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ABSTRACT

Link Prediction and Denoising in Netowrks
by

Yun-Jhong Wu

Co-Chairs: Professor Elizaveta Levina and Professor Ji Zhu

Network data represent connections between units of interests, but are often noisy
and/or include missing values. This thesis focuses on denoising network data via inferring
underlying network structure from an observed noisy realization. The observed network
data can be viewed as a single random realization of an unobserved latent structure, and
our general approach to estimating this latent structure is based factorizing it into a product
of interpretable components, with structural assumptions on the components determined
by the nature of the problem.

We first study the problem of predicting links when edge features are available, or node
features that can be converted into edge features. We propose a regression-type model to
combine information from network structure and edge features. We show that estimating
parameters in this model is straightforward and the estimator enjoys excellent theoretical
performance guarantees.

Another direction we study is predicting links in time-stamped dynamic networks. A
common approach to modeling networks observed over time is aggregating the networks
to a few snapshots, which reduces computational complexity, but also loses information.
We address this limitation through a dynamic network model based on tensor factorization,
which simultaneously captures time trends and the graph structure of dynamic networks
without aggregating over time. We develop an efficient algorithm to fit this model and
demonstrate the method performs well numerically.

The last contribution of this thesis is link prediction for ego-networks. Ego-networks
are constructed by recording all friends of a particular user, or several users, which is widely
used in survey-based social data collection. There are many methods for filling in miss-
ing data in a matrix when entries are missing independently at random, but here it is more
appropriate to assume that whole rows of the matrix are missing (corresponding to users),
whereas other rows are observed completely. We develop an approach to estimate miss-
ing links in this scenario via subspace estimation, exploiting potential low-rank structure
common in networks. We obtain theoretical bounds on the estimator’s performance and
demonstrate it significantly outperforms many widely used benchmarks in both simulated
and real networks.

viii



CHAPTER 1

Introduction

This thesis focuses on link prediction in statistical network analysis. Network data consists
of sets of nodes or vertices linked in pairs by edges. Examples of network data include so-
cial networks, metabolic networks, gene regulatory networks, neural networks, geographic
networks, the Internet. In friendship networks collected from social media, for example,
people have real life friends outside of social media, but they can be linked to people they
barely know. In biology, regulatory links between genes or proteins are often inferred from
experimental data, which may result in both false positives and false negatives. In security
applications, when tracking communications within a suspected criminal network, for ex-
ample, discovering previously unknown connections is one of the main goals. Statistical
network analysis has become an important tool for understanding social and epidemiologi-
cal dynamics, designing efficient and robust architecture of distributed systems, road traffic
networks. Formally, a network G = (V,E) of size n consists of a node set V = {1, . . . , n}
and an edge set E = {(i, j); i, j are linked}. For undirected networks, (i, j) ∈ E if and
only if (j, i); for weighted networks, a link is represented by a triple (i, j, wij). Another
useful representation of networks is adjacency matrices. An adjacency matrix of a network
of size n is a n× n matrix A = [Aij]n×n.

Aij =

{
1, if i and j are linked,
0, otherwise.

and, for weighted networks, Aij = wij . This thesis investigated statistical link prediction
for several types of network data.

Link prediction is a fundamental problem in network analysis. Network data are often
corrupted by random noise, missing values, and sampling procedures. Corruption in net-
work data may significantly change network structure (Burt, 1987; Kossinets, 2006; Wang
et al., 2012). In simple networks, the link prediction problem can be cast as classifying
pairs of nodes into linked/unlinked categories, which can be done by a score-based proce-
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dure. Given pairs of nodes {(i, j)}i 6=j , we estimate a score function f : {(i, j)}i 6=j 7→ R
and choose a threshold value c. Then, the estimated class label of (i, j) is assigned to be
1(f(i, j) > c). With a score-based classification procedure, a natural score for this classi-
fication task is E[Aij] = P(Aij = 1), where Aij = 1 if nodes i and j are linked. Therefore,
link prediction can be done by estimating a score that is strictly monotonic with respect to
E[Aij] since 1(f(i, j) > c) = 1(g(f(i, j)) > g(c)) for any strictly monotonic function g.
Moreover, the formulation can adapt to link prediction in weighted networks and further
connects with research on matrix completion and graphon estimation.

We consider the framework of factorization models. The basic idea of factorization
models is to decompose each effect as a function of several factors. The number of factors
are usually much fewer than that of data points. In the context of typical network analysis,
a network of n nodes consists of n(n−1)/2 pairs of nodes, and each pair receive a specific
effect from underlying factors. By factorizing these effects to r latent factors Zi ∈ Rr for
i = 1, dots, n, the number of parameters of a factorization model is therefore of O(nr).
This makes estimating parameters more tractable. Moreover, since nodes in a network live
in a space with very weak topological structure, it is useful to interpret each Zi as a latent
node feature of node i. Latent factors provide a natural embedding to transform nodes
into a metric space. We emphasize that the embedding not only gives an interpretable data
visualization but also makes most statistical and machine learning methods for data in an
Euclidean space able to be adapted to network data. For example, spectral clustering (von
Luxburg et al., 2008; Rohe et al., 2011) is an algorithm to detect community structure in
network by combining spectral decomposition and theK-means algorithm. Clearly, finding
a proper factorization, or equivalently transformation from nodes to data points in a metric
space, is essential for statistical network analysis. In the context of link prediction, we look
for a model of the form

E[Aij | Z1, . . . , Zn] = f(Zi, Zj; θ).

My work makes contribution to design and analyze performance of factorization models
for network data in various contexts.

Link prediction via low-rank effects models
Most existing methods predict links based on observed unweighted links, but many

networks in the real world include additional information such as edge weights and features
such as coauthorship networks (Leskovec et al., 2007), rating networks (Dror et al., 2012),
and metabolic networks (Duch and Arenas, 2005). Although network topological features
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have been used for predicting links, a natural question arises how to properly combine
information in network topology and additional features for further improving the accuracy
of link prediction. Some similarity-based methods can incorporate additional features (e.g.
Hasan et al., 2006; Murata and Moriyasu, 2007; Doppa et al., 2009; Zhao et al., 2017), but
most of the existing methods are unable to properly rescale and rewight multiple features
based on importance of each feature.

We proposed a generalized linear model for predicting links. To incorporate edge
weights and features, we model the expected weights of a link as E[Aij | Xij] = L(β>Xij+

Z>i ΛZj), where L is a link function, Xij is an edge feature, and Zi is a latent factor from
node i. The latent factors can be expressed as a low-rank effect on E[Aij | Xij], which
can characterize homophily and structure equivalence of nodes. In our model, β plays a
role to adjust the importance of each feature and may screen out nuisance features. Fur-
thermore, the relative magnitude of β and Λ’s can properly reweight the contribution of
information from network structure and additional features. Exploiting the low-rank struc-
ture, we proposed a nuclear-norm regularized maximum likelihood estimator. We proved
the consistency of our estimator under some mild regularity conditions and demonstrated
its empirical performance on simulated and data examples.

Link prediction for time-stamped dynamic networks
While network data are usually modeled as a static structure, networks in the real world

often change over-time. For example, people interact with each other via sending E-mails,
tweeting, face-to-face communication. The actions are performed only at certain time-
points and the frequency of the actions can be time-varying. Many models of dynamic
networks have been proposed such as latent space models (Sarkar and Moore, 2005; Fu
et al., 2009; Hanneke et al., 2010; Xing et al., 2010; Yang et al., 2011; Kim and Leskovec,
2013; Richard et al., 2014; Sewell and Chen, 2015; Durante and Dunson, 2017), Markov
processes of binary status (Xu, 2015; Zhang et al., 2016), the Cox intensity models (Vu
et al., 2011; Perry and Wolfe, 2013), semi-parametric models (Matias et al., 2015), and non-
parametric/over-parametrized methods (Sarkar et al., 2013; Li et al., 2014). These methods
show a trade-off among model flexibility, computational efficiency, and interpretability, and
most of the methods suffer from sparsity of networks.

In this project, we proposed a model based on the canonical tensor decomposition.
We view counts of interactions between each pair of nodes as an inhomogeneous Poisson
process. We model dependency between models through latent factors of structure z`’s and
the intensity of factor u∗`(t)’s. Thus, the expected intensity between nodes i and j at time t
can be expressed as

∑r
`=1 z>`iz`ju

∗
`(t). We showed that a sufficient fine partition induces an
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identifiable model, which can be expressed as the canonical tensor decomposition and can
be estimated by solving a standard tensor decomposition problem with roughness penalty
on the time dimension. We designed an algorithm with the local convergence guarantee
to simultaneously determine the number of latent factors and provide warm-starts for a
proximal block coordinate descent algorithm. We applied our method to synthetic data and
the Enron E-mail data demonstrated that our method can efficiently produce interpretable
results.

Link prediction for ego-networks
Most methods often implicitly assume entry-wise missing at random or entry-wise sam-

ple at random. That is, the observed adjacency matrix can be expressed as Aobs = A�M,
where Mij

i.i.d.∼ Bernoulli(p) and � denotes the Hadamard product. Although under this
assumption the link prediction and matrix completion problem has been extensively stud-
ied (Candès and Tao, 2010; Candès and Plan, 2010; Keshavan et al., 2010; Lin et al., 2010;
Chatterjee, 2015; Davenport et al., 2014, e.g), many social network data collected via spe-
cific design of social surveys violate the missing-at-random assumption. A widely-used
survey method is egocentric sample, which consists of selected nodes and links attached
to the selected nodes, since it is easy to integrate to standard social surveys. The ego-
network is a sub-network constructed from an egocentric sample, and correspondingly,
we can think this sampling procedure as selecting rows and columns from an adjacency
matrix. Exploiting this special sampling procedure enables us to recover the population
network and further improve accuracy of link prediction.

In this project, we proposed a subspace estimation method for predicting links in ego-
networks. We directly estimate principal sub-row-space of the underlying probability ma-
trix by the subspace spanned by in-sample rows of the adjacency matrix. The estimated
subspace can be viewed as an embedding of nodes in a pseudo-Euclidean space, and the
complete estimator can be factorized as latent positions and a scalar product, which de-
termines structure of the space that nodes embed into. Our model include a wide range
of latent space models such as stochastic block models, dot-product models (Young and
Scheinerman, 2007), latent eigenmodels (Hoff, 2007), and hyperbolic models (Krioukov
et al., 2010; Albert et al., 2014). Our method is computationally efficient and numerically
robust. We also showed that our estimator can accurately predict links from egocentric
sample and significantly outperforms matrix completion/graph estimation algorithms.
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CHAPTER 2

Low-rank effects models for network estimation
with edge attributes

2.1 Introduction

Networks are widely used to represent and analyze data in many domains, for example,
for social, biological, and communication systems. Each network consists of nodes and
edges. For example, in social networks, nodes may correspond to people and edges repre-
sent friendships; in biological networks, nodes may correspond to genes or proteins while
edges represent regulatory relationships. Besides nodes and edges, other information is
often available in the form of node and/or edge covariates, such as people’s demographic
information or the closeness of a friendship in social networks, and proteins’ chemical
components or the strength of the regulatory relationship in biological networks.

One fundamental problem in network analysis is to understand the mechanism that gen-
erates the edges by estimating the expectation of the adjacency matrix, sometimes referred
to as network denoising. The expectation gives probabilities of links for every pair, which
can be further used to perform link prediction; in fact for link prediction any monotone
transformation of the link probabilities is sufficient. For binary networks, link prediction
can be framed as a classification problem, which presence/absence of edge as the class label
for each paper, and some sort of score for each pair of nodes (e.g. an estimated probability
of link) used to predict the class.

Most approaches to the estimating the probabilities of edges (or more generally scores)
use the information from node features when available, and/or network topology such as
the number of common neighbors, etc. Many approaches are based on homophily, which
means that the more “similar” two nodes are, the more likely they are to become con-
nected. Homophily has been widely observed in social networks (McPherson et al., 2001)
and other contexts (Zhou et al., 2009). If homophily is assumed, estimating adjacency ma-
trices is closely related to the question of how to measure similarity between nodes. For
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node features, any appropriate similarity measure for vectors can be used. Multiple mea-
sures based on network topology are also available; see e.g., Section 3 in Lü and Zhou
(2011). Other proposals include aggregating several similarities such as the number of 2-
path and 3-path between two nodes (Zhou et al., 2009) and using kernels to measure the
similarity between node pairs and combining it with the support vector machine (SVM) for
classification in the context of estimating protein-protein interactions (Ben-Hur and Noble,
2005).

Alternatively, one can embed nodes in an Euclidean space and measure the similarity
between nodes according to the distance between the nodes’ latent positions. This approach
includes various probabilistic network models such as the latent space model (Hoff et al.,
2002), the latent variable model (Hoff, 2007), the latent feature model (Miller et al., 2009),
the latent factor model (Hoff, 2009), the latent variable models with Gaussian mixture
positions Krivitsky et al. (2009), and the Dirichlet network modelWilliamson (2016). In
all these models, the latent positions have to be estimated via Markov Chain Monte Carlo
(MCMC), which is very time consuming. More computationally efficient approaches have
been developed. For example, the leading eigenvectors of the graph Laplacian can be used
to embed the nodes in a low-dimensional space (e.g. Kunegis and Lommatzsch, 2009) by
spectral decomposition, and their embedding coordinates can be veiwed at the latent node
positions. Other recent efforts have been devoted to fitting latent space models by stochastic
variational inference (Zhu, 2012) and gradient descent algorithms (Ma and Ma, 2017). The
latter paper was written simultaneously and independently of the current work, and while it
uses a similar algorithm in optimizaiton, it fits a different model, focuses on the problem of
latent position estimation rather than link prediction, and, unlike ours, does not cover the
directed case.

In another related line of work, graphon estimation methods estimate the edge proba-
bility matrix under node exchangeability and various additional assumptions on the matrix
(smoothness, low-rankness, etc) (e.g. Choi and Wolfe, 2014; Yang et al., 2014; Olhede and
Wolfe, 2014; Gao et al., 2015; Zhang et al., 2015). However, when node or edge features
are available, exchangeability does not apply. Instead, a common approach is to aggre-
gate information on the features and multiple similarity indexes to create a single score
for predicting links. For example, Kashima et al. (2009) and Menon and Elkan (2011)
treat topology-based similarities as edge attributes and propose an SVM-based approach
for edge estimation.

Assumptions other than homophily have also been considered, such as hierarchical
network structure (Clauset et al., 2008), structural equivalence (Hoff, 2007). In another
approach, Zhao et al. (2017) used pair similarity instead of node similarity for edge predic-
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tion, arguing that edges between similar pairs of nodes should have similar probability of
occurring.

The problem of link prediction is also related to the problem of matrix completion,
which is commonly solved under low rank constraints (e.g. Candès and Recht, 2009). In
fact if the network is undirected and binary without any covariates, our proposed method
is equivalent to the 1-bit matrix completion algorithm of Davenport et al. (2014), who
established consistency of the maximum likelihood estimator for this setting. However, the
1-bit matrix completion formulation is much narrower: it does not allow for covariates and,
crucially, assumes that the links are missing completely at random with equal probability,
which is not a realistic assumption for networks.

The model we propose here represents the probability of an edge through a small num-
ber of parameters, like the latent space models; but unlike previous work, all we assume
is a general low rank structure, without requiring anything more specific. This makes our
method easily applicable to many types of networks: directed and undirected, binary and
weighted, with and without node/edge covariates. Unlike latent space models, we do not
require computationally expensive MCMC; instead, we fit the proposed model through an
efficient projected gradient algorithm. In addition to computational efficiency, our method
also has attractive theoretical properties, such as consistency for network estimation under
the low rank assumption on the true probability matrix.

The rest of this article is organized as follows. The proposed model and the estima-
tion algorithm are presented in Section 2.2. In Section 2.3, we establish several theoretical
guarantees including consistency. Numerical evaluation of the proposed method and com-
parisons to other network estimation approaches on simulated networks are presented in
Section 2.4. In Section 2.5, we illustrate the proposed method on two real networks, the
friendship network of users of the Last.fm music website and the C. Elegans neural net-
work. Section 2.6 concludes the paper with discussion and future work. All proofs are
given in the Appendix. S

2.2 Generalized linear models for network data with low
rank effects

We start with setting up notation. The data consist of a single observed n × n adjacency
matrix A = [Aij]n×n, where Aij represents the edge from node i to node j, which can be
either a value binary (0/1) or a weight. If additional information on nodes and/or edges
is available, we represent it as an m-dimensional attribute vector for each pair of nodes i
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and j, denoted by xij = (xij1, . . . , xijm)>. If the attributes are attached to nodes rather
than edges, we convert them to edge attributes using a similarity measure, discussed in
more detail below. Our goal is to compute a score for each pair of nodes to represent
the strength of an edge that may connect them. A natural score is the expected value
P = [pij]n×n = E[A]. Then we can view the problem as a generalized regression question,
fitting the model

pij = g(xij),

where g is a mean function.

2.2.1 Generalized linear models for network data

A natural way to connect covariates to the strength of network edges is to use the general-
ized linear model (GLM). For example, logistic regression and logit models have been used
for fitting binary directed networks (Wasserman and Pattison, 1996). It is straightforward
to generalize this approach to various types of networks by considering a generalized linear
model

L(pij) = θij + x>ijβ, (2.2.1)

where L is a link function to be specified and β ∈ Rm is a vector of coefficients. As
normally done in GLM, we assume that the distribution of Aij only depends on covariates
through their linear combination with an unknown coefficient vector β, and that edges are
independent conditional on covariates. The parameter θij represents an interaction between
nodes i and j for i, j = 1, . . . , n. Further assuming an exponential family distribution, the
conditional distribution ofA with the mean matrix P takes the canonical form

f(Θ,β)(A | X ) =
∏
ij

f(θij ,β)(Aij | xij) =
∏
ij

c(Aij) exp

(
ηijAij − b(ηij)

)
, (2.2.2)

where Θ = [θij][n×n], X = [X1, . . . ,Xm] ∈ Rn×n×m, Xk = [xijk]n×n, k = 1, . . . ,m,
ηij = θij + x>ijβ, and the corresponding canonical link function is given by L−1 = g = b′.
This general setting includes, for example, the logistic model for fitting binary networks and
binomial and Poisson models for integer-weighted networks. Extending it to multinomial
logistic models for networks with signed or labeled edges is also straightforward.

Model (2.2.1) involves more parameters than can be fitted without regularization or
additional assumptions on Θ. One possibility is to impose regularization through the com-
monly occurring dependency among edges in networks known as transitivity: if A and B
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are friends, and B and C are friends, then A and C are more likely to be friends. This idea
has been utilized by Hoff (2005), in which the random effects model was extended to the
so-called bilinear mixed-effects model to model the joint distribution of adjacent edges.
Here we take a different and perhaps more general approach by imposing a low rank con-
straint on the effects matrix, implicitly inducing sharing information among the edges; this
allows us to both model individual node effects and share information, which seems to be
more appropriate for network data than the random effects modeling assumption of random
and identically distributed θij’s.

2.2.2 The low rank effects model

In general, regularization can be applied to either Θ or β or both; a sparsity constraint on β
would be natural when the number of attributes m is large, but the more important param-
eter to constrain here is Θ, which contains n2 parameters. A natural general constraint that
imposes structure without parametric assumptions is constraining the rank of Θ, assuming

L(P ) = Θ + X ⊗ β, rank(Θ) ≤ r, (2.2.3)

where X ⊗ β =
∑m

k=1 βkXk, and, in a slight abuse of notation, L(P ) is the link function
applied element-wise to the matrix P .

The rank constrained model (2.2.3) is related to latent space models, for example, the
eigenmodel proposed by Hoff (2007) for undirected binary networks. The projection model
assumes that the edge probability is given by

logit(pij) = α + z>i Λzj + x>ijβ, (2.2.4)

where zi ∈ R(r−1) represents the position of node i in a latent space. Note that the n × n
matrix α11>+ ZΛZ>, where Z = [z1 · · · zn]> ∈ Rn×(r−1), is at most of rank r. By setting
L to be the logit link, the eigenmodel can be obtained as a special case of the low rank
effects model (2.2.3), although the fitting method proposed for the eigenmodel by Hoff
(2007) is much more computationally intensive.

Full identifiability for (2.2.3) requires additional assumptions, even though the mean
matrix P is always identifiable and so is Θ + X ⊗ β. For Θ and β to be individually
identifiable, X ⊗ β cannot be of low rank, and Xk’s cannot be collinear. Formally, we
make the following assumptions:

A1. rank(X ⊗ β) > r for all β 6= 0;
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A2. vec(X1), . . . , vec(Xm) are linearly independent.

Assumption A1 implies thatX⊗β is linearly independent of Θ, and assumption A2 ensures
that β is identifiable.

2.2.3 Estimation

In principle, estimates of Θ and β can be obtained by maximizing the constrained log-
likelihood as follows

(Θ,β) = arg max
(Θ,β):rank(Θ)≤r

`A,X (Θ,β), (2.2.5)

where `A,X is the log-likelihood based on the distribution in (2.2.2). Note the distinction
between directed and undirected networks is not crucial here because the estimators will
automatically be symmetric when X1, . . . ,Xm and A are symmetric.

Although in practice certain algorithms such as the alternating direction method may
be applied to solve (2.2.5), no computationally feasible algorithm is guaranteed to find
the global maximum due to the non-convexity of the rank constraint rank(Θ) ≤ r. To
circumvent this, the rank constraint is often replaced with a convex relaxation (e.g. Candès
and Recht, 2009). Let conv(S) denote the convex hull of set S, σi(Θ) the i-th largest
singular value of Θ, and ‖Θ‖∗ the nuclear norm of Θ. Then a common relaxation is

conv{Θ : rank(Θ) ≤ r, ‖Θ‖2 ≤ 1}

= conv{Θ : Θ has at most r non-zero singular values and σi(Θ) ≤ 1 ∀i}

= {Θ :
n∑
i=1

σk(Θ) ≤ r} = {Θ : ‖Θ‖∗ ≤ r}.

Using this relaxation, one can estimate Θ and β by solving the problem

(Θ̃, β̃) = arg max
(Θ,β):‖Θ‖∗≤R

`A,X (Θ,β), (2.2.6)

where R is a tuning parameter. The exponential family assumption and the use of the
nuclear norm ensure the strict convexity of (2.2.6) as a function of θij’s and therefore
the uniqueness of the maximum. Finally, the mean matrix P can be estimated by P̃ =

L−1(Θ̃ + X ⊗ β̃).
The optimization problem (2.2.6) can be solved by the standard projected gradient algo-

rithm (Boyd and Vandenberghe, 2009). Specifically, the main (block-coordinate) updating
formulas are
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1. β(t+1)
k ← β

(t)
k + γt∇βk`A,X (Θ(t),β)|β=β(t) for k = 1, . . . ,m

2. Θ(t+1) ← P
(
Θ(t) + γt∇Θ`A,X (Θ,β(t+1))|Θ=Θ(t)

)
where γt is a step size and P is a projection operator onto the set {Θ : ‖Θ‖∗ ≤ R}. The
first updating formula is the same as the standard gradient ascent algorithm since there is
no constraint on β. The second formula consists of a gradient ascent step and a projection
operation to ensure that the algorithm produces a solution in the feasible set. Thus, for
solving (2.2.6), we have

β
(t+1)
k ← β

(t)
k + γt

(
tr
(
X>k (A− L−1(Θ(t) + X ⊗ β(t)))

))
for k = 1, . . . ,m

Θ(t+1) ← Pct
(
Θ(t) + γt

(
A− L−1(Θ(t) + X ⊗ β(t+1))

))
, (2.2.7)

wherePct(Θ) =
∑n

i=1(σi−ct)+uiv
>
i Pct is a soft-thresholding operator, Θ =

∑n
i=1 σiuiv

>
i

is the singular value decomposition (SVD) of Θ, and ct = arg minc{
∑n

i=1(σi− c)+ ≤ R}.
Since the log-likelihood is continuously differentiable, convergence of the algorithm is
guaranteed by choosing γt < K−1 when the gradient of the log-likelihood is K-Lipschitz
continuous on the feasible set. For example, in the case of the logit link, K = 1, and for the
logarithm link (when the edge weight follows a Poisson distribution), K = exp(‖Θ‖max +

max(i,j) x
>
ijβ), where ‖Θ‖max denotes the maximum absolute entry of Θ. See Boyd and

Vandenberghe (2009) for theoretical details and a variety of accelerated projected gradient
algorithms.

The updating formulas require solving a full SVD in each iteration, which can be com-
putationally expensive, especially when n is large. In practice, if the matrix Θ(t) + γt

(
A−

L−1(Θ(t) + X ⊗ β(t+1))
)

is approximately low rank, solving the SVD truncated at rank s
for some s > r usually gives the same optimum. Thus, we consider an alternative criterion
to (2.2.6) to estimate Θ and β, i.e.

(Θ̂, β̂) = arg max
(Θ,β):‖Θ‖∗≤R,rank(Θ)≤s

`A,X (Θ,β), (2.2.8)

and solve the optimization problem by replacing the nuclear-norm projection operator in
(2.2.7) with P(R,s) =

∑s
i=1(σi − ct)+uiv

>
i , with ct as defined above. Finally, the mean

matrix P is estimated by
P̂ = L−1(Θ̂ + X ⊗ β̂).

Although the optimization problem in (2.2.8) is non-convex, as illustrated in Figure 2.1c,
the algorithm is computationally efficient, and we will also show that the estimator enjoys
theoretical guarantees similar to those of (2.2.6).
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(a) rank(Θ) ≤ 1

σ1

σ2

σ3

(b) ‖Θ‖∗ ≤ R

σ1

σ2

σ3

(c) rank(Θ) ≤ 2 and ‖Θ‖∗ ≤ R

Figure 2.1: Constraints in optimization problems (2.2.5), (2.2.6), and (2.2.8) in the space
of singular values of Θ

2.3 Theoretical properties

In this section, we show asymptotic properties of our estimates for the low rank GLM, in
Frobenius matrix norm. We make the following additional assumptions on the parameter
space and covariates:

A3. ‖Θ‖max ≤ Kθ and rank(Θ) ≤ r

A4. ‖β‖2 ≤ Kβ

A5. ‖xij‖2 ≤ Kx for all i, j

Theorem 1. Under assumptions A3-A5, we have

n−1‖P̃−P‖F
p−→ 0,

where P̃ = L−1(Θ̃ + X ⊗ β̃), and Θ̃ and β̃ are obtained from (2.2.6).

Similarly, consistency of P̂ can also be established.

Corollary 2. Under assumptions A3-A5, we have,

n−1‖P̂−P‖F
p−→ 0,

where P̂ = L−1(Θ̂ + X ⊗ β̂), and Θ̂ and β̂ are obtained from (2.2.8).

The tail probabilities of both n−1‖P̃ − P‖F and n−1‖P̂ − P‖F have a polynomially-
decaying rate. We can obtain a better probability bound for some widely-used models such
as logit models as stated in the following corollary.
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Corollary 3. Under the assumptions of Theorem 1, if Aij’s are uniformly bounded, then

both n−1‖P̃−P‖F and n−1‖P̂−P‖F have an exponentially-decaying tail probability.

Beyond P̂, asymptotic properties of Θ̂ and β̂ are also often of interest. If they are
identifiable, the following corollary gives consistency for the parameters.

Corollary 4. If assumptions A1-A5 hold, infij Var(Aij) > 0, and there exists 0 < δ < 1

such that

sup
β

∑r+s
i=1 σ

2
i (X ⊗ β)∑n

i=1 σ
2
i (X ⊗ β)

≤ δ < 1, (2.3.1)

then

n−1‖Θ̂−Θ‖F
P−→ 0

‖β̂ − β‖F
P−→ 0.

Note that we can drop the supermum in the condition (2.3.1) as
∑r+s
i=1 σ

2
i (X )∑n

i=1 σ
2
i (X )
≤ δ < 1 if

β is univariate and correspondingly X is a matrix.
The convex relaxation in (2.2.6) changes the feasible set, and in the new parameter

space, (β and Θ) may no longer be identifiable. Therefore consistency of β̃ and Θ̃ is not
guaranteed.

A case of practical interest is when Θ is only approximately rather than exactly low rank
(i.e., has a few large leading eigenvalues and the other eigenvalues are relatively small but
not necessarily 0). We can then show the bias of P̃ and P̂ caused by model misspecification
can be bounded as follows.

Theorem 5. Under the assumptions of Theorem 1, except that rank(Θ) > r, we have

‖P̃−P‖2
F∑n

k=r+1 σk(Θ)
= OP (1),

and
‖P̂−P‖2

F∑n
k=r+1 σk(Θ)

= OP (1).

This result suggests that our proposed estimates enjoy robustness under model misspec-
ification if the eigenvalues following the first r are small. This holds even if r grows with
n as long as r = o(n). As an application of Theorem 5, we present the error bound for the
low rank effects model for binary networks as an example.
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Example 2.3.1 (Bias of the low rank effects logistic model). For logistic models, b(η) =

log(1 + eη). Thus, by (A.1.6) in the proof of Theorem 5, we have∑
ij

(
b(θ̂ij + x>ijβ)− b(θij + x>ijβ)

)
=
∑
ij

log

(
1 + eθ̂ij+x>ijβ

1 + eθij+x>ijβ

)
≤ n

n∑
k=r+1

σk(Θ)

and therefore

P
(
n−1‖P̂−P‖F ≤

(
2n−1

n∑
k=r+1

σk(Θ)

) 1
2
)
→ 1.

2.4 Results on synthetic networks

In this section, we present numerical results on simulated data to demonstrate the finite
sample performance of the proposed low rank effects model and compare to benchmark
methods. For the sake of computational efficiency, we focus on the estimate given by
(2.2.8).

We consider a generative model similar to (2.2.4), with the mean function given by

L(P) = ZZ> + α11> + X ⊗ β, (2.4.1)

where Z ∼ [N(0, 1)]n×(r−1) with independent entries. For the feature tensorX = [X1,X2]n×n×2,
we first generate X̃ ∼ [N(0, 1)]n×n with independent entries and then compute X = UV>,
where U and V are obtained from X̃

SV D
= UDV>. Therefore, all singular values of both

X1 and X2 are equal to 1. Specifically, so they are full rank. We set n = 200 and r = 2,
and β = (c,−c). Given the mean function L and X and Z, we generate conditionally in-
dependent edges. We vary the parameters α and c to investigate the density of the network
and the relative importance of low rank effects and covariates.

As benchmarks, we fit the classical GLMs and latent models, with details given below.
The estimation for latent models is based on 500 burn-in and 10,000 MCMC iterations in
each setting. Following the evaluation method for link prediction in Zhao et al. (2017),
all tuning parameters for the low rank effects model and latent models are selected with
subsampling validation. Specifically, we create training data networks by setting randomly
selected 20% of all edges to 0, and calculate the predictive area under the ROC curve
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(AUC), which is defined as

AUC(A, P̂) =

∑
(i,j),(i′,j′)∈I 1(Aij = 0, Ai′j′ > 0, p̂ij < p̂i′j′)∑

(i,j),(i′,j′)∈I 1(Aij = 0, Ai′j′ > 0)
,

where I is the index set of the “held-out” edges. With the selected tuning parameter, we
fit the model to the entire network to obtain P̂. We then generate test networks Atest and
compute AUC(Atest, P̂). In simulation studies, we have also computed the relative mean
squared error for P , defined as RMSE(P̂) = ‖P̂−P‖F/‖P‖F .

2.4.1 Binary networks

By setting L(p) = logit(p) in model (2.4.1), we generated directed binary networks, with
edges conditional on parameters generated independent Bernoulli random variables. For
each training network, we generated 10 test networks using the same parameters and co-
variates to evaluate the predictive AUC. For each setting, we also computed the RMSE.
The logistic regression model and the latent factor model (Hoff, 2009) were used as bench-
marks.

Average results over 100 replications are shown in Figures 2.2 and 2.3. Although the
low rank effects model (LREM) has a somewhat larger parameter RMSE when the net-
works are sparse (small values of α), it outperforms both logistic regression and the latent
factor model in terms of predictive AUC. When the value of c is large, most of the signal
comes from the covariates rather than the low rank effects, and thus LREM behaves sim-
ilarly to logistic regression. However, when the value of c is small, LREM outperforms
logistic regression, especially on predictive AUC, by properly combining the information
from both the network and the node covariates. We also observed that our algorithm pro-
duced much more numerically stable results than the latent factor model, with vastly lower
computational cost. For example, in this simulation, for each setting our algorithm can
converge in a few minutes on one single laptop.

2.4.2 Integer-weighted networks

An important advantage of the proposed low rank effects model is that it extends trivially to
weighted networks. Using the link function L(p) = log p, we generated networks based on
(2.4.1) with edges conditionally independent Poisson random variables. All other aspects
of the simulation remain the same. We consider the Poisson model and the fixed rank nom-
ination model (Hoff et al., 2013) for integer-weighted networks as benchmarks. Note the
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Figure 2.2: Predictive AUC for binary networks with various α and c. “Optimal” is the
AUC based on the true mean matrix P.

Figure 2.3: RMSE for P for binary networks with various α and c.
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fixed rank nomination model was originally developed for networks with partial rank order-
ing relationships, but since integer weights can be viewed as the strength of relationships
in this model, it is a natural benchmark for comparison. Since the AUC cannot be readily
calculated on non-binary networks, we measure the performance based on “classifying”
pairs of nodes that are connected (Aij > 0) versus not connected (Aij = 0).

Average results over 100 replications are shown in Figures 2.4 and 2.5. In terms of
predictive AUC, which is more relevant in practice, the low rank effects model substantially
outperforms the Poisson model and the fixed rank nomination model, except for the largest
values of α where the fixed rank nomination model performs slightly better.

For the RMSE, the low rank effects model performs much better for all but the largest
values of both c and α, which correspond to dense networks with high variation in node
degrees. In this setting for integer-weighted networks, one needs a larger sample size in
order to obtain an accurate estimate of P, which is consistent with the theoretical results in
Theorem 1 and Corollary 3.

2.5 Data examples

Next, we apply the proposed low rank effects model to two real-world datasets. To eval-
uate the performance, we randomly set 20% of the entries in the adjacency matrices to
0 and compute the predictive AUC on this “hold-out” set. This evaluation mechanism
corresponds to the setting of partially observed networks discussed in Zhao et al. (2017).
Reported results are averages over 20 repetitions.

2.5.1 The Last.fm friendship data

This dataset from the Last.fm music website friendships and 17,632 artists listened to or
tagged by each user (Cantador et al., 2011). The friendship network contains 1,892 nodes
(users) and 12,717 edges. We constructed two edge attributes Xlis(ten) and Xtag as fol-
lows: let X̃lis,ij and X̃tag,ij be the number of artists who are listened to and tagged by,
respectively, both users i and j. These counts were then normalized, setting Xlis,ij =

X̃lis,ij/maxij{X̃lis,ij} and Xtag,ij = X̃tag,ij/maxij{X̃tag,ij}.
The prediction results are shown in Figure 2.6. The low rank effects model with covari-

ates obtains the best AUC value of 0.876 at r = 42 and R = 470. Although this value of
AUC is likely to be overly optimistic, note that the predictive AUC of the low rank effects
model is larger than 0.75 over the entire range of parameters r and R, where as the logis-
tic regression model only gives the AUC of 0.412. This suggests that modeling low rank

17



Figure 2.4: Predictive AUC for integer-weighted weighted networks with various α and c.
“Optimal” refers to the AUC based on the true mean matrix P.

Figure 2.5: RMSE for P for integer-weighted weighted networks with various α and c.

18



pairwise effects is important for this dataset. The latent factor model (implemented via the
package amen in R) failed to converge due to the size of the dataset.

In Figure 2.7, both β̂lis and β̂tag are positive and indicate that the Last.fm friendship
network likely follows the principle of homophiliy. The rank constraint r has very lit-
tle effect on the estimates of the coefficients, while the estimates shrink toward 0 as the
nuclear-norm constraint R decreases due to the bias caused by a small R and the fact that
‖Θ̂‖max ≤ ‖Θ̂‖∗ ≤ R.

2.5.2 The Elegans neural network data

This dataset contains the neural network of the nematode worm C. elegans, which is a
directed integer-weighted network with 297 nodes. In this network, an edge represents a
synapse or a gap junction between two neurons (Watts and Strogatz, 1998), and the weight
between a pair of nodes is the number of edges between two neurons. The mean weight
is 29.69 and 2.66% of pairs have non-zero weights. The original dataset does not contain
any covariates. Therefore, we did not consider the classical GLM here, and the fixed rank
nomination model was used as the benchmark model. Similar to the simulation studies
for integer-weighted networks, we calculated the AUC based on “classifying” connected
versus non-connected pairs.

Figure 2.8 shows the results from the low rank effects model. The AUC obtains the
maximum 0.824 at r = 26 and R = 85, which is roughly the same as the best perfor-
mance of the fixed rank nomination model (AUC=0.821, fitted by 1,000 burn-in and 20,000
MCMC iterations, which is vastly more expensive computationally). The relatively high
value of AUC indicates that there might be a low-rank effect associated with the observed
network.

2.6 Discussion

We proposed a generalized linear model with low-rank effects for network data with co-
variates, and an efficient projected gradient descent algorithm to fit this model. The model
is more general than the various latent space models(Hoff et al., 2002; Hoff, 2007, 2009;
Ma and Ma, 2017) because we do not require the effect matrix to be positive definite or
symmetric, allowing for more general graph structures like bipartite graphs, and incorpo-
rating the directed case automatically. The simultaneous work of Ma and Ma (2017) is the
only scalable algorithm we are aware of for fitting relatively general latent space models,
but it is still less general than ours; and all previous work relied on MCMC and did not
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Figure 2.6: Predictive AUC for the Last.fm music dataset with various tuning parameters r
and R.

(a) β̂lis (b) β̂tag

Figure 2.7: Estimated coefficients for the Last.fm music dataset with various tuning param-
eters r and R.
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Figure 2.8: Predictive AUC for the neural dataset with various values of r and R.

scale well at all.
Figure 2.9 shows a simple comparison between the computational cost of our method

and that of the latent factor model, for the simulation settings in this section. For both
methods, we show the relative cost for fitting binary networks described in Section 2.4.1.
Compared to the case of n = 200, it takes about 40 times of computational time for fitting
the case of n = 2000 for our method and about 120 times for the latent factor model. The
latent factor model becomes not feasible for networks with 105 or more nodes.

There are several directions of future work to explore. Any algorithm based on the SVD
is in general considered not scalable to very large networks. Boosting the computational
speed of SVD-based algorithms usually relies on the sparsity of decomposed matrices,
which does not apply to the low rank effects model even if the data network is sparse.
An alternative approach is the alternating direction method, which may find the global
optimum when the estimator is obtained by minimizing the squared error loss under con-
straints. However, generalizing the algorithm to the GLM setting is not trivial. A stochastic
gradient descent approach can also be applied to improve scalability.

An obvious extenstion in the setting of high-dimensional covariates is to incorporate
variable selection via penalties on β. It should also be relatively straightforward to adapt
this framework to modeling dynamic networks, where different networks are observed at
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Figure 2.9: Comparison of the computing time of the low rank effects model (using Python)
and that of the latent factor model (using the R package amen), relative to their computing
time when n = 200.

different time points, with an underlying smoothly changing low rank probability matrix
structure.
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CHAPTER 3

Regularized tensor decomposition for link
prediction in dynamic networks

3.1 Introduction

Developing realistic models for network data is a key challenge of network analysis. Con-
siderable progress has been made in moving beyond simplistic random graph models for
static networks that the field started with, such as the Erdos-Renyi graph or the planted
partition model, towards more complex models that allows, for instance, mixed member-
ship (Airoldi et al., 2008), overlapping communities (Latouche et al., 2011; Psorakis et al.,
2011), and node covariates (Fellows and Handcock, 2012; Fosdick and Hoff, 2015). Most
of this effort has been for static networks, but the networks we treat as static often re-
sult from interactions observed between individuals over time, such as sending emails or
co-authoring papers. Many empirical analyses of such network data are based on either
modeling global summary statistics, e.g., edge density, as a time series, or aggregating
links at different time points into a single static network, or perhaps a small number of
those (e.g. Chapanond et al., 2005; Keila and Skillicorn, 2005; Diehl et al., 2007). These
approaches may be sufficient for answering some practical questions of interest but do not
allow for modeling the dynamics of the whole network over time.

Statistical models aimed at modeling the entire network structure over time have been
proposed more recently, often based on extending algorithms developed for static network
problems, such as community detection or link prediction, to networks changing over time.
One popular approach is through latent variables which often (but not always) represent
community memberships; this line of work includes the mixed-membership model (Fu
et al., 2009), the exponential random graph model (Hanneke et al., 2010), the state-space
model (Xing et al., 2010), the mixed-group model (Yang et al., 2011; Kim and Leskovec,
2013), the autoregressive model (Richard et al., 2014), the latent space model (Sarkar and
Moore, 2005; Sewell and Chen, 2015), locally adaptive dynamic networks (Durante and
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Dunson, 2017), and smoothing-spectral-clustering procedure (Pensky and Zhang, 2017).
These models represent nodes as points in a metric space that move over time and char-
acterize network dynamics by a measure of distance between the nodes in that space, but
identifiability is often a challenge. Moreover, these approach require MCMC or forward-
backward MAP algorithms to fit hierarchical models and do not work well for sparse net-
works or data with more than a few dozen time points.

The temporal aspect of dynamic networks can also be modeled with Markov processes
and characterized by transition probabilities or intensity functions. This approach includes
the Cox intensity model (Perry and Wolfe, 2013) and semi-parametric regression models
for longitudinal data (Matias et al., 2015), but time-varying covariates are required in these
methods. Other approaches based on Markov processes focus on modeling persistent links
by Markov chains of binary status (Xu, 2015; Zhang et al., 2016), but stationarity is crucial
for success of these methods. Other more flexible approaches include predicting links via
kernel density estimation (Sarkar et al., 2013) and restricted Boltzmann machine Li et al.
(2014). These methods are fully nonparametric or over-parameterized and thus tend to lack
interpretability, and are also computationally expensive.

Many dynamic network datasets are stored as time-stamped links. Graph snapshots
over fixed periods can be easily constructed from time-stamped links, and significantly
reduce storage costs. Formally, we consider raw data recorded as time-stamped links
{(ik, jk, tk)}mk=1, meaning node ik interacted with node jk at time tk, with 1 ≤ k ≤ m,
1 ≤ ik, jk ≤ n, and t1 ≤ t2 ≤ · · · ≤ tm. For simplicity, we assume that observed links
are undirected, but our model, algorithm, and theory can be easily extended to directed
networks.

We model the interactions between nodes over time as an inhomogeneous Poisson pro-
cess Aij(t) = #{interations between i and j before time t} for i, j = 1, . . . , n. Formally,
the number of interactions between nodes i and j in the time interval (t, t+ ∆t] follows the
distribution

Aij(t+ ∆t)− Aij(t) ∼ Poisson

(∫ t+∆t

t

λij(s)ds

)
, (3.1.1)

where λij(m) is a smooth intensity function. We further parametrize the intensity function
as

λij(t) = λ(t; zi, zj) =
r∑
`=1

z`iz`ju
∗
`(t),

where zi ∈ Rr
+ are negative vectors for i = 1, . . . , n and u∗`(t)’s are non-negative smooth

functions. This parametrization represents intensity functions as a product of time trends
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u∗`(t) and network structure components zi, which play the role of latent variables. We will
see that this factorization can be described through a tensor decomposition.

An order-3 tensor A = [aijk]n1×n2×n3 is an array with entries with three indexes; see
Kolda and Bader (2009) for a thorough review on basic operations and properties of tensors.
A canonical polyadic decomposition (CANDECOMP/PARAFAC), or a Kruskal decompo-
sition of A, represents each entry by aijk =

∑r
`=1 x`iy`jz`k, which can also be written as

A =
∑r

`=1 x` ⊗ y` ⊗ z`. This decomposition has been widely used for modeling higher
order arrays, such as movie recommendations, video, and fMRI data (e.g. Abdallah et al.,
2007; Karatzoglou et al., 2010; Pang et al., 2010; Zhao et al., 2011), and has recently be
applied to network community detection (Anandkumar et al., 2013). Given a data tensor,
the factors are usually obtained by solving

min
x`,y`,z`

‖A −
r∑
`=1

x` ⊗ y` ⊗ z`‖F

for x` ∈ Rn1 , y` ∈ Rn2 , and z` ∈ Rn3 . This decomposition is analogous to matrix
factorization

min
x`,y`

‖A−
r∑
`=1

x`y
>
` ‖F .

Although this optimization problem is non-convex and in general considered intractable,
many heuristic algorithms have been proposed to solve it, such as alternating least squares
(ALS) and its variants (Carroll and Chang, 1970; Harshman, 1970; Kolda and Bader, 2009),
matrixizing and nuclear norm regularization (Gandy et al., 2011; Tomioka et al., 2011;
Tomioka and Suzuki, 2013), and power methods (De Lathauwer et al., 2000). Algorithms
have also been developed for solving tensor decompositions for factors with more struc-
ture, such as non-negativity and robustness (Xu and Yin, 2013), incoherence (Anandkumar
et al., 2014), and sparsity (Sun et al., 2016). These advances in algorithms for tensor de-
compositions enable us to directly model time-stamped links without having to collapse
the data in the time dimension.

Our main contribution is a new model for time-stamped dynamic networks based on
tensor decomposition. This model represents network dynamics by decomposing it into
several rank-1 network structure components, which have the same interpretation as in
latent variable models, and their corresonding time trends, which allow for different struc-
tures to emerge and/or disappear at different times. We do not require stationarity overtime,
instead only requiring a certain amount of smoothness in the component intensity over
time, and identifyability conditions analogous to incoherence. This approach enables us to
analyze dynamic networks with a large number of time points and/or very sparse network
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Table 3.1: Notations for modeling dynamic networks.

Notation Description

n Number of nodes
nT Number of time intervals
Rn

+ Space of n-dimensional non-negative vectors
A Data tensor in Rn×n×nT

+

z` `-th network structure component in Rn
+

Eij(t) Count of interactions between nodes i and j before time t
u∗` Intensity function of `-th component u`
u` `-th time component in RnT

+

σ` Positive weight of the `-th component
Ω nT × nT roughness penalty matrix
⊗ Cartesian product
⊗i Tensor-vector contraction along i-th dimension
‖ · ‖2 Spectral norm of a matrix/tensor
‖ · ‖ `2 norm of a vector
‖ · ‖F Frobenius norm of a matrix/tensor

snapshots, both of which are very challenging for previously proposed models. We also de-
velop an efficient and parallelizable algorithm to fit this model, based on regularized tensor
decomposition, as well as a theoretical guarantee of local convergence for this non-convex
problem. Experiments on synthetic networks demonstrate our method performs very well
numerically. We also applied this method to the Enron email data set which has almost two
million time points and obtained interpretable results.

The rest of the article is organized as follows. In Section 3.2, we describe an algorithm
based on a high-order power method and block coordinate descent. Theoretical conver-
gence results are presented in Section 3.3. Section 3.4 reports numerical results of apply-
ing our algorithm to synthetic networks and the Enron email dataset. Section 3.5 concludes
with discussion.

3.2 Modeling time-stamped links

We model the interactions between nodes i and j as an inhomogeneous Poisson process
Eij(t) as described in the previous section, which is a natural model for counts. Without
loss of generality, assume that the time stamps span the time interval [0, T ]. Further, we
factorize the intensity into components representing the network structure and its changes
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in time. Thus, the count of links between nodes i and j in the time interval [t, t + ∆t) is
modeled as

Eij(t+ ∆t)− Eij(t) ∼ Poisson
( r∑

`=1

z`iz`j

∫ t+∆t

t

u∗`(s)ds

)
. (3.2.1)

The network structure is represented with a sum of r rank-1 components z`z
>
` , where z` =

(z`1, . . . , z`n) and ‖z`‖ = 1 for all ` = 1, . . . , r. The intensity of the `-th rank-1 structure
may change over time and is determined by u∗`(t), which is assumed to be integrable over
[0, T ] for all 0 ≤ T <∞.

3.2.1 Tensor representation and identifiability

Given a time interval partition {t0 = 0 < t1 < · · · < tnT = T} on [0, T ], we consider a
collection of adjacency matrices {Ak}nTk=1, where each Ak ∈ Zn×n represents all the links
formed in the time interval (tk, tk+1]. This collection of n× n matrices forms a n× n× T
tensor A = [Ak]

nT
k=1 = [Aijk]n×n×nT , where Aijk = Eij(tk) − Eij(tk−1) is the count of

time-stamped link between i and j in (tk−1 − tk]. Then, with the inhomogeneous Poisson
model, we can express our model as a Kruskal decomposition of tensors as follows.

E[A] =
r∑
`=1

σ`z` ⊗ z` ⊗ u` =

[ r∑
`=1

σ`z`iz`ju`k

]
n×n×nT

, (3.2.2)

where u`k is proportional to
∫ tk
tk−1

ũ`(t)dt. To make these factors identifiable, we normalize
the temporal factors as well, setting ‖u`‖ = 1, and introduce σ` to represent the “strength”
of the `th component in model 3.2.2. We assume r ≤ min{n, nT}; in practice, r should be
much smaller than n and T . We also assume that all factors are non-negative to ensure the
non-negativity of the Poisson intensity functions.

The identifiability of model (3.2.2) can be formally verified by checking the uniqueness
conditions for the Kruskal decomposition. For r = 1, the decomposition is unique (Kolda
and Bader, 2009). For r > 1, a sufficient condition for uniqueness, known as the Kruskal
condition (Kruskal, 1977), is given by

2 · k-rank(Z) + k-rank(U) ≥ 2r + 2, (3.2.3)

where Z = (z1, . . . , zr), U = {u1, . . . ,ur}, and

k-rank(V) = arg max
m
{Ṽ ⊂ columns of V are linearly independent for all |Ṽ | = m}.

27



Hence model (3.2.2) is identifiable if we assume that both Z and U have linearly indepen-
dent column vectors. Uniqueness of the decomposition follows from the fact that the k-rank
of each set of vectors is r (Kolda and Bader, 2009). In fact, the columns of U are linearly
independent if the time partition is sufficiently fine as long as the u∗` ’s are continuous on
[0, T ] and linearly independent, as stated in the following theorem.

Theorem 6. Assume the intensity functions u∗` ’s are continuous and linearly independent,

i.e.
∑r

`=1 α`u
∗
`(t) ≡ 0 for all t ∈ [0, T ] if and only if all α` = 0. Then there exists a

partition t0 = 0 < t1 < · · · < tnT = T such that the column vectors of U are linearly

independent.

The proof is given in Appendix B.1.
Thus a coarse time partition not only loses information, but may also lead to uniden-

tifiability, and a fine time partition is preferred. Note that we allow for some Ak’s to be
matrices of 0s, that is, there is no problem if no interactions take place in a given time in-
terval. In practice, one also has to consider the computational burden added by a fine time
partition; fortunately, the time and space cost for our algorithms is linear in the number of
time points nT , as discussed in the next section.

3.2.2 The optimization criterion

We fit the the tensor model (3.2.2) by minimizing the following penalized least squares
loss,

g(z1, . . . , zr,u1, . . . ,ur; γ,Ω) =

∥∥∥∥A− r∑
`=1

σ`z` ⊗ z` ⊗ u`

∥∥∥∥2

F

+ γ
r∑
`=1

u>` Ωu`, (3.2.4)

The penalty term encourages smoothness of u`(t)’s, with γ a tuning parameter to em-
phasize the smoothness of u`’s.The penalty is imposed via constructing an appropriate
smoothing matrix Ω ∈ RnT×nT ; here we use

Ω = WHH>W>,

where W = diag( 1
t1−t0 ,

1
t2−t1 , . . . ,

1
tnT−tnT−1

) ∈ RnT×nT and H = [hij] ∈ RnT×(nT−1) with

hij =


−1, if i = j,

1 if i− j = 1,

0, otherwise.
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The matrix Ω constructs a discretized version of penalizing the integral
∫

(u′`(t))
2dt, a stan-

dard smoothness penalty. Many choices of smoothing penalties are available; we use the
tri-diagonal Ω because of its great computational efficiency and good results in numerical
experiments.

3.3 The algorithm

Recall that fitting our dynamic network model requires solving the optimization problem
(3.2.4),

minimize
Z,U

∥∥∥∥A− r∑
`=1

σ`z` ⊗ z` ⊗ u`

∥∥∥∥2

F

+ γ

r∑
`=1

u>` Ωu` (3.3.1)

subject to z` ∈ Rn
+,u` ∈ RnT

+ , ‖z`‖ = 1, ‖u`‖ = 1.

This objective is multi-convex since the projection of the objective function onto each z`

and u` is a convex function, but it is not convex. Therefore convergence of efficient algo-
rithms to the global optimum of (3.3.1) is not guaranteed; however, many existing algo-
rithms can efficiently find local minima of multi-convex functions under mild conditions,
discussed next.

3.3.1 Proximal coordinate descent algorithm

Xu and Yin (2013) proposed a proximal block coordinate descent (proximal BCD) algo-
rithm to find a critical point for multi-convex optimization problems. Applying the proxi-
mal BCD to (3.3.1) requires solving the following two optimization problems:

min
zi
g(z

(k)
1 , . . . , z

(k)
i−1, zi, z

(k−1)
i+1 , . . . , z(k−1)

r ,u
(k−1)
1 , . . . ,u(k−1)

r ; γ,Ω)

+ L‖zi − z
(k−1)
i ‖2 (3.3.2)

subject to zi ∈ Rn
+, ‖zi‖ = 1

and

min
ui
g(z

(k)
1 , . . . , z(k−1)

r ,u
(k)
1 , . . . ,u

(k)
i−1,ui,u

(k−1)
i+1 , . . . ,u(k−1)

r ; γ,Ω)

+ L‖ui − u
(k−1)
i ‖2 (3.3.3)

subject to ui ∈ RnT
+ , ‖ui‖ = 1.
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cyclical for i = 1, . . . , r. The proximal BCD guarantees finding a critical point of g, with
a polynomial rate of convergence. The number of components r has to be pre-determined,
and in practice the proximal BCD may be sensitive to the choice of initial values.

3.3.2 Initial values and estimation of rank

To run the proximal BCD, we need to choose reasonably good initial values generates as
well as estimate r. To do this, we will take advantage of a distinct property of canonical ten-
sor decompositions that matrices do not have. Consider a rank-r canonical decomposition
of a tensor defined as a solution to the problem

min

∥∥∥∥A− r∑
`=1

σ`y` ⊗ z` ⊗ u`

∥∥∥∥2

F

. (3.3.4)

Assuming enough incoherence between components, Anandkumar et al. (2014) proposed
an approach based on rank-1 updates to solve the problem (3.3.4) . They first find several
critical points of the rank-1 approximation problem

min
y,z,u
‖A − σy ⊗ z⊗ u‖2

F (3.3.5)

and use these points as initial values for solving (3.3.4) by a block coordinate descent
algorithm. Solving (3.3.5) by the alternating least squares method is equivalent to applying
the updating equations 

y(m) = φ(A⊗2 z(m−1) ⊗3 u(m−1)),

z(m) = φ(A⊗1 y(m) ⊗3 u(m−1)),

u(m) = φ(A⊗1 y(m) ⊗2 z(m)),

(3.3.6)

which is an analogue of the matrix power iteration algorithm for tensors. Most operations
of the power iterations can be executed in-place in memory, so the algorithm has great
efficiency and scalabiliy.

Notably, solving the rank-1 problem by the proximal algorithm in (3.3.2) and (3.3.3),
we obtain the following updating equations:

z(m) ← φ(ρA⊗1 z(m−1) ⊗3 u(m−1) + (1− ρ)z(m−1)) ,

u(m) ← φ((I + γΩ)−1(ρA⊗1 z(m) ⊗2 z(m) + (1− ρ)u(m−1))) ,

where ρ = (L + 1)−1. The resulting algorithm is an analogue of shifted power iterations
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for matrices and enjoys a convergence guarantee inherited from the proximal BCD. Since
multiple threads of power iterations are embarrassingly parallel, it is possible to search
for multiple critical points simultaneously. Further, the number of distinct critical points
detected is a natural estimate of the number of components r. The shifted power iterations
are therefore a great option for computing warm starts for (3.3.1) by the proximal BCD.
Algorithm 1 summarizes the entire procedure.

Algorithm 1 (Regularized tensor decomposition)

1: Input: data tensor A ∈ Rn×n×nT , ε > 0, ρ ∈ (0, 1), η > 0, Ω ∈ RnT×nT , γ > 0.
2: for each I = 1, . . . , N do (in parallel)
3: Randomly generate z

(0)
I ∈ Rn

+ and u
(0)
I ∈ Rn

+, where ‖zI‖ = 1 and ‖uI‖ = 1.
4: while ‖z(m−1)

I − z
(m)
I ‖ > ε or ‖u(m−1)

I − u
(m)
I ‖ > ε or do

5: z
(m+1)
I ← φ(ρA⊗ z

(m)
I ⊗ u

(m)
I + (1− ρ)z

(m)
I )

6: u(m+1) ← φ((I + γΩ)−1(ρA⊗ z
(m+1)
I ⊗ z

(m+1)
I + (1− ρ)u

(m)
I )),

7: end while
8: end for
9: I = {1, . . . , N}.

10: while I 6= ∅ do
11: Randomly choose I ∈ I.
12: Ĩ = Ĩ ∪ I .
13: Remove I ′ from I for all ‖zI′ − zI‖ < η and ‖uI′ − uI‖ < η.
14: end while
15: r̂ ← |Ĩ|.
16: Apply proximal BCD to solve (3.3.1) for Z,U, with r = r̂ and initial values Z(0) =

[zI1 · · · zIr ]I∈Ĩ and U(0) = [uI1 · · ·uIr ]I∈Ĩ .
17: return Z,U

3.3.3 Convergence analysis

Since the problem is not convex and the solution depends on initial values, we focus on the
local convergence properties of the proposed algorithm. We will show that the power iter-
ations provide good initial values with high probability under certain regularity conditions.
To state the conditions, we first quantify certain properties of the model.

Incoherence. Intuitively, each network component zk should characterize a different as-
pect of the network structure, and each u∗k should be a unique time trend to make the model
identifiable. To quantify this, define

ηz = max
k,`=1,...,r,k 6=`

z>k z`,
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and, given a partition 0 = t0 < t1 < · · · < tnT , let

ηu = max
k,`=1,...,r,k 6=`

u>k u`

= max
k,`=1,...,r,k 6=`

∑nT
i=1

∫ ti
ti−1

u∗k(t)dt
∫ ti
ti−1

u∗`(t)dt√∑nT
i=1(
∫ ti
ti−1

u∗k(t)dt)
2
∑nT

i=1(
∫ ti
ti−1

u∗`(t)dt)
2

Note that max{ηz, ηu} < 1 automatically ensures identifiability by the Kruskal condition
(3.2.3).

For example, let

zki ∝

{
α if br(i− 1)/nc = k,

β if br(i− 1)/nc 6= k,
(3.3.7)

which represents a block structure. Then, ηz = z>k z` = 2nαβ+β2r(n−2)
nα2+r(n−1)β2 . When the number

of factors r is fixed, ηz → 0 as β/α → 0. On the temporal factors, for example, let
u∗1(t) = (t + 1)−α and u∗2(t) = (t + 1)−β . Then, given a partition {ti = i}nTi=1 on [0, T ], ηu
can be bounded as follows:∫ T+1

1
(t+ 1)−(α+β)dt√∫ T

0
(t+ 1)−2αdt

∫ T
0

(t+ 1)−2βdt
≤ ηu ≤

∫ T
0

(t+ 1)−(α+β)dt√∫ T+1

1
(t+ 1)−2αdt

∫ T+1

1
(t+ 1)−2βdt

.

Then, ηu → 0 as T → ∞ if α > 0.5 ≥ β, and ηu ≥ c > 0 for some c if α, β ≥ 0.5 or
α, β < 0.5.

Relative magnitude of signals. Let σmin = min` σ`, σmax = max` σ`, and ω = σmin

σmax
. The

quantity ω represents detectability of weak signals corresponding to small σk’s. A small ω
leads to a hardness to find the factors corresponding to σmin.

The following theorem can be viewed as detectability of true factors. A factor is de-
tectable if there exists initial values that converge to a neighborhood of some factor through
the power iteration. A factor is more likely to be detected if ω is large or ηz are ηu are suf-
ficient small.

Theorem 7 (Local convergence of power iterations). Given a contraction rate ν ∈ (0, 1),

with probability p(δ) = 1 − exp(−σ2
maxδ

2

8+4δ
+ (2n + nT ) log 15), where δ depends only on

r, ω, ηz, ηu, γ, ρ, and ν (see equation (B.2.11)), there exists 0 < s−z < s+
z < 1 and 0 <

s−u < s+
u < 1 such that

1. If
√

1− (z>k z(m))2 = εz ∈ (s−z , s
+
z ) and

√
1− (u>k u(m))2 = εu ∈ (s−u , s

+
u ), the
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power iterations always improve accuracy of estimates
√

1− (z>k z(m+1))2 < νεz

and
√

1− (u>k u(m+1))2 < νεu for all m satisfying νεz > s−z and νεu > s−u .

2. The power iterations guarantee that
√

1− (z>k z(m+1))2 < s−z and
√

1− (u>k u(m+1))2 <

s−u for all m ∈ N if
√

1− (z>k z(m))2 < s−z and
√

1− (u>k u(m))2 < s−u .

Furthermore, s+
z and s+

u is bounded below by a constant that depends only on r, ω, ηz, ηu, γ,

and ν.

Proof. See Appendix B.2.

Remark 1. Assume that σmax = Θ(n
√
nT ). The probability p(δ)→ 0 for any given δ > 0

if 1√
nT

+
√
nT
n
→ 0.

An intuitive explanation of this theorem is shown in Figure 3.1. If the power iterations
start within the inner (yellow) ball, they never leave the ball. Furthermore, since the shifted
power iteration is also a proximal BCD and the objective function in (3.3.1) is a polynomial
function, Theorem 2.8 in Xu and Yin (2013) ensures that the estimates eventually converge
to the critical point. If they start in the outer (purple) ring, they will eventually move into
the inner ball. If they start outside the purple ring, we cannot guarantee that they will
converge to the critical point zk, but they will converge to a critical point by Theorem 2.8
in Xu and Yin (2013).

s−z

s+zzk

z(m) z(m) stays in this region and eventually
converges to a critical point.

z(m) moves into the inner ball,
at a polynomial rate of convergence.

z(m) converges to a critical point.

Figure 3.1: An illustration of local convergence of the power iteration described in Theorem
7: Blue points z(m) converge to a critical point closed to some zk.

Sketch of proof of Theorem 7. The full proof is given in Appendix B.2.3. It contains
three steps:

1. Prove a concentration inequality for the spectral norm of centered Poisson tensors
in Lemma 10. Then the algorithm applied to the noisy data tensor A should behave
similarly to how it would behave on the model-based population version E[A].
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2. Establish a bound on the cosine of the angle between one true component and its esti-
mate after one power iteration, i.e., on

√
1− (ẑ>zk)2 (Lemma 11) and

√
1− (û>uk)2

(Lemma 12), where ẑ and û are produced by one step of the power iteration.

3. Conclude Theorem 7 by showing that the power iteration improves the estimate if
the starting value is good enough.

Example 3.3.1 (Non-overlapping components). Let D = 4(νω+ r)σ−1
max‖E‖2. When ηu =

ηz = 0 and ρ = 0, i.e. the factors are orthogonal, by Theorem 7, with probability at

least 1 − exp(−σmaxδ2

8+4δ
+ (2n + nT ) log 15), where δ = ν2ω2

4(νω+C(γ)r)
, there exists intervals

(s−z , s
+
z ) and (s−u , s

+
u ) such that both initial values z(0) and u(0) can be improved by the

power iterations if
√

1− (z>k z(0))2 ∈ (s−z , s
+
z ) and

√
1− (u>k u(0))2 ∈ (s−u , s

+
u ) for some

k = 1, . . . , r, where

s+
z =

νω +
√
ν2ω2 −D

2(νω + r)
,

s−z =
νω −

√
ν2ω2 −D

2(νω + r)
,

s+
u =

νω +
√
ν2ω2 − C(γ)D

2(νω + r)
,

s−u =
νω −

√
ν2ω2 − C(γ)D

2(νω + r)
.

The above quantities are obtained by solving the quadratic equations

hz(εz) = σ−1
max‖E‖2 − (νω)εz + (νω + r)ε2z = 0

and

hu(εu) = σ−1
max‖E‖2 −

(
νω

C(γ)

)
εu +

(
νω

C(γ)
+ r

)
ε2u = 0,

which are defined in (B.2.6) and (B.2.9).

3.4 Numerical results

We demonstrate the proposed method on simulated dynamic networks and the Enron email
dataset. Although a number of methods have been developed for dynamic network data, hi-
erarchical or hidden Markov models often have to estimate the posterior distribution of all
entries in a tensor representation. Therefore, these algorithms are not scalable to dynamic
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networks with thousands of (or more) time-points although they may be useful to character-
ize very complicate dynamics of small networks. Therefore, we compare the performance
of our method with the latant space model proposed by Sewell and Chen (2015), which
models network dynamics as a stochastic process of node positions in a latent Euclidean
space, for fitting graph snapshots.

To illustrate the importance of high-order representation for finely-partitioned dynamic
networks, we compare the performance of our method with the following two scores:

1. Low-rank approximation of the aggregated adjacency matrix A = [
∑nt

k=1Aijk]n×n,
denoted by P̂ = [p̂ij]. We use p̂ij as a score of Aijk. This estimator does not use
information of network dynamics and is equivalent to setting u∗` ≡ 0.

2. Second-order B-spline regression on
∑n

i=1

∑n
j=1Aij.. This method estimates an

overall intensity function and ignores inhomogeneity among pairs of nodes.

3.4.1 Simulated dynamic networks

We generate dynamic networks from the proposed model (3.2.1), with 300 nodes and three
network factors defined by, for ` = 1, 2, 3,

z`i ∝

{
1 if b(i− 1)/100c = `,

ρz if b(i− 1)/100c 6= `.
(3.4.1)

The corresponding time trends are modelled as

u∗`(t) ∝ ρu + (1− ρu) max{0, 1− |0.006t− (2k − 1)|} (3.4.2)

for t ∈ [0, 1000]. We set σ1 = σ2 = σ3 and chose them so that the expected total number of
edges in the dynamic network over all time points is 3000. The time interval is partitioned
into 1000 equal segments to convert the time-stamped links to a sparse tensor of size 300×
300 × 1000. Thus the networks are extremely sparse, with about 3 interactions per time
period on average, reflecting the sparsity levels often found in real data.

3.4.1.1 Tuning parameter selection

In this section, we demonstrate that tuning parameter selection can be done by random sub-
sample validation. We first generate a training and a test dataset. Then, we use random data
splitting for tuning parameter selection as follows. We first randomly select 1% of entries
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Figure 3.2: Time trend functions u`(t) for simulated networks.

of the data tensor and set the selected entries to be 0 to obtain a subsampled dataset. Ap-
plying the proposed algorithm to this subsampled dataset and the test dataset, we evaluate
predictive power of the resulting fit in terms of the predictive AUC on the test dataset and
removed links defined by the average matching angle

M(X,Y) = r−1 max
σ:{1,...,r}7→{1,...,r}

{ r∑
k=1

x>k yσ(k)

}
.

The reported values are averages over 100 replications.
Table 3.2 shows that the maximum predictive AUC on removed entries is obtained at

γ = 1, which also achieves good predictive AUC (0.713) on the test data and is close to
the optimal value (0.720 at γ = 10) for the test data. The algorithm fails to find all factors
when γ is very large, but the large canonical angle (above 0.94) indicates that the detected
factor is still in the subspace spanned by the true factors.

3.4.1.2 Testing robustness to the incoherence assumption

We also conducted numerical experiments with various levels of parameters ρz and ρu in
(3.4.1) and (3.4.2) respectively, which measure the incoherence between different com-
ponents. The tuning parameters were by random subsplitting described in the previous
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Table 3.2: Performance for various tuning parameters (on validation and test data) for
ρz = 0.075 and ρu = 0.2

Predictive AUC Matching

γ r̂ Test data Removal M(u, û) M(z, ẑ)

10−4 3 0.512 0.555 0.396 0.257
10−3 3 0.624 0.667 0.896 0.765
10−2 3 0.688 0.708 0.975 0.937
10−1 3 0.715 0.734 0.920 0.946
100 3 0.713 0.746 0.790 0.952
101 3 0.720 0.743 0.674 0.955
102 1 0.564 0.571 0.224 0.233

subsection. Reported results are averages over 20 replications for each combination of ρz
and ρu.

Figures 3.3 and 3.4a shows the matching scores and predictive AUC on test data as a
function of incoherence parameters for structure (ρz) and time trends (ρu). As expected,
larger values of ρz or ρu make the components more difficult to distinguish, and the pre-
dictive AUC decreases as ρz and ρu increase. Figure 3.3 further indicates that increasing
either ρz or ρu can affect the accuracy of both Ẑ and Û in terms of the matching scores. The
low-rank approximation (Figure 3.4c) and the B-spline regression (Figure 3.4b) only work
when z`’s and u`’s are strongly incoherent, respectively. This shows that jointly modeling
time trends and network structure increases power to detect both relative to modeling just
one of them at a time.

3.4.2 Performance on graph snapshots

We convert the above simulated training and test datasets of time-stamped links to graph
snapshots partitioning the time dimension into 50 subintervals of equal length and truncate
each entry to 1. For fitting the latent space model, we ran 1000 burn-in iterations and 20,000
MCMC iterations for each setting. For the datasets of 50 graph snapshots, our method can
produce results in a few seconds and achieved comparative predictive AUC with the latent
space model fitted by a MCMC algorithm.
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Figure 3.3: Matching cosine angle on test data as a function of incoherence parameters.

3.4.3 Data: Enron emails

We also applied the proposed method to the Enron email dataset (May 7, 2015 Version,
retrived from https://www.cs.cmu.edu/ẽnron/; see Klimt and Yang (2004) for
a full description), which contains emails between 156 employees of Enron sent between
October 1998 and June 2002. We removed e-mails that had unparseable time stamps or
were sent to more than 10 people, which resulted in 25,830 e-mails included in the analy-
sis. To illustrate the scalability of our method, we partitioned the time interval into hours,
resulting in a 156 × 156 × 31416 sparse tensor. We then randomly selected 5% of entries
from the tensor and set them to zero. We use these selected entries as a test dataset and the
remaining entries as a training dataset. The tuning parameter is selected by randomly split-
ting the training data as described in Section 3.4.1.1. The number of factors r is estimated
by parallelly running 10,000 threads of the power iteration.

Our method achieved predictive AUC of 0.855, compared to 0.761 and 0.575 achieved
by the low-rank approximation and the B-spline regression, respectively. Furthermore,
when we partition the Enron email dataset into 50 time intervals of equal length, our
method obtained AUC = 0.847 compared to AUC = 0.852 given by the latent space
model with 1,000 burn-in and 20,000 MCMC iterations. We detected two network factors
in this dataset, shown in Figures 3.6 and 3.7. The node pie charts in Figure 3.6 show the
values of z1i

z1i+z2i
and z2i

z1i+z2i
, which can be interpreted as a mixed community membership

vector for the two overlapping structures. The time trends indicate that the structure shown
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(b) Second-order B-spline regression.
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Figure 3.4: Predictive AUC on test data as a function of incoherence parameters.
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Figure 3.5: Predictive AUC on test data of graph snapshots.

in red becomes very active around the time the scandal broke, with its estimated time trend
function reaching its highest value right after the CEO was replaced. The structure shown
in blue, on the other hand, is mainly present before the scandal. This simple analysis al-
ready reveals some interesting dynamics in the network structure, and could be enhanced
by making use of the emails’ contents.

3.5 Discussion

In this paper, we proposed a tensor decomposition approach and a very scalable algorithm
for modeling dynamic networks represented by time-stamped links data. The algorithm can
easily handle thousands of nodes and up to millions of time-points on one single computer,
compared to hundreds of nodes and tens of time-points handled by existing methods. The
low rank representation is useful for producing interpretable results, as demonstrated by
our data analysis. The model can be trivially extended to directed networks by breaking
symmetry in (3.2.2).

Other extensions include treating the time trends as continuous time processes instead
of relying on a discrete time interval partition. The core of our algorithm is the power
iteration. Ignoring the shift, we can rewrite the updating equation for a structure factor as

A⊗1 z(m) ⊗3 u(m) = (A⊗3 u(m))z(m),

where A⊗3 u(m) is a weighted sum of slices of A. We can think of this update as running
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Figure 3.6: Structural factors ẑ` represented by red and blue, proportional to their weights
for each node. The largest nodes are the founder and the CEO of Enron at the time of the
scandal.
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one power iteration on matrix A ⊗3 u(m). On the other hand, the updating equation of
a temporal factor is (I + γΩ)−1(A ⊗1 z(m) ⊗2 z(m)). The operator (I + γΩ)−1 enhances
smoothings of the temporal factorA⊗1z(m)⊗2z(m), which is a weighted sum of interaction
processes. The power iteration is essentially alternating between a spectral embedding
of the network structure and a smoothing step along the temporal dimension. One can
always replace this smoothing step with other techniques, for example, parametric models
for longitudinal data, or non-parametric kernel smoothing, and handle continuous time
processes without partitioning the time domain.

Another possible extension is considering a decomposition into factors of rank higher
than 1. Our model is based on the Kruskal decomposition into rank-1 factors, and if two
or more structure factors follow the same time trend, the Kruskal condition (3.2.3) may
not hold and thus the model is not identifiable. We also empirically observed numerical
instability in this situation. This suggests that some alternative constraints would need to
be imposed to maintain identifiability of the model if higher rank factors are allowed, or
else the focus would need to shift to only identifying structural “subspaces”. Finally, incor-
porating other information into the model that may be recorded along with the interactions,
such as covariates on the nodes and edges (e.g., in the Enron email example, this could be
information about the sender’s and receiver’s positions and email contents) would allow for
much richer models for dynamic network data.
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CHAPTER 4

Subspace estimation for link prediction in
ego-networks

4.1 Introduction

Social networks consist of nodes and links that represent individuals and relations, and a
large body of work has been devoted to their quantitative analysis. Social network data
are often collected via surveys and almost always includes noise and missing values. The
problem of link prediction is the task of removing noise and imputing missing links, for
which many techniques have been delveloped; see Liben-Nowell and Kleinberg (2007) and
Lü and Zhou (2011) for reviews.

Undirected network on N nodes can be represented with a symmetric adjacency matrix
A ∈ {0, 1}N×N with Aij = Aji = 1 if nodes i and j are linked. In statistical network anal-
ysis, we usually assume that the adjacency A is generated from an underlying probability
matrix P, with Aij’s generated as independent Bernoulli(pij) random variables, where pij
is the probability that nodes i and j are connected with each other. The assumption of
independence is not always realistic in practice, but so far the vast majority of probabilistic
models for networks rely on it, and it has been found to produce useful algorithms.

The link prediction problem can be thought of as classifying pairs of nodes as “linked”
and “unlinked”, which is frequently done on the basis of a score for each pair, with an
estimate of pij’s providing a natural score function. Thus link prediction naturally leads to
the problem of estimating P or, alternatively, a monotone function of the probabilities if
only a relative ranking of links is important. This is closely related to the problem of matrix
completion.
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4.1.1 Matrix completion

Matrix completion techniques pursue the goal of estimating underlying matrix structure
from an noisy or incomplete data matrix, usually based on low-rank approximation. For-
mally, the problem is formulated as an optimization problem as follows:

minimize
X

`(Ω(X),Ω(P))

subject to rank(X) ≤ r,

where Ω is an entry-wise mask operator such that Ω(Xij) = Xij if the entry pij is observ-
able otherwise Ω(Xij) = 0 and ` is a loss function. In the context of link prediction, we
try to estimate P based on A, which is corresponding to the inexact matrix completion
problem. The value of pij is noisy even if the entry is observable. In this case, we solve an
optimization based on the empirical loss function:

minimize
X

`(Ω(X),Ω(A))

subject to rank(X) ≤ r,

where Aij = pij + eij with E[eij] = 0 and eij’s being independent. A series of theo-
retical results has been developed for either formalization(Candès and Tao, 2010; Candès
and Plan, 2010; Keshavan et al., 2010; Davenport et al., 2014). In related work, Chatter-
jee (2015) proposed the universal singular value thresholding approach for general matrix
estimation. However, most works assume the observed adjacency matrix are missing at
random with a missing rate 1 − ρ. In this case, entries of the observed adjacency matrix
can be denoted by Aobsij = MijAij , where Mij’s∼ Bernoulli(ρ) indicate whether links are
observed. Thus, one can estimate E[Aobsij ] = ρP and a score-based classification method
is still valid for predicting links even if ρ is unknown. Although this simple assumption
allows researchers to gain theoretical insights, it may be violated in datasets collected via
many practical survey methods.

4.1.2 Egocentric networks

In this paper, we focus on the task of predicting links for networks constructed by egocen-
tric sampling. Egocentric networks have been studied in the quantitative social sciences for
several decades (Freeman, 1982; Marsden, 2002; Kogovšek and Ferligoj, 2005; Almquist,
2012) and more recently in physics and computer science (e.g. Newman, 2003; Mcauley
and Leskovec, 2012). It has been pointed out that summary statistics of egocentric net-
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works can be dramatically different from those of a randomly sampled population network,
due to the different noise structure introduced by the sampling mechanism. It is reasonable
to expect that this different noise structure will also affect many of existing link prediction
algorithms.

Social network data are often collected through surveys that ask a sample of subjects to
name the people they are connected to (the definition of connected varies with the purpose
of the study). We model this process as sampling n people without replacement from a
group of size N , and asking them to name all their connections, without any upper bound
on the number. This results in an egocentric sample or ego-network consisting of a random
sample of n rows from the full N ×N adjacency matrix.
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(a) Network G
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(b) Solid: Ego network Gego con-
structed from the egocentric sample
{3, 6}; dashed: Unobserved edges.

A =


0 1 0 1 0 0
1 0 1 1 0 0
0 1 0 1 1 0
1 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0


(c) Adjacency matrix of (a)

Aego =


? ? 0 ? ? 0
? ? 1 ? ? 0
0 1 0 1 1 0
? ? 1 ? ? 1
? ? 1 ? ? 0
0 0 0 1 0 0


(d) Observed adjacency matrix

Figure 4.1: An illustration of egocentric sampling.

Formally, suppose that our target networkG = (V,E) has the node set V = {1, . . . , N}
and an edge set E with |E| = m. We sample nodes I = {i1, . . . , in} ⊂ V , and the
observed subsampled network Gego = (Vego, Eego) has the same set of nodes Vego = V ,
and Eego = ∪{(u, v) ∈ E : u ∈ I}. See Figure 4.1 for an illustration. Equivalently, when
the i node is sampled, we observe the i-th row and column of the adjacency matrix A.

Related work on low rank approximations for egocentrically sampled networks include
the CUR decomposition Mahoney and Drineas (2009). The purpose of CUR is to find a
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matrix U such that P ≈ CUR, where C and R are exactly the columns and rows sampled
from P. This approach greatly reduces the time and space complexity for compressing a
matrix. To obtain U, the CUR algorithm solves a least squares problem, letting

U = arg min
X

‖Ω(A)− Ω(C>XR)‖2
F ,

where Ω(Aij) = 1(i or j is selected). The theoretical foundation for the CUR decom-
position (Drineas et al., 2006b, 2008) assumes the matrix to be noiseless, which for us
would mean observing the probability matrix P directly instead of the adjacency matrix A.
For link prediction, the CUR decomposition suffers from overfitting since we can always
achieve minX ‖Ω(A)− Ω(C>XR)‖2

F = 0 by choosing U to be the pseudo-inverse of the
intersection of C and R. Moreover, to improve the accuracy of the CUR approximation, it
is essential to use importance sampling to sample C and R based on a probability distri-
bution that is computed from the entire data matrix, but importance sampling is generally
not feasible in social network data without additional information about subjects, and it is
more feasible to treat egocentric networks as if the rows are uniformly sampled without
replacement.

In this paper, we propose a computationally efficient method for link prediction for
egocentrically sampled networks based on a low rank approximation. The key idea is
subspace estimation, which obtains the approximate row space of the probability matrix P

and allows us to solve the link prediction problem in the context of egocentric sampling.
In Section 4.2, we describe our method and provide some theoretical results. We conduct a
numerical evaluation of on subspace estimation method on both synthetic and real networks
and compare to benchmark link prediction methods in Section 4.3. Section 4.4 concludes
with discussion and future work.

4.2 Link prediction via subspace estimation

Without loss of generality, we can assume that the first n nodes out of N were selected,
and the observed adjacency matrix can be partitioned into blocks Aij for i, jin{1, 2},
where A11 ∈ {0, 1}n×n, A12 ∈ {0, 1}n×(N−n), and A21 = A>21, and the block A22 ∈
{0, 1}(N−n)×(N−n) is not observed; see Figure 4.2. The corresponding submatrices of P

are defined as Pij for i, j = 1, 2. We also define the sampled rows Ain = [A11 A12]n×N

and the corresponding probability sub-matrix Pin = [P11 P12]n×N .
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A =

A11 A12

A21 A22

Figure 4.2: Grey: observed blocks of the adjacency matrix. White: unobserved block.

4.2.1 Estimation

Our goal is to predict links between nodes that were not sampled, or equivalently to estimate
P22. Our goal is to approximate the probability matrix P with a rank r symmetric matrix
Pr. Suppose that we could directly sample rows from matrix P. The CUR decomposition
compute X by the following risk function:

`(X; P) = ‖Ω(P)− Ω(P>inXPin)‖F .

The corresponding estimator is

U = arg min
X∈Rn×n

‖Ω(A)− Ω(A>inXAin)‖F .

The solution to this optimization problem is U = A+
11, where A+

11 is the pseudo-inverse
of A11, which is the U matrix in the standard CUR decomposition (Mahoney and Drineas,
2009). However, the in-sample error of U is ‖Ω(A) − Ω(A>inUAin)‖F = 0, and the
estimator A>inA

+
11Ain often gives poor predictions in numerical experiments. This suggests

that the estimator U may suffer from overfitting, a problem that can be solved with various
forms of regularization. A natural regularization to consider is constraining the rank of X ,
computing instead

X̃ = arg min
rank(X)≤r

‖Ω(Aobs)− Ω(A>inXAin)‖F .

The resulting estimator A>inX̃Ain is a rank r approximation to P. We can interpret this as
an estimator of the row space of P row(Pr) based on a subspace of row(Ain). However,
solving this non-convex optimization problem directly is highly non-trivial. Instead, we
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Figure 4.3: Blocks of P̂ in (4.2.1), where P̃in = [P̃in,1 P̃in,2], where P̃in,1 ∈ Rn×n and
P̃in,2 ∈ Rn×(N−n)

propose the following two-stage estimation procedure:

1. Estimate row(Pr), which can be viewed as a principal subspace of row(P). We first
use the best rank r approximation of Ain, denoted by P̃in, as a estimator of Pin.
Thus, the resulting estimate is a rank-r matrix and satisfies row(P̃in) = row(P̂).

2. Construct an estimator of the form P̂ = P̃>inX̂P̃in, where X̂ = 1
2
(P̂+

11 + P̂>+
11 ) is a

n × n symmetric matrix. The idea for selecting X̂ for our estimator is considering
the loss function

`(X) = ‖Ω(P)− Ω(P>inXPin)‖F .

The minimizer of the loss function is X = P+
11, which gives P>inP

+
11Pin as an ap-

proximation of P. Let P̃+
in = [P̃+

11 P̃+
12]. We estimate P11 by symmetrized P̃+

11.

Thus, we obtained a plug-in estimator

P̂ =
1

2
P̃>in(P̃+

11 + P̃>+
11 )P̃in. (4.2.1)

The block-wise estimator is illustrated in Figure 4.3.

4.2.2 Interpretations of P̂

The low-rank approximation is not only a general approach for estimating probability ma-
trices, but also provides an interpretable parametrization for network data. The rank-r
approximation of P can be always decomposed as Pr = R>ZR, where R ∈ Rr×N and
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Z ∈ Rr×r. Let Ain
SV D
= UDV> and P̃in

SV D
= UrDrV

>
r . Correspondingly, we can rewrite

(4.2.1) as follows

P̂ = VrDrU
>
r X̂UrDrV

>
r

= Vr(DrU
>
r X̂UrDr)V

>
r

:= R̂>ẐR̂.

Thus, Vr gives an estimated embedding of the network in a space equipped with scalar
product Ẑ.

Similarly to adjacency spectral embedding methods (e.g. Sussman et al., 2012; Tang
et al., 2014), one can think that the columns of R describe the coordinates of nodes in
a pseudo-Euclidean space, and pij is determined by a scalar product between points cor-
responding to nodes i and j. The space is equipped with a scalar product characterized
by Z. Without imposing any constraint on Z, the candidate models of our estimator in-
clude stochastic block models, dot-product models (Young and Scheinerman, 2007), latent
eigenmodels (Hoff, 2007), and hyperbolic models (Krioukov et al., 2010; Albert et al.,
2014). Thus, one can impose more constraints on Ẑ to further restrict the collection of the
candidate models.

4.2.3 Theoretical justification

In this section, we provide a theoretical justification for our estimator. Let ρN = n
N

be a
sampling rate. We will derive an error bound of P̂ in terms of ‖P − P̂‖2. We investigate
theoretical properties of P̂ under the following assumptions.

(A1) Dense graphs. The concentration for adjacency matrices of dense graphs has been
well-studied (see Section 1.1 in Le et al. (2015) for a brief review). We will directly
apply the result ‖A − P‖2 = O(

√
d) by assuming that maximum expected degree

d = O(logN), where d = maxi
∑N

j=1 pij .

(A2) Random sample. We assume that nodes are sampled without replacement, and sam-
pling is independent of the network structure.

Theorem 8. Assume (A1) and (A2). Thus,

‖P−P̂‖2 = 2σr+1(P)+Op

(√
d+N

1
2

(
log n

ρN

) 1
4

+‖P‖2

(√
1− ρN+

√
logN(1− ρN)

))
,

where σr+1(P) is the (r + 1)th singular value of P.
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Proof. See Appendix C.1.

Roughly speaking, in the above error bound, the difference between network data and
the expected adjacency matrix, i.e. A − P, gives Op(

√
d); the quantity σr+1(P) reflects

error from model mis-specification. The last term comes from randomness of egocentric
sampling.

4.3 Numerical study

4.3.1 Tuning parameter selection

We need to choose tuning parameter r to construct a rank-r approximation of P. In this
section, we will conduct sub-sampling validation to select r. We repeatedly sample k ∈
{1, . . . , n} and set Asub be a submatrix of Ain by deleting the k-th row from Ain. Applying
the proposed algorithm to Asub, we can estimate predictive accuracy by computing the area
under the ROC curve (AUC) on the entries {Aki : i /∈ I ∪{k}}. Alternatively, one may use
some self-tuned or tuning-free methods to obtain P̂in. This approach will further reduce
computational cost.

4.3.2 Comparison with benchmarks

We compare the numerical performance of several widely used algorithms for link pre-
diction. We included the standard CUR decomposition (CUR) (Mahoney and Drineas,
2009) to show the importance of the subspace estimation step for link prediction. From
matrix completion methods with independently and identically sampled entries, we chose
universal singular value thresholding (USVT) (Chatterjee, 2015) and nuclear norm regular-
ization with inexact augmented Lagrange multiplier method (MC-IALM) (Lin et al., 2010).
For these two methods, we also applied them to incomplete adjacency matrices with i.i.d.
missing entries to show the effect of the sampling scheme of ego-networks on the perfor-
mance of standard matrix completion methods. We also included neighborhood smoothing
method (NS) (Zhang et al., 2015), which is a graphon estimation method and has demon-
strated performance on solving link prediction problems. The method requests a similarity
measurement between nodes. We used A>inAin, instead of A2 proposed in (Zhang et al.,
2015), as a similarity measurement between pairs of nodes for neighborhood selection.
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Table 4.1: Generative models for systhetic networks

Model Xi pij ∝ f(Xi, Xj) Rank of P Numerical rank of A*

Distance Normal5(0, 1) (1 + exp(‖Xi −Xj‖))−1 Full rank 1.85–14.70
Product Beta5(0.5, 1) X>i Xj 5 1.65–14.16
SBM Uniform(1, 2, . . . , 5) 0.05 + i−0.3

6
1(i = j) 5 2.63–12.61

*Changes as average degrees increase.

4.3.3 Numerical experiments

First, we evaluate the performance of our method on simulated datasets. We generate the
networks from the models described in Table 4.1. For all networks, we first generate i.i.d.
Xi’s for i = 1, . . . , 500 and then generate Aij ∼ Bernoulli(φf(Xi, Xj)), where φ is a
coefficient that controls average degrees of simulated networks. We tested our method as
well as benchmark methods under different sampling rate ρ = n/500 with average degree
d = 100. In addition, we draw entry-wise samples and fed them to both USVT and MC,
which assume entry-wise random sample, to see how sampling scheme may affect their
performance. See Table 4.1 for details and descriptive statistics of synthetic networks. To
further address how network structure affects predictive accuracy, we generate networks
with d = 10, 20, . . . , 200 with fixed ρ = 0.2. To assess performance of the methods, we
compute predictive AUC

AUC(P̂,A) =

∑
i,j,i′,j′ /∈I 1(Aij = 1, Ai′j′ = 0, p̂ij > p̂i′j′)∑

i,j,i′,j′ /∈I 1(Aij = 1, Ai′j′ = 0)

and predictive Kendall’s tau

τ(P̂,P) =
2
∑

i,j,i′,j′ /∈I 1(pij > pi′j′ , p̂ij > p̂i′j′)∑
i,j,i′,j′ /∈I 1(pij > pi′j′)

− 1

in the unobserved sub-adjacency matrix [Aij]i,j∈I . The numerical results of each scenario
are averaged over 100 repetitions.

In Figures 4.4-4.6, the predictive errors of our method, CUR, and NS reduce as net-
works become denser. Our method uniformly out perform all the benchmark methods in
terms of predictive AUC and Kendall’s tau in ego-network data generated from distance and
product models. NS also gives comparable accuracy when networks are sufficiently dense
since block structure ensures NS able to select sufficient numbers of nodes as neighbors,
but slightly under-performed our method for ρ = 0.05. Figures 4.7-4.9 show the perfor-
mance of all the methods under different sampling rates. The effect of sampling rates on

52



Table 4.2: Descriptive statistics of datasets

Dataset N m Avg. deg. Numerical rank

Residence hall 217 2672 24.6 7.91
Adolescent health 2539 12969 10.2 119.44

Wikipedia elections 7118 103675 28.3 10.57

predictive accuracy is similar to the effect of average degrees. The more nodes are selected
for constructing ego-networks, the better performance we can achieve.

Finally, we evaluated the performance of our method and the benchmark methods on
the residence hall network (Freeman et al., 1998), the adolescent health network (Moody,
2001), and the Wikipedia election network (Leskovec et al., 2010). Descriptive statis-
tics of these three social networks are summarized in Table 4.2. We sampled 5% to 50%
of nodes to construct ego-network samples and evaluated predictive AUC on unobserved
pairs of nodes. Since the underlying true P is unavailable, we only report predictive AUC
as the performance assessment. Note that some benchmark methods were not tested for
all datasets due to high space complexity of the methods. As shown in Figure 4.10, the
trends of the performance of the methods are similar to that in 4.7-4.9. Again, our method
performs better than the benchmark methods particularly for small ρ.

To sum up, our method achieved great accuracy for predicting links, and its compu-
tational cost is only slightly more expensive than CUR-decomposition. Remarkably, al-
though in some scenarios NS produces comparable results, our method always outperforms
the benchmark methods for relatively sparse networks or small sampling rates ρ, which are
often encountered in social surveys. This demonstrates the usefulness of our method for
reconstructing underlying social networks from ego-networks in practice.

4.4 Discussion

In this work, we proposed a computationally efficient method to predict links based on ego-
network data. By exploiting low-rank structure of the probability matrix and employing
subspace estimation, our method achieves good performance compared to existing meth-
ods for matrix completion/link prediction with entry-wise random sample. Furthermore,
our method is essentially first removing noise from Pin and achieve an estimated sub-
space. That is, we actually conduct matrix completion for estimating Pin. This suggests
our method can tolerate some missing values appearing in Ain.
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Figure 4.4: Predictive AUC and Kendall’s tau for distance models with various average
degrees with confidence bands of 1 standard errors
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Figure 4.5: Predictive AUC and Kendall’s tau for product models with various average
degrees with confidence bands of 1 standard errors
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Figure 4.6: Predictive AUC and Kendall’s tau for SBM with various average degrees with
confidence bands of 1 standard errors
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Figure 4.7: Predictive AUC and Kendall’s tau for distance models with various sampling
rate ρ with confidence bands of 1 standard errors
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Figure 4.8: Predictive AUC and Kendall’s tau for product models with various sampling
rate ρ with confidence bands of 1 standard errors
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Figure 4.9: Predictive AUC and Kendall’s tau for SBM with various sampling rate ρ with
confidence bands of 1 standard errors
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Figure 4.10: Predictive AUC for real datasets with various average degrees with confidence
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We propose an algorithm by solving

X̂ = arg min
X

‖Ω(Aobs)− Ω(R̂>XR̂)‖F , (4.4.1)

where the rows of R̂ is formed by the r leading right singular vectors of Ain. The above
optimization problem is trying to find an approximation of the observed adjacency matrix
and can be solved analytically as follows:

∂g(X)

2∂X
=

∂

∂X
(
1

2
‖A11 − R̂>1 XR̂1‖2

F + ‖A12 − R̂>1 XR̂2‖2
F )

= −R̂>1 A11R̂1 + R̂1R̂
>
1 XR̂1R̂

>
1

− R̂1A12R̂
>
2 − R̂2A21R̂

>
1 + R̂1R̂

>
1 XR̂2R̂

>
2 + R̂2R̂

>
2 XR̂1R̂

>
1

= −R̂>1 A11R̂1 − R̂1A12R̂
>
2 − R̂2A21R̂

>
1 + (X− R̂2R̂

>
2 XR̂2R̂

>
2 ).

By solving ∂g(X)/∂X = 0r×r, we obtain the minimizer of g as

vec(X) = (Ir2 − (R̂2R̂
>
2 )⊗ (R̂2R̂

>
2 ))+vec(R̂>1 A11R̂1 + R̂1A12R̂

>
2 + R̂2A21R̂

>
1 ).

Then, the resulting estimator of P is P = R̂>XR̂. The two-stage estimation procedure
gives a close form solution of X̂ and also provides considerable computational efficiency.
In our numerical experiments, this estimator slightly outperforms the method we proposed
in this work particularly when ρN is small. The analysis of its theoretical behavior seems
to be much less trivial.

This work is motivated by popular procedure of social surveys, and heavily relies on
the theoretical groundwork on CUR-decomposition and sampling from matrices. As the
standard CUR-decomposition and related algorithms, we often first obtain a data matrix
for computing a probability distribution for conducting importance sampling to achieve a
better theoretical guarantee. Interesting directions for future work on link prediction for
ego-networks include design of survey procedures with importance sampling and analysis
based on other sampling schemes such as snowball sampling.
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CHAPTER 5

Summary and Future work

In this dissertation, we considered issues about link prediction in various types of network
data and tackle them with matrix/tensor decomposition in the framework of factorization
models. In Chapter 2, we proposed a model that can combine network topology and ad-
ditional features. In Chapter 3, we take network dynamics into account as an additional
latent factor. In Chapter 4, we investigated the link prediction incorporating with a specific
generative mechanism of networks. We provided models, algorithms, theoretical analysis,
and numerical study for each issue.

The framework of factorization models can provide a simple and interpretable parametriza-
tion for analyzing network data. There are a number of possible future directions to be
further explored to the research of link prediction via factorization models. One direction
is exploring other functions that characterize interaction between factors zi and zj . Cur-
rently, we describe the interaction by using inner product or scalar product of the form
f(zi, zj) = ziΛzj so that we can borrow strength from the topology structure of a low-
dimensional inner/scalar product space. Although some latent space models have been
built based on different interaction functions, such as distance models of the form ‖zi−zj‖,
solving the corresponding estimation problems are usually less tractable. It would be inter-
esting to investigate theoretical behaviors of other interaction functions and design feasible
algorithms for solving corresponding factorization problems. In addition, analysis of hy-
pergraph data and dynamic networks also request more extensive research on functions of
higher-order interaction.

Another direction to be explored is to develop methods for generating network data.
Currently, we often exclude pre-processing of network data from our methods and simply
assume observed links are conditionally independent given a probability matrix or latent
factors, and this enables us to view network as sampling from the probability matrix and
apply theoretical results from random matrix theory to analyze behaviors of our meth-
ods. However, in practice, the generative mechanism of links can seriously affect observed
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topology structure of networks, which may not preserve information of interests. For ex-
ample, we often computed correlation matrices of multiple time series in fMRI data and
equity price data and convert them to adjacency matrices by thresholding values of the en-
tries of the correlation matrices. The choice of the correlation measurement and threshold
values in practice seems to be subject or even arbitrary, but clearly there is a gap between
developing methods under the assumption of conditional independence and real generative
mechanism of real network data. The gap is needed to be filled to build end-to-end network
data analysis for solving practical problems.
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APPENDIX A

Appendix for “Low-rank effects models for
network estimation with edge attributes”

A.1 Proof of theorems

To establish consistency in Frobenius norm, we first state an inequality connecting the
Frobenius norm to the Kullback-Leibler (KL) divergence, defined as

DKL(fQ1‖fQ2) = n−2
∑
ij

∫ ∞
−∞

fq1,ij(a) log
fq1,ij(a)

fq2,ij(a)
da,

where Q1 and Q2 are n × n matrices and fQ1 and fQ2 are the probability distributions of
random matrices with mean Q1 and Q2 as defined in (2.2.2).

Note that as a consequence of A3-A5, the ξ-th moment of |Aij| is uniformly bounded
by some constant for each ξ, denoted by Mξ, which does not depend on n. Then using the
uniform integrability given by the bounded parameter space, we have the following lemma.

Lemma 9. Under assumptions A3-A5, we have

n−1‖Q1 −Q2‖F ≤
√

2M
1

1+δ

1+δD
δ

2+2δ

KL (fQ1‖fQ2)

for some δ > 0.

Proof of Lemma 9. Let

‖fq1,ij − fq2,ij‖TV = sup
gij :R→[−1,1]

∫
gij(a)(fpij(a)− fqij(a))dµ(a),
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where µ is the Lebesgue or counting measure. Then,

‖Q1 −Q2‖2
F

≤
∑
ij

(∫ ∞
0

|a||fq1,ij(a)− fq2,ij(a)|dµ(a)

)2

≤
∑
ij

(
uij

∫ uij

0

|fq1,ij(a)− fq2,ij(a)|dµ(a) + u−tij

∫ ∞
uij

|a|1+δ(fq1,ij(a) + fq2,ij(a))dµ(a)

)2

≤
∑
ij

(
2uij‖fq1,ij − fq2,ij‖TV + 2u−tij M1+δ

)2

As a function of uij , the minimum of uij‖fq1,ij − fq2,ij‖TV + u−δij M1+δ is obtained by

choosing uij = δ
1

1+δM
1

1+δ

1+δ ‖fq1,ij − fq2,ij‖
− δ

1+δ

TV and so

n−2‖Q1 −Q2‖2
F ≤ n−2

∑
ij

(δ
1

1+δ + δ−
δ

1+δ )2M
2

1+δ

1+δ ‖fq1,ij − fq2,ij‖
2δ
1+δ

TV

≤ 4n−2M
2

1+δ

1+δ

∑
ij

‖fq1,ij − fq2,ij‖
2δ
1+δ

TV

≤ 2M
2

1+δ

1+δD
δ

1+δ

KL (fQ1‖fQ2)

for any δ > 0. The last inequality is given by Pinsker’s inequality.

Proof of Theorem 1. We define a feasible set of (Θ,β) as

T = {(Θ,β) : ‖Θ‖∗ ≤
√
rnKθ, ‖β‖2 ≤ Kβ},

and a corresponding estimator as

(Θ̃, β̃) = arg max
(Θ,β)∈T

`A,X (Θ,β). (A.1.1)

Note that whenR =
√
rnKθ andKβ is large enough, the solution for (A.1.1) is the same as

that for (2.2.6). Let h(B, c) := E[`A,X(B, c)]. Note that the maximum likelihood criterion
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in (2.2.8) ensures that `A,X(Θ̂, β̂) ≥ `A,X(Θ,β). Hence, we have

n2DKL(fP‖fP̂) = h(Θ,β)− h(Θ̂, β̂)

≤ `A,X(Θ̂, β̂)− `A,X(Θ,β) + h(Θ,β)− h(Θ̂, β̂)

= tr((A−P)>(Θ̂−Θ))

+
m∑
k=1

(β̂k − βk)tr((A−P)>Xk). (A.1.2)

To see the vanishing of the first term as n goes to infinity, one can derive that

tr((A−P)>(Θ̂−Θ)) ≤ 2 sup
Ξ∈T
|tr((A−P)>Ξ)|

≤ 2σ1(A−P) sup
Ξ∈T
‖Ξ‖∗

≤ 2
√
rnR∗σ1(A−P)

by matrix norm inequalities |tr(B>C)| ≤ ‖B‖2‖C‖∗ and ‖C‖∗ ≤
√
r‖C‖F ≤

√
rn‖C‖max

for rankC ≤ r. Together with Markov’s inequality and the fact that

E[σ1(A−P)] ≤ C0

((
max
i

∑
j

E[A2
ij]
) 1

2
+
(

max
j

∑
i

E[A2
ij]
) 1

2
+
∑
ij

E[A4
ij]
) 1

4

)
≤ C0

√
n(2
√
M2 + 4

√
M4)

by Latala’s theorem (Latala, 2005) where C0 is some universal constant, we have

P
(

2 sup
Ξ∈T
|tr((A−P)>Ξ)| ≥ n2δ

)
≤ P(2

√
rnR∗σ1(A−P) ≥ n2t)

≤ 2
√
rRE[σ1(A−P)]

nt

≤ 2
√
rRC0(2

√
M2 + 4

√
M4)√

nt
. (A.1.3)
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For the second term in (A.1.2),

P
(∣∣∣ m∑

k=1

(β̂k − βk)tr((A−P)>Xk)
∣∣∣ ≥ n2t

)
≤ P

(
2 sup
‖β‖max≤Kβ

‖β‖max

∣∣∣ m∑
k=1

tr((A−P)>Xk)
∣∣∣ ≥ n2t

)
≤

4K2
β Var

(∑m
k=1 tr(A>Xk)

)
n4t2

≤
4K2

βK
2
xM2

n2t2
. (A.1.4)

Thus, the desired result follows from (A.1.3), (A.1.4), and Lemma 9.

Proof of Corollary 3. The result is obtained by replacing (A.1.3) with Talagrand’s inequal-
ity

P(2
√
rnR∗σ1(A−P) ≥ n2t)

≤ P
(
|σ1(A−P)− E[σ1(A−P)]| ≥ nt

2
√
rR
− C0(2

√
M2 + 4

√
M4)
√
n
)

≤ C1 exp
(
− C2

( nt

2
√
rR
− C0(2

√
M2 + 4

√
M4)
√
n
)2

+

)
,

where C1 and C2 are some universal constants, and (A.1.4) with Hoeffiding’s inequality

P
(∣∣∣ m∑

k=1

(β̂k − βk)tr((A−P)>Xk)
∣∣∣ ≥ n2t

)
≤ 2 exp

(
− n2t2

4K2
βK

2
x

)
.

Proof of Corollary 4. By Taylor’s expansion, for some ηij between p̂ij and pij for i, j =

1, . . . , n,

‖Θ̂−Θ + X ⊗ (β̂ − β)‖F =

(∑
ij

(
L(p̂ij)− L(pij)

)2
) 1

2

≤ sup
ij
L′(ηij)‖P̂−P‖F

≤ 1

infij b′′(L(ηij))
‖P̂−P‖F

≤ 1

infij Var(Aij)
‖P̂−P‖F .
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Hence, the convergence of the linear predictor Θ̂ + X ⊗ β̂ follows from infij Var(Aij)

being bounded away from 0. Since

∣∣tr((Θ̂−Θ)>
(
X ⊗ (β̂ − β)

))∣∣
‖Θ̂−Θ‖F‖X ⊗ (β̂ − β)‖F

≤
∑n

i=1 σi(Θ̂−Θ)σi
(
X ⊗ (β̂ − β)

)
‖Θ̂−Θ‖F‖X⊗ (β̂∗ − β)‖F

=

∑2r
i=1 σi(Θ̂−Θ)σi

(
X ⊗ (β̂ − β)

)
‖Θ̂−Θ‖F‖X ⊗ (β̂ − β)‖F

≤

(∑2r
i=1 σ

2
i

(
X ⊗ (β̂ − β)

)) 1
2

‖X ⊗ (β̂ − β)‖F
≤
√
δ

by the condition on the spectral distribution of X ⊗ β, we see that

‖Θ̂−Θ + X ⊗ (β̂ − β)‖2
F

= ‖Θ̂−Θ‖2
F + ‖X ⊗ (β̂ − β)‖2

F + 2tr
(

(Θ̂−Θ)>
(
X ⊗ (β̂ − β)

))
≥ ‖Θ̂−Θ‖2

F + ‖X ⊗ (β̂ − β)‖2
F − 2

√
δ‖Θ̂−Θ‖F‖X ⊗ (β̂ − β)‖F

≥ (1−
√
δ)(‖Θ̂−Θ‖2

F + ‖X ⊗ (β̂ − β)‖2
F ).

Thus, by Theorem 1,
n−1‖Θ̂−Θ‖F

p−→ 0

and
(β̂ − β)>

(
n−2

∑
ij

xijx
>
ij

)
(β̂ − β) = n−2‖X ⊗ (β̂ − β)‖2

F

p−→ 0.

Proof of Theorem 5. Let Θ̂∗ = arg minΞ∈T ‖Ξ−Θ‖F .

n2DKL(fP‖fP̂) = h(Θ,β)− h(Θ̂, β̂)

≤ `A,X(Θ̂, β̂)− h(Θ̂, β̂)− `A,X(Θ̂∗,β) + h(Θ̂∗,β) (A.1.5)

− h(Θ̂∗,β) + h(Θ,β)

= tr((A−P)>(Θ̂− Θ̂∗)) +
m∑
k=1

(β̂k − βk)tr((A−P)>Xk)

+ tr(P>(Θ− Θ̂∗)) +
∑
ij

(
b(θ̂∗ij + x>ijβ)− b(θij + x>ijβ)

)
(A.1.6)
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The first two terms above converge to 0 in probability by a similar argument in the proof of
Theorem 1. Note that

tr(P>(Θ− Θ̂∗)) ≤ σ1(P)‖Θ− Θ̂∗‖∗ ≤ n

n∑
k=r+1

σk(Θ)

and that, by Taylor’s expansion, for some ξij between θ̂∗ij + x>ijβ and θij + x>ijβ,∑
ij

(
b(θ̂∗ij + x>ijβ)− b(θij + x>ijβ)

)
=
∑
ij

b′(ξij)(θ̂
∗
ij − θij)

≤ Kp

∑
ij

|θ̂∗ij − θij|

≤ nKp‖Θ̂∗ −Θ‖F
≤ nKp‖Θ̂∗ −Θ‖∗

= nKp

n∑
k=r+1

σk(Θ),

Therefore,

DKL(fP‖fP̂) = Op

(
n−1

n∑
k=r+1

σk(Θ)

)
and by Lemma 9, for δ > 0,

n−1‖P̂−P‖F = Op

(
M

1
1+δ

1+δ

(
n−1

n∑
k=r+1

σk(Θ)
) δ

2+2δ

)
.
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APPENDIX B

Appendix for “Regularized tensor decomposition
for link prediction in dynamic networks”

B.1 Proof of Theorem 6

Proof of Theorem 6. We prove this theorem by contradiction. Suppose that, for any parti-
tion of [0, T ], there exists a non-zero vector β = (β1, . . . , β`)

> such that not all β`’s are
zero and Uβ = 0.

By the continuity of u∗` ’s, the function
∑r

`=1 α`u
∗
` is uniformly continuous for any {α`}.

That is, given ε > 0, there exists δ > 0 such that |
∑r

`=1 α`u
∗
`(t) −

∑r
`=1 α`u

∗
`(s)| < ε

for all |s − t| < δ. Consider a partition t0 = 0 < t1 < · · · < tnT = T on [0, T ]

satisfying tk − tk−1 < δ for all k = 1, . . . , nT . Since there exists s`k ∈ (tk−1, tk) such that∫ tk
tk−1

u∗`(t)dt = (tk − tk−1)u∗`(s`k) for all k = 1 . . . , nT and ` = 1, . . . , r, we have

u`k =

∫ tk
tk−1

u∗`(t)dt

(
∑nT

k′=1(
∫ tk′
tk′−1

u∗`(t)dt)
2)

1
2

=
(tk − tk−1)u∗`(s`k)

(
∑nT

k=1(tk′ − tk′−1)2u∗2` (s`k′))
1
2

.

Let α` = (
∑nT

k′=1(tk′ − tk′−1)2u∗2` (s`k′))
− 1

2β`. For t ∈ (tk−1, tk],∣∣∣∣ r∑
`=1

α`u
∗
`(t)

∣∣∣∣ ≤ ∣∣∣∣ r∑
`=1

α`u
∗
`(s`k)

∣∣∣∣+

∣∣∣∣ r∑
`=1

α`(u
∗
`(s`k)− u∗`(t))

∣∣∣∣
≤
∣∣∣∣(tk − tk−1)−1

r∑
`=1

β`u`k

∣∣∣∣+
r∑
`=1

|α`||u∗`(s`k)− u∗`(t)|

≤ 0 + ε
r∑
`=1

|α`|

Since |α`| are not all zero and ε can be arbitrarily small,
∑r

`=1 α`u
∗
` ≡ 0 and hence u∗` ’s are

not linearly independent.
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B.2 Proof of Theorem 7

B.2.1 Concentration in spectral norm

The spectral norm of E is defined as

‖E‖2 := max
y∈Sn−1,z∈Sn−1,u∈SnT−1

E ⊗1 y ⊗2 z⊗3 u.

The following lemma gives a concentration inequality for A in spectral norm.

Lemma 10 (Spectral norm of A− E[A]). Suppose that Aijk ∼ Poisson(µijk). Then,

P(σ−1
max‖A − E[A]‖2 ≥ δ) ≤ exp

(
− σmaxδ

2

8 + 4δ
+ (2n+ nT ) log 15

)
.

Proof of Lemma 10. Let E = A− E[A]. Let (y∗, z∗,u∗) be the maximizer of g(y, z,u) =

E ⊗1 y⊗2 z⊗3 u. Given a ε-netNε, which is a finite points set, on Sn−1 × Sn−1 ×SnT−1,
i.e. for all x ∈ Sn−1 × Sn−1 × SnT−1, there exists (ỹ, z̃, ũ) ∈ Nε such that ‖ỹ − y∗‖ < ε,
‖z̃− z∗‖ < ε, and ‖ũ− u∗‖ < ε, we have

‖E‖2 = E ⊗1 y∗ ⊗2 z∗ ⊗3 u∗

= E ⊗1 (ỹ + (y∗ − ỹ))⊗2 (z̃ + (z∗ − z̃))⊗3 (ũ + (u∗ − ũ))

≤ E ⊗1 ỹ ⊗2 z̃⊗3 ũ + (3ε+ 3ε2 + ε3)‖E‖2

≤ max
(y,z,u)∈Nε

E ⊗1 y ⊗2 z⊗3 u + (3ε+ 3ε2 + ε3)‖E‖2

Let X d
=
∑

i ci(Yi − µi), where Yi’s are independently sampled from Poisson(µi) and ci’s
are some constants. Bernstein’s inequality for sub-exponential distributions gives

P(X ≥ θ) ≤ exp

(
− θ2

2(µ+ θ)

)
,

where µ =
∑

i ciµi. Since the covering number of ε-net on Sn−1 is bounded by (2
ε
)n, by
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choosing ε = 0.14, which gives (1− 3ε− 3ε2 − ε3) > 0.5 and 2
ε
< 15, we obtain

P(‖E‖2 ≥ θ) ≤ P((1− 3ε− 3ε2 − ε3)−1 max
(y,z,u)∈Nε

E ⊗1 y ⊗2 z⊗3 u ≥ θ)

≤
∑

(y,z,u)∈Nε

P(E ⊗1 y ⊗2 z⊗3 u ≥ (1− 3ε− 3ε2 − ε3)θ)

≤
∑

(y,z,u)∈Nε

exp

(
− (1− 3ε− 3ε2 − ε3)2θ2

2(σmax + (1− 3ε− 3ε2 − ε3)θ)

)

≤
(

2

ε

)2n+nT

exp

(
− (1− 3ε− 3ε2 − ε3)2θ2

2(σmax + (1− 3ε− 3ε2 − ε3)θ)

)
≤ 152n+nT exp

(
− θ2

4(2σmax + θ)

)
.

The proof is completed by setting θ = σmaxδ.

B.2.2 One update of the power iteration

Lemma 11 (One update of z). Assume that z>zk >
√

1− ε2, u>uk >
√

1− ε2. Then, for

ẑ := φ(ρA⊗2 z⊗3 u + (1− ρ)z), we have

√
1− (ẑ>zk)2 ≤ ρ(Jz(ε) + ‖E‖2) + (1− ρ)ε

ρ(σmin(1− ε2)− Jz(ε)− ‖E‖2)− (1− ρ)

if σmin(1− ε2) > Jz(ε) + ‖E‖2, where

Jz(ε) := σmax(ηzηu
√
r(1 + ηzr) + ε(ηz + ηu + 2rηzηu) + ε2r).

Proof of Lemma 11. LetPv andP⊥v be the orthogonal projections onto v and its orthogonal
complement, respectively. Let Z[k] = [z1, . . . , zk−1, zk+1, . . . , zr]. To show that ẑ>zk is
close to 1, we will show that, for any x⊥zk with ‖x‖2 = 1, Iz(ε) = E[A] ⊗1 x ⊗2 z ⊗3 u

can be bounded by a small value, which is a function of ε.

Iz(ε) = E[A]⊗1 x⊗2 z⊗3 u

= E[A]⊗1 x⊗2 (Pzk + P⊥zk)(z)⊗3 (Puk + P⊥uk)(u)

= E[A]⊗1 x⊗2 Pzk(z)⊗3 Puk(u) + E[A]⊗1 x⊗2 P⊥zk(z)⊗3 Puk(u)

+ E[A]⊗1 x⊗2 Pzk(z)⊗3 P⊥uk(u) + E[A]⊗1 x⊗2 Pzk(z)⊥ ⊗3 P⊥uk(u)

= I1(ε) + I2(ε) + I3(ε) + I4(ε)

We can bound each term as follows. Since Pzk(z) = z>k zzk and Puk(u) = u>k uuk, we
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have

I1(ε) = E[A]⊗1 x⊗2 Pzk(z)⊗3 Puk(u)

=
∑
6̀=k

σ`z
>zkz

>
k z`u

>uku
>
k u`z

>
` x

≤ σmaxηzηuz
>zku

>uk
∑
`6=k

z>` x (by z>k z` ≤ ηz and u>k u` ≤ ηu)

≤ σmaxηzηu|x>Z[k]1|

≤ σmaxηzηu‖Z[k]1‖

≤ σmaxηzηu
√
r(1 + ηzr).

The last inequality is obtained by ‖Z[k]‖2 ≤ (1 + ηz(r − 2)), which is given by the Ger-
shgorin circle theorem and the fact that the off-diagonal terms of Z>[k]Z[k] are less than or
equal to ηz. By the facts that ‖P⊥zk(z)‖ < ε and ‖P⊥uk(u)‖ < ε, we have

I2(ε) = E[A]⊗1 x⊗2 P⊥zk(z)⊗3 Puk(u)

=
∑
6̀=k

σ`z
>
` P⊥zk(z)u>uku

>
k u`z

>
` x

≤ σmaxηuP⊥zk(z)>
∑
`6=k

z`z
>
` x (by u>k u` < ηu)

≤ σmaxεηu‖Z[k]‖2

≤ σmaxεηu(1 + ηzr).

Similarly, I3(ε) ≤ σmaxεηz(1 + ηur). Finally,

I4(ε) = E[A]⊗1 x⊗2 Pzk(z)⊥ ⊗3 P⊥uk(u)

=
∑
`6=k

σ`z
>
` P⊥zk(z)u>` P⊥uk(u)z>` x

≤ ε2σmaxr

Then,

I(ε) = I1(ε) + I2(ε) + I3(ε) + I4(ε)

≤ σmax(ηzηu
√
r(1 + ηzr) + ε(ηz + ηu + 2rηzηu) + ε2r)

= Jz(ε)

73



and hence

ρA⊗1 x⊗2 z⊗3 u + (1− ρ)x>z ≤ ρ(Jz(ε) + ‖E‖2) + (1− ρ)ε.

An upper bound on
∑

` 6=k σ`x
>z`z

>z`u
>u` for any ‖x‖ = 1 can be obtained by the same

argument. Hence, ‖
∑
6̀=k σ`z`z

>z`u
>u`‖ ≤ Jz(ε). By triangle inequality,

‖ρA⊗1 x⊗2 z⊗3 u + (1− ρ)z‖

≥ ρ(‖σkzkz>zku
>uk‖ − ‖

∑
`6=k

σ`z`z
>z`u

>u`‖ − ‖E‖2)− (1− ρ)

≥ ρ(σmin(1− ε2)− Jz(ε)− ‖E‖2)− (1− ρ),

Therefore, an upper bound of
√

1− (ẑ>zk)2 follows,√
1− (ẑ>zk)2 = min

‖x‖2=1,x⊥zk
x>ẑ

= min
‖x‖=1,x⊥zk

ρA⊗1 x⊗2 z⊗3 u + (1− ρ)x>z

‖ρA⊗2 z⊗3 u + (1− ρ)z‖

≤ ρ(Jz(ε) + ‖E‖2) + (1− ρ)ε

ρ(σmin(1− ε2)− Jz(ε)− ‖E‖2)− (1− ρ)
. (B.2.1)

Lemma 12 (One update of u). Assume that z>zk >
√

1− ε2, u>uk >
√

1− ε2. Then, for

û = φ(ρ(I + γΩ)−1A⊗1 z⊗2 z + (1− ρ)u), we have

√
1− (û>uk)2 ≤ C(γ)

ρ(Ju(ε) + ‖E‖2) + (1− ρ)ε

ρ(σk(1− ε2)− Ju(ε)− ‖E‖2)− (1− ρ)

if σmin(1− ε2) > Ju(ε) + ‖E‖, where

Ju(ε) := σmax(η2
z

√
r(1 + ηur) + 2ε(ηz + 2rη2

z) + ε2r)

and C(γ) = 1 + 4γ
mini(ti−ti−1)2

.

Proof of Lemma 12. Similarly, let

Iu(ε) = E[A]⊗1 z⊗2 z⊗3 ((I + γΩ)−1x),

where x satisfies x⊥uk and ‖x‖ = 1. Note that ‖I + γΩ‖2 ≥ 1 because of the semi-

74



positive-definiteness of Ω and hence

‖E ⊗3 ((I + γΩ)−1x)‖2 ≤ ‖E‖2.

Thus, a similar decomposition of Iu(ε) gives

Iu(ε) ≤ σmax(η2
z

√
r(1 + ηur) + 2ε(1 + 2rηz)ηz + ε2r) := Ju(ε).

Since ‖(I + γΩ)−1‖ ≤ 1 and therefore P(‖(I + γΩ)−1E‖ ≥ δ) ≤ P(‖E‖ ≥ δ), one can
derive√

1− (û>uk)2 = min
‖x‖=1,x⊥uk

x>û

= min
‖x‖=1,x⊥uk

x>(I + γΩ)−1(ρA⊗1 y ⊗2 z + (1− ρ)u)

‖(I + γΩ)−1(ρA⊗1 y ⊗2 z + (1− ρ)u)‖

≤ ρ(Ju(ε) + ‖E‖2) + (1− ρ)ε

σmin((I + γΩ)−1)(ρ(σk(1− ε2)− Ju(ε)− ‖E‖2)− (1− ρ))

≤ C(γ)
ρ(Ju(ε) + ‖E‖2) + (1− ρ)ε

ρ(σk(1− ε2)− Ju(ε)− ‖E‖2)− (1− ρ)
.

The last inequality follows from the fact that the largest eigenvalue of Ω is bounded by
4

mini(ti−ti−1)2
.

B.2.3 Proof of the main theorem

Proof of Theorem 7. We will prove the theorem by induction. Assume that√
1− (ẑ(m)>zk)2 < εz and

√
1− (û(m)>uk)2 < εu.

Given ν ∈ (0, 1), by Lemmas 11 and 12,√
1− (ẑ(m+1)>zk)2 < νεz and

√
1− (û(m+1)>uk)2 < νεu

if

ρ(Jz(εz) + ‖E‖2) + (1− ρ)εz
ρ(σmin(1− ε2z)− Jz(εz)− ‖E‖2)− (1− ρ)

< νεz (B.2.2)
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and

ρ(Ju(εu) + ‖E‖2) + (1− ρ)εu
ρ(σk(1− ε2u)− Ju(εu)− ‖E‖2)− (1− ρ)

<
ν

C(γ)
εu. (B.2.3)

When
‖E‖2 < min{σmin(1− ε2z)− Ju(εz), σmin(1− ε2u)− Ju(εu)} − L,

where L = 1−ρ
ρ

is the same L as in (3.3.3), rearranging the inequalities (B.2.2) and (B.2.3),
we have

1 + νεz
1 + εz

(Jz(εz) + ‖E‖2) +
1− ρ
ρ

ε

1 + ε
(1 + ν) < νσmin(1− εz)εz

and

1 + ν
C(γ)

εu

1 + εu
(Ju(εu) + ‖E‖2) + L

ε

1 + ε

(
1 +

ν

C(γ)

)
<

ν

C(γ)
σmin(1− εu)εu.

The above inequalities are implied by

‖E‖2 < νσmin(1− εz)εz − Jz(εz)− L(1 + ν)εz

and
‖E‖2 <

ν

C(γ)
σmin(1− εu)εu − Ju(εu)− L

(
1 +

ν

C(γ)

)
εu.

Let

hz(εz) := σ−1
max(Jz(εz) + ‖E‖2 − νσmin(1− εz)εz + L(1 + ν)εz) (B.2.4)

= ηzηu
√
r(1 + ηzr) + σ−1

max‖E‖2 − (νω − (ηz + ηu + 2rηzηu)− L(1 + ν))εz

(B.2.5)

+ (νω + r)ε2z (B.2.6)

and

hu(εu) := σ−1
max(Ju(εu) + ‖E‖2 −

ν

C(γ)
σmin(1− εu)εu) (B.2.7)

= η2
z

√
r(1 + ηur) + σ−1

max‖E‖2 (B.2.8)

−
(

νω

C(γ)
− 2ηz(1 + 2rηz)− L

(
1 +

ν

C(γ)

))
εu +

(
νω

C(γ)
+ r

)
ε2u. (B.2.9)

The inequalities (B.2.2) and (B.2.3) hold if εz, εu ∈ (0, 1) satisfy hz(εz) < 0 and hu(εu) <
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0. Since both hz and hu are quadratic functions, each of hz(εz) = 0 and hu(εu) = 0 has two
distinct real roots, denoted by s−z < s+

z , respectively, such that εz and εu exist only if the
quantity ‖E‖2 is not too large. Specifically, (B.2.2) and (B.2.3) hold for some εz, εu ∈ (0, 1)

if
(νω − (ηz + ηu + 2rηzηu))

2 − L(1 + ν)

4(νω + r)
− ηzηu

√
r(1 + ηzr) ≥ σ−1

max‖E‖2

and

(νω − 2ηz(1 + 2rηz)C(γ)− L(C(γ) + ν))2

4(νω + rC(γ))
− η2

z

√
r(1 + ηuz) ≥ σ−1

max‖E‖2,

respectively.
By Lemma 10, with probability

P(σ−1
max‖E‖2 ≥ δ) ≤ exp

(
− σmaxδ

2

8 + 4δ
+ (2n+ nT ) log 15

)
,

where

δ = min

{
(νω − (ηz + ηu + 2rηzηu)− L(1 + ν))2

4(νω + r)
− ηzηu

√
r(1 + ηzr), (B.2.10)

(νω − 2ηz(1 + 2rηz)C(γ)− L(C(γ) + ν))2

4(νω + rC(γ))
− η2

z

√
r(1 + ηuz)

}
, (B.2.11)

there exists s−z < s+
z and s−u , s

+
u such that, for εz ∈ (s−z , s

+
z ) and εu ∈ (s−u , s

+
u ), the

inequalities (B.2.2) and (B.2.3) hold. By induction, the contraction holds throughout all
iterations.

Remarkably, s+
z > νω−(ηz+ηu+2rηzηu)−L(1+ν)

2(ω+r)
and s+

u > νω−2ηz(1+2rηz)C(γ)−L(C(γ)+ν)
2(ω+C(γ)r)

,
which are the minimum of the midpoints of the intervals (s−z , s

+
z ) and (s−u , s

+
u ). That is, s+

z

and s+
u are bounded away from 0 if ηz and ηu are sufficiently small.

Finally, we analyze the behavior of the power iterations in the case
√

1− (ẑ(m)>zk)2 <

s−z and
√

1− (û(m)>uk)2 < s−u . Note that both Jz and Ju are increasing functions on (0, 1)

and hence the left-hand sides of (B.2.2) and (B.2.3) are strictly increasing functions of εz
and εu, respectively, for ε ∈ (0, 1). Therefore,√

1− (ẑ(m+1)>zk)2 <
ρ(Jz(εz) + ‖E‖2) + (1− ρ)εz

ρ(σmin(1− ε2z)− Jz(εz)− ‖E‖2)− (1− ρ)

<
ρ(Jz(s

−
z ) + ‖E‖2) + (1− ρ)s−z

ρ(σmin(1− (s−z )2)− Jz(s−z )− ‖E‖2)− (1− ρ)
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and √
1− (û(m+1)>uk)2 < C(γ)

ρ(Ju(εu) + ‖E‖2) + (1− ρ)εu
ρ(σk(1− ε2u)− Ju(εu)− ‖E‖2)− (1− ρ)

< C(γ)
ρ(Ju(s

−
u ) + ‖E‖2) + (1− ρ)s−u

ρ(σk(1− (s−u )2)− Ju(s−u )− ‖E‖2)− (1− ρ)
.

Since εz ∈ (s−z , s
+
z ) and εu ∈ (s−u , s

+
u ) imply (B.2.2) and (B.2.3), respectively, by the

continuity of hz and hu, εz ∈ [s−z , s
+
z ] and εz ∈ [s−u , s

+
u ] imply

ρ(Jz(s
−
z ) + ‖E‖2) + (1− ρ)s−z

ρ(σmin(1− (s−z )2)− Jz(s−z )− ‖E‖2)− (1− ρ)
≤ νs−z

and
C(γ)

ρ(Ju(s
−
u ) + ‖E‖2) + (1− ρ)s−u

ρ(σk(1− (s−u )2)− Ju(s−u )− ‖E‖2)− (1− ρ)
≤ νs−u .

This ensures that√
1− (ẑ(m+1)>zk)2 < s−z and

√
1− (û(m+1)>uk)2 < s−u .
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APPENDIX C

Appendix for “Subspace estimation for link
prediction in ego-networks”

C.1 Proof of Theorem 8

We will begin the proof with decomposing ‖P− P̂‖2. The following lemma enables us to
bound some terms of the decomposition as if we analyze the error bound in the scenario of
sampling with replacement.

Lemma 13. Let {yi}ni=1’s be a random sample without replacement from the column vec-

tors of Z = [z1 · · · zN ], where zi ∈ RN ’s satisfy ‖zi‖ ≤ 1 for all i = 1, . . . , N . Then,

E
[∥∥∥∥n−1

n∑
i=1

yiy
>
i −N−1ZZ>

∥∥∥∥
2

]
≤ CN−1ρ−1

N

√
n log n,

where C is a universal constant.

Proof. Let D = {D1, . . . ,DN}, where Dk = [dk,ij]N×N with sk,ij = 1 if i = j = k

otherwise dk,ij = 0. We define a function g : RN×N 7→ R as

g(D) = ‖Z(D− ρNIN)Z>‖2.

Therefore, it suffices to derive a bound for the case of sampling with replacement. Let
{Tk}nk=1 and {T̃k}nk=1 denote random samples without and with replacement from D, re-
spectively. Since g is a convex function, following the proof as in Theorem 4 in Hoeffding
(1963), one can show the result in the theorem applies to matrix-valued samples and obtain

E
[
g

( n∑
i=1

Ti

)]
≤ E

[
g

( n∑
i=1

T̃i

)]
.
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Since ‖E[ỹiỹ
>
i ]‖2 ≤ E[‖ỹiỹ>i ‖2] ≤ 1 and E[ỹiỹ

>
i ] = N−1ZZ>, we can apply Theorem

3.1 in Rudelson and Vershynin (2007) to achieve

n−1E
[
g

( n∑
i=1

T̃i

)]
= n−1E

[∥∥∥∥Z( n∑
i=1

T̃i − ρNIN

)
Z>
∥∥∥∥

2

]
= E

[∥∥∥∥n−1

n∑
i=1

ZT̃iZ
> −N−1ZZ>

∥∥∥∥
2

]
= E

[∥∥∥∥n−1

n∑
i=1

ỹiỹ
>
i − E[ỹiỹ

>
i ]

∥∥∥∥
2

]
≤ CN−1ρ−1

N

√
n log n,

where C is a universal constant.

We are now ready to bound the tail probability of ‖P− P̂‖2.

Proof of Theorem 8. Since

‖P− P̂‖2 ≤
1

2
‖P− P̃>inP̃

+
11P̃in‖2 +

1

2
‖P− P̃>inP̃

+>
11 P̃in‖2

= ‖P− P̃>inP̃
+
11P̃in‖2,

it suffices to study the rate of growth of ‖P−P̃>inP̃
+
11P̃in‖2. Let S = [sij]N×N be a diagonal

matrix with sij = 1(row i or column j is selected) and S̃ be a submatrix of S obtained by
removing zero rows from S. Then, Ain = S̃A, P̃in = S̃AVrV

>
r , and

P̃>inP̃
+
11P̃in = P̃>in(P̃inS̃

>)+P̃in

= P̃>inS̃P̃+
inP̃in

= VrV
>
r AS̃>S̃VrV

>
r

= VrV
>
r ASVrV

>
r .

Therefore, we can bound ‖P−P̃>inP̃
+
11P̃in‖2 by applying the triangle inequality as follows:

‖P− P̃>inP̃
+
11P̃in‖2

≤ ‖P−A‖2 + ‖A−VrV
>
r AVrV

>
r ‖2

+ ‖VrV
>
r AVrV

>
r −VrV

>
r ASVrV

>
r ‖2 (C.1.1)

Throughout the proof, we always have ‖A−P‖2 = O(
√
d) by the dense graph assumption.
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A bound of the second term in (C.1.1) follows from

‖A−VrV
>
r AVrV

>
r ‖2 ≤ ‖A−VrV

>
r A‖2 + ‖VrV

>
r A−VrV

>
r AVrV

>
r ‖2

≤ ‖A−VrV
>
r A‖2 + ‖VrV

>
r ‖2‖A−AVrV

>
r ‖2

≤ 2‖A−VrV
>
r A‖2.

The derivation of a bound of ‖A − VrV
>
r A‖2 is similar to the proof of Theorem 1.1

in Rudelson and Vershynin (2007) except that we consider uniformly sampling without
replacement and random A. First, by applying Theorem 3 in Drineas et al. (2006a), we
obtain

‖A−VrV
>
r A‖2 ≤ σr+1(A) +

√
2‖A2 − ρ−1

N A>inAin‖
1
2
2 . (C.1.2)

By Weyl’s inquality, we can bound σr+1(A) by

σr+1(A) ≤ σr+1(P) + ‖P−A‖2.

To derive a bound of the second term in (C.1.2), let [y1 · · ·yn] = N−
1
2 A>in and Z = N−

1
2 A.

By Markov’s inequality, we have a moment bound as follows

P(‖ρ−1
N A>inAin −A2‖2 > t)

= E[P(‖ρ−1
N A>inAin −A2‖2 > t | A)]

≤ t−1E[E[‖ρ−1
N A>inAin −A2‖2 | A]]

= t−1N2E
[
E
[∥∥∥∥n−1

n∑
i=1

yiy
>
i −N−1ZZ>

∥∥∥∥
2

> t

∣∣∣∣ Z]].
Hence, by Lemma 13,

P(‖ρ−1
N A>inAin −A2‖2 > t) ≤ t−1CNρ−1

N

√
n log n,

where C is a universal constant. Thus, ‖A2 − ρ−1
N A>inAin‖2 = Op(Nρ

−1
N

√
n log n), and

therefore

‖A−VrV
>
r AVrV

>
r ‖2 ≤ 2‖P−A‖2 + 2σr+1(P) +Op

(( N
ρN

) 1
2
(n log n)

1
4

)
≤ O(

√
d) + 2σr+1(P) +Op

(( N
ρN

) 1
2
(n log n)

1
4

)
. (C.1.3)
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For the last term in (C.1.1), we consider

‖VrV
>
r AVrV

>
r −VrV

>
r ASVrV

>
r ‖2 ≤ ‖P(I− S)‖2 + ‖P−A‖2.

By Theorem 1.8 in Rudelson and Vershynin (2007), we have

‖P(I− S)‖2 = O(‖P‖2(
√

1− ρN +
√

log(N − n))). (C.1.4)

The desired result follows by combining (C.1.3), (C.1.4), and the fact that ‖A − P‖2 =

O(
√
d).

82



BIBLIOGRAPHY

Abdallah, E., Hamza, A., and Bhattacharya, P. (2007). MPEG video watermarking using
tensor singular value decomposition. Image Analysis and Recognition, pages 772–783.

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership
stochastic blockmodels. The Journal of Machine Learning Research, 9:1981–2014.

Albert, R., DasGupta, B., and Mobasheri, N. (2014). Topological implications of negative
curvature for biological and social networks. Physical Review E, 89(3):32811.

Almquist, Z. W. (2012). Random errors in egocentric networks. Social Networks,
34(4):493–505.

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. (2013). A tensor spectral approach to
learning mixed membership community models. In Conference on Learning Theory,
pages 867–881.

Anandkumar, A., Ge, R., and Janzamin, M. (2014). Guaranteed non-orthogonal tensor
decomposition via alternating rank-1 updates. arXiv preprint arXiv:1402.5180.

Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for predicting protein-protein inter-
actions. Bioinformatics, 21 Suppl 1:i38–46.

Boyd, S. P. and Vandenberghe, L. (2009). Convex optimization. Cambridge university
press.

Burt, R. S. (1987). A note on missing network data in the general social survey. Social
Networks, 9(1):63–73.

Candès, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE.

Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772.

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix
completion. Information Theory, IEEE Transactions on, 56(5):2053–2080.

Cantador, I., Brusilovsky, P., and Kuflik, T. (2011). Second workshop on information
heterogeneity and fusion in recommender systems (HetRec2011). In RecSys, pages 387–
388.

83



Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multidimen-
sional scaling via an N-way generalization of “Eckart-Young” decomposition. Psy-
chometrika, 35(3):283–319.

Chapanond, A., Krishnamoorthy, M. S., and Yener, B. (2005). Graph theoretic and spectral
analysis of Enron email data. Computational and Mathematical Organization Theory,
11(2004):265–281.

Chatterjee, S. (2015). Matrix estimation by universal singular value thresholding. The
Annals of Statistics, 43(1):177–214.

Choi, D. S. and Wolfe, P. J. (2014). Co-clustering separately exchangeable network data.
The Annals of Statistics, 42(1):29–63.

Clauset, A., Moore, C., and Newman, M. E. J. (2008). Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191):98–101.

Davenport, M. A., Plan, Y., Berg, E. V. D., Wootters, M., van den Berg, E., and Wootters,
M. (2014). 1-bit matrix completion. Information and Inference, 3(3):189–223.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000). On the best rank-1 and rank-
(r 1, r 2,..., r n) approximation of higher-order tensors. SIAM Journal on Matrix Analysis
and Applications, 21(4):1324–1342.

Diehl, C. P., Namata, G., and Getoor, L. (2007). Relationship identification for social
network discovery. In AAAI, volume 22, pages 546–552.

Doppa, J. R., Yu, J., Tadepalli, P., and Getoor, L. (2009). Chance-constrained programs for
link prediction. In NIPS Workshop on Analyzing Networks and Learning with Graphs.

Drineas, P., Kannan, R., and Mahoney, M. (2006a). Fast Monte Carlo algorithms for matri-
ces II: Computing a low-rank approximation to a matrix. SIAM Journal on Computing,
36(1):158–183.

Drineas, P., Kannan, R., and Mahoney, M. (2006b). Fast Monte Carlo algorithms for ma-
trices III: Computing a compressed approximate matrix decomposition. SIAM Journal
on Computing, 36(1):184–206.

Drineas, P., Mahoney, M., and Muthukrishnan, S. (2008). Relative-error CUR matrix de-
compositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881.

Dror, G., Koenigstein, N., Koren, Y., and Weimer, M. (2012). The Yahoo! Music Dataset
and KDD-Cup’11. In KDD Cup, pages 8–18.

Duch, J. and Arenas, A. (2005). Community detection in complex networks using extremal
optimization. Physical Review E, 72(2):27104.

Durante, D. and Dunson, D. B. (2017). Locally adaptive dynamic networks. The Annals of
Applied Statistics, 10(4):2203–2232.

84



Fellows, I. and Handcock, M. S. (2012). Exponential-family random network models.
arXiv preprint arXiv:1208.0121.

Fosdick, B. K. and Hoff, P. D. (2015). Testing and modeling dependencies between
a network and nodal attributes. Journal of the American Statistical Association,
110(511):1047–1056.

Freeman, L. C. (1982). Centered graphs and the structure of ego networks. Mathematical
Social Sciences, 3(3):291–304.

Freeman, L. C., Webster, C. M., and Kirke, D. M. (1998). Exploring social structure using
dynamic three-dimensional color images. Social networks, 20(2):109–118.

Fu, W., Song, L., and Xing, E. E. P. (2009). Dynamic mixed membership blockmodel
for evolving networks. In Proceedings of the 26th annual international conference on
machine learning, pages 329–336. ACM.

Gandy, S., Recht, B., and Yamada, I. (2011). Tensor completion and low-n-rank tensor
recovery via convex optimization. Inverse Problems, 27(2):025010.

Gao, C., Vaart, A. W. V. D., and Zhou, H. H. (2015). A General Framework for Bayes
Structured Linear Models. arXiv preprint arXiv:1506.02174.

Hanneke, S., Fu, W., and Xing, E. P. (2010). Discrete temporal models of social networks.
Electronic Journal of Statistics, 4:585–605.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions
for an “explanatory” multi-modal factor analysis. In UCLA Working Papers in Phonetics,
volume 16, pages 1–84. University of California at Los Angeles Los Angeles, CA.

Hasan, M. A., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction using supervised
learning. In Workshop on Link Analysis, Counter-terrorism and Security (at SIAM Data
Mining Conference).

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30.

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American
Statistical Association, 100(469):286–295.

Hoff, P. D. (2007). Modeling homophily and stochastic equivalence in symmetric relational
data. Neural Information Processing Systems, pages 1–8.

Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of
social networks. Computational and Mathematical Organization Theory, 15(4):261–
272.

Hoff, P. D., Fosdick, B. K., Volfovsky, A., and Stovel, K. (2013). Likelihoods for fixed
rank nomination networks. Network Science, pages 253–277.

85



Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social
network analysis. Journal of the American Statistical Association, 97(460):1090–1098.

Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multiverse recom-
mendation: n-dimensional tensor factorization for context-aware collaborative filtering.
In Proceedings of the fourth ACM conference on Recommender systems, pages 79–86.
ACM.

Kashima, H., Kato, T., and Yamanishi, Y. (2009). Link propagation: A fast semi-supervised
learning algorithm for link prediction. In Proceedings of the 2009 SIAM Conference on
Data Mining.

Keila, P. S. and Skillicorn, D. B. (2005). Structure in the Enron email dataset. Computa-
tional and Mathematical Organization Theory, 11(3):183–199.

Keshavan, R., Montanari, A., and Oh, S. (2010). Matrix completion from noisy entries.
Journal of Machine Learning Research, 11(Jul):2057–2078.

Kim, M. and Leskovec, J. (2013). Nonparametric multi-group membership model for dy-
namic networks. In Advances in Neural Information Processing Systems, pages 1385–
1393.

Klimt, B. and Yang, Y. (2004). The enron corpus: A new dataset for email classification
research. In European Conference on Machine Learning, pages 217–226. Springer.
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