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ABSTRACT 

Proteogenomics is an area of proteomics concerning the detection of novel peptides and peptide 

variants nominated by genomics and transcriptomics experiments. While the term primarily 

refers to studies utilizing a customized protein database derived from select sequencing 

experiments, proteogenomics methods can also be applied in the quest for identifying previously 

unobserved, or missing, proteins in a reference protein database. The identification of novel 

peptides is difficult and results can be dominated by false positives if conventional 

computational and statistical approaches for shotgun proteomics are directly applied without 

consideration of the challenges involved in proteogenomics analyses. In this dissertation, I 

systematically distill the sources of false positives in peptide identification and present potential 

remedies, including computational strategies that are necessary to make these approaches 

feasible for large datasets. 

 

In the first part, I analyze high scoring decoys, which are false identifications with high assigned 

confidences, using multiple peptide identification strategies to understand how they are 

generated and develop strategies for reducing false positives. I also demonstrate that modified 

peptides can cause violations in the target-decoy assumptions, which is a cornerstone for error 

rate estimation in shotgun proteomics, leading to potential underestimation in the number of false 

positives. Second, I address computational bottlenecks in proteogenomics workflows through the 

development of two database search engines: EGADS and MSFragger. EGADS aims to address 

issues relating to the large sequence space involved in proteogenomics studies by using graphical 

processing units to accelerate both in-silico digestion and similarity scoring. MSFragger 

implements a novel fragment ion index and searching algorithm that vastly speeds up spectra 

similarity calculations. For the identification of modified peptides using the open search strategy, 

MSFragger is over 150X faster than conventional database search tools. Finally, I will discuss 

refinements to the open search strategy for detecting modified peptides and tools for improved 

collation and annotation. Using the speed afforded by MSFragger, I perform open searching on 
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several large-scale proteomics experiments, identifying modified peptides on an unprecedented 

scale and demonstrating its utility in diverse proteomics applications. 

 

The ability to rapidly and comprehensively identify modified peptides allows for the reduction of 

false positives in proteogenomics. It also has implications in discovery proteomics by allowing 

for the detection of both common and rare (including novel) biological modifications that are 

often not considered in large scale proteomics experiments. The ability to account for all 

chemically modified peptides may also improve protein abundance estimates in quantitative 

proteomics.



  

1 
 

CHAPTER I 

INTRODUCTION TO SHOTGUN PROTEOMICS AND 
PROTEOGENOMICS 

1.1 Venturing beyond the reference proteome 

In May 2014, more than thirteen years after the draft of the human genome [1,2], two studies 

from independent groups appeared in Nature each claiming to have completed the first draft of 

the human proteome [3,4]. These drafts of the human proteome were based on mass 

spectrometry-based proteomics, the now dominant tool for large-scale proteome analysis. In 

these studies, data was generated from diverse human tissues, or otherwise aggregated from 

public repositories, to build a comprehensive catalog of human proteins. From the roughly 

20,000 protein-coding genes, both studies reported mass-spectrometry evidence for over 17,000 

protein-coding genes.  Immediately after these heavily publicized publications, much criticism 

was raised in the proteomics community regarding the lax false discovery rate (FDR) filtering 

used in the studies. Several re-analyses of these datasets only identified 13-14,000 proteins [5] 

and others raised concerns about the large number of olfactory receptor proteins identified in 

non-nasal tissues (allegedly due to poor quality spectra and non-unique peptides) [6]. As a result, 

guidelines were established for calling novel (as was the case for many peptides and proteins in 

these studies) identifications [7] and subsequent work from one of the groups publishing the draft 

proteome have revised downwards their observed number of proteins to less than 15,000 [8], 

more than 2,000 fewer than what was originally claimed. The drafts of the human proteome and 

the subsequent controversy illustrate the numerous statistical pitfalls and computational 

challenges surrounding mass spectrometry-based proteomics. 

 

The concept of novel identifications in attempts to define the proteome can be a bit misleading as 

modern high-throughput proteomics studies relies on databases of protein sequences derived 
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from genomics and transcriptomics studies. Hence, defining the proteome is more of an exercise 

in validating predicted protein products rather than directly observing proteins and their 

sequences. This is in contrast to the efforts in the early 1990s, prior to the availability of genomic 

or protein databases, where Edman sequencing of intact proteins or enzymatically-digested 

fragments was used to generate partial protein sequences for which degenerate oligonucleotide 

primers could be made to PCR the gene for sequencing [9]. Presently, the majority of proteomics 

studies utilize high quality reference databases generated from a combination of manual and 

automated curation such as UniprotKB [10] and Ensembl [11]. Others use custom protein 

databases [12] derived from related sequencing experiments to capture variants (both point and 

splice) [13] and non-canonical regions of coding potential (such as lncRNAs [14]). Studies of the 

latter type have been classified under the label of proteogenomics [7] in recent years as an 

emerging field of proteomics (Figure 1-1). Despite this classification, the methods and 

challenges involved in identifying novel peptides and proteins, whether they stem from entries in 

the reference database that have not been previously observed by mass spectrometry [5,15] or 

from predictions from sequencing data, are largely the same (rather unsurprising as the reference 

protein database is also derived from sequencing efforts). These efforts to characterizing the 

novel and unknown may also extend to the vast repertoire of post-translational modifications 

(PTMs) that regulate most proteins [16]. Together, they embody the frontiers of the observable 

proteome. In this dissertation, we define some of the challenges in these explorations beyond the 

reference proteome and present computational tools and strategies that address these issues. 

 

 

 

Figure 1-1 Proteogenomics workflow.  
Genomics and transcriptomics data are used to generate customized protein databases that are used for peptide identification. The 
identified peptides are then used to validate or refine gene models. 
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1.2 Mass spectrometry-based proteomics 

Modern high-throughput shotgun proteomics has its origins in the development of four crucial 

technologies in the 1980s and early 1990s. The first are the advances in peptide and protein 

ionization technologies such as MALDI (matrix-assisted laser desorption/ionization) and 

electrospray ionization that enabled the analysis of these biomolecules in mass spectrometers 

[17].  In particular, electrospray ionization is compatible with high performance liquid 

chromatography (HPLC) systems that are critical for separating peptides in complex biological 

mixtures. Second, the development of tandem (MS/MS) mass spectrometry enabled the rapid 

sequencing of peptides bypassing lengthy Edman sequencing [18]. In tandem mass spectrometry, 

peptide ions are collided or otherwise fragmented into peptide fragments and the mass spectra of 

the resultant fragments are collected. The peptides fragment primarily at the amide bonds 

between residues, allowing the sequence to be deduced by comparing the mass differences 

between series of ions to the mass of amino acids. The third are automated instrument control 

methods that enable mass spectrometers to dynamically select which ions to fragment based on 

the ions it observes eluting from chromatographic system in real time [19]. These data-dependent 

acquisition methods enable mass spectrometers to focus on the ions most likely to yield 

additional information about the sample (e.g. high intensity ions that have not already been 

fragmented, ions that do not correspond to signals of known chemical noise) as the number of 

eluting ions is far greater than the rate at which mass spectrometers can acquire tandem mass 

spectra.  Finally, and of particular focus in this dissertation, computational tools that can interpret 

and assign a peptide identification to these tandem mass spectra. Without these automated tools, 

the labor involved in manual interpretation would prohibit mass spectrometry-based proteomics 

from evolving into a high-throughput technology. 

 

In practice, the modern realizations of these technologies in shotgun proteomics are as follows 

[20]. Proteins are enzymatically digested, commonly with trypsin, into peptides that are loaded 

into an HPLC system coupled to a mass spectrometer. To reduce sample complexity (allowing 

lower abundance ions to be sampled in the mass spectrometer – resulting in greater proteome 

coverage), proteins and/or peptides can be fractionated in gels or another liquid chromatography 

system prior to loading. As peptides are eluted from the HPLC system, they are ionized and the 
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mass spectrometer generates a mass spectrum containing all eluting peptide ions (known as a 

survey or MS1 scan). Based on the acquired survey scan, the onboard computer selects a number 

of peptide ions to select for fragmentation (often the most abundant peptide ions). The mass 

spectrometer then iteratively applies a mass filter to the incoming stream of ions, selecting a 

narrow mass window around the selected peptide ion, and fragments the peptide ion into 

fragments. The fragment ions are then detected and recorded as a tandem (also called MS/MS, 

MS2, or fragmentation) spectrum. After a number of tandem mass spectra have been acquired, 

the selected masses are placed on an dynamic exclusion list [21] to avoid collecting additional 

mass spectra of the same peptide ion and a fresh survey scan is collected to select the next targets 

for fragmentation. The collected mass spectra can then be used for peptide identification and 

quantitation. 

 

While this model of data dependent acquisition has served as the primary workhorse of shotgun 

proteomics for nearly two decades, advances in instrument speed and accuracy in recent years 

have led to dramatic increases in the depth of proteome coverage and rate of acquisition. 

Detection of over 10,000 proteins is now routine for fractionated human cell line data [22,23] 

while single shot analysis of the yeast proteome (approximately 4000 proteins) can now be 

performed in an hour [24], in contrast to the 144 hours of analysis time required for experiments 

performed as recently as 2008 [25]. As a result of the ever-increasing instrument speed, the 

amount of experimental data generated has increased significantly. This is readily observed 

through the growth in the amount of data stored in public repositories of proteomics experiments 

(Figure 1-2).  

 

Much of this growth appears to be stimulated by the introduction of instruments that are able to 

acquire tens of high-resolution (tens of parts per million or less) tandem mass spectra per second 

such as the TripleTOF 5600 [26] or the Q Exactive [27] mass spectrometers. A deeper inspection 

of the PRIDE repository [28]  (Table 1-1) reveals that the majority of deposited data is indeed 

generated from these and related instruments. 
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Figure 1-2 Size of the PRIDE data repository of proteomics data over time as of March 2017.  
Project sizes are determined from the contents of their FTP directories. Project publication dates are used rather than submission 
dates. Popular mass spectrometers are plotted near their approximate release dates. 

  

Table 1-1 Top mass spectrometers in PRIDE as of March 2017. 
Instruments are extracted from PRIDE project pages with sizes determined from projects’ FTP directories. Projects analyzed 
using multiple instrument types are associated with all instruments, leading to some duplicate counting. 

Instrument Projects Total Size (TB) Year of Introduction 
Q Exactive 740 72.52 2011 [27] 
LTQ Orbitrap Velos 770 51.07 2009 [29] 
LTQ Orbitrap* 600 28.49 2005 [30] 
LTQ Orbitrap Elite 270 16.61 2012 [31] 
TripleTOF 5600 191 10.08 2011 [26] 

 
*In many projects, the annotations on the PRIDE project pages are incorrect, with experiments performed on LTQ Orbitrap Elite 
and LTQ Orbitrap Velos incorrectly labeled as LTQ Orbitrap. 

1.3 Methods for peptide identification in shotgun proteomics 

The automated interpretation of tandem mass spectra is an important part of any shotgun 

proteomics workflow. Peptide identification algorithms are assessed on both their ability to 

correctly identify peptides as well as their computational runtime as peptide identification is 

often a computational bottleneck in many proteomics workflows [20]. These runtime concerns 

may be more relevant than ever due to the volume of data generated by modern high-speed 

instruments. As previously described, peptide ions are typically fragmented at the amide bonds 
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between residues in tandem mass spectrometry.  However, the fragmentation does not occur 

uniformly [32] and the fragmentation spectrum often fail to contain a complete ion ladder for 

easy interpretation. Hence, there are multiple strategies for interpreting tandem mass spectra. 

 

There are three main classes of tools for peptide identification: database searching, tag-based 

searching, and de novo sequencing. The lines between the classes are often blurred as ideas 

between the classes can be combined to form hybrid strategies. One of the earliest tools to gain 

widespread adaptation was the database search tool SEQUEST [33] (also re-implemented as the 

open-source tool Comet [34]), which interpreted experimental spectrum by computing a cross 

correlation function against theoretical spectra derived from in-silico digested peptides in a 

protein database. This database search model has been adapted by numerous other tools 

including Mascot [35], X! Tandem [36], Andromeda [37], MS-GF+ [38] and countless others – 

varying in how they score or compare the experimental spectrum against theoretical spectra, or 

how the search space is partitioned and prioritized. Due to their performance in both accuracy 

and speed, they remain the dominant class of tools for peptide identifications. As more and more 

fragmentation spectra are collected and assembled in public repositories, the use of spectral 

libraries for peptide identifications have also emerged, despite initial comments that there are 

simply too many peptides to build an effective spectral library [33]. In spectral library searching, 

previously observed and identified fragmentation spectra are assembled [39] and compared 

against experimental spectra. The known fragmentation patterns (intensities of fragment ions) 

can be more discriminatory than the theoretical spectra predicted by database search tools but the 

approach is limited only to the previously identified peptides present in the spectral library. 

 

While the complete ion ladder is often missing from fragmentation spectra, there is often a 

partial ladder that reveals a subsequence of the peptide. Tag-based approaches use this 

information by looking for a partial ladder and using the derived information to filter a sequence 

database [40]. Compared to database searching, the tag-filtered list of candidates is much smaller 

so more computational intensive operations, such as the identification of unknown modifications 

[41], can be performed. De novo sequencing tools attempt to identify peptides from 

fragmentation spectra without the use of a reference database [42,43]. The main benefit of de 

novo sequencing tools is that they allow for the identification of peptides that are not known or 
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present in the reference database. They can also be used to identify post-translational 

modifications [44]. However, they are computationally expensive to use and require high-quality 

spectra, making them impractical in most high-throughput experiments. Hybrid de novo 

sequencing methods have been developed to use information from a reference database [45] or 

fragmentation information from spectral libraries [46]. 

 

Regardless of the approach used to identify peptides in a fragmentation spectrum, the output of 

each tool is the identified peptide, a raw score representing the quality or confidence of the 

assignment based on the tool’s internal scoring mechanism, and a calibrated score (such as a 

probability or expectation value) that normalizes the raw score (as it can be heavily dependent on 

peptide length or spectrum complexity) allowing for quality comparisons between different 

peptide to spectrum matches (PSMs). However, the quality and accuracy of these calibrated 

scores is much debated [47]. 

1.4 Error rate estimation in shotgun proteomics 

While peptide identification tools provide scores that estimates the quality of the peptide 

spectrum match, they do not provide any estimates on the number of false identifications in a 

given experiment. This problem is complicated by the fact that scores are not comparable 

between different identification tools and that the quality assessments of individual PSMs do not 

have access to information that can be derived from experiment-wide observations, such as the 

frequency of missed cleavages or instrument mass accuracy and calibration. Hence, peptide 

validation methods were developed that combines peptide identification scores with auxiliary 

information in a statistical framework that can estimate the number of correct and incorrect hits. 

One of the pioneering tools for peptide validation is PeptideProphet [48] which computed a 

discriminant score for each PSM and used the expectation-maximization algorithm to model the 

distributions of correct and incorrect hits. The models can then be used to estimate the 

probability of correct hits and establish thresholds for controlling error rates in an experiment. 

These principles also have been extended to proteins to control for error rates at the protein level 

[49].  
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Complementary to these modeling based methods, the use of decoy sequences is widespread in 

shotgun proteomics [50]. Decoy sequences are peptide or protein sequences that are artificial and 

should not be found in nature. Hence, by searching against decoy sequences, it is possible to 

estimate the rate of error matches or the distribution of random scores. Decoy sequences were 

first generated from reversed protein sequences [51] but reversed peptides have been shown to 

perform similarly and may be superior for high mass accuracy data as they preserve the 

distribution of  peptide masses. Decoys have also been incorporated into peptide and protein 

validation models as negative examples in semi-supervised modeling [52,53]. In addition to 

serving as negative examples in statistical modeling, they can also be used to directly and 

empirically estimate the false discovery rate in a given experiment. In a common target-decoy 

approach, a combined database is generated with targets (the protein database of interest) and 

decoys of equal length (from reversed proteins or peptides). Experimental fragmentation spectra 

are then searched against this combined database using a peptide identification tool. Under the 

target-decoy assumption that incorrect assignments will match equally to target and decoy 

sequences, the number of false positives is equal to the number of decoy matches so the false 

discovery rate can be estimated by dividing the number of decoy hits to the number of target hits. 

A scoring threshold can then be set to achieve a target false discovery rate. Not only does the 

target-decoy approach allow estimation of false discovery rates at the PSM level, it can also be 

used to estimate FDR at the peptide or protein level. 

Error rate estimation in shotgun proteomics remains an area of active development. This is 

especially true for error rate estimation in very large datasets [8,54,55] and the use of different 

prior probabilities by integrating abundance information from transcriptomics or proteomics 

repositories [55,56], both of which are relevant in a proteogenomics context. 

1.5 False positives in proteogenomics analyses 

While false positives are produced as part of any shotgun proteomics analysis workflow, there 

are two key considerations that are of particular importance for proteogenomics: class-specific 

FDR estimation and false identifications of nonrandom nature [7]. In conventional proteomics 

analyses, a score threshold is selected to achieve a particular FDR for the entire dataset, typically 

using the target-decoy approach. This approach has proved problematic for proteogenomics 
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analyses as the likelihoods for identifying novel peptides are different than for abundant peptides 

and much stronger evidence is needed to support a novel identification. Failure to account for 

these differences have cause dramatic underestimation of the FDR for novel peptides [57]. In one 

proteogenomics study examining aberrant peptides in cancer, a global 1% FDR filter resulted in 

a 36% FDR amongst the novel peptide identifications [58]. Performing FDR estimation 

separately for known peptides and novel peptides allowed a 1% FDR to be achieved in both 

classes.  A theoretical analysis of this problem has demonstrated that a more complete annotation 

of the genome is linked to the degree of FDR underestimation for novel peptides (when a global 

FDR filter is used) [59]. While there are proteogenomics studies that employ class specific FDR 

estimation [60], the vast majority do not [3,4,13], leading to over-reporting of novel discoveries. 

The second major challenge facing proteogenomics analyses is the high degree of similarity 

between certain novel candidates and previously identified peptides in the reference database. 

Many novel peptides in proteogenomics originate from non-synonymous single nucleotide 

polymorphisms in the sequencing data. As these single amino acid substitutions can be similar or 

identical in mass with common chemical modifications, spectra of modified peptides can be 

misidentified as a novel variant peptide [61]. For example, the change in mass for an alanine to 

serine substitution or a phenylalanine to tyrosine substitution is identical to that of oxidation, an 

abundant chemical modification. As these incorrect assignments are due to chemically modified 

peptides, their fragmentation patterns are of a non-random nature and these errors may not be 

well modeled by the target-decoy strategy. While a number of such errors have been manually 

curated from the human draft proteome studies [5], there is a need to systematically annotate and 

study such errors. 

1.6 Outline 

False positives present two major challenges for proteogenomics analyses. The first concerns the 

sensitivity of proteogenomics experiments. Discovery of novel peptides involves the testing of 

large hypothesis spaces generated from sequencing experiments, requiring much stronger 

evidence for the identification of novel peptides when class specific FDR estimation is applied. 

When there is an abundance of false positives, the sensitivity of the experiment can be greatly 

affected making it impossible to detect any novel peptide at a reasonable FDR. The second 
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involves chemically or biologically modified peptides that might be misidentified as a novel 

variant peptide. It is unclear whether these false positives are correctly modeled by the target-

decoy approach as spectra from modified peptides can resemble spectra of novel variant peptides 

or other peptides in the reference database and may not match with equal propensity to target and 

decoy sequences. Even if these misidentifications are effectively captured by the target-decoy 

strategy, their presence as false positives in proteogenomics analyses might also decrease 

sensitivity. 

 

The overall aim of this dissertation is to develop computational strategies that address these 

concerns in proteogenomics analyses. In Chapter Two, I examine the causes and composition of 

false positives in shotgun proteomics while exploring the effects of modified peptides in false 

discovery rate estimation using multiple peptide identification tools. In Chapter Three, I develop 

two database search tools that reduce the computation time required in proteogenomics analyses, 

enabling more comprehensive peptide identifications that can reduce false positives. In Chapter 

Four, I refine the open search strategy for identifying modified peptides and apply it to large 

scale proteomics experiments for profiling modified peptides in a number of proteomics 

experiments and applications. 
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CHAPTER II 

CHARACTERIZATION AND REMEDIATION OF FALSE 
POSITIVES IN PROTEOGENOMICS WORKFLOWS 

Portions of this chapter comparing narrow window and open search results have been published 
in Nature Methods [62] 

2.1 Introduction 

Manual validation of database search results have revealed several common sources of false 

positives including poor quality spectra, non-enzymatic cleavage, chemical or post-translational 

modifications, incorrect monoisotopic peak assignment, and incorrect charge state assignment 

[63,64]. While computational strategies have been developed to address a number of these 

sources (semi-tryptic searches, variable modification searches with common chemical 

modifications, isotope error correction in database search engines etc.), they are not 

comprehensive and are not always applied for large datasets due to the computational costs 

involved. In proteogenomics contexts where the presence of false positives is of much greater 

concern, these additional computations might be necessary for successful identification of novel 

peptides.  We developed a computational framework for annotating and quantifying the false 

positives that might be avoided using more extensive analyses. Finding a large number of high 

confidence false positives is inherently difficult as they are indistinguishable from true positives 

on the basis of database search and peptide validation scores. Fortunately, the use of the target-

decoy strategy [50] provides us with a mechanism to study false positives as decoy assignments 

are incorrect by design. We performed peptide identification using three database search engines 

[34,36,38] and a blind modification search tool [41] in both tryptic and semi-tryptic modes to 

quantify the false positives that are due to ambiguous assignments, semi-enzymatic cleavage, and 

modified peptides. 
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Next, we took a deeper look at modified peptides to see how they cause false positives and 

whether such false positives are correctly modeled by the target-decoy strategy. While blind 

modification search tools can identify modified peptides with unknown modifications, they 

suffer from reduced sensitivity and are often incompatible with other tools in common 

proteomics workflows such as those for peptide validation. Hence, there was considerable 

interest in a recent report [65] exploring the feasibility of searches using wide precursor mass 

tolerances of hundreds of Daltons (open searches) to identify modified peptides using 

conventional database search tools. We applied the open searching concept to identify modified 

peptides and compared the identifications with those from a conventional narrow window search.  

2.2 Materials and methods 

2.2.1 Characteristics and sources of high scoring decoys 

Datasets and data preparation 

A publicly available dataset consisting of a panel of various triple negative breast cancer cell 

lines and tissue specimens analyzed on a Thermo Scientific Q Exactive mass spectrometer [66] 

was downloaded from ProteomicsDB (PRDB004167) in vendor .raw format.  The Thermo .raw 

files were converted to the mzML format using vendor provided centroiding and default 

parameters using the msconvert.exe tool from ProteoWizard (3.0.7398 64-bit version).  For the 

MODa analysis, the mzML files were further converted to the MGF file format from the mzML 

files using default parameters.  

 

A human protein database was retrieved from UniprotKB (download date: 2016-07-29) and 

appended with decoy proteins containing reversed peptide sequences (with prolines left in-place 

when they are immediately before a trypsin cleavage site to ensure that the distribution of tryptic 

peptide masses is identical between the forward and decoy space).  Common contaminants 

(cRAP protein sequences from GPMDB and contaminants from MaxQuant) were appended to 

the concatenated protein database. 
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Peptide identification pipeline 

Peptide identification was performed independently using three different database search engines 

(Comet[34] 2015.02 rev 1, X! Tandem[36] 2015.04.01.1, MS-GF+[38] v10089) and a blind-

modification search tool (MODa[41] v1.51) against the protein database described above in both 

fully tryptic and semi-tryptic modes.  For all searches, trypsin was specified as the enzyme used 

for digestion with the precursor mass tolerance set to 20ppm.  Static carboxyamidomethylation 

(+57.021464 Da) on cysteine was specified for all tools while oxidation (+15.9949 Da) on 

methionine and N-terminal acetylation (+42.0106 Da) were specified as variable modifications in 

the three database search engines.  For Comet and X! Tandem, up to five missed cleavages were 

allowed (MS-GF+ does not limit the number of missed cleavages).  Parent isotopic error 

correction was enabled in all search engines (isotope_error = 1 in Comet and –ti “0,2” in MS-

GF+). In Comet, the use of neutral loss was disabled and high-resolution MS/MS settings 

(fragment bin offset 0.0 and fragment bin tolerance of 0.02) were used for scoring.  In X! 

Tandem, the top 100 peaks were used for scoring with a required minimum of 4 matched 

fragment peaks.  For MODa analysis, only a single modification was permitted per peptide with 

a modification range of -500 to +500 Da.  Fragment mass tolerance was set to 0.02 and the high-

resolution MS/MS mode was enabled. 

 

X! Tandem output files were converted to the pepXML format using the Tandem2XML tool 

found in the Trans-Proteomics Pipeline[67] (TPP) version 4.8.0.  MS-GF+ outputs were 

converted from mzIdentML to pepXML using idconvert from ProteoWizard (3.0.6002). 

 

Peptide validation and false discovery rate estimation 

Peptide validation was performed individually on each pepXML file in the six (three search 

engines; tryptic and semi-tryptic) sets of outputs using PeptideProphet[48]  (TPP 4.8.0) using the 

following settings: ‘d’ (report decoy hits), ‘A’ (high mass accuracy model), ‘E’ (use search 

engine calculated expectation values), ‘P’ (semi-parametric modeling), ‘PPM’ (parts per million 

in mass model).  For each set of analyses, the pepXML files corresponding to the 457 LC-

MS/MS runs were read using a custom Java program and false discovery rate estimation was 

performed empirically using the target-decoy approach at both the PSM level and peptide level 
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(using the high scoring PSM as a surrogate for peptide probability).  Spectrum level and peptide 

level q-values were assigned for each PSM. No FDR filtering was performed for MODa results. 

 

Integration of peptide identification results 

Data integration was performed by first normalizing the scan numbers output by the different 

tools. X! Tandem indices were 1 smaller than the ones reported by MS-GF+ and Comet while 

MODa reports scan numbers as the n-th MS/MS scan present in the MGF file starting at 1. 

PepXML files and MODa results were parsed and converted to a tab-delimited results file with 

search results for each spectrum query grouped together and numbered using the MS-

GF+/Comet scan numbering. 

 

Screening and interpretation of high scoring decoys 

PSMs and peptides were considered a high scoring (PSM and peptide q-values of 0.01 or less) 

decoy if they matched to a peptide that cannot be found in the forward sequence space for at least 

one of the three search engines operating in fully tryptic mode. The high scoring decoy is 

explained as an Ambiguous Scoring event if a high scoring forward hit is identified by some 

other search engine. If no such tryptic hit is found, the semi-tryptic search results are considered 

and a Semi-tryptic explanation is assigned if there is a high scoring semi-tryptic forward hit. 

MODa results are then examined to determine if there is a modified forward peptide that 

explains the spectrum.  If no alternate explanation is found for the high scoring decoy after these 

steps, it is labeled as Unexplained. 

2.2.2 Target-decoy assumption is violated by modified peptides and causes 
underestimation of error rates 

Datasets and data preparation 

A deep HEK 293 dataset[65] consisting of 24 LC-MS/MS runs analyzed on a Thermo Scientific 

Q Exactive mass spectrometer was downloaded from PRIDE (PXD001468).   Conversion of 

vendor .raw files to mzML was performed as previously described. 
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Peptide identification using MSFragger 

Narrow window (100 p.p.m.) and open (500 Da) searching was performed by MSFragger 

(version 20170103.0) [62] on the HEK 293 dataset against the Ensembl database as described in 

section followed by peptide validation using PeptideProphet (using the extended mass model) as 

described in section 3.2.2.  Identifications were filtered to 1% FDR at both the PSM and peptide 

level (using the highest PSM probability). 

 

Generation and database searching of theoretic spectra from modified peptides 

The database dump (2014-08-10) of GPMDB[68] was retrieved from their FTP site and parsed 

using a custom Java program to extract peptide observations from the peptides table.  The tryptic 

peptides generated from an in-silico digestion of the Ensembl 78 human protein database was 

filtered using the list of GPMDB peptide observations to obtain a list of 282,806 peptides.  This 

list of peptides was further filtered to a set of 73,002 peptides by retaining only peptides that 

have a methionine residue. A random methionine is selected in each of these peptides and is 

oxidized in-silico and a theoretical spectrum is generated (with carbamidomethylated cysteines) 

consisting of singly charged b- and y-ions. The theoretical spectra are written to MGF files with 

the precursor mass and charge reported in the 2+ state.   

 

Peptide identification was performed using the Comet search engine (version 2015.01 rev. 1) 

against the same Ensembl 78 protein database (both with reversed protein decoys and reversed 

peptide decoys) using a 20 p.p.m. precursor mass tolerance in high resolution mode 

(fragment_bin_offset of 0.0 and fragment_bin_tol of 0.02). Fully tryptic digestion was specified 

with up to 1 missed cleavage and the use of neutral loss ions was disabled for scoring. Variable 

modifications were disabled as intended and static carbamidomethylation was specified for 

cysteines. Peptide identifications were ordered by their expectation value and binned into 1000 

bins to calculate the fraction of target matches in each bin. 
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2.3 Results 

2.3.1 Characteristics and sources of high scoring decoys 

We performed fully tryptic searches using three search engines [34,36,38] and applied a 1% FDR 

filter at both the peptide and PSM level. The target-decoy strategy assumes that incorrect 

assignments would match randomly to both targets and decoys. Yet the randomness to which 

these incorrect assignments are matched to decoy peptides is not well understood and the 

presence of multiple PSMs supporting the same peptide remains a common filter for additional 

stringency in proteomics analyses. While the majority of decoy peptides are only supported by a 

single high scoring PSM, there are many that are supported by tens or even hundreds of PSMs, 

independent of the search engine used (Figure 2-1).  The fact that certain decoy peptides can be 

supported by hundreds of PSMs suggest that the same is likely to hold true for false positives and 

that even if a forward peptide is supported by hundreds of high scoring PSMs, it may still be a 

false positive. The non-uniform nature of these decoy matches across the decoy space indicates 

that they originate from unaccounted peptides rather than random chemical noise. 

 

 

Figure 2-1 High scoring decoys can be supported by tens to hundreds of PSMs.  
High scoring decoy peptides are grouped based on their number of supporting PSMs for each of the three search engines 
operating in fully tryptic mode. 

Next, we examined the overlap in high scoring decoy peptide identifications across the three 

search engines. 7,313 high scoring decoy peptides (at 1% peptide FDR) were identified across 

the three search engines (Figure 2-2). Surprisingly, only 107 decoy peptides identified by all 
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three search engines. The vast majority (6,576) of high scoring decoy peptides were only 

identified by a single search engine. The lack of agreement between the different search engines 

illustrates differences in their spectrum similarity and score calibration functions as the same 

spectrum is either assigned to another incorrect peptide or fails to reach statistical confidence to 

pass the 1% FDR filter. This lack of agreement can also be used to improve peptide 

identifications by combining orthogonal scoring functions in these search engines and removing 

borderline or conflicting identifications. Indeed, this concept has been used with much success in 

peptide validation for reducing error rates and improving the number of identifications at a given 

FDR [69,70]. 

 

 

Figure 2-2 Overlap of decoy peptide sequences across three search engines.  
High scoring decoy peptide sequences are compared across three search engines. The vast majority of decoy sequences are 
unique to a particular search engine. 

As these incorrect assignments are likely due to unaccounted peptides, we expanded the search 

space by performing semi-tryptic searches using the three search engines and a blind 

modification tool [41] to account for unanticipated chemical or biological modifications. We also 

considered instances where identification is ambiguous – cases where a forward peptide and a 

decoy peptide are both identified with high confidence by two different search engines. These 

may represent situations where the database search engine is overly confident in its assignment. 
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Figure 2-3 Explanation of high scoring decoy PSMs.  
High scoring decoy PSMs are iteratively explained using fully tryptic, semi-tryptic, and blind modification search results. 

 

We attempted to find explanations for high scoring decoy PSMs in the following order: 

ambiguous scoring by the presence of a high scoring forward PSM identified by another search 

engine, semi-tryptic by the presence of a high scoring semi-tryptic forward PSM identified by 

any search engine, modified peptide if MODa nominates a modified forward peptide, and 

unknown if we fail to find a possible explanation for the high scoring decoy PSM (Figure 2-3).  

In 38.83% of high scoring decoy PSMs, they can be explained by an ambiguous scoring event. 

For example, the decoy peptide IVESITK was identified with confidence in 286 PSMs. In many 

cases, the forward peptide LVTDLTK was identified by another search engine. Comparing the 

matched fragment ions for the two different peptide assignments in one such experimental 

spectrum (Figure A-1) shows that the matched fragments are identical in mass and that outside of 

auxiliary information (such as knowledge of the fragmentation pattern or additional fragments 

from neutral loss ions), the two identifications are of equal confidence and we lack experimental 

information to distinguish between the two.  While the fragments are measured with high mass 

accuracy and match to a large number of theoretical fragment ions, the presence of multiple 

peptides that match equally well highlights the difficulty in confidently identifying short 

peptides.  

 

Next, we examined the population of decoys that can be explained by a semi-tryptic peptide. 

13.39% of high scoring decoy PSMs was confidently identified as a semi-tryptic peptide. In our 
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example (Figure A-2), the spectrum matching decoy peptide LANLLVGK was reassigned to the 

semi-tryptic forward peptide LAGGIIGVK in a semi-tryptic search. The semi-tryptic match 

improved upon the decoy match by matching two additional y-ions of relatively low intensity. 

While the correct identification may well be the semi-tryptic assignment, the large number of 

matched high intensity fragments in the decoy assignment once again demonstrates the 

limitations of current similarity scoring functions as there is little information to distinguish 

between the two matches.  

 

We then examined the 27.44% of decoy PSMs that are explained by chemical or biological 

modifications. We posit that this percentage may be heavily dependent on sample complexity 

and instrument acquisition speeds. In more complex samples, abundant unmodified peptides 

dominate the peptide ions that are sampled by the mass spectrometer while less abundant 

modified forms are ignored. The converse is true for fractionated or low complexity samples 

with few proteins giving modified peptides a greater chance to be sampled. Increasing the 

acquisition speed of the instrument or the runtime of the LC-MS/MS run will also likely increase 

the number of modified peptides sampled and correspondingly, the number of high scoring 

decoys (and false positives) that are due to unaccounted modifications. In the selected example, 

the decoy assignment EWHHSHTDITLR fails to match many of the high intensity fragment 

peaks while the modified peptide assignment of IW[16]HHTFYNELR (oxidation on tryptophan) 

is of much higher quality, explaining nearly all of the intense peaks in the fragmentation 

spectrum (Figure A-3). While tryptophan oxidation is well known, it is often not included in 

routine peptide identification workflows due to the analysis time required to consider additional 

variable modifications. This demonstrates the utility of blind modification search tools for 

improving peptide identifications even when the identification of modified peptides is not the 

primary goal as they have the ability to eliminate false positives. However, many blind 

modification search tools are slow and incompatible with conventional peptide identification 

workflows. 

 

Finally, there remains 20.34% of decoy PSMs that cannot be explained by any of the above 

analysis. As they are assigned to some decoy PSM with high confidence, they contain peptide 

fragments and are likely of peptide origin. As they cannot be explained as semi-tryptic peptides 
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or modified peptides from the reference proteome, they may be ions with incorrect charge state 

assignment, peptides derived from alternative splicing [7], peptides with no enzyme specificity 

[71], or even proteasome spliced peptides [72].   

 

Together, these results suggest that improvements to similarity scoring functions are needed to 

resolve ambiguous assignments and that proper accounting for all peptide forms (semi-tryptic 

and modified) is necessary for confident peptide identifications. 

2.3.2 Target-decoy assumption is violated by modified peptides and causes 
underestimation of error rates 

High prevalence of peptides identified in modified form only 

To further explore the idea that certain false positives are due to modified peptides, we 

performed both narrow window and open searching (to account for modified peptides) on a HEK 

293 dataset (both searches done without variable modifications). We reason that false positives 

that are due to modified peptides would be confidently identified in the narrow window search 

(as a false positive) but not in open search (as the supporting spectra would now be assigned to 

their correct modified peptide identification). To investigate, we looked at the intersection of 

search results (at the unique peptide level) by subdividing the peptides on the basis of their 

estimated confidence (Figure 2-4a) and examined the group-specific FDR.   

 

As expected, peptides that were accepted at 1% FDR in both searches (101,138 in total) were of 

high confidence, with an estimated FDR of 0.15%. Peptides found in both searches but accepted 

only at 1% FDR in one of the two searches were of lower confidence, as evidenced by the 

increased group FDR. Of greatest intrigue to us, however, were the peptides that were 

confidently identified in one search but were not identified at all in the other. 

 

There were 12,622 peptides confidently identified in open search but not in narrow-window 

search. The relatively low group FDR of these peptides (4.15%) suggests that most of these are 

bona fide examples of peptides that were only detected in modified forms. The substantial 

number of such peptides is problematic for ‘dependent-peptide’ approaches for PTM 
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identification [73] (including spectral library-based methods) [74,75] that rely on co-

identification of the unmodified peptide. A comparison of the modification profile of these 

peptides to one that is generated from all modified peptides shows high similarity (Figure 2-4b), 

suggesting that most of these identifications correspond to constitutive or highly abundant 

modifications. 

 

 

Figure 2-4 HEK293 peptide identifications across traditional narrow-window and open searches demonstrate 
underestimation of FDR. 
Peptides are subdivided on the basis of their estimated confidences in both open and narrow-window search. Group-specific FDR 
values are estimated using decoys within each group. (b) Mass difference profiles in open search for spectra that identified a 
peptide unique to narrow-window search (red) or open search (purple) and for all spectra (boxed). (c) Supporting PSM counts in 
narrow-window and open search for conflicting peptide identifications involving a peptide found only in narrow-window search 
(at 1% FDR). (d) Comparison of peptide categories passing 1% FDR in narrow-window search. (e) Target and decoy matches in 
narrow-window search for spectra identified with a common modification in open search. 

 

Open searching uncovers FDR problem in traditional narrow-window searches 

In contrast, the 3,773 peptides identified in narrow-window search but not in open search had a 

much higher group FDR, of 14.68%. We mapped the spectra supporting these identifications to 

their results in open search. Of particular interest were spectra that were assigned to unmodified 

peptides in narrow-window search but reassigned, owing to an improved match, as modified 

peptides (with different sequence) in open search. These cases represent potential instances of 
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false positives in narrow-window search that are caused by chemical or biological modifications 

[76,77]. In each such instance—a pair of peptides whose masses differ by the mass of the 

modification detected in the open search—we compared the total number of supporting PSMs 

associated with the peptide sequence matched in narrow-window search to that in open search 

(Figure 2-4c). Assuming that peptides supported by a greater number of PSMs are more likely to 

be true identifications, we found substantially more support for the peptides identified in open 

search. Only 17% of the spectra were assigned to peptides that had greater support in narrow-

window search, whereas 68% had greater support for their open-search assignment. 

We called peptide identifications found only in narrow-window search to be ‘suspect’ (potential 

false positives) if there was greater support for the open-search assignment for each supporting 

PSM. Of the 3,773 peptides found only in narrow-window search, 1,139 were suspect. This is 

significantly more than the number of decoys (554) in the same group, and more than the total 

number of decoys in the entire narrow-window search, at 1% FDR (1,091 decoys in total). This 

suggests that false positives in narrow-window search are not correctly estimated by decoy 

peptides. Notably, some of these suspect peptides had very high scores (Figure 2-4d). 

 

We sought to verify the finding that the target–decoy strategy does not effectively capture false 

positives due to unaccounted modifications. We selected high-scoring peptide identifications in 

open search that were observed in both unmodified form and with a mass shift corresponding to 

a common modification (oxidation or carbamylation). As we did not specify any variable 

modifications, the target-decoy assumption is that spectra from these modified peptides would 

match equally (and incorrectly) to both targets and decoys in narrow-window search. However, 

that was not the case, as the rate of matching to target sequences was roughly six fold that of 

decoys for carbamylated peptide spectra, and more than nine fold for oxidized peptide spectra 

(Figure 2-4e). The violation of the target–decoy assumption is probably due to homology 

between true peptide sequences and other peptides in the target space, which we previously 

noted in the context of proteogenomics [7,76]. Further supporting this, the modification profile 

of peptides identified in open search and whose spectra produced suspect identifications in 

narrow-window search markedly lacked phosphorylation and aminoethylbenzenesulfonylation 

(Figure 2-4b). These two mass shifts (79.97 and 183.04 Da) are difficult to represent, as some 

sequence of amino acid addition and deletion. Overall, our analysis with the HEK293 data set 
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demonstrates that accounting for all modified peptide forms using the open-search strategy of 

MSFragger may be important for confident peptide identification, even when the identification 

of modified peptides is not the primary interest. 

 

 

Figure 2-5 Spectral homology in theoretical spectra derived from modified peptides. 
PSMs of theoretical spectra derived from a peptide with oxidized methionine are ordered by their expectation value and binned to 
calculate the fraction of target hits as a function of expectation value (a) Analysis performed using reversed protein sequence as 
decoys (b) Analysis performed using reversed peptide sequences as decoys 

Validation of target-decoy violation using theoretical modified spectra 

While the searching of experimental spectra identified as modified peptides in a narrow window 

search suggested that the target-decoy assumption is violated, we must proceed with caution due 

to the confounding problem of chimeric spectra. In some cases, a modified peptide (the top 

identification in open search) can be co-fragmented with an unmodified peptide which is then 

identified (correctly) in the narrow window search that does not account for modifications. To 

circumvent the problem of chimeric spectra, we generated theoretical spectra for a set of peptides 

with oxidized methionine.  As expected, for the majority of these theoretically pure spectra, they 

map to both targets and decoys at equal rates. However, for the highest scoring matches, there is 

a strong preference for target sequences, regardless of the method used in decoy generation 

(Figure 2-5). Unsurprisingly, some of the highest scoring PSMs are due to single amino acid 

differences that are equal to the mass of the added oxygen atom (e.g. alanine to serine in 

M[16]ASTFIGNSTAIQELFK matches MSSTFIGNSTAIQELFK with e-value 3.62E-20). There 

are also examples where the peptides differ in the number of amino acids but remain spectrally 
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similar (e.g. M[16]DVNVGDIDIEGPEGK matches NSHHSWEPLDAPEGK with e-value 

4.71E-8). Together, these results show that modified peptides can be potential sources of false 

positives that are not well modeled by the target-decoy strategy. 

2.4 Discussion 

In this chapter, we demonstrate that nearly 80% of high scoring false positives can be explained 

through additional computational analysis. Nearly half of the explainable false positives can be 

attributed to ambiguous identifications where there is a lack in search engine concordance. This 

suggest that combining results from multiple search engines [69] or similarity scoring functions  

might help in identifying these cases and reducing their assigned confidences. It also points to 

limitations in the scoring functions presently used in database search engines where only a 

rudimentary model for predicting theoretical spectra is used (equal ion intensities). The use of 

spectral libraries generated from synthetic peptides [78] or fragment ion intensity prediction 

programs [32,79] may help resolve such ambiguities and reduce the rate of such false positives in 

the future. The high confidences with which these ambiguous identifications are reported may 

also be a consequence of the availability of high mass accuracy data in both MS1 and MS2, 

where a few matched fragment ions result in high confidences due to a reduction in fragment 

matches of a purely random nature. The other half of explainable false positives are due to 

peptides that are excluded (semi-tryptic and modified peptides) from searches due to 

computational costs or otherwise complexity in integrating different search results. While the 

computational costs associated with database searching can be readily addressed, new statistical 

models may need to be implemented to integrate multiple search spaces, each with different prior 

probabilities and selecting the explanation with highest posterior probability, to avoid a loss in 

sensitivity when vastly expanding the search space.  

 

The comparison between open and narrow window search results provides several insights into 

the properties of modified peptides and their impact on the production of false positives and error 

rate estimation. Over 10% of the peptides identified were identified only in modified forms, 

suggesting that methods which can directly identify modified peptides without co-identification 

of the unmodified peptide (such as tag-based PTM search tools or the open search strategy) are 



25 
 

likely to be the most successful in comprehensive identifying modified peptides and reducing the 

number of false positives. Second, both the experimental and theoretical results indicate, to 

varying degrees, that the target-decoy assumption is violated for modified peptides and that 

modified peptides are more likely to match to target sequences than decoy sequences, causing an 

underestimation of false positives that are due to modified peptides. The true extent of this 

violation is of much interest and further experiments using experimental spectra while 

accounting for the effects of co-fragmentation are needed. It is also important to note the 

limitations of this study and its generalizability to proteogenomics results. Open modification 

searching identifies only 50% of common modifications when compared to direct interrogation 

using specified variable modifications [65]. The underreporting of modified peptides may imply 

that the number of false positives due to modified peptides may be greater than what was shown 

in this study. Furthermore, the database searched in this comparison was the Uniprot protein 

database with few variant peptides or peptides that are highly homologous to one another 

compared to a database produced in a sequencing experiment. Hence, the error rates for such 

variant peptides could potentially be higher than what is estimated here. Experiments with 

decoys designed to contain single amino acid substitutions (confirmed not to exist from 

sequencing data) would allow us to directly interrogate errors of this nature. 

2.5 Data availability 

Raw mass spectrometry files are available from public repositories as described. The processed 

data files supporting the findings of this study are available upon request. 
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CHAPTER III 

EFFICENT DATABASE SEARCH TOOLS FOR 
PROTEOGENOMICS ANALYSIS 

Portions of this chapter detailing the MSFragger algorithm have been published in Nature 
Methods [62] 

3.1 Introduction 

Database search has long been a bottleneck in computational proteomics workflows [20] with 

continual efforts to improve the speed of identifications to match the pace of instrument 

acquisition speeds and the growth of protein databases. In proteogenomics experiments, the 

database to be searched is nearly 10X larger than a reference database, increasing the search time 

accordingly. Due to the already large search space that decreases sensitivity and long search 

times, semi-tryptic searches and multiple variable modifications are not commonly used. As 

demonstrated in the previous chapter, this can lead to an accumulation of false positives when 

peptide species present in the sample are unaccounted for in the search space. Further 

compounding this problem is the increasing popularity of the open search approach for 

identifying blind modifications. While simple in its approach (a matter of changing the precursor 

tolerance to hundreds of Daltons), it is a brute force approach, comparing each experimental 

spectrum to hundreds of thousands of candidate peptides. This leads to analysis times of over 50 

central processing unit (CPU) hours (per LC-MS/MS run) [62] using conventional database 

search tools, making it costly for large scale analyses. Hence, there is need for faster, more 

efficient database search tools for proteogenomics analysis. 

Computational advances in database search tools often fall in two orthogonal avenues. The first 

utilizes more advanced or sophisticated computing hardware such as parallel computing 

technologies such as networked compute clusters [80–82] to distribute the computation workload 
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on conventional processors or repurposing specialized hardware such as graphical processing 

units (GPUs) found in commodity graphics cards [83–85]. The second involves algorithm 

improvements that reduce the amount of computation needed to obtain peptide identifications of 

similar quality. This can involve strategies for using heuristics to filter the search space [36,40], 

improved implementations of scoring functions [86,87], or peptide indexing methods that 

eliminates redundant peptides and recycles the results of in-silico digestion [88,89]. In this 

chapter, we present two database search tools. The first, EGADS, utilizes GPUs to accelerate 

both in-silico digestion and similarity scoring while the second, MSFragger, uses a novel 

fragment ion-indexing scheme to vastly improve the speed of spectra similarity calculations. 

Algorithms that utilizes networked compute clusters can perform high-throughput searches but 

do not reduce the overall amount of computation time required considering all CPUs, making 

them costly and financially prohibitive for large-scale analyses. GPUs have been used as a more 

efficient alternative in many scientific applications as they offer the compute capabilities of 

hundreds of CPUs in a graphics card costing several hundred dollars. These GPUs consist of 

thousands of processing cores coupled to fast onboard memory. However, specialized algorithms 

are needed to function on GPUs due to the limited memories and single instruction multiple data 

(SIMD) nature of GPU cores where each individual processing cores must perform the same 

operation in lockstep but on potentially different pieces of data. Due to these complexities, GPUs 

have only been applied to the spectra similarity scoring step of database search [83,85] which has 

is more easily parallelizable and is historically the more computationally intensive step of 

database searching with low precursor mass accuracies. However, with high resolution 

instruments that records precursor masses with accuracies on the order of several parts per 

million [26,27], in-silico digestion may become a bottleneck when only similarity scoring is 

accelerated. Hence, EGADS implements both GPU accelerated digestion and scoring providing 

significant speedups regardless of the precursor mass accuracy. 

 

The growing popularity and ease-of-use of the open searching strategy for identifying modified 

peptides precipitated the development of MSFragger. Open searching using a 500Da window can 

take nearly 1000X longer than traditional narrow searches with a precursor tolerance in the tens 

of p.p.m. [62]. The use of traditional search engines is computationally prohibitive on large 

datasets and GPUs are not widely or inexpensively available from cloud providers. Hence, using 
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the relatively large amount of system memory, we developed a fragment ion indexing scheme 

that allows similarity scoring to be rapidly performed simply by traversing the index using 

experimental fragment ions. 

3.2 Materials and methods 

3.2.1 EGADS an Efficient GPU-Accelerated Database Search tool 

EGADS development environment 

EGADS was developed in C++ using Visual Studio 2010 on Windows 7 64-bit.  OpenCL 

support was provided by the AMD APP SDK (version 2.9). Testing was performed on a desktop 

computer equipped with an Intel 2500K processor with 16GB of memory with an AMD Radeon 

7950 GPU with 3GB of memory (using the latest AMD drivers as of May 2013).  

 

Datasets and data preparation 

A HeLa dataset [22] consisting of 3 technical replicates each with 6 fractions analyzed on a 

Thermo Scientific Orbitrap Elite was downloaded from PRIDE (PXD002395).  Vendor raw files 

were converted to MGF using ProteoWizard as previously described.  The human protein 

database was obtained from Refseq (release 55) and reversed protein sequences were appended 

as decoys.  For the scenarios involving a hypothetical proteogenomics use case, an mRNA 

database was obtained from Refseq (release 55) and was translated into a protein database using 

three-frame translation.  ORFs shorter than 10 amino acids were discarded in this translation. 

 

EGADS algorithm 

(1) Spectra input and pre-processing 

EGADS reads MS/MS spectra in MGF format and pre-processes them according to the chosen 

similarity scoring function after filtering the input spectrum to the specified top N peaks after 

filtering out peaks with m/z greater than 2048 (as EGADS calculates the Xcorr function using 

2048 bins).  For the Xcorr scoring function, an offset of 0.4 Da is added to the m/z of each input 

peak before binning to unit m/z bins (the maximal intensity is taken when there are multiple 

peaks that fall within the same bin).  The 2048 bins are then subdivided into 16 equal windows 
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and intensities within each window are normalized so that the maximum intensity within each 

window is 50.  The intensities are then transformed into the form necessary for fast cross-

correlation [86] by computing cumulative sums.  For PeakMatch and PeakBackground, no 

binning is performed.  PeakMatch normalizes the peak intensities so that the maximum intensity 

is 100, while PeakBackground performs the local normalization as performed in Xcorr using the 

ranges of 64 m/z but without binning.  

 

(2) Trial digestion and scoring 

EGADS performs in-silico digestion and simulated scoring (where the number of similarity 

scores required is calculated but the scoring is not actually performed) on a small region of the 

database (20 blocks of 4096 characters) to estimate the amount of GPU memory necessary to 

perform on-GPU digestion and scoring for a given amount of sequence space.  EGADS then uses 

this estimate and the available GPU memory (after accounting for the space necessary to store 

the database and experimental spectra) to partition the sequence space that can be independently 

analyzed in multiple digestion-scoring cycles (Figure 3-1). 

 

(3) In-silico digestion and peptide de-duplication 

EGADS performs in-silico digestion by first concatenating all proteins (separated by end-of-

protein delimiters) into a single string representing the entire sequence space.  The string is then 

subdivided into blocks of 4096 characters that can be analyzed by a single workgroup.  

Individual threads scan overlapping ranges of 128 characters in order to determine the number of 

digested peptides that starts within the first half of its range.  These counts are then summarized 

in scan operations and used to allocate appropriate memory for storing masses and offsets of 

these digested peptides.  The process is repeated to store the digested peptide products. 

 

Peptides are then optionally de-duplicated (within the same digestion-scoring cycle) to eliminate 

redundant peptides and the number of repeated similarity scoring calculations.  We re-pack the 

digested sequence into a 160-bit integer that is unique for all peptides less than 32 amino acids in 

length (the upper limit in EGADS).  This integer is then iteratively sorted 32 bits at a time using 
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a GPU-efficient version of radix sort [90] (which is also used for other sorting operations within 

EGADS)  grouping redundant peptides together in this sorted list.  

 

Next, peptides are expanded into modified mass peptides that represent the different masses that 

arise as a result of user specified variable modifications and are sorted by mass.  For each 

modified mass peptide, we also compute the number of structural isomers.  Peptides that produce 

more than 100 (hard coded limit that can be changed) modified versions of that peptide are 

considered not modified (modifications are ignored). Together, these elements form a peptide 

index for the current digestion-scoring cycle. 

 

(4) Similarity scoring and result reporting 

In GPU accelerated scoring, all threads within the same workgroup operate on the same 

experimental spectrum. The number of structural isomer, along with the number of experimental 

spectra that have a mass within the precursor mass window, are used to compute the number of 

workgroups necessary for scoring.  This information is then used to launch one of three scoring 

kernels that are responsible for computing the peptide-spectrum similarity scores. Lookup tables 

are used to efficiently map permutations to modified residues. 

 

Three scoring kernels were implemented that mimics modes in popular database search tools: 

Xcorr (unit-resolution Comet [34]), PeakMatch (computes hyperscore as in X! Tandem [36]), 

and PeakBackground (high-resolution Comet).  Xcorr is computed a simple product after spectra 

pre-processing described above while PeakMatch and PeakBackground is calculated using 

sliding windows to merge the peak lists between the experimental and theoretical spectrum in 

time linear to the total number of peaks.  

 

Similarity scores are transferred back to the CPU where a histogram of scores and a heap of the 

top hits are maintained for each experimental spectrum.  The similarity scores are converted in a 

scoring function dependent manner to an expectation value.  Results are written to a pepXML 

file that is compatible with PeptideProphet by masquerading as either Comet or X! Tandem. 
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Figure 3-1 Architecture of EGADS. 
EGADS performs trial digestion and spectra pre-processing on the CPU before starting digestion-scoring cycles on the GPU. (b) 
Results are transferred back to the CPU where the histogram of scores for each spectrum is modeled and an expectation is 
calculated for the reported hits. 

 

Timing and Performance Measurements 

Timers are placed throughout EGADS to collect timing information on the cumulative time spent 

in individual steps of the database search process.  Database search implementations can vary 

widely so comparing runtimes between different database search engines is not meaningful for 

determining the extent of GPU acceleration.  Hence, EGADS implements identical data 

structures and algorithms used in the OpenCL kernels in C++ (referred to as EGADS CPU) so 

that the same parallel algorithms that are run on the GPU can be run serially on the CPU. 

EGADS does not make use of CPU-GPU concurrency as all OpenCL calls made are blocking. 

 

For timing purposes, we consider digestion to be the steps in the digestion-scoring cycle up to 

the point of counting structural isomers and scoring to be remaining steps in the cycle, including 

update of the results structure.  Input, initialization (including compilation of the OpenCL 

kernels if no cached version exists), spectra conditioning and pre-processing, and output takes no 

longer than several seconds in total and is not a major factor in overall runtime. 
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Benchmarking of EGADS on a HeLa dataset 

Peptide identification benchmarking was performed by searching the Refseq 55 protein database 

(described above) allowing for 1 missed cleavage in fully tryptic digestion.  Static 

carboxyamidomethylation (+57.021464 Da) on cysteine was specified while allowing oxidation 

(+15.9949 Da) on methionine to be a variable modification.  The permitted peptide mass range 

was 500-2000 Da (results were filtered to exclude matches outside this range in X!Tandem 

where the maximum cannot be specified).  The precursor mass tolerance was set to 100ppm with 

fragment mass tolerance set to 20ppm (0.02 Da bins for Comet). Isotope error correction was 

disabled.  The use of neutral loss ions was disabled in Comet.  For EGADS and X! Tandem, the 

top 50 fragment ions was used in searching.  EGADS was given access to 2GB of memory using 

the PeakMatch scoring kernel.  Run time benchmarking was performed using the above settings 

(except Comet was run in unit-resolution mode for the comparison with Xcorr), varying the 

digestion mode, precursor window, and scoring kernel.  Apart from the identification rate 

benchmarking, all analyses was performed on the run 20100611_Velos1_TaGe_SA_Hela_1. 

 

Peptide validation was performed using PeptideProphet [48]  (TPP 4.8.0) using the options d’ 

(report decoy hits), ‘A’ (high mass accuracy model), ‘P’ (semi-parametric modeling), ‘PPM’ 

(parts per million in mass model) and FDR was estimated empirically using the target-decoy 

approach after ordering PSMs and peptides (represented by highest scoring PSM) by 

PeptideProphet probabilities. 

 

Combinatorial evaluation of GPU acceleration 

Evaluation of GPU acceleration in diverse search applications was performed by varying the 

following search parameters: de-duplication (on / off), phosphorylation search (on / off), 

precursor mass tolerance (20 ppm / 1 Da), and sequence space (Refseq 55 protein / 3-frame 

translated Refseq 55 RNA), digestion mode (tryptic with 1 missed cleavage, semi-tryptic with 1 

missed cleavage, non-specific), and similarity function (Xcorr / PeakMatch / PeakBackground).  

All other search parameters were set to the values described above for benchmarking. EGADS 

was run in both CPU and GPU mode for each of the 144 search combinations.  Runs taking 
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longer than 4 hours on the CPU was killed and excluded from the analysis (66 out of the 144 

combinations completed successfully). 

 

Benchmarking memory effects on EGADS runtime 

For evaluation of the memory effects on EGADS runtime, the Refseq protein database described 

above was searched using EGADS running in GPU mode using all three digestion modes (fully 

tryptic, semi-tryptic, and non-specific). For each memory limit (1024MB, 1536MB, 2048MB, 

and 2560MB), five runs were performed and the average runtime calculated after discarding the 

shortest and longest runs. 

 

Open database searching using EGADS 

The PeakMatch scoring algorithm was modified to include two additional ion series: b + ∆ and y 

+ ∆ to account for any shifted fragment ions due to a modified residue in open searching.  ∆ is 

computed as the difference between the experimentally observed mass and the theoretical 

peptide mass.   

 

MODa (version 1.23) was used in single blind mode with fragment mass tolerance set to 0.02 

and high-resolution MS/MS.  In both EGADS and MODa, static carboxyamidomethylation was 

specified. Variable oxidation of methionine was specified in EGADS but all results involving 

oxidized methionine were filtered out in both searches as there it was not possible to specify 

variable modifications in MODa.  The allowed modification range was -200 - +200 Da in both 

searches.  No FDR filtering was performed in the open search analysis. 

3.2.2 MSFragger implements a novel fragment ion index that enables ultrafast 
database search 

Datasets and Data Preparation 

A HEK 293 dataset[65] consisting of 24 LC-MS/MS runs analyzed on a Thermo Scientific Q 

Exactive mass spectrometer was downloaded from PRIDE (PXD001468).   Conversion of 

vendor .raw files to mzML was performed as previously described.  
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MSFragger algorithm 

(1) MSFragger spectra input and pre-processing 

MSFragger accesses mzXML and mzML files using MSFTBX, the Data Access Library 

provided as part of the BatMass [91] and Mascot Generic File (MGF) files using an internal 

parser.  These data input paths allow MS/MS spectra stored in any of the three file formats 

(mzXML/mzML/MGF) to be analyzed by MSFragger. Spectra pre-processing begins with linear 

scaling of peak intensities so that the most intense peak within each spectrum is set to 100,000. 

Resultant scaled intensities are rounded and stored as integers for fast arithmetic operations. The 

top N peaks from each spectrum are retained and are then filtered based on the minimum 

intensity ratio and the m/z range specified in the search parameters file. In this study, the top 100 

peaks with a minimum intensity ratio of 0.01 (relative to the base peak) were used with no m/z 

range filter. 

 

(2) In-silico protein digestion and peptide indexing in MSFragger 

MSFragger allows for fully enzymatic, semi-enzymatic, and non-enzymatic digestion to be 

specified as search parameters.  It also allows for limits on missed cleavages, peptide lengths and 

masses to be specified.  For a given protein database and a fixed set of digestion parameters, a 

peptide index is generated to form a necessary reference for the fragment index. Peptide indexing 

takes just a few minutes on a typical computer. Furthermore, MSFragger caches the peptide 

indices it generates on disk and attempts to find and use a compatible peptide index on 

subsequent invocations.  As the first step of in-silico digestion, all proteins are concatenated into 

one long amino acid sequence with proteins separated by delimiter characters. MSFragger then 

partitions this long amino acid sequence into chunks for parallel in-silico digestion into peptide 

sequences based on the specified digestion parameters.  Efficient memory allocation methods 

and compact representations of peptides (as offsets in the concatenated amino acid sequence and 

length) allow for fast in-silico digestion. The digested peptide sequences are then sorted using a 

parallel least significant digit radix sort and redundant peptides are flagged by comparing 

adjacent peptide sequences in the sorted list of peptides. 
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Modified versions of the digested peptide sequences are then generated based on the user-

specified variable modifications. Combinatorial bitmasks that specify the positions of modified 

residues are pre-computed so that the set of variably modified residues can be specified as a 

single integer.  These sequence numbers are then combinatorially combined across all variable 

modifications to generate a single integer that represents the variable modification state of a 

peptide sequence. A 12-byte entry containing the offset, length, modification sequence number, 

and the modified mass is generated for each such modified peptide. These modified peptides are 

then sorted in parallel by their modified mass forming the MSFragger peptide index. 

 

(3) Fragment index generation 

The fragment index used in MSFragger consists of all theoretical b and y-ions up to a specified 

charge state from each peptide in the peptide index.  For efficient fragment index searching, the 

fragment bin width used for the fragment index must be proportional to the desired fragment 

tolerance specified in the search and to the expected number of candidate peptides encountered 

per experimental spectrum. Hence, MSFragger dynamically computes an appropriate bin width, 

in Daltons, that allows for efficient fragment index searching based on the user specified 

precursor mass tolerance and the fragment mass tolerance.  Each peptide entry in the peptide 

index, consisting of both unmodified and variably modified peptides, can be referenced by a 

single 32-bit integer identification number (ID), imposing a current limit of approximately 2 

billion peptide entries. Within each peptide entry, the theoretical fragments are generated and 

binned based on their masses using the determined bin width.  The theoretical fragments are 

stored within the fragment index as an 8-byte entry that references the parent peptide ID, the 

mass offset within the bin, the charge state, and the fragment ion identity (e.g. b-5 or y-2).  

Fragments within each bin are stored in order of their parent IDs (and hence the parent precursor 

mass) as the fragment index is generated in the order of the peptide index. The memory 

consumption of the fragment index is modest. For a tryptic digestion (with 1 missed cleavage) of 

the human UniprotKB database (with reversed decoys) used in the study, the fragment index is 

only 1.6GB.  Adding methionine oxidation and N-terminal acetylation of proteins as variable 

modifications boosted the index size to 2.9GB.  Examples of fragment index sizes (which 

includes the above common variable modifications) for larger search spaces include HLA 

peptides (non-enzymatic digest of 9-11 amino acids; 22.6GB), semi-tryptic peptides (55.8GB) 
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and variably phosphorylated peptides (86.5GB).    MSFragger identifies the amount of memory 

available to it via the Java Virtual Machine and automatically partitions the fragment index 

generation and search into multiple iterations based on projected memory required for the 

fragment index, storing intermediate results on disk before merging and outputting the results in 

the final pass.  This enables MSFragger to perform searches on computers that do not have 

sufficient memory to store the full fragment index, although at reduced speeds. In addition to the 

fragment index, MSFragger requires additional memory for storing the peptide index, spectra 

data, results, and intermediate data structures during search that is roughly 1GB in most use 

cases. 

 

(4) Fragment index searching 

In database search, the similarity scores are computed between each experimental spectrum and 

the theoretical spectra of all candidate peptides within a precursor mass range. These scores are 

heavily dependent on the number of shared fragment ions between the experimental spectrum 

and theoretical spectra. The major computational advance presented by MSFragger lies in its 

ability to rapidly identify these shared fragment ions and thus compute spectrum-spectra scores 

with near optimal efficiency.  MSFragger first identifies the number of candidate peptides using 

the precursor mass window and the computed peptide index. It then allocates a scoring table for 

each candidate peptide where the number and summed intensities of matched b and y-ions can be 

stored.  It then performs spectrum to spectra scoring using the fragment index in the following 

manner. Consider a fragment ion with mass M within an experimental spectrum with precursor 

mass P.  Using the fragment index, the algorithm can identify the theoretical spectra that contain 

a fragment with a matching mass by examining the fragment bins that overlap the interval [M – 

dF, M + dF], where dF is the fragment mass tolerance specified in Daltons or otherwise 

computed from M and the specified tolerance in parts per million (Figure 3-10).   

 

For each overlapping fragment bin, a binary search (recall that the fragments within each bin are 

ordered by their parent precursor masses) is used to identify the fragment within the bin that 

corresponds to precursor mass P – dP, where dP is the precursor mass tolerance.  The bin is then 

traversed and the theoretical fragments within the bins are compared to determine whether they 

truly lie within the fragment mass tolerance window, and if the theoretical fragment charge state 
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is compatible.  If a match is identified, the scores of the parent peptide (recall that each 

theoretical fragment contains a reference to its parent) are then incremented in the scoring table.  

This traversal continues until the end of the bin or upon arrival at a fragment with parent 

precursor mass greater than P + dP. The process is then repeated for each overlapping fragment 

bin.  At completion, this process using a single experimental fragment ion represents the 

contribution of that fragment ion to all spectrum-spectra scores. This process is repeated for each 

experimental fragment ion (Figure 3-10), in essence, decomposing many spectrum-spectrum 

matches into multiple fragment-spectra matches. After processing all experimental fragment 

ions, the scoring table of candidate peptides contains the number of matching ions (and 

intensities) and is used to generate a similarity score for each candidate peptide.  

 

The efficiency of this process lies in its ability to only examine fragments with a high likelihood 

of contributing to the similarity score. In conventional strategies, performing a comparison 

between an experimental spectrum and a theoretical spectrum can take tens or hundreds of 

operations, even in cases where they share no common fragments.  In the MSFragger strategy, 

theoretical spectra that share no common fragments are effectively bypassed (apart from reading 

a score of 0 from the scoring table) as mostly relevant fragments are compared. In the case of 

open window searching, approximately 1.5 comparisons are performed on average per candidate 

peptide and over 80% of fragment comparisons within the fragment index contribute to a 

similarity score (Figure 3-2).  This algorithmic advantage that allows MSFragger to perform so 

few comparisons in similarity calculations is the reason why it performs over 100 times faster 

than conventional search tools. 
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Figure 3-2 Fragment indexing allows efficient spectra similarity comparisons. 
The cost and efficiency of spectra similarity calculations can be approximated by the number of fragment comparisons required 
for each candidate peptide.  In conventional strategies, tens to hundreds of comparisons are needed to compare an experimental 
spectrum to a theoretical spectrum.  However, the vast majority of such fragment-fragment comparisons do not result in matches 
as the differences between their m/z is often far greater than the fragment mass tolerance.  Using MSFragger’s fragment index, 
these comparisons are omitted as the binning strategy allows us to retrieve only the experimental-theoretical fragment pairs that 
are close in m/z – the majority of which falls within the fragment mass tolerance and are deemed relevant when they contribute to 
the score of a PSM.  MSFragger’s alternative approach results in only a few fragments evaluated per candidate peptide across a 
variety of search scenarios.  Reduction in the fragment bin width allows for fewer fragment comparisons to be performed at the 
expense of computational overheads associated with traversing a greater number of bins that overlap the fragment tolerance 
window.  MSFragger dynamically selects a bin width appropriate for the search scenario (opting for smaller bins in open search 
where the number of comparisons is large, and larger bins in narrow window search, where the number of comparisons is small 
relative to the overhead costs).  Hence, a greater number of fragments is evaluated per candidate and a lower percentage of 
comparisons are found relevant in narrow window searching due to this optimization. 

 

Fragment index searching in MSFragger is highly optimized. Tradeoffs between the number of 

bins to traverse (cost of binary searching and other overhead) and hit efficiency (percentage of 

fragments that fall within the fragment mass tolerance) is weighted and considered in fragment 

bin width selection. The traversal algorithm is optimized for modern CPU cache sizes to reduce 

main memory accesses using a simultaneous traversal scheme for all experimental fragment ions. 

This allows for overall improved performance and reduces memory bottlenecks in multi-core 

systems (Figure 3-3). 
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Figure 3-3 MSFragger scales efficiently across large numbers of CPU cores. 
Indexing and searching operations in MSFragger are designed for modern multi-core computers and are optimized to reduce 
pressures on memory bandwidth.  Results are generated from open search times of a single LC-MS/MS run on a dual processor 
system with 14-cores in each processor. (a) MSFragger scales almost linearly in terms of overall search times on up to 8 cores.  
Reading of mass spectrometry data files and results compilation is not highly parallelizable resulting in reduced scalability 
beyond 8 cores.  The jump from 14 to 28 threads causes non-local memory to be accessed by each processor, impacting 
scalability.  (b) Fragment index searching by itself is efficiently parallelizable in MSFragger and scales to effectively utilize all 
cores. 

 

(5) Scoring and results reporting 

MSFragger computes a hyperscore similar to that of X!: 

log	 ! ! , ,  

where Nb is the number of matched b-ions, Ny is the number of matched y-ions, Ib,© are the 

intensities of matched b-ions, and Iy,© are the intensities of matched b-ions.  While the theoretical 

fragment index can be adapted to include other fragment ion types, only b and y ions are 

included and used for scoring at this time. Expectation calculation is also performed in a similar 

manner as X! Tandem through linear regression of the survival function to estimate the 

expectation of a given hyperscore [92].  The top N results, as specified by the search parameters, 

are reported in a XML file in the pepXML format, which can then be processed using the tools 

from the Trans-Proteomics Pipeline (TPP) [67]. For use in other computational workflows, 

converters exist that can convert pepXML results into other standard data output formats. 

Alternatively, a simple tab separated values output of the results can be obtained instead of the 

pepXML. 
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Statistical modeling of MS/MS search results and protein inference 

X! Tandem, Comet, and MSFragger output files were uniformly processed by PeptideProphet 

[48] via the Trans-Proteomic Pipeline (TPP v4.8.0), followed by ProteinProphet [49] analysis to 

assemble peptides into proteins/protein groups. The results from the narrow window searches 

were processed using the following settings: PeptideProphet was run using ‘P’ (semi-parametric 

modeling), ‘d’ (report decoy hits), ‘E’ (calculation of posterior probabilities using search engine 

computed expectation values as primary peptide identification scores), and ‘A’ (high mass 

accuracy model), ‘PPM’ (use parts per million instead of Daltons in accurate mass binning), and 

the ProteinProphet was run using default settings. For open searches, several custom 

modifications were made to these downstream processing tools. First, PeptideProphet was run 

without ‘A’ and ‘PPM’ options, and using a mass accuracy model extended to cover the entire (-

1000Da to 1000Da) range (see Extended mass model below). Second, in ProteinProphet, we did 

not want to incorporate modified peptides in the determination of protein groups or the 

establishment of protein identities. Thus, ProteinProphet was adjusted to ignore any modified 

peptides, while being careful to retain peptide identifications that are likely triggered from C13 

isotope peaks of unmodified peptides.  

 

Extended mass model in PeptideProphet 

For open searches, the mass model of PeptideProphet was extended to effectively adjust for 

different likelihoods of obtaining a correct identification among unmodified peptides and 

peptides with different types of modifications (mass shifts). In brief, PeptideProphet models the 

distribution of scores observed in each data set as a mixture of two component distributions 

representing correct and incorrect identification, respectively. The key underlying assumption is 

a multivariate mixture distribution of the database search score (here, the expectation values 

produced by the search tools) and other parameters (most notably, the mass shift dM), which 

leads to the calculation of the probability of correct identification for individual peptide 

assignments by the Bayes rule. The mass shift parameter dM (which in the context of narrow 

window searches is referred to as mass accuracy ) is computed for each PSM as the difference 

between the calculated and measured precursor peptide masses [93]. Unlike narrow window 

searches, in open searches the range of possible dM values is extended, e.g. to cover (-1000 Da 
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to 1000 Da) range. The dM values are discretized into bins of 1 Da in size (centered at integer 

values). The distributions of database search scores and dM mass shifts are modeled 

simultaneously, resulting in the joint probability model and computation of posterior peptide 

probabilities. In doing so, the mass shift dM model is estimated from the data, defining 

likelihoods of observing a correct vs. incorrect identification among all PSMs belonging to a 

particular dM bin. As the main outcome, two PSMs with identical expectation values but having 

different binned dM values (e.g. 0 and 135) would receive very different probability scores, 

reflecting the fact that the estimated fraction of correct identifications in the dM ~ 0 bin (i.e. 

unmodified peptides) is much higher than that among peptides with a dM value around 135 Da 

(rare modification). Note that while the mass model helps to account for the differences in the 

likelihoods of observing unmodified peptides and different modified forms, coarse single Dalton 

binning fails to account for the parts per million (ppm) levels of accuracy present in these data 

from high mass accuracy instruments, and thus the model can further benefit from future 

revisions.   

 

Benchmarking analysis using HEK293 dataset 

For extensive benchmarking and comparison between MSFragger and other tools using HEK293 

dataset, all spectra were searched using MSFragger, X! Tandem (Piledriver 2015.04.01.1), and 

Comet (2015.02 rev.1).  Analysis was done using all files (24 LC-MS/MS runs, ~1.1 million 

spectra) for identification rate benchmarking, or one representative file for timing benchmarks 

(run b1906, 41820 spectra). The searched sequence database was created from the human protein 

sequences of Ensembl version 78 appended with reversed protein sequences as decoys and 

common contaminants (cRAP proteins sequences from gpmDB and contaminants from 

MaxQuant). All searches were done considering only y- and b- ions in scoring, allowing tryptic 

peptides only, up to 1 missed cleavage, and with cysteine carbamidomethylation specified as a 

fixed modification. Data were searched using either 100 ppm (narrow windows searches) or 500 

Da (open searches) precursor mass tolerances. X! Tandem search engine used the following 

algorithm-specific parameters: select top 50 peaks for fragment matching, 20 ppm fragment ion 

mass tolerance, and requiring at least 4 matched fragment ions for a PSM to be reported. Note 

that X! Tandem automatically considers three additional modifications (conversion to 

pyroglutamate from glutamine or glutamic acid, and N-terminal acetylation). Comet searches 
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were performed using recommended settings for high mass accuracy fragment data (precursor 

mass binning of 0.02 Da, 0 mass offset). MSFragger searches were performed using described 

parameters. To enable more accurate comparison with X! Tandem results, MSFragger searches 

(both narrow window and open) were also performed allowing same common modifications as 

those mentioned above for X! Tandem specified as variable modifications. For comparison with 

SEQUEST, the identification numbers (as listed in Table 3-3), i.e. the numbers of PSMs, unique 

peptide sequences, and proteins, were taken from the original publication [65]. 

  

For benchmarking the computational time (as listed in Table 3-3), MSFragger, Comet, and X! 

Tandem were also run using the single representative file referenced above on a quad core Linux 

workstation (Intel Xeon E3-1230v2). In addition, the data were searched using Tide (Crux 

version 2.1.16838), which only allows a maximum of 100Da mass tolerance and is single 

threaded. The run time for Tide, and for MSFragger run under the same constrains as Tide, are 

shown in Table B-1. For SEQUEST, the computational time listed in Table 1 was obtained by 

searching the data using the SEQUEST-HT version as implemented as part of the Proteome 

Discoverer v. 2.1 software, operated on a octa-core workstation (2x Intel Xeon E5-2609v2). The 

search parameters for SEQUEST-HT were as above, except the mass tolerance in the narrow 

window search was 5 ppm as in the original publication.  All computational time benchmarking 

results can be found in Table B-1. 

 

Comparison between MSFragger and MODa 

MODa (v. 1.51) was run in single-blind mode with a maximum modification size of 500 Daltons 

and a fragment tolerance of 0.02 Daltons.  Cysteine carbamidomethylation was specified as a 

static modification.  High resolution MS/MS search was enabled.  Tryptic digestion was 

specified with at most one missed cleavage.  Both fully tryptic and semi-tryptic searches were 

performed using MODa. FDR filtering was performed using the “anal_moda.jar” tool bundled 

with the MODa tool to achieve a FDR of 1%.  For comparison with MSFragger, we filtered the 

fully tryptic MSFragger open search results at 1% PSM FDR (without the 1% protein level filter 

that was used for the rest of the HEK293 benchmark comparison). 
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3.3 Results 

3.3.1 EGADS an Efficient GPU-Accelerated Database Search tool 

Framework for GPU-accelerated in-silico digestion 

In traditional database search tools, peptides are generated one at a time by traversing the protein 

database and experimental spectra within the precursor mass window are identified and scored.  

This process is simple and has minimal memory requirements but lacks the parallelism for 

efficient acceleration. In contrast, peptide indexing methods [37,94,95] decouples the in-silico 

digestion from similarity scoring by creating a sorted index of unique peptides prior to similarity 

scoring.  These methods have the advantage of eliminating redundant peptides and allow results 

of in-silico digestion to be re-used in subsequent searches if the index is stored (which may not 

be practical or efficient due to their size). In EGADS, we developed a hybrid strategy that takes 

advantage of the massive parallelism offered by the GPU to generate on-the-fly peptide indices 

that can be directly used for similarity scoring on the GPU in multiple digestion-scoring cycles 

(Figure 3-4).  

 

EGADS begins by partitioning the sequence space into chunks that can be processed within the 

limited GPU memory. It then performs in-silico digestion of the given chunk into individual 

peptides given the specified cleavage rules. These peptides then undergo an optional de-

duplication step to remove redundant peptides and are then expanded into multiple entries 

representing each modified masses that can be generated from variable modifications.  The 

entries are then sorted to create the peptide index.  Candidate peptides are then identified for 

each experimental spectrum and the number of scoring events is computed (by summing the 

number of structural isomers for each modified mass). The similarity scores are then computed 

in parallel and results are transferred to the host. At this point, the peptide index, along with all 

intermediate data structures, is discarded to free up GPU memory for the next digestion-scoring 

cycle (Figure 3-5). At the end of all digestion-scoring cycles, the results are summarized on the 

host and written to a file.  
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Figure 3-4 Digestion-scoring cycles in EGADS. 
In each digestion-scoring cycle, the partitioned database chunk is transformed in parallel to a peptide index on the GPU.  The 
peptide index is used for similarity scoring on the GPU. After the scores are reported to the host, the index is discarded to begin 
the next digestion-scoring cycle. 
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Figure 3-5 GPU memory usage of EGADS in digestion-scoring cycles. 
Memory allocation by EGADS is shown for a typical EGADS run. Each peak and trough represents one digestion-scoring cycle. 

 

Benchmarking of EGADS using a HeLa dataset 

We first compared the number of identifications that is obtained by EGADS to that of Comet and 

X! Tandem using a HeLa dataset.  At 1% FDR, EGADS (using the PeakMatch kernel) identified 

45,248 peptides (unique peptide sequences) and 225,228 PSMs. Comet and X! Tandem 

respectively identified 46,620 and 49,866 peptides, and 238,978 and 212,408 PSMs (Figure 3-6). 

Paradoxically, X! Tandem identified the fewest number of PSMs but the highest number of 

peptides.  This might be explained in part by the fact that X! Tandem has certain variable 

modifications that cannot be disabled which allows it to identify a greater number of peptides but 

the sensitivity of the cross-correlation function allows Comet to identify the greatest number of 

PSMs (with EGADS performing similarly as X! Tandem for PSMs as it also used the PeakMatch 

function but performs similar to Comet at the peptide level as it does not account for these 

additional variable modifications). Overall, EGADS performs similarly to these popular search 

engines and can reliably perform peptide identifications. 
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Figure 3-6 Identifications in the HeLa dataset as a function of FDR.  
Number of peptide-spectrum matches as a function of FDR.  (b) Number of identified peptides as a function of FDR. 

 

We then evaluated the runtime performance of EGADS, which is the primary focus of this study. 

We compared EGADS to Comet and X! Tandem using the Xcorr and PeakMatch functions 

respectively under different digestion modes and precursor tolerances (Table 3-1).  Comet only 

takes 1.6 times longer to perform a semi-tryptic search when compared to a fully tryptic search. 

Given the large difference in search space, this suggests that Comet spends a substantial amount 

of time in operations unrelated to digestion and scoring (such as input pre-processing).  In 

contrast, EGADS takes 16.4 times longer to perform the semi-tryptic search suggesting that it is 

much more efficient in input pre-processing. On average, EGADS GPU is 36.3X faster than 

Comet but much of that can be attributed to differences in input pre-processing as EGADS GPU 

is only 4.3X faster than EGADS CPU.  This highlights the importance in having a reference CPU 

implementation to ensure that implementation differences are not attributed to GPU-acceleration. 

In the PeakMatch comparison, EGADS CPU performs similarly as X! Tandem, with EGADS 

being more efficient in input pre-processing and X! Tandem being slightly more efficient in 

digestion and scoring (based on the relative changes in runtimes as the search space increases). 

On average, EGADS GPU performed 36.9X faster than X! Tandem and 25.7X faster than 

EGADS CPU, showing that PeakMatch is much more amenable to GPU-acceleration than the 

Xcorr similarity function. 
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Table 3-1 Running time of EGADS compared to Comet and X! Tandem. 
Overall running time in seconds of EGADS in both CPU and GPU mode compared to popular search tools. 

Search engine 
Search time (seconds) 

Tryptic 
20ppm 

Tryptic 
1Da 

Semi-tryptic 
20ppm 

Semi-tryptic  
1Da 

 
Xcorr performance 

Comet 363.0 381.0 582.0 2379.0 
EGADS CPU 11.2 37.2 184.0 889.2 
EGADS GPU 4.9 10.0 30.0 172.6 
     

PeakMatch performance 
X! Tandem 161.3 512.3 1104.1 7606.6 
EGADS CPU 41.7 302.8 1023.7 8517.2 
EGADS GPU 4.3 11.2 34.6 233.1 
     

 

 

Effects of search parameters on GPU-acceleration 

To further investigate the influence of various search parameters on GPU-acceleration, we ran 

EGADS in both CPU and GPU mode across a diverse set of conditions, recording the total time 

taken in individual steps across all digestion-scoring cycles (Table B-2). We first looked at the 

acceleration of the digestion step across the three digestion modes (Figure 3-7).  Average 

speedup for tryptic digestion was 15.1X, semi-tryptic digestion was 13.4X, and non-specific 

digestion resulted in an average speedup of 13.1X.  The trend of reduced performance gains for 

more complex digestions is likely due to the overheads associated with each digestion-scoring 

cycle. As the complexity of the digestion increases, the database must be partitioned into smaller 

chunks so that the intermediate data structures can fit within the same amount of GPU memory. 

This phenomenon is also affected by the precursor mass window.  Average digestion speedup of 

15.0X was observed for runs using a precursor mass window of 20ppm while an average of 

13.1X was observed for runs with a precursor mass window of 1 Da.  The increased precursor 

mass window translates into a larger number of scoring events per digested peptide.  The 

memory required to calculate these additional similarity scores result in fewer peptides processed 

per digestion-scoring cycle, leading to larger number of cycles and reduced acceleration. 
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Figure 3-7 Average GPU speedups as a function of digestion mode or similarity function. 
Speedups are computed relative to the reference EGADS CPU implementation. (a) Average speedup of all digestion steps with 
standard error bars shown. (b) Average speedup for the entire scoring phase and for the similarity computation step only. 
Standard error bars are shown. 

 

We next examined the acceleration of the similarity scoring. The scoring phase is composed of 

three main steps: preparation of scoring blocks, computation of similarity scores, and updating 

the per-spectrum results structure. For the entire scoring phase, we observed average speedups of 

4.7X for Xcorr, 38.3X for PeakMatch, and 67.8X for PeakBackground. Focusing only on 

similarity score computations resulted in speedups of 10.0X for Xcorr, 67.2X for PeakMatch, 

and 125.2X for PeakBackground (Fig 3-7). These trends reflect the differences in scoring 

function complexity with greater speedups for more complex functions where the work to data 

ratio is large. For example, the Xcorr function is calculated as a simple dot product between the 

theoretical spectrum and the pre-processed experimental spectrum. The amount of information 

(the binned experimental spectrum) transferred to the local processor is large compared to 

number of operations performed (sums up the bins where theoretical fragments exist) and 

quickly saturates the memory bandwidth on the GPU, limiting gains. In contrast, the PeakMatch 

and PeakBackground algorithms use peak lists, which are much more compact compared to a 

binned spectrum, and performs many more operations (checking fragment tolerances as the two 

peak lists are merged) in scoring, leading to much large speedups compared to the reference CPU 

implementation. As a result, even though there are great differences in the computational 

complexity across the three scoring functions, their actual runtimes are quite similar after GPU 

acceleration (Figure 3-8). 
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Figure 3-8 Total time used for similarity scoring for different similarity functions. 
Total amount of time spent in the similarity scoring phase for searches using a semi-tryptic digestion of the Refseq protein 
database and a 20 ppm precursor mass tolerance. 

 

In CPU based scoring, the computation of similarity scores accounts for over 90-99% of the 

computation time, depending on complexity of the scoring function (lower for simple functions 

like Xcorr). However, in GPU accelerated scoring only the computation of similarity scores is 

accelerated leading to situations where it takes longer to update the results structure than to 

perform similarity scoring on the GPU (notably when Xcorr is used). Introduction of CPU-GPU 

concurrency where the CPU performs this task while the GPU works on the next digestion-

scoring cycle can eliminate this bottleneck in future work. We also note that the time taken for 

CPU-based digestion is 2.76 times that of GPU-based scoring, indicating that digestion, rather 

than scoring would be the bottleneck if not for the GPU-accelerated digestion implemented in 

EGADS. This is particularly important for high-resolution data as this ratio increases to 3.41 if 

instances with a 1 Da precursor window are excluded. 

 

Impact of GPU memory on EGADS runtime 

As memory plays a large role in effecting the speedup of GPU accelerated searches, we directly 

examined its effect on the overall runtime of a GPU accelerated search at different memory 

limits. This is also important for informing GPU purchasing decisions as the same GPU can be 

sold with differing amounts of on-board memory. We performed tryptic, semi-tryptic, and non-

enzymatic searches of the Refseq protein database using a precursor tolerance of 20ppm (the 
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effects at 1 Da are more pronounced as more memory is required for similarity scoring but is an 

unlikely use case for modern high resolution instruments) and the PeakMatch algorithm (Table 

3-2). For fully tryptic searches, EGADS does not benefit from additional memory as it can 

accommodate the entire database in 1-2 digestion-scoring cycles.  For semi-tryptic search and 

non-enzymatic search, moving from 1024MB to 2560MB decreased the runtimes by 15.7% and 

11.1% respectively. This modest improvement indicates that while EGADS benefits from 

additional GPU memory, its scheme for partitioning the computation allows for effective GPU 

acceleration even on devices with limited on-board memory. 

 

Table 3-2 Running time of EGADS as a function of on-board memory. 
EGADS is operated in GPU mode using the PeakMatch algorithm in each of the three digestion modes. Total search times are 
recorded for different amounts of allocated GPU memory. 

Digestion Mode Search time (seconds) 
1024MB 1536MB 2048MB 2560MB 

 
Tryptic 7.93 7.89 7.89 7.89 
Semi-tryptic 9.76 9.01 8.51 8.23 
Non-enzymatic 200.11 190.21 182.37 177.87 
     

 

 

Application of EGADS to open database searching 

We investigated the application of EGADS for blind modification searching by adapting the 

PeakMatch algorithm to include additional ion-series that accounts for shifted fragment ions and 

running it in open mode (precursor mass tolerance set to 200 Da). For comparison, we performed 

blind modification searching using MODa [41], an established blind modification search tool 

that uses sequence tags. On a single run from the HeLa dataset, MODa took 7333 seconds to 

perform a single-blind modification search.  In contrast, EGADS took 357 seconds using its 

modified PeakMatch scoring kernel, making it 20.5 times faster than MODa in nominating the 

most abundant modifications. The recovered modification profiles were similar, identifying 

common expected mass differences (Figure 3-9).  Interestingly, MODa appears to have a slight 

bias towards smaller mass differences based on the modification profile of decoy sequences 

(which can be assumed to be uniform in nature). 
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Figure 3-9 Modification profiles of HeLa dataset as determined by EGADS open searching and MODa.  
Scaled histograms of PSM counts binned to unit mass differences. Bins 0 (unmodified), 1 (missed assignment of mono-isotopic 
peak), and 16 (oxidation) are hidden. (a) Modification profile comparing EGADS and MODa on forward sequences. (b) 
Modification profile comparing EGADS and MODa on decoy sequences. 

3.3.2 MSFragger implements a novel fragment ion index that enables ultrafast 
database search 

Novel fragment ion index enables ultrafast database search 

MSFragger begins by performing an in silico digestion of the protein database (Figure 3-10). It 

then removes redundant peptides and orders them by their theoretical mass (including any 

modified peptides generated as a result of variable modifications), creating a peptide index. 

Although peptide indexing has been described as a way to accelerate database search [37,94,95], 

this step alone has little impact on spectrum similarity calculations, which is the most time-

consuming step. MSFragger addresses this bottleneck by creating a novel theoretical fragment 

index. This enables highly efficient and simultaneous scoring of an experimental spectrum 

against all candidate peptides (see section 2.2.2, Figure 3-2 and Figure 3-10 b-d). 
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Figure 3-10 Database-search strategies and the MSFragger algorithm.  
Conventional database search involves in silico digestion of a protein database (DB) into candidate peptides from which 
theoretical spectra are sequentially generated and compared against experimental spectra. (b) MSFragger digests a protein 
database and generates a nonredundant set of peptides that are arranged in an index, which is then used to generate a fragment 
index for efficient and simultaneous scoring of an experimental spectrum against all candidate spectra.  (c) Mass binning and 
precursor mass ordering in the fragment index allows rapid retrieval of candidate spectra that match a given experimental 
fragment ion. Scores of candidate peptides corresponding to retrieved spectra are incremented. (d) Processing of experimental 
fragment ions results in identification of all matching fragments between the experimental spectrum and candidate theoretical 
spectra, decomposing spectrum-to-spectra matches to fragment-to-spectra matches. Matched fragments can then be used to 
compute a similarity score. 

 

We first evaluated the performance of the MSFragger algorithm on a deep HEK293 [65] data set 

and compared it to that of commonly used search engines Comet [34] and X! Tandem [36]. The 

scores and error rates of modified peptides are likely to be different from those of unmodified 

peptides, prompting class-specific FDR estimation [96,97]. To account for these differences, we 

adopted an extended mass model when computing peptide probabilities, ensuring mass-shift-

dependent FDR estimation and filtering. We note that in open searches, the term ‘modifications’ 

is used interchangeably with ‘mass shifts’ and includes in-source fragmentation events, missed 

cleavages, and isotope errors. Overall, all search engines performed similarly when run using 

similar search parameters (Table 3-3). In the traditional (narrow-window) search, MSFragger 

and Comet identified 9,795 and 9,757 protein groups (1% protein FDR) and 456,548 and 

461,806 PSMs (1% protein and PSM FDR), respectively. MSFragger also identified similar 

numbers as X! Tandem, when accounting for the innate variable modifications that X! Tandem 

specifies by default. In open search, which represents the primary motivation for the 

development of MSFragger, we observed a dramatic increase in the number of identified PSMs 
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across all search engines, in line with the earlier report using SEQUEST4. For example, 

MSFragger identified 609,897 PSMs using open search, an increase of 33.6% compared to 

narrow-window search, with a minimal loss of 1.4% in the number of protein identifications. 

When performing protein inference using open-search results, we took a conservative approach, 

using only unmodified peptides and peptides with specified variable modifications (Online 

Methods). When all modified peptides were included, the number of protein identifications from 

open searches exceeded that of narrow-window searches (for example, by 4.4% for MSFragger). 

However, additional work is necessary to carefully evaluate the accuracy of the protein inference 

step when using all peptides identified in open search. 

Table 3-3 Identification rates and analysis time for the HEK 293 data set.  
Identification numbers are for the entire 24-run LC-MS/MS data set, filtered at 1% FDR at both protein and PSM levels. Search 
times given are for a single LC-MS/MS run consisting of 41,820 MS/MS spectra analyzed on a quad-core workstation.  

Search engine Time (min) Proteins PSMs Peptides 
Narrow-window search 

SEQUESTa 9.3 9,513 396,736 110,262 
Comet 1.7 9,757 461,806 115,612 
X! Tandemb 1.7 10,182 466,701 119,304 
MSFragger 0.4 9,795 456,548 115,755 
     

Open search (500 Da) 
SEQUESTa 673.0 9,178 510,139 111,205 
Comet 815.4 9,545 584,218 123,679 
X! Tandem 976.0 9,830 638,052 133,318 
MSFragger 5.4 9,656 609,897 126,037 
     

a For time estimation, SEQUEST searches were performed using Proteome Discoverer 2.1 (SEQUEST HT) on a more powerful 
eight-core workstation. Narrow-window searches were done with a 100-p.p.m. precursor mass window, except for SEQUEST (5 
p.p.m.). SEQUEST identification rates were taken from ref. [65].  
b X! Tandem searches include several variable modifications that cannot be turned off. 
 

Open searches using conventional database search tools are slow, given the vastly expanded 

search space. Comet and X! Tandem took 13.6 and 16.3 h, respectively, to analyze a single LC-

MS/MS run using a quad-core workstation. In stark contrast, MSFragger took only 5.4 min, 

making it >150 times faster than these commonly used tools. We also compared MSFragger to 

tools that employ peptide indexing, such as Tide [89] and SEQUEST HT (Table B-1). Tide, 

which allows 100-Da precursor windows only and does not take advantage of multiple processor 

cores, took 176.7 min (compared to 9.8 min with MSFragger when subjected to the same 

constraints). SEQUEST HT (Proteome Discoverer 2.1) took more than 11 h on a more powerful 

octa-core workstation. The speed and scalability (Figure 3-3) of MSFragger allowed open 
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searching of the entire HEK293 data set (24 LC-MS/MS runs) in less than 30 min on a single 

powerful workstation, compared to the days or even weeks that would be required to search these 

data using existing tools on the same machine. 

 

 

Figure 3-11 Open searching identifies similar modifications as MODa. 
MODa, run in single blind mode, generates a similar modification profile as that of an open search with differences that are likely 
due to the characteristics of the modification.  Open searches (run in fully tryptic mode in both comparisons) are more likely to 
recover mass shifted peptides that have little discernible alterations in their tandem mass spectra (such as the modification near 
302 Da) as it does not attempt to localize the modified mass.  MODa is likely more effective for modifications that are more 
commonly found near the C-terminus (and disrupts the y-ions used in open search identification).  MODa running in semi-tryptic 
mode (the mode of operation as recommended by its authors) recovers a greater number of PSMs at the expense of additional run 
time. 

 

We also sought to compare MSFragger to algorithms specifically designed for comprehensive 

PTM analysis. MODa[41] has been established as an effective tool for blind PTM search. Using 

comparable settings, both tools produced very similar PTM profiles (Figure 3-11), but 

MSFragger identified a larger number of PSMs than MODa, at an FDR of 1%: 622,857 

(MSFragger, tryptic search) versus 522,812 (MODa, semi-tryptic search) and 439,216 (MODa, 

tryptic search). The difference between MODa and MSFragger results can be explained, in part, 

by the fact that MODa’s algorithm localizes the mass shift to a particular amino acid, whereas 
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open searching identifies only the peptide sequence and the mass shift (which may be the result 

of multiple modifications). Considering the computational time, MSFragger was notably faster 

(5.4 min; 24.5 min when restricted to a single core) than MODa, which took 204.7 min (semi-

tryptic search) and 150 min (tryptic search) for a single LC-MS/MS run on a quad-core 

workstation (Table B-1). 

3.4 Discussion 

In this chapter, we presented two database search tools that are both considerably faster than any 

existing tools. EGADS allows narrow window searches to be rapidly performed on large search 

spaces (such as semi-tryptic or non-enzymatic digestions involving custom databases predicted 

from sequencing data) as the GPU-accelerated digestion component is much faster than the 

CPU-based indexing performed by MSFragger while not performing a large number of similarity 

scores. However, the requirement of specialized hardware makes it inaccessible to many users 

and prohibits deployment on inexpensive cloud computing resources. The ability of MSFragger 

to run on conventional computers makes it much more accessible and scalable. Its algorithmic 

strength in similarity calculations makes it ideal for open searches where a large number of 

similarity comparisons are calculated. However, for narrow window searches, much of the 

fragment index can be left untouched when they represent the theoretical fragments of digested 

peptides that have no experimental spectra within the precursor mass tolerance. This inefficiency 

can be ameliorated to a certain extent by running MSFragger in batch mode, where multiple LC-

MS/MS runs are processed sequentially, reusing the generated fragment index and increasing the 

coverage of the m/z range by experimental precursors. For users without access to GPUs, 

MSFragger in narrow window mode still enables much faster searches than conventional search 

tools, especially in batch mode. However, for labs equipped with the capability to perform both 

types of searches, the two tools or approaches are complementary, with EGADS more suitable 

for narrow window searches and MSFragger for open searches. It is also worthy to note that 

EGADS implements multiple scoring functions, potentially enabling multiple GPU accelerated 

searches to be performed using different scoring functions to reduce the number of false 

positives that are ambiguous identifications. 
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The indexing algorithm presented in MSFragger has the potential to be used in a number of 

different mass spectrometry applications where comparing spectra is a computational bottleneck. 

This includes spectra clustering, testing new hypotheses on indexed experimental spectra, or 

identifying spliced peptides. The algorithm can also be adapted to consider shifted fragment ions 

to further empower the open search concept by building different fragment indices based on 

fragment charge. Finally, as the approaches are orthogonal, a GPU implementation of 

MSFragger is theoretically possible, allowing such an implementation to be thousands of times 

faster than the conventional database search tools today that do not employ either innovation 

3.5 Data availability 

Raw mass spectrometry files are available from public repositories as described. The processed 

data files supporting the findings of this study are available upon request.  The EGADS database 

search tool is available upon request. MSFragger can be obtained from 

www.nesvilab.org/software. A software manual for running MSFragger can be found in 

Appendix D. 
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CHAPTER IV 

COMPREHENSIVE PROFILING OF MODIFIED PEPTIDES IN 
SHOTGUN PROTEOMICS USING THE                                         

OPEN SEARCH STRATEGY  

Contents of this chapter have been published in Nature Methods [62] 

4.1 Introduction 

Post-translational modifications (PTMs) regulate cellular functions in ways that cannot be 

studied through deep genomic or transcriptomics sequencing. A wide range of PTMs including 

phosphorylation, ubiquitination, glycosylation, and acetylation has been characterized and 

localized to tens of thousands sites in the human proteome [98]. The most common and prevalent 

PTM studied is phosphorylation likely due to their function in signaling and involvement in 

cancer processes [99]. In these studies, the PTM of interest is often chemically enriched prior to 

analysis by mass spectrometry. Hence, it was of surprise and excitement when it was reported 

that an additional 30% PSMs were identified to be modified peptides by the open search strategy 

in an non-enriched HEK 293 proteome, indicating that there is a vast assortment of chemical and 

post-translational modifications that can be studied without enrichment in datasets already 

present in public repositories [100] representing diverse tissues and conditions. Furthermore, the 

open search strategy is known to recover only 50% of modified peptides, suggesting a potential 

increase in the identification rates by another 30%.  The large number of modified peptides 

collected in non-enriched samples might be due to recent increases in instrument speed, allowing 

less abundant modified peptide forms to be effectively sampled in data-dependent acquisition. 

These modified peptides have long eluded identification in tandem mass spectrometry even 

though their spectra are collected due to the computational burdens of identifying blind 

modifications, making them part of the dark matter of shotgun proteomics [101]. The open 



58 
 

search strategy provides a simple and direct opportunity to illuminate this dark matter and allow 

us to comprehensively study the full complement of chemical and post-translational 

modifications in proteomics. 

 

The open search strategy is not without limitations. Open searching can be computationally 

infeasible for large datasets without the use of the more efficient algorithms presented in Chapter 

Three. Aside from the computational costs, it does not recover all peptides all unmodified 

peptides, recovers only 50% of modified peptides (even for the most common modifications), 

and has difficulties identifying peptides with modifications near the peptide C-terminus (due to 

the unaccounted for shifted y-ions). Hence, we attempted to address these concerns and refine 

the open search strategy through MSFragger. In addition, we wanted to examine the diversity 

and abundances of modifications across experiments to understand if their impact on false 

positives is uniform across different experimental conditions or if the most common 

modifications are consistent enough to be targeted through simple variable modification 

searches. For these purposes, we performed large scale modification profiling of various shotgun 

proteomics experiments and also examined the presence of modified peptides in several 

proteomics applications. 

4.2 Materials and methods 

Datasets and Data Preparation 

Six public datasets, all analyzed using the Thermo Scientific Q Exactive mass spectrometer was 

obtained and conversion of vendor .raw files to mzML was performed as previously described. 

Three of the six was used for the large-scale profiling studies: a HEK 293 dataset [65] 

(PXD001468, 1.12 million MS/MS spectra), a HeLa dataset [99] (HeLa proteome profiles from 

PXD000612, 2.8 million MS/MS spectra), and a triple-negative breast cancer (TNBC) dataset 

[66] (PRDB004167, 19.6 million MS/MS spectra). A clinical breast cancer dataset [102] 

(PXD000815, 34.3 million MS/MS spectra) was used for the SILAC analysis. A large scale 

study involving 5,188 LC-MS/MS runs [103] (raw data obtained from authors, 64.7 million 

MS/MS spectra) was used for the AP-MS analysis. Finally, a human RNA binding protein study 
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[104] (human RBP runs from PXD000513, 8834 MS/MS spectra) was used to demonstrate the 

utility of MSFragger in detecting RNA-crosslinked peptides. 

 

Boosting unmodified peptides 

MSFragger implements an unmodified peptide boosting feature. When invoked, PSMs that have 

an absolute value of the mass shift dM (defined as the difference between the theoretical and 

observed precursor peptide mass) less than the true precursor tolerance threshold specified by the 

search parameters ‘precursor_true_tolerance’ / ‘precursor_true_units’ are placed into a different 

scoring heap that only contains such unmodified peptides. After the calculation of expectations 

for all PSMs in both the regular and unmodified scoring heap, a ranking expectation is generated 

for all PSMs. For entries in the regular scoring heap, containing both modified and unmodified 

PSMs, the ranking expectation is the same as the computed expectation. The ranking expectation 

for entries in the unmodified peptides heap are modified based on the specified search 

parameters (multiplied by the specified expectation boost or an arbitrary small value for those 

that pass the ‘zero_bin_accept_expect’ expectation) and recorded as the ranking expectation. All 

PSMs are then merged and ordered by their ranking expectations prior to results reporting. It is 

important to note that the original expectations are reported rather than the ranking expectation. 

 

Complementary ions for the recovery of C-terminal modifications 

The addition of complementary ions follows the basic spectra pre-processing described 

previously [105,106]. The top N observed fragment ions, as specified by the 

‘add_topN_complementary’ ions parameter are selected and are assumed to be either a singly 

charged y-ion for all spectra and a doubly charged y-ions for spectra with an identified charge 

state of 3+ or higher. The m/z of the complementary singly charged b-ion is then calculated from 

the calculated neutral mass of the assumed y-ion and the observed precursor mass. A 

complementary ion with this m/z and intensity equal to the y-ion from which it was derived is 

then inserted into the spectrum. Note that complementary ions are generated for both the singly 

charged and the doubly charged assumption of the observed fragment ion so that N 

complementary ions are inserted for spectra with charge state 2+ and 2N complementary ions are 

inserted for spectra with charge state 3+ or higher.  These modified experimental spectra are then 
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subjected to open database searching.  As the original experimental fragment ion (from which 

the complementary ions are generated) is retained in the spectrum, it is possible that a single 

experimental observation can be incorrectly interpreted as multiple fragmentation events.  Future 

work involving the addition of complementary ions to the theoretical spectrum instead will 

eliminate this problem and improve localization of modifications. 

 

MS1-based precursor mass correction and identification based calibration 

Instrument recorded precursor mass values for MS/MS spectra can be inaccurate while repeated 

observations of a precursor in survey (MS1) scans can be highly precise. A supplementary tool 

was developed as part of the MSFragger pipeline that, for each MS/MS event, takes the recorded 

m/z and retention time, examines the corresponding space in MS1 scans, and extracts the nearest 

peak feature by tracing the mass in retention time.  The m/z is then calculated as a weighted 

average (by intensity) of all peaks in the trace. The precursor m/z for each MS/MS event is then 

updated with this value. For certain MS/MS events in which it was not possible to reconstruct the 

associated peak feature, no changes to the recorded m/z are made. Following precursor mass 

correction, identification-based mass recalibration of the MS/MS run is performed. In order to 

compare modification profiles that are resolved at sub-ppm levels across disparate experiments 

and labs, this calibration step is critical as slight deviations can cause broadening of features in 

the profile and loss of power in recovering modifications. To perform this calibration, 

unmodified peptide identifications (filtered at 1% PSM level FDR using the PeptideProphet 

probability) with observed mass difference dM less than 20ppm are selected. As instrument bias 

may drift over time and varies across m/z, a two-dimensional calibration grid is constructed 

using a retention time width of 5 minutes and an m/z width of 200 m/z. For each unmodified 

peptide, the corresponding cell in the grid is found. A weighted ppm bias, based on the proximity 

to each point, is added to each of the four points corresponding to that cell. The weighted 

averages on the calibration grid are then used to adjust the precursor m/z for all observed MS/MS 

events in the run. The corrected and calibrated m/z values are then written to a calibration file 

that is incorporated in downstream analysis. 
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Figure 4-1 MS-1based precursor mass correction and identification based calibration.  
(a) Visualization of a monoisotopic peptide ion peak using Batmass represented as a series of different observed m/z along 
retention time (vertical axis).   (b) Calibration adjustment factors applied to each PSM plotted by their observed m/z and retention 
time. 

Large scale profiling of chemical modification 

Large scale profiling of chemical modifications was performed using the sequence database 

created from the human sequences of UniprotKB (Download date: 2015-10-09) appended with 

reversed protein sequences as decoys and common contaminants (cRAP proteins sequences from 

gpmDB and contaminants from MaxQuant). A precursor mass tolerance of 500 Da was used 

with fragment tolerance of 20 ppm.  Isotopic error correction was disabled and common variable 

modifications of methionine oxidation and N-terminal acetylation were enabled. 

Carbamidomethylation was specified as a static modification.  PSMs and peptides that contain 

modifications that were specified in our search parameters were not considered to have a mass 

shift for the tabulation of mass shifts.  Fully tryptic digestion was specified allowing up to 1 

missed cleavage.  Complementary ions and boosting features were disabled and other 

MSFragger options were left as default. 

 

MSFragger search results from each LC-MS/MS run were subjected to peptide validation as 

described above. Peptide probability was determined by the highest supporting PSM probability. 

Results for each experiment were aggregated and filtered at 1% peptide FDR. PSMs were 
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separately filtered at 1% PSM FDR and only PSMs that passed both the 1% PSM FDR and 1% 

peptide FDR were retained for downstream analysis. 

 

Modeling of observed modification profiles and detection of modification peaks 

Normalized density profiles for each experiment were generated for comparison across different 

experiments. Corrected mass differences, with random noise on the order of +/- 5 μDa added to 

break ties, were binned using 0.0002 Da bins to form an initial counts histogram. These counts 

were then distributed to adjacent bins using the weights 0.23 (bin to left), 0.49 (same bin), 0.23 

(bin to right) to smooth the histogram and improve the monotonicity of peak shapes. These 

histograms were then normalized by dividing each bin by the total number of spectra (in 

millions) acquired in the respective experiments.  Averaging the counts in each bin generated an 

average profile of the three experiments. Mixture modeling of the average profile failed to 

precisely capture known modifications. Examination of the profile revealed peaks of varying 

broadness and further examination revealed the peak shape to be a complex function of the 

charge state and m/z of the underlying PSMs.  Instead, a prominence based peak detection 

method was used that found features on the histogram by requiring that the peak prominence was 

at least 0.3 times that of the peak height.  As known modifications were observed to have a peak 

width of approximately 0.004 Da (given current instrument accuracies and the 

correction/calibration method applied as described above), these features were ordered by the 

rise in density compared to the 0.003 Da flanking regions.  It should be noted that some of the 

detected features (mass bins) could be artifacts of the peak picking algorithm, or may correspond 

to various combinations of multiple modifications. 

 

Mass shift annotation using Unimod 

The Unimod repository was downloaded (on 2016-04-22) in XML format and was parsed to 

extract modification names and mass shifts.  Mass shifts associated with the addition or deletions 

of the twenty amino acids were appended to this list.  Multiples of the mass difference between 

carbon-13 and carbon-12 were added as ‘First isotopic peak’ and ‘Second isotopic peak’ to 

account for isotopic peak picking errors.  Entries that represent a single mass shift in this list 

were concatenated into a single entry so that a single text identifier represented each mass shift.  
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Annotation of the list of mass shifts proceeded in decreasing order of abundance.  For each mass 

shift, the mass is queried against the described database of annotations with a mass tolerance of 

0.002 Da.  If a match is found, the mass shift is annotated with the entry from the database.  If 

the mass shift cannot be matched to a single entry in the database, we attempt to compose 

multiple (up to 3) previously observed (in the order of annotation) mass shifts to account for 

compound modifications.  If the mass shift remains unexplained, we add it to our list of 

annotations as a new un-annotated mass shift. 

 

Localization of detected mass differences  

For each PSM, including unmodified peptides, the observed mass difference is evaluated to see if 

it can be attributable to a modification of a specific site (position in the peptide).  For each 

MS/MS run, the list of identified spectra (which includes the spectrum ID, peptide sequence, list 

of variably modified amino acids, and observed mass difference) is obtained from the 

MSFragger analysis pipeline, and the corresponding MS/MS spectra are extracted from the 

original mass spectrometry data file. The number of matched fragment ions is then re-computed 

using the same hyperscore function as originally done in MSFragger. The observed mass 

difference is iteratively placed on each amino acid, and for each position the spectrum similarity 

is computed to derive the number of matching fragment ions, and then the hyperscore.  A PSM is 

called localizable if there is at least one position that generates a higher number of matched 

fragments than the rest. As there may be insufficient fragments to support an unambiguous 

localization in the peptide sequence, all positions that share the highest hyperscore are marked as 

a possible localization site.  A PSM is called to be localized to the N-terminal if the localized 

positions form an uninterrupted stretch of amino acids from the N-terminal. 

 

The localization results are then aggregated for each identified mass bin, and their localization 

characteristics examined. For each bin, the overall localization rate (the percentage of PSMs 

within that bin that are localizable), the N-terminal localization rate (the percentage of PSMs 

within that bin that are localizable and the localization is N-terminal), and the amino acid 

enrichment are computed. The amino acid enrichment is determined by first computing the 

amino acid composition of all peptides within the mass bin. Then, the number of localization 

sites attributable to each amino acid is summed across all localizable PSMs (for a PSM with 
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multiple localization sites, each site gains a weight equal to 1 / number of localized sites).  The 

total localization count for each amino acid is then normalized to form the localization rate. 

Amino acid enrichment is then determined by the ratio of localization rate to composition rate.  It 

should be noted that while this metric is informative in many cases, it may be misleading in bins 

containing few PSMs or bins that are dominated by several abundant peptides that skews the 

counts and normalization factors. 

 

Spectral similarity scores for modifications 

For each modified PSM, we identify corresponding PSMs of the same charge state that identifies 

the same peptide but with a mass difference of less than 0.001 Da (indicating an unmodified 

peptide).  We compute the average cosine similarity between the spectrum of the modified PSM 

and spectra corresponding to the unmodified peptide (if there are more than 50 such spectra, 50 

are chosen at random).  We then normalize for variations within unmodified spectra by dividing 

the average cosine similarity within the set of unmodified spectra to obtain a similarity score for 

the modified PSM.  For each modification mass, its similarity score is determined by averaging 

the similarity scores calculated for each modified PSM within its mass tolerance. 

 

Analysis of SILAC datasets 

The breast cancer SILAC dataset was analyzed using the same search settings as the large-scale 

modification profiling described above with the exception that two variable modifications were 

added for the heavy labeled residues: 8.0142 Da at lysine and 10.00827 Da at arginine. Precursor 

mass correction/calibration and peptide validation were performed on each file and the 

aggregated files from the experiment were subjected to a 1% peptide and PSM FDR filter (each 

retained PSM passed 1% PSM FDR and matched a peptide that passed 1% peptide FDR).  Each 

PSM in the resultant list was then examined for the presence of a heavy labeled residue (as 

determined by identification with a heavy labeled variable modification). Unlabeled PSMs were 

considered to have originated from the patient samples while labeled PSMs were considered to 

have originated from the super-SILAC mix. 
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Analysis of AP-MS dataset 

Open search parameters for the AP-MS dataset were also similar to the settings used for large-

scale modification profiling with one exception. As iodoacetamide treatment of samples was not 

used, no static modification was specified for cysteine. Each of the 5,188 runs was subjected to 

peptide validation and mass correction individually. FDR filtering was performed for each run 

individually, filtering the data at 1% FDR (at both peptide and PSM levels). Narrow window 

searches were performed using the same parameters with the exception of a 20 ppm precursor 

tolerance window and isotope selection errors of 0/1/2 was enabled. 

 

For each LC-MS/MS run, all PSMs that were matched to a UniProt accession associated with the 

bait protein were considered to have originated from the bait protein (including any shared 

peptides). The number of unique sequences was determined by examining the set of unique 

peptides represented by the PSMs. Total counts for a particular bait protein across the replicates 

were determined by summing bait PSMs across the two replicates and determining the number of 

unique peptide sequences.  Average fold change between narrow window and open searches was 

determined by linear regression in R. 

 

Analysis of RNA-protein crosslink dataset 

Open searching for the crosslinking dataset was performed similar to the large-scale modification 

profiling searches. The precursor mass window was enlarged to +/- 1000 Da to accommodate 

heavier crosslinked fragments. Carbamidomethylation was not specified as a fixed modification 

on cysteine. Comparison of results obtained by RNPxl and MSFragger was performed using the 

peptide sequence and mass difference. Identifications from RNPxl were translated into a peptide 

sequence and a total RNA-peptide mass. Identification from MSFragger was considered to be a 

match if it shared the same peptide sequence and had a total mass that differed from the RNPxl-

based identification by no more than 0.05 Da. 
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4.3 Results 

4.3.1 Refinement of the open search strategy using MSFragger 

The development of MSFragger algorithm not only makes open searching practical, but also 

presents an opportunity to further investigate and refine this computational strategy. It is often 

assumed that the number of identified unique peptide sequences would be greatly reduced in 

open search compared to narrow window search due to the vastly expanded search space. 

However, our results using multiple search engines (Table 3-3) demonstrate that this is generally 

not the case. At the same time, it is true that not all unmodified, tryptic peptides found in narrow 

window search are found in open search. To see if those peptides can also be recovered, we 

implemented a boosting feature within MSFragger that preferentially ranks unmodified peptides 

over modified peptides when performing open search (see section 4.2). However, such a 

strategy, while implemented as an option in MSFragger, has not been found to significantly 

improve the results (Figure 4-2).  

 

  

Figure 4-2 Preferential boosting of unmodified peptides fails to rescue missing peptides. 
Boosting recovers a greater percentage of the peptides found in narrow window search prior to FDR filtering.  Note that not all 
peptides identified in narrow window search are recovered in open search with the boosting option enabled due to the presence of 
a default peptide probability filter of 0.05 in PeptideProphet (disabling this filter using the –p0 option results in near 100% 
recovery).  However, after controlling for FDR, boosting does not improve the peptide overlap between open and narrow window 
search. 
 

In open searching, there is often a reduction in sensitivity for modified peptides containing 

common modifications that are specified as variable in narrow window searching (as open 

searching does not account for modified fragment ions). In order to address this issue, the speed 

of MSFragger allows us to specify variable modifications in conjunction with open searching. 
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We selected peptides identified with a single oxidized methionine in narrow window search and 

examined the proportion of such peptides observed in open search (explicitly as an oxidized 

methionine containing peptide or with a mass difference of +16 Da).  In an open search without 

variable modifications, 45.4% of the peptides with oxidized methionine could be recovered in 

comparison to 87.5% for all peptides (Figure 4-3).  Specifying oxidized methionine as a variable 

modification in our open search boosted the percentage of recovered oxidized methionine 

peptides to 88.8%, which is close to the 90.3% recovered for all peptides. 

 

 

Figure 4-3 Decreased sensitivity for common modifications in open searching can be overcome by specifying variable 
modifications. 
Standard open searches tend to identify far fewer peptides modified with common modifications than narrow window searching 
specifying those modifications as variable modifications.  This is due to decreased sensitivity when the shifted ions are no longer 
matched in open search.  For the most abundant chemical modifications, this can result in a significant decrease in overall counts.  
The speed of MSFragger allows variable modifications to be specified in conjunction with open searching.  Examining peptides 
with oxidized methionine reveals that standard open search recovers only 45.37% of the peptides originally identified with 
oxidized methionine in narrow window searching (with variably oxidized methionine).  Specifying oxidized methionine as a 
variable modification in open search brings that percentage to 88.81%, close to the overall overlap in peptide identifications 
between narrow window and open searches. 
 

One apparent weakness of the open search strategy, compared to other strategies for blind PTM 

analysis such as spectrum alignment, is that it only considers unmodified fragment ions in 

scoring. Thus, C-terminal modifications are more difficult to detect using open searching as most 

y-ions, which are the most abundant and commonly observed in CID/HCD fragmentation, are 

shifted by the modification mass. Under the assumption that the most intense fragment ions are 

shifted y-ions, generating complementary ions [76,105] using the experimental precursor mass 

would yield unmodified b-ions that can be detected in open searches. We tested this hypothesis 

by inserting 10, 20, and 30 complementary ions in the experimental spectrum as a preprocessing 

step prior to searching and benchmarked this process using peptides with a single oxidized 

methionine. The addition of complementary ions slightly decreased the identification rates of 
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peptides with modifications near the peptide N-terminus but greatly increased identification rates 

of peptides with modifications near the C-terminus (Figure 4-4).  For peptides with an oxidized 

methionine just upstream of the tryptic cleavage site, the number of identified peptides increased 

by 48% when 20 complementary ions were added.  As the number of complementary ion 

increased, the overall identification rates decreased due to the addition of noise in the spectrum.  

In our experience, the insertion of 20 complementary ions is optimal for detection of C-terminal 

modifications using the open search strategy. Because the overall improvement in the number of 

identifications (taking into consideration the unmodified peptides as well) when using the 

complementary ions was not significant, we elected not to use this option for the majority of 

analyses presented in this work. A more efficient strategy to account for shifted fragments would 

be to add complementary ions to theoretical spectra via extension of the fragment ion indexing 

scheme, which we plan will pursue in future work.  

 

 

Figure 4-4 Complementary ions aid recovery of peptides with modifications near peptide C-terminus. 
(a) High intensity fragment ions are selected from the experimental spectrum and are assumed to be modified y-ions.  
Complementary ions based on the experimental precursor mass are inserted to form a modified spectrum that is subjected to open 
searching. (b) Evaluation of complementary ions using peptides containing a single oxidized methionine.  10, 20, and 30 
complementary ions were inserted into each experimental spectrum and the counts of identified peptides were ordered by the 
distance of their oxidation site to the N or C-terminus.  The addition of complementary ions decreased the number of 
identifications for peptides with oxidation near the N-terminus but greatly increased identification rates for peptides with 
oxidation near the C-terminus.  For peptides with an oxidized methionine upstream of the tryptic cleavage site, the number of 
identified peptides increased by 48% when 20 complementary ions were added.  The addition of more than 20 complementary 
ions was not found to be beneficial. 
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The problem of co-isolating multiple co-eluting peptides and the resulting chimera MS/MS 

spectra is well established [20,107] and manifests itself in unique ways in open searches. When a 

co-fragmented peptide is identified with a higher score, an artefactual (not attributed to any 

modification) mass shift is produced that can either be small (within several Daltons) or large 

(hundreds of Daltons) depending on whether the co-fragmented peptide ions are of the same or 

different charge state, respectively. Such cases can be identified using linked MS1 and MS/MS 

spectral viewers (Figure 4-5 a,c), and further evaluated using tools such as BatMass [91] (Figure 

4-5 b,d). While the number of such cases is small, in future work chimeric spectra can be dealt 

with more accurately in open searches via MS1 feature detection of co-isolated peptides [37] 

within MSFragger or using external tools [108].  

4.3.2 Large-scale profiling of unlabeled shotgun proteomics experiments 

MSFragger’s ultrafast performance enables comprehensive profiling of chemical and biological 

modifications across multiple large-scale proteomics datasets. To demonstrate this, we probed 

three large proteome-wide studies using open searches and compared their modification profiles.  

In addition to the HEK 293 dataset used to benchmark MSFragger, a HeLa proteome dataset 

[99], along with a dataset consisting of various triple-negative breast cancer (TNBC) cell lines 

and tissues [66] were used (see section 4.2). We additionally implemented a supplementary tool 

for MS1-based correction of precursor masses followed by identification-based mass 

recalibration. This allowed us to achieve sub-ppm mass accuracy and improved our ability to 

delineate modifications having close masses across disparate experiments and labs (Figure 4-6). 

The list of 500 most abundance mass shifts (excluding modifications specified as variable 

modifications in the search) is shown in Table C-2. We confirmed that in all datasets FDR 

estimates for modified peptides were well controlled and not inflated compared to unmodified 

peptides. For example, in HEK 293 dataset, peptide-level FDR was 0.18%, 0.11%, and 0.11% 

for peptides with top 500 most abundant mass shifts, top 100 mass most abundant shifts, and for 

unmodified peptides, respectively (FDRs computed separately for 500 most abundant mass shifts 

are shown in Table C-2).  
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Figure 4-5 Co-isolation of co-eluting precursors can result in mass differences that are not due to chemical modifications.  
(a) A MS/MS event was triggered at m/z 685.84 (green arrow) resulting in the identification of the peptide 
LGPALATGNVVVMK with a mass difference of 0.878.  The parent survey scan reveals a co-eluting precursor with m/z 685.40 
(cyan arrow).  The difference in m/z at charge 2+ matches the observed mass difference suggesting that the co-eluting precursor 
is identified instead of the target precursor in this chimeric spectrum. (b) BatMass visualization of the MS/MS event described in 
(a) with MS/MS isolations marked by the purple line segments. The cyan arrow indicates the monoisotopic peak of the target 
precursor while the red arrow indicates the monoisotopic peak of the identified precursor. (c) The peptide RESVELALK was 
identified with a mass difference of -349.185 at m/z 348.21 (green arrow).  Parent survey scan reveals a co-eluting precursor with 
m/z 348.87 (cyan arrow).  While the target precursor ion is of charge 2+, the co-eluting precursor is of charge 3+, which 
transforms this 0.66 difference in m/z between these co-eluting precursors into the observed mass difference of -349.185.  (d) 
Similar BatMass visualization of the MS/MS event described in (c).  Note how the isolation window of the charge 2+ target 
precursor (cyan) crosses the monoisotopic peak of the charge 3+ co-eluting precursor (red). 

 

We first interrogated several common chemical modifications (Figure 4-7a). Although the 

localization profiles were largely concordant (Figure C-1), their normalized abundances 

(modification rates) across the datasets were quite dissimilar. For example, the rate of 

phosphorylation in the HeLa dataset was over 14 times than that in the TNBC dataset. 
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Furthermore, some of these modifications were found on amino acids that are generally not 

considered in traditional workflows, such as tryptophan oxidation.  

 

 

Figure 4-6 MS1-based correction of precursor masses and identification-based calibration helps delineate modifications in 
close mass proximity.  
Identified number of PSMs with mass differences in the range of 0.98 Da to 1.01 Da from a single HEK293 LC-MS/MS run.  
Expected mass differences in this range are due to deamidation (with a delta mass of 0.984 Da) and C12/C13 error (with a delta 
mass of 1.003 Da). (a) Prior to correction a broad peak with no coherent shape is observed with a center around 1.005 Da.  
Knowledge of expected mass differences may lead to the calling of a peak near 0.986 Da. (b) Two cleanly resolved peaks are 
observed after mass correction.  Expected peaks corresponding to deamidation and C12/C13 error are resolved with mean mass 
accurate to 1/1000 Da.  The ability to determine such peaks from a single LC-MS/MS run demonstrates the accuracy of modern 
instruments and the power of our mass correction procedure. 

 

We observed many highly abundant modifications that lacked annotations in Unimod and were 

unique (or of much greater abundance) to a particular dataset (Table C-2). To help decipher these 

unannotated (based on Unimod) modifications, we performed site localization analyses (section 

4.2; Table C-1). For example, the HeLa dataset contained many peptides (over 23,000 PSMs) 

with a modification mass of 52.913 Da that were often localized to aspartic acid or glutamic acid, 

characteristic of metal ion adducts.  This is likely to be iron displacing three protons (Unimod 

annotates ‘Replacement of 2 protons by iron’ modification only). We observed that many 

unannotated (in Unimod) mass shifts occurred on cysteines (Figure 4-7b). While some can be 

explained (e.g. 151.996 corresponding to carbamidomethylated DTT modification of cysteine), 

deducing the identities of unannotated mass shifts was outside the scope of this work. 

 

For some modifications, we were unable to localize the mass shift on the peptide (Figure 4-7c). 

This suggests that there are few fragments that support the modification mass or that the detected 
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modification mass is the result of a multiple modifications found on the same peptide. To 

investigate such cases, for each modification mass we computed a spectral similarity score 

between peptides containing that modification and their corresponding unmodified forms (see 

section 4.2; Figure 4-8). Most modifications possessed a similarity score between 0.4 and 0.6, 

including known modifications such as phosphorylation. However, we observed a large number 

of modifications (e.g. 3417 PSMs with mass shift 301.986 Da in HEK 293 dataset, 3068 PSMs 

with mass shift 284.126 Da in HeLa dataset) with similarity scores close to 1, indicating that 

spectra for many of the peptides with these modifications were largely unchanged from that of 

the unmodified peptide (Figure C-2). The lack of differences in the spectra and relative 

uniqueness to a particular dataset (Table C-2) suggests labile modifications that are specific to 

sample preparation protocol.  

 

 

Figure 4-7 Modification profiles in large-scale HeLa, HEK293, and TNBC shotgun proteomics experiments. 
(a) Examples of common modifications showing differences in modification rates. (b) Examples of abundant modifications that 
were unique to particular experiments. (c) Examples of abundant mass features where the mass difference could not be 
effectively localized. 
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Figure 4-8 Open searching detects modified peptides containing labile modifications.  
Spectral	similarity	scores	for	each	mass	bin	were	computed	to	capture	the	spectral	similarity	between	a	modified	peptide	and	its	
unmodified	counterpart.	Spectra	acquired	from	a	13C	(12C/13C)	error	are	highly	similar	to	those	acquired	from	the	unmodified	form	serving	
as	a	natural	threshold	(dotted	line)	of	similarity	significance	between	modifications	with	a	higher	similarity	score	(red)	and	those	with	a	
lower	score	(blue).	Mass	differences	of	interest	are	labeled	and	shown	in	yellow.	Inset,	quantile	plot	of	similarity	scores	across	
modifications.	

4.3.3 Modified peptides in various proteomics applications 

MSFragger enables a wide range of analyses beyond interrogation of unlabeled proteomes. First, 

we are able to perform open searches using spectra from labeling-based experiments (e.g. 

SILAC, TMT, or iTRAQ) by specifying the labeled amino acids as a variable modification, thus 

allowing quantitative comparison of the modification states of proteins en masse. To test this, we 

examined a breast cancer dataset consisting of 442 LC-MS/MS runs representing 88 formalin-

fixed paraffin-embedded (FFPE) patient samples that were analyzed together with a heavy 

labeled super-SILAC mix [102]. The open search (with variable SILAC modifications) of over 

34 million MS/MS spectra from this dataset took less than three days. Examination of the 

modification profiles revealed a wide range of abundant modifications in these samples, as well 

as uncovered differences in modification abundances between the breast cancer samples and the 

super-SILAC mix, including a 30.011 Da mass shift that likely represents a methylol adduct 

which is characteristic of FFPE proteomes [109] (Figure 4-9a).  
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Figure 4-9 Application of MSFragger to diverse proteomics experiments.  
(a) Comparison of a panel of breast tissue samples and a heavy-labeled super-SILAC mix, where SILAC-labeled amino acids 
were specified as variable modifications in conjunction with open searching. (b) Bait PSM counts identified in narrow-window 
and open searches in an AP–MS data set. (c) Open searching of an RNA–protein cross-linking data set. Prominent mass 
differences corresponding to RNA fragments are labeled. Inset, length of cross-linked peptides recovered by MSFragger. 

 

Next, we applied MSFragger to a large-scale protein interaction study using an affinity 

purification mass spectrometry (AP-MS) experimental workflow that consisted of 2,594 baits 

analyzed in technical duplicates [103]. We reasoned that lowered sample complexity in AP-MS 

experiments provides an opportunity to examine in-depth the modification state of enriched 

proteins, most notably the proteins used as baits. We performed both narrow window searches 

and open searches on over 64.6 million MS/MS spectra across 5,188 LC-MS/MS runs. Open 

search increased the total number of PSMs by 32%, similar to the increases observed for data 

from whole cell lysates. For the bait proteins, however, the number of identified PSMs increased, 

on average, by almost 300% (Figure 4-9b).  

 



75 
 

For some bait proteins the increase in the number of identified peptide ions and total PSMs was 

astonishing. For example, the mitochondrial persulfide dioxygenase protein ETHE1 - a key 

member of the sulfur oxidation pathway that is itself involved in reactive oxidation of cysteine 

residues [110] - was identified by 48 and 2474 peptide ions in narrow window and open search, 

respectively. A large fraction of this increase for was attributed to cysteine modifications. When 

we subjected the top 100 bait proteins having the largest increase in the number of identified 

peptide ions to functional enrichment analysis using DAVID [111], the top enriched GO: 

Biological Process category (p-value 0.00007) was ‘small molecule metabolic process’ 

containing 23 proteins from the selected list, including ETHE1 (Table 4-1). Proteins in this 

category are involved in catalyzing modification processes and small molecule adducts, which 

may be linked to significantly higher number of modifications observed on these proteins 

themselves. These results suggest that application of MSFragger to affinity purification 

experiments can provide insights into a wide array of modifications, including rare and low 

abundance ones, on highly enriched proteins. Furthermore, open searching may offer better 

accounting of protein abundances using spectral counts in AP-MS experiments and improve the 

quality of recovered interaction networks derived using interaction scoring tools [112,113]. 

 

Table 4-1 
List of genes associated with 'small molecule metabolic process' that have a large increase in identified bait peptide ions 
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Finally, we applied MSFragger to a RNA-protein crosslinking study [104]. Computational 

analysis for such studies can be challenging due to the need to determine a priori a list of 

potential crosslinked products. As open search allows for the identification of peptides with 

unknown modifications, no such list is required. Using a 1,000 Da precursor mass window, we 

performed open search on a run comprising of human UV-crosslinked RNA-protein complexes 

and a control non-irradiated run. We observed highly visible mass shifts associated with peptides 

crosslinked to mono, di, and tri-nucleotides in the irradiated sample that were largely absent from 

the control sample (Figure 4-9c). We compared our results to that of the RNPxl computational 

strategy described in the original study and found that open search confidently identified 163 

crosslinked species, compared to 189 reported by RNPxl, with 134 identifications in common. 

As expected, the open search strategy failed to identify some of the crosslinked species 

containing very short peptides due to an insufficient number of unmodified fragment ions 

(Figure 4-9c inset). On the other hand, MSFragger identified 29 additional crosslinked species, 

most of which (all except 4) were from proteins containing other crosslinked peptides already 

identified by RNPxl. Furthermore, MSFragger also identified a number of modified peptides 

from various RNA-binding proteins (including some not identified by RNPxl) with mass shifts 

that approximate the RNA crosslinks.  These peptides are likely crosslinked peptides that also 

contain some other chemical modification or adduct and are thus undetectable by the RNPxl 

strategy. Examples include the peptides YGRPPDSHHSR and SYGRPPPDVEGMTSLK from 

the protein SRSF2 (which was not identified by RNPxl despite identifying 5 other proteins from 

the SRSF family).  This shows that MSFragger provides a simple but highly effective analysis 

workflow for identification of protein-RNA crosslinked peptides, and demonstrates the added 

insights gained through open searching in any experimental setup.  

4.4 Discussion 

The refinements to the open search strategy were met with varying success. We demonstrated 

that peptides with the most common modifications could be recovered by combining variable 

modifications with open searching, which is important for enabling the use of open searching in 

quantitative proteomics experiments using labeling technologies. Failure to recover unmodified 

peptides using a boosting option suggest that the missing peptides may be of borderline quality 
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and could potentially be false positives that are eliminated by open searching. While the addition 

of complementary ions helped recover a number of modified peptides with modifications near 

the C-terminus, it did not increase the overall number of identified peptides. Directly searching 

for shifted fragment ions in the future should help increase the recovery of such modifications as 

well as the overall number of modified peptides.  

 

The vast array of chemical and biological modifications adds a dimension to proteomics that is 

not fully explored in most studies. Open database searching, made practical using MSFragger 

can, in conjunction with existing workflows, simultaneously and comprehensively identify 

modified and unmodified peptide forms. The diversity of chemical modifications in different 

experiments is revealing in that we cannot simply use a predefined set of common modifications 

but that they vary in abundance or may be unique to particular experimental workflows or labs. 

Monitoring the rates of these common chemical modifications is also important for 

reproducibility in quantitative proteomics experiments, especially when relying on quantification 

of selected peptides as proxies for estimating abundance of their corresponding protein [114]. 

 

Given the fast growth of public repositories of MS data [100], MSFragger could be used to 

search for rare (including novel) biological modifications across many biological samples and 

experimental conditions, adding to the list of previous such discoveries [115]. This includes 

large-scale cancer proteomics studies [116,117] where using the open search strategy can 

potentially identify novel PTMs that are involved in cancer processes. Open searching could be 

advantageous for characterization of neoantigens and other endogenous peptides[71,118], many 

of which are present in modified forms. The comprehensive identification of modified peptides 

using the open search strategy not only reduces the number of false positives in any proteomics 

workflow, but also provides exciting opportunities for the study of post-translational 

modifications. 

4.5 Data availability 

Raw mass spectrometry files are available from public repositories as described. The processed 

data files supporting the findings of this study are available upon request. 
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CHAPTER V 

FUTURE EXPLORATIONS                                                    
BEYOND THE REFERENCE PROTEOME  

5.1 Conclusions 

Mass spectrometry has emerged as the method of choice for high-throughput proteome analysis. 

Advances in instrumentation over the past decade have allowed us to collect data of such depth 

and quality that we can now observe the vast majority of proteins that are inferred by the protein 

coding genes in the genome. However, these advances have been accompanied by growing pains 

as the development of statistical and computational methods has not kept pace with that of 

instrumentation and they struggle with challenging tasks such as the identification of novel 

peptides in proteogenomics, notably in the control of false positive identifications. In this 

dissertation, I presented computational strategies that identified and reduced false positives for 

the purpose of improving the quality and sensitivity of proteogenomics studies. 

 

In Chapter Two of the dissertation, I provided a direct strategy for studying false positives by 

using high scoring decoy identifications that are generated from the target-decoy approach. 

Using this strategy and existing tools in an automated fashion, I was able to determine the 

fractions of false positives that were produced due to ambiguous scoring functions, semi-tryptic 

peptides, and modified peptides. While the percentage may vary from dataset to dataset, in the 

triple negative breast cancer dataset examined, these three categories represent nearly 80% of all 

false positives. As we were able to automatically annotate them by using multiple search engines 

or expanded search spaces, this suggests that we could eliminate them by incorporating these 

strategies in regular peptide identification workflows. We also demonstrate that false positives 

due to modified peptides may be underestimated using the target-decoy strategy by violating the 

assumption that incorrect assignments match at equal rates to target and decoy sequences. Using 
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both experimental and theoretically generated spectra, we demonstrate that there is a greater 

propensity for modified peptides to map to target sequences, likely due to spectra homology 

between the spectra of modified peptides and those of other unmodified target peptides. 

 

Database searches using multiple search engines, semi-tryptic searches, and open searches (to 

identify modified peptides) all serve to provide additional information that can be used to reduce 

the number of false positives. However, the computational costs of performing all such searches 

are impractical. In Chapter Three, we presented two database search tools that are much more 

efficient than current database search tools, enabling comprehensive analyses on large datasets. 

The first tool, EGADS, uses GPUs to accelerate both in-silico digestion and similarity scoring 

and provided speedups of 30-40X over conventional tools in common search scenarios. The 

three different scoring kernels implemented in EGADS might allow it to serve as multiple search 

engines and resolve ambiguous identifications. The second tool, MSFragger, uses a fragment 

indexing algorithm to simultaneously score experimental spectrum against a range of theoretical 

spectra without the use of specialized hardware. For open searches, MSFragger is over 150X 

faster than existing tools making them feasible for identifying blind modifications in large 

datasets. Together, these tools eliminate the bottlenecks that might be cause by database 

searching, allowing for more comprehensive peptide identification and reduction of false 

positives. 

 

In Chapter 4, we refined the open search strategy for identifying modified peptides and applied it 

to a large number of shotgun experiments as well as other proteomics applications. Refinements 

of the open search strategy demonstrated the compatibility of the strategy with variable 

modification searching allowing common modifications to be fully recovered and enabling open 

search to be applied to labeling based quantitative proteomics experiments. We also increased 

recovery of peptides with modifications near the C-terminus and discussed other nuances of the 

open search strategy. We profiled a number of shotgun experiments and discovered that rates of 

chemical and biological modifications are quite dissimilar between experiments with some 

possessing unique modifications. We also discovered a number of labile modifications that 

showed no evidence for the modification in their tandem mass spectra. Finally, we applied the 
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open search strategy and identified modified peptides in a number of proteomics applications 

demonstrating their pervasiveness and the added information they provide. 

5.2 Future Directions 

The automated pipeline used to identify sources of high scoring decoys can be adapted to use the 

highly efficient database search tools developed to examine sources of false positives across 

other large datasets. The sampling depth of the experiment (from faster instruments or extensive 

fractionation) might increase the number of modified peptides sampled, leading to become a 

larger source of false positives. Low-resolution tandem mass spectra may also lower 

identification confidences for ambiguous identifications due to a more robust null distribution 

used in score calibration.  

 

The integration of multiple search engines, search spaces, and modified peptides can be 

challenging. While the pipeline used to explain high scoring decoys proceeded in a multi-stage 

approach, applying a similar approach can result in the trapping of false positives at an early 

stage (i.e. multiple search engines agree on the same false positive identification when there is a 

much better semi-tryptic or modified peptide explanation). A statistical framework is needed to 

establish the prior distributions of each input score, including the abundance estimation of 

modifications, in order to calibrate the scores and select the best explanation for a particular 

spectrum. The integration of different search spaces have been examined to some extent [56] 

using existing tools [69] but it is unclear whether those tools can be effectively used to integrate 

these wildly different search spaces. 

 

The apparent violation of the target-decoy assumption by modified peptides requires a much 

deeper examination in both regular shotgun experiments and proteogenomics studies. Further 

experiments are needed to eliminate the effect of chimeric spectra in the work based on observed 

experimental data. A simple strategy might involve re-searching experimental spectra with 

modified peptides that have the fragment ions of the identified peptide removed and rejecting 

them from downstream analysis if a high quality match is found (indicating a chimeric spectra). 

The extent of this violation can also be determined for different modifications in order to 

investigate whether they occur only for modifications that have masses corresponding to single 
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amino acid substitutions. These estimations can then be used to infer the degree of FDR 

underestimation in current proteomics studies at the PSM, peptide, and protein levels. 

 

While the goal of these tools is to improve the quality of proteogenomics studies, they can also 

be applied to existing repositories and datasets to identify false positives that have been included 

in the current observed proteome (proteins that have been “confirmed” by mass spectrometry but 

are actually false positives). A strategy might involve the re-analysis of all spectra present in 

repositories such as GPMDB and flag any suspicious spectrum. Proteins that are only supported 

by suspicious spectra can then be manually inspected and possibly removed from the list of 

identified proteins. Performing similar validation tasks for proteogenomics studies can be 

complicated by their heterogeneity and use of custom databases. 

 

EGADS is limited in the design of its memory manager and cannot operate on large protein 

databases that might be found in meta-proteomics studies. Changing the way the protein database 

is loaded onto GPU memory is a possibility but a simpler approach may be to simply partition 

the database into smaller segments and store partial search results for each spectrum and 

combine the search results after the final segment has been processed (similar to how MSFragger 

partitions the search space when there is insufficient memory to hold the entire fragment ion 

index). The application to meta-proteomics could be quite interesting due to EGADS’s ability to 

rapidly process large sequence search spaces. 

 

EGADS can also be used as a first pass tool for the automated detection and annotation of raw 

data that is submitted to a repository of mass spectrometry data. A non-specific search of all 

proteins can quickly identify the organism and enzymatic cleavage patterns as well as instrument 

mass accuracy and calibration. This set of information can be used to correct the data and 

determine search parameters in subsequent processing of the dataset, all without manual 

intervention and annotation – which can be error prone. 

 

The algorithm behind MSFragger can be used to power a new class of peptide identification 

tools that can enable analysis not currently feasible due to the computational costs. This includes 

the direct searching of spliced peptides or fusion peptides by searching protein subsequences 
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(using the shifted fragment index described below) without regards for the precursor mass and 

merging the results afterwards to “stitch” the two subsequences into a complete peptide. Other 

applications might involve large-scale spectra clustering (at a repository level) to identify spectra 

that have very different fragmentation patterns that might be indicative of a false positive. 

 

More immediately, the use of a shifted fragment index (indexing ions based on the difference 

between their mass and their precursor masses) will allow the searching of mass shifted 

fragments and improve the ability to identify modified peptides using the open search strategy. 

Care must be taken to not double count experimental fragments for both the y-ion and y+ Δ-ion 

series. Concurrent searching of both indices would prevent this double counting but can be 

technically challenging to implement. The use of this modified algorithm for identifying 

modified peptides should be compared to the conventional open search strategy to establish 

differences in identification rates and to determine if there are novel C-terminal modifications 

that can be identified using this strategy that cannot be identified using the conventional open 

search strategy. 

 

The use of the fragment ion-indexing algorithm can also be used to power direct searches against 

collections of spectra at a repository scale in real time, enabling researchers to establish mass 

spectrometry evidence for a particular peptide or modification interactively. A prototype of this 

application has demonstrated that millions of spectra can be effectively searched in tens of 

milliseconds but the scalability to hundreds of millions or billions of spectra remains to be tested. 

Alternative explanations from a variety of searches (enzymatic, semi-tryptic, open) will need to 

be pre-computed for each spectrum in the database to establish whether the newly tested 

hypothesis is better than the others that have been already tested. Statistical frameworks will 

need to be established to encompass the multiple search spaces from very heterogeneous 

experiments (different instruments, mass accuracies, digestions etc.). 

 

The ability to identify large numbers of modified peptides in large-scale proteomics experiments 

is exciting as it opens up many avenues of inquiry from both a methods development and 

biological perspective. The varying rates of chemical modifications could have consequences for 

quantitative proteomics. Investigating ways on how to select peptides that are unlikely to be 
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modified or incorporating the abundances of modified peptides in abundance estimation could 

improve such experiments by reducing variance and thus increase statistical power. Technical 

replicates of the same sample (and the same or different labs) could serve as benchmarking 

datasets. 

 

The study of biological modifications from open search results could be a boon for the 

proteomics field as a whole as they cannot be assayed by inexpensive sequencing technologies. 

Even for well-characterized PTMs that have established enrichment protocols, the large number 

of non-enriched experiments covering a wide range of tissues could add tissue specific 

knowledge of these PTMs. Rare (and novel) PTMs can also be studied using open searching but 

precautions must be taken to avoid errors from incorrect charge state assignment or co-

fragmentation. These modifications can be compiled into a resource for community curation and 

follow up by biochemical studies. 
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Appendix A 

EXAMPLES OF HIGH SCORING DECOYS 
 

 

 

Figure A-1 Example of high scoring decoy due to ambiguous scoring. 
(Top) Decoy peptide identified with high confidence. (Bottom) Forward peptide identified with high confidence. The matched 
fragments are identical in mass indicating that both matches are of equal quality in the absence of a predicted fragmentation 
model.  
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Figure A-2 Example of high scoring decoy due to semi-tryptic peptide. 
(Top) Decoy peptide identified with high confidence. (Bottom) Forward semi-tryptic peptide identified with high confidence.  
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Figure A-3 Example of high scoring decoy due to unaccounted for modification. 
(Top) Decoy peptide identified with high confidence. (Bottom) Forward peptide identified with oxidation on tryptophan.  
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Appendix B 

SUPPLEMENTARY MATERIALS FOR  
EFFICIENT DATABASE SEARCH TOOLS 

 

Table B-1 Analysis times for a single file (b1906_293T_proteinID_01A_QE3_122212) in HEK293 dataset using different 
search engines.  
All benchmarking was performed on a E3-1230v2 (4 cores with hyperthreading at 3.3 GHz) workstation unless otherwise noted 
using 8 threads. Breakdowns of indexing and search time provided where applicable.  Times do not sum to overall search time 
due to input/output and other overhead. 

 

*performed on a 2xE5-2609v2 (2 processor, each with 4 cores at 2.5GHz) workstation, peptide indexing timed only for open 
search (PD uses cached index) 
#Tide is unable to accommodate precursor tolerance windows larger than 100Da 
**MSFragger was restricted to a single thread in comparisons against tools (MODa, Tide) that do not make use of multiple 
threads of execution 
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Table B-2 EGADS runtime across diverse search conditions. 
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Appendix C 

SUPPLEMENTARY MATERIALS FOR  
COMPREHENSIVE PROFILING OF MODIFIED PEPTIDES 

 

 

Figure C-1 Localization profiles are consistent across experiments.  
Common modifications were selected and amino acid localization enrichment was calculated separately for each dataset.  Amino 
acid localizations were largely consistent across each dataset despite the differences in modification rates. 
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Figure C-2 Highly similar spectra pair for peptide LEAEIATYR with precursor mass difference of 284.126.  
3214 PSMs (corresponding to 1087 unique peptides) were identified in the mass difference bin of 284.126 Da.  These PSMs were 
predominantly observed in the HeLa dataset and were shown to have a spectral similarity score of 0.90 (indicating that the 
spectra of mass shifted peptides are highly similar to that of corresponding unmodified peptides).  Here, we selected a pair of 
PSMs that were both identified to be the peptide LEAEIATYR in the same LC-MS/MS run. Despite their highly similar 
fragmentation patterns and few unmatched fragments, they were observed with precursor masses that differ by 284.1251 Da.  The 
full y-ion series was successfully matched, which when overlapped with the matched b-2, b-3, and b-4 ions, rules out the 
possibility of a modified residue in the fragmentation spectrum. 
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Table C-1 Mass shift localization by dataset. 
BinStart Lower bound of mass shift in bin 
BinEnd Upper bound of mass shift in bin 
LocPSMs Number of PSMs in which the mass shift could be localized 
TotalPSMs Total number of PSMs within this bin 
Nterm Rate at which mass shift is localized on N-terminal end of peptide (percentage) 
TopAA1 1st highest enriched amino acid with enrichment ratio 
TopAA2 2nd highest enriched amino acid with enrichment ratio 
TopAA3 3rd highest enriched amino acid with enrichment ratio 
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Table C-2 List of top 500 detected features in mass shift histogram with potential explanations. 
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Appendix D 

MSFRAGGER MANUAL  
 
Introduction 
 
MSFragger is an ultrafast database search tool for peptide identifications in mass spectrometry-
based proteomics.  It differs from conventional search engines by computing similarity scores in 
a fragment-centric fashion using a theoretical fragment index of candidate peptides.  The speed 
of MSFragger makes it particularly suitable for ‘open’ database searches, where the precursor 
mass tolerance is set to hundreds of Daltons, for the identification of modified peptides.  
MSFragger is implemented in the cross-platform Java programming language and is compatible 
with standard proteomics file formats such as MGF/mzXML/mzML/pepXML. 
 
Equipment 
 
Computer Hardware requirements 
 
The processor requirements of MSFragger depends on the complexity of your search (and your 
patience to wait for search results).  For an open search (500Da precursor mass window) using a 
tryptic digest of the human proteome, a single processor core can search roughly 40,000 MS/MS 
spectra in under an hour.  MSFragger scales well with the number of processor cores and 
runtimes of under 2 minutes per file have been achieved using a 28-core workstation.  A desktop 
workstation with a quad core processor is sufficient for most simple workflows. 
 
MSFragger requires substantial amounts of memory due to its in-memory fragment index.  While 
MSFragger can operate with less memory than needed to store the fragment index, it will cause 
index fragmentation where it breaks the search into multiple passes, searching each input file 
against a small segment of the index at a time (which greatly increases the runtime).  For the 
human Uniprot protein database with reversed decoys, approximately 3700 MB of memory is 
needed to prevent index fragmentation.  The actual size of the fragment index is substantially 
lower (MSFragger uses a very 
conservative estimate of the available free memory to avoid out of memory 
situations).  Specifying common modifications may boost memory requirements to  
6 GB.  Semi-tryptic, non-enzymatic, and phospho searches may take tens of gigabytes 
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to avoid fragmented searches.  Limiting the range of peptide lengths can reduce the search space 
and reduce memory consumption in such cases. While fragment index fragmentation is 
undesirable, it may be unavoidable in certain instances.   
 
We recommend at least 8GB of memory for workflows involving standard tryptic digestions. 
 
Operating System requirements 
 
MSFragger has been tested on Mac OS X, Windows 7, and a number of Linux distributions.  
Note that a 64-bit operating system is required to access more than 4GB of memory. 
 
Java requirements 
 
MSFragger is written using Java 1.8 and requires the Java 8 Runtime Environment.  We 
recommend the Oracle Java 8 Runtime (download and installation instructions are available at 
www.java.com). 
 
Procedure 
 
Preparing Input Files 
 
Mass spectrometry data must first be converted to one of the supported MS/MS input formats of 
MGF, mzXML, or mzML.  A popular option for converting from vendor file inputs and between 
various input formats is Proteowizard (proteowizard.sourceforge.net).  MSFragger determines 
the appropriate data parser to use based on the file extension (.mgf for MGF, .mzXML for 
mzXML, and .mzML for mzML) and does not make inferences from file contents (i.e. naming a 
mzML file with the .mzXML extension will lead to unpredictable results or crashes). 
 
The protein database must be supplied in FASTA format.  MSFragger does not have the 
capability to generate decoys internally so they must be generated externally and appended to the 
protein database before running MSFragger. 
 
Configuring MSFragger 
 
Extract the MSFragger.jar into your working directory along with the sample configuration file 
called fragger.params.  MSFragger is configured using a text parameters file.  The parameters 
file is passed as the first argument to MSFragger and has no restrictions on names or file 
extensions (so one might want to name their configuration files to be more descriptive such as 
Uniprot_open_withmods.txt) after editing the parameters file for a particular analysis. 
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Parameter names are given left of the equal sign and parameter values are given to the right (e.g. 
num_threads = 4).  White spaces are trimmed from the ends of each value by MSFragger.  All 
text to the right of (and including) the # sign of each line is discarded so # can be used for 
comments in the parameters file. 
 
Table D-1 Listing of MSFragger search parameters. 

 
General Parameters 
 

num_threads Number of CPU threads to use, should be set to the number of logical 
processors; a value of 0  (auto-detect) will cause MSFragger to use the 
auto-detected number of processors 
 
Default: 0 

database_name Path to the protein database file in FASTA format 

 
Search Tolerances 
 
 

precursor_mass_tolerance Precursor mass tolerance (window is +/- this value) 
 
Default: 20 

precursor_mass_units Precursor mass tolerance units (0 for Da, 1 for ppm) 
 
Default: 1 

precursor_true_tolerance True precursor mass tolerance (window is +/- this value).  Used for tie 
breaker of results (in spectrally ambiguous cases) and zero bin boosting 
in open searches (0 disables these features).  This option is STRONGLY 
recommended for open searches. 
 
Default: 0 

precursor_true_units True precursor mass tolerance units (0 for Da, 1 for ppm) 
 
Default: 1 

fragment_mass_tolerance Fragment mass tolerance (window is +/- this value) 
 
Default: 20 

fragment_mass_units Fragment mass tolerance units (0 for Da, 1 for ppm) 
 
Default: 1 
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isotope_error Isotope correction for MS/MS events triggered on isotopic peaks.  
Should be set to 0 (disabled) for open search or 0/1/2 for correction of 
narrow window searches.  Shifts the precursor mass window to multiples 
of this value multiplied by the mass of C13-C12. 
 
Default: 0 

 
In-silico Digestion Parameters 
 

search_enzyme_name Name of enzyme to be written to the pepXML file. 
 
Default: Trypsin 

search_enzyme_cutafter Residues after which the enzyme cuts (specified as a string of amino 
acids) 
 
Default: KR 

search_enzyme_butnotafter Residues that the enzyme will not cut before (misnomer: should really be 
called butnotbefore) 
 
Default: P 

num_enzyme_termini Number of enzyme termini (0, 1, or 2 for non-enzymatic, semi-
enzymatic, fully-enzymatic) 
 
Default: 2 

allowed_missed_cleavage Allowed number of missed cleavages 
 
Default: 2 

digest_min_length Minimum length of peptides to be generated during in-silico digestion 
 
Default: 7 

digest_max_length Maximum length of peptides to be generated during in-silico digestion 
 
Default: 64 

digest_mass_range Mass range of peptides to be generated during in-silico digestion in 
Daltons (specified as a space separated range) 
 
Default: 500.0 5000.0 

 
Variable Modification Parameters 
 

clip_nTerm_M Specifies the trimming of a protein N-terminal methionine as a variable 
modification (0 or 1) 
 
Default: 0 
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variable_mod_01 .. 07 Sets variable modifications. (variable_mod_01 to variable_mod_07).  
Space separated values with 1st value being the modification mass and 
the second being the residues (specified consecutively as a string) it 
modifies. 
 
* is used to represent any amino acid 
[ is a modifier for protein N-terminal 
] is a modifier for protein C-terminal 
n is a modifier for peptide N-terminal 
c is a modifier for peptide C-terminal 
 
Syntax Examples:  
15.9949 M (for oxidation on methionine) 
79.66331 STY (for phosphorylation) 
-17.0265 nQnC (for pyro-Glu or loss of ammonia at peptide N-terminal) 
 
Example (M oxidation and N-terminal acetylation): 
variable_mod_01 = 15.9949 M 
variable_mod_02 = 42.0106 [* 

allow_multiple_variable_mods_on_res
idue 

Allow each amino acid to be modified by multiple variable 
modifications (0 or 1) 
 
Default: 1 

max_variable_mods_per_mod Maximum number of residues that can be occupied by each variable 
modification (maximum of 5). 
 
Default: 2 

max_variable_mods_combinations Maximum allowed number of modified variably modified peptides from 
each peptide sequence, (maximum of 65534).  If a greater number than 
the maximum is generated, only the unmodified peptide is considered. 
 
Default: 5000 

 
Spectrum Processing Parameters 
 

minimum_peaks Minimum number of peaks in experimental spectrum for matching 
 
Default: 10 

use_topN_peaks Pre-process experimental spectrum to only use top N peaks 
 
Default: 50 

minimum_ratio Filters out all peaks in experimental spectrum less intense than this 
multiple of the base peak intensity 
 
Default: 0.0 
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clear_mz_range Removes peaks in this m/z range prior to matching.  Useful for 
iTRAQ/TMT experiments (i.e. 0.0 150.0). 
 
Default: 0.0 0.0  

max_fragment_charge Maximum charge state for theoretical fragments to match (1-4). 
 
Default: 2 

override_charge Ignores precursor charge and uses charge state specified in  
precursor_charge range (0 or 1) 
 
Default: 0 

precursor_charge Assume range of potential precursor charge states.  Only relevant when 
override_charge is set to 1.  Specified as space separated range of 
integers. 
 
Default: 1 4 

 
Open Search Features 
 

track_zero_topN Track top N unmodified peptide results separately from main results 
internally for boosting features.  Should be set to a number greater than 
output_report_topN if zero bin boosting is desired. 
 
Default: 0 

zero_bin_accept_expect Ranks a zero-bin hit above all non-zero-bin hit if it has expectation less 
than this value. 
 
Default: 0.0 

zero_bin_mult_expect Multiplies expect value of PSMs in the zero-bin during results 
ordering (set to less than 1 for boosting). 
 
Default: 1.0 

add_topN_complementary Inserts complementary ions corresponding to the top N most intense 
fragments in each experimental spectra.  Useful for recovery of 
modified peptides near C-terminal in open search.  Should be set to 0 
(disabled) otherwise. 
 
Default: 0 

 
Modeling and Output Parameters 
 

min_fragments_modelling Minimum number of matched peaks in PSM for inclusion in statistical 
modeling 
 
Default: 3 
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min_matched_fragments Minimum number of matched peaks for PSM to be reported.  We 
recommend a minimum of 4 for narrow window searching and 6 for 
open searches. 
 
Default: 4 

output_file_extension File extension of output files 
 
Default: pep.xml 

output_format File format of output files (pepXML or tsv) 
 
Default: pepXML 

output_report_topN Reports top N PSMs per input spectrum 
 
Default: 1 

output_max_expect Suppresses reporting of PSM if top hit has expectation greater than 
this threshold  
 
Default: 50.0 

 
Static Modification Parameters 
 

add_Cterm_peptide Statically add mass in Da to C-terminal of peptide 
 
Default: 0.0 

add_Nterm_peptide Statically add mass in Da to N-terminal of peptide 
 
Default: 0.0 

add_Cterm_protein Statically add mass in Da to C-terminal of protein 
 
Default: 0.0 

add_Nterm_protein Statically add mass in Da to N-terminal of protein 
 
Default: 0.0 

add_C_cysteine 
... 
add_X_usertext 

Statically add mass to cysteine (or whatever amino acid is specified 
after ‘add_’). 
 
Examples: 
add_C_cysteine = 57.021464  
add_K_lysine = 144.1021 
 
Default: 0.0 
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Running MSFragger 
 
Performance Considerations for Batch Processing 
 
MSFragger allows multiple MS/MS input files to be processed in a batch.  Passing multiple files 
to MSFragger at once allows MSFragger to reuse the fragment index for subsequent MS/MS run.  
This is particularly important for narrow window searches which may only take fractions of a 
second. 
 
On computers or compute clusters with many processor cores, we highly recommended that 
MSFragger is set to process files sequentially with all available processor cores rather than 
running multiple instances of MSFragger in parallel (assigning a smaller number of cores to 
each).  This reduces initialization times and allows the fragment index to be re-used, at the same 
time reducing overall memory requirements. 
 
Launching MSFragger 
 
Ensure that you have placed MSFragger.jar in your working directory and have modified the 
parameters file to reference your protein database.  MSFragger generates auxiliary files during 
database search so it is critical that MSFragger must have write access to the directories 
containing the protein database AND the MS/MS data files. 
 
Determine the amount of system memory available that you would like to make available to 
MSFragger.  This will be specified by the Java maximum heap size parameter -Xmx (e.g. -
Xmx3700M for 3700 MB or -Xmx8G for 8GB).   
 
MSFragger takes the first argument as the input parameters file, followed by a list of one or more 
MS/MS data files. 
 
Examples:  
java -Xmx8G -jar MSFragger.jar fragger.params HeLa_run1.mzML HeLa_run2.mzML 
java -Xmx8G -jar MSFragger.jar fragger.params *.mzML 
 
The -Xmx flag is very important to ensure that MSFragger has access to sufficient memory to 
efficiently perform the search as the default max heap setting in Java is ¼ of total system 
memory (which is insufficient for optimal performance).  We recommend that you can allocate a 
minimum of 4G or 6G for standard tryptic digestions. 
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Expected Behavior 
 
The first time running MSFragger on a new protein database or set of search parameters with a 
given database, it will first perform an in-silico digestion, create, and cache the peptide index (in 
.pepindex files adjacent to where the FASTA database is stored).  These pepindex files can be 
safely removed at any time and should be removed to free up disk space when a set of search 
parameters is no longer used (MSFragger will automatically re-generate the index as needed). 
 
The process begins with filtering and in-silico digestion subject to the digestion parameters. 
 

 
Figure D-1 In-silico digestion in MSFragger.  

 
Followed by peptide sorting and de-duplication.  The non-redundant set of peptides are then 
evaluated to generate the set of variably modified peptides (based on the specified variable 
modifications) which are then sorted by mass and stored. 
 

 
Figure D-2 Peptide index generation in MSFragger.  

 
After peptide index generation is complete (or is read from disk in the below screenshot).  
MSFragger selects the fragment index bin width to use and estimates the memory available for 
fragment index storage based on the available memory (in this case, 8GB of memory was made 
available to the Java Virtual Machine, of which MSFragger estimates that 4976.67MB can be 
safely reserved for fragment index operations).  It then computes the number of theoretical 
fragments to be generated for the entire index, the number of slices or iterations (in multi-pass 
searches when there is insufficient memory), and the total amount of memory represented by the 
entire fragment index.  The fragment index is then generated, and a time is reported for the index 
generation time (at the end of each Operating on slice 1 of X: line, 4770 ms below).  If the 
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maximum fragment slice size is very small compared to your desired amount of system memory 
or the number of slices is unexpectedly high, double check that the -Xmx flag is correctly set. 
Search begins and the current file is reported, along with the time needed to read and pre-process 
the MS/MS data, along with current search progress. 

 
Figure D-3 Fragment index searching in MSFragger.  

 
At the completion of the search, a completed time is reported, and the results are written to disk 
in the same folder as the MS/MS data (if they are not in the same folder as your working 
directory).  Note that there is a current bug that causes MSFragger to incorrectly display the 
average rate of matching at the conclusion of the run (although the total time can be divided by 
the total number of spectra to calculate this value). 
 

 
Figure D-4 MSFragger searching in batch mode.  

 
Output Files 
 
Table D-2 Listing of MSFragger output files. 

 

.fragtmp In cases of fragment index fragmentation (in limited memory scenarios), MSFragger will 
iteratively load each MS/MS run and search loaded spectra against the current index slice 
before working on the next index slice.  The partial search results are then stored in these 
.fragtmp files.  In the event that MSFragger is terminated in the middle of a search, it will 
recover its partial results using these files. At the end of the last index slice, MSFragger 
will read all such .fragtmp files and generate an aggregated results file (identical to one 
that would be generated if it had the memory to search against all peptides in a single 
pass).  These .fragtmp files are then automatically deleted.  These can be safely removed if 
you no longer wish to continue an aborted search or if MSFragger somehow fails to 
remove them at the conclusion of a successful search. 
 
Location: Same directory as MS/MS files 

.pepindex  MSFragger stores the computed peptide index in .pepindex files adjacent to the protein 
database files to remove the need to re-compute the index if search parameters are 
unchanged in subsequent runs.  These .pepindex indices can be safely removed and 
MSFragger will re-compute the index again at runtime if needed. 
 
Location: Same directory as protein database 
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Results Files 
(eg. .pep.xml) 

These are the pepXML or TSV output files containing the peptide identifications.  The file 
extension is specified in the search parameters so specifying a .pep.xml extension with 
output_format = tsv will output .pep.xml files with TSV content. 
 
Location: Same directory as MS/MS files 

 
Interpretation of Output 
 
For pepXML outputs, these can be used for downstream processing using PeptideProphet in TPP 
directly.  For viewing of results or conversion to other peptide identification result formats for 
use in other pipelines or tools that do not support pepXML, we recommend first converting to 
the mzIdentML format using the tool idconvert as part of the ProteoWizard package.  The 
pepXML generated by MSFragger validates against v 1.18 of the pepXML schema and should 
be compatible with any downstream tools supporting the pepXML format. 
 
The output fields of the TSV file produced by MSFragger are listed below: 

ScanID 
Precursor neutral mass (Da) 
Retention time (minutes) 
Precursor charge 
Hit rank 
Peptide Sequence 
Upstream Amino Acid 
Downstream Amino Acid 
Protein 
Matched fragment ions 
Total possible number of matched theoretical fragment ions 
Neutral mass of peptide (including any variable modifications) (Da) 
Mass difference 
Number of tryptic termini 
Number of missed cleavages 
Variable modifications detected  

(starts with M, separated by |, formated as position,mass) 
Hyperscore 
Next score 
Intercept of expectation model (expectation in log space) 
Slope of expectation model (expectation in log space)



  

127 
 

REFERENCES 

[1] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. 
Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, 
L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J.P. Mesirov, C. 
Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. 
Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. 
Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. 
Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. 
Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. 
Matthews, S. Mercer, S. Milne, J.C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. 
Shownkeen, S. Sims, R.H. Waterston, R.K. Wilson, L.W. Hillier, J.D. McPherson, M.A. 
Marra, E.R. Mardis, L.A. Fulton, A.T. Chinwalla, K.H. Pepin, W.R. Gish, S.L. Chissoe, 
M.C. Wendl, K.D. Delehaunty, T.L. Miner, A. Delehaunty, J.B. Kramer, L.L. Cook, R.S. 
Fulton, D.L. Johnson, P.J. Minx, S.W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. 
Richardson, S. Wenning, T. Slezak, N. Doggett, J.F. Cheng, A. Olsen, S. Lucas, C. Elkin, 
E. Uberbacher, M. Frazier, R.A. Gibbs, D.M. Muzny, S.E. Scherer, J.B. Bouck, E.J. 
Sodergren, K.C. Worley, C.M. Rives, J.H. Gorrell, M.L. Metzker, S.L. Naylor, R.S. 
Kucherlapati, D.L. Nelson, G.M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. 
Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. 
Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. 
Robert, P. Wincker, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H.M. 
Yang, J. Yu, J. Wang, G.Y. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S.Z. Qin, R.W. 
Davis, N.A. Federspiel, A.P. Abola, M.J. Proctor, R.M. Myers, J. Schmutz, M. Dickson, J. 
Grimwood, D.R. Cox, M. V Olson, R. Kaul, N. Shimizu, K. Kawasaki, S. Minoshima, 
G.A. Evans, M. Athanasiou, R. Schultz, B.A. Roe, F. Chen, H.Q. Pan, J. Ramser, H. 
Lehrach, R. Reinhardt, W.R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. 
Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J.A. Bailey, A. Bateman, S. 
Batzoglou, E. Birney, P. Bork, D.G. Brown, C.B. Burge, L. Cerutti, H.C. Chen, D. 
Church, M. Clamp, R.R. Copley, T. Doerks, S.R. Eddy, E.E. Eichler, T.S. Furey, J. 
Galagan, J.G.R. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. 
Hokamp, W.H. Jang, L.S. Johnson, T.A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W.J. 
Kent, P. Kitts, E. V Koonin, I. Korf, D. Kulp, D. Lancet, T.M. Lowe, A. McLysaght, T. 
Mikkelsen, J. V Moran, N. Mulder, V.J. Pollara, C.P. Ponting, G. Schuler, J.R. Schultz, G. 
Slater, A.F.A. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg, L. 
Wagner, J. Wallis, R. Wheeler, A. Williams, Y.I. Wolf, K.H. Wolfe, S.P. Yang, R.F. Yeh, 
F. Collins, M.S. Guyer, J. Peterson, A. Felsenfeld, K.A. Wetterstrand, A. Patrinos, M.J. 
Morgan, Initial sequencing and analysis of the human genome, Nat. 409 (2001) 860–921. 
doi:10.1038/35057062. 

[2] J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith, M. 



128 
 

Yandell, C.A. Evans, R.A. Holt, J.D. Gocayne, P. Amanatides, R.M. Ballew, D.H. Huson, 
J.R. Wortman, Q. Zhang, C.D. Kodira, X.H. Zheng, L. Chen, M. Skupski, G. 
Subramanian, P.D. Thomas, J. Zhang, G.L. Gabor Miklos, C. Nelson, S. Broder, A.G. 
Clark, J. Nadeau, V.A. McKusick, N. Zinder, A.J. Levine, R.J. Roberts, M. Simon, C. 
Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. 
Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. 
Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, 
I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, F. Di V, P. Dunn, K. 
Eilbeck, C. Evangelista, A.E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T.J. 
Heiman, M.E. Higgins, R.R. Ji, Z. Ke, K.A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. 
Liang, X. Lin, F. Lu, G. V Merkulov, N. Milshina, H.M. Moore, A.K. Naik, V.A. 
Narayan, B. Neelam, D. Nusskern, D.B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. 
Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, 
M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao, 
D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, 
A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. 
Carver, A. Center, M.L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, 
K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. 
Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, 
F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. 
McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. 
Qureshi, M. Reardon, R. Rodriguez, Y.H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. 
Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N.N. Tint, S. Tse, C. 
Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. 
Wolfe, J. Zaveri, K. Zaveri, J.F. Abril, R. Guigo, M.J. Campbell, K. V Sjolander, B. 
Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. 
Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. 
Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. 
Caulk, Y.H. Chiang, M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely, 
S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. 
Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, 
J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, 
W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, 
The sequence of the human genome, Sci. (Washingt. D C). 291 (2001) 1304–1351. 
doi:10.1126/science.1058040. 

[3] M.-S. Kim, S. Pinto, D. Getnet, R. Nirujogi, S. Manda, R. Chaerkady, A. Madugundu, D. 
Kelkar, R. Isserlin, S. Jain, J. Thomas, B. Muthusamy, L.-R. Pamela, P. Kumar, N. 
Sahasrabuddhe, L. Balakrishnan, J. Advani, B. George, S. Renuse, L. Selvan, A. Patil, V. 
Nanjappa, A. Radhakrishnan, S. Prasad, T. Subbannayya, R. Raju, M. Kumar, S. 
Sreenivasamurthy, A. Marimuthu, G. Sathe, S. Chavan, K. Datta, Y. Subbannayya, A. 
Sahu, S. Yelamanchi, S. Jayaram, P. Rajagopalan, J. Sharma, K. Murthy, N. Syed, R. 
Goel, A. Khan, S. Ahmad, G. Dey, K. Mudgal, A. Chatterjee, T.-C. Huang, J. Zhong, X. 
Wu, P. Shaw, D. Freed, M. Zahari, K. Mukherjee, S. Shankar, A. Mahadevan, H. Lam, C. 
Mitchell, S. Shankar, P. Satishchandra, J. Schroeder, R. Sirdeshmukh, A. Maitra, S. 
Leach, C. Drake, M. Halushka, T. Prasad, R. Hruban, C. Kerr, G. Bader, I.-D. Christine, 
H. Gowda, A. Pandey, A draft map of the human proteome, Nature. 509 (2014) 575–581. 



129 
 

doi:10.1038/nature13302. 

[4] M. Wilhelm, J. Schlegl, H. Hahne, A. Moghaddas Gholami, M. Lieberenz, M.M. Savitski, 
E. Ziegler, L. Butzmann, S. Gessulat, H. Marx, T. Mathieson, S. Lemeer, K. Schnatbaum, 
U. Reimer, H. Wenschuh, M. Mollenhauer, J. Slotta-Huspenina, J.-H. Boese, M. 
Bantscheff, A. Gerstmair, F. Faerber, B. Kuster, Mass-spectrometry-based draft of the 
human proteome., Nature. 509 (2014) 582–7. doi:10.1038/nature13319. 

[5] G.S. Omenn, L. Lane, E.K. Lundberg, R.C. Beavis, A.I. Nesvizhskii, E.W. Deutsch, 
Metrics for the human proteome project 2015: Progress on the human proteome and 
guidelines for high-confidence protein identification, J. Proteome Res. 14 (2015) 3452–
3460. doi:10.1021/acs.jproteome.5b00499. 

[6] I. Ezkurdia, J. V??zquez, A. Valencia, M. Tress, Analyzing the first drafts of the human 
proteome, J. Proteome Res. 13 (2014) 3854–3855. doi:10.1021/pr500572z. 

[7] A.I. Nesvizhskii, Proteogenomics: concepts, applications and computational strategies, 
Nat. Methods. 11 (2014) 1114–1125. doi:10.1038/nmeth.3144. 

[8] M.M. Savitski, M. WIlhelm, H. Hahne, B. Kuster, M. Bantscheff, A scalable approach for 
protein false discovery rate estimation in large proteomic data sets, Mol. Cell. Proteomics. 
14 (2015) mcp.M114.046995. doi:10.1074/mcp.M114.046995. 

[9] S.D. Patterson, R.H. Aebersold, Proteomics: the first decade and beyond., Nat. Genet. 33 
Suppl (2003) 311–23. doi:10.1038/ng1106. 

[10] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger, M.J. 
Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, M. Schneider, The SWISS-PROT 
protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res. 31 
(2003) 365–370. doi:10.1093/nar/gkg095. 

[11] T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff, V. 
Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki, A. 
Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, R. Pettett, M. Pocock, S. 
Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith, W. Spooner, A. Stabenau, J. 
Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik, M. Clamp, The Ensembl genome database 
project, Nucleic Acids Res. 30 (2002) 38–41. doi:10.1093/NAR/30.1.38. 

[12] X. Wang, B. Zhang, J. Wren, CustomProDB: An R package to generate customized 
protein databases from RNA-Seq data for proteomics search, Bioinformatics. 29 (2013) 
3235–3237. doi:10.1093/bioinformatics/btt543. 

[13] B. Zhang, J. Wang, X. Wang, J. Zhu, Q. Liu, Z. Shi, M.C. Chambers, L.J. Zimmerman, 
K.F. Shaddox, S. Kim, S.R. Davies, S. Wang, P. Wang, C.R. Kinsinger, R.C. Rivers, H. 
Rodriguez, R.R. Townsend, M.J.C. Ellis, S.A. Carr, D.L. Tabb, R.J. Coffey, R.J.C. 
Slebos, D.C. Liebler, Proteogenomic characterization of human colon and rectal cancer., 
Nature. 513 (2014) 382–7. doi:10.1038/nature13438. 

[14] B. Bánfai, H. Jia, J. Khatun, E. Wood, B. Risk, W.E. Gundling, A. Kundaje, H.P. 



130 
 

Gunawardena, Y. Yu, L. Xie, K. Krajewski, B.D. Strahl, X. Chen, P. Bickel, M.C. 
Giddings, J.B. Brown, L. Lipovich, Long noncoding RNAs are rarely translated in two 
human cell lines, Genome Res. 22 (2012) 1646–1657. doi:10.1101/gr.134767.111. 

[15] Y.-K. Paik, S.-K. Jeong, G.S. Omenn, M. Uhlen, S. Hanash, S.Y. Cho, H.-J. Lee, K. Na, 
E.-Y. Choi, F. Yan, F. Zhang, Y. Zhang, M. Snyder, Y. Cheng, R. Chen, G. Marko-Varga, 
E.W. Deutsch, H. Kim, J.-Y. Kwon, R. Aebersold, A. Bairoch, A.D. Taylor, K.Y. Kim, 
E.-Y. Lee, D. Hochstrasser, P. Legrain, W.S. Hancock, The Chromosome-Centric Human 
Proteome Project for cataloging proteins encoded in the genome, Nat. Biotechnol. 30 
(2012) 221–223. doi:10.1038/nbt.2152. 

[16] M. Mann, O.N. Jensen, Proteomic analysis of post-translational modifications., Nat. 
Biotechnol. 21 (2003) 255–61. doi:10.1038/nbt0303-255. 

[17] J.R. Yates, The Revolution and Evolution of Shotgun Proteomics for Large-Scale 
Proteome Analysis The Revolution and Evolution of Shotgun Proteomics for Large-Scale 
Proteome Analysis, J. Am. Chem. Soc. 135 (2013) 1629–1640. 

[18] D. Arnott, J. Shabanowitz, D.F. Hunt, Mass spectrometry of proteins and peptides: 
Sensitive and accurate mass measurement and sequence analysis, Clin. Chem. 39 (1993) 
2005–2010. 

[19] D.C. Stahl, K.M. Swiderek, M.T. Davis, T.D. Lee, Data-Controlled Automation of Liquid 
Chromatography / Tandem Mass Spectrometry Analysis of Peptide Mixtures, Am. Soc. 
Mass Spectrom. 7 (1996) 532–540. doi:10.1016/1044-0305(96)00057-8. 

[20] A.I. Nesvizhskii, A survey of computational methods and error rate estimation procedures 
for peptide and protein identification in shotgun proteomics, J. Proteomics. 73 (2010) 
2092–2123. doi:10.1016/j.jprot.2010.08.009. 

[21] C. Spahr, M. Davis, M.D. McGinley, J.H. Robinson, E.J. Bures, J. Beierle, J. Mort, P.L. 
Courchesne, K. Chen, R.C. Wahl, W. Yu, R. Luethy, S.D. Patterson, Towards defining the 
urinary proteome using liquid chromatography-tandem mass spectrometry I. Profiling an 
unfractionated tryptic digest, Proteomics. 1 (2001) 93–107. doi:10.1002/1615-
9861(200101)1:1<93::AID-PROT93>3.0.CO;2-3. 

[22] T. Geiger, A. Wehner, C. Schaab, J. Cox, M. Mann, Comparative Proteomic Analysis of 
Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins, 
Mol. Cell. Proteomics. 11 (2012) M111.014050-M111.014050. 
doi:10.1074/mcp.M111.014050. 

[23] N.A. Kulak, P.E. Geyer, M. Mann, Loss-less nano-fractionator for high sensitivity , high 
coverage proteomics, (2017) 1–24. doi:10.1074/mcp.O116.065136. 

[24] A.S. Hebert, A.L. Richards, D.J. Bailey, A. Ulbrich, E.E. Coughlin, M.S. Westphall, J.J. 
Coon, The One Hour Yeast Proteome, Mol. Cell. Proteomics. 13 (2014) 339–347. 
doi:10.1074/mcp.M113.034769. 

[25] L.M.F. de Godoy, J. V Olsen, J. Cox, M.L. Nielsen, N.C. Hubner, F. Fröhlich, T.C. 



131 
 

Walther, M. Mann, Comprehensive mass-spectrometry-based proteome quantification of 
haploid versus diploid yeast., Nature. 455 (2008) 1251–1254. doi:10.1038/nature07341. 

[26] G.L. Andrews, B.L. Simons, J.B. Young, A.M. Hawkridge, D.C. Muddiman, Performance 
characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer 
(TripleTOF 5600), Anal Chem. 83 (2011) 5442–5446. doi:10.1021/ac200812d. 

[27] A. Michalski, E. Damoc, J.-P. Hauschild, O. Lange, A. Wieghaus, A. Makarov, N. 
Nagaraj, J. Cox, M. Mann, S. Horning, Mass Spectrometry-based Proteomics Using Q 
Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer., Mol. 
Cell. Proteomics. 10 (2011) M111.011015. doi:10.1074/mcp.M111.011015. 

[28] P. Jones, R.G. Côté, L. Martens, A.F. Quinn, C.F. Taylor, W. Derache, H. Hermjakob, R. 
Apweiler, PRIDE: a public repository of protein and peptide identifications for the 
proteomics community., Nucleic Acids Res. 34 (2006) D659-63. doi:10.1093/nar/gkj138. 

[29] J. V Olsen, J. Schwartz, J. Griep-Raming, M.L. Nielsen, E. Damoc, E. Denisov, O. Lange, 
P. Remes, D. Taylor, M. Splendore, E.R. Wouters, M. Senko, A. Makarov, M. Mann, S. 
Horning, A dual pressure linear ion trap Orbitrap instrument with very high sequencing 
speed., Mol. Cell. Proteomics. 8 (2009) 2759–2769. doi:10.1074/mcp.M900375-MCP200. 

[30] M. Scigelova, A. Makarov, Orbitrap mass analyzer - Overview and applications in 
proteomics, Proteomics. 1 (2006) 16–21. doi:10.1002/pmic.200600528. 

[31]  a. Michalski, E. Damoc, O. Lange, E. Denisov, D. Nolting, M. Muller, R. Viner, J. 
Schwartz, P. Remes, M. Belford, J.-J. Dunyach, J. Cox, S. Horning, M. Mann,  a. 
Makarov, Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap 
Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes, 
Mol. Cell. Proteomics. 11 (2012) O111.013698-O111.013698. 
doi:10.1074/mcp.O111.013698. 

[32] Z. Zhang, Prediction of Low-Energy Collision-Induced Dissociation Spectra of Peptides 
with Three or More Charges, Anal. Chem. 77 (2005) 6364–6373. doi:10.1021/ac050857k. 

[33] J.K. Eng, A.L. Mccormack, J.R. Yates, An Approach to Correlate Tandem Mass Spectral 
Data of Peptides with Amino Acid Sequences in a Protein Database, Am. Soc. Mass 
Spectrom. 5 (1994) 976–989. doi:10.1016/1044-0305(94)80016-2. 

[34] J.K. Eng, T.A. Jahan, M.R. Hoopmann, Comet: An open-source MS/MS sequence 
database search tool, Proteomics. 13 (2013) 22–24. doi:10.1002/pmic.201200439. 

[35] D. Creasy, Perkins DN , Pappin DJ , Creasy DM , Cottrell JS .. Probability-based protein 
identification by searching sequence databases using mass spectrometry data . 
Electrophoresis 20 : 3551-, Electrophoresis. 20 (1999) 3551–3567. 
doi:10.1002/(SICI)1522-2683(19991201)20. 

[36] R. Craig, R.C. Beavis, TANDEM: Matching proteins with tandem mass spectra, 
Bioinformatics. 20 (2004) 1466–1467. doi:10.1093/bioinformatics/bth092. 

[37] J. Cox, N. Neuhauser, A. Michalski, R.A. Scheltema, J. V. Olsen, M. Mann, Andromeda: 



132 
 

A peptide search engine integrated into the MaxQuant environment, J. Proteome Res. 10 
(2011) 1794–1805. doi:10.1021/pr101065j. 

[38] S. Kim, P.A. Pevzner, MS-GF+ makes progress towards a universal database search tool 
for proteomics, Nat. Commun. 5 (2014) 5277. doi:10.1038/ncomms6277. 

[39] H. Lam, E.W. Deutsch, J.S. Eddes, J.K. Eng, N. King, S.E. Stein, R. Aebersold, 
Development and validation of a spectral library searching method for peptide 
identification from MS/MS, Proteomics. 7 (2007) 655–667. doi:10.1002/pmic.200600625. 

[40] S. Tanner, H. Shu, A. Frank, L.C. Wang, E. Zandi, M. Mumby, P.A. Pevzner, V. Bafna, 
InsPecT: Identification of posttranslationally modified peptides from tandem mass spectra, 
Anal. Chem. 77 (2005) 4626–4639. doi:10.1021/ac050102d. 

[41] S. Na, N. Bandeira, E. Paek, Fast Multi-blind Modification Search through Tandem Mass 
Spectrometry, Mol. Cell. Proteomics. 11 (2012) M111.010199-M111.010199. 
doi:10.1074/mcp.M111.010199. 

[42] A. Frank, P. Pevzner, PepNovo: De novo peptide sequencing via probabilistic network 
modeling, Anal. Chem. 77 (2005) 964–973. doi:10.1021/ac048788h. 

[43] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, G. Lajoie, PEAKS: 
powerful software for peptide de novo sequencing by tandem mass spectrometry., Rapid 
Commun. Mass Spectrom. 17 (2003) 2337–2342. doi:10.1002/rcm.1196. 

[44] X. Han, L. He, L. Xin, B. Shan, B. Ma, PeaksPTM: Mass spectrometry-based 
identification of peptides with unspecified modifications, J. Proteome Res. 10 (2011) 
2930–2936. doi:10.1021/pr200153k. 

[45] J. Zhang, L. Xin, B. Shan, W. Chen, M. Xie, D. Yuen, W. Zhang, Z. Zhang, G. a. Lajoie, 
B. Ma, PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and 
Accurate Peptide Identification, Mol. Cell. Proteomics. 11 (2012) M111.010587-
M111.010587. doi:10.1074/mcp.M111.010587. 

[46] B. Ma, Novor: Real-Time Peptide de Novo Sequencing Software, J. Am. Soc. Mass 
Spectrom. 26 (2015) 1885–1894. doi:10.1007/s13361-015-1204-0. 

[47] U. Keich, W.S. Noble, On the importance of well-calibrated scores for identifying shotgun 
proteomics spectra, J. Proteome Res. 14 (2015) 1147–1160. doi:10.1021/pr5010983. 

[48] A. Keller, A.I. Nesvizhskii, E. Kolker, R. Aebersold, Empirical statistical model to 
estimate the accuracy of peptide identifications made by MS/MS and database search, 
Anal. Chem. 74 (2002) 5383–5392. doi:10.1021/ac025747h. 

[49] A.I. Nesvizhskii, A. Keller, E. Kolker, R. Aebersold, A statistical model for identifying 
proteins by tandem mass spectrometry, Anal. Chem. 75 (2003) 4646–4658. 
doi:10.1021/ac0341261. 

[50] J.E. Elias, S.P. Gygi, Target-decoy search strategy for increased confidence in large-scale 
protein identifications by mass spectrometry, Nat. Methods. 4 (2007) 207–214. 



133 
 

doi:10.1038/nmeth1019. 

[51] R.E. Moore, M.K. Young, T.D. Lee, Qscore: An algorithm for evaluating SEQUEST 
database search results, J. Am. Soc. Mass Spectrom. 13 (2002) 378–386. 
doi:10.1016/S1044-0305(02)00352-5. 

[52] H. Choi, A.I. Nesvizhskii, Semisupervised model-based validation of peptide 
identifications in mass spectrometry-based proteomics, J. Proteome Res. 7 (2008) 254–
265. doi:10.1021/pr070542g. 

[53] L. Käll, J.D. Canterbury, J. Weston, W.S. Noble, M.J. MacCoss, Semi-supervised learning 
for peptide identification from shotgun proteomics datasets., Nat. Methods. 4 (2007) 923–
925. doi:10.1038/nmeth1113. 

[54] L. Reiter, M. Claassen, S.P. Schrimpf, M. Jovanovic, A. Schmidt, J.M. Buhmann, M.O. 
Hengartner, R. Aebersold, Protein Identification False Discovery Rates for Very Large 
Proteomics Data Sets Generated by Tandem Mass Spectrometry, Mol. Cell. Proteomics. 8 
(2009) 2405–2417. doi:10.1074/mcp.M900317-MCP200. 

[55] A.K. Shanmugam, A.K. Yocum, A.I. Nesvizhskii, Utility of RNA-seq and GPMDB 
protein observation frequency for improving the sensitivity of protein identification by 
tandem MS, J. Proteome Res. 13 (2014) 4113–4119. doi:10.1021/pr500496p. 

[56] A.K. Shanmugam, A.I. Nesvizhskii, Effective Leveraging of Targeted Search Spaces for 
Improving Peptide Identification in Tandem Mass Spectrometry Based Proteomics, J. 
Proteome Res. 14 (2015) 5169–5178. doi:10.1021/acs.jproteome.5b00504. 

[57] K. Ning, A.I. Nesvizhskii, The utility of mass spectrometry-based proteomic data for 
validation of novel alternative splice forms reconstructed from RNA-Seq data: a 
preliminary assessment., BMC Bioinformatics. 11 Suppl 1 (2010) S14. doi:10.1186/1471-
2105-11-S11-S14. 

[58] S. Woo, S.W. Cha, S. Na, C. Guest, T. Liu, R.D. Smith, K.D. Rodland, S. Payne, V. 
Bafna, Proteogenomic strategies for identification of aberrant cancer peptides using large-
scale next-generation sequencing data, Proteomics. 14 (2014) 2719–2730. 
doi:10.1002/pmic.201400206. 

[59] K. Zhang, Y. Fu, W.F. Zeng, K. He, H. Chi, C. Liu, Y.C. Li, Y. Gao, P. Xu, S.M. He, A 
note on the false discovery rate of novel peptides in proteogenomics, Bioinformatics. 31 
(2015) 3249–3253. doi:10.1093/bioinformatics/btv340. 

[60] R.M.M. Branca, L.M. Orre, H.J. Johansson, V. Granholm, M. Huss, Å. Pérez-Bercoff, J. 
Forshed, L. Käll, J. Lehtiö, HiRIEF LC-MS enables deep proteome coverage and unbiased 
proteogenomics, Nat. Methods. 11 (2014) 59–62. doi:10.1038/nmeth.2732. 

[61] P. Abraham, R.M. Adams, G.A. Tuskan, R.L. Hettich, Moving away from the reference 
genome: Evaluating a peptide sequencing tagging approach for single amino acid 
polymorphism identifications in the genus populus, J. Proteome Res. 12 (2013) 3642–
3651. doi:10.1021/pr400192r. 



134 
 

[62] A.T. Kong, F. V Leprevost, D.M. Avtonomov, D. Mellacheruvu, A.I. Nesvizhskii, 
MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–
based proteomics, Nat. Publ. Gr. 293 (2017). doi:10.1038/nmeth.4256. 

[63] Y. Chen, J. Zhang, G. Xing, Y. Zhao, Mascot-derived false positive peptide identifications 
revealed by manual analysis of tandem mass spectra, J. Proteome Res. 8 (2009) 3141–
3147. doi:10.1021/pr900172v. 

[64] S.M. Stevens, K. Prokai-Tatrai, L. Prokai, Factors that contribute to the misidentification 
of tyrosine nitration by shotgun proteomics., Mol. Cell. Proteomics. 7 (2008) 2442–2451. 
doi:10.1074/mcp.M800065-MCP200. 

[65] J.M. Chick, D. Kolippakkam, D.P. Nusinow, B. Zhai, R. Rad, E.L. Huttlin, S.P. Gygi, A 
mass-tolerant database search identifies a large proportion of unassigned spectra in 
shotgun proteomics as modified peptides, Nat Biotech. 33 (2015) 743–749. 
doi:10.1038/nbt.3267\rhttp://www.nature.com/nbt/journal/v33/n7/abs/nbt.3267.html#supp
lementary-information. 

[66] R.T. Lawrence, E.M. Perez, D. Hernández, C.P. Miller, K.M. Haas, H.Y. Irie, S.I. Lee, 
A.C. Blau, J. Villén, The Proteomic Landscape of Triple-Negative Breast Cancer, Cell 
Rep. 11 (2015) 630–644. doi:10.1016/j.celrep.2015.03.050. 

[67] E.W. Deutsch, L. Mendoza, D. Shteynberg, T. Farrah, H. Lam, N. Tasman, Z. Sun, E. 
Nilsson, B. Pratt, B. Prazen, J.K. Eng, D.B. Martin, A.I. Nesvizhskii, R. Aebersold, A 
guided tour of the Trans-Proteomic Pipeline, Proteomics. 10 (2010) 1150–1159. 
doi:10.1002/pmic.200900375. 

[68] R. Craig, J.P. Cortens, R.C. Beavis, Open source system for analyzing, validating, and 
storing protein identification data, J. Proteome Res. 3 (2004) 1234–1242. 
doi:10.1021/pr049882h. 

[69] D. Shteynberg, E.W. Deutsch, H. Lam, J.K. Eng, Z. Sun, N. Tasman, L. Mendoza, R.L. 
Moritz, R. Aebersold,  a. I. Nesvizhskii, iProphet: Multi-level Integrative Analysis of 
Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error 
Estimates, Mol. Cell. Proteomics. 10 (2011) M111.007690-M111.007690. 
doi:10.1074/mcp.M111.007690. 

[70] D. Shteynberg, A.I. Nesvizhskii, R.L. Moritz, E.W. Deutsch, Combining Results of 
Multiple Search Engines in Proteomics, Mol. Cell. Proteomics. 12 (2013) 2383–2393. 
doi:10.1074/mcp.R113.027797. 

[71] M. Yadav, S. Jhunjhunwala, Q.T. Phung, P. Lupardus, J. Tanguay, S. Bumbaca, C. Franci, 
T.K. Cheung, J. Fritsche, T. Weinschenk, Z. Modrusan, I. Mellman, J.R. Lill, L. 
Delamarre, Predicting immunogenic tumour mutations by combining mass spectrometry 
and exome sequencing., Nature. 515 (2014) 572–6. doi:10.1038/nature14001. 

[72] J. Liepe, F. Marino, J. Sidney, A. Jeko, D.E. Bunting, A. Sette, P.M. Kloetzel, M.P.H. 
Stumpf, A.J.R. Heck, M. Mishto, A large fraction of HLA class I ligands are proteasome-
generated spliced peptides, Science (80-. ). 354 (2016) 605–610. 



135 
 

doi:10.1126/science.aaf4384. 

[73] M.M. Savitski, ModifiComb, a New Proteomic Tool for Mapping Substoichiometric Post-
translational Modifications, Finding Novel Types of Modifications, and Fingerprinting 
Complex Protein Mixtures, Mol. Cell. Proteomics. 5 (2006) 935–948. 
doi:10.1074/mcp.T500034-MCP200. 

[74] E. Ahrné, F. Nikitin, F. Lisacek, M. Müller, QuickMod: A tool for open modification 
spectrum library searches, J. Proteome Res. 10 (2011) 2913–2921. 
doi:10.1021/pr200152g. 

[75] C.W.M. Ma, H. Lam, Hunting for unexpected post-translational modifications by spectral 
library searching with tier-wise scoring, J. Proteome Res. 13 (2014) 2262–2271. 
doi:10.1021/pr401006g. 

[76] A.I. Nesvizhskii, Dynamic Spectrum Quality Assessment and Iterative Computational 
Analysis of Shotgun Proteomic Data: Toward More Efficient Identification of Post-
translational Modifications, Sequence Polymorphisms, and Novel Peptides, Mol. Cell. 
Proteomics. 5 (2005) 652–670. doi:10.1074/mcp.M500319-MCP200. 

[77] B. Bogdanow, H. Zauber, M. Selbach, Systematic Errors in Peptide and Protein 
Identification and Quantification by Modified Peptides., Mol. Cell. Proteomics. 15 (2016) 
2791–801. doi:10.1074/mcp.M115.055103. 

[78] D.P. Zolg, M. Wilhelm, K. Schnatbaum, J. Zerweck, T. Knaute, B. Delanghe, D.J. Bailey, 
S. Gessulat, H.-C. Ehrlich, M. Weininger, P. Yu, J. Schlegl, K. Kramer, T. Schmidt, U. 
Kusebauch, E.W. Deutsch, R. Aebersold, R.L. Moritz, H. Wenschuh, T. Moehring, S. 
Aiche, A. Huhmer, U. Reimer, B. Kuster, Building ProteomeTools based on a complete 
synthetic human proteome, Nat. Methods. 14 (2017). doi:10.1038/nmeth.4153. 

[79] Y. Wang, F. Yang, P. Wu, D. Bu, S. Sun, OpenMS-Simulator: an open-source software 
for theoretical tandem mass spectrum prediction, BMC Bioinformatics. 16 (2015) 110. 
doi:10.1186/s12859-015-0540-1. 

[80] R.D. Bjornson, N.J. Carriero, C. Colangelo, M. Shifman, K.H. Cheung, P.L. Miller, K. 
Williams, X!!Tandem, an improved method for running X!Tandem in parallel on 
collections of commodity computers, J. Proteome Res. 7 (2008) 293–299. 
doi:10.1021/pr0701198. 

[81] B. Pratt, J.J. Howbert, N.I. Tasman, E.J. Nilsson, Mr-Tandem: Parallel x!Tandem using 
Hadoop MapReduce on Amazon web services, Bioinformatics. 28 (2012) 136–137. 
doi:10.1093/bioinformatics/btr615. 

[82] D.T. Duncan, R. Craig, A.J. Link, Parallel tandem: A program for parallel processing of 
tandem mass spectra using PVM or MPI and X!Tandem, J. Proteome Res. 4 (2005) 1842–
1847. doi:10.1021/pr050058i. 

[83] J.A. Milloy, B.K. Faherty, S.A. Gerber, Tempest: GPU-CPU computing for high-
throughput database spectral matching, J. Proteome Res. 11 (2012) 3581–3591. 



136 
 

doi:10.1021/pr300338p. 

[84] L.A. Baumgardner, A.K. Shanmugam, H. Lam, J.K. Eng, D.B. Martin, Fast parallel 
tandem mass spectral library searching using GPU hardware acceleration, J. Proteome 
Res. 10 (2011) 2882–2888. doi:10.1021/pr200074h. 

[85] Y. Li, H. Chi, L. Xia, X. Chu, Accelerating the scoring module of mass spectrometry-
based peptide identification using GPUs., BMC Bioinformatics. 15 (2014) 121. 
doi:10.1186/1471-2105-15-121. 

[86] J.K. Eng, B. Fischer, J. Grossmann, M.J. MacCoss, A fast SEQUEST cross correlation 
algorithm, J. Proteome Res. 7 (2008) 4598–4602. doi:10.1021/pr800420s. 

[87] C.Y. Park, A.A. Klammer, L. Ka, M.J. Maccoss, W.S. Noble, Rapid and Accurate Peptide 
Identification from Tandem Mass Spectra research articles, J. Proteome Res. 7 (2008) 
3022–3027. doi:10.1021/pr800127y. 

[88] L.-H. Wang, D.-Q. Li, Y. Fu, H.-P. Wang, J.-F. Zhang, Z.-F. Yuan, R.-X. Sun, R. Zeng, 
S.-M. He, W. Gao, pFind 2.0: a software package for peptide and protein identification via 
tandem mass spectrometry., Rapid Commun. Mass Spectrom. 21 (2007) 2985–2991. 
doi:10.1002/rcm.3173. 

[89] B.J. Diament, W.S. Noble, Faster SEQUEST searching for peptide identification from 
tandem mass spectra, J. Proteome Res. 10 (2011) 3871–3879. doi:10.1021/pr101196n. 

[90] N. Satish, M. Harris, M. Garland, {D}esigning {E}fficient {S}oring {A}lgorithms for 
{M}anycore {GPU}s, Proc. 23rd IEEE Int. Parallel Distrib. Process. Symp. (2009) 1–10. 

[91] D.M. Avtonomov, A. Raskind, A.I. Nesvizhskii, BatMass: A Java software platform for 
LC-MS data visualization in proteomics and metabolomics, J. Proteome Res. 15 (2016) 
2500–2509. doi:10.1021/acs.jproteome.6b00021. 

[92] D. Fenyö, R.C. Beavis, A method for assessing the statistical significance of mass 
spectrometry-based protein identifications using general scoring schemes, Anal. Chem. 75 
(2003) 768–774. doi:10.1021/ac0258709. 

[93] H. Choi, A.I. Nesvizhskii, False discovery rates and related statistical concepts in mass 
spectrometry-based proteomics, J. Proteome Res. 7 (2008) 47–50. doi:10.1021/pr700747q. 

[94] H. Chi, K. He, B. Yang, Z. Chen, R.X. Sun, S.B. Fan, K. Zhang, C. Liu, Z.F. Yuan, Q.H. 
Wang, S.Q. Liu, M.Q. Dong, S.M. He, pFind-Alioth: A novel unrestricted database search 
algorithm to improve the interpretation of high-resolution MS/MS data, J. Proteomics. 129 
(2015) 33–41. doi:10.1016/j.jprot.2015.07.019. 

[95] S. McIlwain, K. Tamura, A. Kertesz-Farkas, C.E. Grant, B. Diament, B. Frewen, J.J. 
Howbert, M.R. Hoopmann, L. K??ll, J.K. Eng, M.J. MacCoss, W.S. Noble, Crux: Rapid 
open source protein tandem mass spectrometry analysis, J. Proteome Res. 13 (2014) 
4488–4491. doi:10.1021/pr500741y. 

[96] Y. Fu, X. Qian, Transferred Subgroup False Discovery Rate for Rare Post-translational 



137 
 

Modifications Detected by Mass Spectrometry., Mol. Cell. Proteomics. 13 (2014) 1359–
68. doi:10.1074/mcp.O113.030189. 

[97] M. Vaudel, J.M. Burkhart, R.P. Zahedi, E. Oveland, F.S. Berven, A. Sickmann, L. 
Martens, H. Barsnes, PeptideShaker enables reanalysis of MS-derived proteomics data 
sets, Nat. Biotechnol. 33 (2015) 22–24. doi:10.1038/nbt.3109. 

[98] J. V Olsen, M. Mann, Status of large-scale analysis of post-translational modifications by 
mass spectrometry., Mol. Cell. Proteomics. 12 (2013) 3444–52. 
doi:10.1074/mcp.O113.034181. 

[99] K. Sharma, R.C.J. D’Souza, S. Tyanova, C. Schaab, J. Wiśniewski, J. Cox, M. Mann, 
Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and 
Ser/Thr-Based Signaling, Cell Rep. 8 (2014) 1583–1594. 
doi:10.1016/j.celrep.2014.07.036. 

[100] Y. Perez-Riverol, E. Alpi, R. Wang, H. Hermjakob, J.A. Vizca??no, Making proteomics 
data accessible and reusable: Current state of proteomics databases and repositories, 
Proteomics. 15 (2015) 930–950. doi:10.1002/pmic.201400302. 

[101] O.S. Skinner, N.L. Kelleher, Illuminating the dark matter of shotgun proteomics, Nat. 
Biotechnol. 33 (2015) 717–718. doi:10.1038/nbt.3287. 

[102] Y. Pozniak, N. Balint-Lahat, J.D. Rudolph, C. Lindskog, R. Katzir, C. Avivi, F. Pontén, E. 
Ruppin, I. Barshack, T. Geiger, System-wide Clinical Proteomics of Breast Cancer 
Reveals Global Remodeling of Tissue Homeostasis, Cell Syst. 2 (2016) 172–184. 
doi:10.1016/j.cels.2016.02.001. 

[103] E.L. Huttlin, L. Ting, R.J. Bruckner, F. Gebreab, M.P. Gygi, J. Szpyt, S. Tam, G. Zarraga, 
G. Colby, K. Baltier, R. Dong, V. Guarani, L.P. Vaites, A. Ordureau, R. Rad, B.K. 
Erickson, M. Wühr, J. Chick, B. Zhai, D. Kolippakkam, J. Mintseris, R.A. Obar, T. Harris, 
S. Artavanis-Tsakonas, M.E. Sowa, P. De Camilli, J.A. Paulo, J.W. Harper, S.P. Gygi, 
The BioPlex Network: A Systematic Exploration of the Human Interactome, Cell. 162 
(2015) 425–440. doi:10.1016/j.cell.2015.06.043. 

[104] K. Kramer, T. Sachsenberg, B.M. Beckmann, S. Qamar, K.-L. Boon, M.W. Hentze, O. 
Kohlbacher, H. Urlaub, Photo-cross-linking and high-resolution mass spectrometry for 
assignment of RNA-binding sites in RNA-binding proteins, Nat. Methods. 11 (2014) 
1064–1070. doi:10.1038/nmeth.3092. 

[105] C.-C. Tsou, D. Avtonomov, B. Larsen, M. Tucholska, H. Choi, A.-C. Gingras, A.I. 
Nesvizhskii, DIA-Umpire: comprehensive computational framework for data-independent 
acquisition proteomics, Nat. Methods. 12 (2015) 258–264. doi:10.1038/nmeth.3255. 

[106] F. Kryuchkov, T. Verano-Braga, T.A. Hansen, R.R. Sprenger, F. Kjeldsen, Deconvolution 
of mixture spectra and increased throughput of peptide identification by utilization of 
intensified complementary ions formed in tandem mass spectrometry, J. Proteome Res. 12 
(2013) 3362–3371. doi:10.1021/pr400210m. 



138 
 

[107] S. Houel, R. Abernathy, K. Renganathan, K. Meyer-Arendt, N.G. Ahn, W.M. Old, 
Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale 
proteomics studies, J. Proteome Res. 9 (2010) 4152–4160. doi:10.1021/pr1003856. 

[108] B. Zhang, M. Pirmoradian, A. Chernobrovkin, R. a Zubarev, DeMix Workflow for 
Efficient Identification of Co-fragmented Peptides in High Resolution Data-dependent 
Tandem Mass Spectrometry., Mol. Cell. Proteomics. 13 (2014) 3211–3223. 
doi:10.1074/mcp.O114.038877. 

[109] B. Metz, Identification of Formaldehyde-induced Modifications in Proteins: REACTIONS 
WITH MODEL PEPTIDES, J. Biol. Chem. 279 (2003) 6235–6243. 
doi:10.1074/jbc.M310752200. 

[110] O. Kabil, R. Banerjee, Enzymology of H2S biogenesis, decay and signaling., Antioxid. 
Redox Signal. 20 (2014) 770–82. doi:10.1089/ars.2013.5339. 

[111] D.W. Huang, R. a Lempicki, B.T. Sherman, Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources., Nat. Protoc. 4 (2009) 44–57. 
doi:10.1038/nprot.2008.211. 

[112] H. Choi, B. Larsen, Z.-Y. Lin, A. Breitkreutz, D. Mellacheruvu, D. Fermin, Z.S. Qin, M. 
Tyers, A.-C. Gingras, A.I. Nesvizhskii, SAINT: probabilistic scoring of affinity 
purification-mass spectrometry data., Nat. Methods. 8 (2011) 70–3. 
doi:10.1038/nmeth.1541. 

[113] M.E. Sardiu, M.P. Washburn, Construction of protein interaction networks based on the 
label-free quantitative proteomics, Methods Mol Biol. 781 (2011) 71–85. 
doi:10.1007/978-1-61779-276-2_5. 

[114] I. Van Den Broek, F.P.H.T.M. Romijn, N.P.M. Smit, A. Van Der Laarse, J.W. Drijfhout, 
Y.E.M. Van Der Burgt, C.M. Cobbaert, Quantifying protein measurands by peptide 
measurements: Where do errors arise?, J. Proteome Res. 14 (2015) 928–942. 
doi:10.1021/pr5011179. 

[115] M. Tan, H. Luo, S. Lee, F. Jin, J.S. Yang, E. Montellier, T. Buchou, Z. Cheng, S. 
Rousseaux, N. Rajagopal, Z. Lu, Z. Ye, Q. Zhu, J. Wysocka, Y. Ye, S. Khochbin, B. Ren, 
Y. Zhao, Identification of 67 histone marks and histone lysine crotonylation as a new type 
of histone modification, Cell. 146 (2011) 1016–1028. doi:10.1016/j.cell.2011.08.008. 

[116] P. Mertins, D.R. Mani, K. V. Ruggles, M.A. Gillette, K.R. Clauser, P. Wang, X. Wang, 
J.W. Qiao, S. Cao, F. Petralia, E. Kawaler, F. Mundt, K. Krug, Z. Tu, J.T. Lei, M.L. 
Gatza, M. Wilkerson, C.M. Perou, V. Yellapantula, K. Huang, C. Lin, M.D. McLellan, P. 
Yan, S.R. Davies, R.R. Townsend, S.J. Skates, J. Wang, B. Zhang, C.R. Kinsinger, M. 
Mesri, H. Rodriguez, L. Ding, A.G. Paulovich, D. Fenyö, M.J. Ellis, S.A. Carr, C. Nci, 
Proteogenomics connects somatic mutations to signalling in breast cancer, Nature. 534 
(2016) 55–62. doi:10.1038/nature18003. 

[117] H. Zhang, T. Liu, Z. Zhang, S.H. Payne, B. Zhang, J.E. McDermott, J.Y. Zhou, V.A. 
Petyuk, L. Chen, D. Ray, S. Sun, F. Yang, L. Chen, J. Wang, P. Shah, S.W. Cha, P. 



139 
 

Aiyetan, S. Woo, Y. Tian, M.A. Gritsenko, T.R. Clauss, C. Choi, M.E. Monroe, S. 
Thomas, S. Nie, C. Wu, R.J. Moore, K.H. Yu, D.L. Tabb, D. Feny??, V. Vineet, Y. Wang, 
H. Rodriguez, E.S. Boja, T. Hiltke, R.C. Rivers, L. Sokoll, H. Zhu, I.M. Shih, L. Cope, A. 
Pandey, B. Zhang, M.P. Snyder, D.A. Levine, R.D. Smith, D.W. Chan, K.D. Rodland, 
S.A. Carr, M.A. Gillette, K.R. Klauser, E. Kuhn, D.R. Mani, P. Mertins, K.A. Ketchum, 
R. Thangudu, S. Cai, M. Oberti, A.G. Paulovich, J.R. Whiteaker, N.J. Edwards, P.B. 
McGarvey, S. Madhavan, P. Wang, D.W. Chan, A. Pandey, I.M. Shih, H. Zhang, Z. 
Zhang, H. Zhu, L. Cope, G.A. Whiteley, S.J. Skates, F.M. White, D.A. Levine, E.S. Boja, 
C.R. Kinsinger, T. Hiltke, M. Mesri, R.C. Rivers, H. Rodriguez, K.M. Shaw, S.E. Stein, 
D. Fenyo, T. Liu, J.E. McDermott, S.H. Payne, K.D. Rodland, R.D. Smith, P. Rudnick, M. 
Snyder, Y. Zhao, X. Chen, D.F. Ransohoff, A.N. Hoofnagle, D.C. Liebler, M.E. Sanders, 
Z. Shi, R.J.C. Slebos, D.L. Tabb, B. Zhang, L.J. Zimmerman, Y. Wang, S.R. Davies, L. 
Ding, M.J.C. Ellis, R.R. Townsend, Integrated Proteogenomic Characterization of Human 
High-Grade Serous Ovarian Cancer, Cell. 166 (2016) 755–765. 
doi:10.1016/j.cell.2016.05.069. 

[118] G.P. Mommen, C.K. Frese, H.D. Meiring, J. van Gaans-van den Brink, A.P. de Jong, C.A. 
van Els, A.J. Heck, Expanding the detectable HLA peptide repertoire using electron-
transfer/higher-energy collision dissociation (EThcD), Proc Natl Acad Sci U S A. 111 
(2014) 4507–4512. doi:10.1073/pnas.1321458111. 

 


