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ABSTRACT

Proteogenomics is an area of proteomics concerning the detection of novel peptides and peptide
variants nominated by genomics and transcriptomics experiments. While the term primarily
refers to studies utilizing a customized protein database derived from select sequencing
experiments, proteogenomics methods can also be applied in the quest for identifying previously
unobserved, or missing, proteins in a reference protein database. The identification of novel
peptides is difficult and results can be dominated by false positives if conventional
computational and statistical approaches for shotgun proteomics are directly applied without
consideration of the challenges involved in proteogenomics analyses. In this dissertation, I
systematically distill the sources of false positives in peptide identification and present potential
remedies, including computational strategies that are necessary to make these approaches

feasible for large datasets.

In the first part, I analyze high scoring decoys, which are false identifications with high assigned
confidences, using multiple peptide identification strategies to understand how they are
generated and develop strategies for reducing false positives. I also demonstrate that modified
peptides can cause violations in the target-decoy assumptions, which is a cornerstone for error
rate estimation in shotgun proteomics, leading to potential underestimation in the number of false
positives. Second, I address computational bottlenecks in proteogenomics workflows through the
development of two database search engines: EGADS and MSFragger. EGADS aims to address
issues relating to the large sequence space involved in proteogenomics studies by using graphical
processing units to accelerate both in-silico digestion and similarity scoring. MSFragger
implements a novel fragment ion index and searching algorithm that vastly speeds up spectra
similarity calculations. For the identification of modified peptides using the open search strategy,
MSFragger is over 150X faster than conventional database search tools. Finally, I will discuss
refinements to the open search strategy for detecting modified peptides and tools for improved

collation and annotation. Using the speed afforded by MSFragger, I perform open searching on

viii



several large-scale proteomics experiments, identifying modified peptides on an unprecedented

scale and demonstrating its utility in diverse proteomics applications.

The ability to rapidly and comprehensively identify modified peptides allows for the reduction of
false positives in proteogenomics. It also has implications in discovery proteomics by allowing
for the detection of both common and rare (including novel) biological modifications that are
often not considered in large scale proteomics experiments. The ability to account for all
chemically modified peptides may also improve protein abundance estimates in quantitative

proteomics.



CHAPTER I

INTRODUCTION TO SHOTGUN PROTEOMICS AND
PROTEOGENOMICS

1.1 Venturing beyond the reference proteome

In May 2014, more than thirteen years after the draft of the human genome [1,2], two studies
from independent groups appeared in Nature each claiming to have completed the first draft of
the human proteome [3,4]. These drafts of the human proteome were based on mass
spectrometry-based proteomics, the now dominant tool for large-scale proteome analysis. In
these studies, data was generated from diverse human tissues, or otherwise aggregated from
public repositories, to build a comprehensive catalog of human proteins. From the roughly
20,000 protein-coding genes, both studies reported mass-spectrometry evidence for over 17,000
protein-coding genes. Immediately after these heavily publicized publications, much criticism
was raised in the proteomics community regarding the lax false discovery rate (FDR) filtering
used in the studies. Several re-analyses of these datasets only identified 13-14,000 proteins [5]
and others raised concerns about the large number of olfactory receptor proteins identified in
non-nasal tissues (allegedly due to poor quality spectra and non-unique peptides) [6]. As a result,
guidelines were established for calling novel (as was the case for many peptides and proteins in
these studies) identifications [7] and subsequent work from one of the groups publishing the draft
proteome have revised downwards their observed number of proteins to less than 15,000 [8],
more than 2,000 fewer than what was originally claimed. The drafts of the human proteome and
the subsequent controversy illustrate the numerous statistical pitfalls and computational

challenges surrounding mass spectrometry-based proteomics.

The concept of novel identifications in attempts to define the proteome can be a bit misleading as

modern high-throughput proteomics studies relies on databases of protein sequences derived
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from genomics and transcriptomics studies. Hence, defining the proteome is more of an exercise
in validating predicted protein products rather than directly observing proteins and their
sequences. This is in contrast to the efforts in the early 1990s, prior to the availability of genomic
or protein databases, where Edman sequencing of intact proteins or enzymatically-digested
fragments was used to generate partial protein sequences for which degenerate oligonucleotide
primers could be made to PCR the gene for sequencing [9]. Presently, the majority of proteomics
studies utilize high quality reference databases generated from a combination of manual and
automated curation such as UniprotKB [10] and Ensembl [11]. Others use custom protein
databases [12] derived from related sequencing experiments to capture variants (both point and
splice) [13] and non-canonical regions of coding potential (such as IncRNAs [14]). Studies of the
latter type have been classified under the label of proteogenomics [7] in recent years as an
emerging field of proteomics (Figure 1-1). Despite this classification, the methods and
challenges involved in identifying novel peptides and proteins, whether they stem from entries in
the reference database that have not been previously observed by mass spectrometry [5,15] or
from predictions from sequencing data, are largely the same (rather unsurprising as the reference
protein database is also derived from sequencing efforts). These efforts to characterizing the
novel and unknown may also extend to the vast repertoire of post-translational modifications
(PTMs) that regulate most proteins [16]. Together, they embody the frontiers of the observable
proteome. In this dissertation, we define some of the challenges in these explorations beyond the

reference proteome and present computational tools and strategies that address these issues.

Customized rotein database buij, din

Genomics
Transcriptomics

Proteomics

, s
Peptide validation of gene mode

Figure 1-1 Proteogenomics workflow.
Genomics and transcriptomics data are used to generate customized protein databases that are used for peptide identification. The
identified peptides are then used to validate or refine gene models.



1.2 Mass spectrometry-based proteomics

Modern high-throughput shotgun proteomics has its origins in the development of four crucial
technologies in the 1980s and early 1990s. The first are the advances in peptide and protein
ionization technologies such as MALDI (matrix-assisted laser desorption/ionization) and
electrospray ionization that enabled the analysis of these biomolecules in mass spectrometers
[17]. In particular, electrospray ionization is compatible with high performance liquid
chromatography (HPLC) systems that are critical for separating peptides in complex biological
mixtures. Second, the development of tandem (MS/MS) mass spectrometry enabled the rapid
sequencing of peptides bypassing lengthy Edman sequencing [18]. In tandem mass spectrometry,
peptide ions are collided or otherwise fragmented into peptide fragments and the mass spectra of
the resultant fragments are collected. The peptides fragment primarily at the amide bonds
between residues, allowing the sequence to be deduced by comparing the mass differences
between series of ions to the mass of amino acids. The third are automated instrument control
methods that enable mass spectrometers to dynamically select which ions to fragment based on
the ions it observes eluting from chromatographic system in real time [19]. These data-dependent
acquisition methods enable mass spectrometers to focus on the ions most likely to yield
additional information about the sample (e.g. high intensity ions that have not already been
fragmented, ions that do not correspond to signals of known chemical noise) as the number of
eluting ions is far greater than the rate at which mass spectrometers can acquire tandem mass
spectra. Finally, and of particular focus in this dissertation, computational tools that can interpret
and assign a peptide identification to these tandem mass spectra. Without these automated tools,
the labor involved in manual interpretation would prohibit mass spectrometry-based proteomics

from evolving into a high-throughput technology.

In practice, the modern realizations of these technologies in shotgun proteomics are as follows
[20]. Proteins are enzymatically digested, commonly with trypsin, into peptides that are loaded
into an HPLC system coupled to a mass spectrometer. To reduce sample complexity (allowing
lower abundance ions to be sampled in the mass spectrometer — resulting in greater proteome
coverage), proteins and/or peptides can be fractionated in gels or another liquid chromatography

system prior to loading. As peptides are eluted from the HPLC system, they are ionized and the



mass spectrometer generates a mass spectrum containing all eluting peptide ions (known as a
survey or MS1 scan). Based on the acquired survey scan, the onboard computer selects a number
of peptide ions to select for fragmentation (often the most abundant peptide ions). The mass
spectrometer then iteratively applies a mass filter to the incoming stream of ions, selecting a
narrow mass window around the selected peptide ion, and fragments the peptide ion into
fragments. The fragment ions are then detected and recorded as a tandem (also called MS/MS,
MS2, or fragmentation) spectrum. After a number of tandem mass spectra have been acquired,
the selected masses are placed on an dynamic exclusion list [21] to avoid collecting additional
mass spectra of the same peptide ion and a fresh survey scan is collected to select the next targets
for fragmentation. The collected mass spectra can then be used for peptide identification and

quantitation.

While this model of data dependent acquisition has served as the primary workhorse of shotgun
proteomics for nearly two decades, advances in instrument speed and accuracy in recent years
have led to dramatic increases in the depth of proteome coverage and rate of acquisition.
Detection of over 10,000 proteins is now routine for fractionated human cell line data [22,23]
while single shot analysis of the yeast proteome (approximately 4000 proteins) can now be
performed in an hour [24], in contrast to the 144 hours of analysis time required for experiments
performed as recently as 2008 [25]. As a result of the ever-increasing instrument speed, the
amount of experimental data generated has increased significantly. This is readily observed
through the growth in the amount of data stored in public repositories of proteomics experiments

(Figure 1-2).

Much of this growth appears to be stimulated by the introduction of instruments that are able to
acquire tens of high-resolution (tens of parts per million or less) tandem mass spectra per second
such as the TripleTOF 5600 [26] or the Q Exactive [27] mass spectrometers. A deeper inspection
of the PRIDE repository [28] (Table 1-1) reveals that the majority of deposited data is indeed

generated from these and related instruments.
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Figure 1-2 Size of the PRIDE data repository of proteomics data over time as of March 2017.
Project sizes are determined from the contents of their FTP directories. Project publication dates are used rather than submission
dates. Popular mass spectrometers are plotted near their approximate release dates.

Table 1-1 Top mass spectrometers in PRIDE as of March 2017.
Instruments are extracted from PRIDE project pages with sizes determined from projects’ FTP directories. Projects analyzed
using multiple instrument types are associated with all instruments, leading to some duplicate counting.

Instrument Projects Total Size (TB) Year of Introduction
Q Exactive 740 72.52 2011 [27]
LTQ Orbitrap Velos 770 51.07 2009 [29]
LTQ Orbitrap* 600 28.49 2005 [30]
LTQ Orbitrap Elite 270 16.61 2012 [31]
TripleTOF 5600 191 10.08 2011 [26]

*In many projects, the annotations on the PRIDE project pages are incorrect, with experiments performed on LTQ Orbitrap Elite
and LTQ Orbitrap Velos incorrectly labeled as LTQ Orbitrap.

1.3 Methods for peptide identification in shotgun proteomics

The automated interpretation of tandem mass spectra is an important part of any shotgun
proteomics workflow. Peptide identification algorithms are assessed on both their ability to
correctly identify peptides as well as their computational runtime as peptide identification is
often a computational bottleneck in many proteomics workflows [20]. These runtime concerns
may be more relevant than ever due to the volume of data generated by modern high-speed

instruments. As previously described, peptide ions are typically fragmented at the amide bonds



between residues in tandem mass spectrometry. However, the fragmentation does not occur
uniformly [32] and the fragmentation spectrum often fail to contain a complete ion ladder for

easy interpretation. Hence, there are multiple strategies for interpreting tandem mass spectra.

There are three main classes of tools for peptide identification: database searching, tag-based
searching, and de novo sequencing. The lines between the classes are often blurred as ideas
between the classes can be combined to form hybrid strategies. One of the earliest tools to gain
widespread adaptation was the database search tool SEQUEST [33] (also re-implemented as the
open-source tool Comet [34]), which interpreted experimental spectrum by computing a cross
correlation function against theoretical spectra derived from in-silico digested peptides in a
protein database. This database search model has been adapted by numerous other tools
including Mascot [35], X! Tandem [36], Andromeda [37], MS-GF+ [38] and countless others —
varying in how they score or compare the experimental spectrum against theoretical spectra, or
how the search space is partitioned and prioritized. Due to their performance in both accuracy
and speed, they remain the dominant class of tools for peptide identifications. As more and more
fragmentation spectra are collected and assembled in public repositories, the use of spectral
libraries for peptide identifications have also emerged, despite initial comments that there are
simply too many peptides to build an effective spectral library [33]. In spectral library searching,
previously observed and identified fragmentation spectra are assembled [39] and compared
against experimental spectra. The known fragmentation patterns (intensities of fragment ions)
can be more discriminatory than the theoretical spectra predicted by database search tools but the

approach is limited only to the previously identified peptides present in the spectral library.

While the complete ion ladder is often missing from fragmentation spectra, there is often a
partial ladder that reveals a subsequence of the peptide. Tag-based approaches use this
information by looking for a partial ladder and using the derived information to filter a sequence
database [40]. Compared to database searching, the tag-filtered list of candidates is much smaller
so more computational intensive operations, such as the identification of unknown modifications
[41], can be performed. De novo sequencing tools attempt to identify peptides from
fragmentation spectra without the use of a reference database [42,43]. The main benefit of de

novo sequencing tools is that they allow for the identification of peptides that are not known or



present in the reference database. They can also be used to identify post-translational
modifications [44]. However, they are computationally expensive to use and require high-quality
spectra, making them impractical in most high-throughput experiments. Hybrid de novo
sequencing methods have been developed to use information from a reference database [45] or

fragmentation information from spectral libraries [46].

Regardless of the approach used to identify peptides in a fragmentation spectrum, the output of
each tool is the identified peptide, a raw score representing the quality or confidence of the
assignment based on the tool’s internal scoring mechanism, and a calibrated score (such as a
probability or expectation value) that normalizes the raw score (as it can be heavily dependent on
peptide length or spectrum complexity) allowing for quality comparisons between different
peptide to spectrum matches (PSMs). However, the quality and accuracy of these calibrated

scores is much debated [47].

1.4 Error rate estimation in shotgun proteomics

While peptide identification tools provide scores that estimates the quality of the peptide
spectrum match, they do not provide any estimates on the number of false identifications in a
given experiment. This problem is complicated by the fact that scores are not comparable
between different identification tools and that the quality assessments of individual PSMs do not
have access to information that can be derived from experiment-wide observations, such as the
frequency of missed cleavages or instrument mass accuracy and calibration. Hence, peptide
validation methods were developed that combines peptide identification scores with auxiliary
information in a statistical framework that can estimate the number of correct and incorrect hits.
One of the pioneering tools for peptide validation is PeptideProphet [48] which computed a
discriminant score for each PSM and used the expectation-maximization algorithm to model the
distributions of correct and incorrect hits. The models can then be used to estimate the
probability of correct hits and establish thresholds for controlling error rates in an experiment.
These principles also have been extended to proteins to control for error rates at the protein level

[49].



Complementary to these modeling based methods, the use of decoy sequences is widespread in
shotgun proteomics [50]. Decoy sequences are peptide or protein sequences that are artificial and
should not be found in nature. Hence, by searching against decoy sequences, it is possible to
estimate the rate of error matches or the distribution of random scores. Decoy sequences were
first generated from reversed protein sequences [51] but reversed peptides have been shown to
perform similarly and may be superior for high mass accuracy data as they preserve the
distribution of peptide masses. Decoys have also been incorporated into peptide and protein
validation models as negative examples in semi-supervised modeling [52,53]. In addition to
serving as negative examples in statistical modeling, they can also be used to directly and
empirically estimate the false discovery rate in a given experiment. In a common target-decoy
approach, a combined database is generated with targets (the protein database of interest) and
decoys of equal length (from reversed proteins or peptides). Experimental fragmentation spectra
are then searched against this combined database using a peptide identification tool. Under the
target-decoy assumption that incorrect assignments will match equally to target and decoy
sequences, the number of false positives is equal to the number of decoy matches so the false
discovery rate can be estimated by dividing the number of decoy hits to the number of target hits.
A scoring threshold can then be set to achieve a target false discovery rate. Not only does the
target-decoy approach allow estimation of false discovery rates at the PSM level, it can also be

used to estimate FDR at the peptide or protein level.

Error rate estimation in shotgun proteomics remains an area of active development. This is
especially true for error rate estimation in very large datasets [8,54,55] and the use of different
prior probabilities by integrating abundance information from transcriptomics or proteomics

repositories [55,56], both of which are relevant in a proteogenomics context.

1.5 False positives in proteogenomics analyses

While false positives are produced as part of any shotgun proteomics analysis workflow, there
are two key considerations that are of particular importance for proteogenomics: class-specific
FDR estimation and false identifications of nonrandom nature [7]. In conventional proteomics
analyses, a score threshold is selected to achieve a particular FDR for the entire dataset, typically

using the target-decoy approach. This approach has proved problematic for proteogenomics



analyses as the likelihoods for identifying novel peptides are different than for abundant peptides
and much stronger evidence is needed to support a novel identification. Failure to account for
these differences have cause dramatic underestimation of the FDR for novel peptides [57]. In one
proteogenomics study examining aberrant peptides in cancer, a global 1% FDR filter resulted in
a 36% FDR amongst the novel peptide identifications [58]. Performing FDR estimation
separately for known peptides and novel peptides allowed a 1% FDR to be achieved in both
classes. A theoretical analysis of this problem has demonstrated that a more complete annotation
of the genome is linked to the degree of FDR underestimation for novel peptides (when a global
FDR filter is used) [59]. While there are proteogenomics studies that employ class specific FDR

estimation [60], the vast majority do not [3,4,13], leading to over-reporting of novel discoveries.

The second major challenge facing proteogenomics analyses is the high degree of similarity
between certain novel candidates and previously identified peptides in the reference database.
Many novel peptides in proteogenomics originate from non-synonymous single nucleotide
polymorphisms in the sequencing data. As these single amino acid substitutions can be similar or
identical in mass with common chemical modifications, spectra of modified peptides can be
misidentified as a novel variant peptide [61]. For example, the change in mass for an alanine to
serine substitution or a phenylalanine to tyrosine substitution is identical to that of oxidation, an
abundant chemical modification. As these incorrect assignments are due to chemically modified
peptides, their fragmentation patterns are of a non-random nature and these errors may not be
well modeled by the target-decoy strategy. While a number of such errors have been manually
curated from the human draft proteome studies [5], there is a need to systematically annotate and

study such errors.

1.6 Outline

False positives present two major challenges for proteogenomics analyses. The first concerns the
sensitivity of proteogenomics experiments. Discovery of novel peptides involves the testing of
large hypothesis spaces generated from sequencing experiments, requiring much stronger
evidence for the identification of novel peptides when class specific FDR estimation is applied.
When there is an abundance of false positives, the sensitivity of the experiment can be greatly

affected making it impossible to detect any novel peptide at a reasonable FDR. The second
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involves chemically or biologically modified peptides that might be misidentified as a novel
variant peptide. It is unclear whether these false positives are correctly modeled by the target-
decoy approach as spectra from modified peptides can resemble spectra of novel variant peptides
or other peptides in the reference database and may not match with equal propensity to target and
decoy sequences. Even if these misidentifications are effectively captured by the target-decoy
strategy, their presence as false positives in proteogenomics analyses might also decrease

sensitivity.

The overall aim of this dissertation is to develop computational strategies that address these
concerns in proteogenomics analyses. In Chapter Two, I examine the causes and composition of
false positives in shotgun proteomics while exploring the effects of modified peptides in false
discovery rate estimation using multiple peptide identification tools. In Chapter Three, I develop
two database search tools that reduce the computation time required in proteogenomics analyses,
enabling more comprehensive peptide identifications that can reduce false positives. In Chapter
Four, I refine the open search strategy for identifying modified peptides and apply it to large
scale proteomics experiments for profiling modified peptides in a number of proteomics

experiments and applications.
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CHAPTER Il

CHARACTERIZATION AND REMEDIATION OF FALSE
POSITIVES IN PROTEOGENOMICS WORKFLOWS

Portions of this chapter comparing narrow window and open search results have been published
in Nature Methods [62]

2.1 Introduction

Manual validation of database search results have revealed several common sources of false
positives including poor quality spectra, non-enzymatic cleavage, chemical or post-translational
modifications, incorrect monoisotopic peak assignment, and incorrect charge state assignment
[63,64]. While computational strategies have been developed to address a number of these
sources (semi-tryptic searches, variable modification searches with common chemical
modifications, isotope error correction in database search engines etc.), they are not
comprehensive and are not always applied for large datasets due to the computational costs
involved. In proteogenomics contexts where the presence of false positives is of much greater
concern, these additional computations might be necessary for successful identification of novel
peptides. We developed a computational framework for annotating and quantifying the false
positives that might be avoided using more extensive analyses. Finding a large number of high
confidence false positives is inherently difficult as they are indistinguishable from true positives
on the basis of database search and peptide validation scores. Fortunately, the use of the target-
decoy strategy [50] provides us with a mechanism to study false positives as decoy assignments
are incorrect by design. We performed peptide identification using three database search engines
[34,36,38] and a blind modification search tool [41] in both tryptic and semi-tryptic modes to
quantify the false positives that are due to ambiguous assignments, semi-enzymatic cleavage, and

modified peptides.

11




Next, we took a deeper look at modified peptides to see how they cause false positives and
whether such false positives are correctly modeled by the target-decoy strategy. While blind
modification search tools can identify modified peptides with unknown modifications, they
suffer from reduced sensitivity and are often incompatible with other tools in common
proteomics workflows such as those for peptide validation. Hence, there was considerable
interest in a recent report [65] exploring the feasibility of searches using wide precursor mass
tolerances of hundreds of Daltons (open searches) to identify modified peptides using
conventional database search tools. We applied the open searching concept to identify modified

peptides and compared the identifications with those from a conventional narrow window search.

2.2 Materials and methods

2.2.1 Characteristics and sources of high scoring decoys

Datasets and data preparation

A publicly available dataset consisting of a panel of various triple negative breast cancer cell
lines and tissue specimens analyzed on a Thermo Scientific Q Exactive mass spectrometer [66]
was downloaded from ProteomicsDB (PRDB004167) in vendor .raw format. The Thermo .raw
files were converted to the mzML format using vendor provided centroiding and default
parameters using the msconvert.exe tool from ProteoWizard (3.0.7398 64-bit version). For the
MODa analysis, the mzML files were further converted to the MGF file format from the mzML

files using default parameters.

A human protein database was retrieved from UniprotKB (download date: 2016-07-29) and
appended with decoy proteins containing reversed peptide sequences (with prolines left in-place
when they are immediately before a trypsin cleavage site to ensure that the distribution of tryptic
peptide masses is identical between the forward and decoy space). Common contaminants
(cRAP protein sequences from GPMDB and contaminants from MaxQuant) were appended to

the concatenated protein database.
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Peptide identification pipeline

Peptide identification was performed independently using three different database search engines
(Comet[34] 2015.02 rev 1, X! Tandem[36] 2015.04.01.1, MS-GF+[38] v10089) and a blind-
modification search tool (MODa[41] v1.51) against the protein database described above in both
fully tryptic and semi-tryptic modes. For all searches, trypsin was specified as the enzyme used
for digestion with the precursor mass tolerance set to 20ppm. Static carboxyamidomethylation
(+57.021464 Da) on cysteine was specified for all tools while oxidation (+15.9949 Da) on
methionine and N-terminal acetylation (+42.0106 Da) were specified as variable modifications in
the three database search engines. For Comet and X! Tandem, up to five missed cleavages were
allowed (MS-GF+ does not limit the number of missed cleavages). Parent isotopic error
correction was enabled in all search engines (isotope error = 1 in Comet and —ti “0,2” in MS-
GF+). In Comet, the use of neutral loss was disabled and high-resolution MS/MS settings
(fragment bin offset 0.0 and fragment bin tolerance of 0.02) were used for scoring. In X!
Tandem, the top 100 peaks were used for scoring with a required minimum of 4 matched
fragment peaks. For MODa analysis, only a single modification was permitted per peptide with
a modification range of -500 to +500 Da. Fragment mass tolerance was set to 0.02 and the high-

resolution MS/MS mode was enabled.

X! Tandem output files were converted to the pepXML format using the Tandem2XML tool
found in the Trans-Proteomics Pipeline[67] (TPP) version 4.8.0. MS-GF+ outputs were
converted from mzldentML to pepXML using idconvert from ProteoWizard (3.0.6002).

Peptide validation and false discovery rate estimation

Peptide validation was performed individually on each pepXML file in the six (three search
engines; tryptic and semi-tryptic) sets of outputs using PeptideProphet[48] (TPP 4.8.0) using the
following settings: ‘d’ (report decoy hits), ‘A’ (high mass accuracy model), ‘E’ (use search
engine calculated expectation values), ‘P’ (semi-parametric modeling), ‘PPM’ (parts per million
in mass model). For each set of analyses, the pepXML files corresponding to the 457 LC-
MS/MS runs were read using a custom Java program and false discovery rate estimation was

performed empirically using the target-decoy approach at both the PSM level and peptide level
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(using the high scoring PSM as a surrogate for peptide probability). Spectrum level and peptide
level g-values were assigned for each PSM. No FDR filtering was performed for MODa results.

Integration of peptide identification results

Data integration was performed by first normalizing the scan numbers output by the different
tools. X! Tandem indices were 1 smaller than the ones reported by MS-GF+ and Comet while
MODa reports scan numbers as the n-th MS/MS scan present in the MGF file starting at 1.
PepXML files and MODa results were parsed and converted to a tab-delimited results file with
search results for each spectrum query grouped together and numbered using the MS-

GF+/Comet scan numbering.

Screening and interpretation of high scoring decoys

PSMs and peptides were considered a high scoring (PSM and peptide g-values of 0.01 or less)
decoy if they matched to a peptide that cannot be found in the forward sequence space for at least
one of the three search engines operating in fully tryptic mode. The high scoring decoy is
explained as an Ambiguous Scoring event if a high scoring forward hit is identified by some
other search engine. If no such tryptic hit is found, the semi-tryptic search results are considered
and a Semi-tryptic explanation is assigned if there is a high scoring semi-tryptic forward hit.
MODa results are then examined to determine if there is a modified forward peptide that
explains the spectrum. If no alternate explanation is found for the high scoring decoy after these

steps, it is labeled as Unexplained.

2.2.2 Target-decoy assumption is violated by modified peptides and causes
underestimation of error rates

Datasets and data preparation

A deep HEK 293 dataset[65] consisting of 24 LC-MS/MS runs analyzed on a Thermo Scientific
Q Exactive mass spectrometer was downloaded from PRIDE (PXD001468). Conversion of

vendor .raw files to mzML was performed as previously described.
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Peptide identification using MSFragger

Narrow window (100 p.p.m.) and open (500 Da) searching was performed by MSFragger
(version 20170103.0) [62] on the HEK 293 dataset against the Ensembl database as described in
section followed by peptide validation using PeptideProphet (using the extended mass model) as
described in section 3.2.2. Identifications were filtered to 1% FDR at both the PSM and peptide
level (using the highest PSM probability).

Generation and database searching of theoretic spectra from modified peptides

The database dump (2014-08-10) of GPMDB[68] was retrieved from their FTP site and parsed
using a custom Java program to extract peptide observations from the peptides table. The tryptic
peptides generated from an in-silico digestion of the Ensembl 78 human protein database was
filtered using the list of GPMDB peptide observations to obtain a list of 282,806 peptides. This
list of peptides was further filtered to a set of 73,002 peptides by retaining only peptides that
have a methionine residue. A random methionine is selected in each of these peptides and is
oxidized in-silico and a theoretical spectrum is generated (with carbamidomethylated cysteines)
consisting of singly charged b- and y-ions. The theoretical spectra are written to MGF files with

the precursor mass and charge reported in the 2+ state.

Peptide identification was performed using the Comet search engine (version 2015.01 rev. 1)
against the same Ensembl 78 protein database (both with reversed protein decoys and reversed
peptide decoys) using a 20 p.p.m. precursor mass tolerance in high resolution mode
(fragment_bin_offset of 0.0 and fragment bin_tol of 0.02). Fully tryptic digestion was specified
with up to 1 missed cleavage and the use of neutral loss ions was disabled for scoring. Variable
modifications were disabled as intended and static carbamidomethylation was specified for
cysteines. Peptide identifications were ordered by their expectation value and binned into 1000

bins to calculate the fraction of target matches in each bin.
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2.3 Results

2.3.1 Characteristics and sources of high scoring decoys

We performed fully tryptic searches using three search engines [34,36,38] and applied a 1% FDR
filter at both the peptide and PSM level. The target-decoy strategy assumes that incorrect
assignments would match randomly to both targets and decoys. Yet the randomness to which
these incorrect assignments are matched to decoy peptides is not well understood and the
presence of multiple PSMs supporting the same peptide remains a common filter for additional
stringency in proteomics analyses. While the majority of decoy peptides are only supported by a
single high scoring PSM, there are many that are supported by tens or even hundreds of PSMs,
independent of the search engine used (Figure 2-1). The fact that certain decoy peptides can be
supported by hundreds of PSMs suggest that the same is likely to hold true for false positives and
that even if a forward peptide is supported by hundreds of high scoring PSMs, it may still be a
false positive. The non-uniform nature of these decoy matches across the decoy space indicates

that they originate from unaccounted peptides rather than random chemical noise.
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Figure 2-1 High scoring decoys can be supported by tens to hundreds of PSMs.

High scoring decoy peptides are grouped based on their number of supporting PSMs for each of the three search engines
operating in fully tryptic mode.

Next, we examined the overlap in high scoring decoy peptide identifications across the three
search engines. 7,313 high scoring decoy peptides (at 1% peptide FDR) were identified across

the three search engines (Figure 2-2). Surprisingly, only 107 decoy peptides identified by all
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three search engines. The vast majority (6,576) of high scoring decoy peptides were only
identified by a single search engine. The lack of agreement between the different search engines
illustrates differences in their spectrum similarity and score calibration functions as the same
spectrum is either assigned to another incorrect peptide or fails to reach statistical confidence to
pass the 1% FDR filter. This lack of agreement can also be used to improve peptide
identifications by combining orthogonal scoring functions in these search engines and removing
borderline or conflicting identifications. Indeed, this concept has been used with much success in
peptide validation for reducing error rates and improving the number of identifications at a given

FDR [69,70].

~X!Tandem

Figure 2-2 Overlap of decoy peptide sequences across three search engines.
High scoring decoy peptide sequences are compared across three search engines. The vast majority of decoy sequences are
unique to a particular search engine.

As these incorrect assignments are likely due to unaccounted peptides, we expanded the search
space by performing semi-tryptic searches using the three search engines and a blind
modification tool [41] to account for unanticipated chemical or biological modifications. We also
considered instances where identification is ambiguous — cases where a forward peptide and a
decoy peptide are both identified with high confidence by two different search engines. These

may represent situations where the database search engine is overly confident in its assignment.
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Semi-tryptic 13.39%

Unknown 20.34%
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Figure 2-3 Explanation of high scoring decoy PSMs.
High scoring decoy PSMs are iteratively explained using fully tryptic, semi-tryptic, and blind modification search results.

We attempted to find explanations for high scoring decoy PSMs in the following order:
ambiguous scoring by the presence of a high scoring forward PSM identified by another search
engine, semi-tryptic by the presence of a high scoring semi-tryptic forward PSM identified by
any search engine, modified peptide if MODa nominates a modified forward peptide, and
unknown if we fail to find a possible explanation for the high scoring decoy PSM (Figure 2-3).
In 38.83% of high scoring decoy PSMs, they can be explained by an ambiguous scoring event.
For example, the decoy peptide IVESITK was identified with confidence in 286 PSMs. In many
cases, the forward peptide LVTDLTK was identified by another search engine. Comparing the
matched fragment ions for the two different peptide assignments in one such experimental
spectrum (Figure A-1) shows that the matched fragments are identical in mass and that outside of
auxiliary information (such as knowledge of the fragmentation pattern or additional fragments
from neutral loss ions), the two identifications are of equal confidence and we lack experimental
information to distinguish between the two. While the fragments are measured with high mass
accuracy and match to a large number of theoretical fragment ions, the presence of multiple
peptides that match equally well highlights the difficulty in confidently identifying short
peptides.

Next, we examined the population of decoys that can be explained by a semi-tryptic peptide.

13.39% of high scoring decoy PSMs was confidently identified as a semi-tryptic peptide. In our
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example (Figure A-2), the spectrum matching decoy peptide LANLLVGK was reassigned to the
semi-tryptic forward peptide LAGGIIGVK in a semi-tryptic search. The semi-tryptic match
improved upon the decoy match by matching two additional y-ions of relatively low intensity.
While the correct identification may well be the semi-tryptic assignment, the large number of
matched high intensity fragments in the decoy assignment once again demonstrates the
limitations of current similarity scoring functions as there is little information to distinguish

between the two matches.

We then examined the 27.44% of decoy PSMs that are explained by chemical or biological
modifications. We posit that this percentage may be heavily dependent on sample complexity
and instrument acquisition speeds. In more complex samples, abundant unmodified peptides
dominate the peptide ions that are sampled by the mass spectrometer while less abundant
modified forms are ignored. The converse is true for fractionated or low complexity samples
with few proteins giving modified peptides a greater chance to be sampled. Increasing the
acquisition speed of the instrument or the runtime of the LC-MS/MS run will also likely increase
the number of modified peptides sampled and correspondingly, the number of high scoring
decoys (and false positives) that are due to unaccounted modifications. In the selected example,
the decoy assignment EWHHSHTDITLR fails to match many of the high intensity fragment
peaks while the modified peptide assignment of IW[16]HHTFYNELR (oxidation on tryptophan)
is of much higher quality, explaining nearly all of the intense peaks in the fragmentation
spectrum (Figure A-3). While tryptophan oxidation is well known, it is often not included in
routine peptide identification workflows due to the analysis time required to consider additional
variable modifications. This demonstrates the utility of blind modification search tools for
improving peptide identifications even when the identification of modified peptides is not the
primary goal as they have the ability to eliminate false positives. However, many blind
modification search tools are slow and incompatible with conventional peptide identification

workflows.

Finally, there remains 20.34% of decoy PSMs that cannot be explained by any of the above
analysis. As they are assigned to some decoy PSM with high confidence, they contain peptide
fragments and are likely of peptide origin. As they cannot be explained as semi-tryptic peptides

19



or modified peptides from the reference proteome, they may be ions with incorrect charge state
assignment, peptides derived from alternative splicing [7], peptides with no enzyme specificity

[71], or even proteasome spliced peptides [72].

Together, these results suggest that improvements to similarity scoring functions are needed to
resolve ambiguous assignments and that proper accounting for all peptide forms (semi-tryptic

and modified) is necessary for confident peptide identifications.

2.3.2 Target-decoy assumption is violated by modified peptides and causes
underestimation of error rates

High prevalence of peptides identified in modified form only

To further explore the idea that certain false positives are due to modified peptides, we
performed both narrow window and open searching (to account for modified peptides) on a HEK
293 dataset (both searches done without variable modifications). We reason that false positives
that are due to modified peptides would be confidently identified in the narrow window search
(as a false positive) but not in open search (as the supporting spectra would now be assigned to
their correct modified peptide identification). To investigate, we looked at the intersection of
search results (at the unique peptide level) by subdividing the peptides on the basis of their

estimated confidence (Figure 2-4a) and examined the group-specific FDR.

As expected, peptides that were accepted at 1% FDR in both searches (101,138 in total) were of
high confidence, with an estimated FDR of 0.15%. Peptides found in both searches but accepted
only at 1% FDR in one of the two searches were of lower confidence, as evidenced by the
increased group FDR. Of greatest intrigue to us, however, were the peptides that were

confidently identified in one search but were not identified at all in the other.

There were 12,622 peptides confidently identified in open search but not in narrow-window
search. The relatively low group FDR of these peptides (4.15%) suggests that most of these are
bona fide examples of peptides that were only detected in modified forms. The substantial

number of such peptides is problematic for ‘dependent-peptide’ approaches for PTM
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identification [73] (including spectral library-based methods) [74,75] that rely on co-
identification of the unmodified peptide. A comparison of the modification profile of these
peptides to one that is generated from all modified peptides shows high similarity (Figure 2-4b),
suggesting that most of these identifications correspond to constitutive or highly abundant

modifications.
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Figure 2-4 HEK293 peptide identifications across traditional narrow-window and open searches demonstrate
underestimation of FDR.

Peptides are subdivided on the basis of their estimated confidences in both open and narrow-window search. Group-specific FDR
values are estimated using decoys within each group. (b) Mass difference profiles in open search for spectra that identified a
peptide unique to narrow-window search (red) or open search (purple) and for all spectra (boxed). (c) Supporting PSM counts in
narrow-window and open search for conflicting peptide identifications involving a peptide found only in narrow-window search
(at 1% FDR). (d) Comparison of peptide categories passing 1% FDR in narrow-window search. (e) Target and decoy matches in
narrow-window search for spectra identified with a common modification in open search.

Open searching uncovers FDR problem in traditional narrow-window searches

In contrast, the 3,773 peptides identified in narrow-window search but not in open search had a
much higher group FDR, of 14.68%. We mapped the spectra supporting these identifications to
their results in open search. Of particular interest were spectra that were assigned to unmodified
peptides in narrow-window search but reassigned, owing to an improved match, as modified

peptides (with different sequence) in open search. These cases represent potential instances of
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false positives in narrow-window search that are caused by chemical or biological modifications
[76,77]. In each such instance—a pair of peptides whose masses differ by the mass of the
modification detected in the open search—we compared the total number of supporting PSMs
associated with the peptide sequence matched in narrow-window search to that in open search
(Figure 2-4c). Assuming that peptides supported by a greater number of PSMs are more likely to
be true identifications, we found substantially more support for the peptides identified in open
search. Only 17% of the spectra were assigned to peptides that had greater support in narrow-

window search, whereas 68% had greater support for their open-search assignment.

We called peptide identifications found only in narrow-window search to be ‘suspect’ (potential
false positives) if there was greater support for the open-search assignment for each supporting
PSM. Of the 3,773 peptides found only in narrow-window search, 1,139 were suspect. This is
significantly more than the number of decoys (554) in the same group, and more than the total
number of decoys in the entire narrow-window search, at 1% FDR (1,091 decoys in total). This
suggests that false positives in narrow-window search are not correctly estimated by decoy

peptides. Notably, some of these suspect peptides had very high scores (Figure 2-4d).

We sought to verify the finding that the target—decoy strategy does not effectively capture false
positives due to unaccounted modifications. We selected high-scoring peptide identifications in
open search that were observed in both unmodified form and with a mass shift corresponding to
a common modification (oxidation or carbamylation). As we did not specify any variable
modifications, the target-decoy assumption is that spectra from these modified peptides would
match equally (and incorrectly) to both targets and decoys in narrow-window search. However,
that was not the case, as the rate of matching to target sequences was roughly six fold that of
decoys for carbamylated peptide spectra, and more than nine fold for oxidized peptide spectra
(Figure 2-4e). The violation of the target—decoy assumption is probably due to homology
between true peptide sequences and other peptides in the target space, which we previously
noted in the context of proteogenomics [7,76]. Further supporting this, the modification profile
of peptides identified in open search and whose spectra produced suspect identifications in
narrow-window search markedly lacked phosphorylation and aminoethylbenzenesulfonylation
(Figure 2-4b). These two mass shifts (79.97 and 183.04 Da) are difficult to represent, as some

sequence of amino acid addition and deletion. Overall, our analysis with the HEK293 data set
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demonstrates that accounting for all modified peptide forms using the open-search strategy of
MSFragger may be important for confident peptide identification, even when the identification

of modified peptides is not the primary interest.
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Figure 2-5 Spectral homology in theoretical spectra derived from modified peptides.

PSMs of theoretical spectra derived from a peptide with oxidized methionine are ordered by their expectation value and binned to
calculate the fraction of target hits as a function of expectation value (a) Analysis performed using reversed protein sequence as
decoys (b) Analysis performed using reversed peptide sequences as decoys

Validation of target-decoy violation using theoretical modified spectra

While the searching of experimental spectra identified as modified peptides in a narrow window
search suggested that the target-decoy assumption is violated, we must proceed with caution due
to the confounding problem of chimeric spectra. In some cases, a modified peptide (the top
identification in open search) can be co-fragmented with an unmodified peptide which is then
identified (correctly) in the narrow window search that does not account for modifications. To
circumvent the problem of chimeric spectra, we generated theoretical spectra for a set of peptides
with oxidized methionine. As expected, for the majority of these theoretically pure spectra, they
map to both targets and decoys at equal rates. However, for the highest scoring matches, there is
a strong preference for target sequences, regardless of the method used in decoy generation
(Figure 2-5). Unsurprisingly, some of the highest scoring PSMs are due to single amino acid
differences that are equal to the mass of the added oxygen atom (e.g. alanine to serine in
M[16]ASTFIGNSTAIQELFK matches MSSTFIGNSTAIQELFK with e-value 3.62E-20). There

are also examples where the peptides differ in the number of amino acids but remain spectrally
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similar (e.g. M[16]DVNVGDIDIEGPEGK matches NSHHSWEPLDAPEGK with e-value
4.71E-8). Together, these results show that modified peptides can be potential sources of false

positives that are not well modeled by the target-decoy strategy.

2.4 Discussion

In this chapter, we demonstrate that nearly 80% of high scoring false positives can be explained
through additional computational analysis. Nearly half of the explainable false positives can be
attributed to ambiguous identifications where there is a lack in search engine concordance. This
suggest that combining results from multiple search engines [69] or similarity scoring functions
might help in identifying these cases and reducing their assigned confidences. It also points to
limitations in the scoring functions presently used in database search engines where only a
rudimentary model for predicting theoretical spectra is used (equal ion intensities). The use of
spectral libraries generated from synthetic peptides [78] or fragment ion intensity prediction
programs [32,79] may help resolve such ambiguities and reduce the rate of such false positives in
the future. The high confidences with which these ambiguous identifications are reported may
also be a consequence of the availability of high mass accuracy data in both MS1 and MS2,
where a few matched fragment ions result in high confidences due to a reduction in fragment
matches of a purely random nature. The other half of explainable false positives are due to
peptides that are excluded (semi-tryptic and modified peptides) from searches due to
computational costs or otherwise complexity in integrating different search results. While the
computational costs associated with database searching can be readily addressed, new statistical
models may need to be implemented to integrate multiple search spaces, each with different prior
probabilities and selecting the explanation with highest posterior probability, to avoid a loss in

sensitivity when vastly expanding the search space.

The comparison between open and narrow window search results provides several insights into
the properties of modified peptides and their impact on the production of false positives and error
rate estimation. Over 10% of the peptides identified were identified only in modified forms,
suggesting that methods which can directly identify modified peptides without co-identification
of the unmodified peptide (such as tag-based PTM search tools or the open search strategy) are
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likely to be the most successful in comprehensive identifying modified peptides and reducing the
number of false positives. Second, both the experimental and theoretical results indicate, to
varying degrees, that the target-decoy assumption is violated for modified peptides and that
modified peptides are more likely to match to target sequences than decoy sequences, causing an
underestimation of false positives that are due to modified peptides. The true extent of this
violation is of much interest and further experiments using experimental spectra while
accounting for the effects of co-fragmentation are needed. It is also important to note the
limitations of this study and its generalizability to proteogenomics results. Open modification
searching identifies only 50% of common modifications when compared to direct interrogation
using specified variable modifications [65]. The underreporting of modified peptides may imply
that the number of false positives due to modified peptides may be greater than what was shown
in this study. Furthermore, the database searched in this comparison was the Uniprot protein
database with few variant peptides or peptides that are highly homologous to one another
compared to a database produced in a sequencing experiment. Hence, the error rates for such
variant peptides could potentially be higher than what is estimated here. Experiments with
decoys designed to contain single amino acid substitutions (confirmed not to exist from

sequencing data) would allow us to directly interrogate errors of this nature.
2.5 Data availability

Raw mass spectrometry files are available from public repositories as described. The processed

data files supporting the findings of this study are available upon request.
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CHAPTER Il1

EFFICENT DATABASE SEARCH TOOLS FOR
PROTEOGENOMICS ANALYSIS

Portions of this chapter detailing the MSFragger algorithm have been published in Nature
Methods [62]

3.1 Introduction

Database search has long been a bottleneck in computational proteomics workflows [20] with
continual efforts to improve the speed of identifications to match the pace of instrument
acquisition speeds and the growth of protein databases. In proteogenomics experiments, the
database to be searched is nearly 10X larger than a reference database, increasing the search time
accordingly. Due to the already large search space that decreases sensitivity and long search
times, semi-tryptic searches and multiple variable modifications are not commonly used. As
demonstrated in the previous chapter, this can lead to an accumulation of false positives when
peptide species present in the sample are unaccounted for in the search space. Further
compounding this problem is the increasing popularity of the open search approach for
identifying blind modifications. While simple in its approach (a matter of changing the precursor
tolerance to hundreds of Daltons), it is a brute force approach, comparing each experimental
spectrum to hundreds of thousands of candidate peptides. This leads to analysis times of over 50
central processing unit (CPU) hours (per LC-MS/MS run) [62] using conventional database
search tools, making it costly for large scale analyses. Hence, there is need for faster, more

efficient database search tools for proteogenomics analysis.

Computational advances in database search tools often fall in two orthogonal avenues. The first
utilizes more advanced or sophisticated computing hardware such as parallel computing

technologies such as networked compute clusters [80—82] to distribute the computation workload
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on conventional processors or repurposing specialized hardware such as graphical processing
units (GPUs) found in commodity graphics cards [83—85]. The second involves algorithm
improvements that reduce the amount of computation needed to obtain peptide identifications of
similar quality. This can involve strategies for using heuristics to filter the search space [36,40],
improved implementations of scoring functions [86,87], or peptide indexing methods that
eliminates redundant peptides and recycles the results of in-silico digestion [88,89]. In this
chapter, we present two database search tools. The first, EGADS, utilizes GPUs to accelerate
both in-silico digestion and similarity scoring while the second, MSFragger, uses a novel

fragment ion-indexing scheme to vastly improve the speed of spectra similarity calculations.

Algorithms that utilizes networked compute clusters can perform high-throughput searches but
do not reduce the overall amount of computation time required considering all CPUs, making
them costly and financially prohibitive for large-scale analyses. GPUs have been used as a more
efficient alternative in many scientific applications as they offer the compute capabilities of
hundreds of CPUs in a graphics card costing several hundred dollars. These GPUs consist of
thousands of processing cores coupled to fast onboard memory. However, specialized algorithms
are needed to function on GPUs due to the limited memories and single instruction multiple data
(SIMD) nature of GPU cores where each individual processing cores must perform the same
operation in lockstep but on potentially different pieces of data. Due to these complexities, GPUs
have only been applied to the spectra similarity scoring step of database search [83,85] which has
is more easily parallelizable and is historically the more computationally intensive step of
database searching with low precursor mass accuracies. However, with high resolution
instruments that records precursor masses with accuracies on the order of several parts per
million [26,27], in-silico digestion may become a bottleneck when only similarity scoring is
accelerated. Hence, EGADS implements both GPU accelerated digestion and scoring providing

significant speedups regardless of the precursor mass accuracy.

The growing popularity and ease-of-use of the open searching strategy for identifying modified
peptides precipitated the development of MSFragger. Open searching using a 500Da window can
take nearly 1000X longer than traditional narrow searches with a precursor tolerance in the tens
of p.p.m. [62]. The use of traditional search engines is computationally prohibitive on large

datasets and GPUs are not widely or inexpensively available from cloud providers. Hence, using
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the relatively large amount of system memory, we developed a fragment ion indexing scheme
that allows similarity scoring to be rapidly performed simply by traversing the index using

experimental fragment ions.

3.2 Materials and methods

3.2.1 EGADS an Efficient GPU-Accelerated Database Search tool

EGADS development environment

EGADS was developed in C++ using Visual Studio 2010 on Windows 7 64-bit. OpenCL
support was provided by the AMD APP SDK (version 2.9). Testing was performed on a desktop
computer equipped with an Intel 2500K processor with 16GB of memory with an AMD Radeon
7950 GPU with 3GB of memory (using the latest AMD drivers as of May 2013).

Datasets and data preparation

A HelLa dataset [22] consisting of 3 technical replicates each with 6 fractions analyzed on a
Thermo Scientific Orbitrap Elite was downloaded from PRIDE (PXD002395). Vendor raw files
were converted to MGF using ProteoWizard as previously described. The human protein
database was obtained from Refseq (release 55) and reversed protein sequences were appended
as decoys. For the scenarios involving a hypothetical proteogenomics use case, an mRNA
database was obtained from Refseq (release 55) and was translated into a protein database using

three-frame translation. ORFs shorter than 10 amino acids were discarded in this translation.

EGADS algorithm
(1) Spectra input and pre-processing

EGADS reads MS/MS spectra in MGF format and pre-processes them according to the chosen
similarity scoring function after filtering the input spectrum to the specified top N peaks after
filtering out peaks with m/z greater than 2048 (as EGADS calculates the Xcorr function using
2048 bins). For the Xcorr scoring function, an offset of 0.4 Da is added to the m/z of each input
peak before binning to unit m/z bins (the maximal intensity is taken when there are multiple

peaks that fall within the same bin). The 2048 bins are then subdivided into 16 equal windows
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and intensities within each window are normalized so that the maximum intensity within each
window is 50. The intensities are then transformed into the form necessary for fast cross-
correlation [86] by computing cumulative sums. For PeakMatch and PeakBackground, no
binning is performed. PeakMatch normalizes the peak intensities so that the maximum intensity
is 100, while PeakBackground performs the local normalization as performed in Xcorr using the

ranges of 64 m/z but without binning.

(2) Trial digestion and scoring

EGADS performs in-silico digestion and simulated scoring (where the number of similarity
scores required is calculated but the scoring is not actually performed) on a small region of the
database (20 blocks of 4096 characters) to estimate the amount of GPU memory necessary to
perform on-GPU digestion and scoring for a given amount of sequence space. EGADS then uses
this estimate and the available GPU memory (after accounting for the space necessary to store
the database and experimental spectra) to partition the sequence space that can be independently

analyzed in multiple digestion-scoring cycles (Figure 3-1).

(3) In-silico digestion and peptide de-duplication

EGADS performs in-silico digestion by first concatenating all proteins (separated by end-of-
protein delimiters) into a single string representing the entire sequence space. The string is then
subdivided into blocks of 4096 characters that can be analyzed by a single workgroup.

Individual threads scan overlapping ranges of 128 characters in order to determine the number of
digested peptides that starts within the first half of its range. These counts are then summarized
in scan operations and used to allocate appropriate memory for storing masses and offsets of

these digested peptides. The process is repeated to store the digested peptide products.

Peptides are then optionally de-duplicated (within the same digestion-scoring cycle) to eliminate
redundant peptides and the number of repeated similarity scoring calculations. We re-pack the
digested sequence into a 160-bit integer that is unique for all peptides less than 32 amino acids in

length (the upper limit in EGADS). This integer is then iteratively sorted 32 bits at a time using
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a GPU-efficient version of radix sort [90] (which is also used for other sorting operations within

EGADS) grouping redundant peptides together in this sorted list.

Next, peptides are expanded into modified mass peptides that represent the different masses that
arise as a result of user specified variable modifications and are sorted by mass. For each
modified mass peptide, we also compute the number of structural isomers. Peptides that produce
more than 100 (hard coded limit that can be changed) modified versions of that peptide are
considered not modified (modifications are ignored). Together, these elements form a peptide

index for the current digestion-scoring cycle.

(4) Similarity scoring and result reporting

In GPU accelerated scoring, all threads within the same workgroup operate on the same
experimental spectrum. The number of structural isomer, along with the number of experimental
spectra that have a mass within the precursor mass window, are used to compute the number of
workgroups necessary for scoring. This information is then used to launch one of three scoring
kernels that are responsible for computing the peptide-spectrum similarity scores. Lookup tables

are used to efficiently map permutations to modified residues.

Three scoring kernels were implemented that mimics modes in popular database search tools:
Xcorr (unit-resolution Comet [34]), PeakMatch (computes hyperscore as in X! Tandem [36]),
and PeakBackground (high-resolution Comet). Xcorr is computed a simple product after spectra
pre-processing described above while PeakMatch and PeakBackground is calculated using
sliding windows to merge the peak lists between the experimental and theoretical spectrum in

time linear to the total number of peaks.

Similarity scores are transferred back to the CPU where a histogram of scores and a heap of the
top hits are maintained for each experimental spectrum. The similarity scores are converted in a
scoring function dependent manner to an expectation value. Results are written to a pepXML

file that is compatible with PeptideProphet by masquerading as either Comet or X! Tandem.
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Figure 3-1 Architecture of EGADS.

EGADS performs trial digestion and spectra pre-processing on the CPU before starting digestion-scoring cycles on the GPU. (b)
Results are transferred back to the CPU where the histogram of scores for each spectrum is modeled and an expectation is
calculated for the reported hits.

Timing and Performance Measurements

Timers are placed throughout EGADS to collect timing information on the cumulative time spent
in individual steps of the database search process. Database search implementations can vary
widely so comparing runtimes between different database search engines is not meaningful for
determining the extent of GPU acceleration. Hence, EGADS implements identical data
structures and algorithms used in the OpenCL kernels in C++ (referred to as EGADS CPU) so
that the same parallel algorithms that are run on the GPU can be run serially on the CPU.
EGADS does not make use of CPU-GPU concurrency as all OpenCL calls made are blocking.

For timing purposes, we consider digestion to be the steps in the digestion-scoring cycle up to
the point of counting structural isomers and scoring to be remaining steps in the cycle, including
update of the results structure. Input, initialization (including compilation of the OpenCL
kernels if no cached version exists), spectra conditioning and pre-processing, and output takes no

longer than several seconds in total and is not a major factor in overall runtime.
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Benchmarking of EGADS on a HelLa dataset

Peptide identification benchmarking was performed by searching the Refseq 55 protein database
(described above) allowing for 1 missed cleavage in fully tryptic digestion.  Static
carboxyamidomethylation (+57.021464 Da) on cysteine was specified while allowing oxidation
(+15.9949 Da) on methionine to be a variable modification. The permitted peptide mass range
was 500-2000 Da (results were filtered to exclude matches outside this range in X!Tandem
where the maximum cannot be specified). The precursor mass tolerance was set to 100ppm with
fragment mass tolerance set to 20ppm (0.02 Da bins for Comet). Isotope error correction was
disabled. The use of neutral loss ions was disabled in Comet. For EGADS and X! Tandem, the
top 50 fragment ions was used in searching. EGADS was given access to 2GB of memory using
the PeakMatch scoring kernel. Run time benchmarking was performed using the above settings
(except Comet was run in unit-resolution mode for the comparison with Xcorr), varying the
digestion mode, precursor window, and scoring kernel. Apart from the identification rate

benchmarking, all analyses was performed on the run 20100611 Velosl TaGe SA Hela 1.

Peptide validation was performed using PeptideProphet [48] (TPP 4.8.0) using the options d’
(report decoy hits), ‘A’ (high mass accuracy model), ‘P’ (semi-parametric modeling), ‘PPM’
(parts per million in mass model) and FDR was estimated empirically using the target-decoy
approach after ordering PSMs and peptides (represented by highest scoring PSM) by
PeptideProphet probabilities.

Combinatorial evaluation of GPU acceleration

Evaluation of GPU acceleration in diverse search applications was performed by varying the
following search parameters: de-duplication (on / off), phosphorylation search (on / off),
precursor mass tolerance (20 ppm / 1 Da), and sequence space (Refseq 55 protein / 3-frame
translated Refseq 55 RNA), digestion mode (tryptic with 1 missed cleavage, semi-tryptic with 1
missed cleavage, non-specific), and similarity function (Xcorr / PeakMatch / PeakBackground).
All other search parameters were set to the values described above for benchmarking. EGADS

was run in both CPU and GPU mode for each of the 144 search combinations. Runs taking
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longer than 4 hours on the CPU was killed and excluded from the analysis (66 out of the 144

combinations completed successfully).

Benchmarking memory effects on EGADS runtime

For evaluation of the memory effects on EGADS runtime, the Refseq protein database described
above was searched using EGADS running in GPU mode using all three digestion modes (fully
tryptic, semi-tryptic, and non-specific). For each memory limit (1024MB, 1536MB, 2048MB,
and 2560MB), five runs were performed and the average runtime calculated after discarding the

shortest and longest runs.

Open database searching using EGADS

The PeakMatch scoring algorithm was modified to include two additional ion series: b + A and y
+ A to account for any shifted fragment ions due to a modified residue in open searching. A is
computed as the difference between the experimentally observed mass and the theoretical

peptide mass.

MODa (version 1.23) was used in single blind mode with fragment mass tolerance set to 0.02
and high-resolution MS/MS. In both EGADS and MODa, static carboxyamidomethylation was
specified. Variable oxidation of methionine was specified in EGADS but all results involving
oxidized methionine were filtered out in both searches as there it was not possible to specify
variable modifications in MODa. The allowed modification range was -200 - +200 Da in both

searches. No FDR filtering was performed in the open search analysis.

3.2.2 MSFragger implements a novel fragment ion index that enables ultrafast
database search

Datasets and Data Preparation

A HEK 293 dataset[65] consisting of 24 LC-MS/MS runs analyzed on a Thermo Scientific Q
Exactive mass spectrometer was downloaded from PRIDE (PXD001468).  Conversion of

vendor .raw files to mzML was performed as previously described.
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MSFragger algorithm
(1) MSFragger spectra input and pre-processing

MSFragger accesses mzXML and mzML files using MSFTBX, the Data Access Library
provided as part of the BatMass [91] and Mascot Generic File (MGF) files using an internal
parser. These data input paths allow MS/MS spectra stored in any of the three file formats
(mzXML/mzML/MGF) to be analyzed by MSFragger. Spectra pre-processing begins with linear
scaling of peak intensities so that the most intense peak within each spectrum is set to 100,000.
Resultant scaled intensities are rounded and stored as integers for fast arithmetic operations. The
top N peaks from each spectrum are retained and are then filtered based on the minimum
intensity ratio and the m/z range specified in the search parameters file. In this study, the top 100
peaks with a minimum intensity ratio of 0.01 (relative to the base peak) were used with no m/z

range filter.

(2) In-silico protein digestion and peptide indexing in MSFragger

MSFragger allows for fully enzymatic, semi-enzymatic, and non-enzymatic digestion to be
specified as search parameters. It also allows for limits on missed cleavages, peptide lengths and
masses to be specified. For a given protein database and a fixed set of digestion parameters, a
peptide index is generated to form a necessary reference for the fragment index. Peptide indexing
takes just a few minutes on a typical computer. Furthermore, MSFragger caches the peptide
indices it generates on disk and attempts to find and use a compatible peptide index on
subsequent invocations. As the first step of in-silico digestion, all proteins are concatenated into
one long amino acid sequence with proteins separated by delimiter characters. MSFragger then
partitions this long amino acid sequence into chunks for parallel in-silico digestion into peptide
sequences based on the specified digestion parameters. Efficient memory allocation methods
and compact representations of peptides (as offsets in the concatenated amino acid sequence and
length) allow for fast in-silico digestion. The digested peptide sequences are then sorted using a
parallel least significant digit radix sort and redundant peptides are flagged by comparing

adjacent peptide sequences in the sorted list of peptides.
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Modified versions of the digested peptide sequences are then generated based on the user-
specified variable modifications. Combinatorial bitmasks that specify the positions of modified
residues are pre-computed so that the set of variably modified residues can be specified as a
single integer. These sequence numbers are then combinatorially combined across all variable
modifications to generate a single integer that represents the variable modification state of a
peptide sequence. A 12-byte entry containing the offset, length, modification sequence number,
and the modified mass is generated for each such modified peptide. These modified peptides are

then sorted in parallel by their modified mass forming the MSFragger peptide index.

(3) Fragment index generation

The fragment index used in MSFragger consists of all theoretical b and y-ions up to a specified
charge state from each peptide in the peptide index. For efficient fragment index searching, the
fragment bin width used for the fragment index must be proportional to the desired fragment
tolerance specified in the search and to the expected number of candidate peptides encountered
per experimental spectrum. Hence, MSFragger dynamically computes an appropriate bin width,
in Daltons, that allows for efficient fragment index searching based on the user specified
precursor mass tolerance and the fragment mass tolerance. Each peptide entry in the peptide
index, consisting of both unmodified and variably modified peptides, can be referenced by a
single 32-bit integer identification number (ID), imposing a current limit of approximately 2
billion peptide entries. Within each peptide entry, the theoretical fragments are generated and
binned based on their masses using the determined bin width. The theoretical fragments are
stored within the fragment index as an 8-byte entry that references the parent peptide ID, the
mass offset within the bin, the charge state, and the fragment ion identity (e.g. b-5 or y-2).
Fragments within each bin are stored in order of their parent IDs (and hence the parent precursor
mass) as the fragment index is generated in the order of the peptide index. The memory
consumption of the fragment index is modest. For a tryptic digestion (with 1 missed cleavage) of
the human UniprotKB database (with reversed decoys) used in the study, the fragment index is
only 1.6GB. Adding methionine oxidation and N-terminal acetylation of proteins as variable
modifications boosted the index size to 2.9GB. Examples of fragment index sizes (which
includes the above common variable modifications) for larger search spaces include HLA

peptides (non-enzymatic digest of 9-11 amino acids; 22.6GB), semi-tryptic peptides (55.8GB)
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and variably phosphorylated peptides (86.5GB). MSFragger identifies the amount of memory
available to it via the Java Virtual Machine and automatically partitions the fragment index
generation and search into multiple iterations based on projected memory required for the
fragment index, storing intermediate results on disk before merging and outputting the results in
the final pass. This enables MSFragger to perform searches on computers that do not have
sufficient memory to store the full fragment index, although at reduced speeds. In addition to the
fragment index, MSFragger requires additional memory for storing the peptide index, spectra
data, results, and intermediate data structures during search that is roughly 1GB in most use

cascs.

(4) Fragment index searching

In database search, the similarity scores are computed between each experimental spectrum and
the theoretical spectra of all candidate peptides within a precursor mass range. These scores are
heavily dependent on the number of shared fragment ions between the experimental spectrum
and theoretical spectra. The major computational advance presented by MSFragger lies in its
ability to rapidly identify these shared fragment ions and thus compute spectrum-spectra scores
with near optimal efficiency. MSFragger first identifies the number of candidate peptides using
the precursor mass window and the computed peptide index. It then allocates a scoring table for
each candidate peptide where the number and summed intensities of matched b and y-ions can be
stored. It then performs spectrum to spectra scoring using the fragment index in the following
manner. Consider a fragment ion with mass M within an experimental spectrum with precursor
mass P. Using the fragment index, the algorithm can identify the theoretical spectra that contain
a fragment with a matching mass by examining the fragment bins that overlap the interval [M —
dF, M + dF], where dF is the fragment mass tolerance specified in Daltons or otherwise

computed from M and the specified tolerance in parts per million (Figure 3-10).

For each overlapping fragment bin, a binary search (recall that the fragments within each bin are
ordered by their parent precursor masses) is used to identify the fragment within the bin that
corresponds to precursor mass P — dP, where dP is the precursor mass tolerance. The bin is then
traversed and the theoretical fragments within the bins are compared to determine whether they

truly lie within the fragment mass tolerance window, and if the theoretical fragment charge state
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is compatible. If a match is identified, the scores of the parent peptide (recall that each
theoretical fragment contains a reference to its parent) are then incremented in the scoring table.
This traversal continues until the end of the bin or upon arrival at a fragment with parent
precursor mass greater than P + dP. The process is then repeated for each overlapping fragment
bin. At completion, this process using a single experimental fragment ion represents the
contribution of that fragment ion to all spectrum-spectra scores. This process is repeated for each
experimental fragment ion (Figure 3-10), in essence, decomposing many spectrum-spectrum
matches into multiple fragment-spectra matches. After processing all experimental fragment
ions, the scoring table of candidate peptides contains the number of matching ions (and

intensities) and is used to generate a similarity score for each candidate peptide.

The efficiency of this process lies in its ability to only examine fragments with a high likelihood
of contributing to the similarity score. In conventional strategies, performing a comparison
between an experimental spectrum and a theoretical spectrum can take tens or hundreds of
operations, even in cases where they share no common fragments. In the MSFragger strategy,
theoretical spectra that share no common fragments are effectively bypassed (apart from reading
a score of 0 from the scoring table) as mostly relevant fragments are compared. In the case of
open window searching, approximately 1.5 comparisons are performed on average per candidate
peptide and over 80% of fragment comparisons within the fragment index contribute to a
similarity score (Figure 3-2). This algorithmic advantage that allows MSFragger to perform so
few comparisons in similarity calculations is the reason why it performs over 100 times faster

than conventional search tools.
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Figure 3-2 Fragment indexing allows efficient spectra similarity comparisons.

The cost and efficiency of spectra similarity calculations can be approximated by the number of fragment comparisons required
for each candidate peptide. In conventional strategies, tens to hundreds of comparisons are needed to compare an experimental
spectrum to a theoretical spectrum. However, the vast majority of such fragment-fragment comparisons do not result in matches
as the differences between their m/z is often far greater than the fragment mass tolerance. Using MSFragger’s fragment index,
these comparisons are omitted as the binning strategy allows us to retrieve only the experimental-theoretical fragment pairs that
are close in m/z — the majority of which falls within the fragment mass tolerance and are deemed relevant when they contribute to
the score of a PSM. MSFragger’s alternative approach results in only a few fragments evaluated per candidate peptide across a
variety of search scenarios. Reduction in the fragment bin width allows for fewer fragment comparisons to be performed at the
expense of computational overheads associated with traversing a greater number of bins that overlap the fragment tolerance
window. MSFragger dynamically selects a bin width appropriate for the search scenario (opting for smaller bins in open search
where the number of comparisons is large, and larger bins in narrow window search, where the number of comparisons is small
relative to the overhead costs). Hence, a greater number of fragments is evaluated per candidate and a lower percentage of
comparisons are found relevant in narrow window searching due to this optimization.

Fragment index searching in MSFragger is highly optimized. Tradeoffs between the number of
bins to traverse (cost of binary searching and other overhead) and hit efficiency (percentage of
fragments that fall within the fragment mass tolerance) is weighted and considered in fragment
bin width selection. The traversal algorithm is optimized for modern CPU cache sizes to reduce
main memory accesses using a simultaneous traversal scheme for all experimental fragment ions.
This allows for overall improved performance and reduces memory bottlenecks in multi-core

systems (Figure 3-3).
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Figure 3-3 MSFragger scales efficiently across large numbers of CPU cores.

Indexing and searching operations in MSFragger are designed for modern multi-core computers and are optimized to reduce
pressures on memory bandwidth. Results are generated from open search times of a single LC-MS/MS run on a dual processor
system with 14-cores in each processor. (a) MSFragger scales almost linearly in terms of overall search times on up to 8 cores.
Reading of mass spectrometry data files and results compilation is not highly parallelizable resulting in reduced scalability
beyond 8 cores. The jump from 14 to 28 threads causes non-local memory to be accessed by each processor, impacting
scalability. (b) Fragment index searching by itself is efficiently parallelizable in MSFragger and scales to effectively utilize all
cores.

(5) Scoring and results reporting

MSFragger computes a hyperscore similar to that of X!:

Np Ny

hyperscore = log(Np! N,,! Z Ip Z Ly, ;)
i=1  i=1

where Ny is the number of matched b-ions, Ny is the number of matched y-ions, Iy e are the
intensities of matched b-ions, and |y e are the intensities of matched b-ions. While the theoretical
fragment index can be adapted to include other fragment ion types, only b and y ions are
included and used for scoring at this time. Expectation calculation is also performed in a similar
manner as X! Tandem through linear regression of the survival function to estimate the
expectation of a given hyperscore [92]. The top N results, as specified by the search parameters,
are reported in a XML file in the pepXML format, which can then be processed using the tools
from the Trans-Proteomics Pipeline (TPP) [67]. For use in other computational workflows,
converters exist that can convert pepXML results into other standard data output formats.
Alternatively, a simple tab separated values output of the results can be obtained instead of the

pepXML.
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Statistical modeling of MS/MS search results and protein inference

X! Tandem, Comet, and MSFragger output files were uniformly processed by PeptideProphet
[48] via the Trans-Proteomic Pipeline (TPP v4.8.0), followed by ProteinProphet [49] analysis to
assemble peptides into proteins/protein groups. The results from the narrow window searches
were processed using the following settings: PeptideProphet was run using ‘P’ (semi-parametric
modeling), ‘d’ (report decoy hits), ‘E’ (calculation of posterior probabilities using search engine
computed expectation values as primary peptide identification scores), and ‘A’ (high mass
accuracy model), ‘PPM’ (use parts per million instead of Daltons in accurate mass binning), and
the ProteinProphet was run using default settings. For open searches, several custom
modifications were made to these downstream processing tools. First, PeptideProphet was run
without ‘A’ and ‘PPM’ options, and using a mass accuracy model extended to cover the entire (-
1000Da to 1000Da) range (see Extended mass model below). Second, in ProteinProphet, we did
not want to incorporate modified peptides in the determination of protein groups or the
establishment of protein identities. Thus, ProteinProphet was adjusted to ignore any modified
peptides, while being careful to retain peptide identifications that are likely triggered from C13

isotope peaks of unmodified peptides.

Extended mass model in PeptideProphet

For open searches, the mass model of PeptideProphet was extended to effectively adjust for
different likelihoods of obtaining a correct identification among unmodified peptides and
peptides with different types of modifications (mass shifts). In brief, PeptideProphet models the
distribution of scores observed in each data set as a mixture of two component distributions
representing correct and incorrect identification, respectively. The key underlying assumption is
a multivariate mixture distribution of the database search score (here, the expectation values
produced by the search tools) and other parameters (most notably, the mass shift dM), which
leads to the calculation of the probability of correct identification for individual peptide
assignments by the Bayes rule. The mass shift parameter dM (which in the context of narrow
window searches is referred to as mass accuracy ) is computed for each PSM as the difference
between the calculated and measured precursor peptide masses [93]. Unlike narrow window

searches, in open searches the range of possible dM values is extended, e.g. to cover (-1000 Da
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to 1000 Da) range. The dM values are discretized into bins of 1 Da in size (centered at integer
values). The distributions of database search scores and dM mass shifts are modeled
simultaneously, resulting in the joint probability model and computation of posterior peptide
probabilities. In doing so, the mass shift dM model is estimated from the data, defining
likelihoods of observing a correct vs. incorrect identification among all PSMs belonging to a
particular dM bin. As the main outcome, two PSMs with identical expectation values but having
different binned dM values (e.g. 0 and 135) would receive very different probability scores,
reflecting the fact that the estimated fraction of correct identifications in the dM ~ 0 bin (i.e.
unmodified peptides) is much higher than that among peptides with a dM value around 135 Da
(rare modification). Note that while the mass model helps to account for the differences in the
likelihoods of observing unmodified peptides and different modified forms, coarse single Dalton
binning fails to account for the parts per million (ppm) levels of accuracy present in these data
from high mass accuracy instruments, and thus the model can further benefit from future

revisions.

Benchmarking analysis using HEK293 dataset

For extensive benchmarking and comparison between MSFragger and other tools using HEK293
dataset, all spectra were searched using MSFragger, X! Tandem (Piledriver 2015.04.01.1), and
Comet (2015.02 rev.1). Analysis was done using all files (24 LC-MS/MS runs, ~1.1 million
spectra) for identification rate benchmarking, or one representative file for timing benchmarks
(run b1906, 41820 spectra). The searched sequence database was created from the human protein
sequences of Ensembl version 78 appended with reversed protein sequences as decoys and
common contaminants (CRAP proteins sequences from gpmDB and contaminants from
MaxQuant). All searches were done considering only y- and b- ions in scoring, allowing tryptic
peptides only, up to 1 missed cleavage, and with cysteine carbamidomethylation specified as a
fixed modification. Data were searched using either 100 ppm (narrow windows searches) or 500
Da (open searches) precursor mass tolerances. X! Tandem search engine used the following
algorithm-specific parameters: select top 50 peaks for fragment matching, 20 ppm fragment ion
mass tolerance, and requiring at least 4 matched fragment ions for a PSM to be reported. Note
that X! Tandem automatically considers three additional modifications (conversion to

pyroglutamate from glutamine or glutamic acid, and N-terminal acetylation). Comet searches
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were performed using recommended settings for high mass accuracy fragment data (precursor
mass binning of 0.02 Da, 0 mass offset). MSFragger searches were performed using described
parameters. To enable more accurate comparison with X! Tandem results, MSFragger searches
(both narrow window and open) were also performed allowing same common modifications as
those mentioned above for X! Tandem specified as variable modifications. For comparison with
SEQUEST, the identification numbers (as listed in Table 3-3), i.e. the numbers of PSMs, unique

peptide sequences, and proteins, were taken from the original publication [65].

For benchmarking the computational time (as listed in Table 3-3), MSFragger, Comet, and X!
Tandem were also run using the single representative file referenced above on a quad core Linux
workstation (Intel Xeon E3-1230v2). In addition, the data were searched using Tide (Crux
version 2.1.16838), which only allows a maximum of 100Da mass tolerance and is single
threaded. The run time for Tide, and for MSFragger run under the same constrains as Tide, are
shown in Table B-1. For SEQUEST, the computational time listed in Table 1 was obtained by
searching the data using the SEQUEST-HT version as implemented as part of the Proteome
Discoverer v. 2.1 software, operated on a octa-core workstation (2x Intel Xeon E5-2609v2). The
search parameters for SEQUEST-HT were as above, except the mass tolerance in the narrow
window search was 5 ppm as in the original publication. All computational time benchmarking

results can be found in Table B-1.

Comparison between MSFragger and MODa

MODa (v. 1.51) was run in single-blind mode with a maximum modification size of 500 Daltons
and a fragment tolerance of 0.02 Daltons. Cysteine carbamidomethylation was specified as a
static modification. High resolution MS/MS search was enabled. Tryptic digestion was
specified with at most one missed cleavage. Both fully tryptic and semi-tryptic searches were
performed using MODa. FDR filtering was performed using the “anal _moda.jar” tool bundled
with the MODa tool to achieve a FDR of 1%. For comparison with MSFragger, we filtered the
fully tryptic MSFragger open search results at 1% PSM FDR (without the 1% protein level filter
that was used for the rest of the HEK293 benchmark comparison).
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3.3 Results

3.3.1 EGADS an Efficient GPU-Accelerated Database Search tool

Framework for GPU-accelerated in-silico digestion

In traditional database search tools, peptides are generated one at a time by traversing the protein
database and experimental spectra within the precursor mass window are identified and scored.
This process is simple and has minimal memory requirements but lacks the parallelism for
efficient acceleration. In contrast, peptide indexing methods [37,94,95] decouples the in-silico
digestion from similarity scoring by creating a sorted index of unique peptides prior to similarity
scoring. These methods have the advantage of eliminating redundant peptides and allow results
of in-silico digestion to be re-used in subsequent searches if the index is stored (which may not
be practical or efficient due to their size). In EGADS, we developed a hybrid strategy that takes
advantage of the massive parallelism offered by the GPU to generate on-the-fly peptide indices
that can be directly used for similarity scoring on the GPU in multiple digestion-scoring cycles

(Figure 3-4).

EGADS begins by partitioning the sequence space into chunks that can be processed within the
limited GPU memory. It then performs in-silico digestion of the given chunk into individual
peptides given the specified cleavage rules. These peptides then undergo an optional de-
duplication step to remove redundant peptides and are then expanded into multiple entries
representing each modified masses that can be generated from variable modifications. The
entries are then sorted to create the peptide index. Candidate peptides are then identified for
each experimental spectrum and the number of scoring events is computed (by summing the
number of structural isomers for each modified mass). The similarity scores are then computed
in parallel and results are transferred to the host. At this point, the peptide index, along with all
intermediate data structures, is discarded to free up GPU memory for the next digestion-scoring
cycle (Figure 3-5). At the end of all digestion-scoring cycles, the results are summarized on the

host and written to a file.
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Figure 3-4 Digestion-scoring cycles in EGADS.
In each digestion-scoring cycle, the partitioned database chunk is transformed in parallel to a peptide index on the GPU. The

peptide index is used for similarity scoring on the GPU. After the scores are reported to the host, the index is discarded to begin

the next digestion-scoring cycle.
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Figure 3-5 GPU memory usage of EGADS in digestion-scoring cycles.
Memory allocation by EGADS is shown for a typical EGADS run. Each peak and trough represents one digestion-scoring cycle.

Benchmarking of EGADS using a HelLa dataset

We first compared the number of identifications that is obtained by EGADS to that of Comet and
X! Tandem using a HeLa dataset. At 1% FDR, EGADS (using the PeakMatch kernel) identified
45,248 peptides (unique peptide sequences) and 225,228 PSMs. Comet and X! Tandem
respectively identified 46,620 and 49,866 peptides, and 238,978 and 212,408 PSMs (Figure 3-6).
Paradoxically, X! Tandem identified the fewest number of PSMs but the highest number of
peptides. This might be explained in part by the fact that X! Tandem has certain variable
modifications that cannot be disabled which allows it to identify a greater number of peptides but
the sensitivity of the cross-correlation function allows Comet to identify the greatest number of
PSMs (with EGADS performing similarly as X! Tandem for PSMs as it also used the PeakMatch
function but performs similar to Comet at the peptide level as it does not account for these
additional variable modifications). Overall, EGADS performs similarly to these popular search

engines and can reliably perform peptide identifications.
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Figure 3-6 Identifications in the HeLa dataset as a function of FDR.
Number of peptide-spectrum matches as a function of FDR. (b) Number of identified peptides as a function of FDR.

We then evaluated the runtime performance of EGADS, which is the primary focus of this study.
We compared EGADS to Comet and X! Tandem using the Xcorr and PeakMatch functions
respectively under different digestion modes and precursor tolerances (Table 3-1). Comet only
takes 1.6 times longer to perform a semi-tryptic search when compared to a fully tryptic search.
Given the large difference in search space, this suggests that Comet spends a substantial amount
of time in operations unrelated to digestion and scoring (such as input pre-processing). In
contrast, EGADS takes 16.4 times longer to perform the semi-tryptic search suggesting that it is
much more efficient in input pre-processing. On average, EGADS GPU is 36.3X faster than
Comet but much of that can be attributed to differences in input pre-processing as EGADS GPU
is only 4.3X faster than EGADS CPU. This highlights the importance in having a reference CPU
implementation to ensure that implementation differences are not attributed to GPU-acceleration.
In the PeakMatch comparison, EGADS CPU performs similarly as X! Tandem, with EGADS
being more efficient in input pre-processing and X! Tandem being slightly more efficient in
digestion and scoring (based on the relative changes in runtimes as the search space increases).
On average, EGADS GPU performed 36.9X faster than X! Tandem and 25.7X faster than
EGADS CPU, showing that PeakMatch is much more amenable to GPU-acceleration than the

Xcorr similarity function.
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Table 3-1 Running time of EGADS compared to Comet and X! Tandem.
Overall running time in seconds of EGADS in both CPU and GPU mode compared to popular search tools.

Search time (seconds)
Search engine

Tryptic Tryptic Semi-tryptic Semi-tryptic
20ppm 1Da 20ppm 1Da
Xcorr performance
Comet 363.0 381.0 582.0 2379.0
EGADS CPU 11.2 37.2 184.0 889.2
EGADS GPU 4.9 10.0 30.0 172.6

PeakMatch performance

X! Tandem 161.3 5123 1104.1 7606.6
EGADS CPU 41.7 302.8 1023.7 8517.2
EGADS GPU 43 11.2 34.6 233.1

Effects of search parameters on GPU-acceleration

To further investigate the influence of various search parameters on GPU-acceleration, we ran
EGADS in both CPU and GPU mode across a diverse set of conditions, recording the total time
taken in individual steps across all digestion-scoring cycles (Table B-2). We first looked at the
acceleration of the digestion step across the three digestion modes (Figure 3-7). Average
speedup for tryptic digestion was 15.1X, semi-tryptic digestion was 13.4X, and non-specific
digestion resulted in an average speedup of 13.1X. The trend of reduced performance gains for
more complex digestions is likely due to the overheads associated with each digestion-scoring
cycle. As the complexity of the digestion increases, the database must be partitioned into smaller
chunks so that the intermediate data structures can fit within the same amount of GPU memory.
This phenomenon is also affected by the precursor mass window. Average digestion speedup of
15.0X was observed for runs using a precursor mass window of 20ppm while an average of
13.1X was observed for runs with a precursor mass window of 1 Da. The increased precursor
mass window translates into a larger number of scoring events per digested peptide. The
memory required to calculate these additional similarity scores result in fewer peptides processed

per digestion-scoring cycle, leading to larger number of cycles and reduced acceleration.
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a) Accelerated Digestion Performance b) Accelerated Scoring Performance
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Figure 3-7 Average GPU speedups as a function of digestion mode or similarity function.

Speedups are computed relative to the reference EGADS CPU implementation. (a) Average speedup of all digestion steps with
standard error bars shown. (b) Average speedup for the entire scoring phase and for the similarity computation step only.
Standard error bars are shown.

We next examined the acceleration of the similarity scoring. The scoring phase is composed of
three main steps: preparation of scoring blocks, computation of similarity scores, and updating
the per-spectrum results structure. For the entire scoring phase, we observed average speedups of
4.7X for Xcorr, 38.3X for PeakMatch, and 67.8X for PeakBackground. Focusing only on
similarity score computations resulted in speedups of 10.0X for Xcorr, 67.2X for PeakMatch,
and 125.2X for PeakBackground (Fig 3-7). These trends reflect the differences in scoring
function complexity with greater speedups for more complex functions where the work to data
ratio is large. For example, the Xcorr function is calculated as a simple dot product between the
theoretical spectrum and the pre-processed experimental spectrum. The amount of information
(the binned experimental spectrum) transferred to the local processor is large compared to
number of operations performed (sums up the bins where theoretical fragments exist) and
quickly saturates the memory bandwidth on the GPU, limiting gains. In contrast, the PeakMatch
and PeakBackground algorithms use peak lists, which are much more compact compared to a
binned spectrum, and performs many more operations (checking fragment tolerances as the two
peak lists are merged) in scoring, leading to much large speedups compared to the reference CPU
implementation. As a result, even though there are great differences in the computational
complexity across the three scoring functions, their actual runtimes are quite similar after GPU

acceleration (Figure 3-8).

48



2000
|

B CPU
m B GPU
o 8 |
5 B
&}
L o |
£ ]
m —
E
|_ (=
[Te)
<
[}
o J
XCorr PeakMatch PeakBackground

Similarity Function

Figure 3-8 Total time used for similarity scoring for different similarity functions.
Total amount of time spent in the similarity scoring phase for searches using a semi-tryptic digestion of the Refseq protein
database and a 20 ppm precursor mass tolerance.

In CPU based scoring, the computation of similarity scores accounts for over 90-99% of the
computation time, depending on complexity of the scoring function (lower for simple functions
like Xcorr). However, in GPU accelerated scoring only the computation of similarity scores is
accelerated leading to situations where it takes longer to update the results structure than to
perform similarity scoring on the GPU (notably when Xcorr is used). Introduction of CPU-GPU
concurrency where the CPU performs this task while the GPU works on the next digestion-
scoring cycle can eliminate this bottleneck in future work. We also note that the time taken for
CPU-based digestion is 2.76 times that of GPU-based scoring, indicating that digestion, rather
than scoring would be the bottleneck if not for the GPU-accelerated digestion implemented in
EGADS. This is particularly important for high-resolution data as this ratio increases to 3.41 if

instances with a 1 Da precursor window are excluded.

Impact of GPU memory on EGADS runtime

As memory plays a large role in effecting the speedup of GPU accelerated searches, we directly
examined its effect on the overall runtime of a GPU accelerated search at different memory
limits. This is also important for informing GPU purchasing decisions as the same GPU can be
sold with differing amounts of on-board memory. We performed tryptic, semi-tryptic, and non-

enzymatic searches of the Refseq protein database using a precursor tolerance of 20ppm (the
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effects at 1 Da are more pronounced as more memory is required for similarity scoring but is an
unlikely use case for modern high resolution instruments) and the PeakMatch algorithm (Table
3-2). For fully tryptic searches, EGADS does not benefit from additional memory as it can
accommodate the entire database in 1-2 digestion-scoring cycles. For semi-tryptic search and
non-enzymatic search, moving from 1024MB to 2560MB decreased the runtimes by 15.7% and
11.1% respectively. This modest improvement indicates that while EGADS benefits from
additional GPU memory, its scheme for partitioning the computation allows for effective GPU

acceleration even on devices with limited on-board memory.

Table 3-2 Running time of EGADS as a function of on-board memory.
EGADS is operated in GPU mode using the PeakMatch algorithm in each of the three digestion modes. Total search times are
recorded for different amounts of allocated GPU memory.

Digestion Mode Search time (seconds)
1024MB 1536MB 2048MB 2560MB
Tryptic 7.93 7.89 7.89 7.89
Semi-tryptic 9.76 9.01 8.51 8.23
Non-enzymatic 200.11 190.21 182.37 177.87

Application of EGADS to open database searching

We investigated the application of EGADS for blind modification searching by adapting the
PeakMatch algorithm to include additional ion-series that accounts for shifted fragment ions and
running it in open mode (precursor mass tolerance set to 200 Da). For comparison, we performed
blind modification searching using MODa [41], an established blind modification search tool
that uses sequence tags. On a single run from the HeLa dataset, MODa took 7333 seconds to
perform a single-blind modification search. In contrast, EGADS took 357 seconds using its
modified PeakMatch scoring kernel, making it 20.5 times faster than MODa in nominating the
most abundant modifications. The recovered modification profiles were similar, identifying
common expected mass differences (Figure 3-9). Interestingly, MODa appears to have a slight
bias towards smaller mass differences based on the modification profile of decoy sequences

(which can be assumed to be uniform in nature).
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a) Modifications on Forward Sequences b) Modifications on Decoy Sequences
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Figure 3-9 Modification profiles of HeLa dataset as determined by EGADS open searching and MODa.

Scaled histograms of PSM counts binned to unit mass differences. Bins 0 (unmodified), 1 (missed assignment of mono-isotopic
peak), and 16 (oxidation) are hidden. (a) Modification profile comparing EGADS and MODa on forward sequences. (b)
Modification profile comparing EGADS and MODa on decoy sequences.

3.3.2 MSFragger implements a novel fragment ion index that enables ultrafast
database search

Novel fragment ion index enables ultrafast database search

MSFragger begins by performing an in silico digestion of the protein database (Figure 3-10). It
then removes redundant peptides and orders them by their theoretical mass (including any
modified peptides generated as a result of variable modifications), creating a peptide index.
Although peptide indexing has been described as a way to accelerate database search [37,94,95],
this step alone has little impact on spectrum similarity calculations, which is the most time-
consuming step. MSFragger addresses this bottleneck by creating a novel theoretical fragment
index. This enables highly efficient and simultaneous scoring of an experimental spectrum

against all candidate peptides (see section 2.2.2, Figure 3-2 and Figure 3-10 b-d).
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Figure 3-10 Database-search strategies and the MSFragger algorithm.

Conventional database search involves in silico digestion of a protein database (DB) into candidate peptides from which
theoretical spectra are sequentially generated and compared against experimental spectra. (b) MSFragger digests a protein
database and generates a nonredundant set of peptides that are arranged in an index, which is then used to generate a fragment
index for efficient and simultaneous scoring of an experimental spectrum against all candidate spectra. (c) Mass binning and
precursor mass ordering in the fragment index allows rapid retrieval of candidate spectra that match a given experimental
fragment ion. Scores of candidate peptides corresponding to retrieved spectra are incremented. (d) Processing of experimental
fragment ions results in identification of all matching fragments between the experimental spectrum and candidate theoretical
spectra, decomposing spectrum-to-spectra matches to fragment-to-spectra matches. Matched fragments can then be used to
compute a similarity score.

We first evaluated the performance of the MSFragger algorithm on a deep HEK293 [65] data set
and compared it to that of commonly used search engines Comet [34] and X! Tandem [36]. The
scores and error rates of modified peptides are likely to be different from those of unmodified
peptides, prompting class-specific FDR estimation [96,97]. To account for these differences, we
adopted an extended mass model when computing peptide probabilities, ensuring mass-shift-
dependent FDR estimation and filtering. We note that in open searches, the term ‘modifications’
is used interchangeably with ‘mass shifts’ and includes in-source fragmentation events, missed
cleavages, and isotope errors. Overall, all search engines performed similarly when run using
similar search parameters (Table 3-3). In the traditional (narrow-window) search, MSFragger
and Comet identified 9,795 and 9,757 protein groups (1% protein FDR) and 456,548 and
461,806 PSMs (1% protein and PSM FDR), respectively. MSFragger also identified similar
numbers as X! Tandem, when accounting for the innate variable modifications that X! Tandem
specifies by default. In open search, which represents the primary motivation for the

development of MSFragger, we observed a dramatic increase in the number of identified PSMs

52



across all search engines, in line with the earlier report using SEQUEST4. For example,
MSFragger identified 609,897 PSMs using open search, an increase of 33.6% compared to
narrow-window search, with a minimal loss of 1.4% in the number of protein identifications.
When performing protein inference using open-search results, we took a conservative approach,
using only unmodified peptides and peptides with specified variable modifications (Online
Methods). When all modified peptides were included, the number of protein identifications from
open searches exceeded that of narrow-window searches (for example, by 4.4% for MSFragger).
However, additional work is necessary to carefully evaluate the accuracy of the protein inference

step when using all peptides identified in open search.
Table 3-3 Identification rates and analysis time for the HEK 293 data set.

Identification numbers are for the entire 24-run LC-MS/MS data set, filtered at 1% FDR at both protein and PSM levels. Search
times given are for a single LC-MS/MS run consisting of 41,820 MS/MS spectra analyzed on a quad-core workstation.

Search engine Time (min) Proteins PSMs Peptides
Narrow-window search
SEQUEST® 9.3 9,513 396,736 110,262
Comet 1.7 9,757 461,806 115,612
X! Tandem® 1.7 10,182 466,701 119,304
MSFragger 0.4 9,795 456,548 115,755
Open search (500 Da)
SEQUEST*® 673.0 9,178 510,139 111,205
Comet 815.4 9,545 584,218 123,679
X! Tandem 976.0 9,830 638,052 133,318
MSFragger 5.4 9,656 609,897 126,037

 For time estimation, SEQUEST searches were performed using Proteome Discoverer 2.1 (SEQUEST HT) on a more powerful
eight-core workstation. Narrow-window searches were done with a 100-p.p.m. precursor mass window, except for SEQUEST (5
p.p-m.). SEQUEST identification rates were taken from ref. [65].

® X! Tandem searches include several variable modifications that cannot be turned off.

Open searches using conventional database search tools are slow, given the vastly expanded
search space. Comet and X! Tandem took 13.6 and 16.3 h, respectively, to analyze a single LC-
MS/MS run using a quad-core workstation. In stark contrast, MSFragger took only 5.4 min,
making it >150 times faster than these commonly used tools. We also compared MSFragger to
tools that employ peptide indexing, such as Tide [89] and SEQUEST HT (Table B-1). Tide,
which allows 100-Da precursor windows only and does not take advantage of multiple processor
cores, took 176.7 min (compared to 9.8 min with MSFragger when subjected to the same
constraints). SEQUEST HT (Proteome Discoverer 2.1) took more than 11 h on a more powerful

octa-core workstation. The speed and scalability (Figure 3-3) of MSFragger allowed open
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searching of the entire HEK293 data set (24 LC-MS/MS runs) in less than 30 min on a single
powerful workstation, compared to the days or even weeks that would be required to search these

data using existing tools on the same machine.
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Figure 3-11 Open searching identifies similar modifications as MODa.

MODa, run in single blind mode, generates a similar modification profile as that of an open search with differences that are likely
due to the characteristics of the modification. Open searches (run in fully tryptic mode in both comparisons) are more likely to
recover mass shifted peptides that have little discernible alterations in their tandem mass spectra (such as the modification near
302 Da) as it does not attempt to localize the modified mass. MODa is likely more effective for modifications that are more
commonly found near the C-terminus (and disrupts the y-ions used in open search identification). MODa running in semi-tryptic
mode (the mode of operation as recommended by its authors) recovers a greater number of PSMs at the expense of additional run
time.

We also sought to compare MSFragger to algorithms specifically designed for comprehensive
PTM analysis. MODa[41] has been established as an effective tool for blind PTM search. Using
comparable settings, both tools produced very similar PTM profiles (Figure 3-11), but
MSFragger identified a larger number of PSMs than MODa, at an FDR of 1%: 622,857
(MSFragger, tryptic search) versus 522,812 (MODa, semi-tryptic search) and 439,216 (MODa,
tryptic search). The difference between MODa and MSFragger results can be explained, in part,

by the fact that MODa’s algorithm localizes the mass shift to a particular amino acid, whereas
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open searching identifies only the peptide sequence and the mass shift (which may be the result
of multiple modifications). Considering the computational time, MSFragger was notably faster
(5.4 min; 24.5 min when restricted to a single core) than MODa, which took 204.7 min (semi-
tryptic search) and 150 min (tryptic search) for a single LC-MS/MS run on a quad-core
workstation (Table B-1).

3.4 Discussion

In this chapter, we presented two database search tools that are both considerably faster than any
existing tools. EGADS allows narrow window searches to be rapidly performed on large search
spaces (such as semi-tryptic or non-enzymatic digestions involving custom databases predicted
from sequencing data) as the GPU-accelerated digestion component is much faster than the
CPU-based indexing performed by MSFragger while not performing a large number of similarity
scores. However, the requirement of specialized hardware makes it inaccessible to many users
and prohibits deployment on inexpensive cloud computing resources. The ability of MSFragger
to run on conventional computers makes it much more accessible and scalable. Its algorithmic
strength in similarity calculations makes it ideal for open searches where a large number of
similarity comparisons are calculated. However, for narrow window searches, much of the
fragment index can be left untouched when they represent the theoretical fragments of digested
peptides that have no experimental spectra within the precursor mass tolerance. This inefficiency
can be ameliorated to a certain extent by running MSFragger in batch mode, where multiple LC-
MS/MS runs are processed sequentially, reusing the generated fragment index and increasing the
coverage of the m/z range by experimental precursors. For users without access to GPUs,
MSFragger in narrow window mode still enables much faster searches than conventional search
tools, especially in batch mode. However, for labs equipped with the capability to perform both
types of searches, the two tools or approaches are complementary, with EGADS more suitable
for narrow window searches and MSFragger for open searches. It is also worthy to note that
EGADS implements multiple scoring functions, potentially enabling multiple GPU accelerated
searches to be performed using different scoring functions to reduce the number of false

positives that are ambiguous identifications.
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The indexing algorithm presented in MSFragger has the potential to be used in a number of
different mass spectrometry applications where comparing spectra is a computational bottleneck.
This includes spectra clustering, testing new hypotheses on indexed experimental spectra, or
identifying spliced peptides. The algorithm can also be adapted to consider shifted fragment ions
to further empower the open search concept by building different fragment indices based on
fragment charge. Finally, as the approaches are orthogonal, a GPU implementation of
MSFragger is theoretically possible, allowing such an implementation to be thousands of times

faster than the conventional database search tools today that do not employ either innovation
3.5 Data availability

Raw mass spectrometry files are available from public repositories as described. The processed
data files supporting the findings of this study are available upon request. The EGADS database
search tool is available upon request. MSFragger can be obtained from

www.nesvilab.org/software. A software manual for running MSFragger can be found in

Appendix D.
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CHAPTER IV

COMPREHENSIVE PROFILING OF MODIFIED PEPTIDES IN
SHOTGUN PROTEOMICS USING THE
OPEN SEARCH STRATEGY

Contents of this chapter have been published in Nature Methods [62]

4.1 Introduction

Post-translational modifications (PTMs) regulate cellular functions in ways that cannot be
studied through deep genomic or transcriptomics sequencing. A wide range of PTMs including
phosphorylation, ubiquitination, glycosylation, and acetylation has been characterized and
localized to tens of thousands sites in the human proteome [98]. The most common and prevalent
PTM studied is phosphorylation likely due to their function in signaling and involvement in
cancer processes [99]. In these studies, the PTM of interest is often chemically enriched prior to
analysis by mass spectrometry. Hence, it was of surprise and excitement when it was reported
that an additional 30% PSMs were identified to be modified peptides by the open search strategy
in an non-enriched HEK 293 proteome, indicating that there is a vast assortment of chemical and
post-translational modifications that can be studied without enrichment in datasets already
present in public repositories [100] representing diverse tissues and conditions. Furthermore, the
open search strategy is known to recover only 50% of modified peptides, suggesting a potential
increase in the identification rates by another 30%. The large number of modified peptides
collected in non-enriched samples might be due to recent increases in instrument speed, allowing
less abundant modified peptide forms to be effectively sampled in data-dependent acquisition.
These modified peptides have long eluded identification in tandem mass spectrometry even
though their spectra are collected due to the computational burdens of identifying blind

modifications, making them part of the dark matter of shotgun proteomics [101]. The open
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search strategy provides a simple and direct opportunity to illuminate this dark matter and allow
us to comprehensively study the full complement of chemical and post-translational

modifications in proteomics.

The open search strategy is not without limitations. Open searching can be computationally
infeasible for large datasets without the use of the more efficient algorithms presented in Chapter
Three. Aside from the computational costs, it does not recover all peptides all unmodified
peptides, recovers only 50% of modified peptides (even for the most common modifications),
and has difficulties identifying peptides with modifications near the peptide C-terminus (due to
the unaccounted for shifted y-ions). Hence, we attempted to address these concerns and refine
the open search strategy through MSFragger. In addition, we wanted to examine the diversity
and abundances of modifications across experiments to understand if their impact on false
positives is uniform across different experimental conditions or if the most common
modifications are consistent enough to be targeted through simple variable modification
searches. For these purposes, we performed large scale modification profiling of various shotgun
proteomics experiments and also examined the presence of modified peptides in several

proteomics applications.
4.2 Materials and methods

Datasets and Data Preparation

Six public datasets, all analyzed using the Thermo Scientific Q Exactive mass spectrometer was
obtained and conversion of vendor .raw files to mzML was performed as previously described.
Three of the six was used for the large-scale profiling studies: a HEK 293 dataset [65]
(PXDO001468, 1.12 million MS/MS spectra), a HeLa dataset [99] (HeLa proteome profiles from
PXD000612, 2.8 million MS/MS spectra), and a triple-negative breast cancer (TNBC) dataset
[66] (PRDB004167, 19.6 million MS/MS spectra). A clinical breast cancer dataset [102]
(PXDO000815, 34.3 million MS/MS spectra) was used for the SILAC analysis. A large scale
study involving 5,188 LC-MS/MS runs [103] (raw data obtained from authors, 64.7 million
MS/MS spectra) was used for the AP-MS analysis. Finally, a human RNA binding protein study
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[104] (human RBP runs from PXD000513, 8834 MS/MS spectra) was used to demonstrate the
utility of MSFragger in detecting RNA-crosslinked peptides.

Boosting unmodified peptides

MSFragger implements an unmodified peptide boosting feature. When invoked, PSMs that have
an absolute value of the mass shift dM (defined as the difference between the theoretical and
observed precursor peptide mass) less than the true precursor tolerance threshold specified by the
search parameters ‘precursor true tolerance’ / ‘precursor true units’ are placed into a different
scoring heap that only contains such unmodified peptides. After the calculation of expectations
for all PSMs in both the regular and unmodified scoring heap, a ranking expectation is generated
for all PSMs. For entries in the regular scoring heap, containing both modified and unmodified
PSMs, the ranking expectation is the same as the computed expectation. The ranking expectation
for entries in the unmodified peptides heap are modified based on the specified search
parameters (multiplied by the specified expectation boost or an arbitrary small value for those
that pass the ‘zero _bin_accept _expect’ expectation) and recorded as the ranking expectation. All
PSMs are then merged and ordered by their ranking expectations prior to results reporting. It is

important to note that the original expectations are reported rather than the ranking expectation.

Complementary ions for the recovery of C-terminal modifications

The addition of complementary ions follows the basic spectra pre-processing described
previously [105,106]. The top N observed fragment ions, as specified by the
‘add_topN_complementary’ ions parameter are selected and are assumed to be either a singly
charged y-ion for all spectra and a doubly charged y-ions for spectra with an identified charge
state of 3+ or higher. The m/z of the complementary singly charged b-ion is then calculated from
the calculated neutral mass of the assumed y-ion and the observed precursor mass. A
complementary ion with this m/z and intensity equal to the y-ion from which it was derived is
then inserted into the spectrum. Note that complementary ions are generated for both the singly
charged and the doubly charged assumption of the observed fragment ion so that N
complementary ions are inserted for spectra with charge state 2+ and 2N complementary ions are

inserted for spectra with charge state 3+ or higher. These modified experimental spectra are then

59



subjected to open database searching. As the original experimental fragment ion (from which
the complementary ions are generated) is retained in the spectrum, it is possible that a single
experimental observation can be incorrectly interpreted as multiple fragmentation events. Future
work involving the addition of complementary ions to the theoretical spectrum instead will

eliminate this problem and improve localization of modifications.

MS1-based precursor mass correction and identification based calibration

Instrument recorded precursor mass values for MS/MS spectra can be inaccurate while repeated
observations of a precursor in survey (MS1) scans can be highly precise. A supplementary tool
was developed as part of the MSFragger pipeline that, for each MS/MS event, takes the recorded
m/z and retention time, examines the corresponding space in MS1 scans, and extracts the nearest
peak feature by tracing the mass in retention time. The m/z is then calculated as a weighted
average (by intensity) of all peaks in the trace. The precursor m/z for each MS/MS event is then
updated with this value. For certain MS/MS events in which it was not possible to reconstruct the
associated peak feature, no changes to the recorded m/z are made. Following precursor mass
correction, identification-based mass recalibration of the MS/MS run is performed. In order to
compare modification profiles that are resolved at sub-ppm levels across disparate experiments
and labs, this calibration step is critical as slight deviations can cause broadening of features in
the profile and loss of power in recovering modifications. To perform this calibration,
unmodified peptide identifications (filtered at 1% PSM level FDR using the PeptideProphet
probability) with observed mass difference dM less than 20ppm are selected. As instrument bias
may drift over time and varies across m/z, a two-dimensional calibration grid is constructed
using a retention time width of 5 minutes and an m/z width of 200 m/z. For each unmodified
peptide, the corresponding cell in the grid is found. A weighted ppm bias, based on the proximity
to each point, is added to each of the four points corresponding to that cell. The weighted
averages on the calibration grid are then used to adjust the precursor m/z for all observed MS/MS
events in the run. The corrected and calibrated m/z values are then written to a calibration file

that is incorporated in downstream analysis.
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Figure 4-1 MS-1based precursor mass correction and identification based calibration.

(a) Visualization of a monoisotopic peptide ion peak using Batmass represented as a series of different observed m/z along
retention time (vertical axis). (b) Calibration adjustment factors applied to each PSM plotted by their observed m/z and retention
time.

Large scale profiling of chemical modification

Large scale profiling of chemical modifications was performed using the sequence database
created from the human sequences of UniprotKB (Download date: 2015-10-09) appended with
reversed protein sequences as decoys and common contaminants (cCRAP proteins sequences from
gpmDB and contaminants from MaxQuant). A precursor mass tolerance of 500 Da was used
with fragment tolerance of 20 ppm. Isotopic error correction was disabled and common variable
modifications of methionine oxidation and N-terminal acetylation were enabled.
Carbamidomethylation was specified as a static modification. PSMs and peptides that contain
modifications that were specified in our search parameters were not considered to have a mass
shift for the tabulation of mass shifts. Fully tryptic digestion was specified allowing up to 1
missed cleavage. Complementary ions and boosting features were disabled and other

MSFragger options were left as default.
MSFragger search results from each LC-MS/MS run were subjected to peptide validation as

described above. Peptide probability was determined by the highest supporting PSM probability.
Results for each experiment were aggregated and filtered at 1% peptide FDR. PSMs were
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separately filtered at 1% PSM FDR and only PSMs that passed both the 1% PSM FDR and 1%

peptide FDR were retained for downstream analysis.

Modeling of observed modification profiles and detection of modification peaks

Normalized density profiles for each experiment were generated for comparison across different
experiments. Corrected mass differences, with random noise on the order of +/- 5 uDa added to
break ties, were binned using 0.0002 Da bins to form an initial counts histogram. These counts
were then distributed to adjacent bins using the weights 0.23 (bin to left), 0.49 (same bin), 0.23
(bin to right) to smooth the histogram and improve the monotonicity of peak shapes. These
histograms were then normalized by dividing each bin by the total number of spectra (in
millions) acquired in the respective experiments. Averaging the counts in each bin generated an
average profile of the three experiments. Mixture modeling of the average profile failed to
precisely capture known modifications. Examination of the profile revealed peaks of varying
broadness and further examination revealed the peak shape to be a complex function of the
charge state and m/z of the underlying PSMs. Instead, a prominence based peak detection
method was used that found features on the histogram by requiring that the peak prominence was
at least 0.3 times that of the peak height. As known modifications were observed to have a peak
width of approximately 0.004 Da (given current instrument accuracies and the
correction/calibration method applied as described above), these features were ordered by the
rise in density compared to the 0.003 Da flanking regions. It should be noted that some of the
detected features (mass bins) could be artifacts of the peak picking algorithm, or may correspond

to various combinations of multiple modifications.

Mass shift annotation using Unimod

The Unimod repository was downloaded (on 2016-04-22) in XML format and was parsed to
extract modification names and mass shifts. Mass shifts associated with the addition or deletions
of the twenty amino acids were appended to this list. Multiples of the mass difference between
carbon-13 and carbon-12 were added as ‘First isotopic peak’ and ‘Second isotopic peak’ to
account for isotopic peak picking errors. Entries that represent a single mass shift in this list

were concatenated into a single entry so that a single text identifier represented each mass shift.
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Annotation of the list of mass shifts proceeded in decreasing order of abundance. For each mass
shift, the mass is queried against the described database of annotations with a mass tolerance of
0.002 Da. If a match is found, the mass shift is annotated with the entry from the database. If
the mass shift cannot be matched to a single entry in the database, we attempt to compose
multiple (up to 3) previously observed (in the order of annotation) mass shifts to account for
compound modifications. If the mass shift remains unexplained, we add it to our list of

annotations as a new un-annotated mass shift.

Localization of detected mass differences

For each PSM, including unmodified peptides, the observed mass difference is evaluated to see if
it can be attributable to a modification of a specific site (position in the peptide). For each
MS/MS run, the list of identified spectra (which includes the spectrum ID, peptide sequence, list
of variably modified amino acids, and observed mass difference) is obtained from the
MSFragger analysis pipeline, and the corresponding MS/MS spectra are extracted from the
original mass spectrometry data file. The number of matched fragment ions is then re-computed
using the same hyperscore function as originally done in MSFragger. The observed mass
difference is iteratively placed on each amino acid, and for each position the spectrum similarity
is computed to derive the number of matching fragment ions, and then the hyperscore. A PSM is
called localizable if there is at least one position that generates a higher number of matched
fragments than the rest. As there may be insufficient fragments to support an unambiguous
localization in the peptide sequence, all positions that share the highest hyperscore are marked as
a possible localization site. A PSM is called to be localized to the N-terminal if the localized

positions form an uninterrupted stretch of amino acids from the N-terminal.

The localization results are then aggregated for each identified mass bin, and their localization
characteristics examined. For each bin, the overall localization rate (the percentage of PSMs
within that bin that are localizable), the N-terminal localization rate (the percentage of PSMs
within that bin that are localizable and the localization is N-terminal), and the amino acid
enrichment are computed. The amino acid enrichment is determined by first computing the
amino acid composition of all peptides within the mass bin. Then, the number of localization

sites attributable to each amino acid is summed across all localizable PSMs (for a PSM with
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multiple localization sites, each site gains a weight equal to 1 / number of localized sites). The
total localization count for each amino acid is then normalized to form the localization rate.
Amino acid enrichment is then determined by the ratio of localization rate to composition rate. It
should be noted that while this metric is informative in many cases, it may be misleading in bins
containing few PSMs or bins that are dominated by several abundant peptides that skews the

counts and normalization factors.

Spectral similarity scores for modifications

For each modified PSM, we identify corresponding PSMs of the same charge state that identifies
the same peptide but with a mass difference of less than 0.001 Da (indicating an unmodified
peptide). We compute the average cosine similarity between the spectrum of the modified PSM
and spectra corresponding to the unmodified peptide (if there are more than 50 such spectra, 50
are chosen at random). We then normalize for variations within unmodified spectra by dividing
the average cosine similarity within the set of unmodified spectra to obtain a similarity score for
the modified PSM. For each modification mass, its similarity score is determined by averaging

the similarity scores calculated for each modified PSM within its mass tolerance.

Analysis of SILAC datasets

The breast cancer SILAC dataset was analyzed using the same search settings as the large-scale
modification profiling described above with the exception that two variable modifications were
added for the heavy labeled residues: 8.0142 Da at lysine and 10.00827 Da at arginine. Precursor
mass correction/calibration and peptide validation were performed on each file and the
aggregated files from the experiment were subjected to a 1% peptide and PSM FDR filter (each
retained PSM passed 1% PSM FDR and matched a peptide that passed 1% peptide FDR). Each
PSM in the resultant list was then examined for the presence of a heavy labeled residue (as
determined by identification with a heavy labeled variable modification). Unlabeled PSMs were
considered to have originated from the patient samples while labeled PSMs were considered to

have originated from the super-SILAC mix.
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Analysis of AP-MS dataset

Open search parameters for the AP-MS dataset were also similar to the settings used for large-
scale modification profiling with one exception. As iodoacetamide treatment of samples was not
used, no static modification was specified for cysteine. Each of the 5,188 runs was subjected to
peptide validation and mass correction individually. FDR filtering was performed for each run
individually, filtering the data at 1% FDR (at both peptide and PSM levels). Narrow window
searches were performed using the same parameters with the exception of a 20 ppm precursor

tolerance window and isotope selection errors of 0/1/2 was enabled.

For each LC-MS/MS run, all PSMs that were matched to a UniProt accession associated with the
bait protein were considered to have originated from the bait protein (including any shared
peptides). The number of unique sequences was determined by examining the set of unique
peptides represented by the PSMs. Total counts for a particular bait protein across the replicates
were determined by summing bait PSMs across the two replicates and determining the number of
unique peptide sequences. Average fold change between narrow window and open searches was

determined by linear regression in R.

Analysis of RNA-protein crosslink dataset

Open searching for the crosslinking dataset was performed similar to the large-scale modification
profiling searches. The precursor mass window was enlarged to +/- 1000 Da to accommodate
heavier crosslinked fragments. Carbamidomethylation was not specified as a fixed modification
on cysteine. Comparison of results obtained by RNPxI and MSFragger was performed using the
peptide sequence and mass difference. Identifications from RNPxI were translated into a peptide
sequence and a total RNA-peptide mass. Identification from MSFragger was considered to be a
match if it shared the same peptide sequence and had a total mass that differed from the RNPxI-

based identification by no more than 0.05 Da.

65



4.3 Results

4.3.1 Refinement of the open search strategy using MSFragger

The development of MSFragger algorithm not only makes open searching practical, but also
presents an opportunity to further investigate and refine this computational strategy. It is often
assumed that the number of identified unique peptide sequences would be greatly reduced in
open search compared to narrow window search due to the vastly expanded search space.
However, our results using multiple search engines (Table 3-3) demonstrate that this is generally
not the case. At the same time, it is true that not all unmodified, tryptic peptides found in narrow
window search are found in open search. To see if those peptides can also be recovered, we
implemented a boosting feature within MSFragger that preferentially ranks unmodified peptides
over modified peptides when performing open search (see section 4.2). However, such a
strategy, while implemented as an option in MSFragger, has not been found to significantly

improve the results (Figure 4-2).
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Figure 4-2 Preferential boosting of unmodified peptides fails to rescue missing peptides.

Boosting recovers a greater percentage of the peptides found in narrow window search prior to FDR filtering. Note that not all
peptides identified in narrow window search are recovered in open search with the boosting option enabled due to the presence of
a default peptide probability filter of 0.05 in PeptideProphet (disabling this filter using the —p0 option results in near 100%
recovery). However, after controlling for FDR, boosting does not improve the peptide overlap between open and narrow window
search.

In open searching, there is often a reduction in sensitivity for modified peptides containing
common modifications that are specified as variable in narrow window searching (as open
searching does not account for modified fragment ions). In order to address this issue, the speed

of MSFragger allows us to specify variable modifications in conjunction with open searching.
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We selected peptides identified with a single oxidized methionine in narrow window search and
examined the proportion of such peptides observed in open search (explicitly as an oxidized
methionine containing peptide or with a mass difference of +16 Da). In an open search without
variable modifications, 45.4% of the peptides with oxidized methionine could be recovered in
comparison to 87.5% for all peptides (Figure 4-3). Specifying oxidized methionine as a variable
modification in our open search boosted the percentage of recovered oxidized methionine

peptides to 88.8%, which is close to the 90.3% recovered for all peptides.
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| | O All Peptides
Open Search with I\/Iods| |
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Figure 4-3 Decreased sensitivity for common modifications in open searching can be overcome by specifying variable
modifications.

Standard open searches tend to identify far fewer peptides modified with common modifications than narrow window searching
specifying those modifications as variable modifications. This is due to decreased sensitivity when the shifted ions are no longer
matched in open search. For the most abundant chemical modifications, this can result in a significant decrease in overall counts.
The speed of MSFragger allows variable modifications to be specified in conjunction with open searching. Examining peptides
with oxidized methionine reveals that standard open search recovers only 45.37% of the peptides originally identified with
oxidized methionine in narrow window searching (with variably oxidized methionine). Specifying oxidized methionine as a
variable modification in open search brings that percentage to 88.81%, close to the overall overlap in peptide identifications
between narrow window and open searches.

One apparent weakness of the open search strategy, compared to other strategies for blind PTM
analysis such as spectrum alignment, is that it only considers unmodified fragment ions in
scoring. Thus, C-terminal modifications are more difficult to detect using open searching as most
y-ions, which are the most abundant and commonly observed in CID/HCD fragmentation, are
shifted by the modification mass. Under the assumption that the most intense fragment ions are
shifted y-ions, generating complementary ions [76,105] using the experimental precursor mass
would yield unmodified b-ions that can be detected in open searches. We tested this hypothesis
by inserting 10, 20, and 30 complementary ions in the experimental spectrum as a preprocessing
step prior to searching and benchmarked this process using peptides with a single oxidized

methionine. The addition of complementary ions slightly decreased the identification rates of
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peptides with modifications near the peptide N-terminus but greatly increased identification rates
of peptides with modifications near the C-terminus (Figure 4-4). For peptides with an oxidized
methionine just upstream of the tryptic cleavage site, the number of identified peptides increased
by 48% when 20 complementary ions were added. As the number of complementary ion
increased, the overall identification rates decreased due to the addition of noise in the spectrum.
In our experience, the insertion of 20 complementary ions is optimal for detection of C-terminal
modifications using the open search strategy. Because the overall improvement in the number of
identifications (taking into consideration the unmodified peptides as well) when using the
complementary ions was not significant, we elected not to use this option for the majority of
analyses presented in this work. A more efficient strategy to account for shifted fragments would
be to add complementary ions to theoretical spectra via extension of the fragment ion indexing

scheme, which we plan will pursue in future work.
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Figure 4-4 Complementary ions aid recovery of peptides with modifications near peptide C-terminus.

(a) High intensity fragment ions are selected from the experimental spectrum and are assumed to be modified y-ions.
Complementary ions based on the experimental precursor mass are inserted to form a modified spectrum that is subjected to open
searching. (b) Evaluation of complementary ions using peptides containing a single oxidized methionine. 10, 20, and 30
complementary ions were inserted into each experimental spectrum and the counts of identified peptides were ordered by the
distance of their oxidation site to the N or C-terminus. The addition of complementary ions decreased the number of
identifications for peptides with oxidation near the N-terminus but greatly increased identification rates for peptides with
oxidation near the C-terminus. For peptides with an oxidized methionine upstream of the tryptic cleavage site, the number of
identified peptides increased by 48% when 20 complementary ions were added. The addition of more than 20 complementary
ions was not found to be beneficial.
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The problem of co-isolating multiple co-eluting peptides and the resulting chimera MS/MS
spectra is well established [20,107] and manifests itself in unique ways in open searches. When a
co-fragmented peptide is identified with a higher score, an artefactual (not attributed to any
modification) mass shift is produced that can either be small (within several Daltons) or large
(hundreds of Daltons) depending on whether the co-fragmented peptide ions are of the same or
different charge state, respectively. Such cases can be identified using linked MS1 and MS/MS
spectral viewers (Figure 4-5 a,c), and further evaluated using tools such as BatMass [91] (Figure
4-5 b,d). While the number of such cases is small, in future work chimeric spectra can be dealt
with more accurately in open searches via MS1 feature detection of co-isolated peptides [37]

within MSFragger or using external tools [108].

4.3.2 Large-scale profiling of unlabeled shotgun proteomics experiments

MSFragger’s ultrafast performance enables comprehensive profiling of chemical and biological
modifications across multiple large-scale proteomics datasets. To demonstrate this, we probed
three large proteome-wide studies using open searches and compared their modification profiles.
In addition to the HEK 293 dataset used to benchmark MSFragger, a HeLa proteome dataset
[99], along with a dataset consisting of various triple-negative breast cancer (TNBC) cell lines
and tissues [66] were used (see section 4.2). We additionally implemented a supplementary tool
for MS1-based correction of precursor masses followed by identification-based mass
recalibration. This allowed us to achieve sub-ppm mass accuracy and improved our ability to
delineate modifications having close masses across disparate experiments and labs (Figure 4-6).
The list of 500 most abundance mass shifts (excluding modifications specified as variable
modifications in the search) is shown in Table C-2. We confirmed that in all datasets FDR
estimates for modified peptides were well controlled and not inflated compared to unmodified
peptides. For example, in HEK 293 dataset, peptide-level FDR was 0.18%, 0.11%, and 0.11%
for peptides with top 500 most abundant mass shifts, top 100 mass most abundant shifts, and for
unmodified peptides, respectively (FDRs computed separately for 500 most abundant mass shifts

are shown in Table C-2).

69



a LGPALATGNVVYMK, MH+ 1169.7872, m/z 685.3972
Fiie: b1948_291T_protewn)_118_QF1_VZI22 51138 57138.2, Scan: 52118, Exp. miz: 683 6M1, Charge: 1

0 w0 80

mom K2 i Zoom 0wt | | Print Enabie tooltip
w6540
L
]
C ) RESVELALK, MH« 1044.6048, m/z 522.8060
P! BYME_I90T_proteinD_120_ QL1 TZXINET0044, 11440, Seare 21644, Exp. mix: MLV, Charge: 3
L
o
F
1 huti ]
%0 X o
F A ZoomOut | Priem Enable tooltip
¥ 3458
LR Ei
* Wi.T v

Figure 4-5 Co-isolation of co-eluting precursors can result in mass differences that are not due to chemical modifications.
(a) A MS/MS event was triggered at m/z 685.84 (green arrow) resulting in the identification of the peptide
LGPALATGNVVVMK with a mass difference of 0.878. The parent survey scan reveals a co-eluting precursor with m/z 685.40
(cyan arrow). The difference in m/z at charge 2+ matches the observed mass difference suggesting that the co-eluting precursor
is identified instead of the target precursor in this chimeric spectrum. (b) BatMass visualization of the MS/MS event described in
(a) with MS/MS isolations marked by the purple line segments. The cyan arrow indicates the monoisotopic peak of the target
precursor while the red arrow indicates the monoisotopic peak of the identified precursor. (c) The peptide RESVELALK was
identified with a mass difference of -349.185 at m/z 348.21 (green arrow). Parent survey scan reveals a co-eluting precursor with
m/z 348.87 (cyan arrow). While the target precursor ion is of charge 2+, the co-eluting precursor is of charge 3+, which
transforms this 0.66 difference in m/z between these co-eluting precursors into the observed mass difference of -349.185. (d)
Similar BatMass visualization of the MS/MS event described in (c). Note how the isolation window of the charge 2+ target
precursor (cyan) crosses the monoisotopic peak of the charge 3+ co-eluting precursor (red).

We first interrogated several common chemical modifications (Figure 4-7a). Although the
localization profiles were largely concordant (Figure C-1), their normalized abundances
(modification rates) across the datasets were quite dissimilar. For example, the rate of

phosphorylation in the HeLa dataset was over 14 times than that in the TNBC dataset.
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Furthermore, some of these modifications were found on amino acids that are generally not

considered in traditional workflows, such as tryptophan oxidation.
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Figure 4-6 MS1-based correction of precursor masses and identification-based calibration helps delineate modifications in
close mass proximity.

Identified number of PSMs with mass differences in the range of 0.98 Da to 1.01 Da from a single HEK293 LC-MS/MS run.
Expected mass differences in this range are due to deamidation (with a delta mass of 0.984 Da) and C12/C13 error (with a delta
mass of 1.003 Da). (a) Prior to correction a broad peak with no coherent shape is observed with a center around 1.005 Da.
Knowledge of expected mass differences may lead to the calling of a peak near 0.986 Da. (b) Two cleanly resolved peaks are
observed after mass correction. Expected peaks corresponding to deamidation and C12/C13 error are resolved with mean mass
accurate to 1/1000 Da. The ability to determine such peaks from a single LC-MS/MS run demonstrates the accuracy of modern
instruments and the power of our mass correction procedure.

We observed many highly abundant modifications that lacked annotations in Unimod and were
unique (or of much greater abundance) to a particular dataset (Table C-2). To help decipher these
unannotated (based on Unimod) modifications, we performed site localization analyses (section
4.2; Table C-1). For example, the HeLa dataset contained many peptides (over 23,000 PSMs)
with a modification mass of 52.913 Da that were often localized to aspartic acid or glutamic acid,
characteristic of metal ion adducts. This is likely to be iron displacing three protons (Unimod
annotates ‘Replacement of 2 protons by iron’ modification only). We observed that many
unannotated (in Unimod) mass shifts occurred on cysteines (Figure 4-7b). While some can be
explained (e.g. 151.996 corresponding to carbamidomethylated DTT modification of cysteine),

deducing the identities of unannotated mass shifts was outside the scope of this work.

For some modifications, we were unable to localize the mass shift on the peptide (Figure 4-7¢).

This suggests that there are few fragments that support the modification mass or that the detected
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modification mass is the result of a multiple modifications found on the same peptide. To
investigate such cases, for each modification mass we computed a spectral similarity score
between peptides containing that modification and their corresponding unmodified forms (see
section 4.2; Figure 4-8). Most modifications possessed a similarity score between 0.4 and 0.6,
including known modifications such as phosphorylation. However, we observed a large number
of modifications (e.g. 3417 PSMs with mass shift 301.986 Da in HEK 293 dataset, 3068 PSMs
with mass shift 284.126 Da in HeLa dataset) with similarity scores close to 1, indicating that
spectra for many of the peptides with these modifications were largely unchanged from that of
the unmodified peptide (Figure C-2). The lack of differences in the spectra and relative
uniqueness to a particular dataset (Table C-2) suggests labile modifications that are specific to

sample preparation protocol.
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Figure 4-7 Modification profiles in large-scale HeLa, HEK293, and TNBC shotgun proteomics experiments.

(a) Examples of common modifications showing differences in modification rates. (b) Examples of abundant modifications that
were unique to particular experiments. (c) Examples of abundant mass features where the mass difference could not be
effectively localized.
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Figure 4-8 Open searching detects modified peptides containing labile modifications.

Spectral similarity scores for each mass bin were computed to capture the spectral similarity between a modified peptide and its
unmodified counterpart. Spectra acquired from a 13C (12C/13C) error are highly similar to those acquired from the unmodified form serving
as a natural threshold (dotted line) of similarity significance between modifications with a higher similarity score (red) and those with a
lower score (blue). Mass differences of interest are labeled and shown in yellow. Inset, quantile plot of similarity scores across
modifications.

4.3.3 Modified peptides in various proteomics applications

MSFragger enables a wide range of analyses beyond interrogation of unlabeled proteomes. First,
we are able to perform open searches using spectra from labeling-based experiments (e.g.
SILAC, TMT, or iTRAQ) by specifying the labeled amino acids as a variable modification, thus
allowing quantitative comparison of the modification states of proteins en masse. To test this, we
examined a breast cancer dataset consisting of 442 LC-MS/MS runs representing 88 formalin-
fixed paraffin-embedded (FFPE) patient samples that were analyzed together with a heavy
labeled super-SILAC mix [102]. The open search (with variable SILAC modifications) of over
34 million MS/MS spectra from this dataset took less than three days. Examination of the
modification profiles revealed a wide range of abundant modifications in these samples, as well
as uncovered differences in modification abundances between the breast cancer samples and the
super-SILAC mix, including a 30.011 Da mass shift that likely represents a methylol adduct
which is characteristic of FFPE proteomes [109] (Figure 4-9a).
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Figure 4-9 Application of MSFragger to diverse proteomics experiments.

(a) Comparison of a panel of breast tissue samples and a heavy-labeled super-SILAC mix, where SILAC-labeled amino acids
were specified as variable modifications in conjunction with open searching. (b) Bait PSM counts identified in narrow-window
and open searches in an AP-MS data set. (c) Open searching of an RNA—protein cross-linking data set. Prominent mass
differences corresponding to RNA fragments are labeled. Inset, length of cross-linked peptides recovered by MSFragger.

Next, we applied MSFragger to a large-scale protein interaction study using an affinity
purification mass spectrometry (AP-MS) experimental workflow that consisted of 2,594 baits
analyzed in technical duplicates [103]. We reasoned that lowered sample complexity in AP-MS
experiments provides an opportunity to examine in-depth the modification state of enriched
proteins, most notably the proteins used as baits. We performed both narrow window searches
and open searches on over 64.6 million MS/MS spectra across 5,188 LC-MS/MS runs. Open
search increased the total number of PSMs by 32%, similar to the increases observed for data
from whole cell lysates. For the bait proteins, however, the number of identified PSMs increased,

on average, by almost 300% (Figure 4-9b).
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For some bait proteins the increase in the number of identified peptide ions and total PSMs was
astonishing. For example, the mitochondrial persulfide dioxygenase protein ETHE] - a key
member of the sulfur oxidation pathway that is itself involved in reactive oxidation of cysteine
residues [110] - was identified by 48 and 2474 peptide ions in narrow window and open search,
respectively. A large fraction of this increase for was attributed to cysteine modifications. When
we subjected the top 100 bait proteins having the largest increase in the number of identified
peptide ions to functional enrichment analysis using DAVID [111], the top enriched GO:
Biological Process category (p-value 0.00007) was ‘small molecule metabolic process’
containing 23 proteins from the selected list, including ETHE1 (Table 4-1). Proteins in this
category are involved in catalyzing modification processes and small molecule adducts, which
may be linked to significantly higher number of modifications observed on these proteins
themselves. These results suggest that application of MSFragger to affinity purification
experiments can provide insights into a wide array of modifications, including rare and low
abundance ones, on highly enriched proteins. Furthermore, open searching may offer better
accounting of protein abundances using spectral counts in AP-MS experiments and improve the

quality of recovered interaction networks derived using interaction scoring tools [112,113].

Table 4-1
List of genes associated with 'small molecule metabolic process' that have a large increase in identified bait peptide ions

ID Gene Name

APIP APAF1 interacting protein(APIP)

ACAA1  acetyl-CoA acyltransferase 1(ACAA1)

ACADSB acyl-CoA dehydrogenase, short/branched chain(ACADSB)
AHCY adenosylhomocysteinase(AHCY)

AGMAT agmatinase(AGMAT)

ADH5 alcohol dehydrogenase 5 (class Il), chi polypeptide(ADH5)
AKR7A3 aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase)(AKR7A3)
CKB creatine kinase, brain(CKB)

CIAPIN1 cytokine induced apoptosis inhibitor 1(CIAPIN1)

ETHE1 ethylmalonic encephalopathy 1(ETHE1)

GCDH  glutaryl-CoA dehydrogenase(GCDH)

GAMT  guanidinoacetate N-methyltransferase(GAMT)

GUK1 guanylate kinase 1(GUK1)

HMOX2 heme oxygenase 2(HMOX2)

LGMN legumain(LGMN)

MVK mevalonate kinase(MVK)

NEU2 neuraminidase 2 (cytosolic sialidase)(NEU2)

NUP43  nucleoporin 43kDa(NUP43)

PNMT phenylethanolamine N-methyltransferase(PNMT)

PGAM2 phosphoglycerate mutase 2(PGAM2)

RPE ribulose-5-phosphate-3-epimerase(RPE)

SORD  sorbitol dehydrogenase(SORD)

UROS  uroporphyrinogen Il synthase(UROS)
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Finally, we applied MSFragger to a RNA-protein crosslinking study [104]. Computational
analysis for such studies can be challenging due to the need to determine a priori a list of
potential crosslinked products. As open search allows for the identification of peptides with
unknown modifications, no such list is required. Using a 1,000 Da precursor mass window, we
performed open search on a run comprising of human UV-crosslinked RNA-protein complexes
and a control non-irradiated run. We observed highly visible mass shifts associated with peptides
crosslinked to mono, di, and tri-nucleotides in the irradiated sample that were largely absent from
the control sample (Figure 4-9c). We compared our results to that of the RNPx] computational
strategy described in the original study and found that open search confidently identified 163
crosslinked species, compared to 189 reported by RNPxI, with 134 identifications in common.
As expected, the open search strategy failed to identify some of the crosslinked species
containing very short peptides due to an insufficient number of unmodified fragment ions
(Figure 4-9c inset). On the other hand, MSFragger identified 29 additional crosslinked species,
most of which (all except 4) were from proteins containing other crosslinked peptides already
identified by RNPxI. Furthermore, MSFragger also identified a number of modified peptides
from various RNA-binding proteins (including some not identified by RNPxI) with mass shifts
that approximate the RNA crosslinks. These peptides are likely crosslinked peptides that also
contain some other chemical modification or adduct and are thus undetectable by the RNPxl
strategy. Examples include the peptides YGRPPDSHHSR and SYGRPPPDVEGMTSLK from
the protein SRSF2 (which was not identified by RNPxI despite identifying 5 other proteins from
the SRSF family). This shows that MSFragger provides a simple but highly effective analysis
workflow for identification of protein-RNA crosslinked peptides, and demonstrates the added

insights gained through open searching in any experimental setup.

4.4 Discussion

The refinements to the open search strategy were met with varying success. We demonstrated
that peptides with the most common modifications could be recovered by combining variable
modifications with open searching, which is important for enabling the use of open searching in
quantitative proteomics experiments using labeling technologies. Failure to recover unmodified

peptides using a boosting option suggest that the missing peptides may be of borderline quality
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and could potentially be false positives that are eliminated by open searching. While the addition
of complementary ions helped recover a number of modified peptides with modifications near
the C-terminus, it did not increase the overall number of identified peptides. Directly searching
for shifted fragment ions in the future should help increase the recovery of such modifications as

well as the overall number of modified peptides.

The vast array of chemical and biological modifications adds a dimension to proteomics that is
not fully explored in most studies. Open database searching, made practical using MSFragger
can, in conjunction with existing workflows, simultaneously and comprehensively identify
modified and unmodified peptide forms. The diversity of chemical modifications in different
experiments is revealing in that we cannot simply use a predefined set of common modifications
but that they vary in abundance or may be unique to particular experimental workflows or labs.
Monitoring the rates of these common chemical modifications is also important for
reproducibility in quantitative proteomics experiments, especially when relying on quantification

of selected peptides as proxies for estimating abundance of their corresponding protein [114].

Given the fast growth of public repositories of MS data [100], MSFragger could be used to
search for rare (including novel) biological modifications across many biological samples and
experimental conditions, adding to the list of previous such discoveries [115]. This includes
large-scale cancer proteomics studies [116,117] where using the open search strategy can
potentially identify novel PTMs that are involved in cancer processes. Open searching could be
advantageous for characterization of neoantigens and other endogenous peptides[71,118], many
of which are present in modified forms. The comprehensive identification of modified peptides
using the open search strategy not only reduces the number of false positives in any proteomics
workflow, but also provides exciting opportunities for the study of post-translational

modifications.

4.5 Data availability

Raw mass spectrometry files are available from public repositories as described. The processed

data files supporting the findings of this study are available upon request.
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CHAPTER V

FUTURE EXPLORATIONS
BEYOND THE REFERENCE PROTEOME

5.1 Conclusions

Mass spectrometry has emerged as the method of choice for high-throughput proteome analysis.
Advances in instrumentation over the past decade have allowed us to collect data of such depth
and quality that we can now observe the vast majority of proteins that are inferred by the protein
coding genes in the genome. However, these advances have been accompanied by growing pains
as the development of statistical and computational methods has not kept pace with that of
instrumentation and they struggle with challenging tasks such as the identification of novel
peptides in proteogenomics, notably in the control of false positive identifications. In this
dissertation, I presented computational strategies that identified and reduced false positives for

the purpose of improving the quality and sensitivity of proteogenomics studies.

In Chapter Two of the dissertation, I provided a direct strategy for studying false positives by
using high scoring decoy identifications that are generated from the target-decoy approach.
Using this strategy and existing tools in an automated fashion, I was able to determine the
fractions of false positives that were produced due to ambiguous scoring functions, semi-tryptic
peptides, and modified peptides. While the percentage may vary from dataset to dataset, in the
triple negative breast cancer dataset examined, these three categories represent nearly 80% of all
false positives. As we were able to automatically annotate them by using multiple search engines
or expanded search spaces, this suggests that we could eliminate them by incorporating these
strategies in regular peptide identification workflows. We also demonstrate that false positives
due to modified peptides may be underestimated using the target-decoy strategy by violating the

assumption that incorrect assignments match at equal rates to target and decoy sequences. Using
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both experimental and theoretically generated spectra, we demonstrate that there is a greater
propensity for modified peptides to map to target sequences, likely due to spectra homology

between the spectra of modified peptides and those of other unmodified target peptides.

Database searches using multiple search engines, semi-tryptic searches, and open searches (to
identify modified peptides) all serve to provide additional information that can be used to reduce
the number of false positives. However, the computational costs of performing all such searches
are impractical. In Chapter Three, we presented two database search tools that are much more
efficient than current database search tools, enabling comprehensive analyses on large datasets.
The first tool, EGADS, uses GPUs to accelerate both in-silico digestion and similarity scoring
and provided speedups of 30-40X over conventional tools in common search scenarios. The
three different scoring kernels implemented in EGADS might allow it to serve as multiple search
engines and resolve ambiguous identifications. The second tool, MSFragger, uses a fragment
indexing algorithm to simultaneously score experimental spectrum against a range of theoretical
spectra without the use of specialized hardware. For open searches, MSFragger is over 150X
faster than existing tools making them feasible for identifying blind modifications in large
datasets. Together, these tools eliminate the bottlenecks that might be cause by database
searching, allowing for more comprehensive peptide identification and reduction of false

positives.

In Chapter 4, we refined the open search strategy for identifying modified peptides and applied it
to a large number of shotgun experiments as well as other proteomics applications. Refinements
of the open search strategy demonstrated the compatibility of the strategy with variable
modification searching allowing common modifications to be fully recovered and enabling open
search to be applied to labeling based quantitative proteomics experiments. We also increased
recovery of peptides with modifications near the C-terminus and discussed other nuances of the
open search strategy. We profiled a number of shotgun experiments and discovered that rates of
chemical and biological modifications are quite dissimilar between experiments with some
possessing unique modifications. We also discovered a number of labile modifications that

showed no evidence for the modification in their tandem mass spectra. Finally, we applied the
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open search strategy and identified modified peptides in a number of proteomics applications

demonstrating their pervasiveness and the added information they provide.
5.2 Future Directions

The automated pipeline used to identify sources of high scoring decoys can be adapted to use the
highly efficient database search tools developed to examine sources of false positives across
other large datasets. The sampling depth of the experiment (from faster instruments or extensive
fractionation) might increase the number of modified peptides sampled, leading to become a
larger source of false positives. Low-resolution tandem mass spectra may also lower
identification confidences for ambiguous identifications due to a more robust null distribution

used in score calibration.

The integration of multiple search engines, search spaces, and modified peptides can be
challenging. While the pipeline used to explain high scoring decoys proceeded in a multi-stage
approach, applying a similar approach can result in the trapping of false positives at an early
stage (i.e. multiple search engines agree on the same false positive identification when there is a
much better semi-tryptic or modified peptide explanation). A statistical framework is needed to
establish the prior distributions of each input score, including the abundance estimation of
modifications, in order to calibrate the scores and select the best explanation for a particular
spectrum. The integration of different search spaces have been examined to some extent [56]
using existing tools [69] but it is unclear whether those tools can be effectively used to integrate

these wildly different search spaces.

The apparent violation of the target-decoy assumption by modified peptides requires a much
deeper examination in both regular shotgun experiments and proteogenomics studies. Further
experiments are needed to eliminate the effect of chimeric spectra in the work based on observed
experimental data. A simple strategy might involve re-searching experimental spectra with
modified peptides that have the fragment ions of the identified peptide removed and rejecting
them from downstream analysis if a high quality match is found (indicating a chimeric spectra).
The extent of this violation can also be determined for different modifications in order to

investigate whether they occur only for modifications that have masses corresponding to single
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amino acid substitutions. These estimations can then be used to infer the degree of FDR

underestimation in current proteomics studies at the PSM, peptide, and protein levels.

While the goal of these tools is to improve the quality of proteogenomics studies, they can also
be applied to existing repositories and datasets to identify false positives that have been included
in the current observed proteome (proteins that have been “confirmed” by mass spectrometry but
are actually false positives). A strategy might involve the re-analysis of all spectra present in
repositories such as GPMDB and flag any suspicious spectrum. Proteins that are only supported
by suspicious spectra can then be manually inspected and possibly removed from the list of
identified proteins. Performing similar validation tasks for proteogenomics studies can be

complicated by their heterogeneity and use of custom databases.

EGADS is limited in the design of its memory manager and cannot operate on large protein
databases that might be found in meta-proteomics studies. Changing the way the protein database
is loaded onto GPU memory is a possibility but a simpler approach may be to simply partition
the database into smaller segments and store partial search results for each spectrum and
combine the search results after the final segment has been processed (similar to how MSFragger
partitions the search space when there is insufficient memory to hold the entire fragment ion
index). The application to meta-proteomics could be quite interesting due to EGADS’s ability to

rapidly process large sequence search spaces.

EGADS can also be used as a first pass tool for the automated detection and annotation of raw
data that is submitted to a repository of mass spectrometry data. A non-specific search of all
proteins can quickly identify the organism and enzymatic cleavage patterns as well as instrument
mass accuracy and calibration. This set of information can be used to correct the data and
determine search parameters in subsequent processing of the dataset, all without manual

intervention and annotation — which can be error prone.

The algorithm behind MSFragger can be used to power a new class of peptide identification
tools that can enable analysis not currently feasible due to the computational costs. This includes

the direct searching of spliced peptides or fusion peptides by searching protein subsequences
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(using the shifted fragment index described below) without regards for the precursor mass and
merging the results afterwards to “stitch” the two subsequences into a complete peptide. Other
applications might involve large-scale spectra clustering (at a repository level) to identify spectra

that have very different fragmentation patterns that might be indicative of a false positive.

More immediately, the use of a shifted fragment index (indexing ions based on the difference
between their mass and their precursor masses) will allow the searching of mass shifted
fragments and improve the ability to identify modified peptides using the open search strategy.
Care must be taken to not double count experimental fragments for both the y-ion and y+ A-ion
series. Concurrent searching of both indices would prevent this double counting but can be
technically challenging to implement. The use of this modified algorithm for identifying
modified peptides should be compared to the conventional open search strategy to establish
differences in identification rates and to determine if there are novel C-terminal modifications
that can be identified using this strategy that cannot be identified using the conventional open

search strategy.

The use of the fragment ion-indexing algorithm can also be used to power direct searches against
collections of spectra at a repository scale in real time, enabling researchers to establish mass
spectrometry evidence for a particular peptide or modification interactively. A prototype of this
application has demonstrated that millions of spectra can be effectively searched in tens of
milliseconds but the scalability to hundreds of millions or billions of spectra remains to be tested.
Alternative explanations from a variety of searches (enzymatic, semi-tryptic, open) will need to
be pre-computed for each spectrum in the database to establish whether the newly tested
hypothesis is better than the others that have been already tested. Statistical frameworks will
need to be established to encompass the multiple search spaces from very heterogeneous

experiments (different instruments, mass accuracies, digestions etc.).

The ability to identify large numbers of modified peptides in large-scale proteomics experiments
is exciting as it opens up many avenues of inquiry from both a methods development and
biological perspective. The varying rates of chemical modifications could have consequences for

quantitative proteomics. Investigating ways on how to select peptides that are unlikely to be
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modified or incorporating the abundances of modified peptides in abundance estimation could
improve such experiments by reducing variance and thus increase statistical power. Technical
replicates of the same sample (and the same or different labs) could serve as benchmarking

datasets.

The study of biological modifications from open search results could be a boon for the
proteomics field as a whole as they cannot be assayed by inexpensive sequencing technologies.
Even for well-characterized PTMs that have established enrichment protocols, the large number
of non-enriched experiments covering a wide range of tissues could add tissue specific
knowledge of these PTMs. Rare (and novel) PTMs can also be studied using open searching but
precautions must be taken to avoid errors from incorrect charge state assignment or co-
fragmentation. These modifications can be compiled into a resource for community curation and

follow up by biochemical studies.
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Appendix A
EXAMPLES OF HIGH SCORING DECOYS
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Figure A-1 Example of high scoring decoy due to ambiguous scoring.

(Top) Decoy peptide identified with high confidence. (Bottom) Forward peptide identified with high confidence. The matched
fragments are identical in mass indicating that both matches are of equal quality in the absence of a predicted fragmentation
model.
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Figure A-2 Example of high scoring decoy due to semi-tryptic peptide.
(Top) Decoy peptide identified with high confidence. (Bottom) Forward semi-tryptic peptide identified with high confidence.
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Figure A-3 Example of high scoring decoy due to unaccounted for modification.
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(Top) Decoy peptide identified with high confidence. (Bottom) Forward peptide identified with oxidation on tryptophan.
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Appendix B

SUPPLEMENTARY MATERIALS FOR
EFFICIENT DATABASE SEARCH TOOLS

Table B-1 Analysis times for a single file (b1906_293T_proteinlD_01A_QE3_122212) in HEK293 dataset using different
search engines.

All benchmarking was performed on a E3-1230v2 (4 cores with hyperthreading at 3.3 GHz) workstation unless otherwise noted
using 8 threads. Breakdowns of indexing and search time provided where applicable. Times do not sum to overall search time
due to input/output and other overhead.

Search Engine (search parameters) Peptide Index Time FragmentIndex Time Search Time Overall Time
SEQUEST-HT* (500Da) 108.9 seconds - 11.2 hours 11.3 hours
Comet (500Da) - - - 13.6 hours
X!Tandem (500Da) - - - 16.3 hours
MSFragger (500Da) 8.8 seconds 5.0 seconds 5.0 minutes 5.4 minutes
Comet (500Da with mods) - - - 19.0 hours
X!Tandem (500Da with mods) - - - 20.8 hours
MSFragger (500Da with mods) 11.7 seconds 12.1 seconds 6.9 minutes 7.4 minutes
SEQUEST-HT* (5ppm) - - 3.6 minutes 9.3 minutes
SEQUEST-HT* (100ppm) - - 3.7 minutes 9.5 minutes
Comet (100ppm) - - - 101.3 seconds
X!Tandem (100ppm) - - - 102.0 seconds
MSFragger (100ppm) 8.5 seconds 3.6 seconds 43 seconds 24.5 seconds
Comet (100ppm / low-res MS/MS) - - - 64.1 seconds
X!Tandem (100ppm / low-res MS/MS) - - - 122.4 seconds
MSFragger (100ppm / low-res MS/MS) 7.9 seconds 3.4 seconds 9.2seconds  28.2 seconds
MODa (500Da, single-blind, fully tryptic) - - - 150.3 minutes
MOQODa (500Da, single-blind, semi tryptic) - - - 204.7 minutes
MSFragger (500Da)** 46.5 seconds 13.7 seconds 23.4 minutes  24.5 minutes
Tide (1 OODa)# 116.3 seconds - 174.7 minutes 176.7 minutes
MSFragger (100Da)** 42.8 seconds 14.7 seconds 5.3 minutes 6.3 minutes

*performed on a 2xE5-2609v2 (2 processor, each with 4 cores at 2.5GHz) workstation, peptide indexing timed only for open
search (PD uses cached index)

#Tide is unable to accommodate precursor tolerance windows larger than 100Da

**MSFragger was restricted to a single thread in comparisons against tools (MODa, Tide) that do not make use of multiple
threads of execution
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Table B-2 EGADS runtime across diverse search conditions.
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Appendix C

SUPPLEMENTARY MATERIALS FOR
COMPREHENSIVE PROFILING OF MODIFIED PEPTIDES

pyro-Glu (Q) / Loss of ammonia pyro-Glu (E) / Dehydration

-17.027 -18.010
Oxidation Deamidation
15.995 0.984
Phosphorylation Formylation
79.966 27.995
essssse Hela Proteome
N-terminal v emmm— HEK 293 Proteome
propensity F e TNBC Proteome

Percentage of

localizable PSMs | Increasing N-terminal propensity
T L m— |

c STP Increasing enrichment on amino acid

P e e |

Figure C-1 Localization profiles are consistent across experiments.
Common modifications were selected and amino acid localization enrichment was calculated separately for each dataset. Amino
acid localizations were largely consistent across each dataset despite the differences in modification rates.
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PSMs (scaled)
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Figure C-2 Highly similar spectra pair for peptide LEAEIATYR with precursor mass difference of 284.126.

3214 PSMs (corresponding to 1087 unique peptides) were identified in the mass difference bin of 284.126 Da. These PSMs were
predominantly observed in the HeLa dataset and were shown to have a spectral similarity score of 0.90 (indicating that the
spectra of mass shifted peptides are highly similar to that of corresponding unmodified peptides). Here, we selected a pair of
PSMs that were both identified to be the peptide LEAEIATYR in the same LC-MS/MS run. Despite their highly similar
fragmentation patterns and few unmatched fragments, they were observed with precursor masses that differ by 284.1251 Da. The
full y-ion series was successfully matched, which when overlapped with the matched b-2, b-3, and b-4 ions, rules out the
possibility of a modified residue in the fragmentation spectrum.
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Table C-1 Mass shift localization by dataset.

BinStart Lower bound of mass shift in bin

BinEnd Upper bound of mass shift in bin

LocPSMs Number of PSMs in which the mass shift could be localized

TotalPSMs Total number of PSMs within this bin

Nterm Rate at which mass shift is localized on N-terminal end of peptide (percentage)
TopAAl 1st highest enriched amino acid with enrichment ratio

TopAA2 2nd highest enriched amino acid with enrichment ratio

TopAA3 3rd highest enriched amino acid with enrichment ratio

93



HEK293 TNBC HeLa

& & 3 2 “ £ S £ k] g z £ £ S 2 2 - S £ £
-0.0022 0.0018 2131 300606 038R-131 K-130 H-130 32626 3301510 05K-132 D-118 H-116 9360 912117 044D-176 E-158 M-133
1.0006 1.0046 6556 27106 067P-169 D-137 E-134 133981 390685 051 D-152 E-142 P-123 603 2895 08Y-191 D-187 E-166
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0.982 0.986 3406 3891 11.67N-1644 Q-272 C-22 34225 40417 119N-1577 G-180 C-1.16 13070 13897 1284 N-19.96 G-151 D-061
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128.0928 128.0968 1174 1485 4081 K-238 R-178 1I-146 33796 40120 49.05K-181 R-173 I-161 2479 2711 5585Y-247 D-19 1I-1.89
159928  15.9968 744 1764 6.58 W-5037 M-193 Y-138 2977 6954 771 W-884 P-544 Y-237 3912 6828 1115 W-2895 Y-523 C-5.13
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301.9844 301.9884 54 3417 OR-611 H-208 D-183 12 943 0P-868 L-178 R-163 0 2 0A-000 A-000 A-0.00
27.993 27.997 2352 2712 28.545-457 T-342 H-237 7579 8868 4268 H-401 S-326 T-237 295 477 276785-599 M-456 W-259
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14.0136 14.0176 192 236 1568 H-5.72 V-465 1-250 1463 3001 1433 V-488 D-289 H-250 300 490 2061 V-8.67 H-254 D-157
1.9862 1.9902 508 947 1.58 N-1397 Q-1.89 G-139 7936 13806 251 N-1081 G-160 Q-1.04 36 126 079 N-14.17 M-255 G-1.00
-2.018 -2.014 245 352 51.14 M-1589 C-594 W-443 1945 3148 40.28 W-18.12 M-13.08 C-1.54 331 415 2771 W-3876 M-449 Y-326
151.9936 151.9976 10 14 714 C-4471 A-000 A-000 8310 8793 1632 C-3744 G-034 D-025 7 7 2857 C-3194 G-434 A-0.00
3.0056 3.0096 106 634 016P-253 E-146 Q-139 5659 20899 018P-149 Q-135 C-132 4 20 0I-78 V-313 N-177
-85.0914 -85.0874 323 344 10.171-3.62 E-220 L-1.89 1563 1710 1.871-4.20 L-298 E-174 0 0 0A-000 A-000 A-000
-16.0266 -16.0226 374 456 489 Q-527 C-437 N-201 4166 4819 61.69 Q-525 C-473 H-1.55 28 36 5278 C-995 H-283 Q-216
16.9948  16.9988 187 555 126 W-2688 M-728 C-125 815 2093 349 W-654 M-621 P-236 14 35 0W-1913 M-1441 Y -6.02
-1.0056  -1.0016 12 534 0191-478 V-255 Q-238 201 3791 198 M-483 W-3.01 V-148 12 695 043 Q-682 W-670 N-1.86
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204.134 204138 0 0 0A-000 A-000 A-000 0 4 0A-000 A-000 A-000 3 1001 02F-18.69 H-639 V-139
131.0376 131.0416 1 16 0S-1186 A-0.00 A-0.00 88 2072 29K-785 1-346 R-126 16 566 177 W-10.04 K-571 G-1.90
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184.035 184.039 244 404 693Y-1791 K-342 G-072 1114 1496 615Y-20.02 K-159 G-074 0 2 0A-000 A-000 A-0.00
129.0954 129.0994 121 160 2438E-214 1-184 V-174 4575 5650 3448 D-155 E-146 V-135 2 3 0Q-522 V-417 1-292
216.0982 216.1022 0 1 0A-000 A-000 A-000 4 11 9.09F-409 P-394 V-382 17 896 134K-448 G-278 A-224
-0.9856  -0.9816 20 533 094D-394 P-239 E-204 553 3686 222D-822 E-193 Y-128 152 335 31.04P-519 D-28 M-178
197.0434 197.0474 87 115 0E-1272 A-0.82 S5-048 823 953 021 E-11.60 S-1.12 A-099 352 359 028E-1213 S-135 A-031
3.9926 3.9966 166 239 586 W-6829 N-0.65 1-0.42 390 1111 072 W-893 N-430 P-1.59 236 278 719 W-67.15 P-047 1-043
203.078  203.082 4 183 0H-1916 T-303 S-297 58 999 15N-516 P-343 T-3.10 11 253 0P-339 $-331 D-318
-14.0176 -14.0136 79 117 27.351-881 E-307 Y-262 829 1336 19241-662 T-348 E-1.89 263 376 3191-1074 E-258 A-182
-1.034 -1.03 144 455 26.15M-11.73 C-574 Q-330 948 2781 2758 M-284 C-246 L-1.84 240 407 5086 M-390 C-338 L-272
99.071  -99.067 202 216 5694 V-988 C-144 Y-112 790 832 6358 V-8.09 I-259 N-1.60 35 39 2821 V-11.96 W-3.06 K-075
41.0244  41.0284 9 77 779P-1225 T-202 D-117 44 138 2536 P-665 S5-458 V-133 92 654 749P-540 E-235 C-219
173.0486 173.0526 0 46 0A-0.00 A-000 A-000 176 1939 825E-727 N-385 D-371 31 308 10.06 M-28.10 N-547 E-182
0.9462 0.9502 7 342 088 K-1004 V-596 G-1.08 113 1793 1.12K-565 Y-359 V-190 30 706 071K-791 L-328 D-1381
28.0294  28.0334 166 185 1351 R-626 G-224 P-184 1180 1385 1509 R-446 G-275 A-193 2 78 1923 K-781 R-169 S-139
248.1242 248.1282 0 4 0A-0.00 A-000 A-000 0 8 0A-000 A-000 A-0.00 3 695 0141-780 A-477 L-337
28.9954 28.9994 39 361 55485-414 T-294 D-110 1346 1832 1343 5-292 T-250 D-1.04 4 9 0I-1024 S-272 C-1.86
-328.213 -328.209 20 24 2917K-622 T-273 S-213 275 389 2314 K-989 1-247 T-1.81 478 527 575K-589 1-561 S-3.04
-156.103 -156.099 25 41 732R-553 C-537 W-321 829 1352 1072 R-934 C-215 Y-150 316 336 179 R-1419 A-132 C-092
-229.145 -229.141 32 34 41.18 K-6.50 T-493 P-4.02 587 694 6729 T-8.02 K-692 P-218 438 457 3414K-938 T-451 P-242
-127.113  -127.109 66 75 133 N-1546 C-565 G-245 641 749 134 N-1898 C-344 G-1.86 382 436 ON-1752 G-141 M-133
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-87.03
-184.119
-200.114
170.0968
244133
113.0856
-114.04
260.129
68.9098
157.1062
269.1874
-112.098
-128.057
42.0124
-215.125
-115.025
50.0022
0.0494
0.93%
210.1636
53.8992
308.0844
13.981
-241.178
420.0526
-163.061
-286.162
29912
215129
-372218
-146.103
-227.162
213.1022
-243.12
250.9842
-212.151
-71.0712
227.1658
-131.039
16.9802
27.013
-91.0076
0.9282
-101.045
-142.073
-204.088
227.1402
-1.9774
-0.9454
228.1386
58.0266
-226.167
71.0392
-488.225
-147.067
185.1182
12.0376
-362.161
-0.045
-200.077
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7326 H-14.11
26.24 W-42.76
63.35V-3.24
88.89 F-6.12
51.11 K-6.05
6.78 W - 54.24
5294 H-8.02
2.06 M-6.95
2439 V-321
36 K-4.388
1034 E-11.12
1.71 N-6.36
0 A-0.00
11.85 C-38.41
38 5-3.84
48.94 A -4.36
49.06 V-2.88
0 A-0.00
40 F-7.79
4.82R-544
68.85 N-1338
0 A-0.00
0 A-0.00
41.75 D -2.49
80.56 D - 4.90
0M-2241
403 Q-7.14
2429 M-10.75
57.148-6.76
68.25D-11.80
01-585
033 M-9.17
01-585
0 A-0.00
0 A-0.00
0 A-0.00
32.65 W -24.96
16.131-536
0 A-0.00
89.66 Y - 20.46
5484 K-527
0.78 N-9.22
10.34 D-4.26
0K-1757
345E-626
56.1 V-8.42
0 A-0.00
3333D-1127
0V-556
7843 V-6.57
0I-435
28.57 D-9.09
100 M -25.79
3243 M-6.21
18.46 M -8.25
0C-40.24
0F-1402
61.9T-7.49
84 A-8.58
50 F-1021
76.67 V-17.60
0.65 M -15.28
0.36 V-4.05
0 A-0.00
10.67 M -3.41
72291-11.17
2121 G-4.51
0 A-0.00
76.47 F - 18.49
43.331-459
60.53 T-7.26
0 A-0.00
0.311-11.70
64.29 E - 5.37

M-524
N-236
1-255
G-451
E-530
D-0.90
G-6.51
V-379
K-1.92
A-488
H-2.56
1-292
A-0.00
E-0.66
H-0.78
L-293
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T-2.3
0.00
2.81
3.51
F-467
A-0.00
A-0.00
Q-186
E-201
W-536
F-234
T-276
K-632
P-298
R-441
V-334
Q-522
A-0.00
A-0.00
A-0.00
P-1.69
L-4385
A-0.00
L-22
T -4.45
G-213
S$-297
A-0.00
M-3.06
K-474
A-0.00
K-358
D-350
I-412
V-427
E-375
A-179
N-479
P-350
T-1.82
1-3.90
F-234
M-1.83
G-772
E-2.82
R-324
E-362
A-0.00
H-312
L-321
S-2.64
A-0.00
P-137
A-378
F-517
A-0.00
P-394
A-391
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A-0.00
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308
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2621
1188
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108
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221
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316
377

34
296

65
103
736
303
141

869
1064
366
1027
554
550
2045
2314
1373

1001
390
21
29
2693
1199
245
372
989
365
1135
43
3147
1546
2769
215
90
527
446
2703
325
312
5135
1599
217
134
451
79
483
16
146
25
1426
350
567
666
383
1412
330
83
114
743
1758
1582
91
173
232
424
25
493
1272
439
22
1574
99
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71.69 W - 28.62
7.89 W -20.89
50.55 G-2.36
83.84 F-3.46
4585 K-547
5.64 W-21.84
221 C-2550
164 Y-197
28.55 V-438
28.99 A -6.00
20.54 E-10.25
097 E - 1.50
25 N-8.07
7.81 C-3857
4567 S-7.67
60.68 A-4383
474 T-322
3.03F-7.01
51.15 D-2.00
33K-520
7128 N-11.32
19.05 V-3.64
3.45 M- 350
7501 F-1.74
829 D-382
2.45 M- 16.63
2957 Q-11.17
3327 M- 11.87
1233 5-541
7551 D-11.67
Y-425
032D-148
0.19 V-335
9736 1-3.03
0.47 V-436
222Q-796
854 W-2922
3274 K-623
0 A-0.00
76 Y-2581
4167 T-6.74
1.46 N -8.79
5897 D-337
6.45 K-15.03
0E-7.68
72.06 V-7389
27 F-8.01
46.58 D-10.76
6.25 V-3.58
6781 1-38.06
201-7.23
3219 D-401
4743 M-26.35
30.86 M- 4.60
2718 M- 11.21
4.44 C-38.13
051-3.77
63.03 T-898
53.01 A-8.46
8772 F-1033
9246 V-2.53
529 M-785
1.58 E-8.07
7253 N-3.56
4.62 M-325
89.66 1-10.61
2995 K-4.13
64 Y -26.59
89.66 F - 15.09
5221-533
4419 T-771
4545 M-10.51
0.76 N - 2.56
39.39 M- 14.89

H-582
N-446
V-207
T-239
E-512
P-298
G-233
K-193
T-1.82
K-454
M-136
F-143
F-401
E-055
D-122
L-277
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F-279
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Y-292
D-156
E-243
E-207
H-132
A-399
K-501
P-333
M-248
E-144
1-256
L-260
1-325
H-639
P-5.60
I1-514
A-000
M-2.60
K-450
G-148
Q-199
F-135
C-1.66
K-674
H-548
K-592
Q-298
V-4388
S-2.64
R-333
A-163
G-325
$5-2.49
H-072
Y-338
L-189
Y-116
G-597
N-238
T-154
V-115
V-178
G-305
L-357
R-312
P-219
N-267
D-239
F-649
F-701
A-212
D-420

G-2.50
E-214
G-249
V-151
G-183
Q-202
E-129
W-236
Y-113
E-053
P-228
1-141
Q-1.77
F-221
D-237
V-3.58
Y-485
1,-326
A-0.00
H-0384
A-239
Q-1.05
1-186
M-1.14
M-1.63
Po171
N-4.04
T-061
A-2.04
1,-2.40
A-243
E-252
C-130
N-325
H-176
Y-047
C-3.07
F-185
V-1.16
T-201
A-216
G-151
G-091
G-168
V-230
Q-233
G-269
M-093
G-1.03
L-218
M-1.79
S-272
V-1.66
A-305
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76.67 W - 51.66
0 A-0.00
5422V-271
7284 F -9.05
48.48 K-6.20
3.57 W- 6829
4459 G-735
069Y-718
0A-0.00
1048 A-953
63.66 E-8.27
147 Q-12.54
0T-14.04
7.69 C-38.64
46.09 5-7.95

0 A-0.00

435 M-23.69 K

89.88 N -13.40
0E-14.09
7.54 M - 15.80
0A-000
9259 E-2.92
0.69 W-15.42
2727 A-646
4026 A-523
13135-716
4382 D-15.06
0.56 Y -20.01
0.32L-5.06
0N-7.06
501-23.40
153 N-527
0A-0.00
0.68 W -5.65
46.121-831
0A-000
80.77 Y -21.62
49.09K-472
ON-471
82.05D-11.33
0K-14.62
18 E-790
4189 V-8.92
0L-393
70.65 D -10.29
0A-000
76.19 V- 6.46
053F-11.71
28 M-8.07
78.04 M - 26.98
39.63 N-6.69
05-1029
2.46 C-40.17
0.191-3.90
2297 T-417
81.11 A-10.87
4459 F -795
8346 F-7.23
227 M-7.02
207E-763
0 A-0.00
7.69 G-17.36
8095 L-652
1429 R -6.67
99.61 Y -36.74
80 F-21.55
6897 A-415
3858 F - 18.30
1.26 M -30.92
022Q-522
81.55 A-5.05

H-5.06
A-0.00
F-220
G-507
E-455
V-1.67
H-431
T-2.65
A-0.00
K-243
Y-345
F-561

P-315
N-157
D-219

C-232
M-1388
Q-575
K-468
K-261
G-152
F-1126
F-351
T-683
A-0.00
V-446
A-0.00
P-325
K-547
A-000
L-217
A-403
T-455
F-647
1-232
W-6.10
K-552
N-3.14
K-797
A-0.00
1-6.14
H-747
E-561
5-1386
M-5.04
W-1.63
Q-035
L-253
L-368
N-220
G-552
1-3.17
1-373
T-349
A-0.00
H-523
1-6.01
G-3.03
P-035
Y-131
M-3.01
T-4.00
K-555
F-467
E-466

Y-0382
A-0.00
M-1.99
A-215
=250
$-0.59
F-243
F-234
A-0.00
M- 149
F-1.09
N-141
G-091
E-078
v-137
L-298
T-240
A-0.00
A-000
D-350
1-137
A-0.00
N-1.50
A-0.00
H-203
Q-2386
H-191
M-1.99
W-1.01
Q-074
Q-095
1-292
V-417
A-0.00
D-191
A-0.00
1-268
1.-246
A-0.00
A-127
$-2.79
C-373
Q-220
M-092
F-159
N-2.84
M-255
P-042
A-0.00
L-341
M-3.48
N-235
F-1383
G-243
N-1.52
D-033
A-250
F-272
Y215
A-424
H-291
B-142
N-1.18
A-000
D-154
A-042
M-147
1-034
T-075
Y-253
E-168
Y-008
L-253
Y-3.19



38.9468
-288.127
-225.149

46.0394

-242.14
-256.156

213121
-127.095

47.9828
-144.092
-259.138

30.0086

0.957
1.9564

-369.24
-228.113

17.9962

26.0136
-14.9934
2721254
2531514
2.9806

285142
-215.093
248.1966

45.0088
188.1032
-186.103
-214.133
2571352

1.0654

29.9716

159.931
199.1296
-370.224
-343.188
-270.171
230.0704

81.9692

-116.06
271.1262
116.0606

0.881
279.9884
189.0434
129.0398
-342228
162.0504
-312218

-1.0698
-96.1078
-260.155

-0.961
-75.1842
-289.075
156.0294
229.1404
174.0864
2529778
256.1884
200.1034

262139
168.0764

70.9984
152.9952

30.9812

1.941
130.0984
2421362
-400.191

42.0452
-259.102
216.1354
-275.166

38.9508
-288.123
-225.145

46.0434
-242.136
-256.152

213125
-127.091

47.9868
-144.088
-259.134

30.0126

0.961
1.9604
-369.236
-228.109

18.0002

26.0176
-14.9894
272.1294
253.1554

22.9846

285.146
-215.089
248.2006

45.0128
188.1072
-186.099
-214.129
257.1392

1.0694

29.9756

159.935
199.1336

-370.22
-343.184
-270.167
230.0744

81.9732
-116.056
271.1302
116.0646

0.885
279.9924
189.0474
129.0438
-342224
162.0544
-312214

-1.0658
-96.1038
-260.151

-0.957
-75.1802
-289.071
156.0334
229.1444
174.0904
252.9818
256.1924
200.1074

262143
168.0804

71.0024
152.9992

30.9852
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-400.187
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-259.098
216.1394
-275.162
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0D-275
0C-3913
8.57 K-9.30
7.07 C-33.70
10N-17.26
2857 K-12.69
6471 E-3.13
133 W-473
18.18 W-35.15
20 M-1555
S0 M-18.34
377 A-692
0.341-877
036 L-10.11
20.69 Q-7.17
71.15 D-6.46
0 M-957
2857 A-6.94
5M-9.55
100 D-10.50
11 N-536
0T-257
7273 C-497
94.74 S -2.99
0 A-0.00
229 C-4.06
OR-588
65.12F-4.79
625T-463
47.62 E-5387
04G-379
625 W-17.22
08S-464
46.67 F -8.76
20 V-5.56
100 Q-10.31
1176 A-11.12
0A-0.00
1.658-3.41
875 C-13.04
70 C-419
0A-0.00
0I-11.70
0M-3438
3.57E-14.09
0E-1033
8333 K-6.79
0A-0.00
78.95 K -5.40
0A-0.00
0W-6532
7917 F - 1361
032 Q-6.96
0 A-0.00
0A-0.00
0A-0.00
29.41 V-6.49
0I-11.70
10.71 D-5.56
1739 D-4283
25Q-522
0A-0.00
100 G- 15.18
34.62 W- 1435
0C-3726
A-0.00
12471-9.36
1379 D-3.49
3333 E-396
0A-0.00
10.87 5-3.63
75 C-14.90
0A-0.00
3333 F-2337

G-227
Y-479
P-618
T-075
K-488
Q-290
F-312
K-439
M-7.53
K-753
X-7.03
G-411
P-263
A-0.00
K-6.03
1-415
W-3.49
G-217
H-692
Y-057
F-467
P-164
Q-438
Q-275
A-000
P-214
V-556
V-458
1-365
Y547
V-334
Y-820
D-325
N-3.53
L-450
5-585
K-195
A-0.00
P-237
A-357
D-3.94
A-0.00
P-788
G-379
A-0.00
1-135
1-567
A-0.00
Q-330
A-0.00
K-127
1,-457
E-626
A-0.00
A-0.00
A-000
P-350
$-593
T-482
N-4.04
F-467
A-0.00
A-0.00
1-6.60
T-3.03
A-0.00
K-351
G-3.42
D-3.94
A-0.00
K-268
V-556
A-0.00
K-293

E-184
A-000
D-123
D-054
L-112
P-088
V-297
Y-338
Y-425
F-3.00
P-3.15
P-119
L-253
A-000
L-266
L-220
V-1i7i
E-1381
A-298
5-297
E-313
N-1.57
1-332
G-249
A-000
A-202
S-395
5-327
L-238
F-200
D-210
V-298
P-209
V-313
T-2.02
K-023
L-112
A-000
D-231
T-2.09
E-235
A-000
A-000
A-000
A-000
T-121
T-538
A-000
V-322
A-000
C-0.99
1-0.78
F-312
A-000
A-000
A-0.00
G-261
A-000
A-378
V-3384
P-3.94
A-000
A-000
K-251
A-000
A-0.00
L-202
M-287
1-292
A-000

-231
M- 509
A-000
A-000

1307
93
367
288
144
346
765
648
96
169
114
414
115

793
85
137
28

582
1079
511
1638

2

114

85
146
137

194
122
24
88

1409
109
398
362
220
412
777

1751
172
399
214
748

1856

1509
381
139

1035
976

2167

62
611

3066
540
217

2254
29
135
149
1269
1745
71
66
1263
116
150
42

1355
1157
522
1660
782

230
279
118
845
170
1432
29
258
1799
44
86
10
1203

81
1731
136
1025
2049
910
107
291
130
46
131
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1.99 D-2.66
55C-3558
1.51 P-8.08
105 C-3430
4318 N-9.61
5413 K-6.66
9485 F-5.18
537P-417
4.07 P-6.04
4.01 M-22.85
3318 M-24.46
281 A-682
0.59 N-3.38
159 N-358
11.29 Q-7.46
8561 D-5.48
213 M-5.26
7316 A-2.42
5.49 M- 24.88
69.35Y-3.48
8789 N-558
0.46 D-2.36
863 D-337
69.12 S-3.36
0 A-000
83V-231
1034 A-437
2222 V-4.06
59.06 T -5.01
41.77 E-2.46
063 E-1.68
23.94 W-9.33
05-4.00
4545 D-2.51
3448 V-557
84.67 Q-8.90
7.14 K -12.66
2857 Y-19.14
0.66 S-3.40
16.59 C-2091

96.81 G -3.57
0.131-532
0 A-0.00
1.3N-2825
5.02K-679
5424 T-595
272K-653
57.06 K-5.12
0.14 V-4.06
0 W-37.49
469 F-12.28
1.11 N-3.08
0M-303
93.02 C-26.92
10K -351
4638 R-3.23
952 W-12.05
50V-358
6721 E-393
44E-226
5.56 N-5.65
4444 C-16.77
1852 W-5.76
9.36 C-31.71
0.74 N-3.26
2441-8.94
2294D-1.78
60 E-2.47
1121 R-5.44
24.05 K-5.04
88.46 C-18.51
3696 D-6.15
4122 F-16.28

E-1.70
K-331
K-622
A-055
K-436
Q-550
V-260
K-225
G- 408
F-325
K-568
G-288
1-252
L-236
K-404
1-290
W 440
V-188
P-1.00
1-257
D-290
E-195
Q-233
G-264
A-0.00
Q-144
1-290
D-332
N-303
R-238
D-156
V-417
T-253
V-201
K-226
$-5.16
A-289
H-383
P-265
H-140
K-312
A-218
A-292
A-0.00
A-0.00
N-206
K-557
W-421
A-406
T-3.44
1-7.80
1-426
Q-192
D-228
E-514
Y345
D-250
P-186
Q-298
D-281
D-19
F-561
H-479
Vo271
E-051
G-233
M-2.60
E-174
D-206
K-187
G-276
V- 706
V-243
K-564

V-1.49
Y-021
D-093
H-050
G-3.29
G-240
E-198
Q-172
W-325
K-231
P-152
N-120
V-243
1-171
L-230
V-246

211
130

128
178
134
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156
151

116
140
36
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46
59
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220
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120
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167
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160
187

55
99

366

91
150
152

78
141
196
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73
107
242
162
205

172

49
145
220
162

0C-671
136 C-36.79
0.76 P - 9.03
66.67 C-29.81
3495 N-18.44
4179 W - 8.43
92.09 V-5.35
1-936
10.32 W-38.87
5.61 M -29.60
26.52 M- 24.62
714 A-659
0.54 M-17.83
0V-556
1471 K - 451
4394 D-3.86
0 A-0.00
67.05 A-4.54
0 A-0.00
039L-10.11
78.83 E - 4.46
0E-419
7822 D-6.72
9697 G -3.58
0A-000
0 A-0.00
043 T-1821
8.42 F-4.19
5405 T-6.23
1L11R-7.15
0851-936
29.44 V-10.81
08-553
7778 F - 11.10
898 V-13.76
7267 Q-6.82
625 A-12.06
0.53 M-2292
0 A-0.00
1273 C-16.45
9697 Y -13.76
0D-560
027 Y-19.14
0 A-0.00
11N-14.13
2R-973
2566 K -6.15
3.85 W-9.01
2199 L-391
05-890
0 W-44.83
397 F -11.50
093 F -14.02
124 D-332
963 C-23.89
0A-000
16.671-7.80
0A-000
0A-0.00
20 W-1339
0A-0.00
0Q-2089
0A-0.00
0Q-69%
0 A-0.00
0 W-2009
531-10388
A-0.00
5625 L-6.82
0 A-0.00
5G-533
93.1 C-13.49
0A-0.00
50.62 F-13.42

D-3.90
K-292
K-581
A-477
K-487
K-504
F-527
F-561
M-358
F-175
K-631
M-2.02
N-366
F-514
Q-281
F-319
A-0.00
G-232
A-0.00
A-0.00
Q-293
G-195
1-402
A-335
A-000
A-0.00
A-000
D-347
L-308
E-362
F-561
D-432
D-291
L-358
L-126
S-493
K-182
Y-957
A-0.00
T-362
W-4.19
V-334
G-221
A-0.00
Q-1045
D-365
1-376
C-9.00
K-388
C-373
Y -39
L-405
L-506
N-197
E-621
A-000
A-667
A-000
A-0.00
E-470
A-0.00
A-000
A-0.00
L-2381
A-0.00
G-379
L-275
A-0.00
R-136
A-0.00
K-347
M-8.09
A-0.00
Y-7.79

P-2385
E-006
D-0.78
A-0.00
M- 095
Q- 480
E-239
Y-383
c-1.71
K-103
P-1.63
F-165
1-325
D-385
L-238
1-168

e g e T

E-352
A-0.00
Y-1.66
N-220
1-312
Q-1.74
A-0.00
A-0.00
A-139
L-359
K-295
A-3380
Y-3.19
1-3.05
C-133
A-0.00
Y-137
W-025
A-000
Q-1.39
A-000
A-0.00
D-350
A-0.00
A-000
A-0.00
V-278
A-0.00
E-352
S-1.04
A-0.00
G-091
A-0.00
$-253
V-460
A-0.00
K-491



-356.208
-227.141
255.1676
185.039
99.0664
-291.16
257.1466
306.166
199.1048
226.039
-457.256
-340.25
115.0252
-355.224
243131
-15.0234

246
39.9498
147.0332
377.0432
-298.202
3122
163.0614
311.1278
300.1188
-2.0546
18.03
-1.079
282.1666
-0.9962
-242.129
303.9904
-218.074
256.1522
-440.241
-493.267
-427.245
-227.129
259133
-253.156
-15.0132
-137.061
-28.0334
-156.092
54938
462.096
-1.0914
-234.103
1.9196
276.1194
256.1294
-2.0064
-243.136
-258.087
26.0498
-1.022
370218
97.9644
176.7442
-414.141
-25.034
-214.098
176.1388
72.0312
123.9104
-241.145
134.045
15.0168
24.9394
2431206
406.1576
66.9252
204.081
-202.062

-356.204
-227.137
255.1716
185.043
99.0704
-291.156
257.1506
306.17
199.1088
226.043
-457.252
-340.246
115.0292
-35522
243135
-15.0194
242.1286
39.9538
147.0372
377.0472
-298.198
312204
163.0654
311.1318
300.1228
-2.0506
18.034
-1.075
282.1706
-0.9922
-242.125
303.9944
-218.07
256.1562
-440.237
-493.263
-427.241
-227.125
259.137
-253.152
-15.0092
-137.057
-28.0294
-156.088
54.942
462.1
-1.0874
-234.099
1.9236
276.1234
256.1334
-2.0024
-243.132
-258.083
26.0538
-1.018
370222
97.9684
176.7482
-414.137
-25.03
-214.094
176.1428
72.0352
123.9144
-241.141
134.049
15.0208
24.9434
243.1246
406.1616
66.9292
204.085
-202.058

o 8 o o wo

Jw oo

103

195

4483 D-7.77
71.43 R-555
63.64 1-4.68
112 Y-6.36
588 K-9.23
60 Y - 26.80
69.23 Q-5.22
0 A-0.00
86.21 G -3.00
20.69 Y -20.19
57.14 D-6.30
40 V-10.77
1071 R-5.42
6552 N-5.83
9231 L-371
22.08 Q-4.64

L-418
A-551
Q-3.13
K-4.40
N-3.53
K-527
R-441
A-0.00
F-282
K-331
L-5.06
L-232
N-332
Q-3.98
D-3.09
C-4.05

A - 0.00

26.09 N-2825 A-0.0

0D-4.46
11.11 M-9.17
0 A-0.00
80 K-5.02
63.64 D-9.25
0K-9.89
6441 A-2.72
0 A-0.00
313 N-647
0OW-1148
0F-7.01
0 A-0.00
0.68 H-6.39
625E-514
0H-534
8333 M-21.22
16.67 L -10.11
71.43 N -10.09
0 A-0.00
401-12.43
69.7 N - 4.40
60 D -10.50
3636 R-11.76
2.56 N-15.39
84.62 H-29.16
24 V-9.28
80.95 V-5.61
0Y-19.42
0 A-0.00
0L-674
9231 Y-8.35
0T-455
0D-10.50
0 A-0.00
0F-701
03-8.40
0 A-0.00
23.08 S-8.11
047 W-12.27
0 A-0.00
0F-1402
0 A-0.00
0D-2099
0 A-0.00
7857 D-7.95
0 A-0.00
0W-40.17
0 A-0.00
66.67 A-5.88
0 A-0.00
8.11 W-423
0 A-0.00
75Y-1021
0 A-0.00
0 A-0.00
0I-390
100 D -8.03

Q-220
H-767
A-0.00
V-417
E-164
Y-718
F-267

A-0.00
1-536

A-4.09
D-3.94
A-0.00
F-312

1-439

T-345

S-483

A-0.00
L-506
A-0.00
E-396
V-3.00
1-292

P-477

M-3.72
Y111
A-271
G-468
F-320

A-0.00
P-263

F-827

V-417
1,-5.06
A-0.00
Q-522
R-368
A-0.00
T-273

C-447
A-0.00

M- 11.46

A-0.00
A-0.00
A-0.00
V-6.28
A-0.00
A-477
A-0.00
V-2.60
A-0.00
H-336
A-0.00
D-5.60
A-0.00
A-0.00
A-357
$-5.70

K-195
V-358
E-282
V-217
D-3.15
A-000
D-3.50
A-000
V-238
E-087
T-182
1-1.95

G-257
K-3.63
F-252
H-3.48
A-0.00
G-176
R-3.53
A-0.00
A-357
G-132
P-197
G-229
A-000

W-5.02

T-353
§-297
A-0.00
T-3.03
L-205
D-234
A-185
A-0.00
K-126
A-0.00
V-2.09
1-277
Q-261
V-051
G-241
G-099
H-1.92
P-1.70
N-0381
A-0.00
N-235
5-350
P-263
A-0.00
A-0.00
C-447
L-0384
A-0.00
M- 229
M-318
A-0.00
§-297
A-0.00
A-0.00
A-0.00
N-115
A-0.00
N-471
A-0.00
Q-255
A-0.00
V-3.07
A-0.00
Q-279
A-0.00
A-0.00
§-297
V-131

209
786
630
501
142
193
399

196
211

67
176
247
120
611
915

w
£

136
99
139
152
474
251
24
218
64
536
310
483
287
281
84
96

17
69
29

14
107
141

111
189
207

o
EEv S
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226
834
641
813
261
228

228
72
142
973
1225
1358
154
2374
113
176
153
878
267
122
248
88
856
329
873
356
410
119
189
1129
1121
79
1034

26
1102
239
10
143
2459

1
100
10
995
12
646
264
118
406
116

97

7124 D-730
795 R-8.56
9221-3.50
271 Y-11.68
0.38 K-10.32
69.74 Y -21.53
8571 1-7.52
22221-390
67.38 1-3.00
1772 Y -20.32
4845 D-496
6795 V-747
8.98 K-6.39
62.07 N-5.52
80.92 D-433
3543 Q-4.04
28.13 N -20.62
189 D-231
377 H-1022
0 A-000
31.72 K -6.01
90.11 E-3.11
132Y-575
5417 Y -4.90
141 V-514
411 L-346
0241-1.99
0.74 A-2.99
0K-1428
1.68 M-335
6991 E -586
108 C-35.34

8889 M-15.86 S

3394 H-317
8315 N-11.99
492 H-18.24
56.05 1-12.06
60.23 N-5.19
53.04 E-5.45
3343 R-8.98
20.85 M-7.10
76.12 H-24.97
2415 V-9.99
563 V-592
1.06 Y -15.10
0 A-0.00
0.36 V-4.51
84.81 Y -12.29
029 T-335

25 W-2812

46.15 V-2.58
4.63 W-8.63
6.69 R-8.23
30 E-9.59
28.67 S-8.16
435 W-6.76
24.04 C-5381
0Y-957
0G-10.12
1628 D - 18.06
119 C-29.96
73.08 D-7.01
0 A-650

2.59 W-4331

0A-000
50 Q-5.43
101-5.01
633 V-337
833 A-381
67.03 Y -3.44
0.76 C-11.18
0ON-699
123 V-277
95.69 D - 7.49

L-353
V-673
N-204
P-1.30
C-1.78
K-6.56
D-211
M-3.82
M-1.87
E-283
L-283
L-402
R-392
1-3.43

C-8.94
A-000
V-3.08
M-2.84
K-567
V-465

L-424
M-191
E-348
V-343
D-325
P-3380
N-543
E-211
D-245
G-507
A-245
A-0.00
1-243
A-459
Q-273
D-525
D-225
M-38.07
S-4.90
M-191
T-265
M-433
R-339
G-260
Q-696
P-0.73
E-101
V-624
P-2386
H-103
A-000
1-230
-2.54
N-2386
N-256
F-338
G-474
E-440
T-240
$-4.29

1-158
A-110
H-2.04
G-117
R-141
P-091
1-143
N-251
V-1.79
K-082
E-22
172
N-219
Q-283
E-1.60
H-1.90
5-051
A-161
M-458
A-0.00
G-232
Q-1.92
R-357
D-266
M-22
1-183
L-162
V228
1-146
Q-1.44
L-178
D-0.60
A-222
R-198
K-067
1-155
K-129
F-245
Q-207
K-221
Q-244
M- 1.60
A-201
M-371
C-156
A-0.00
1-233
T-3.69
V-249
Q-418
A-218
V-180
C-0.74
D-137
C-141
1-204
E-276
P-236
A-0.00
R-057
1-064
N-098
E-256
G-092
A-0.00
L-211
Q-1.49
H-169
V-195
D-257
§-222
F-395
N-223
V-1.97

110
100

114

74
125
49
121
24

27
118

12

22
73

118

100

100

319
90

89

89
93
81
48

2

59
21

47

2

184

107
186
119
10
16
130

114

73.86 D-6.32
175 R - 10.91
84.43 W - 14.31
0N-8.07
1818 M- 10.19
4472 Y -27.05
97 E-9.89
0A-000
0 A-0.00
0 A-000
8957 D-7.67
3488 V-553
20°S - 4.00
3385 N-6.23
9623 D-6.86
0E-14.09
0K-17.57
28 M- 1462
789 A-12.71
0 A-0.00
8751-659
5405 E-3.71
1 R-929
0D-1050
0R-1765
1791-585
0A-000
0A-1430
3531-676
0M-4.01
41111L-537
0 A-0.00
55.06 M - 24.87
37.51-585
9438 N-13.80
K-12.78
43211-1033
257-9.84
4091 D-6.12
49.44 R - 8.59
8.47 M-12.07
100 H - 20.08
0V-1331
1563 G -9.91
0Y-1014
0 A-0.00
0 A-0.00
61.54 Y -8.58
0Q-487
0 A-0.00
0.64 E-9.39
27D-1224
123 R-8.90
90.55 E-13.13
1026 S - 11.02
3358 1-236
0C-21.43
0A-000
0D-7.99
084 D-17.89
20 C-34.07
6875 D-5.98
0 A-0.00
0 A-000
0 W-25.56
439 A-3.90
0 A-0.00
A-0.00
202 N-10.43
8214 L -8.61
A-0.00
0 H-2085
0 A-0.00
9830 D-7.03

K-627
A-329
Q-432
T-260
L-543
K-503
D-3.46
A-000
A-0.00
A-000
L-390
L-454
N-394
1-450
V-283
A-0.00
A-0.00
P-243
T-202
A-0.00
K-476
D-267
M-7.02
T-910
A-000
A-357
A-000
A-0.00
R-471
N-353
E-474
A-0.00
S-507
V-417
L-494

H-1045

E-226
A-379
G-337
P-313

N-10.34

Y-547
D-245
V-228
5-395

A-000
A-000
L-577
L-354
A-000
L-337
M-7.64
5-550

A-046
T-130
1-2.29

R-882
A-000
E-296
P-127

E-168

V-475
A-000
A-000
A-390
F-339

A-000
A-000
D-455
D-156
A-000
N-221
A-000
V-438

L-261
W-1.06
C-3.98
R-252
K-195
D-004
G-121
A-000
A-0.00
A-000
T-242
K-387
K-2386
A-218
F-198
A-0.00
A-0.00
A-221
A-000
A-0.00
V-376
F-205
Y-326
A-0.00
A-000
V-209
A-000
A-0.00
V-222
V-320
Y-225
A-0.00
A-039
A-357
P-037
A-0.00
G-207
N-1.93
Q-319
K-225
H-210
L-241
S-0.41
E-086
1-3.90
A-0.00
A-0.00
A-294
V-222
A-0.00
A-0.00
H-319
A-023
S-0.24
A-0.00
A-1T73
P-033
A-000
v-231
R-116
P-113
A-119
A-0.00
A-000
T-372
Q-153
A-0.00
A-0.00
V-222
G-065
A-0.00
G-113
A-0.00
$-3.97



-399.214
-10.034
1.0404
345.0168
284.9576
-172.087
-471.252
-469.292
114.0416
2751612
384.0796
186.087
17,9532
-198.139
236.0658
-0.9434
105.8226
284.1818
-325.165
359.0062
1.8758
-313.166
-1.0436
-185.118
-411.287
149714
0.8454
326.1916
-30.0124
-356.219
-410.291
-13.992
2721612
-256.119
-358.188
0.0708
355.902
-160.033
-184.087
-1.9696
-399.251
-17.0108
-441.296
-244.071
-213.15
36.917
-318.139
-328.177
275128
414.2442
225.1462
-413.23
-414.214
-264.114
-273.116
239.1248
291.1562
-414.261
58.0034
-32.0096
-173.108
-89.0316
-97.0554
366.0678
-1.9338
-314.161
-386.182
496.3094
284.1586
-29.9942
-112.081
-12.0376
-435.164
-1.1238

-399.21
-10.03
1.0444
345.0208
284.9616
-172.083
-471.248
-469.288
114.0456
275.1652
384.0836
186.091
17.9572
-198.135
236.0698
-0.9394
105.8266
284.1858
-325.161
359.0102
1.8798
-313.162
-1.039%
-185.114
-411.283
14.9754
0.8494
326.1956
-30.0084
-356.215
-410.287

-13.988

272.1652
-256.115
-358.184
0.0748
355.906
-160.029
-184.083
-1.9656
-399.247
-17.0068
-441.292
-244.067
-213.146
36.921
-318.135
-328.173
275132
414.2482
225.1502
-413.226
-414.21
-264.11
-273.112
239.1288
291.1602
-414.257
58.0074
-32.0056
-173.104
-89.0276
-97.0514
366.0718
-1.9298
-314.157
-386.178
496.3134
284.1626
-29.9902
-112.077
-12.0336
-435.16
-1.1198
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7778 S-6.92
0 A-0.00
038 E-4.70
0 A-0.00
82K-732
8438 A-5.40
25 W-20.09
91.67 V-6.26
303 K-6.53
20 E-10.74
0 A-0.00
A-0.00
1251L-787
8333 V-1291
65.38 S-4.97
0W-40.17
0 A-0.00
556 V-6.49
100 I-7.80
0M-917
A-0.00
100 A-3.87
03C-11.18
125 P-1050
75 L-556
11.54 W - 69.34
A-0.00
0 A-0.00
952 T-1125
1333 R-1213
801-877
714 G-3.95
0 A-0.00
76.92 Q-18.04
41.67L-632
0V-834
1.64 P-2.49
91.67 C-27.95
80D-525
0 A-0.00
91.67S-5.44
18.57D-2.77
3333 T-9.10
66.67 D - 10.50
0 A-0.00
0 A-0.00
0 A-0.00
1429 Q-1045
76.47D-12.92
0 A-0.00
5714 V-8.34
52.63 D-7.00
20L-759
100 Y - 16.53
100 C-10.87
94.44 F - 6.60
3333 D-2099
0T-13.65
0A-1311
14.29 M -36.29
90.91 S -4.94
55.56 M-3438
26.67P-11.03
0Y-3829
0 V-16.68
63.64 G -5.06
0 A-0.00
0 A-0.00
100 E - 10.57
0M-43.55
31.581-439
ON-1413
0 A-0.00
0 A-0.00

P-459
A-0.00
L-3.09
A-0.00
Q-6.62
T-521
V-10.01
L-295
G-623
D-5.00
A-0.00
A-0.00
1-2.60
D-179
M-2.29

G -481
G-0.67
A-0.00
A-0.00
S-326
Q-2.61
L-464
L-253
A-0.00
G-0.69
E-352
T-4.55
G-211
Y-3.19
P-394
A-0.00
L-464
T-2.09
I-585
E-587
A-0.00
A-0.00
A-0.00
L-5.06
Q-228
A-0.00
E-352
T-3.20
V-174
T-7.86
W-10.04
V-294
A-0.00
G-379
M-0.76
C-559
L-421
T-1.52
K-293
A-0.00
A-0.00
K-391
A-0.00
A-0.00
S-1.98
P-079
L-359
T-9.10
A-0.00
A-0.00

K-220
A-0.00
Q-1.74
A-000
C-186
1-4381
1-117
K-268
C-6.02
A-0.00
A-0.00
A-0.00
5-132
L-0.70
D-1.77
A-0.00
A-0.00
K-146
P-525
V-334
A-0.00
1-292
V-417
K-195
K-176
Y-0.50
A-0.00
A-0.00
C-160
L-1.90
V-278
M- 191
A-0.00
A-0.65
T-137
A-357
D-175
V-139
$-356
A-0.00
D-044
E-189
V-417
A-119
A-0.00
A-0.00
A-0.00
A-0.00
L-207
A-0.00
D-3.50
P-263
A-1.04
D-143
1-471
L-238
A-0.00
A-000
G-051
A-060
T-3.03
D-140
F-187
A-0.00
A-0.00
E-313
A-0.00
A-0.00
1-1.95
A-0.00
A-120
A-0.00
A-0.00
A-0.00

60
19
1683

43
27
102
102

141
119

107
31
33

101
49
45

253
87

186

118

78
73
4039

924

272
41
127
1251

w

358
18

489
67
1686
196
80
124
417
176
262
147
94
1649
47
70
193
1466

236
48
1121
106
799
63
83
30
29
63
42
101
139
106
102
65
145
123
581

251
120
238
764
133

98

50
267
110
344
170

12
623

98

64.1 S-6.08
0D-512
022 D-1.57
032 C-41.58
0 A-0.00
5172 T-6.01
7941 F-747
78.69 V-7.07
10.8 K -10.60
4452 D-534
0 A-0.00
1333 R-221
21 L-651
561 V-12.31
49.61 S-4.55
0.64 V-3.58

0 A-0.00
4888 E - 7.50
3889 V-476
0 A-0.00
0A-407
5672 V-2.97
16 M-276
2653 N-5.91
601 -435
2016 W-36.71
024 1-450
142 G-8.385
1221 T-1235
68R-1274
93.621-9.99
0.79 M- 23.29
68.00 Y -6.55
6143 Q- 1451
5648 T-7.27
0.89 M- 1.79
0 A-0.00
7797 C-28.45
5208 W-8.24
116 Y-3.34
5849 S-4.34
3317D-279
222L-371
8193 D-1025
50 Q-7.40
0M-1337
0 A-0,00
2381 Q-6.16
5041 E- 491
16.55 Y - 6.20
5472 W-3.57
3922 D-3.68
2462 L -5.30
9724 Y - 1835
9593 W-15.87
9398 V-2.46
47.07 E - 461
0T-1508
646 G -10.13
0M-1821
45.45 W-3.35
7171 M-19.13
1833 P-11.21
336 Y-2250
223 M- 366
63.16 G -3.60
2551 A-4.57
78 V-6388
8427 E-5.77
2091 M- 2097
2645 W-9.17
6471-8.92
833 M- 11.46
0V-1112

P-319
H-418
E-133
Y-101
A-0.00
A-380
L-364
L-404
C-1.75
E-214
A-000
S-2.08
1-542
W-191
P-1384
N-266
A-0.00
1-625
D-3384
A-000
1-346
A-266
1-241
G-455
G-4.09
L-273
P-350
C-472
S-138
W-1.34
L-458
P-1.02
W-351
S-1.39
E-629
1-173
A-000
V-1389
P-421
I-318
L-3380
Q-244
1-346
E-579
K-506
C-559
A-000
E-230
D-431
L-244
D-299
T-294
D-257
T-842
C-10.77
Y-221
D-229
G-217
K-242
Q-197
-2.57
A-4380
M-4.00
F-19
T-364
S$-212
D-343
C-4.14
Y-242
Y-391
L-404
G-224
K-439
N-471

D-134
V-2.44
Y-131
D-0.18
A-0.00
L-331
W-298
I-161
G-1.62
V-1.87
A-0.00
D-1.83
D-0.66
N-135
A-1.59
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25
82
66
103
85

76

72
44

-

57
84

28
62
13
37
55
26
41

48
71
88
68
67
34
122
80

93
103

160
119
176

100

2

61
44
86
73

105

149

126
81
173

68.82 5 -5.08
3.88 H-19.85
0W-10.04
0A-0.00
0A-0.00
2813 F-835
96.03 F - 12.39
79.491-5.74
3077 C-27.52
9.09 D-743
50 W-574
0L-1011
1451 -6.64
66.67 V-13.90
82.86 5-5.58
217C-11.18
O M-426
88.89 D -17.05
97371-718
0C-2236
0K-879
3361 A-774
1.71-562
4286 G-7.02
9206 G - 637
0W-8035
1.04 T-10.40
ON-14.13
6.67T-10.71
OR-11.14
97221-10.86
OM-45.84
0 A-0.00
100 N-9.22
0E-1229
0.58 F-7.01
0A-0.00
89.8 C-24.26
31D-1213
0D-16.79
9.84 S-7.09
2273 Q-3.61
37211-766
89.04 D-7.81
7.621-7.49
0M-12.26
0A-0.00
3294 E-337
50 G-15.18
0 A-0.00
100 W - 65.84
7143 T-419
21.881-3.90
368 Y -2278
89.66 C-18.36
100 V- 16.68
100 D - 20.99
0T-1434
7.5G-5.06
6.58 M -36.39
9643 T-5.74
67.65 M-31.72
7.32P-820
0 A-0.00
0A-0.00
44.62 K -537
26.32 A-8388
100 V-16.59
81.94 G -6.46
294 M-19.67
7436 W - 24.69
01-1825
0M-28.37
0V-16.68

P-322
N-2380
Y-479
A-0.00
A-0.00
A-455
L-472
V-560
K-338
E-4.40
L-347
A-0.00
1-4.39
P-263
A-2380
G-379
N-4.06
E-264
D-6.90
N-14.13
1-468
E-238
C-447
K-4.03
L-560
A-0.00
E-470
R-882
S-258
L-254
L-491
A-0.00
A-0.00
A-885
L-083
E-4.70
A-0.00
L-185
P-208
L-202
1-246
D-191
L-3.10
E-732
K-548
D-230
A-0.00
N-335
A-0.00
A-0.00
1-2.49
Q-230
A-3.41
T-636
L-3.79
A-0.00
A-0.00
G-314
N-4.13
E-0.93
S - 4.06
P-121
K-6.64
A-0.00
A-0.00
G-453
P-111
L-0.06
W-4.14
Y-7.86
H-614
D-119
K-6.70
A-0.00

A-246
T-139
Q-3.66
A-000
A-0.00
T-255
N-052
E-260
G-175
M-287
$-237
A-000
T-114
A-000
V-133
N-353
Y-3.45
A-000
P-522
A-0.00
T-182
L-229
V-417
W-248
1-050
A-0.00
A-318
A-0.00
V-147
V-1.39
V-048
A-0.00
A-000
Q-1.15
K-041
G-3.79
A-000
S-127
N-153
A-0.00
K-1.49
A-185
V-3.00
$-0.59
P-5.14
Q-161
A-0.00
K-185
A-0.00
A-0.00
V-093
D-227
L-321
A-0T73
Y-365
A-000
A-0.00
K-009
M-3.53
L-068
1-346
A-091
W-5.88
A-000
A-0.00
N-314
$-1.01
A-0.00
E-381
P-394
Q-335
G-1.00
A-0.00
A-0.00



4185082
2121394
213113
00822
-186.081
2301132
2141186
184.1306
471282
208.0596
190.155
29508
99.0298
303.168
285.2038
158.106
160.9344
354265
344208
16,0436
-435.198
458.271
282171
19,0296
285171
360202
61,9096
355.004
99,081
199,008
402,159
4300146
58.9982
271,155
2541138
371.1788
2121608
-0.0708
272.1464
00882
285134
298,166
330175
421.0334
0.0596
103.9226
01262
216,077
313203
166.0068
121,975
442244
4300182
70,0406
-486.246
296281
-475.28
-18794
290128
2421802
181,038
71.983
4357156
249.9566
443204
30322
319.009
01758
10772
471235
126.8968
559214
0.1202
-3.9746

-185.078
2121434
213109
0.0862
-186.077
2301172
2141226
184.1346
471278
208.0636
190,159
29548
99.0338
303172
285.2078
158.11
160.9384
354261
344204
-16.0396
-435.194
458.275
282,167
19.0336
285167
-360.198
619136
355.908
99,077
199,004
402,155
2300142
50,0022
271151
2541178
371.1828
2121648
-0.0668
2721504
0.0922
28513
298,162
330171
421.0374
00556
103.9266
0.1302
216073
313199
166.0108
121,979
44224
300178
70,0446
-486.242
296277
475276
18754
29.0168
2421842
181.042
71987
4357152
249.9606
4432
3.0362
3190136
01718
1.0812
471231
126.9008
559254
01162
39706

w o oo v a

[eg—

185

6333 G-3.73
0 A-0.00
5714 N-7.53
1.08 V-417
96.77 W - 47.52
0 A-0.00
33.331-11.70
7742 G-1327
0Q-11.14
8.7 N-3.66
0 A-0.00
1.22 W-13.39
0 A-0.00
42.86 N - 6.28
0Q-6.96
47.37 - 2.60
05-4.64
501-23.40
100 D - 10.50
37.93 Q-6.50
A-0.00
0 A-0.00
75 K-5.86
0D-437
7178 T-6.87
5455 G-6.32
0D-525
0G-2.90
OR-784
5333 Q-7.28
0 A-0.00
0 A-0.00
7742 M -31.74
80 A-4.53
0 A-0.00
0 A-0.00
100 G -10.54
0P-788
40 Y -38.29
0.56 C-7.45
46.15D-9.54
2222 W-829
0Y-9.57
0 A-0.00
033K-293
0 A-0.00
0 A-0.00
100 D-9.18
1001-7.80
50 Y -10.381
3333 T-6.07
0 A-0.00
20T-9.10
375 A-511
10E-7.59
0 A-0.00
14.29 F - 20.03
0Y-19.14
526G-422
12.5 D-10.50
0 A-0.00
97.06 W - 61.05
100 E-12.33
0 A-0.00
100 T -7.59
123 C-2236
0 A-0.00
0 A-0.00
0S-353
0 A-0.00
513 Y-27.05
ON-335
0P-788
0 A-0.00

Y-292
A-0.00
V-633
E-411
F-271
A-0.00
5-593
P-050
K-195
T-2.85
A-0.00
V-371
A-0.00
D-4.66
D-350
H-2.05
E-251
A-0.00
L-5.06
N-519
A-0.00
A-0.00
P-525
E-282
A-540
P-3.06
P-394
P-271
V-741
A-628
A-0.00
A-0.00
W-1236
D-420
A-0.00
A-0.00
M-3.07
E-470
A-0.00
L-674
V-3.03
Q-6.96
F-701
A-0.00
V-278
A-0.00
A-0.00
T-7.96
S-316
Q-537
E-470
A-0.00
A-477
L-2389
S-213
A-0.00
L-193
V-834
C-406
Q-522
A-0.00
N-1.66
L-1.26
A-0.00
D-525
1-234
A-0.00
A-0.00
D-350
A-0.00
W-2387
C-238
N-7.06
A-0.00

P-263
A-000
T-220
S-247
N-137
A-000
A-0.00
Y-066
E-157
S-231

A-0.00
Q-348
A-0.00
L-393
V-278
D-19
P-2.11

A-0.00
A-000
C-515
A-000
A-0.00
G-506
T-197
L-169
A-159
G-379
D-161
A-159
D-191
A-0.00
A-0.00
A-119
G-3.04
A-0.00
A-0.00
N-1.89
T-3.03
A-0.00
Q-343
G-138
D-433
T-455
A-0.00
G-253
A-0.00
A-0.00
Y-1.60
L-270
K-173
$-3.95
A-000
N-471
S-160
N-1.54
A-000
K-0384
A-000
Y-261
T-455
A-0.00
T-062
A-0.00
A-0.00
N-471
N-141
A-0.00
A-0.00
A-306
A-0.00
D-094
D-204
1-585

A-0.00

149

)
G
NN

1103

322

66

11
26

37
3
20
73
133

136
16

114
12

15

157

80
117
115

106
128
23

145
31
1490
440
1037
49
18
36
665
1616

523
93
146

229
94

45
313

105
1509

249
1218
27
14
285
637
282

99

1333 A-5.68
1739 F-6.17
425N-723
0.98 W - 4.00
89.81 W-50.09
ON-1413
7234 F-325
66.24 G -10.89
11.25 Q-13.37
3932 S-3.60
1.741-11.70
027 N-4.16
51Q-836
88.64 H-436
6.35D-3.11
5329 E-2.00
0T-424
3811-8.60
9.09 F-10.90
3952 N-834
8136 C-22.22
957 D-3.87
141 G-624
0A-250
7632 T -590
424 G-8.70
0V-834
0 A-0.00
6.67 R-13.77
53.62 A-6.40
5714 C-9.22
21.7D-5.46
21.09 M- 15.53
60.87 S-2.71
0 A-0.00
2207 R-5.02
4516 V-338
0.131-3.01
89.55 Y -31.22
0.58 C-2.20
5918 D-5.70
38.891-4.06
19.44 M- 22.92
0 A-0.00
0.37 W-4.34
0D-227
0.19 N-421
60.22 E -4.05
65.751-4.45
4091 Y -9.69
63.08 G -3.67
47.06 T -3.59
1224 A-8.71
4017 H-12.87
957 E-734
0L-10.11
4444 F-11.91
224 D-397
10.77 N-3.90
2606 W - 4.24
1429 F-5.61
3913 W-37.30
61.54 E-6.33
O H-639
29.52 N-536
04 C-2.07
0 A-0.00
OE-11.74
0.821-2.97
1481 D-8.20
1429 Y -23.13
07D-226
031 H-3.19
0.35 H-6.47

N-3.60
M-2384
V-461
F-211
N-256
R-882
D-199
Y-257
5-1.36
E-217
Y-638
Q-248
G-455
1-268
E-265
H-164
P-23
K-46
S -

C-

a3

64

woN

F-1217
W-268
K-592
C-174
A-506
Q-130
N-471
A-000
D-0380
Q-623
E-432
K-387
C-302
A-263
A-000
K-3381
G-259
V-291
N-071
M-2.07
G-239
W-365
K-479
A-000
V.27
E-222
M-255
D-350
L-402
N-5.19
$-365
L-291
K-2383
D-176
T-294
A-000
1-283
E-198
A-298
E-259
D-420
Q-448
L-271
E-470
T-217
F-149
A-000
H-106
Y-177
L-290
E-264
E-223
L-274
1-3.43

G-223
T-2.05
A-399
M-191
F-182
A-0.00
V-183
A-139
K-1.06
P-202
T-3.03
M-2.01
M-3.06
M-2.18
F-248
F-1l6l
3-1.90
L-350
T-2.63
Q-2.67
I1-1.03
S-241
P-397
E-163
L-258
K-125
D-3.50
A-0.00
A-066
P-080
1-292
G-317
G-1.88
L-2.09
A-0.00
A-233
M-2.04
M-1.99
D-0.42
V-185
V-2.08
A-318
A-211
A-0.00
I1-238
T-2.19
I-251
5-321
T-2.44
E-2383
A-279
E-1.71
Q-0.92
G-1.53
S-1.08
A-0.00
V-1.55
G-1.63
C-251
D-2.09
A-2386
S-1.61
I1-209
A-238
A-1.99
N-138
A-0.00
D-0.58
E-165
A-231
D-131
A-1.76
Q-2.61
V-241

Lo Q

IS

66

40
2

130

9231 Q-6.16
0F-857
3125 A-1151
153 M-7.64
94.44 W - 43.04
0A-953

0 A-0.00
0A-000
0Q-1492
4444 D-323
0 A-0.00
0N-2825
8D-525
8510 M-4.17
0 A-0.00

0 A-0.00

0 A-0.00
12L-604
8158 T-5.54
1538 T-4.56
951C-2176
0 A-0.00
1967 G-8.15
0 A-0.00
40 A-677
47.5 G -8.24
0N-646

0 A-0.00
0R-17.38
79.55 A-5.58
98.98 C-21.05
63.83 D-6.10
3333 N-7.06
3088 Y -8.27
0E-7.05

0 A-0.00

0 A-0.00
0V-834
75 G-11.81
092 M-2292
8158 P-4.24
339Q-555
8.11 M-28.08
0 A-0.00
01-23.40
05-489

0 A-0.00
79.66 E - 5.81
63.931-11.63
0 A-0.00
2857 T-3.94
4521 1-629
545K -8.52
9.09 D - 10.50
0S-641
0L-985
3158 F-2017
0A-000
0N-11.37
0A-000

0 A-0.00
20K-879
75 E-538
0E-403
4127 E-3.90
62.5C-2337
0 A-0.00
A-0.00
01-1755
4507 D-293
A-0.00
0E-4.70
0F-1227
0N-2825

G-448
D-641
N-2.50
Q-418
A-397
P-263
A-0.00
A-000
K-163
F-277
A-0.00
A-000
A-447
1-385

A-0.00
A-0.00

G-5.69
A-0.00
A-000
L-253
Y-213
V-834
D-407
A-512
K-435
A-000
A-000
E-326
A-000
S-388
L-334
A-000
E-305
V-3.96
A-372
G-6.64
E-571
D-027
V-322
A-000
A-854
A-000
A-000
A-T715
L-3.08
A-3.00
D-2380
V-645
A-000
A-000
L-253
G-245
A-000
Y-425
E-440
A-000

Y-295
T-556
V-1.48
P-3.15
E-078
E-235
A-0.00
A-000
E-125
E-215
A-0.00
A-000
K-439
D-277
A-0.00
A-000
A-0.00
K-313
L-290
H-2380
Y-039
A-0.00
K-3.00
A-0.00
L-155
Q-273
D-177
A-0.00
A-000
W-1.96
L-165
G-3.76
H-383
S-121
S-148
A-0.00
A-000
A-1.79
A-159
A-0.00
S-3.03
V-453
A-174
A-0.00
A-0.00
D-317
A-0.00
A-134
S-191
A-0.00
257
T-085
T-353
A-089
T-0.49
P-0.14
L-089
A-000
A-0.00
A-000
A-0.00
A-000
D-163
L-289

5
5

5o

5-2.
F-2
A-0.
A-0.00
A-0.00
A-2.09
A-0.00
Q-232
1-292

A-0.00



288.1548
27.0452
-341.198
2.087
-301.166
73.0132
-336.194
-26.0192
140.0572
-340.225
300.1418
-331.159
-1.9442
-3.996
-0.0846
-48.1294
-257.103
-327.194
-269.187
-372.203
-326.197
3842106
1.8654
-332.187
0.8922
171.1238
112.0962
2261192
44.9832
61.9666
-1.9604
29.9978
17.9802
4.0072
0.903
40.0288
-33.0236
-72.9994
-301.147
115.0442
-473.214
-370.187
-0.9288
2941012
270.1436
383.2264
3221612
-441.235
-276.149
60.0008
355.1092
82,9232
1.829
202.0756
-45.0234
-0.8846
120.102
399918
-344.172
346.038
-147.037

288.1588
27.0492
-341.194
2.091
-301.162
73.0172
-336.19
-26.0152
140.0612
-340.221
300.1458
-331.155
-1.9402
-3.992

-326.193
384.2146
1.8694
-332.183
0.8962
171.1278
112.1002
226.1232
44.9872
61.9706
-1.9564
30.0018
17.9842
4.0112
0.907
40.0328
-33.0196
-72.9954
-301.143
115.0482
-473.21
-370.183
-0.9248
294.1052
270.1476
383.2304
3221652
-441.231
-276.145
60.0048
355.1132
82.9272
1.833
202.0796
-45.0194
-0.8806
120.106
39.9958
-344.168
346.042
-147.033
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28

126
64
40

0 A-0.00
0T-9.10
50L-590
0 A-0.00
100 T-10.11
1538 M- 1528
75 Y-18.08
0P-698
100 L -10.11
28.57 G-5.06
125Y-19.14
20 K-439
0.86 F - 5.61
1458 T-3.48
0451 -562
0S-490

0 N -7.06

1429 T-9.31
0T-6.07
100 E - 7.05
1.1 V-834
0F-1753
0Q-418
0 A-0.00
10 M -18.84
0 A-0.00
3.57 W-22.60
0 A-0.00
0.79 L -5.06
1.56 S-3.44
75N-487
0C-497
0 A-0.00
S50N-14.13
0W-16.74
2222 C-36.43
0 A-0.00
0A-655
0A-1191
50 Q-10.45
1.08 M-15.28
0 A-0.00
25 E-10.57
42.86 T - 531
0 A-0.00
75 N-9.42
100 Y -18.23
5.56 W-5.02
0 A-0.00
0 A-0.00
OL-10.11
0Q-10.45
100D-6.12
0 A-0.00
0 A-0.00
S50 N-10.99
1429 K-7.32
A-0.00
0 A-0.00

A-0.00
A-715
1-292
A-0.00
I1-3.90
F-623
R-833
A-461
A-0.00
H-426
L-5.06
M-382
1-4.68
L-198

P-315
A-0.00
S-1.99
A-0.00
Y -8.77
A-0.00
P-394
T-2.04
M-2.66
V-3.09
A-0.00
L-5.06
M-11.98
N-1.05
A-0.00
K-3.66
T-3.03
E-352
Q-4.06
A-0.00
V-417
D-525
A-0.00
Q-6.96
I-3.62
M-4.20
A-0.00
A-0.00
A-0.00
T-9.10
H-479
A-0.00
A-0.00
H-3.19
E-470
A-0.00
A-0.00

A-000
A-000
D-262
A-0.00
D-350
P-525
C-2.48
T-427
A-000
1-3.90

A-000
A-209
5-214
G-1.69
K-293
L-229
Y-239
A-000
L-253
1-1.35

N-471
T-228
A-0.00
A-000
G-3.04
A-000
C-1.92
A-000
1-2.19

A-000
T-152
A-200
A-183
G-183
A-0.00
A-000
N-621
V-093
A-000
5-297
A-000
L-253
1-3.90

A-000
A-000
A-238
A-000
A-477
L-325
H-351
A-000
A-000
A-000
A-000
F-467
A-0.00
A-000
C-1.386
T-3.03
A-000
A-000

133

306

34
349
80
476
28
324
129

24
600
62
816
32
89
108
181
23
101

529
34
421

904
654
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1066
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7C-917
67.74 L -537
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-
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8534 E-4.75
022 V-354
9.09 F - 10.66
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1211 Y -25.67
11.11 W-6.70
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4.59 5-239
752 M-371
017 Q-1.96
0.09 L-287
932 G-3.06
54.67 M- 11.69
4.84 C-27.37
588 L-7.03
0.88 K-2.66
1975 T-5.94
7143 V-575

1290 V-2.62

0 A-0.00
90.86 E - 2.80
9218 A-431

625 R-17.65
3784 A-291
80.85 Y -17.87
233 M- 10.88

T0L-7.77

0L-674
0V-556
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082Y-432

0 A-0.00
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2727 M-21.35
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T-806
1-439
1-142
T-442
F-178
C-643
T-397
V-128
L-289
D-312
1-446
1-263
T-381
Q-250
P-241
E-494
Q-431
1-331
A-370
T-386
C-355

M-354
T-165
W-2.60
1-153
1-242
N-186
Q-397
M-224
T-355
1-246
A-530
Q-273
M-239
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T-221
D-478
A-000
D-2382
L-459
H-192
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F-401
D-179
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H-377
E-405
F-561
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K-117
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1-052
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A-0.00
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95
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0A-0.00
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=
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0M-9.17
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1-315
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Q-339
A-000
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D-493
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L-218

A-0.00
A-0.00
1-2.08

F-351

S-1.50
H-204
H-483
A-0.00
A-0.00
A-200
L-337
S-0.55
A-0.00
P-338
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321
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1-0.46
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L-256

Y-110
A-0.00
G-0.65
F-467

E-470

E-151

A-0.00
R-1.05
D-036
A-0.00
A-0.00
S-475

A-0.00
A-0.00
E-294

W-321
T-034

A-346
C-298
E-144
E-167

P-263

A-0.00
Y-4.03
C-319
A-000
A-325
1-2.46

K-293
A-0.00
A-276
A-0.00
A-000
A-257
A-0.00
A-0.00
C-248
E-232

A-0.00
A-092

E-
Q-
Q-
K-

W W



Table C-2 List of top 500 detected features in mass shift histogram with potential explanations.
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Peak Apex Peptides Decoy Peptides FDR (%)
PeX| HEK293 TNBC Hela | HEK293 TNBC Hela| HEK293 TNBC  Hela Potential Modification 1 Potential Modification 2 Potential Modification 3
-0.0002| 88477 166767 60860 94 190 63| 0.11% 011% 0.10%
1.0026] 18709 76569 2325 0 18 0| 000% 0.02%  0.00%Firstisotopic peak
43,0058 7288 16447 9 3 6 0| 004% 0.04%  0.00%|carbamyiati A
0.984 1789 9633 1870 2 17 2| 011% 0.18%  0.11%|o sp
-17.0268 2384 4721 1138 1 2 1| 0.04% 0.04%  0.09% [Pyro-giu from QLoss of ammenia
52,9128 1 1587 3221 0 0 0| 0.00% 0.00%  0.00%|unannotated mass-shift 529128
-128.095 627 3185 1172 2 15 12| 032% 047%  1.02%Lossof C-terminal K from Heavy Chain of MAbIDeletion of K
2.0052 3916 31049 164 0 8 0| 0.00% 0.03%  0.00% Second istopic peak
128.0948 707 4104 801 0 9 0 0.00% 0.22% 0.00% |Addition of lysine due to transpeptidation/Addition of K
15.9948 978 1490 1314 1 5 1| 010% 0.34%  0.08%|cmtonen ™ : Sersubst
31.99 747 619 1114 1 1 1] 0.13% 0.16%  0.09% [dinydroxyiPro->Glu substitution
301.9864 2100 681 2 0 1 0| 000% 0.15%  0.00% unannotated mass shift 301.9864
27.995 1537 2856 65 8 6 3| 052% 021%  4.62%|Formyiati Asp substitution/Thr->Glu
79.9664 644 1350 642 1 4 3| 0.16% 0.30%  0.47% Phosphorytation
53.9186 1549 607 143 0 0 0 0.00% 0.00% 0.00% |Replacement of 2 protons by iron
183.0352 1242 1433 25 0 0 0 0.00% 0.00% 0.00% |Amincethylbenzenesulfonylation
570214 538 156 1135 0 1 1| 0.00% 0.64%  0.00% iaromassmonor anemanastion oS
23.958 0 52 1098 0 1 0| 000% 192%  0.00%|unannotated mass-shift 23.9580
-18.0104 325 803 728 3 2 1| 0.92% 0.25%  0.14% [oenydration/Pyro-giu from E
156.1012 304 1437 215 0 1 0 0.00% 0.07% 0.00% |Addition of arginine due to transpeptidation/Addition of R
284.1268 0 194 951 0 0 0| 0.00% 0.00%  0.00%unannotated mass shift 284.1268
162.1258 0 2 600 0 0 1| 0.00% 0.00%  0.17% unannotated mass-shift 162.1258
17.0258 125 758 445 2 8 2 1.60% 1.06% 0.45% |replacement of proton with ammonium ion
234.0742 0 4 495 0 0 0| 000% 0.00%  0.00%)unannotated mass.shift 2340742
37.9472 129 1012 659 1 0 0| 078% 0.00%  0.00%|Replacement of 2 protons by calcium
306.0952 10 5 766 0 0 0| 000% 0.00%  0.00% unannctated mass-shift 306.0952
44.0084 861 4342 1 0 1 0| 000% 002% 0.00%|sEthyicystine from Ser et
-15.9956 138 1910 285 0 6 0| 000% 0.31% 0.00% i Ala substitution/Tyr->Phe
302.9896 763 112 0 0 1 0| 000% 0.89% 0.00%Firstisotopic peak Unannotated mass-shift 301.9864
-71.0368 150 412 67 2 1 0| 133% 024%  0.00%)cin->Gly substitutioniDeletion of A
249,981 475 21 1 0 0 0| 0.00% 0.00%  0.00%unannctated mass shift 249.9810
-113.0836 231 630 79 2 1 0| 087% 0.16%  0.00% |Deletion of IDeletion of L
21,9804 178 1599 83 0 1 0| 000% 006% 0.00%|sodiumadduct
241.1788 35 455 15 0 1 0| 000% 022%  0.00%)unannotated mass-shift 241.1788
1451218 122 207 107 0 0 0| 000% 0.00%  0.00%]|Pyro-giu from QiLoss of ammonia e
Glu
14.0156 84 385 55 1 1 0| 1.19% 026%  0.00%-Thrs val>Leullle
1.9882 717 6523 107 0 8 0| 000% 0.12%  0.00% Firstisotopic peak DSRICAaN/ASn s
2,016 266 1324 137 1 5 0| 038% 0.38%  0.00%|2amino-2-0x0- :_acidiVal->Pro
151.9956 4 1847 2 0 0 0| 0.00% 0.00%  0.00%) unannotated mass-shift 151.9955
3.0076 501 8018 18 0 5 0| 000% 0.08%  0.00%|unannctated mass-shift 3.0076
-85.0894 242 524 0 2 2 1| 083% 038% 100.00%|carvamyiati e e I LI 0
-16.0246 367 1744 30 0 1 0 0.00% 0.06% 0.00% |First isotopic peak Pyro-glu from Q/Loss of ammonia
16.9968 396 776 29 1 2 0] 025% 026%  0.00%|asn>Met substitution
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-1.0036

54,9218
80.9702
204.136

131.039%6
125.8968

184.037
129.0974
216.1002
-0.9836
197.0454
3.9946
203.08
-14.0156
-1.032
-99.069

41.0264

173.0506
0.9482

28.0314

248.1262

28.9974

-328.211
-156.1012
-229.143

-127.1114

11.9996
43.99
-170.1056

284.1964
-257.1376
32.9924
-57.0216
-0.0362
171.101
-199.1322

-129.0424
0.0366

378.1146

481

456
290

249
337

134

471

151
94
51

386

125
56

27
310

58

288
15

10
33

62
137
80

31
27
215
24
273
104
19

21
266

2749

259
821

186
43

684

1650
10
2073
13
755
178
450
1702
257
63

230
1168

225

991

61
500
63

146

356
552
92

155
110
258
536
1575
399
133
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4260
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214
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70
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0.83%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.43%
0.00%
0.00%
1.06%
1.96%
0.00%
0.00%
0.00%

0.00%
0.32%

0.00%

0.00%

0.00%

0.00%
2.94%
0.00%

0.00%

0.00%
0.73%
0.00%

0.00%
0.00%
0.00%
0.00%
1.47%
0.96%
0.00%

0.00%
0.38%

0.00%

0.58%

0.00%
0.12%
0.00%

0.00%
0.00%

0.00%
0.06%
0.00%
0.87%
7.69%
0.13%
0.00%
0.22%
0.41%
0.39%
0.00%

0.44%
1.20%

1.78%

0.00%

0.00%

0.00%
0.60%
1.59%

0.00%

0.00%
0.18%
0.00%

0.00%
0.00%
0.00%
0.00%
0.64%
0.00%
0.00%

4.00%
0.14%

33.33%

0.76%

0.00%
0.00%
0.43%

0.00%
0.00%

0.00%
0.00%
0.00%
2.61%
0.00%
1.21%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
0.48%

0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
1.72%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

Pyro-glu from Q/Loss of ammonia

First isotopic peak

First isotopic peak

>Glu
Addition of M
lodination

First isotopic peak

First isotopic peak
Unannotated mass-shift 216.1002
glycerylphosphorylethanolamine
to Thr

M-Acetylhexosamine
Ala->Gly i Asp i

Thr->Ser A
Lysine oxidation to
Deletion of ¥
amidination of lysines or N-terminal amines with methy!
acet ->GIn i

Glu
Lys->Glu substitution
d i +28/Ethyati
= ys->Met ;

Unannotated mass-shift 216.1002
First isotopic peak
Unannotated mass-shift -328.2110
Loss of arginine due to transpeptidation/Deletion of R
Unannotated mass-shift -229.1430
D Asp Gl

Addition of Carbon to cysteine
Carboxylati Asp i
GIn->Gly substitution/Deletion of A

Addition of lysine due to transpeptidation/Addition of K

Unannotated mass-shift -257.1376

First isotopic peak

Asn->Gly i Ala

Lys->GIn substitution

Carbamylation/Ala->Asn substitution

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K
Deletion of E

GIn->Lys substitution

Unannotated mass-shift 306,0952
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Second isotopic peak

Replacement of 2 protons by iron
Phesphorylation

Unannotated mass-shift 162.1258

Aminoethylbenzenesulfonylation

Addition of lysine due to
transpeptidation/Addition of K

Addition of M

tryptophan oxidation to
kynurenin/Pro->Thr substitution

Formylation/Ser->Asp
itution/Thr->Glu

Loss of C-terminal K from Heawy
Chain of MAbJDeletion of K

Deletion of V

Addition of arginine due to
transpeptidation/Addition of R

dihydroxy/Pro->Glu substitution

Addition of lysine due to
transpeptidation/Addition of K

GIn->Gly substitution/Deletion of A

di-Methylation/Acetaldehyde
+28/Ethylation/Ala->Val

Cys->Met

Methylation/Asp->Glu
substitution/Gly->Ala

ituti =>Thr ionfval-
>Leullle substitution/Asn->GIn
substitution

di-MethylaticnfAcetaldehyde
+28/EthylationfAla->Val
ituti ys->Met

Carboxylation/Ala->Asp substitution



-9.037

-87.032
-184.1208

-200.116

170.0948

244131

113.0836
-114.0424

260.127

68.9078

157.1042
269.1854

-112.1004

-128.0588
42.0104

-2151272
-115.027

50.0002

0.0474

0.9376
210.1616
53.8972
308.0824

13.979

-241.1796

420.0506
-163.0632

-286.1642

2.9892

215127
-372.2198

-146.1054
-227.1642

213.1002

95
31

62
60

32
31

287

307

39
26

19

208
12

31
16

251

127
78

81

51

82

194
115

12

19

711
180

62

147
279

97
370

38

2384

1089
1030
73
58

130

138

1116
96

40

2511
180

45
54

56

17

45
46

26

150

186

13
54

176

115

29

61
39

86
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1.05%

3.23%
0.00%

0.00%

0.00%

0.00%

12.50%
6.45%

0.00%

0.00%

0.00%
0.00%

5.00%

2.33%
0.00%

0.00%
0.00%

0.00%

0.00%

0.65%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

12.90%
6.25%

0.00%

0.00%

0.79%
0.00%

1.24%

0.00%

0.00%

1.55%
0.00%

0.00%

0.00%

0.14%
0.56%

0.00%

2.72%
0.36%

0.00%
0.54%

0.00%

0.13%

0.28%
0.00%
0.00%
0.00%

0.77%

0.00%

0.18%
0.00%

0.00%

0.24%

0.00%
0.00%

11.11%
1.85%

3.57%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

62.30%
0.00%

0.00%

Ala->Gly substitution/Glu->Asp

s P e tryptophan oxidation to substitution/Leu/lle->Val
e kynurenin/Pro->Thr substitution substitution/Thr->Ser
A
Deletion of §
GIn->Gly substitution/Deletion of A Deletion of I/Deletion of L.
Addition of lysine due to tr idatit ddition of K L mass-shift -328.2110
amidination of lysines or N-terminal
Unannotated mass-shift 216.1002 amines with methyl acetimidate/Ser- Deletion of S
>Gln substitution
di-Methylation/Acetaldehyde
Unannotated mass-shift 216.1002 +28/Ethylation/Ala->Val
i Cys->Met
Acetylhypusine/Addition of Ifaddition of L
Deletion of N
T - v di-Methylation/Acetaldehyde
substitution e Unannotated mass-shift 216.1002 +28/EthylationfAla->Val
Cys->Met
Oxidati I
Unannotated mass-shift 52.9128 ion or Hydr Tyr
Addition of arginine due to
[P transpeptidation/Addition of R
Addition of arginine due to transpeptidation/Addition of R :ﬁ""h”“’"" elAddition of /Addition
D Asp el Deletion of l/Deletion of L
Deletion of Q@
>Glu
Acetylation/Ser->Glu substitution Unannotated mass-shift -257.1376
Deletion of D
Glu tryptophan oxidation to tryptophan oxidation to
4 e kynurenin/Pro->Thr substitution kynureniniPro->Thr substitution
) e Al Tyr- p>A
P GRS EDLD fen >Phe substitution >GIn substitution
o . sp loniain=Gi Ueamjdatloansn-:fsp Lysine oxidi\llon to aminoadipic
Unannotated mass-shift 210.1616
D Asp { In->Glu u hift 52.9128
First isotopic peak o e Unannetated mass-shift 306.0952
proline to pyr acidiTryptop to
IThr->Asp
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K Deletion of l/Deletion of L
Unannotated mass-shift 420,0506
Deletion of Y
N Asn->Gly substitution/Gin->Ala
Unannatated mass-shift -229.1430 substitution/Deletion of G
glycosy 180 in
of 018
Unannotated mass-shift 215,1270

Unannotated mass-shift -372.2198

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K

Dehydration/Pyro-glu from E
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Dehydration/Pyro-glu from E
Deletion of V

di-MethylationfAcetaldehyde

N-Acetylhexosamine +28/Ethylationfala->Val

ys->Met



-243.1218
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0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.00%

5.56%
0.00%

0.00%

0.00%

0.69%
0.39%

0.00%

0.00%

0.00%
4.55%
50.00%
6.25%

0.00%
10.00%
0.00%

0.70%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

1.59%
0.84%
0.00%

0.58%

1.10%
0.00%

0.00%

0.82%

0.48%
0.18%

0.00%

1.25%

0.00%
1.80%
0.00%
2.40%

0.00%
2.00%
7.14%

0.72%
0.00%
0.00%

0.00%
1.19%
1.05%

0.00%
0.00%

6.25%

0.00%

0.00%
1.96%

0.00%

0.00%

4.88%
0.00%

0.00%[°

0.00%

0.00%
0.00%

0.00%|>

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%
11.11%
0.00%

0.82%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K

Aminoethyibenzenesulfonylation
Deletion of I/Deletion of L
Lys->Gly substitution

Unannotated mass-shift 241.1788

Removal of initiator methionine from protein N-
terminusi/Deletion of M

i A
D sp subst

Ser->Asn iThr->Gin

i +28/Ethylati Val
Cys->Met i

Lysine oxi to

Deletion of T

GIn->Gly substitution/Deletion of A

or Hy S i Tyr
substitution

Carbamylation/Ala->Asn substitution

Thr->Val substitution
Glu->Lys substitution

dihydroxy/Pro->Glu substitution

First isotopic peak

Deletion of D

Unannotated mass-shift 23,9580 Carboxylation/Ala->Asp substitution

Deletion of V

Ala->Gly substitution/Glu->Asp
substitution/Leuflle->Val
substitution/Thr->Ser

i A

Oxidati

or Hydr
Tyr

Removal of initiator methionine from

Sdireiottsn s protein N-terminus/Deleticn of M

glycosylated asparagine 180
labeling/Deamidation in presence of
o18

Lysine oxidation to aminoadipic
semialdehyde

Gln->Gly substitution/Deletion of A

Asn->Gly substitution/Gin->Ala

substitution/Deletion of G CLENEN

di-Methylation/Acetaldehyde
+28/Ethylation/Ala->Val
i Cys->Met

Addition of arginine due to
transpeptidation/Addition of R

Ala->Gly substitution/Glu->Asp
substitution/Leullle->Val
substitution/Thr->Ser

i A

Unannotated mass-shift 210.1616

substitution/Gly->Asn
substitution/Addition of
Glycine/Addition of G

Gl

Removal of initiator methionine from Thr->Val substitution

Replacement of 2 protons by calcium

Deletion of I/Deletion of L Deletion of I/Deletion of L
Acrylamide adduct/Gly->GIn substitution/Addition of A
Unannotated mass-shift -488.2272
Deletion of F
dditi d A
gedienollvsnekuai Gl substitution/Addition of
Glycine/Addition of G
Thr->Leullle substitution/Ser->Val substitution
pannotated mass bl 223 1430 protein N-terminus/Deletion of M
D sp subst - Lysine oxidation to aminoadipic
semialdehyde
GIn->Gly substitution/Deletion of A Deletion of E
First isotopic peak
A 5 - Loss of arginine due to

Sp:

dihydroxyiPro->Glu substitution

Removal of initiator methionine from
transpeptidation/Deletion of R protein N-terminus/Deletion of M
Unannotated mass-shift -257.1376

tryptophan oxidation to GIn->Lys substitution

>Glu
kynurenin/Pro->Thr substitution
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K Deletion of N
D Asp el L hift -257.1376
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213123

-127.0926
47.9848
-144.09

-259.1358
30.0106
0.959
1.9584
-369.238
-228.1112
17.9982
26.0156
-14.9914

2721274

253.1534
229826

285,144

-215.0912
248.1986

45.0108
188.1052
-186.1006
-214.1312
257.1372

1.0674

29.9736
159.933

199.1316

-370.2218
-343.1856

-270.1694

230.0724

81.9712
-116.0584

12

68
30
19

31
276

248

32
127
12
53

53

20
10

124

21
38

15
240

15

93

89

750
73
104

38
247
1332
989
31
66
426
322
1082

34

79
1030

110
23

1283

24
37
50

214

1321
41

185

46
28

12

405
247

20

27
70
41

17

19
305

147

21
20

31

97

20
12
21

56

93
13
12

12
167

46
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13

22
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0.00%

0.00%
0.00%
5.26%

0.00%
0.00%
0.00%
0.00%
0.00%
6.25%
0.00%
8.33%
1.89%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.81%
0.00%
4.76%
0.00%
0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

2.25%

0.13%
0.00%
0.00%

2.63%
0.81%
0.45%
0.51%
0.00%
0.00%
0.47%
0.00%
0.28%

0.00%

0.00%
0.10%
0.00%

0.00%
0.00%

0.08%
0.00%
0.00%
0.00%
0.47%

0.23%

4.88%
0.00%

0.00%

0.00%
0.00%

0.00%

14.29%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

lodoacetamide derivativelAla->Gln substitution/Gly->Asn
it ition of Glyci ddition of G
First isotopic peak
cysteine oxidation to cysteic acid
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K
Loss of C-terminal K frem Heavy Chain of MAb/Deletion of K
1y y y Thr ituti Si
Leuflle->Asn substitution
Lysine to
x sp i In->Glu
Deletion of I/Deletion of L
Addition of lysine due to transpeptidation/Addition of K
A +26/Ala->Pro
First isotopic peak

Acetylation/Ser->Glu substitution

Addition of arginine due to transpeptidation/Addition of R

First isotopic peak

Carbamylation/Ala->A

Deletion of S
Unannotated mass-shift 248.1986

First isotopic peak
Carbamylation/Ala->Asn substitution
Deletion of V

Carbamylation/Ala->Asn substitution

>Glu

Second isotopic peak
quinonefVal->Glu substitution
pyrophosphorylation of Ser/Thr

Addition of lysine due to transpeptidation/Addition of K
Deletion of I/Deletion of L

Unannotated mass-shift -229.1430

Addition of arginine due to
transpeptidation/Addition of R

Loss of C-terminal K from Heawy
Chain of MAb/Deletion of K

reduction/Ser->Ala substitution/Tyr-
>Phe substitution

Removal of initiator methionine from
protein N-terminus/Deletion of M

glycosylated asparagine 180
labeling/Deamidation in presence of
o018

Deletion of I/Deletion of L

Deletion of D

Deletion of I/Deletion of L

reductioniSer->Ala substitution/Tyr-
>Phe substitution

Methylation/Asp->Glu
substitution/Gly->Ala
substitution/Ser->Thr
substitution/Val->Leullle

Acrylamide adduct/Gly->GlIn
substitution/Addition of A

Unannotated mass-shift 23.9580
Unannotated mass-shift 241.1788
Deletion of Q

S-Ethyleystine from Seri Met
substitution

Pyro-glu from Q/Loss of

Unannotated mass-shift -257.1376

glycosylated asparagine 180
labeling/Deamidation in presence of
o18

Unannetated mass-shift 216.1002

Acetaldehyde +26/Ala->Pro
substitution

Thr->Val substitution

Leullle->Asn substitution

L hift 162.1258

Deletion of S

Unannotated mass-shift -257.1376
Unannotated mass-shift 215.1270

Unannotated mass-shift 162.1258

Acrylamide adduct/Gly->Gin
substitution/Addition of A

Unannotated mass-shift -257.1376

Deletion of N

Ala->Gly substitution/Glu->Asp
substitution/Leuflle->val

Second isotopic peak

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K

106

Thr->Ser
A

substitution/Gly->Asn
substitution/Addition of
Glycine/Addition of G
Phosphorylation
Thr->Leullle substitution/Ser->Val
substitution

Deletion of ¥

Unannotated mass-shift -257.1376

Addition of M



271.1282

116.0626
0.883

279.9904

189.0454

129.0418

-342.2264
162.0524
-312.2156
-1.0678
-96.1058

-260.1532
-0.959

-75.1822
-289.0734
156.0314
229.1424

174.0884
252.9798

256.1904
200.1054

262141

168.0784
71.0004
152.9972

30.9832

1.943
130.1004

242.1382
-400.1888

42.0472
-259.1

216.1374
-275.1638

-356.2062
-227.1386

255.1696

10

122
20

230
27
10

32

18

10

87

394
578

43

69

32
181
41
1015
15

22
1265

27

1
10

182
19

159
39

17

56
682

106

837
760
163

90

19

33
45
55
71

93

18

184

21

38

21
22
30
149

102

62
56
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12
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20
17
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0.00%

0.00%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%

0.44%
0.00%

10.00%
0.00%

0.00%
33.33%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.52%

0.00%

0.00%

4.35%

0.00%
0.00%
0.00%
0.10%
0.00%

4.55%
0.24%

0.00%
0.00%
0.00%
1.10%

0.00%
0.00%

0.00%
0.00%

0.00%

11.11%
0.00%
0.15%

0.00%

0.96%
0.13%

0.61%
0.00%

2.22%
0.00%

0.00%
0.00%

1.82%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.67%
0.00%

0.00%
1.22%

0.00%
0.00%
4.35%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

1.61%
0.00%
0.00%

0.00%

0.57%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

Addition of lysine due to tr idati ition of K 1 hift 306.0952 Deletion of ¥
Replacement of 2 protons by calcium Unannotated mass-shift 241.1788 Deletion of Y
Unannotated mass-shift 0.8830
Unannotated mass-shift 249.9810 e
Acetylation/Ser->Glu substitution Oxidation or Hydl;?yy:'lat\onmaaser Addition of M
e
of E
Deletion of l/Deletion of L Unannotated mass-shift -229.1430
Hexose
uidation or Hy s VPRE>TYF Unannotated mass-shift -328.2110
substitution
2-amino-3-oxo-butanoic_acid/Val->Pro substitution Lys->Glu substitution
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K dihydroxy/Pro->Glu substitution
Deletion of I/Deletion of L Deletion of F
Asn->Leullle substitution
. Loss of C-terminal K from Heavy
Unannotated mass-shift 52.9128 Chain of MAbIDeletion of K
Unannotated mass-shift -289.0734
Loss of C-terminal K frem Heavy Chain of MADb/Deletion of K Unannotated mass-shift 284.1268
p->Glu y->Al i
>Thr Val=>Leullle 1=>Gln Unannotated mass-shift 215.1270
substitution
Thr->Leu/lle substitution/Ser->Val substitution Hexose
Unannotated mass-shift 252.9798
Addition of lysine due to
Addition of lysine due to transpeptidation/Addition of K transpeptidation/Addition of K
ITyr->Phe L hift 216.1002
di-Methylation/Acetaldehyde
Unannotated mass-shift 234.0742 +28/Ethylation/Ala->Val Gin->Lys substitution
i Cys->Met
Unannotated mass-shift 162.1258 Loss of arginine due to Hexose
: transpeptidation/Deletion of R
c. Formylation/Ser->Asp
= itution/Thr->Glu
First isotopic peak Unannotated mass-shift 151.9956
glycosylated asparagine 180
Formylati Asp itution/Thr->Glu i ion in p of
018
Leuflle->Asp substitution

Second isotopic peak
Unannotated mass-shift 241.1788
Unannotated mass-shift -400.1888

tri- ylati ly->Val
substitution/Propy|

Leullle

Deletion of Q

Unannotated mass-shift 216.1002

Loss of C-terminal K frem Heavy Chain of MADb/Deletion of K
Deletion of ¥
GIn->Gly substitution/Deletion of A

lodoacetamide derivative/Ala->GIn substitution/Gly->Asn

of Glyci ddition of G

107

Addition of lysine due to
transpeptidation/Addition of K

Leuflle->Asn substitution

Remaoval of initiater methienine from
[protein N-terminus/Deletion of M

Gln->Lys substitution

Deletion of F

Unannotated mass-shift -257.1376

Loss of arginine due to

transpeptidation/Deletion of R

tri-Methylation/Gly->Val
substitutionfAla->Leullle
substitution/Propyl

Addition of arginine due to
transpeptidation/Addition of R



185.041
99.0684
-291.1582

257.1486

306.168
199.1068

226.041
-457.2536
-340.2476

115.0272
-355.222
243.133

-15.0214
242.1266

39.9518
147.0352
377.0452

-298.1998

312.202
163.0634
311.1298

300.1208
-2.0526
18.032
-1.077
282.1686

-0.9942
-242.1268
303.9924

-218.0722

256.1542
-440.239
-493.265

-427.2434
-227.1268

259.135
-253.1536

-15.0112
-137.0588

79
15

41
35

10
13
10

12
68

17
11

21

48

153
107

206
20

280
12
94
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23
1
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60
40
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30
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43

135

762
45
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35

67
56
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475
976
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0.00%
26.67%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
20.00%

0.00%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
0.65%

0.00%
0.00%
0.00%

2.14%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
4.35%
0.00%
0.00%

4.35%
0.00%

0.00%
1.67%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
1.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%

0.00%

0.00%
3.57%
0.00%
0.00%
0.28%
0.21%
0.21%
0.00%

1.23%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
2.33%
0.00%
0.00%
1.67%
0.00%

0.00%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
12.50%
0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%

0.00%

0.00%
5.26%
0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

1.57%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
6.25%
0.00%
0.00%

10.71%
0.00%

Second isotopic peak
N-isopropylcarboxamidomethyl/Addition of V

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K
Carbamylation/Ala->Asn substitution

Carbamy A

Carbamy A

Carbamylati A

Unannotated mass-shift -328.2110

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K
Addition of D

Asn->Met substitution

Loss of C-terminal K from Heavy Chain of MAb/Deletion of K
Pyro-glu from QfLoss of ammonia

Unannotated mass-shift 241.1788

Second isotopic peak

Oxidation or Hy ylati S he->Tyr
substitution

Addition of lysine due to transpeptidation/Addition of K
Unannotated mass-shift -328.2110

Addition of arginine due to transpeptidation/Addition of R
Addition of ¥

Addition of lysine due to transpeptidation/Addition of K
Oxidation or Hy i S WPhe->Tyr
substitution

2-amino-3-oxo-butanoic_acid/Val->Pro substitution
Unannotated mass-shift 2.0076

Carbamy| A

Carbamylati

D Asp =Gl

Deletion of liDeletion of L
Second isotopic peak

Deletion of S

Aminoethylbenzenesulfonylation

Deletion of ¥

Ami WGIu-

>GIn substitution

Sodium adduct

Addition of arginine due to
transpeptidation/Addition of R

Aminoethylbenzenesulfonylation
Deletion of E

Deletion of I/Deletion of L

Unannotated mass-shift -372.2198

Addition of arginine due to
transpeptidation/Addition of R
Second isotopic peak
Lys->Glu substitution

Replacement of 2 protons by calcium
Addition of M
Unannotated mass-shift 249.9810

hydrexymethyl/ala->Thr
ituti ly->Ser

Addition of arginine due to
transpeptidation/Addition of R

Aminoethylbenzenesulfonylation
Unannotated mass-shift 284 1268

Lys->Gln substitution

glycosylated asparagine 180
labelingiDeamidation in presence of
o018

Unannotated mass-shift 284.1268

Unannotated mass-shift 241.1788

Thr->Val substitution
Deletion of E
Unannotated mass-shift 301.9864

Removal of initiator methionine from
protein N-terminus/Deletion of M

amidination of lysines or N-terminal amines with methy! .

>GIn » Unannotated mass-shift 215.1270
Unannotated mass-shift -440.2390

o i Thr Asn->Gly substitution/GIn->Ala
o substitution/Deletion of G

0 or Hy £ i WPhe->Tyr L .
substitution mass-shift -328.2110
Deletion of I/Deletion of L Deletion of N
Addition of lysine due to transpeptidation/Addition of K Addition of M
(o} ion or il Si if Tyr
substitution cliaty

lactic acid from N-term SeriLys->Leu/lle substitution/ISD (z+2)-
series

Deletion of H

108

Unannotated mass-shift 215.1270

Unannotated mass-shift 241.1788

Deletion of V

Unannotated mass-shift 215.1270

Lysine oxidation to aminoadipic
semialdehyde

Thr->Leullle substitutioniSer->Val
substitution

Unannotated mass-shift -328.2110

2-amino-3-oxo-butanoic_acidival-
>Pro substitution

Unannotated mass-shift -440.2390

Deletion of D

Unannotated mass-shift -400.1888



-28.0314
-156.09

54,94

462.098

-1.0894
-234.1008
1.9216

276.1214

256.1314

-2.0044

-243.1336
-258.0852
26.0518

-1.02

370.22

97.9664
176.7462
-414.1388

-25.032
-214.0956

176.1408

72.0332
123.9124

-241.1428
134.047

15.0188

24,9414

243.1226
406.1596

66.9272

204.083
-202.0598

-399.2122
-10.032

13
21

32

181

183
41

23

12

28

21

93
53

73
562
855

757

25
830
77
40
1782

115
27

207
33
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0.00%
4.76%

0.00%

0.00%

0.55%
0.00%
0.00%

0.00%

0.00%

1.80%

0.00%
0.00%
0.00%

0.25%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

25.00%
0.00%

0.00%
3.77%

0.00%

0.00%

0.00%
0.00%
0.53%

0.00%

0.00%

0.60%

0.00%
0.00%
0.00%

1.07%

0.00%

0.00%
0.00%
0.00%

0.48%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.76%

0.00%

0.00%

4.00%

0.00%
5.26%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
12.50%

0.00%

0.00%

0.00%
0.00%

0.00%

50.00%
0.00%

0.00%
0.00%

Val->Ala i >Cys
Deletion of V
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K

Unannotated mass-shift 420.0506

Unannotated mass-shift -1.0894
GIn->Gly substitution/Deletion of A
First isotopic peak

Unannotated mass-shift 234.0742

Acetylation/Ser->Glu substitution

ddition of R

Asn->Gly substitution/GIn->Ala
substitution/Deletion of G

Aminoethylbenzenesulfonylation

tri-Methylation/Gly->Val
substitution/Ala->Leullle
substitution/Propyl

Deletion of Y
Second isotopic peak

tri-Methylation/Gly->Val
substitution/Ala->Leu/lle
substitution/Propyl

Unannotated mass-shift 216.1002

L hift -229.1430

Addition of arginine due to

Loss of arginine due to transpeptidation/Deletion of R
Unannotated mass-shift -257.1376
Ser->Leu/lle substitution

A ituti I

P

Unannotated mass-shift 241.1788

Deletion of S
Glu->Lys substitution

Lys->Gln substitution

rolysis/Addition of E

First isotopic peak Phosphorylation
Unannotated mass-shift 176.7462
Unannotated mass-shift -414.1388
- Asn->Gly substitution/GIn->Ala
dinydroxy/Pro->Glu substitution substitution/Deletion of G
Deletion of V Deletion of D
Methylation/Asp->Glu
substitution/Gly->Ala
Unannotated mass-shift 162.1258 substitution/Ser->Thr
substitution/Val->Leullle
ituti Gl
ca P Addition of lysine due to
T transpeptidation/Addition of K
Carbamylation/Ala->Asn substitution Unannotated mass-shift 52.9128
Oxidation or Hy S Tyr 1 hift -257 1376
3-methyl-2-pyridy| isocyanate
MethylationfAsp->Glu
substitution/Gly->Ala
First isotopic peak substitution/Ser->Thr
substitution/Val->Leullle
ituti Gl
D Asp In->Glu u hift 23.9580
Addition of lysine due to transpeptidation/Addition of K Addition of D
HexNAc2
Methylation/Asp->Glu
substitution/Gly->Ala
Unannotated mass-shift 52.9128 substitution/Ser->Thr

First isotopic peak
Deletion of S

amidination of lysines or N-terminal amines with methyl
acetimi ->Gln i

First isotopic peak

109

substitution/Val->Leullle

Gl

N-Acetylhexosamine
Deletion of D

Unannotated mass-shift -440.2380

Asn->Met substitution

Unannotated mass-shift -1.0834

Thr->Val substitution

Acrylamide adduct/Gly->GIn
substitutionfAddition of A

Asn->Met substitution

Deletion of V

Formylation/Ser->Asp
itution/Thr->Glu

Val->Ala substitution/Met->Cys
substitution
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284.9596
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-469.29
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186.089
17.9552
-198.1372

236.0678
-0.9414

105.8246
284.1838
-325.163
359.0082

1.8778
-313.164

-1.0416

-185.116

-411.2848

14.9734
0.8474

326.1936
-30.0104
-356.2174
-410.2892

-13.99

2721632

-256.1166
-358.1856
0.0728

355.904
-160.0308
-184.085
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0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%
0.00%

0.33%

0.00%

0.00%

0.00%
1.47%

0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
10.00%
0.00%

0.17%

0.00%

0.00%
0.00%

0.00%

6.67%
0.00%
0.00%

0.00%

0.00%
3.23%
0.00%

0.00%
0.22%

0.00%
0.00%
0.00%
0.00%
0.27%
3.45%

0.17%

0.00%

0.00%

1.45%
0.32%

0.00%
0.00%
0.00%
0.00%

0.13%

0.00%

0.00%
4.76%
0.09%

0.00%
0.00%
0.00%

Ala=>Gly substitution/Glu->Asp
0, substitution/Leuflle->Val
0.00% |unannotated mass-shift 162.1258 substitution/Thr->Ser Deletion of F
In->A
tri-Methylation/Gly->Val
0.00%|o i Asp i [ L hift 301.9864  substitution/Ala->Leullle
substitution/Propyl
0.00% |Pyro-glu from Q/Less of ammonia Unannotated mass-shift 301.9864
0.00% |GIn->Gly substitution/Deletion of A Deletion of T
0.00% o sp In->Glu Oxidation or H’dr:,’;“'r'am’"".”“"se' Unannotated mass-shift 488.2272
0.00% |Deletion of IMDeletion of L Deletion of v Unannotated mass-shift -257.1376
o, Double Car
10.00% o
0.00% |Pyro-glu from Q/Loss of ammonia Carl Asp L hift 248.1986
0.00% |Addition of lysine due to transp of K [ hift 3.0076 Unannotated mass-shift 252.9798
0.00% |Pyro-giu frem QiLoss of ammonia N-Acetylhexosamine GlIn->Lys substitution
0.00% |Leuftie->Met substitution
0.00% |Detetion of v Deletion of V
Addition of arginine due to
9,
000 /0 Phospharylation transpeptidation/Addition of R
A A
0, i i p ;
0.00% |First isotopic peak e Asn->Leullle
0.00% |unannotated mass-shift 52.9128 Unannotated mass-shift 52,9128
0.00% |car ion/Ala->A Unannotated mass-shift 241.1788
0.00% |unannotated mass-shift -488 2272 Addition of ¥
0.00% |unannotated mass-shift 52.9128 Unannotated mass-shift 306.0952
1.18% |Pyro-glu frem Q/Loss of ammonia Lys->Glu substitution Leufle->Met substitution
Oxidation or Hy S Tyr ’ .
0, y
0.00% Frrie Unannotated mass-shift -328.2110  Glu->Lys substitution
proline oxidation to pyroglutamic
0.00% |Pyro-glu from QiLoss of ammonia Second isotopic peak acidfTryptophan oxidation to
oxolactone/Thr->Asp substitution
Asn->Gly substitution/Gin->Ala
2, u
0.00% [Loss of C-terminal I from Heavy Chain of MAB/Deletion of K W & e i o
O: or i S WPhe->Tyr "
9, y
0.00% substitution Deletion of V Unannotated mass-shift -328.2110
0.00% |Leuttie->G A
1.02% |Lys->GIn substitution Unannotated mass-shift 0.8830
0.00% >Glu Car ion/Ala->A [ hift 241.1788
oy, |Proline 1o pyrr >Gly IThr-
6.67% (> ara substitution
0.00% >Glu ty Gl [ hift -440.2390
o, " Leuflle->Gln substitution/Val->Asn  Leuflle->GIn substitution/Val->Asn
0.00% |unannotated mass-shift 440.2330 substitution substitution
o, . . reduction/Ser->Ala substitution/Tyr-
0.00% [second isatapic peak >Phe substitution
0.00% |dihydroxyiPro->Glu substitution Unannotated mass-shift 210.1616 Y Oroxymethylidla->Thr
0.00% |Deletion of @ Deletion of Q
16,67 % |Unannotated mass-shift -229.1430 Deletion of £
0.00% |GIn->Lys substitution GIn->Lys substitution
0.00% |unannotated mass-shift 301.9864 Replacement of 2 protons by iron
0.00% |Deletion of C
oz [©: or Hy i S WPhe->Tyr . A
0.00% [sypstitution v ionof A Deletion of E
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-17.0088
-441.294

-244.0694

-213.1482

36.919

-318.1366
-328.1748
275.13
414.2462

225.1482
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291.1582
-414.2594
58.0054

-32.0076

-173.1056

-89.0296
-97.0534
366.0698

-1.9318
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0.00%
1.54%
0.00%
0.00%
0.00%

0.00%
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0.00%
0.00%
0.00%

0.00%

0.00%

25.00%

0.00%
0.00%

0.00%
0.00%
0.00%
20.00%

0.00%

0.00%

0.00%
16.67%
0.00%

0.00%

14.29%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.47%

3.57%
0.36%
0.00%
0.00%
0.00%

0.00%

0.00%
3.70%
0.00%
1.22%

0.00%

0.00%

4.35%

0.00%
0.00%

0.00%
1.37%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.18%

2.50%

417%
7.14%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%

0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
1.45%

0.00%

7.69%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%
0.00%

0.00%
0.00%

1.56%

Amidati A

Ebei L >GIn suhsmul’}on
GIn->Gly substitution/Deletion of A Unannotated mass-shift -328.2110
First isotopic peak Dehydration/Pyro-glu from E
Deletion of iDeletion of L Unannotated mass-shift -328.2110
Deletion of E Deletion of D
(e} or Hy S WPhe->Tyr L .y
substitution mass-shift -229.1430

. reduction/Ser->Ala substitution/Tyr-
Unannotated mass-shift 52.9128 >Phe substitution
Acetylation/Ser->Glu substitution Lys->Gly substitution Unannotated mass-shift -289.0734
GIn->Gly substitution/Deletion of A Unannotated mass-shift -257.1376
Carbamylati Asn->Met substitution Unannotated mass-shift 215.1270
First isotopic peak N-Acetylhexesamine Unannotated mass-shift 210.1616
. N-

" N A . 2-amino-3-oxo-butanoic_acidiVal- . .
Addition of lysine due to transpeptidation/Addition of K »Pro substitution ﬁ?vpylca rboxamidomethyl/Additio
Ser->Asn IThr->Gln Unannotated mass-shift -440.2390
2-amino-3-oxo-butanoic_acidiVal->Pro substitution Leulle->Asp substitution Unannotated mass-shift -414.1388
Deletion of Y Deletion of T
Deletion of I/Deletion of L Deletion of C

>Glu Dehydration/Pyro-glu from E Unannotated mass-shift 215.1270
Addition of lysine due to transpeptidation/Addition of K Addition of ¥
Glu Unannotated mass-shift -328.2110  Deletion of Q@
ic acid derivati 1 i y->Asp
substitution
Gl
u substitution/Gly->Asn Removal of initiator methionine from
- substitution/Addition of protein N-terminus/Deletion of M
Glycine/Addition of G
amidination of lysines or N-terminal
Carbamylati A amines with methyl - U hift -257.1376
>Gin substitution
Removal of initiator methionine from protein N-terminus, then
Y of the new N. i
Deletion of P
Amincethylbenzenesulfonylation Aminoethylbenzenesulfonylation
p->Asn i I Glu->Lys substitution
. Asn->Gly substitution/GIn->Ala
[aniniotated mase-shift -267.1878 substitution/Deletion of G
Unannotated mass-shift -257.1376 Deletion of E
Unannotated mass-shift 496.3114
y Glu dihydroxy/Pro->Glu L hift 210.1616
Homoserine/Met->Thr substitution
First isotopic peak Deletion of l/Deletion of L
Leullle->Thr substitution/Val->Ser substitution
Unannotated mass-shift -435.1622
Acetylation/Ser->Glu substitution Replacement of 2 protons by iron Deletion of P
GIn->Gly substitution/Deletion of A Deletion of N
Ala->Gly substitution/Glu->Asp
[o} or Hy i i i Tyr i eullle->Val
substitution substitution/Thr->Ser LSS SE S 1SS
e P
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-213.1114
0.0842
-186.0794
230.1152
214.1206

184.1326

-471.2796

208.0616

190.157

2.9528
99.0318

303.17

285.2058

158.108

160.9364
-354.2628
-344.2062

-16.0416
-435.1958

458,273

-282.169
19.0316
-285.1692

-369.2002
61.9116
355.906

-99.079
-199.0958

-402.1572
-300.144

59.0002

-271.153
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4.76%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%

0.00%

0.92%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.46%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

1.16%

0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%

0.00%

0.00%

3.70%
0.00%

0.00%

0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%
0.00%

0.00%

0.00%

Deletion of ¥

Deletion of N

reductioniSer->Ala substitution/Tyr-

= of proten with luin lon >Phe substitution
Deletion of W
p->Glu Al

>Thr ionfVal->Leullle ! hift 216.1002

substitution

Unannotated mass-shift 216.1002 Thr->Val substitution
di-Methylation/Acetaldehyde

Addition of arginine due to transpeptidati ion of R ylati val

Cys->Met

Ala->Gly substitution/Glu->Asp
substitution/Leullle->Val

Pyro-glu from Q/Loss of ammonia substitution/Thr->Ser

IR>A
Addition of lysine due to transpeptidation/Addition of K Phosphorylation

Unannotated mass-shift 162.1258

Second isotopic peak
EGS crosslinker to Lys or N-terminus fellowing hydroxylamine
cleavage

Acetylation/Ser->Glu substitution

Oxidation or Hy ylati S WPhe->Tyr
substitution

Second isotopic peak

di-Methylation/Acetaldehyde
+28/Ethylation/Ala->Val

Cys->Met

Lys->Glu substitution

Unannotated mass-shift 162.1258

Unannotated mass-shift 241.1788

Addition of arginine due to
transpeptidation/Addition of R

First isotopic peak pyrophosphorylation of SerThr
Unannotated mass-shift -372.2198 Leuflle->Met substitution
ITyr->Phe 1 mass-shift -328.2110
D Asp Pyro-glu from Q/Loss of ammonia
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K Deletion of F
MethylationfAsp->Glu
substitution/Gly->Ala
Unannotated mass-shift 241.1788 substitution/Ser->Thr
substitution/Val->Leullle
e A
N Asn->Gly substitution/GIn->Ala
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K substitution/Deletion of &
o replacement of proton with
Second isotopic peak e i i
Unannotated mass-shift -257.1376 Val->Ala substitution/Met->Cys
substitution
Acrylamide adduct/Gly->GIn substitution/Addition of A Unannotated mass-shift -440.2390
Replacement of 2 protons by zine
Unannotated mass-shift 301.9864 Replacement of 2 protons by iron
Arg->Gly substitution
GIn->Gly substitution/Deletion of A Deletion of Q
Deletion of iDeletion of L Unannotated mass-shift -289,0734
. . o Asn->Gly substitution/Gin->Ala
Loss of C-terminal K from Heavy Chain of MAb/Deletion of K substitution/Deletion of G
Carbamylation/Ala->Asn substitution Oxidation or HY‘{'::‘;:,"’“""W“"SE'
pLomli | L ! L=t Unannotated mass-shift -257.1376
Thr->Ser A

112

Glu->Lys substitution

Unannotated mass-shift -440.2390

EGS crosslinker to Lys or N-terminus

! Yy

di-MethylaticnfAcetaldehyde
+28/EthylationfAla->Val
i Cys->Met

Deletion of C

N-Acetylhexcsamine

Deletion of P

Deletion of D
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371.1808

212.1628
-0.0688
272.1484
0.0902
-285.1316

-298.1636

-330.1728
421.0354

-0.0576

103.9246

0.1282
-216.0752

-313.2008

166.0088
121.977
-442.2418

-300.18
70.0426
-486.244

-296.279
-475.278
-1.8774
29.0148
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0.00%

0.00%
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0.00%
0.00%
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0.00%
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0.00%

0.00%
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0.00%
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0.00%

7.69%

3.70%
0.46%
0.00%
0.00%
0.00%

6.67%

0.00%
0.00%

0.45%

0.00%

0.26%
0.00%

0.00%
0.00%
0.00%
7.69%
0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
0.74%

0.51%

0.00%
7.14%
0.00%
0.00%
0.00%
0.17%

0.00%

1.24%
0.11%

0.00%
0.00%
0.00%

0.00%

0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%

0.00%
0.00%

0.00%

0.00%

0.00%
0.00%

0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%
0.00%
0.00%

0.00%
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0.00%

0.00%
0.00%
11.11%
0.00%
7.14%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%
0.00%

Unannotated mass-shift 284.1268

Proline oxidation to
pyrrolidinone/Ser->Gly
substitution/Thr->Ala substitution

Unannotated mass-shift 215.1270

Addition of arginine due to

ubiquitinylation residue/Double
Carbamidomethylation/Addition of N

lodoacetamide derivativelAla->Gln substitution/Gly->Asn Asn->Leullle substitution
ituti ition of Glyci ddition of G transpeptidation/Addition of R
[ i Asp { >G Gln->Lys substitution Unannotated mass-shift -1.0854
lodoacetamide derivativelAla->GIn substitution/Gly->Asn Unannotated mass-shift 2151270
of Gly ddition of G

First isotopic peak GIn->Lys substitution Glu->Lys substitution

Addition of lysine due to transpeptidation/Addition of K Ser->Asn substitution/Thr->Gin Unannotated mass-shift -440.2390
substitution
N-

Car ylatis propy L hift -440.2390
nofv
tri-Methylation/Gly->Val

Unannotated mass-shift -372.2198 substitution/Ala->Leullle
substitution/Propyl

- Asp Gl L hift 420.0506
proline oxidation to py 180

Pyro-glu from Q/Loss of ammonia acid/Tryptophan i inp of
oxolactone/Thr->Asp substitution o18

>Glu Replacement of 2 protons by zinc

Unannotated mass-shift 0.1282

Deletion of E Deletion of S

Carbamylati Deletion of V Unannotated mass-shift -257.1376

Pyro-glu from Q/Loss of ammonia Aminoethylbenzenesulfenylation

Acetylation/Ser->Glu substitution

Deletion of I/Deletion of L

GIn->Gly substitution/Deletion of A
Crotonaldehyde/Butyryl
First isotopic peak

Unannotated mass-shift -296.2790
Unannotated mass-shift -328.2110
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Appendix D
MSFRAGGER MANUAL

Introduction

MSFragger is an ultrafast database search tool for peptide identifications in mass spectrometry-
based proteomics. It differs from conventional search engines by computing similarity scores in
a fragment-centric fashion using a theoretical fragment index of candidate peptides. The speed
of MSFragger makes it particularly suitable for ‘open’ database searches, where the precursor
mass tolerance is set to hundreds of Daltons, for the identification of modified peptides.
MSFragger is implemented in the cross-platform Java programming language and is compatible
with standard proteomics file formats such as MGF/mzXML/mzML/pepXML.

Equipment

Computer Hardware requirements

The processor requirements of MSFragger depends on the complexity of your search (and your
patience to wait for search results). For an open search (500Da precursor mass window) using a
tryptic digest of the human proteome, a single processor core can search roughly 40,000 MS/MS
spectra in under an hour. MSFragger scales well with the number of processor cores and
runtimes of under 2 minutes per file have been achieved using a 28-core workstation. A desktop
workstation with a quad core processor is sufficient for most simple workflows.

MSFragger requires substantial amounts of memory due to its in-memory fragment index. While
MSFragger can operate with less memory than needed to store the fragment index, it will cause
index fragmentation where it breaks the search into multiple passes, searching each input file
against a small segment of the index at a time (which greatly increases the runtime). For the
human Uniprot protein database with reversed decoys, approximately 3700 MB of memory is
needed to prevent index fragmentation. The actual size of the fragment index is substantially
lower (MSFragger uses a very

conservative estimate of the available free memory to avoid out of memory

situations). Specifying common modifications may boost memory requirements to

6 GB. Semi-tryptic, non-enzymatic, and phospho searches may take tens of gigabytes
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to avoid fragmented searches. Limiting the range of peptide lengths can reduce the search space
and reduce memory consumption in such cases. While fragment index fragmentation is
undesirable, it may be unavoidable in certain instances.

We recommend at least 8GB of memory for workflows involving standard tryptic digestions.

Operating System requirements

MSFragger has been tested on Mac OS X, Windows 7, and a number of Linux distributions.
Note that a 64-bit operating system is required to access more than 4GB of memory.

Java requirements
MSFragger is written using Java 1.8 and requires the Java 8 Runtime Environment. We

recommend the Oracle Java 8 Runtime (download and installation instructions are available at
WWWw.java.com).

Procedure
Preparing Input Files

Mass spectrometry data must first be converted to one of the supported MS/MS input formats of
MGF, mzXML, or mzML. A popular option for converting from vendor file inputs and between
various input formats is Proteowizard (proteowizard.sourceforge.net). MSFragger determines
the appropriate data parser to use based on the file extension (.mgf for MGF, .mzXML for
mzXML, and .mzML for mzML) and does not make inferences from file contents (i.e. naming a
mzML file with the .mzXML extension will lead to unpredictable results or crashes).

The protein database must be supplied in FASTA format. MSFragger does not have the
capability to generate decoys internally so they must be generated externally and appended to the
protein database before running MSFragger.

Configuring MSFragger

Extract the MSFragger.jar into your working directory along with the sample configuration file
called fragger.params. MSFragger is configured using a text parameters file. The parameters
file is passed as the first argument to MSFragger and has no restrictions on names or file
extensions (so one might want to name their configuration files to be more descriptive such as
Uniprot open_withmods.txt) after editing the parameters file for a particular analysis.
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Parameter names are given left of the equal sign and parameter values are given to the right (e.g.
num_threads = 4). White spaces are trimmed from the ends of each value by MSFragger. All
text to the right of (and including) the # sign of each line is discarded so # can be used for
comments in the parameters file.

Table D-1 Listing of MSFragger search parameters.

General Parameters

num_threads Number of CPU threads to use, should be set to the number of logical
processors; a value of 0 (auto-detect) will cause MSFragger to use the
auto-detected number of processors

Default: 0
database_name Path to the protein database file in FASTA format
Search Tolerances
precursor_mass_tolerance Precursor mass tolerance (window is +/- this value)
Default: 20
precursor_mass_units Precursor mass tolerance units (0 for Da, 1 for ppm)
Default: 1
precursor_true tolerance True precursor mass tolerance (window is +/- this value). Used for tie

breaker of results (in spectrally ambiguous cases) and zero bin boosting
in open searches (0 disables these features). This option is STRONGLY
recommended for open searches.

Default: 0

precursor_true units True precursor mass tolerance units (0 for Da, 1 for ppm)

Default: 1

fragment mass_tolerance Fragment mass tolerance (window is +/- this value)

Default: 20

fragment mass_units Fragment mass tolerance units (0 for Da, 1 for ppm)

Default: 1
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isotope_error

Isotope correction for MS/MS events triggered on isotopic peaks.
Should be set to 0 (disabled) for open search or 0/1/2 for correction of
narrow window searches. Shifts the precursor mass window to multiples
of this value multiplied by the mass of C13-C12.

Default: 0

In-silico Digestion Parameters

search_enzyme name

Name of enzyme to be written to the pepXML file.

Default: Trypsin

search_enzyme cutafter

Residues after which the enzyme cuts (specified as a string of amino
acids)

Default: KR

search_enzyme butnotafter

Residues that the enzyme will not cut before (misnomer: should really be
called butnotbefore)

Default: P

num_enzyme_termini

Number of enzyme termini (0, 1, or 2 for non-enzymatic, semi-
enzymatic, fully-enzymatic)

Default: 2

allowed missed_cleavage

Allowed number of missed cleavages

Default: 2

digest min_length

Minimum length of peptides to be generated during in-silico digestion

Default: 7

digest max_length

Maximum length of peptides to be generated during in-silico digestion

Default: 64

digest mass_range

Mass range of peptides to be generated during in-silico digestion in
Daltons (specified as a space separated range)

Default: 500.0 5000.0

Variable Modification Parameters

clip nTerm M

Specifies the trimming of a protein N-terminal methionine as a variable
modification (0 or 1)

Default: 0
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variable_mod 01 .. 07

Sets variable modifications. (variable mod 01 to variable mod 07).
Space separated values with 1st value being the modification mass and
the second being the residues (specified consecutively as a string) it
modifies.

* is used to represent any amino acid
[ is a modifier for protein N-terminal
] is a modifier for protein C-terminal
n is a modifier for peptide N-terminal
¢ is a modifier for peptide C-terminal

Syntax Examples:

15.9949 M (for oxidation on methionine)

79.66331 STY (for phosphorylation)

-17.0265 nQnC (for pyro-Glu or loss of ammonia at peptide N-terminal)

Example (M oxidation and N-terminal acetylation):
variable mod 01 =15.9949 M
variable_ mod_02 =42.0106 [*

allow_multiple variable mods_on_res
idue

Allow each amino acid to be modified by multiple variable
modifications (0 or 1)

Default: 1

max_variable mods_per mod

Maximum number of residues that can be occupied by each variable
modification (maximum of 5).

Default: 2

max_variable mods_combinations

Maximum allowed number of modified variably modified peptides from
each peptide sequence, (maximum of 65534). If a greater number than
the maximum is generated, only the unmodified peptide is considered.

Default: 5000

Spectrum Processing Parameters

minimum_peaks

Minimum number of peaks in experimental spectrum for matching

Default: 10

use_topN_peaks

Pre-process experimental spectrum to only use top N peaks

Default: 50

minimum_ratio

Filters out all peaks in experimental spectrum less intense than this
multiple of the base peak intensity

Default: 0.0

120




clear mz range

Removes peaks in this m/z range prior to matching. Useful for
iTRAQ/TMT experiments (i.e. 0.0 150.0).

Default: 0.0 0.0

max_fragment charge

Maximum charge state for theoretical fragments to match (1-4).

Default: 2

override charge

Ignores precursor charge and uses charge state specified in
precursor_charge range (0 or 1)

Default: 0

precursor_charge

Assume range of potential precursor charge states. Only relevant when
override charge is set to 1. Specified as space separated range of
integers.

Default: 1 4

Open Search Features

track zero_ topN

Track top N unmodified peptide results separately from main results
internally for boosting features. Should be set to a number greater than
output_report_topN if zero bin boosting is desired.

Default: 0

zero_bin_accept_expect

Ranks a zero-bin hit above all non-zero-bin hit if it has expectation less
than this value.

Default: 0.0

zero_bin_mult_expect

Multiplies expect value of PSMs in the zero-bin during results
ordering (set to less than 1 for boosting).

Default: 1.0

add topN_complementary

Inserts complementary ions corresponding to the top N most intense
fragments in each experimental spectra. Useful for recovery of
modified peptides near C-terminal in open search. Should be set to 0
(disabled) otherwise.

Default: 0

Modeling and Output Parameters

min_fragments_modelling

Minimum number of matched peaks in PSM for inclusion in statistical
modeling

Default: 3
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min_matched fragments

Minimum number of matched peaks for PSM to be reported. We
recommend a minimum of 4 for narrow window searching and 6 for
open searches.

Default: 4

output_file extension

File extension of output files

Default: pep.xml

output_format

File format of output files (pepXML or tsv)

Default: pepXML

output_report_topN

Reports top N PSMs per input spectrum

Default: 1

output_max_expect

Suppresses reporting of PSM if top hit has expectation greater than
this threshold

Default: 50.0

Static Modification Parameters

add Cterm_peptide

Statically add mass in Da to C-terminal of peptide

Default: 0.0

add Nterm_peptide

Statically add mass in Da to N-terminal of peptide

Default: 0.0

add_Cterm_protein

Statically add mass in Da to C-terminal of protein

Default: 0.0

add Nterm_protein

Statically add mass in Da to N-terminal of protein

Default: 0.0

add_C cysteine

add X usertext

Statically add mass to cysteine (or whatever amino acid is specified
after ‘add ).

Examples:
add C cysteine = 57.021464
add K lysine = 144.1021

Default: 0.0
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Running MSFragger

Performance Considerations for Batch Processing

MSFragger allows multiple MS/MS input files to be processed in a batch. Passing multiple files
to MSFragger at once allows MSFragger to reuse the fragment index for subsequent MS/MS run.
This is particularly important for narrow window searches which may only take fractions of a
second.

On computers or compute clusters with many processor cores, we highly recommended that
MSFragger is set to process files sequentially with all available processor cores rather than
running multiple instances of MSFragger in parallel (assigning a smaller number of cores to
each). This reduces initialization times and allows the fragment index to be re-used, at the same
time reducing overall memory requirements.

Launching MSFragger

Ensure that you have placed MSFragger.jar in your working directory and have modified the
parameters file to reference your protein database. MSFragger generates auxiliary files during
database search so it is critical that MSFragger must have write access to the directories
containing the protein database AND the MS/MS data files.

Determine the amount of system memory available that you would like to make available to
MSFragger. This will be specified by the Java maximum heap size parameter -Xmx (e.g. -
Xmx3700M for 3700 MB or -Xmx8G for 8GB).

MSFragger takes the first argument as the input parameters file, followed by a list of one or more
MS/MS data files.

Examples:
java -Xmx8G -jar MSFragger jar fragger.params HeLa runl.mzML HeLa run2.mzML
java -Xmx8G -jar MSFragger.jar fragger.params *.mzML

The -Xmx flag is very important to ensure that MSFragger has access to sufficient memory to
efficiently perform the search as the default max heap setting in Java is %4 of total system
memory (which is insufficient for optimal performance). We recommend that you can allocate a
minimum of 4G or 6G for standard tryptic digestions.
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Expected Behavior

The first time running MSFragger on a new protein database or set of search parameters with a
given database, it will first perform an in-silico digestion, create, and cache the peptide index (in
.pepindex files adjacent to where the FASTA database is stored). These pepindex files can be
safely removed at any time and should be removed to free up disk space when a set of search
parameters is no longer used (MSFragger will automatically re-generate the index as needed).

The process begins with filtering and in-silico digestion subject to the digestion parameters.

ykong@andyws : /ssdscratch/Demo$ java -Xmx8G -jar MSFragger.jar fragger.params Demo.mzML
sequence database filtered and tagged in 129ms
Digestion completed in 525ms
Merged digestion results in 2503ms
sorting digested sequences. ..
f length 7: 548672
length 8: 498207

lTength 9 483231

length 10: 430997
length 11: 399600
length 12: 365942
length 13: 340941
length 14: 308379
length 15: 286473
length 16: 261743

Figure D-1 In-silico digestion in MSFragger.

Followed by peptide sorting and de-duplication. The non-redundant set of peptides are then
evaluated to generate the set of variably modified peptides (based on the specified variable
modifications) which are then sorted by mass and stored.

DONE
Removing duplicates and compacting...
Reduced to 3203761 peptides in 3212ms
Generating modified peptides...DONE in 1100ms

Generated 3247539 modified peptides

Merging peptide pools from threads... DONE in 1180ms
sorting modified peptides by mass...DONE in 805ms
pPeptide index written in 264ms

Figure D-2 Peptide index generation in MSFragger.

After peptide index generation is complete (or is read from disk in the below screenshot).
MSFragger selects the fragment index bin width to use and estimates the memory available for
fragment index storage based on the available memory (in this case, 8GB of memory was made
available to the Java Virtual Machine, of which MSFragger estimates that 4976.67MB can be
safely reserved for fragment index operations). It then computes the number of theoretical
fragments to be generated for the entire index, the number of slices or iterations (in multi-pass
searches when there is insufficient memory), and the total amount of memory represented by the
entire fragment index. The fragment index is then generated, and a time is reported for the index
generation time (at the end of each Operating on slice 1 of X: line, 4770 ms below). If the
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maximum fragment slice size is very small compared to your desired amount of system memory
or the number of slices is unexpectedly high, double check that the -Xmx flag is correctly set.
Search begins and the current file is reported, along with the time needed to read and pre-process

the MS/MS data, along with current search progress.

andykong@andyws : /ssdscratch/pemo$ java -Xmx8G -jar MSFragger.jar fragger.params *.mzMmL
Peptide index read in 264ms
Selected fragment tolerance 0.02 Daand maximum fragment slice size of 4976.67MB
215936972 fragments to be searched in 1 slices (1.61GB total)
Operating on slice 1 of 1: 4770ms

Demo2.mzML| 4070ms| [progress: 9832/41582|(23.64%) - 619.66 spectra/s]fj

Figure D-3 Fragment index searching in MSFragger.

At the completion of the search, a completed time is reported, and the results are written to disk
in the same folder as the MS/MS data (if they are not in the same folder as your working
directory). Note that there is a current bug that causes MSFragger to incorrectly display the
average rate of matching at the conclusion of the run (although the total time can be divided by
the total number of spectra to calculate this value).

yK 3 java -Xmx8G -jar MSFragger.jar fragger.params >.mzML
Pepti

selected fragment tolerance 0.02 pa and maximum fragment slice size of 4976.67MB
215936972 fragments to be searched in 1 slices (1.61GB total)

operating on slice 1 of 1: 4407ms
Demo2.mzML 3592ms [progress: 41582/41582 (100.00%) - 134.92 spectra/s] - comﬁﬂeted 62071ms

Demo3.mzML 2067ms [progress: 42219/42219 (100.0 39.97 spectra/s] - completed 61675ms
Demo.mzML 1598ms [progress: 37847/37847 (100.00%) - 2971.49 spectra/s] - completed 29987ms

Figure D-4 MSFragger searching in batch mode.

Output Files

Table D-2 Listing of MSFragger output files.

fragtmp In cases of fragment index fragmentation (in limited memory scenarios), MSFragger will
iteratively load each MS/MS run and search loaded spectra against the current index slice
before working on the next index slice. The partial search results are then stored in these
fragtmp files. In the event that MSFragger is terminated in the middle of a search, it will
recover its partial results using these files. At the end of the last index slice, MSFragger
will read all such .fragtmp files and generate an aggregated results file (identical to one
that would be generated if it had the memory to search against all peptides in a single
pass). These .fragtmp files are then automatically deleted. These can be safely removed if
you no longer wish to continue an aborted search or if MSFragger somehow fails to
remove them at the conclusion of a successful search.

Location: Same directory as MS/MS files

.pepindex MSFragger stores the computed peptide index in .pepindex files adjacent to the protein
database files to remove the need to re-compute the index if search parameters are
unchanged in subsequent runs. These .pepindex indices can be safely removed and
MSFragger will re-compute the index again at runtime if needed.

Location: Same directory as protein database
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Results Files These are the pepXML or TSV output files containing the peptide identifications. The file
(eg. .pep.xml) extension is specified in the search parameters so specifying a .pep.xml extension with
output_format = tsv will output .pep.xml files with TSV content.

Location: Same directory as MS/MS files

Interpretation of Qutput

For pepXML outputs, these can be used for downstream processing using PeptideProphet in TPP
directly. For viewing of results or conversion to other peptide identification result formats for
use in other pipelines or tools that do not support pepXML, we recommend first converting to
the mzldentML format using the tool idconvert as part of the ProteoWizard package. The
pepXML generated by MSFragger validates against v 1.18 of the pepXML schema and should
be compatible with any downstream tools supporting the pepXML format.

The output fields of the TSV file produced by MSFragger are listed below:
ScanID
Precursor neutral mass (Da)
Retention time (minutes)
Precursor charge
Hit rank
Peptide Sequence
Upstream Amino Acid
Downstream Amino Acid
Protein
Matched fragment ions
Total possible number of matched theoretical fragment ions
Neutral mass of peptide (including any variable modifications) (Da)
Mass difference
Number of tryptic termini
Number of missed cleavages
Variable modifications detected
(starts with M, separated by |, formated as position,mass)
Hyperscore
Next score
Intercept of expectation model (expectation in log space)
Slope of expectation model (expectation in log space)
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