: Obtaining  𝜉𝑘 as the solution of  
1

𝑚
∑ 𝑓 (

𝑟𝑖3
𝑘

𝜉𝑘
)𝑚

𝑖3=1
= δ where 𝑓 is given in Eq. (3-7).  

𝑠1
2 = 𝑓 (

𝑟𝑖3
𝑘

𝜉𝑘
) = 𝑚𝑖𝑛 {1,1 − (1 −

𝑟𝑖3
𝑘

𝜉𝑘
)
3

}   

𝑠2
2 = solve 

1

𝑚
∑ 𝑓 (

𝒓𝑖3
𝑘

𝜉𝑘
)𝑚

𝑖3=1
= δ for 𝜉𝑘  

Step 3: Obtaining the weights  𝜔𝑖3
𝑘 ′𝑠; 𝑖3 = 1,2…𝑚  

𝑠1
3 =  𝜔𝑖3

𝑘 =
1

𝜉𝑘
(1 −

𝑟𝑖3
𝑘

𝜉𝑘
)

2

 

Step 4: Updating the solutions.  

𝑠1
4 = 𝐯𝑘

(1) =
∑ 𝒳∷𝑖3×2𝐂2𝐯𝑘

(2)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1

√(∑ 𝒳∷𝑖3×2𝐂2𝐯𝑘
(2)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1
)
𝑇
𝐂1(∑ 𝒳∷𝑖3×2𝐂2𝐯𝑘

(2)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1
)

  

𝑠2
4 = 𝐯𝑘

(2) =
∑ 𝒳∷𝑖3×1𝐂1𝐯𝑘

(1)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1

√(∑ 𝒳∷𝑖3×1𝐂1𝐯𝑘
(1)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1
)
𝑇
𝐂2(∑ 𝒳∷𝑖3×1𝐂1𝐯𝑘

(1)
×3 𝜔𝑖3

𝑘 𝑣𝑘𝑖3
(3)𝑚

𝑖3=1
)

  

𝑠3
4 = 𝑣𝑘𝑖3

(3) =
𝒳∷𝑖3×1𝐂1𝐯𝑘

(1)
×2𝐂2𝐯𝑘

(2)

√∑ [𝒳∷𝑖3×1𝐂1𝐯𝑘
(1)
×2𝐂2𝐯𝑘

(2)
]
2

𝑚
𝑖3=1

; 𝑖3 = 1,2…𝑚  

 Step 5: Compute 𝑒𝑘 = |𝜉𝑘 − 𝜉𝑘−1|, 𝑒𝑛
𝑘 = ‖𝐯𝑘

(𝑛) − 𝐯𝑘−1
(𝑛) ‖

2
; 𝑛 = 1,2,3   
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Table  3-D-1: Computational complexity with regard to each operation 

Operation Computational complexity 

𝑠1
1 𝑛𝑝  

𝑠2
1 𝑛𝑝  

𝑠3
1 𝑛𝑝  

𝑠4
1 2𝑛2𝑝 − 𝑛𝑝 + 𝑂 (

𝑛3

𝐾
)  

𝑠5
1 2𝑝2𝑛 − 𝑛𝑝 + 𝑂 (

𝑝3

𝐾
)  

𝑠6
1 2𝑛𝑝 − 1  

𝑠1
2 7𝑚 + 1 

𝑠2
2 𝑂(𝐹(𝑞))

∗
 

𝑠1
3 4𝑚 

𝑠1
4 2𝑝2𝑚+ 2𝑛𝑚𝑝 + 2𝑚 −𝑚𝑝 + 2𝑛2 + 2𝑛 − 1 

𝑠2
4 2𝑛2𝑚+ 2𝑛𝑚𝑝 + 2𝑚 −𝑚𝑛 + 2𝑝2 + 2𝑝 − 1 

𝑠3
4 2𝑝2𝑚+ 2𝑛2𝑚+ 2𝑛𝑚𝑝 −𝑚𝑛 + 2𝑚 

𝑠1
5 2𝑛𝑚𝑝 + 𝑛𝑝 

Total 𝑂(𝑛2𝑝𝑚 + 𝑝2𝑛𝑚) 

* 𝐹(𝑞) is the cost of computing 
𝑓(

𝒓𝑖3
𝑘

𝜉𝑘
)

�́�(
𝒓𝑖3
𝑘

𝜉𝑘
)

, and 𝑞 = 5 is the number of digits in the root 𝜉𝑘 

The computational complexity of the blockwise power algorithm can be calculated similarly.  
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  CHAPTER 4

FUNCTIONAL LINEAR REGRESSION WITH TENSORIAL PREDICTOR 

4.1 Introduction 

In most manufacturing processes, finding a relationship between a response variable of 

product quality and process variables as predictors is an essential task in process quality control. 

There are several reasons bolstering the importance of constructing this relationship. For 

example, for some newly established processes, the underlying physical model ruling the process 

variables is not completely understood. A mathematical model explaining the role of these 

process variables can be tremendously helpful. This can help systematically optimize or control 

to ensure product quality.  

Conventionally, there is a scaler process quality output (response variable), and the 

purpose is to predict this response using some process variables that are scaler variables. The 

first step toward building the relationship is to gather the data regarding the process quality 

response and the process variables. Advanced sensing and data acquisition techniques offer the 

opportunity of collecting immense amount of information during operation. Therefore, advanced 

data analytics methods are needed to avoid losing information when representing and analyzing 

these variables having complex and unconventional structures.   

 In this chapter, a functional linear regression method will be studied to handle the 

complex predictors. The complexity of predictors is characterized by two aspects, namely, multi-

stream structure and functional regression parameters to be estimated. A multi-stream dataset 
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two dimensions of interest that must be considered in data analysis. Tensors are high-order 

arrays generalizing the concept of low-order arrays, such as vectors and matrices, and they have 

the ability of taking into account more than two dimensions (modes) that a predictor might have. 

This property enables tensors to represent the data with more than two dimensions and without 

manipulating them to be represented using low-order arrays. Some authors suggest using a tensor 

representation when the data are better represented by a multi-stream or high-order array 

(Zerehsaz et al., 2016; Hadi et al., 2016). 

A useful example for explaining the necessity of using a tensor is the infrared images 

taken in multiple critical operation steps in a process. Each image typically can be represented by 

a matrix or even a vector. In addition to the regular spatial row and column dimensions, there 

might be a third dimension that is the time when the image is captured. For instance, the 

information carried by an image taken at the initial step of a process can be substantially 

different from that offered in an image taken in the middle of the process. Figure 4-1 shows the 

differences between using a matrix and a tensor to represent the predictor. The images show the 

temperature of the environment captured by infrared camera (IR) in two different time points 

from a friction stir blind riveting (FSBR) process. Each step of the FSBR process contains 

critical information about the process operating condition. That is, the information provided by 

the images will be distinctive in each step and the temporal dimension must be considered when 

representing the data. If a matrix is used for representation, then the temporal dimension will be 

ignored (merged with column mode). To avoid this problem, a tensor consisting three 

dimensions is employed to represent the set of IR images as shown in Figure 4-1 (b).  
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(a) Low-order (matrix) representation (stack up the time dimension) 

 

 (b) High-order representation 

Figure  4-1: High-order and low-order representations of IR images 

Another aspect of the data complexity reveals itself in the form of predictors that are not 

scalar in nature. Sometimes the collected observations are in the form of a function or a curve. 

This means that the data are functions of time and/or space, and a functional relationship exists 

between the variable of interest and time as an index (Ramsay and Silverman, 2002). In some 

cases, treating a functional variable as a scalar variable leads to misleading estimation of 

parameters. In an FSBR process, an example of a functional predictor is the penetration force 

which is used to drive a rivet into two dissimilar materials in order to join them. As it can be 
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noticed in Figure 4-2, force signal has a functional relationship with time (distance), and it would 

be misleading to treat it as a scalar variable.  

Although the consequences of not taking into account these critical aspects utterly depend 

on the application and the purpose of the study, both types of the aforementioned predictors must 

be considered when constructing a model to predict the process quality response variable. The 

regular linear regression methods including ordinary and functional regression approaches 

cannot be directly utilized to find the parameters of the functional linear regression model with 

tensorial predictor (FLRTP). A new model with the flexibility to consider mixed types of 

predictors is needed.  A possible formulization to the FLRTP model is given as  

                        𝑦𝑖 = 𝐳𝑖
𝑇𝛄 + ∫𝑋𝑖(𝑡)α(𝑡)𝑑𝑡 + ⟨ℬ,𝒲𝑖⟩ + 휀𝑖; 𝑖 = 1,2, … , 𝑛,                              (4-1) 

where  𝑦𝑖 is the scalar response variable that needs to be predicted, 𝐳𝑖 ∈ ℝ
𝑙 is the vector of scalar 

predictors with coefficients vector 𝛄 ∈ ℝ𝑙, the functional predictor and its coefficient function 

are denoted by 𝑋𝑖(𝑡) and α(𝑡), respectively, where 𝑡 is an index of time, distance, location, etc., 

and it is normalized so that 0 ≤ 𝑡 ≤ 1. The tensorial predictor is given by an 𝑀th-order 

tensor 𝒲𝑖 ∈ ℝ
𝐾1×𝐾2×…×𝐾𝑀 with the tensor of coefficients represented by ℬ ∈ ℝ𝐾1×𝐾2×…×𝐾𝑀, 

⟨𝒰, 𝒱⟩ = ∑ ∑ …
𝐾2
𝑘2

∑ 𝑢𝑘1𝑘2…𝑘𝑁𝑣𝑘1𝑘2…𝑘𝑁
𝐾𝑁
𝑘𝑁

𝐾1
𝑘1

 is the inner product of tensors 𝒰 and 𝒱, and 휀𝑖′𝑠 are 

independent random error terms. 

The classic approach to obtain the regression parameters in Eq. (4-1) is to minimize the 

residual sum of squares. As a result, the regression coefficients can be obtained 

as arg min𝛄,α(𝑡),ℬ ∑ ( 𝑦𝑖 − 𝐳𝑖
𝑇𝛄 − ∫𝑋𝑖(𝑡)α(𝑡)𝑑𝑡 − ⟨ℬ,𝒲𝑖⟩)

2𝑛
𝑖=1 . However, there are several 

concerns that must be considered when estimating the FLRTP model. Firstly, the coefficients to 

be estimated significantly outnumber the samples. This is mainly due to the large number of 

tensorial coefficients. Hence, the number of regression coefficients must be shrunk, and an 
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appropriate method handling this issue should be selected. Secondly, the tensorial coefficients 

may contain a significant number of irrelevant variables that must be discarded. One possible 

way is to impose sparsity on the tensorial coefficients by penalizing them in the objective 

function. Thirdly, solving the regression problem with functional and tensorial predictors 

requires different approaches appropriate for each type of predictors, and there is no unique 

method that can be employed to obtain the solutions when both predictors exist at the model.  

These issues will be discussed in details in Subsection 4.2.2.  

  

Figure  4-2: Force signal as a function of time (distance)  

4.1.1 Motivational Example  

In this subsection, a real example of the FSBR process is used to provide a better 

illustration regarding the FLRTP model. FSBR is a new mechanical fastening process used to 

join dissimilar materials. This new emerging joining technology combines friction stir riveting 

with blind riveting. In blind riveting, a rivet is driven into a predrilled hole whose diameter is 

slightly larger than the external diameter of the rivet. The main disadvantage of blind riveting is 

the need for a predrilled hole followed by some operations performed to increase the joint’s 

fatigue life. This significantly slows down the joining process. In FSBR, on the other hand, a 
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blind rivet is brought into contact with the upper workpiece. This blind rivet consists of two 

components. The first part is called mandrel which is a long rod with a head at one end and a 

weakened, breakable section near the head. The second component (shank) is a hollow tube with 

enough room for the mandrel (Figure 4-3).  

   
 

 

Figure  4-3: Blind rivet components 

Figure 4-4 schematically demonstrates all the FSBR process steps. Typically, the rivet is rotating 

with spindle speed ranging from 1,000 to 20,000 rpm and feed rate spanning between 120 to 780 

mm/min. These properties cause the rivet to penetrate the workpieces without requiring 

predrilling. The high rotational speed of the rivet leads to the frictional heat between the rivet 

and material, softening the material, and thus avoiding the need for high penetration force. 

To further fasten the workpieces, the mandrel is pulled up and broken at the weakened 

notch. This widens the shank and fastens the workpieces together (Gao et al., 2009; Min et al., 

2015). Potentially, the feed rate, spindle speed and configuration are three predictors that might 

affect the quality of the joint. Hence, it is critical to know whether and how these variables affect 

the joints quality. There is a set of other variables that are not controllable but measurable during 

operations. These are called process sensing variables. Examples of these process sensing 

Breakable notch 

head 

Shank  

Mandrel  
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variables are the penetration force (Figure 4-2), the environment’s temperature obtained using 

the IR images (Figure 4-1), etc. 

 

 

 

(a) the blind rivet is 

put on the workpieces 

 

 

 

 

 

 

 

(b) the rivet is  

driven into the 

workpieces with 

spindle speed 𝜔 

and feed rate υ 

 
 

(c) the rivet is 

completely inserted 

in the workpieces 

with shank’s head 

touching the top 

workpiece 

 
 

(d) the mandrel is 

pulled up 

 
 

(e) the mandrel is 

broken and the 

workpieces are 

fastened 

Figure 4-4: Friction stir blind riveting process (Min et al. 2015) 

The penetration force is recorded using load sensor connected to the bottom of the fixture 

holding the workpieces, and it measures the amount of load as the blind rivet is stirred into the 

workpieces. Consequently, penetration force is a function of the rivet’s penetration distance or 

time. Figure 4-2 shows the penetration force recorded for AL-CFRP configuration from the 

moment the blind rivet is put in contact with the top workpiece (stage (a)) until the mandrel is 

pulled up (stage (d) at the 8
th

 second). As the blind rivet is driven inside AL, the force increases 

until it completely goes inside the top workpiece (stage (b)). A decreasing trend is observed from 

Seconds 1.5 to 3.05 when the blind rivet moves in the empty space between the two workpieces. 

The force starts increasing again in stage (c) as the blind rivet contacts CFRP and the shoulders 

reach the top material. At stage (d), the mandrel is pulled up; as a result, an increasing then 

decreasing trend is observed. While Figure 4-2 shows an expected pattern for the penetration 
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force which is in full compliance with the FSBR major steps, sometimes, due to process faults, 

the penetration function might show a different pattern, like dramatic fluctuations or flat peaks 

over a long region. These different patterns can be a sign of a damaged or poor-quality join 

because the quality of joints is sensitive to penetration force.   

The IR images, as discussed, are examples of high-order arrays which are the tensorial 

predictors in the FLRTP model. The temperature of the environment changes both in time and 

space while the process is running. The pattern of temperature’s change is not as clear as that of 

the penetration force; however, the key point is that a major change in this temperature pattern 

can indicate a fault in the process, which in turn, leads to low-quality joints. As a result, such 

process sensing variables can provide useful information about the process operation conditions.  

After completing the FSBR process, one way to evaluate the joints quality of the process 

is to perform the tensile/lap shear test on the joined workpieces. The tensile test usually 

performed by a testing machine indicates the resistance of materials to stretching or pulling 

forces. The maximum load that a joint can resist before a failure happens is an informative 

measure that can be used as a quality metric (Min et al., 2015). Developing a statistical model to 

predict the maximum tensile load can be tremendously helpful, for it quantifies the importance of 

process variables in predicting the tensile load or the strength of the joints. This would help 

developing a statistical model based on some process variables which will be discussed later.  

4.1.2 Literature Review and Related Work 

There are a limited number of papers discussing the effects of process variables on the 

tensile test results in the FSBR process. Min et al. (2015) studied the effects of spindle speed and 

feed rate on the tensile test results, and concluded that feed rate and spindle speed have no effects 

on the tensile test for the carbon-fiber-reinforced polymer (CFRP) over CFRP or aluminum (AL) 
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configurations. Gao et al. (2009) ran some experiments to compare the strength of the joints 

under different settings of four variables including feed rate, spindle speed, penetration angle 

which ideally must be perpendicular, and the holding time for an FSBR process used to join 

aluminum alloys. The results showed that the joint’s strength is significantly affected by neither 

of the variables. It is noteworthy that none of these papers developed a statistical model to 

investigate the relationship between the joint strength and the process variables. The results are 

made based on the load-elongation curves with the aid of visual comparisons among the curves 

under different settings of these variables.  

For the tensorial predictors, there are a few papers focusing on modeling the relationship 

between a continuous or binary response and a tensorial predictor (Guo et al. 2012). The main 

idea of Guo et al. (2012) is to reduce the dimensionality of the regression parameters space by 

applying a decomposition method, like canonical parallel-factor (CP) decomposition, and solving 

a linear regression problem. However, their algorithm is limited to only one tensorial predictor in 

the model without other predictors. 

Zhou et al. (2013) developed a generalized tensor regression model with an iterative 

algorithm used to obtain the regression parameters. Similar to Guo et al. (2012), they applied the 

CP decomposition on the parameter space, leading to a low-dimensional problem. Li et al. 

(2013) replaced the CP decomposition with a Tucker decomposition in order to attain more 

flexibility in choosing different numbers of components in each mode. The algorithms in these 

papers did not explicitly account for other types of predictors in the model (other than tensorial 

variables). Furthermore, as it will be discussed later, a sub-algorithm is added to the main 

algorithm in order to obtain the optimal tensorial coefficients at each iteration of the main 

algorithm. This will increase the accuracy of the main algorithm in obtaining all the coefficients.  
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A conventional method for solving the FLRTP model is to vectorize the tensorial 

predictor. At this point, it is possible to look at this vectorized predictor in two different ways. 

One is to consider the tensorial predictor as a functional variable and use a functional regression 

approach. Several papers have been written on this topic, which consider both continuous and 

categorical response variables in relation to functional predictors (James et al., 2009; James, 

2002; Ramsay and Silverman, 2002; Muller and Stadtmuller, 2005). This approach will be called 

stack-up vectorized functional linear regression (VFLR) method. 

Another naïve way to model the tensorial predictor is to vectorize the tensorial predictor, 

and consider it as a scalar variable. The method will be called vectorized linear regression (VLR) 

throughout the chapter. In this chapter, a new generic model is developed, which can handle both 

tensorial and functional predictors without manipulating the structure of the predictors.  

The remainder of this chapter is laid out as follows: Section 4.2 briefly elaborates on 

some important multilinear algebraic concepts, and it proceeds with proposing the FLRTP 

model. An iterative algorithm is, moreover, suggested to solve the problem and obtain the 

regression parameters. In Section 4.3, a simulation study is conducted to evaluate both the 

prediction and estimation accuracies of the proposed FLRTP model and the estimation 

algorithm. The method is also compared to the existing VFLR and VLR approaches. Section 4.4 

applies all three methods to a real dataset in FSBR process to further assess the performance of 

the FLRTP method and show how this model can be employed in practice.   

4.2 Basic Multilinear Algebra and FLRTP Problem  

Subsection 4.2.1 introduces the CP decomposition with the associated main multilinear 

algebraic operations used in this chapter. The FLRTP problem is formulated and thoroughly 
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discussed in Subsection 4.2.2. An algorithm is suggested to obtain the solutions for the FLRTP 

model in Subsection 4.2.3.  

4.2.1 High-order Algebraic Operations   

The outer product of 𝑀 vectors 𝐮(𝑚) ∈ ℝ𝐾𝑚; 𝑚 = 1,2, … ,𝑀, is defined as 𝒰 = 𝐮(1) ∘

𝐮(2) ∘ … ∘ 𝐮(𝑀), where 𝒰 ∈ ℝ𝐾1×𝐾2×…×𝐾𝑀 is a rank-one tensor with 𝑀 modes, and “∘” denotes 

the outer product. Note that if 𝑀 = 2, 𝒰 is a two-dimensional matrix or a 2
nd

-order tensor. It is 

possible to assume that each 𝑀th-order tensor 𝒲 can be approximated by the sum of 𝑅 rank-one 

tensors as  

                                                           ℬ̂ = ∑ 𝐮𝑟
(1)
∘ 𝐮𝑟

(2) ∘ … ∘ 𝐮𝑟
(𝑀)𝑅

𝑟=1                                     (4-2) 

where ℬ̂ is an approximation of the original tensor 𝓑, 𝑅 is the selected number of components 

for the approximated tensor (tensor rank) and 𝐮𝑟
(𝑚)

∈ ℝ𝐾𝑚; 𝑚 = 1,2, … ,𝑀; 𝑟 = 1,2, … , 𝑅. 

Another helpful way to express Eq. (4-2) is to use the matricized version instead of the tensorial 

form. Matricization of a tensor means to transform a tensor to a matrix. Since a tensor contains 

𝑀 modes, it is possible to have 𝑀 forms of matricizations. The mode-𝑚 matricization of the 

𝑀th-order tensor ℬ is to map the 𝐾1𝐾2…𝐾𝑀th element in the tensor to element (𝑘𝑚, 𝑗) of matrix 

𝐁(𝑚), where 𝑗 = 1 + ∑ (𝑘𝑖 − 1)
𝑀
𝑖=1
𝑖≠𝑚

𝐽𝑖 and 𝐽𝑖 = ∑ 𝑘𝑙
𝑖−1
𝑙=1
𝑙≠𝑚

.  The matricized format of Eq. (4-2) over 

mode 𝑚 is defined as 

                    �̂�(𝑚) = 𝐔(𝑚)(𝐔(𝑀)⨀𝐔(𝑀−1)⨀…⨀𝐔(𝑚−1)⨀𝐔(𝑚+1)⨀…⨀𝐔(1))𝑇                    (4-3)                                  

where �̂�(𝑚) ∈ ℝ
𝑘𝑚×∏ 𝑘𝑖

𝑀
𝑖≠𝑚
𝑖=1  is the mode-𝑚 matricization of tensor ℬ̂, 𝐔(𝑚) ∈ ℝ𝐾𝑚×𝑅 is called the 

mode-𝑚 factor matrix whose columns are the vectors 𝐮𝑟
(𝑚)

∈ ℝ𝐾𝑚; 𝑟 = 1,2, … , 𝑅. In addition, if  

𝐀 ∈ ℝ𝑎×𝑏 and 𝐁 ∈ ℝ𝑐×𝑏, then 𝐂 ∈ ℝ𝑎𝑐×𝑏 = 𝐀⨀𝐁 is the Khatri-Rao product of matrices 𝐀 and 

𝐁. For the formal proof of Eq. (4-3), please refer to Kolda and Bader (2009).   
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Similar to a matrix, it is possible to decompose a tensor using one of the common 

decomposition methods, such as the CP decomposition which is a classical high-order 

decomposition approach. The CP decomposition problem aims at minimizing the Frobenious 

norm of the residuals’ tensor computed as ‖ℬ − ℬ̂‖ with �̂� given in Eq. (4-3). The problem can 

be stated in matrix format as  

𝑚𝑖𝑛 ‖𝐁(𝑚) − �̂�(𝑚)‖  

were �̂�(𝑚) = 𝐔(𝑚)(𝐔(𝑀)⨀𝐔(𝑀−1)⨀…⨀𝐔(𝑚−1)⨀𝐔(𝑚+1)⨀…⨀𝐔(1))𝑇                     (4-4) 

Knowing the fact that the problem in Eq. (4-4) is similar to a least-squares problem, we can 

obtain the solution as 𝐔(𝑚) = 𝐖(𝑚) {(𝐔(𝑀)⨀𝐔(𝑀−1)⨀…⨀𝐔(𝑚−1)⨀𝐔(𝑚+1)⨀…⨀𝐔(1))
𝑇
}
+

 

where 𝐀+ is the generalized inverse of 𝐀. Starting with an initial value for 𝐔(𝑖)(𝑖 =

1,2, … ,𝑀 with 𝑖 ≠ 𝑚) the problem can be solved for 𝐔(𝑚); 𝑚 = 1,2, … ,𝑀. This is the basis for 

the alternating least squares algorithm that is employed to perform the CP decomposition. The 

CP decomposition will be used later on to decompose the parameters of the tensorial predictor; 

however, the decomposition is used here merely to reduce the number of parameters to be 

estimated and for obtaining the coefficients.  

4.2.2 The Functional Linear Regression with Tensorial Predictor Problem    

In this subsection, the FLRTP model in Eq. (4-1) is further expanded to be applicable. 

Subsection 4.2.2.1 adjusts the model to consider the tensorial predictor, and the functional 

predictor is accounted for in Subsection 4.2.2.2.   

4.2.2.1 Tensorial Predictor 

The number of regression parameters to be estimated for barely one tensorial predictor  

is ∏ 𝐾𝑚
𝑀
𝑚=1 , that can be very large. Hence, an appropriate approach for reducing the number of 

parameters is to decompose the tensor of parameters using CP decomposition (Guo et al., 2012; 
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Zhou et al., 2013). From Eq. (4-2) and Eq. (4-3), the tensor of parameters can be decomposed as 

ℬ = ∑ 𝐮𝑟
(1)
∘ 𝐮𝑟

(2) ∘ … ∘ 𝐮𝑟
(𝑀)𝑅

𝑟=1 , Thus yielding 

⟨ℬ,𝒲𝑖⟩ = ⟨𝐔(𝑚)(𝐔(𝑀)⨀𝐔(𝑀−1)⨀…⨀𝐔(𝑚−1)⨀𝐔(𝑚+1)⨀…⨀𝐔(1))
𝑇
,𝐖𝑖

(𝑚)
⟩ =    

                      ⟨𝐔(𝑚),𝐖𝑖
(𝑚)
(U(𝑀)⨀U(𝑀−1)⨀…⨀U(𝑚−1)⨀U(𝑚+1)⨀…⨀U(1))⟩                 (4-5) 

where 𝐔(𝑚) = (𝐮1
(𝑚), 𝐮2

(𝑚), … , 𝐮𝑅
(𝑚)) are the factor matrices for 𝑚 = 1,2,… ,𝑀, and the last 

equality in Eq. (4-5) is true because of the linearity property of the inner product. Using Eq. (4-5) 

and assuming that 𝐔(𝑗)(𝑗 ≠ 𝑚 = 1,2, … ,𝑀), are known, the FLRTP model can be reformulated 

as     

 𝑦𝑖 = 𝐳𝑖
𝑇𝛄 + ∫𝑋𝑖(𝑡)α(𝑡)𝑑𝑡 + vec(𝐔

(𝑚))
𝑇
vec(𝐕𝑖) + 휀𝑖; 

                                                     𝑖 = 1,2, … , 𝑛;𝑚 = 1,2, … ,𝑀                                             (4-6) 

where vec(𝐔(𝑚)) ∈ ℝ𝑅𝐾𝑚  is the column vector of mode-𝑚 coefficients for the tensorial 

predictor, 𝐕𝑖 = 𝐖𝑖
(𝑚)
(𝐔(𝑀)⨀𝐔(𝑀−1)⨀…⨀𝐔(𝑚−1)⨀𝐔(𝑚+1)⨀…⨀𝐔(1)), and vec(𝐕𝑖) ∈ ℝ

𝑅𝐾𝑚 . 

The advantage of the model in Eq. (4-6) over that of Eq. (4-1) is that the number of tensorial 

parameters to be estimated is 𝑅∑ 𝐾𝑚
𝑀
𝑚=1  for the FLRTP model in Eq. (4-6), which is much less 

than the number of parameters to be estimated for the model in Eq. (4-1) when the number of 

elements in each mode increases. As an example, each IR image in the FSBR process is 

represented by a 3
rd

-order tensor; hence, the tensorial predictor containing the 3 temperature 

matrices recorded in three major FSBR operating steps is represented by a 3
rd

-order tensor 

ℬ ∈ ℝ133×200×3. Using the FLRTP model based on the CP decomposition with 𝑅 = 1 reduces 

the order of estimation from 79800 (133 × 200 × 3 = 79800) to 336 (133 + 200 + 3 = 336) 

parameters. 
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4.2.2.2 Functional Predictor 

To solve the problem for the functional variables, the common practice is to assume that 

the coefficient function can be written in terms of a 𝑞-dimensional basis function as           

α(𝑡) = 𝛙𝑇(𝑡)𝛝 + 𝑒(𝑡) where 𝛙(𝑡) ∈ ℝ𝑞 is a basis function, like spline, Fourier, etc., 𝛝 ∈ ℝ𝑞 is 

the vector of coefficients, and 𝑒(𝑡) is deviation from the true α(𝑡) (James et al., 2009). In this 

chapter, the functional linear regression that is interpretable (FLiRTI) method proposed by James 

et al. (2009) is employed in order to acquire more interpretable estimations of the coefficient 

function. The FLRTP model in Eq. (4-6) can be rewritten as 

                    𝑦𝑖 = 𝐳𝑖
𝑇𝛄 + 𝐱𝑖

𝑇𝛝 + vec(𝐔(𝑚))
𝑇
vec(𝐕𝑖) + 휀𝑖 + �̃�𝑖 �⃗⃗�                                   (4-7) 

where 𝐱𝑖 = (∫𝑋𝑖(𝑡)𝛙(𝑡)𝑑𝑡)
𝑇and 𝐱𝑖 ∈ ℝ

𝑞, �̃�𝑖 = ∫𝑋𝑖(𝑡)𝑒(𝑡)𝑑𝑡, and �⃗⃗�  is a 𝑞-dimensional vector 

of ones. The word “interpretable” in the FLiRTI method refers to the fact that it is possible to 

have more meaningful estimates for the coefficient function α(𝑡) by imposing a specific 

structure, like sparsity, constancy, linearity etc. on the coefficients (James et al., 2009). This can 

be achieved by setting the appropriate derivatives of the coefficient function to zero i.e. 

α(𝑑)(𝑡) = 0;  𝑑 = 0,1,2, … . For instance, if α(𝑡) is linear over a specific region, then the second 

derivative of the coefficient function must be set to zero i.e. α(2)(𝑡) = 0 in that region. This can 

be achieved by penalizing these derivatives in the objective function and obtaining the solution. 

The difference finite operator obtained for the basis function is proposed by James et al. (2009) 

to approximate the derivatives. In particular, the 𝑑th derivative of the coefficient function is 

denoted by 𝐷𝑑𝛙(𝑡𝑟) ∈ ℝ
𝑞, and it is approximated as 𝐷𝑑𝛙(𝑡𝑟) = 𝑞

𝑑 ∑ (−1)𝑖 (
𝑑
𝑖
)𝛙(𝑡𝑟−𝑖)

𝑑
𝑖=0 , 

where 𝑡𝑟 , 𝑟 = 1,2, … , 𝑞, are 𝑞 evenly-spaced points in 𝑡. 
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Let’s define 𝐂 = [𝐷𝑑𝛙(𝑡1), 𝐷
𝑑𝛙(𝑡2),… , 𝐷

𝑑𝛙(𝑡𝑞)]
𝑇
 as the matrix of derivatives of all the 

coefficient functions, the FLRTP model in Eq. (4-7) can be reformulated as    

                                𝑦𝑖 = 𝐳𝑖
𝑇𝛄 + 𝐬𝑖

𝑇𝛗+ vec(𝐔(𝑚))
𝑇
vec(𝐕𝑖) + �̃�𝑖 �⃗⃗� + 휀𝑖                                 (4-8) 

where 𝐬𝑖 = 𝐂
−1𝐱𝑖 and 𝛗 = 𝐂𝑇𝛝. Imposing the sparsity on the vector of coefficients 𝛗 in Eq. (4-

8) is similar to setting the 𝑑th derivative of the coefficient function to zero, thus obtaining more 

interpretable estimates. This can be done using the Elastic Net (EN) method to both obtain sparse 

estimates and avoid the complications when 𝑞 ≫ 𝑛, which is the case in the FSBR process (Zou 

and Hastie, 2005). 

In order to have a parsimonious FLRTP model, imposing the sparsity on the functional 

coefficient vector 𝛗 and the tensorial coefficients vec(𝐔(𝑚)) seems to be a reasonable solution. 

For this purpose, the EN method (Zou and Hastie, 2005) is selected over other sparse 

approaches, like Lasso (Tibshirani, 1996) due to the capability of the EN in generating sparse 

coefficients and selecting the germane variables even when the number of predictors is highly 

larger than the number of samples. The objective function of the FLRTP problem can be defined 

as  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖 − 𝐳𝑖
𝑇𝛄 − 𝐬𝑖

𝑇𝛗− vec(𝐔(𝑚))
𝑇
vec(𝐕𝑖))

2
𝑛
𝑖=1 + 𝜆1‖𝛗‖1 + 𝜆2‖𝛗‖

2 +  

                                              +𝜆1‖vec(𝐔
(𝑚))‖

1
+ 𝜆2‖vec(𝐔

(𝑚))‖
2
                                       (4-9) 

where 𝜆1 is a nonnegative fixed term penalizing the 𝐿1-norm of the functional (tensorial) 

coefficients, and 𝜆2 penalizes the 𝐿2-norm of the functional (tensorial) coefficients. To solve the 

problem in Eq. (4-9), we divide the main problem in Eq. (4-9) into three sub-problems as 

S1 ≔ ∑ (�̃�𝑖1 − 𝐳𝑖
𝑇𝛄)2𝑛

𝑖=1 + 𝑐1  

S2 ≔ ∑ (�̃�𝑖2 − 𝐬𝑖
𝑇𝛗)2𝑛

𝑖=1 + 𝜆1‖𝛗‖1 + 𝜆2‖𝛗‖
2 + 𝑐2  
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     S3 ≔ ∑ (�̃�𝑖3 − vec(𝐔
(𝑚))

𝑇
vec(𝐕𝑖))

2
𝑛
𝑖=1 + 𝜆1‖vec(𝐔

(𝑚))‖
1
+ 𝜆2‖vec(𝐔

(𝑚))‖
2
+ 𝑐3   (4-10)                                                 

where �̃�𝑖1 = 𝑦𝑖 − vec(𝐔
(𝑚))

𝑇
vec(𝐕𝑖) − 𝐬𝑖

𝑇𝛗, �̃�𝑖2 = 𝑦𝑖 − vec(𝐔
(𝑚))

𝑇
vec(𝐕𝑖) − 𝐳𝑖

𝑇𝛄, and 

�̃�𝑖3 = 𝑦𝑖 − 𝐳𝑖
𝑇𝛄 − 𝐬𝑖

𝑇𝛗 are the new response variables for sub-problems S1, S2 and S3, 

respectively. Each response variable is adjusted based on the solutions for the other two sub-

problems. Also, 𝑐1 = 𝜆1‖vec(𝐔
(𝑚))‖

1
+ 𝜆2‖vec(𝐔

(𝑚))‖
2
+ 𝜆1‖𝛗‖1 + 𝜆2‖𝛗‖

2, 𝑐2 =

𝜆1‖vec(𝐔
(𝑚))‖

1
+ 𝜆2‖vec(𝐔

(𝑚))‖
2
+ 𝐳𝑖

𝑇𝛄, and 𝑐3 = 𝜆1‖𝛗‖1 + 𝜆2‖𝛗‖
2 + 𝐳𝑖

𝑇𝛄 are some 

constants that can be obtained based on the solutions of the sub-problems. This approach 

apparently requires an iterative algorithm to attain the solutions. In the next subsection, a detailed 

algorithm is proposed to obtain the solution of the FLRTP problem.  

4.2.3 An Iterative Algorithm for Solving FLRTP Problem      

This subsection provides an algorithm that can be employed for computing the regression 

parameters of the FLRTP model. The basic principle in every iteration is to solve the              

sub-problems S1, S2 and S3 sequentially. The algorithm can start with S1 sub-problem. Ordinary 

least squares (OLS) method is used to calculate the coefficients for the scalar predictors. The 

residuals are calculated and the EN method is applied to the residuals to compute the coefficient 

functions. To get the solutions for sub-problem S3, unlike the common approach typically used 

in the tensorial regression literature, we suggest computing the optimal values of 

vec(𝐔(𝑚));𝑚 = 1,2, … ,𝑀, using an iterative sub-algorithm similar to the ALS algorithm 

proposed by Carroll and Chang (1970) with the modification that the algorithm is alternating 

between EN problems instead of the least-square estimation problems. The algorithm is called 

alternating elastic net (AEN), and it is shown in Figure 4-5. This will lead to more precise 

estimates for both the functional and tensorial variables. It is noteworthy that the EN penalty 
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terms and the optimal degree of the derivatives (𝑑) can be obtained based on cross-validation 

techniques. The main computational algorithm is presented in Figure 4-6. It is noteworthy that 

the logic of the algorithm in moving along different sub-problems is similar to what is known as 

block-wise power algorithm to find the eigenvalues in a singular value decomposition problem. 

The similarity of this algorithm and the power algorithm with deflation is that in each sub-

problem, say S1, 𝛄 plays the role of the singular vector in the first component, and the rest of 

coefficients (𝛗 and 𝐔(𝒎)) are similar to the singular vectors in the second component.  

 Initialization step 

At each iteration 𝑖𝑡 of the main algorithm: 

1. Compute �̃�𝑖3 = 𝑦𝑖 − 𝐳𝑖
𝑇�̂�𝑖𝑡−1 − 𝐬𝑖

𝑇�̂�𝑖𝑡−1; 𝑖 = 1,2, … , 𝑛. When 𝑖𝑡 = 1, �̂�0 = �⃗⃗� , �̂�0 = �⃗⃗� . 

2. Set �̂�𝑖𝑡
(𝑗)(𝑗 ≠ 𝑚 = 1,2, … ,𝑀) to random matrices when 𝑖𝑡 = 1; otherwise, �̂�𝑖𝑡

(𝑗)
= �̂�𝑖𝑡−1

(𝑗)
. Calculate 

𝐕𝑖
𝑖𝑡 = 𝐖𝑖

(𝑚)
(�̂�𝑖𝑡

(𝑀)
⨀�̂�𝑖𝑡

(𝑀−1)
⨀…⨀�̂�𝑖𝑡

(𝑚−1)
⨀�̂�𝑖𝑡

(𝑚+1)
⨀…⨀�̂�𝑖𝑡

(1)
)
T
; 𝑖 = 1,2, … , 𝑛. 

 

Alternating EN step (AEN) 

At each iteration 𝑖𝑡𝑠 = 1,2, …, of the sub-algorithm: 

1. For 𝑚 = 1,2, … ,𝑀, compute �̂�𝑖𝑡
(𝑗)

 using EN method with inputs �̃�𝑖3 and 𝐕𝑖 for 𝑖 = 1,2, … , 𝑛. 

2. Calculate ℬ̂𝑖𝑡𝑠 = ∑ �̂�𝑟
(1)
∘ �̂�𝑟

(2) ∘ … ∘ �̂�𝑟
(𝑀)𝑅

𝑟=1  with �̂�𝑟
(𝑚)

 as the  𝑟th column of �̂�𝑖𝑡
(𝑚)

. 

Stopping criterion 

At each iteration 𝑖𝑡𝑠 of the sub-algorithm: 

1. Compute the relative estimation difference for two consecutive iterations as 𝑑𝑖𝑡𝑠 =
‖�̂�(𝑖𝑡𝑠)−�̂�(𝑖𝑡𝑠−1)‖

‖�̂�(𝑖𝑡𝑠−1)‖
 

2. Stop the sub-algorithm and return �̂�𝑖𝑡
(𝑗)(𝑗 = 1,2, … ,𝑀), and 𝐕𝑖

𝑖𝑡(𝑖 = 1,2, … , 𝑛),  if 𝑑𝑖𝑡𝑠 < 𝜖𝑠, where 𝜖𝑠 is 

a small, predefined value; otherwise, go to the AEN step. 

Figure  4-5: AEN algorithm to compute the tensorial coefficients 

Main computational step 

At each iteration 𝑖𝑡 = 1,2, …, of the algorithm: 

For 𝑖 = 1,2, … , 𝑛, 

1. Compute ỹi1 as ỹi1 = yi − vec(�̂�𝑖𝑡−1
(𝑚)

)
T
vec(𝐕𝑖

𝑖𝑡−1) − si
T�̂�𝑖𝑡−1 and update �̂�𝑖𝑡 using OLS applied to the pairs 

(�̃�𝑖1, 𝐳𝑖).   

2. Calculate ỹi2 = 𝑦𝑖 − vec(�̂�𝑖𝑡
(𝑚)
)
T
vec(𝐕𝑖

𝑖𝑡) − 𝐳𝑖
𝑇�̂�𝑖𝑡 and apply the EN method to obtain �̂�𝑖𝑡 using the 

pairs (�̃�𝑖2, 𝐬𝑖).  

3. Calculate �̃�𝑖3 = 𝑦𝑖 − 𝐳𝑖
𝑇�̂�𝑖𝑡−1 − 𝐬𝑖

𝑇�̂�𝑖𝑡−1 and obtain �̂�𝑖𝑡
(𝑗)(𝑗 = 1,2, … ,𝑀), and 𝐕𝑖

𝑖𝑡 using AEN sub-algorithm in 

Figure 4-5. 

Stopping criterion 

1. Calculate the residuals sum of squares as 𝑒(𝑖𝑡) = ∑ (𝑦𝑖 − �̂�𝑖)
𝟐𝑛

𝑖=1  with �̂�𝑖 = vec(�̂�𝑖𝑡
(𝑚)
)
𝑇
vec(𝐕𝑖

𝑖𝑡) + 𝐳𝑖
𝑇�̂�𝑖𝑡 +

𝐬𝑖
𝑇�̂�𝑖𝑡.   

2. Obtain the difference between two consecutive 𝑒(𝑖𝑡)’s as 𝑒𝑟(𝑖𝑡) = |𝑒(𝑖𝑡) − 𝑒(𝑖𝑡−1)|.  

3. For a small value of 𝜖, stop the algorithm in case 𝑒𝑟(𝑖𝑡) < 𝜖, and return �̂�𝑖𝑡
(𝑚)
; (𝑚 = 1,2, … ,𝑀), �̂�𝑖𝑡 and �̂�𝑖𝑡.      

Figure 4-6: The main computational algorithm for FLRTP problem 
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4.3 A Simulation Study       

In this section, the performance of the proposed FLRTP approach is evaluated using a 

comprehensive simulation study. The performance of the FLRTP method is reflected by  

the prediction accuracy of the FLRTP method is evaluated based on the root-mean-square errors 

(RMSE).  

Three scalar predictors included in the FLRTP model are spindle speed, feed rate and 

configuration are used. The values scalar predictors are set based on the potential feed rate and 

spindle speed levels that are possibly used in practice. That is, for every sample, the feed rate 

takes one of the two possible values of 120 or 420 mm/min, and spindle speed is either 3000 or 

5000 rpm. Configuration is a binary variable showing that which material is on the top. The 

vector of coefficients is set to 𝛄 = (−2,0.4,5)𝑇 by considering the scale of each of the predictors. 

To generate the tensorial predictor, a surrogated multilinear model is used as 

                                          𝒲𝑖 = ℳ + ℰ𝑖; 𝑖 = 1,2, … , 𝑛, 𝑛 = 500,                                         (4-12) 

where 𝒲𝑖 is the 𝑖th simulated tensor, ℳ is a tensor of the temperature obtained using the IR 

image shown in Figure 4-1. Also, ℰ𝑖 is a tenor-variate normal random error with mean zero 

tensor and mode-𝑚 covariance matrix of 𝜎𝑓
2𝐈(𝑚) ∈ ℝ𝐾𝑚×𝐾𝑚; 𝑚 = 1,2,3 with 𝐈(𝑚) being the 

identity matrix for mode 𝑚. In this simulation study, 𝜎𝑓
2 is specifically set to 0.5. Furthermore, 

the number of elements in each mode is defined as 𝐾1 = 20 (number of rows) , 𝐾2 = 10 (number 

of columns) and 𝐾3 = 3 (number of major FSBR operating steps). The tensor of coefficients is 

simulated using the model in Eq. (4-2) with 𝑅 = 1 in two different scenarios. Mode-1’s tensorial 

coefficients representing the row signal are defined as b1
(1)
= cos(πx11) with 𝐱11 ∈ (1,2) and 

b2
(1)
= {

0      |𝐱12| > 0.5

0.5   |𝐱12| = 0.5 

1     |𝐱12| < 0.5
. For Mode 2, the column signals are defined as b1

(2)
= sin(

πx21

2
) with 
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𝐱21 ∈ (−4,4) and b2
(2)
= {

0                   |𝐱22| ≥ 1
 

1 − |𝐱22|     |𝐱22| < 1
. Mode-3 coefficients are the effects of 

temperature changes in the three major FSBR operating steps on the product quality response 

variable. These parameters are set to  𝐛(3) = (150,220,40)𝑇 showing the fact that the effect of 

temperature’s changes on the quality response variable when the rivet is penetrating inside the 

workpieces is higher than the effect when the FSBR process is close to the final stage where the 

mandrel is pulled up. The coefficient tensors are computed as ℬ1 ∈ ℝ
20×10×5 = b1

(1)
∘ b2

(2)
∘ b(3) 

and ℬ2 ∈ ℝ
20×10×5 = b2

(1)
∘ b1

(2)
∘ b(3).  

For the functional predictor, two different functions are considered for both the predictors 

and coefficient functions. To have a more realistic simulation study, the first functional predictor 

is generated using real penetration force data. Second-degree B-spline curve is fitted to the 

original penetration force. The functional penetration force is then simulated using the fitted B-

spline curve as 

                                                   𝑋𝑖1(𝑡) = �̃��̃� + 𝜉𝑖; 𝑖 = 1,2, … , 𝑛,                                        (4-13) 

where �̃� ∈ ℝ𝑞×𝑞 gives the basis function values, �̃� ∈ ℝ𝑞(𝑞 = 200) is the vector of B-spline 

coefficients, and 𝜉𝑖~𝑁(0,1) is a random error term. The second functional predictor is given as 

𝑋𝑖2(𝑡) = 𝑎𝑠𝑖𝑛(2𝜋𝑡) + 𝑏𝑠𝑖𝑛(4𝜋𝑡) with 𝑎 and 𝑏 ~𝑁(0,1) and 0 ≤ 𝑡 ≤ 1. The coefficients 

functions α1(𝑡) and α2(𝑡) are generated using the polynomial functions defined as  

α1(𝑡) =

{
 

 (𝑡 −  0.5)
2
− 0.025                            0 ≤ 𝑡 < 0.34

0                                                            0.3 ≤ 𝑡 ≤ 0.64

−(𝑡 −  0.5)
2
+ 0.025                                      0.64 < 𝑡

  

α2(𝑡) = 𝑡3 − 𝑡2                                              0 ≤ 𝑡 ≤ 1 
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In total, eight different simulation scenarios (two different sets of tensorial coefficients and four 

scenarios for the functional variable) are considered in this study to evaluate the performance of 

the model. After generating all the predictors and their corresponding coefficients, the maximum 

tensile load (scalar quality response variable) is simulated using Eq. (4-1) and 

휀𝑖~𝑁(0, 0.5
2); (𝑖 = 1,2, … , 𝑛), with 𝑛 = 500 training samples are generated and used to 

estimate the model parameters by using the main algorithm given in Figures 4-5 and 4-6. The 

performance of the FLRTP model is also compared to the stack-up VFLR and VLR methods. For 

comparison purposes, the Mode-1 to Mode-3 coefficient vectors (for the tensorial predictor) 

estimated using FLRTP approach are used to calculate the vector of coefficients �̂� ∈ ℝ𝐾1𝐾2𝐾3 

similar to that of the vectorization-based regression methods i.e., �̂� = �̂�(1)⨀�̂�(2)⨀�̂�(3).     

Ten-fold cross validation was performed to obtain appropriate values for the penalization 

parameters 𝜆1, 𝜆2 and the order of the coefficient function’s derivative (𝑑) by minimizing 

RMSE. As pointed out, the prediction accuracy of the methods is evaluated using the RMSE 

criterion based on the testing dataset. The testing RMSE is computed after training the model, 

performing cross-validation, simulating 1000 new testing datasets of predictors, and calculating 

testing RMSEs using the computed parameters. Figure 4-7 gives the best cross-validation and 

testing RMSEs. As it is notable, the FLRTP method uniformly yields the lowest RMSEs in all 8 

scenarios. As expected, the VFLR method seems to be more effective than VLR in all scenarios.  

Based on the results of the simulation study, it can be concluded that in the cases where 

the predictors contain functional and tensorial variables, the FLRTP method performs better than 

the VFLR and VLR methods in more precisely predicting the response variable of interest.     
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(a) Cross-validation RMSEs 

 
(a) Testing RMSEs 

Figure 4-7: Cross-validation and testing RMSEs computed for FLRTP, VFLR and VLR methods 

4.4 Case Study 

This section applies the FLRTP method on a real dataset from the FSBR process to show 

how the method can be utilized for practical applications. The data regarding the FRBR process 

variables of the AL/CFRP combination are used to validate the FLRTP model. The dataset 

contains 28 samples with the maximum tensile load as the quality response variable, 28 sets of 

penetration force as the functional predictor with 𝑞 = 100 data points representing stage (b), the 

first part of stage (c) belonging to the movement of the rivet inside CFRP, and stage (d). All 28 

samples are normalized to have the same time (location) index as 0 ≤ 𝑡 ≤ 1. For the tensorial 

predictor, 3 images are selected during the period when the rivet is penetrating and the mandrel 

is pulled up. These images are selected to reflect the temperature of the environment in the 

essential steps of the FSBR process.  Three scalar predictors are the feed rate with two levels of 

120 and 420 mm/min, spindle speed at 3000 and 5000 rpm, and configuration as an indicator 

variable showing whether AL is on top or not (the indicator is one in this case).  

The FLRTP and VFLR approaches are applied to the data and the regression parameters 

are computed. Out of the 28 samples, 23 samples are selected to perform the ten-fold cross-
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validation in order to obtain the optimal penalization parameters 𝜆1 to 𝜆4 and the derivatives’ 

order 𝑑. These parameters are determined by minimizing the cross-validation RMSE’s which are 

computed based on 100 replications of the whole cross-validation procedure. The final testing 

RMSEs are computed employing the rest of the 5 samples. The whole testing procedure is 

repeated 50 times and the average of the testing RMSE’s is calculated for the comparison 

purposes. For this dataset, the optimal parameters are attained as 𝜆1 = 4, 𝜆2 = 0.1, and 𝑑 = 3. 

Figure 4-8 (a) shows the estimated Mode 1 to Mode 3 tensorial coefficients and the coefficient 

function for the penetration force using the FLRTP method. As it is noticeable in Figure 4-8 (a), 

Mode 1 (row) and Mode 2 (column) coefficients have several zero components, showing that the 

majority of the rows and columns in the IR images are not important for predicting the maximum 

tensile load. As it is highlighted on the IR image in Figure 4-8 (a), the temperature changes in the 

neighborhood of the rivet when it penetrates into the workpieces seem to have more effect on the 

maximum tensile load. Mode 3 (time mode) coefficients show that while the rivet is penetrating 

(second point in the time mode), the tensile load is more sensitively affected than when the 

mandrel is pulled up (third point in the time mode) as shown in Figure 4-8 (a). Figure 4-8 (b) 

gives the coefficient function with one sample of functional predictor. The amount of 

coefficients increase as the rivet goes through the top workpiece and it decreases as the rivet 

moves the space between the two workpieces. When the blind rivet gets to the second workpiece, 

the coefficients start decreasing until the rivet passes through the second workpiece (Stage (b) in 

Figure 4-4). The coefficient function moves to zero for the rest of process (Stage (d) in Figure 4-

4). The vector of coefficients for the feed rate, spindle speed and configuration is computed as  

�̂� = (6.11, 0.93, 442.11)𝑇 with the standard error of 0.12, 0.01 and 25.68, respectively.   
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For the FLRTP model, the RMSE is computed as 800.05 with the standard error 24.36. 

The RMSE of the VFLR method is calculated as 1274.36 with the standard error 69.85. Since the 

difference between the RMSEs is significant, the FLRTP method is expected to be a better 

approach for predicting the maximum tensile load. The range of the response variable is about 

2200, showing that the error is roughly 36% of the range. It is noteworthy that although 𝑅 = 1 is 

used for these results, different values for the number of components 𝑅 = 3,5 are also studied, 

and the testing RMSEs do not show significant improvements over the case of 𝑅 = 1.   
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(a) Tensorial coefficients 

 

 
 

(b) Functional predictor 

Figure 4-8: Estimated coefficients for the tensorial and functional predictors 
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  CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions and Contributions 

This dissertation aims to develop new data analytics methods for effectively utilizing 

multi-stream sensing signals or image data for improving manufacturing process control and 

product quality. While there are many challenging issues in analyzing such complex data, this 

dissertation particularly focuses on the following three critical issues. The first issue is how to 

effectively analyze sensor data with a multi-stream structure for process or tooling condition 

monitoring. For this purpose, a high-order-decomposition-based SVD (HSVD) method is 

developed, which is used to effectively extract a low dimensional monitoring features from a 

high dimensional multi-stream data of tool wear measurements. The second issue is to deal with 

image data, which may contain some outliers and correlated noise components. In this aspect, in 

addition to proposing a new robust decomposition method for a traditional data representation 

using a low order stack-up approach, this dissertation has further extended the proposed method 

to be applicable to a high-order data representation. Finally, the third issue is to develop a quality 

response model using a functional linear regression, which considers mix-types of predictors 

including unitary, functional, and tensorial process variable. A summary of the major results and 

new contributions with regard to each chapter is provided below:  

(1) A new high-order-decomposition-based control chart for monitoring tool wear data: 

A high-order-decomposition-based control chart is proposed in Chapter 3 for monitoring the tool 

wear in ultrasonic metal welding process. The proposed HOSVD method for extracting 
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monitoring features not only can help reduce the data dimensionality in the multivariate control 

charts but also can provide a better diagnostic inference by keeping the original data’s cross-

correlation structure. The developed method is applied to tool wear monitoring in the ultrasonic 

welding process, which shows a superior benefit in detecting slight wear. In addition, the 

HOSVD method can help automatically discover the unusual knurls’ wear patterns among 

different rows of knurls in an anvil. Studying knurls’ wear patterns on the anvil can further help 

identify and remove potential root causes of excessive or unusual wear of the anvil. The 

simulation studies have also conducted to show the better monitoring and diagnostic 

performance of the proposed HSVD method compared to the existing stack-up SVD method.   

(2) New robust GSVD decomposition methods with outliners and correlated noise: low-

order and high-order robust SVD decomposition methods are developed to be robust to potential 

outliers that might exist in an image dataset. In addition to handling outliners, the proposed 

method can also be applicable to the datasets with spatiotemporally correlated noise components. 

In contrast, the existing decomposition methods fail to work properly when the dataset contains 

outliner observations and structured noises simultaneously. Furthermore, the proposed high-

order robust generalized decomposition method (RGHOSVD) can more effectively factorize the 

tensorial structure of data when the number of variables in each dimension (mode) is larger than 

the number of samples, and meanwhile there is a high correlation that must be preserved among 

the elements of each mode. The simulation studies in Chapter 4 show that the proposed methods 

(RGHOSVD and RGSVD) not only outperform other existing decomposition methods in 

accurately estimating the true singular vectors, but also achieve a higher monitoring performance 

compared to other commonly used methods in image-based monitoring.  The proposed methods 
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have also been effectively applied to image data monitoring for products’ surface defects 

detection in the rolling process.  

(3) A new functional linear regression model with mix-type of scalar, functional and 

tensorial predictors: a functional linear regression model is developed to regress a scalar quality 

response variable on a set of mix-type predictors including scalars, functional and tensorial 

variables. The current models merely focus on solving the problem with either a tensorial or a 

functional predictor. As a result, there is a need for a generic model that can consider both types 

of predictors. A new estimation algorithm is proposed in Chapter 4 and the simulations have 

been conducted under different scenarios, which show that the proposed method (FLRTP) 

outperforms the current stack-up vectorization-based methods (VLR and VFLR) in the both 

aspects of accurately estimating the model parameters and yielding higher prediction accuracy. 

The FLRTP method is also applied to a FSBR joining process for modeling the relationship 

between joints quality and process variables which include various process set-up variables and 

process sensing signals. 

5.2 Future Research  

Data analytics for process modeling and variation monitoring and fault diagnosis is 

highly demanded in manufacturing industry for improving process control and product quality.  

Developing effective data analysis methods with the ability of handling complex data 

characteristics, such as multi-stream structure, outliers, correlated noise, etc. is one of the 

research topics studied in this dissertation. Having generic predictive models with the ability of 

incorporating mix-type of predictors is another critical issue investigated in this dissertation. 

Although this dissertation has performed some initial work in these areas, there are still many 
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other topics that need to be further scrutinized in this direction. A few examples of these topics 

are enumerated as follows:    

 The robust decomposition methods that are proposed in Chapter 3 can work with row-

wise outliers. This means, the methods can deal with datasets that contain samples of 

outliers. In the image data, an outlier sample is an abnormal image with unclear visibility, 

and the decomposition method discards these outliers. On the other hand, sometimes the 

images may have unclear visibility in a local region of the image and the rest of the 

image is clear. This type of outliers is called elementwise outliers, and it would be better 

to remove these outlier elements instead of discarding the whole sample of image. An 

advanced robust decomposition methods will be needed to account for correlated noise 

and handle such elementwise outliers.  

 In functional linear regression literature, there are some situations where the response 

variable has a functional or a tensorial structure instead of a scalar response variable. This 

problem is worth more considerations since there is no such a model and estimation 

algorithm in the literature that can handle functional or tensorial response variables with 

mixed types of predictors.  

  In the proposed FLRTP model, the assumption is that the random error terms are 

independently distributed. In some situations, this independence assumption does not 

hold. An example of this situation is when the response variable is measured in small 

time interval, which leads to an autocorrelation problem. A generic model is needed to 

consider autocorrelated random error terms.   


