
Fast Data Analytics by Learning

by

Yongjoo Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Associate Professor Michael Cafarella, Co-Chair
Assistant Professor Barzan Mozafari, Co-Chair
Associate Professor Eytan Adar
Professor H. V. Jagadish
Associate Professor Carl Lagoze

Yongjoo Park

pyongjoo@umich.edu

ORCID iD: 0000-0003-3786-6214

c© Yongjoo Park 2017

To my mother

ii

Acknowledgements

I thank my co-advisors, Michael Cafarella and Barzan Mozafari. I am deeply grateful
that I could start my graduate studies with Mike Cafarella. Mike was the one of the
nicest persons I have met (I can say, throughout my life). He also deeply cared of my
personal life as well as my graduate study. He always encouraged and supported me
so I could make the best decisions for my life. He was certainly more than a simple
academic advisor. Mike also has excellent talents in presentation. His descriptions (on
any subject) are well-organized and straightforward. Sometimes, I find myself trying to
imitate his presentation styles when I give my own presentations, which, I believe, is
natural since I have been advised by him for more than five years now.

I started work with Barzan after a few years since I came to Michigan. He is excellent
in writing research papers and presenting work in the most interesting, formal, and
concise way. He devoted tremendous amount of time for me. I learned great amount of
writing and presentation skills from him. I am glad I will be his first PhD student, and
I hope he is glad about the fact as well. Now as I finish my long (and much fun) PhD
study, I deeply understand the importance of having good advisors, and I am sincerely
grateful that I was advised by Mike and Barzan. I always think my life has been full of
fortunes I cannot explain, and having them as my advisors was one of them.

I am sincerely grateful of my thesis committee members. Both Carl Lagoze and Eytan
Adar were kind enough to serve on my thesis committee, and they were supportive.
Eytan Adar gave detailed feedbacks on this dissertation, which helped me improve its
completeness greatly. H.V. Jagadish gave me wonderful advice on presentations and
writing. Even from my relatively short experience with him, I could immediately sense
that he is wise and is a great mentor.

My PhD study was greatly helped by the members of the database group at the
University of Michigan, Ann Arbor. Dolan Antenucci helped me setting up systems
and shared with me many interesting real-world datasets. Some of the results in this
dissertation are based on the datasets provided by him. I also had good discussions
with Mike Anderson, Shirley Zhe Chen, and Matthew Burgess. I regret that I did not
have more collaborations with the people at the database group.

iii

My graduate study was not possible without the financial support from Jeongsong
Cultural Foundation. When I first came to the United States as a Masters student (with-
out guaranteed funding), Jeongsong Cultural Foundation provided me with tuition sup-
port. I always thank it, and I am going to pay my debt to the society. Also, Kwanjeong
Educational Foundation supported me for my Phd studies. With its help, I could only
focus on my research without any financial concerns. I will be someone like them, who
can contribute to the society. My research is one part of such efforts, but I hope I can do
more.

Last, but most importantly, I deeply thank my parents and my sister who always
supported me and my study. I was fortunate enough to have my family. I have always
been a taker. I should mention my mother, my beloved mother, who devoted her entire
life to her children. My life has become better and better, over time. Now I do not have to
worry too much about paying phone bills or bus fees. Now I can easily afford Starbucks
coffee and commute by drive. But I want to go back, to the time, when I was young. I
miss my mother. I miss the time when I fell asleep by her, watching a late night movie
on television. I miss the food she made for me, I miss the conversations with her. I miss
her smile, and I miss that there always was a person in this world who would stand
and speak for me however bad things I did. I received the best education in the world
only due to her selfless and stupid amount of sacrifice. She only wanted her children
to receive the best support, have the most tasty food, and enjoy every thing other kids
would enjoy. Yet, she was foolish enough to never enjoy any such. To her, raising her
kids, me and my sister, was her only happiness, and she conducted the task better than
anyone. Both of her children grew up wonderfully. I conducted fine research during
my graduate studies, and I will continue to do so. My sister became a medical doctor. I
want to tell my mom that her life was worth more than any, and she should be proud of
herself.

iv

Contents

Dedication . ii

Acknowledgements . iii

List of Figures . ix

List of Tables . xiii

Abstract . xiv

Chapter

1 Introduction . 1
1.1 Data Analytics Tasks and Synopses Construction 3

1.1.1 Data Analytics Tasks . 3
1.1.2 Approaches to Building Synopses . 4

1.2 Overview and Contributions . 5
1.2.1 Exploiting Past Computations . 5
1.2.2 Task-Aware Synopses . 7
1.2.3 Summary of Results . 9

2 Background . 10
2.1 Techniques for Exact Data Analytics . 10

2.1.1 Horizontal Scaling . 10
2.1.2 Columnar Databases . 11
2.1.3 In-memory Databases . 11

2.2 Approaches for Approximate Query Processing 11
2.2.1 Random Sampling . 11
2.2.2 Random Projections . 13

v

Part I Exploiting Past Computations 14

3 Faster Data Aggregations by Learning from the Past 15
3.1 Motivation . 15
3.2 Verdict Overview . 19

3.2.1 Architecture and Workflow . 19
3.2.2 Supported Queries . 21
3.2.3 Internal Representation . 22
3.2.4 Why and When Verdict Offers Benefit 23
3.2.5 Limitations . 24

3.3 Inference . 24
3.3.1 Problem Statement . 25
3.3.2 Inference Overview . 26
3.3.3 Prior Belief . 27
3.3.4 Model-based Answer . 28
3.3.5 Key Challenges . 29

3.4 Estimating Query Statistics . 30
3.4.1 Covariance Decomposition . 31
3.4.2 Analytic Inter-tuple Covariances . 32

3.5 Verdict Process Summary . 33
3.6 Deployment Scenarios . 34
3.7 Formal Guarantees . 36
3.8 Parameter Learning . 38
3.9 Model Validation . 39
3.10 Generalization of Verdict under Data Additions 41
3.11 Experiments . 42

3.11.1 Experimental Setup . 43
3.11.2 Generality of Verdict . 45
3.11.3 Speedup and Error Reduction . 46
3.11.4 Confidence Interval Guarantees . 48
3.11.5 Memory and Computational Overhead 49
3.11.6 Impact of Data Distributions and Workload Characteristics 49
3.11.7 Accuracy of Parameter Learning . 52
3.11.8 Model Validation . 52
3.11.9 Data Append . 54
3.11.10 Verdict vs. Simple Answer Caching 55

vi

3.11.11 Error Reductions for Time-Bound AQP Engines 56
3.12 Prevalence of Inter-tuple Covariances in Real-World 57
3.13 Technical Details . 58

3.13.1 Double-integration of Exp Function 58
3.13.2 Handling Categorical Attributes . 58
3.13.3 Analytically Computed Parameter Values 59

3.14 Related Work . 60
3.15 Summary . 61

Part II Building Task-aware Synopses 63

4 Accurate Approximate Searching by Learning from Data 64
4.1 Motivation . 64
4.2 Hashing-based kNN Search . 68

4.2.1 Workflow . 68
4.2.2 Hash Function Design . 70

4.3 Neighbor-Sensitive Hashing . 71
4.3.1 Formal Verification of Our Claim . 72
4.3.2 Neighbor-Sensitive Transformation . 74
4.3.3 Our Proposed NST . 76
4.3.4 Our NSH Algorithm . 82

4.4 Experiments . 86
4.4.1 Setup . 87
4.4.2 Validating Our Main Claims . 89
4.4.3 Hashcode Length and Search Accuracy 91
4.4.4 Search Time and Search Accuracy . 92
4.4.5 Indexing Speed . 93
4.4.6 The Effect of Parameters on NSH . 94
4.4.7 Neighbor Sensitivity . 96

4.5 Related Work . 97
4.6 Summary . 98

5 High-quality Approximate Visualizations by Learning from Data 100
5.1 Motivation . 100
5.2 System Overview . 103

5.2.1 Software Architecture Model . 103

vii

5.2.2 Data Sampling . 104
5.2.3 Visualization Quality . 105
5.2.4 Our Approach . 106

5.3 Problem Formulation . 107
5.4 Solving VAS . 110

5.4.1 Hardness of VAS . 110
5.4.2 The Interchange Algorithm . 110

5.5 Extending VAS: Embedding Density . 114
5.6 Experiments . 115

5.6.1 Existing Systems are Slow . 116
5.6.2 User Success and Sample Quality . 117
5.6.3 VAS Uses a Smaller Sample . 122
5.6.4 Algorithmic Details . 123

5.7 Related Work . 126
5.8 Summary . 127

6 Conclusions and Future Work . 128
6.1 Lessons Learned . 128
6.2 Future Work . 129

6.2.1 Exploiting Past Computations for General SQL Processing 129
6.2.2 AQP on Any Databases . 130
6.2.3 Diverse Approximate Analytics . 131

Bibliography . 132

viii

List of Figures

1.1 Architecture of data analytics systems that rely on synopses for real-time
data analytics (left), and our contributions in this dissertation (right). In
this dissertation, we further speed up data analytics (i) by exploiting past
computations on top of existing synopses, and (ii) by building task-aware
synopses. 2

1.2 Two orthogonal aspects in building synopses. 4
1.3 Examples of models built after processing (a) 4 queries, and (b) 8 queries.

Processed queries are represented by gray boxes. These models can be
used to speed up future query processing. 6

1.4 An example that kNN-oriented hashing functions (on the right) can bring
higher search accuracy compared to using randomly generated hash func-
tions (on the left). 7

1.5 An example that visualization-aware sampling can bring higher quality
visualizations compared to visualizing randomly chosen data items. 8

1.6 Performance improvements achieved by our proposed techniques. 9

3.1 An example of how database learning might continuously refine its model
as more queries are processed: after processing (a) 2 queries, (b) 4 queries,
and (c) 8 queries. We could deliver more accurate answers if we com-
bined this model with the approximate answers produced by traditional
sampling techniques. 16

3.2 Workflow in Verdict. At query time, the Inference module uses the Query
Synopsis and the Model to improve the query answer and error computed
by the underlying AQP engine (i.e., raw answer/error) before returning
them to the user. Each time a query is processed, the raw answer and
error are added to the Query Synopsis. The Learning module uses this
updated Query Synopsis to refine the current Model accordingly. 19

3.3 Example of a query’s decomposition into multiple snippets. 22

ix

3.4 An example of (a) overly optimistic confidence intervals due to incorrect
estimation of the underlying distributon, and (b) its resolution with more
queries processed. Verdict relies on a model validation to avoid the situa-
tion as in (a). 40

3.5 The relationship (i) between runtime and error bounds (top row), and
(ii) between runtime and actual errors (bottom row), for both systems:
NoLearn and Verdict. 44

3.6 The comparison between Verdict’s error bound at 95% confidence and the
actual error distribution (5th, 50th, and 95th percentiles are reported for
actual error distributions). 48

3.7 The effectiveness of Verdict in reducing NoLearn’s error for different (a)
levels of diversity in the queried columns, (b) data distributions, and (c)
number of past queries observed. Figure (d) shows Verdict’s overhead for
different number of past queries. 50

3.8 Correlation Parameter Learning . 52
3.9 Effect of model validation. For Verdict’s error bounds to be correct, the

95th percentile should be below 1.0. One can find that, with Verdict’s
model validation, the improved answers and the improved errors were
probabilistically correct even when largely incorrect correlation parame-
ters were used. 53

3.10 Data append technique (section 3.10) is highly effective in delivering cor-
rect error estimates in face of new data. 54

3.11 (a) Comparison of Verdict and Baseline2 for different sample sizes used
by past queries and (b) comparison of Verdict and Baseline2 for different
ratios of novel queries in the workload. 55

3.12 Average error reduction by Verdict (compared to NoLearnTime) for the
same time budget. 56

3.13 Inter-tuple Covariances for 16 real-life UCI datasets. 57

4.1 In (a) and (b), the vertical arcs indicate the boundaries where the Hamming
distance from q increases by 1. The third figure (c) shows the relationship
between data items’ original distance and their expected Hamming distance. 67

4.2 The workflow in hashing-based search consists of two main components:
Hash Function and Hamming Search. Re-rank is an extra step to boost the
search accuracy. This chapter improves the most critical component of this
workflow, i.e., Hash Function. 69

x

4.3 The motivation behind using Neighbor-Sensitive Transformation (NST) be-
fore hashing: applying NST to data items makes the same hashing algo-
rithm place more separators between nearby items (v1 and v2), and place
fewer separators between distant items (v2 and v3). 71

4.4 Visual demonstration of NST properties. 75
4.5 The histogram of distances between queries q and their respective closest

pivots p divided by η (the parameter from Definition 7). 89
4.6 The effects of NST and NSH. Figure (a) shows that NST enlarges the dis-

tances among nearby data items. Figure (b) shows that NSH makes nearby
data items have larger Hamming distances compared to LSH. Figure (c)
shows that there are more separators (hence, a larger Hamming distance
gap) between pairs of data items when they are close to queries. Figure
(d) shows using a real dataset (MNIST) that NSH produces larger Hamming
distances between nearby data items compared to SH (a learning-based al-
gorithm) and LSH. 90

4.7 Hashcode length and recall improvements. The recall improvement is
computed as (NSH’s recall - competing method’s recall). 91

4.8 Search time and recall improvements. The recall improvement is com-
puted as (NSH’s recall - competing method’s recall). Time reduction is (com-
peting method’s search time - NSH’s search time) / (competing method’s search
time) ×100. 93

4.9 We study our method’s search performance by varying four important
parameters: (a) the pivot selection strategy, (b) the number of pivots, (c)
neighborhood parameter η, and (d) the data distribution. 95

4.10 kNN Accuracies with different values of k. 96

5.1 Samples generated by fined-grained stratified sampling and our approach
respectively. When the entire range is visualized, both methods seem to
offer the visualization of the same quality. However, when zoomed-in
views were requested, only our approach retained important structures of
the database. 101

5.2 The latency for generating scatter plot visualizations using Tableau and
MathGL (a library for scientific graphics). 102

5.3 Standard model of user interaction with the combined visualization and
database system. 103

5.4 Time to produce plots of various sizes using existing visualization systems. 116

xi

5.5 Example figures used in the user study for the regression task. We asked
the altitude of the location pointed by ‘X’. The left was generated by strat-
ified sampling and the right was generated by VAS. 117

5.6 An example figure used in the user study for the density estimation task.
This figure was generated using VAS with density embedding. The left-
hand image is the original figure. The right-hand image contains four test
markers, used to ask users to choose the densest area and the sparsest areas.118

5.7 The relationship between the loss and user performance on the regression
task. The samples with smaller losses resulted in better success ratios in
general in the regression task. 122

5.8 Relationship between visualization production time and error for the three
sampling methods. 123

5.9 Processing Time vs. Quality. The lower the objective, the higher the quality
is. The Interchange algorithm for VAS produces a high-quality visualization
in a relatively short period of time. The quality is improved incrementally
as more processing time is allowed. 124

5.10 Runtime comparison of different levels of optimizations. For this ex-
periment, we used the Geolife dataset. ES+Loc indicates that both Ex-
pand/Shrink (ES) operation and the locality of a proximity function were
used. 125

xii

List of Tables

1.1 Popular Data Analytics Tasks . 3
1.2 Dissertation Overview . 5

3.1 Terminology. 20
3.2 Mathematical Notations. 25
3.3 Generality of Verdict. Verdict supports a large fraction of real-world and

benchmark queries. 45
3.4 Speedup and error reductions by Verdict compared to NoLearn. 47
3.5 The runtime overhead of Verdict. 49

4.1 Dataset Summary. Three real and five synthetic datasets in order. For each
dataset, 1,000 data items were held out as queries. 86

4.2 Time requirement for hash function generation and database compression,
i.e., converting 79 million data items in a database to hashcodes. 94

4.3 Several Notable Hashing Algorithms. 98

5.1 User Performance in Three Tasks . 119
5.2 Loss and runtime comparison . 124

xiii

Abstract

Fast Data Analytics by Learning

by

Yongjoo Park

Chairs: Michael Cafarella and Barzan Mozafari

Today, we collect a large amount of data, and the volume of the data we collect is pro-
jected to grow faster than the growth of the computational power. This rapid growth of
data inevitably increases query latencies, and horizontal scaling alone is not sufficient
for real-time data analytics of big data. Approximate query processing (AQP) speeds
up data analytics at the cost of small quality losses in query answers. AQP produces
query answers based on synopses of the original data. The sizes of the synopses are
smaller than the original data; thus, AQP requires less computational efforts for produc-
ing query answers, thus can produce answers more quickly. In AQP, there is a general
tradeoff between query latencies and the quality of query answers; obtaining higher-
quality answers requires longer query latencies.

In this dissertation, we show we can speed up the approximate query processing without
reducing the quality of the query answers by optimizing the synopses using two approaches. The
two approaches we employ for optimizing the synopses are as follows:

1. Exploiting past computations: We exploit the answers to the past queries. This
approach relies on the fact that, if two aggregation involve common or correlated
values, the aggregated results must also be correlated. We formally capture this
idea using a probabilistic distribution function, which is then used to refine the
answers to new queries.

2. Building task-aware synopses: By optimizing synopses for a few common types of
data analytics, we can produce higher quality answers (or more quickly for certain
target quality) to those data analytics tasks. We use this approach for constructing
synopses optimized for searching and visualizations.

xiv

For exploiting past computations and building task-aware synopses, our work in-
corporates statistical inference and optimization techniques. The contributions in this
dissertation resulted in up to 20× speedups for real-world data analytics workloads.

xv

Chapter 1

Introduction

We collect huge amount of data. In 2015, one billion Facebook users generated 31 million
messages every minute. YouTube stores 300 hours of new videos every minute. Walmart
collects 40 petabytes of data a day. Boeing generates one terabyte of data for every
flight. The prevalence of portable 4K video recording devices, high-frequency sensors,
and dash cams accelerate this trend.

Analyzing data is crucial for business; and we want to analyze them quickly, in real-
time. Data-driven decision making brings 5%-6% higher productivity in 179 large pub-
licly traded firms [34]. However, slow query responses (longer than 500 milliseconds–
three seconds) in data analytics systems significantly reduce the productivity in data
exploration tasks and the amount of data we explore [114, 157].

The rapid growth in the volume of data makes real-time data analytics hard. An
analyst might be able to reduce query latencies by a factor of 100 by horizontal scal-
ing [159, 181, 182]. However, this simply means she has to spend as least 100 times as
much money as before for setting up the machines; also, achieving real-time data ana-
lytics by horizontal scaling is only possible when her spending increases faster than the
growth of data, which is not economic.

This phenomenon means essentially that, for providing real-time data analytics at
reasonable costs, we must reduce the amount of data we process. The popular approach
in the literature is answering queries using synopses, instead of the original raw data [10,
12,15,16,38,58,62,101,184]. Figure 1.1 depicts a general architecture of those systems. In
most cases, the synopses are constructed offline. When a query is issued, data analytics
systems answer the query only using the query synopses. Typically, the sizes of the
synopses are much smaller than the original data; thus, computing the query answers
using synopses is much faster.

1

Query Executor
We improve the quality

of data analytics by

Exploiting past computations
on top of synopses

Building
task-aware synopses

Synopses

Raw Data

Real-time analytics
using synopses

Prepare synopses offline

Figure 1.1: Architecture of data analytics systems that rely on synopses for real-time data
analytics (left), and our contributions in this dissertation (right). In this dissertation, we
further speed up data analytics (i) by exploiting past computations on top of existing
synopses, and (ii) by building task-aware synopses.

Note that the sizes of synopses have a direct impact on the quality of answers and the
query latencies. That is, if the sizes of query synopses are small, we can answer queries
fast; however, the quality of the answers will be low. On the other hand, if the sizes of
the query synopses are large, it takes longer to answer the same queries; however, the
quality of the answers will be high. This means there is an important tradeoff between
the query latency and the quality of the query answers. Often, data analytics systems
provide users with the options to place upper-bounds on query processing times or
lower-bounds on the quality of query answers. However, the tradeoff between the query
latency and the quality of the query answers remains the same.

In this dissertation, we show we can speed up the query processing without reducing
the quality of the query answers. We achieve this by improving the average quality of
query answers given the fixed space budget for the synopses. For improving the quality
of query answers, we employ two approaches. First, we exploit the past computations.
Exploiting past computations helps us avoid processing the same data repeatedly if a
new query involves common (or correlated) data as the ones processed in the past.
Second, we optimize synopses for specific tasks. Optimizing synopses for specific tasks help
data analytics systems bring higher quality answers when they process the same amount
of data.

We apply the first approach—exploiting the past computations—for faster data ag-
gregations, and apply the second approach—task-specific synopses—for faster data min-

2

ing and visualizations. In section 1.1, we provide the reason why we take those two
approaches for speeding up those three specific data analytics tasks. Figure 1.1 sum-
marizes key technical insights in applying our approaches to those three data analytics
tasks.

1.1 Data Analytics Tasks and Synopses Construction

In this section, we explore popular data analytics tasks and the possible approaches for
building synopses.

1.1.1 Data Analytics Tasks

To understand the popular big data analytics tasks commonly used/needed in the in-
dustry, we referred to the survey conducted in 2011 [147]. The survey was based on the
325 respondents who identified themselves as academics or vendor employees. Table 1.1
summarizes the data analytics tasks used in the organizations of those respondents.

Table 1.1: Popular Data Analytics Tasks

Task Subtasks

data visualization • real-time visualizations
• visualizations of diverse types

(e.g., hierarchies and neural nets)

data mining • text mining
• predictive analytics

data transformation • extracting a fact table
• transformation to structured data

OLAP • basic aggregations
• statistical analysis

complex event processing • stream data processing

In this dissertation, we focus on applying our two approaches—past computation
exploitation and task-aware synopses—for speeding up three fundamental subtasks. We
mark those three subtasks in bold in Table 1.1.

3

1.1.2 Approaches to Building Synopses

We identify two orthogonal aspects in building synopses: task-sensitivity and online/of-
fline synopses construction. The second aspect—online/offline synopses construction—
captures the relative computational costs spent before queries come (offline) to the com-
putational costs spent as processing queries (online). Using these two aspects, we cate-
gorize the two approaches we use in this dissertation. This analysis also suggests a new
opportunity.

Offline Online

Task-insensitive

Task-sensitive

Building task-aware synopses

Stratified sampling

Random sampling Exploiting past computations

Online refinement of task-aware synopses

new opportunities
approaches in this dissertation
previous approaches

Figure 1.2: Two orthogonal aspects in building synopses.

Figure 1.2 depicts the aspects of our approaches. Building task-aware synopses are
optimized for target data analytics tasks while its synopses constructions are fully offline
(i.e., before queries come). Exploiting past computations refine synopses online but it
does not necessarily optimize the underlying synopses for target tasks. In fact, the
approach of exploiting past computations should be able to combined with building
task-aware synopses. Although this dissertation does not include such an approach,
more advanced synopses in the future would combine both approaches so that they can
refine the synopses online in a task-aware manner. We mark this new opportunity in
blue in Figure 1.2.

4

1.2 Overview and Contributions

This dissertation is organized into two parts. In the first part, we present the methods
that reduce query latencies by exploiting the past computations. In the second part,
we present the methods that reduce query latencies by optimizing synopses for specific
tasks. Table 1.2 summarizes the motivations behind our techniques.

Table 1.2: Dissertation Overview

Part Motivation Chapter

Exploiting
past computations

Aggregation: The models we learn from the answers
to the past queries can be used to avoid computing
raw data for new queries.

3

Task-aware synopses Predictive analytics: kNN-aware hash functions
can be more efficient for nearest-neighbor problems
compared to randomly-generated hash functions.

Visualization: By selecting a subset of data
items that are optimal for visualization purposes, we
can produce higher-quality visualizations compared
to random samples.

4

5

Note that finding k-most similar items is the key algorithm for k-nearest neighbor
classifiers and collaborative filtering.

The contributions in this dissertation have also been presented at Computer Science
conferences and workshops, including the 2017 ACM SIGMOD conference [139], the
42nd International Conference on Very Large Data Bases 2016 [137], and the International
Conference on Data Engineering 2016 [138].

1.2.1 Exploiting Past Computations

Fast Aggregation by Learning form Past Query Answers

In today’s databases, previous query answers rarely benefit answering future queries.
We change this paradigm in an approximate query processing (AQP) context. We make
the following observation: the answer to each query reveals some degree of knowledge
about the answer to another query because their answers stem from the same underlying
distribution that has produced the entire dataset. Exploiting and refining this knowledge

5

1 20 40 60 80 100
20M

30M

40M

Week Number

SU
M

(c
ou

nt
)

(a) After 4 Queries

1 20 40 60 80 100
20M

30M

40M

Week Number

SU
M

(c
ou

nt
)

(b) After 8 Queries

Figure 1.3: Examples of models built after processing (a) 4 queries, and (b) 8 queries.
Processed queries are represented by gray boxes. These models can be used to speed up
future query processing.

should allow us to answer queries more analytically, rather than by reading enormous
amounts of raw data. Also, processing more queries should continuously enhance our
knowledge of the underlying distribution, and hence lead to increasingly faster response
times for future queries.

In Figure 3.1, we visualize this idea using a real-world Twitter dataset. Here, our
technique learns a model for the number of occurrences of certain word patterns (known
as n-grams, e.g., “bought a car”) in tweets. Figure 1.3(a) shows this model (in purple)
based on the answers to the first two queries asking about the number of occurrences of
these patterns, each over a different time range. Since the model is probabilistic, its 95%
confidence interval is also shown (the shaded area around the best current estimate). As
shown in Figure 1.3(b), DBL further refines its model as more new queries are answered.

We call this novel idea—learning from past query answers—Database Learning. We
exploit the principle of maximum entropy to produce answers, which are in expectation
guaranteed to be more accurate than existing sample-based approximations. Empow-
ered by this idea, we build a query engine on top of Spark SQL, called Verdict. We
conduct extensive experiments on real-world query traces from a large customer of a
major database vendor. Our results demonstrate that Verdict supports 73.7% of these
queries, speeding them up by up to 23.0× for the same accuracy level compared to
existing AQP systems

6

1.2.2 Task-Aware Synopses

Fast Searching by Neighbor-Sensitive Hashing

q v1 v2v3 v4 v5 v6 v7 v8

code:
0000

1000 1100 1110 1111h1 h2 h3 h4

0
distance from q

(a) Random Hash Functions

q v1 v2v3 v4 v5 v6 v7 v8

h1 h2 h3 h4

0
distance from q

(b) Our Hash Functions

Figure 1.4: An example that kNN-oriented hashing functions (on the right) can bring
higher search accuracy compared to using randomly generated hash functions (on the
left).

Approximate kNN (k-nearest neighbor) techniques using binary hash functions are
among the most commonly used approaches for overcoming the prohibitive cost of per-
forming exact kNN queries. However, the success of these techniques largely depends
on their hash functions’ ability to distinguish kNN items; that is, the kNN items retrieved
based on data items’ hashcodes, should include as many true kNN items as possible. A
widely-adopted principle for this process is to ensure that similar items are assigned to
the same hashcode so that the items with the hashcodes similar to a query’s hashcode
are likely to be true neighbors.

In this work, we abandon this heavily-utilized principle and pursue the opposite
direction for generating more effective hash functions for kNN tasks. That is, we aim to
increase the distance between similar items in the hashcode space, instead of reducing
it. We achieve this by placing more hash functions between close (neighbor) data items
as depicted in Figure 1.4, which makes those neighbor items more distinguishable based
on the hashcodes.

Our contribution begins by providing theoretical analysis on why this seemingly
counter-intuitive approach leads to a more accurate identification of kNN items. Our
analysis is followed by a proposal for a hashing algorithm that embeds this novel prin-
ciple. Our empirical studies confirm that a hashing algorithm based on this counter-
intuitive idea significantly improves the efficiency and accuracy of state-of-the-art tech-
niques.

7

Fast Visualization by Visualization-Aware Sampling

(a) Random Sample (b) Our Sample

Figure 1.5: An example that visualization-aware sampling can bring higher quality vi-
sualizations compared to visualizing randomly chosen data items.

Interactive visualizations are crucial in ad-hoc data exploration and analysis. How-
ever, with the growing number of massive datasets, generating visualizations in interac-
tive timescales is increasingly challenging. One approach for improving the speed of the
visualization tool is via data reduction. However, common data reduction techniques,
such as uniform and stratified sampling, do not exploit the fact that the sampled tuples
will be transformed into a visualization for human consumption.

We depict the issues of uniform random sampling in Figure 1.5(a). The figure visu-
alizes ten thousands data points. Since the sample is generated by sampling data points
with uniform probabilities, the sample tends to include more points from denser areas.
However, for the visualization purpose, because many data points overlap, they do not
provide good visualization quality.

In this work, we develop a visualization-aware sampling (VAS) for high quality vi-
sualizations. The key to our sampling method’s success is in choosing a set of tuples
that minimizes a visualization-inspired loss function. Our user study confirms that our
proposed loss function correlates strongly with user success in using the resulting vi-
sualizations. As depicted in Figure 1.5(b), the sample by VAS brings a higher-quality
visualization. Our experiments show that (i) VAS indeed improves user’s success by up
to 35% in various visualization tasks, and (ii) VAS can achieve a required visualization
quality up to 400× faster.

8

1.2.3 Summary of Results

Baseline Verdict
0

10

20

30

La
te

nc
y

(s
ec

)

(a) Verdict

Baseline NSH
0

50

100

150

200

La
te

nc
y

(s
ec

)
(b) NSH

Baseline VAS
0

50

100

150

200

La
te

nc
y

(s
ec

)

(c) VAS

Figure 1.6: Performance improvements achieved by our proposed techniques.

In this section, we summarize the query speedup (or latency reductions) achieved
by each of our techniques presented in this dissertation. More details on our empirical
studies are described in the main body of this dissertation.

First, we report the speedup by Verdict, the approximate query processing system
that exploits a model built on the answers to past queries for speeding on future query
processing. Figure 1.6(a) compares two systems’ query latencies, where the two systems
are an existing approximate query processing system and the Verdict system imple-
mented on top of the existing approximate query processing system. When the target
error bound was 4%, Verdict could return query answers 9.3× faster on average.

Second, we report the speedup by NSH, the approximate searching technique that
rely on hash functions specifically generated for kNN tasks. Figure 1.6(b) compares the
two methods’ query latencies, where the two systems are locality-sensitive hashing (a
popular hashing-based kNN method) and our method (NSH). When the target recall
40%, NSH could finish searching 6.24× faster on average.

Third, we report the speedup by VAS, a sampling algorithm for approximate visual-
izations; the algorithm chooses a subset of data that maximizes the visualization quality.
Figure 1.6(b) compares the two methods’ query latencies, where the two methods are
uniform random sampling and VAS. For a certain target visualization quality metric,
VAS could use a much smaller sample compared to uniform random sampling, which
resulted in 20× speedups on average.

9

Chapter 2

Background

In this chapter, we briefly review modern techniques for large-scale data analytics sys-
tems. In the first section, we present several techniques developed for exact large-scale
data analytics. This first section shows that those techniques are orthogonal to approx-
imate query processing (AQP). In the second section, we introduce existing techniques
for AQP. This second section also discusses several issues in those existing techniques.

2.1 Techniques for Exact Data Analytics

We present three techniques for speeding up large-scale data analytics: horizontal scal-
ing, columnar databases, and in-memory databases. Note that these techniques are not
exclusive one another. Thus, a system can employ all those three techniques. In con-
trast to AQP, these techniques do not involve approximations for speeding up query
processing.

2.1.1 Horizontal Scaling

Apache Hadoop [2] and Apache Spark [5] aim to provide linear scalability through the
“embarrassingly parallel” map-reduce operations. Conceptually, the map operations
transform each item in a list to another form, and the reduce operations aggregate those
transformed items. High scalability is achieved by enforcing those map and reduce
operations not to share any global states; thus, there does not exist any locks that impede
concurrent executions.

Recently, systems that provide convenient SQL interface have been developed on top
of those highly scalable systems. The examples include Apache Hive [3], Spark SQL,
and Apache Impala (incubating) [4]. AQP systems can also be implemented on top of

10

those horizontally scalable systems; thus, the advances in horizontally scalable systems
also benefit AQP.

2.1.2 Columnar Databases

Many conventional relational database systems store data row by row. However, as in-
terests on data analytics increase, column-oriented storage layouts appeared. Database
systems with columnar layouts provide faster processing of analytic workloads by read-
ing only necessary columns [91, 143] Also, columnar format can achieve good compres-
sion [105]. Performing data analytics operations directly on compressed data can also
reduce I/O costs. AQP systems can also employ columnar format.

2.1.3 In-memory Databases

Keeping the entire data in memory brings faster accesses and real-time analytics. Many
commercial database vendors introduced in-memory database processing to support
large-scale applications [53, 87, 94, 133, 156, 183, 183]. In practice, however, storing the
entire data in-memory can be extremely costly. Also, achieving real-time query latency
requires a cluster that consists of many number of workers, which also increases the
overall costs. AQP can greatly reduce the cost for in-memory databases, since the sizes
of samples are much smaller than the original data; thus, they can more easily fit in
memory.

2.2 Approaches for Approximate Query Processing

In this section, we review two approaches for AQP: random sampling and random pro-
jections. Random sampling reduces the number of the data items by obtaining a sample
of the original data. In contrast, random projections converts the data into special repre-
sentations so that data analytics systems can exploit some properties of the new repre-
sentations. Both approaches lose information in the sampling or projection process; as a
result, answering queries using those samples or based on new representations produce
approximate answers.

2.2.1 Random Sampling

Using a sample of an original data is a popular approach for estimating the results of
aggregations and for visualizing large-scale datasets. Processing the reduced amount of

11

data (in a sample) can bring significant speedups when the sample size is much smaller
than the size of the original data.

For aggregations, the quality of approximate answers only relies on the sample size, not
the ratio between the sample size and the original dataset size. This makes the sampling-
based AQP much appealing since the quality of approximate answers do not increase
even if the size of the original dataset increases. In other words, AQP can still produce
high-quality answers (within the same time-bounds) even if the size of the original data
grows.

Uniform Random Sampling— The most basic technique for random sampling is uni-
form random sampling. Suppose there exists N numeric values in the original data.
Uniform random sampling obtains a sample (say, n values out of those N values) by
sampling values uniformly at random from the original dataset. The sample size n is de-
termined by the data analytics systems considering requested query latencies and error
bounds.

According to the central limit theorem, a sample mean follows a normal distribu-
tion with its mean being equal to the population mean and its variance being equal to
the population variance divided by the sample size n. Thus, as the sample size (i.e.,
n) increases, the shape of normal distribution becomes narrower being centered at the
population mean. As a result, the sample mean becomes more accurate.

Based on this result of the central limit theorem, the range within which the popu-
lation mean will exist with high probability can also be inferred. Many AQP systems
rely on this property to estimate the population mean and its confidence intervals. The
central limit theorem can also be applied for estimating other population statistics, such
as the sum of the values in the original data, the fraction of the items that satisfy certain
conditions, etc. Relying on those results, AQP systems can approximately answer other
aggregate functions, such as sum, count, etc., based on a uniform random sample.

One issue of the uniform random sampling is that rare subpopulations are likely to
be under-represented in a sample. This causes an issue when the user wants to analyze
rare subpopulations.

Stratified Sampling— Stratified sampling divides the original data into multiple strata
and performs independent uniform random sampling within each stratum. Thus, strat-
ified sampling prevents a certain group (i.e., stratum) from being under-represented,
which was an issue of the uniform random sampling. Stratified sampling is useful when
the rare subpopulations the user wants to analyze coincides with one of those strata
based on which the stratified sampling is performed.

12

Stratified sampling does not completely address the issue of uniform random sam-
pling, since within each stratum, still uniform random sampling is performed. There-
fore, the issue of uniform random sampling may still exist within each stratum.

2.2.2 Random Projections

Let each of original data items be represented by a multidimensional vector whose el-
ements are real-values. Random projections transform those multidimensional vectors
into their respective bit vectors (of a certain predetermined length). The bit vectors ap-
proximately preserve the relationships among the original data items, such as Euclidean
distance or inner projects. As a result, some data analytics tasks that rely on the dis-
tances among the data items, e.g., retrieving similar items to a given query item, can
be performed based on the transformed representations. Since the random projections
preserve the relationship among the original data items only approximately, the data ana-
lytics tasks performed based on those transformed representations are also approximate.

Retrieving similar items to a given query item can be much faster when performed
based on the transformed bit vectors. This is because those bit vectors can easily be
stored in a hash table, and the items that have the similar bit vectors to the query item
can be then retrieved using lookup operations in the hash table. Here, the similarity
between two bit vectors is measured by counting the number of the positions that con-
tain different bits between those two bit vectors. One can understand this process of
transforming original data items into bit vectors and storing them in a hash table as
the process of assigning the data items into buckets; the assignment process tends to
preserve the distances among the data items.

In general, random projections may not be an optimal choice for two reasons. First,
random projections do not consider density of data items. For instance, there could
exist some clusters within which many data items are located. Random projections that
do not consider such data distributions cannot effectively distinguish the data items
that belong to the same cluster. Second, random projections do not consider target
data analytics tasks. For instance, random projections can be used whether the user is
interested in retrieving only a small number of similar items or the user is interested
in approximately sorting all data items according to the distance from a query item.
This generality brings inefficiency when the user is only interested in a small number of
similar items.

13

Part I
Exploiting Past Computations

14

Chapter 3

Faster Data Aggregations by Learning from
the Past

This dissertation presents two approaches—exploiting past computations and build-
ing task-aware synopses—for improving the quality of approximate query processing
(AQP). In this chapter, we present a technique that exploits past computations for higher-
quality AQP. This technique speeds up approximate aggregations when target error
bounds are fixed.

3.1 Motivation

In today’s databases, the answer to a previous query is rarely used for speeding up new
queries. Besides a few limited benefits (see Previous Approaches below), the work (both
I/O and computation) performed for answering past queries is often wasted afterwards.
However, in an approximate query processing context (e.g., [15, 38, 68, 71, 144, 185]), one
might be able to change this paradigm and reuse much of the previous work done by
the database system based on the following observation:

The answer to each query reveals some fuzzy knowledge about the answers to other
queries, even if each query accesses a different subset of tuples and columns.

This is because the answers to different queries stem from the same (unknown) un-
derlying distribution that has generated the entire dataset. In other words, each answer
reveals a piece of information about this underlying but unknown distribution. Note
that having a concise statistical model of the underlying data can have significant per-
formance benefits. In the ideal case, if we had access to an incredibly precise model of
the underlying data, we would no longer have to access the data itself. In other words,

15

1 20 40 60 80 100
20M

30M

40M

Week Number

SU
M

(c
ou

nt
)

True data
Ranges observed by past queries
Model (with 95% confidence interval)

(a) After 2 Queries

1 20 40 60 80 100
20M

30M

40M

Week Number

SU
M

(c
ou

nt
)

(b) After 4 Queries

1 20 40 60 80 100
20M

30M

40M

Week Number

SU
M

(c
ou

nt
)

(c) After 8 Queries

Figure 3.1: An example of how database learning might continuously refine its model
as more queries are processed: after processing (a) 2 queries, (b) 4 queries, and (c) 8
queries. We could deliver more accurate answers if we combined this model with the
approximate answers produced by traditional sampling techniques.

we could answer queries more efficiently by analytically evaluating them on our concise
model, which would mean reading and manipulating a few kilobytes of model param-
eters rather than terabytes of raw data. While we may never have a perfect model in
practice, even an imperfect model can be quite useful. Instead of using the entire data
(or even a large sample of it), one can use a small sample of it to quickly produce a rough

16

approximate answer, which can then be calibrated and combined with the model to ob-
tain a more accurate approximate answer to the query. The more precise our model, the
less need for actual data, the smaller our sample, and consequently, the faster our re-
sponse time. In particular, if we could somehow continuously improve our model—say,
by learning a bit of information from every query and its answer—we should be able to
answer new queries using increasingly smaller portions of data, i.e., become smarter
and faster as we process more queries.

We call the above goal Database Learning (DBL), as it is reminiscent of the inferential
goal of Machine Leaning (ML) whereby past observations are used to improve future
predictions [35, 36, 150]. Likewise, our goal in DBL is to enable a similar principle by
learning from past observations, but in a query processing setting. Specifically, in
DBL, we plan to treat approximate answers to past queries as observations, and use
them to refine our posterior knowledge of the underlying data, which in turn can be
used to speed up future queries.

In Figure 3.1, we visualize this idea using a real-world Twitter dataset [17, 19]. Here,
DBL learns a model for the number of occurrences of certain word patterns (known as
n-grams, e.g., “bought a car”) in tweets. Figure 3.1(a) shows this model (in purple) based
on the answers to the first two queries asking about the number of occurrences of these
patterns, each over a different time range. Since the model is probabilistic, its 95% con-
fidence interval is also shown (the shaded area around the best current estimate). As
shown in Figure 3.1(b) and Figure 3.1(c), DBL further refines its model as more new
queries are answered. This approach would allow a DBL-enabled query engine to pro-
vide increasingly more accurate estimates, even for those ranges that have never been accessed
by previous queries—this is possible because DBL finds the most likely model of the entire
area that fits with the past query answers. The goal of this simplified example1 is to
illustrate the possibility of (i) significantly faster response times by processing smaller
samples of the data for the same answer quality, or (ii) increasingly more accurate an-
swers for the same sample size and response time.

Challenges— To realize DBL’s vision in practice, three key challenges must be overcome.
First, there is a query generality challenge. DBL must be able to transform a wide class of
SQL queries into appropriate mathematical representations so that they can be fed into
statistical models and used for improving the accuracies of new queries. Second, there
is a data generality challenge. To support arbitrary datasets, DBL must not make any

1In general, DBL does not make any a prior assumptions regarding correlations (or smoothness) in the
data; any correlations present in the data will be naturally revealed through analyzing the answers to past
queries, in which case DBL automatically identifies and makes use of them.

17

assumptions about the data distribution; the only valid knowledge must come from past
queries and their respective answers. Finally, there is an efficiency challenge. DBL needs
to strike a balance between the computational complexity of its inference and its ability
to reduce the error of query answers. In other words, DBL needs to be both effective and
practical.

Our Approach— Our vision of database learning (DBL) [125] might be achieved in
different ways depending on the design decisions made in terms of query generality,
data generality, and efficiency. In this chapter, we present our prototype system that
solves those challenges for a certain class of analytic SQL queries; we call the system
Verdict.

From a high-level, Verdict addresses the three challenges—query generality, data gen-
erality, and efficiency—as follows. First, Verdict supports SQL queries by decomposing
them into simpler atomic units, called snippets. The answer to a snippet is a single scalar
value; thus, our belief on the answer to each snippet can be expressed as a random
variable, which can then be used in our mathematical model. Second, to achieve data
generality, Verdict employs a non-parametric probabilistic model, which is capable of rep-
resenting arbitrary underlying distributions. This model is based on a simple intuition:
when two queries share some tuples in their aggregations, their answers must be correlated. Our
probabilistic model is a formal generalization of this idea using the principle of maximum
entropy [162]. Third, to ensure computational efficiency, we keep our probabilistic model
in an analytic form. At query time, we only require a matrix-vector multiplication; thus,
the overhead is negligible.

Contributions— This chapter presents the following contributions:
1. We introduce the novel concept of database learning (DBL). By learning from past query

answers, DBL allows DBMS to continuously become smarter and faster at answering
new queries.

2. We provide a concrete instantiation of DBL, called Verdict. Verdict’s strategies cover
63.6% of TPC-H queries and 73.7% of a real-world query trace from a leading vendor
of analytical DBMS. Formally, we also prove that Verdict’s expected errors are never
larger than those of existing AQP techniques.

3. We integrate Verdict on top of Spark SQL, and conduct experiments using both bench-
mark and real-world query traces. Verdict delivers up to 23× speedup and 90% error
reduction compared to AQP engines that do not use DBL.
The rest of this chapter is organized as follows. Section 4.2 overviews Verdict’s work-

flow, supported query types, and internal query representations. Sections 3.3 and 3.4
describe the internals of Verdict in detail, and section 3.7 presents Verdict’s formal guar-

18

Runtime query processing

Post-query
processing

SQL query

AQP
Engine

(raw ans, raw err)

Inference

(improved ans, improved err)

Query
Synopsis

Model Learning

Runtime dataflow

Post-query dataflow

Figure 3.2: Workflow in Verdict. At query time, the Inference module uses the Query
Synopsis and the Model to improve the query answer and error computed by the under-
lying AQP engine (i.e., raw answer/error) before returning them to the user. Each time
a query is processed, the raw answer and error are added to the Query Synopsis. The
Learning module uses this updated Query Synopsis to refine the current Model accord-
ingly.

antees. Section 3.5 summarizes Verdict’s online and offline processes, and Section 3.6
discusses Verdict’s deployment scenarios. section 5.6 reports our empirical results. Sec-
tion 4.5 discusses related work, and section 5.8 concludes the chapter with future work.

3.2 Verdict Overview

In this section, we overview the system we have built based on DBL, called Verdict. Sec-
tion 3.2.1 explains Verdict’s architecture and overall workflow. Section 3.2.2 presents the
class of SQL queries currently supported by Verdict. Section 3.2.3 introduces Verdict’s
query representation. Section 3.2.4 describes the intuition behind Verdict’s inference.
Lastly, section 3.2.5 discusses the limitations of Verdict’s approach.

3.2.1 Architecture and Workflow

Verdict consists of a query synopsis, a model, and three processing modules: an inference
module, a learning module, and an off-the-shelf AQP engine. Figure 3.2 depicts the connec-
tion between these components.

19

Term Definition
raw answer answer computed by the AQP engine
raw error expected error for raw answer
improved answer answer updated by Verdict
improved error expected error for improved answer (by Verdict)
past snippet supported query snippet processed in the past
new snippet incoming query snippeet

Table 3.1: Terminology.

We begin by defining query snippets, which serve as the basic units of inference in
Verdict.

Definition 1. (Query Snippet) A query snippet is a supported SQL query whose answer
is a single scalar value, where supported queries are formally defined in section 3.2.2.

Section 3.2.3 describes how a supported query (whose answer may be a set) is de-
composed into possibly multiple query snippets. For simplicity, and without loss of
generality, here we assume that every incoming query is a query snippet.

For the i-th query snippet qi, the AQP engine’s answer includes a pair of an approxi-
mate answer θ̃i and a corresponding expected error βi. θ̃i and βi are formally defined in
section 3.3.1, and are produced by most AQP systems [15, 68, 134, 184, 185, 187]. Now we
can formally define the first key component of our system, the query synopsis.

Definition 2. (Query Synopsis) Let n be the number of query snippets processed thus far
by the AQP engine. The query synopsis Qn is defined as the following set: {(qi, θ̃i, βi) |
i = 1, . . . , n}.

We call the query snippets in the query synopsis past snippets, and call the (n + 1)-th
query snippet the new snippet.

The second key component is the model, which represents Verdict’s statistical under-
standing of the underlying data. The model is trained on the query synopsis, and is
updated every time a query is added to the synopsis (section 3.4).

The query-time workflow of Verdict is as follows. Given an incoming query snip-
pet qn+1, Verdict invokes the AQP engine to compute a raw answer θ̃n+1 and a raw
error βn+1. Then, Verdict combines this raw answer/error and the previously com-
puted model to infer an improved answer θ̂n+1 and an associated expected error β̂n+1,
called improved error. Theorem 3.1 shows that the improved error is never larger than
the raw error. After returning the improved answer and the improved error to the user,
(qn+1, θ̃n+1, βn+1) is added to the query synopsis.

20

A key objective in Verdict’s design is to treat the underlying AQP engine as a black
box. This allows Verdict to be used with many of the existing engines without requiring
any modifications. From the user’s perspective, the benefit of using Verdict (compared
to using the AQP engine alone) is the error reduction and speedup, or only the error
reduction, depending on the type of AQP engine used (section 3.6).

Lastly, Verdict does not modify non-aggregate expressions or unsupported queries,
i.e., it simply returns their raw answers/errors to the user. Table 3.1 summarizes the
terminology defined above. In section 3.3, we will recap the mathematical notations
defined above.

3.2.2 Supported Queries

Verdict supports aggregate queries that are flat (i.e., no derived tables or sub-queries)
with the following conditions:
1. Aggregates. Any number of SUM, COUNT, or AVG aggregates can appear in the select

clause. The arguments to these aggregates can also be a derived attribute.
2. Joins. Verdict supports foreign-key joins between a fact table2 and any number of di-

mension tables, exploiting the fact that this type of join does not introduce a sampling
bias [11]. For simplicity, our discussion in this chapter is based on a denormalized
table.

3. Selections. Verdict currently supports equality and inequality comparisons for cat-
egorical and numeric attributes (including the in operator). Currently, Verdict does
not support disjunctions and textual filters (e.g., like ’%Apple%’) in the where clause.

4. Grouping. groupby clauses are supported for both stored and derived attributes. The
query may also include a having clause. Note that the underlying AQP engine may
affect the cardinality of the result set depending on the having clause (e.g., subset/-
superset error). Verdict simply operates on the result set returned by the AQP engine.

Nested Query Support— Although Verdict does not directly support nested queries,
many queries can be flattened using joins [1] or by creating intermediate views for sub-
queries [65]. In fact, this is the process used by Hive for supporting the nested queries
of the TPC-H benchmark [82]. We are currently working to automatically process nested
queries and to expand the class of supported queries (see section 5.8).

Unsupported Queries— Each query, upon its arrival, is inspected by Verdict’s query
type checker to determine whether it is supported, and if not, Verdict bypasses the

2Data warehouses typically record measurements (e.g., sales) into fact tables and normalize commonly
appearing attributes (e.g., seller information) into dimension tables [161].

21

select A1, AVG(A2), SUM(A3)
from r
where A2 > a2
group by A1;

select AVG(A2)
from r
where A2 > a2
and A1 = a11;

select SUM(A3)
from r
where A2 > a2
and A1 = a11;

select AVG(A2)
from r
where A2 > a2
and A1 = a12;

select SUM(A3)
from r
where A2 > a2
and A1 = a12;

gr
ou

pb
y

va
lu

e
a1

2
a1

1
AVG(A2) SUM(A3)

aggregate function

Query

Snippets

decompose

Figure 3.3: Example of a query’s decomposition into multiple snippets.

Inference module and simply returns the raw answer to the user. The overhead of
the query type checker is negligible (section 3.11.5) compared to the runtime of the AQP
engine; thus, Verdict does not incur any noticeable runtime overhead, even when a query
is not supported.

Only supported queries are stored in Verdict’s query synopsis and used to improve
the accuracy of answers to future supported queries. That is, the class of queries that
can be improved is equivalent to the class of queries that can be used to improve other
queries.

3.2.3 Internal Representation

Decomposing Queries into Snippets— As mentioned in section 3.2.1, each supported
query is broken into (possibly) multiple query snippets before being added to the query
synopsis. Conceptually, each snippet corresponds to a supported SQL query with a
single aggregate function, with no other projected columns in its select clause, and
with no groupby clause; thus, the answer to each snippet is a single scalar value. A SQL
query with multiple aggregate functions (e.g., AVG(A2), SUM(A3)) or a groupby clause is
converted to a set of multiple snippets for all combinations of each aggregate function
and each groupby column value. As shown in the example of Figure 3.3, each groupby

column value is added as an equality predicate in the where clause. The number of
generated snippets can be extremely large, e.g., if a groupby clause includes a primary
key. To ensure that the number of snippets added per each query is bounded, Verdict
only generates snippets for Nmax (1,000 by default) groups in the answer set. Verdict
computes improved answers only for those snippets in order to bound the computational

22

overhead.3 For each aggregate function g, the query synopsis retains a maximum of Cg

query snippets by following a least recently used snippet replacement policy (by default,
Cg=2, 000). This improves the efficiency of the inference process, while maintaining an
accurate model based on the recently processed snippet answers.

Aggregate Computation— Verdict uses two aggregate functions to perform its internal
computations: AVG(Ak) and FREQ(*). As stated earlier, the attribute Ak can be either a
stored attribute (e.g., revenue) or a derived one (e.g., revenue * discount). At runtime,
Verdict combines these two types of aggregates to compute its supported aggregate
functions as follows:
• AVG(Ak) = AVG(Ak)

• COUNT(*) = round(FREQ(*) × (table cardinality))
• SUM(Ak) = AVG(Ak) × COUNT(*)

3.2.4 Why and When Verdict Offers Benefit

In this section, we provide the high level intuition behind Verdict’s approach to improv-
ing the quality of new snippet answers. Verdict exploits potential correlations between
snippet answers to infer the answer of a new snippet. Let Si and Sj be multisets of at-
tribute values such that, when aggregated, they output exact answers to queries qi and
qj, respectively. Then, the answers to qi and qj are correlated, if:

1. Si and Sj include common values. Si ∩ Sj 6= φ implies the existence of correlation
between the two snippet answers. For instance, the average household income of the
state of Texas and the average household income of the United States are correlated, since
these averages include some common values when computing those averages (here, the
household incomes of Texas). In the TPC-H benchmark, 12 out of the 14 supported
queries share common values in their aggregations.

2. Si and Sj include correlated values. For instance, the average prices of a stock over
two consecutive days are likely to be similar even if they do not share common values.
When the compared days are farther apart, the similarity in their average stock prices
might be lower. Verdict captures the likelihood of such attribute value similarities us-
ing a statistical measure called inter-tuple covariance, which will be formally defined in
section 3.4.2. In the presence of non-zero inter-tuple covariances, the answers to qi and
qj could be correlated even when Si ∩ Sj 6= φ. In practice, most real-life datasets tend

3Dynamically adjusting the value of Nmax (e.g., based on available resources and workload character-
istics) makes an interesting direction for future work.

23

to have non-zero inter-tuple covariances, i.e., correlated attribute values (see section 3.12
for an empirical study). Note that this case includes the first case (in which Si and Sj

include common values), since the common values are always correlated in themselves.

Verdict formally captures the correlations between pairs of snippets using a proba-
bilistic distribution function. At query time, this probabilistic distribution function is
used to infer the most likely answer to the new snippet given the answers to past snip-
pets.

3.2.5 Limitations

Verdict’s model is the most likely explanation of the underlying distribution given the
limited information stored in the query synopsis. Consequently, when a new snippet in-
volves tuples that have never been accessed by past snippets, it is possible that Verdict’s
model might incorrectly represent the underlying distribution, and return incorrect er-
ror bounds. To guard against this limitation, Verdict always validates its model-based
answer against the (model-free) answer of the AQP engine. We present this model vali-
dation step in section 3.9.

Because Verdict relies on off-the-shelf AQP engines for obtaining raw answers and
raw errors, it is naturally bound by the limitations of the underlying engine. For exam-
ple, it is known that sample-based engines are not apt at supporting arbitrary joins or
MIN/MAX aggregates. Similarly, the validity of Verdict’s error guarantees are contingent
upon the validity of the AQP engine’s raw errors. Fortunately, there are also off-the-shelf
diagnostic techniques to verify the validity of such errors [14].

3.3 Inference

In this section, we describe Verdict’s inference process for computing an improved an-
swer (and improved error) for the new snippet. Verdict’s inference process follows the
standard machine learning arguments: we can understand in part the true distribution
by means of observations, then we apply our understanding to predicting the unob-
served. To this end, Verdict applies well-established techniques, such as the principle of
maximum entropy and kernel-based estimations, to an AQP setting.

To present our approach, we first formally state our problem in section 3.3.1. A
mathematical interpretation of the problem and the overview on Verdict’s approach is
described in section 3.3.2. Sections 3.3.3 and 3.3.4 present the details of the Verdict’s

24

Sym. Meaning
qi i-th (supported) query snippet
n + 1 index number for a new snippet
θi random variable representing our knowledge of the raw answer to qi

θ̃i (actual) raw answer computed by AQP engine for qi

βi expected error associated with θ̃i

θ̄i random variable representing our knowledge of the exact answer to qi

θ̄i exact answer to qi

θ̂n+1 improved answer to the new snippet

β̂n+1 improved error to the new snippet

Table 3.2: Mathematical Notations.

approach to solving the problem. Section 3.3.5 discusses some challenges in applying
Verdict’s approach.

3.3.1 Problem Statement

Let r be a relation drawn from some unknown underlying distribution. r can be a
join or Cartesian product of multiple tables. Let r’s attributes be A1, . . . , Am, where
A1, . . . , Al are the dimension attributes and Al+1, . . . , Am are the measure attributes. Dimen-
sion attributes cannot appear inside aggregate functions while measure attributes can.
Dimension attributes can be numeric or categorical, but measure attributes are numeric.
Measure attributes can also be derived attributes. Table 3.2 summarizes the notations we
defined earlier in section 3.2.1.

Given a query snippet qi on r, an AQP engine returns a raw answer θ̃i along with an
associated expected error βi. Formally, β2

i is the expectation of the squared deviation of
θ̃i from the (unknown) exact answer θ̄i to qi.4 βi and β j are independent if i 6= j.

Suppose n query snippets have been processed, and therefore the query synopsis Qn

contains the raw answers and raw errors for the past n query snippets. Without loss
of generality, we assume all queries have the same aggregate function g on Ak (e.g.,
AVG(Ak)), where Ak is one of the measure attributes. Our problem is then stated as
follows: given Qn and (θ̃n+1, βn+1), compute the most likely answer to qn+1 with an associated
expected error.

In our discussion, for simplicity, we assume static data, i.e., the new snippet is issued
against the same data that has been used for answering past snippets in Qn. However,
Verdict can also be extended to situations where the relations are subject to new data

4Here, the expectation is made over θ̃i since the value of θ̃i depends on samples.

25

being added, i.e., each snippet is answered against a potentially different version of the
dataset. The generalization of Verdict under data updates is presented in section 3.10.

3.3.2 Inference Overview

In this section, we present our random variable interpretation of query answers and a
high-level overview of Verdict’s inference process.

Our approach uses (probabilistic) random variables to represent our knowledge of the
query answers. The use of random variables here is a natural choice as our knowledge
itself of the query answers is uncertain. Using random variables to represent degrees of
belief is a standard approach in Beyesian inference. Specifically, we denote our knowl-
edge of the raw answer and the exact answer to the i-th query snippet by random vari-
ables θi and θ̄i, respectively. At this step, the only information available to us regarding
θi and θ̄i is that θi is an instance of θi; no other assumptions are made.

Next, we represent the relationship between the set of random variables θ1, . . . ,θn+1,
θ̄n+1 using a joint probability distribution function (pdf). Note that the first n+ 1 random
variables are for the raw answers to past n snippets and the new snippet, and the last
random variable is for the exact answer to the new snippet. We are interested in the
relationship among those random variables because our knowledge of the query answers
is based on limited information: the raw answers computed by the AQP engine, whereas
we aim to find the most likely value for the new snippet’s exact answer. This joint pdf
represents Verdict’s prior belief over the query answers. We denote the joint pdf by
f (θ1 = θ′1, . . . ,θn+1 = θ′n+1, θ̄n+1 = θ̄′n+1). For brevity, we also use f (θ′1, . . . , θ′n+1, θ̄′n+1)

when the meaning is clear from the context. (Recall that θi refers to an actual raw
answer from the AQP engine, and θ̄n+1 refers to the exact answer to the new snippet.)
The joint pdf returns the probability that the random variables θ1, . . . ,θn+1, θ̄n+1 takes a
particular combination of the values, i.e., θ′1, . . . , θ′n+1, θ̄′n+1. In Section 3.3.3, we discuss
how to obtain this joint pdf from some statistics available on query answers.

Then, we compute the most likely value for the new snippet’s exact answer, namely
the most likely value for θ̄n+1, by first conditionalizing the joint pdf on the actual obser-
vations (i.e., raw answers) from the AQP engine, i.e., f (θ̄n+1 = θ̄′n+1 | θ1 = θ1, . . . ,θn+1 =

θn+1). We then find the value of θ̄′n+1 that maximizes the conditional pdf. We call this
value the model-based answer and denote it by θ̈n+1. Section 3.3.4 provides more details
of this process. Finally, θ̈n+1 and its associated expected error β̈n+1 are returned as Ver-
dict’s improved answer and improved error if they pass the model validation (described
in section 3.9). Otherwise, the (original) raw answer and error are taken as Verdict’s
improved answer and error, respectively. In other words, if the model validation fails,

26

Verdict simply returns the original raw results from the AQP engine without any im-
provements.

3.3.3 Prior Belief

In this section, we describe how Verdict obtains a joint pdf f (θ′1, . . . , θ′n+1, θ̄′n+1) that
represents its knowledge of the underlying distribution. The intuition behind Verdict’s
inference is to make use of possible correlations between pairs of query answers. This
section applies such statistical information of query answers (i.e., means, covariances,
and variances) for obtaining the most likely joint pdf. Obtaining the query statistics is
described in section 3.4.

To obtain the joint pdf, Verdict relies on the principle of maximum entropy (ME) [31,
162], a simple but powerful statistical tool for determining a pdf of random variables
given some statistical information available. According to the ME principle, given some
testable information on random variables associated with a pdf in question, the pdf
that best represents the current state of our knowledge is the one that maximizes the
following expression, called entropy:

h(f) = −
∫

f (~θ) · log f (~θ) d~θ (3.1)

where ~θ = (θ′1, . . . , θ′n+1, θ̄′n+1).
Note that the joint pdf maximizing the above entropy differs depending on the kinds

of given testable information, i.e., query statistics in our context. For instance, the max-
imum entropy pdf given means of random variables is different from the maximum
entropy pdf given means and (co)variances of random variables. In fact, there are two
conflicting considerations when applying this principle. On one hand, the resulting pdf
can be computed more efficiently if the provided statistics are simple or few, i.e., simple
statistics reduce the computational complexity. On the other hand, the resulting pdf can
describe the relationship among the random variables more accurately if richer statis-
tics are provided, i.e., the richer the statistics, the more accurate our improved answers.
Therefore, we need to choose an appropriate degree of statistical information to strike
a balance between the computational efficiency of pdf evaluation and its accuracy in
describing the relationship among query answers.

Among possible options, Verdict uses the first and the second order statistics of the
random variables, i.e., mean, variances, and covariances. The use of second-order statis-
tics enables us to capture the relationship among the answers to different query snippets,
while the joint pdf that maximizes the entropy can be expressed in an analytic form. The

27

uses of analytic forms provides computational efficiency. Specifically, the joint pdf that
maximizes the entropy while satisfying the given means, variances, and covariances is a
multivariate normal with the corresponding means, variances, and covariances [162].

Lemma 1. Let ~θ = (θ1, . . . ,θn+1, θ̄n+1)
ᵀ be a vector of n+2 random variables with mean

values ~µ = (µ1, . . . , µn+1, µ̄n+1)
ᵀ and a (n+2)×(n+2) covariance matrix Σ specifying

their variances and pairwise covariances. The joint pdf f over these random variables
that maximizes h(f) while satisfying the provided means, variances, and covariances is
the following function:

f (~θ) =
1√

(2π)n+2|Σ|
exp

(
−1

2
(~θ −~µ)ᵀΣ−1(~θ −~µ)

)
, (3.2)

and this solution is unique.

In the following section, we describe how Verdict computes the most likely answer
to the new snippet using this joint pdf in Equation (3.2). We call the most likely answer
a model-based answer. In section 3.9, this model-based answer is chosen as an improved
answer if it passes a model validation. Finally, in section 3.3.5, we discuss the challenges
involved in obtaining ~µ and Σ, i.e., the query statistics required for deriving the joint
pdf.

3.3.4 Model-based Answer

In the previous section, we formalized the relationship among query answers, namely
(θ1, . . . ,θn+1, θ̄n+1), using a joint pdf. In this section, we exploit this joint pdf to infer
the most likely answer to the new snippet. In other words, we aim to find the most
likely value for θ̄n+1 (the random variable representing qn+1’s exact answer), given the
observed values for θ1, . . . ,θn+1, i.e., the raw answers from the AQP engine. We call
the most likely value a model-based answer and its associated expected error a model-based
error. Mathematically, Verdict’s model-based answer θ̈n+1 to qn+1 can be expressed as:

θ̈n+1 = arg max
θ̄′n+1

f (θ̄′n+1 | θ1 = θ̃1, . . . ,θn+1 = θ̃n+1). (3.3)

That is, θ̈n+1 is the value at which the conditional pdf has its maximum value. The
conditional pdf, f (θ̄′n+1 | θ1, . . . , θn+1), is obtained by conditioning the joint pdf obtained
in section 3.3.3 on the observed values, i.e., raw answers to the past snippets and the
new snippet.

Computing a conditional pdf may be a computationally expensive task. However,
a conditional pdf of a multivariate normal distribution is analytically computable; it

28

is another normal distribution. Specifically, the conditional pdf in Equation (3.3) is a
normal distribution with the following mean µc and variance σ2

c [32]:

µc = µ̄n+1 + kᵀn+1Σ−1
n+1(

~θn+1 −~µn+1) (3.4)

σ2
c = κ̄2 − kᵀn+1Σ−1

n+1kn+1 (3.5)

where:

• kn+1 is a column vector of length n + 1 whose i-th element is (i, n + 2)-th entry of
Σ;

• Σn+1 is a (n + 1) × (n + 1) submatrix of Σ consisting of Σ’s first n + 1 rows and
columns;

• ~θn+1=(θ̃1, . . . , θ̃n+1)
ᵀ;

• ~µn+1 = (µ1, . . . , µn+1)
ᵀ; and

• κ̄2 is the (n + 2, n + 2)-th entry of Σ

Since the mean of a normal distribution is the value at which the pdf takes a maximum
value, we take µc as our model-based answer θ̈n+1. Likewise, the expectation of the
squared deviation of the value θ̄′n+1, which is distributed according to the conditional
pdf in Equation (3.3), from the model-based answer θ̈n+1 coincides with the variance σ2

c

of the conditional pdf. Thus, we take σc as our model-based error β̈n+1.
Computing each of Equations (3.4) and (3.5) requires O(n3) time complexity at query

time. However, Verdict uses alternative forms of these equations that require only O(n2)

time complexity at query time (section 3.7). As a future work, we plan to employ in-
ferential techniques with sub-linear time complexity [102, 176] for a more sophisticated
eviction policy for past queries.

Note that, since the conditional pdf is a normal distribution, the error bound at
confidence δ is expressed as αδ · β̈n+1, where αδ is a non-negative number such that a
random number drawn from a standard normal distribution would fall within (−αδ, αδ)

with probability δ. We call αδ the confidence interval multiplier for probability δ. That
is, the exact answer θ̄n+1 is within the range (θ̈n+1 − αδ · β̈n+1, θ̈n+1 + αδ · β̈n+1) with
probability δ, according to Verdict’s model.

3.3.5 Key Challenges

As mentioned in section 3.3.3, obtaining the joint pdf in Lemma 1 (which represents
Verdict’s prior belief on query answers) requires the knowledge of means, variances,

29

and covariances of the random variables (θ1, . . . ,θn+1, θ̄n+1). However, acquiring these
statistics is a non-trivial task for two reasons. First, we have only observed one value for
each of the random values θ1, . . . ,θn+1, namely θ̃1, . . . , θ̃n+1. Estimating variances and
covariances of random variables from a single value is nearly impossible. Second, we do
not have any observation for the last random variable θ̄n+1 (recall that θ̄n+1 represents
our knowledge of the exact answer to the new snippet, i.e., θ̄n+1). In section 3.4, we
present Verdict’s approach to solving these challenges.

3.4 Estimating Query Statistics

As described in section 3.3, Verdict expresses its prior belief on the relationship among
query answers as a joint pdf over a set of random variables (θ1, . . . , θn+1, θ̄n+1). In
this process, we need to know the means, variances, and covariances of these random
variables.

Verdict uses the arithmetic mean of the past query answers for the mean of each
random variable, θ1, . . . ,θn+1, θ̄n+1. Note that this only serves as a prior belief, and
will be updated in the process of conditioning the prior belief using the observed query
answers. In this section, without loss of generality, we assume the mean of the past
query answers is zero.

Thus, in the rest of this section, we focus on obtaining the variances and covariances
of these random variables, which are the elements of the (n + 2) × (n + 2) covariance
matrix Σ in lemma 1 (thus, we can obtain the elements of the column vector kn+1 and
the variance κ̄2 as well). Note that, due to the independence between expected errors,
we have:

cov(θi,θj) = cov(θ̄i, θ̄j) + δ(i, j) · β2
i

cov(θi, θ̄j) = cov(θ̄i, θ̄j)
(3.6)

where δ(i, j) returns 1 if i = j and 0 otherwise. Thus, computing cov(θ̄i, θ̄j) is sufficient
for obtaining Σ.

Computing cov(θ̄i, θ̄j) relies on a straightforward observation: the covariance between
two query snippet answers is computable using the covariances between the attribute values
involved in computing those answers. For instance, we can easily compute the covariance
between (i) the average revenue of the years 2014 and 2015 and (ii) the average revenue
of the years 2015 and 2016, as long as we know the covariance between the average
revenues of every pair of days in 2014–2016.

30

In this work, we further extend the above observation. That is, if we are able to
compute the covariance between the average revenues at an infinitesimal time t and
another infinitesimal time t′, we will be able to compute the covariance between (i) the
average revenue of 2014–2015 and (ii) the average revenue of 2015–2016, by integrating
the covariances between the revenues at infinitesimal times over appropriate ranges.
Here, the covariance between the average revenues at two infinitesimal times t and t′ is
defined in terms of the underlying data distribution that has generated the relation r,
where the past query answers help us discover the most-likely underlying distribution.
The rest of this section formalizes this idea.

In section 3.4.1, we present a decomposition of the (co)variances between pairs of
query snippet answers into inter-tuple covariance terms. Then, in section 3.4.2, we describe
how inter-tuple covariances can be estimated analytically using parameterized functions.

3.4.1 Covariance Decomposition

To compute the variances and covariances between query snippet answers (i.e., θ1, . . . ,
θn+1, θ̄n+1), Verdict relies on our proposed inter-tuple covariances, which express the sta-
tistical properties of the underlying distribution. Before presenting the inter-tuple co-
variances, our discussion starts with the fact that the answer to a supported snippet
can be mathematically represented in terms of the underlying distribution. This repre-
sentation then naturally leads us to the decomposition of the covariance between query
answers into smaller units, which we call inter-tuple covariances.

Let g be an aggregate function on attribute Ak, and t = (a1, . . . , al) be a vector of
length l comprised of the values for r’s dimension attributes A1, . . . , Al. To help simplify
the mathematical descriptions in this section, we assume that all dimension attributes
are numeric (not categorical), and the selection predicates in queries may contain range
constraints on some of those dimension attributes. Handling categorical attributes is a
straightforward extension of this process (see section 3.13.2).

We define a continuous function νg(t) for every aggregate function g (e.g., AVG(Ak),
FREQ(*)) such that, when integrated, it produces answers to query snippets. That is
(omitting possible normalization and weight terms for simplicity):

θ̄i =
∫
t∈Fi

νg(t) dt (3.7)

Formally, Fi is a subset of the Cartesian product of the domains of the dimension at-
tributes, A1, . . . , Al, such that t ∈ Fi satisfies the selection predicates of qi. Let (si,k, ei,k)

be the range constraint for Ak specified in qi. We set the range to (min(Ak), max(Ak))

31

if no constraint is specified for Ak. Verdict simply represents Fi as the product of those l
per-attribute ranges. Thus, the above Equation (3.7) can be expanded as:

θ̄i =
∫ ei,l

si,l

· · ·
∫ ei,1

si,1

νg(t) da1 · · · dal

For brevity, we use the single integral representation using Fi unless the explicit expres-
sion is needed.

Using Equation (3.7) and the linearity of covariance, we can decompose cov(θ̄i, θ̄j)

into:

cov(θ̄i, θ̄j) = cov

(∫
t∈Fi

νg(t) dt,
∫
t′∈Fj

νg(t
′) dt′

)
=
∫
t∈Fi

∫
t′∈Fj

cov(νg(t), νg(t
′)) dt dt′

(3.8)

As a result, the covariance between query answers can be broken into an integration
of the covariances between tuple-level function values, which we call inter-tuple covari-
ances.

To use Equation (3.8), we must be able to compute the inter-tuple covariance terms.
However, computing these inter-tuple covariances is challenging, as we only have a
single observation for each νg(t). Moreover, even if we had a way to compute the inter-
tuple covariance for arbitrary t and t′, the exact computation of Equation (3.8) would
still require an infinite number of inter-tuple covariance computations, which would be
infeasible. In the next section, we present an efficient alternative for estimating these
inter-tuple covariances.

3.4.2 Analytic Inter-tuple Covariances

To efficiently estimate the inter-tuple covariances, and thereby compute Equation (3.8),
we propose using analytical covariance functions, a well-known technique in statistical
literature for approximating covariances [32]. In particular, Verdict uses squared expo-
nential covariance functions, which is capable of approximating any continuous target
function arbitrarily closely as the number of observations (here, query answers) increases
[122].5 Although the underlying distribution may not be a continuous function, it is suf-
ficient for us to obtain νg(t) such that, when integrated (as in Equation (3.7)), produces

5This property of the universal kernels is asymptotic (i.e., as the number of observations goes to infin-
ity).

32

the same values as the integrations of the underlying distribution.6 In our setting, the
squared exponential covariance function ρg(t, t′) is defined as:

cov(νg(t), νg(t
′)) ≈ ρg(t, t′) = σ2

g ·
l

∏
k=1

exp

(
−
(ak − a′k)

2

l2
g,k

)
(3.9)

Here, lg,k for k=1 . . . l and σ2
g are tunable correlation parameters to be learned from past

queries and their answers (section 3.8).
Intuitively, when t and t′ are similar, i.e., (ak− a′k)

2 is small for most Ak, then ρg(t, t′)
returns a larger value (closer to σ2

g), indicating that the expected values of g for t and t′

are highly correlated.
With the analytic covariance function above, the cov(θ̄i, θ̄j) terms involving inter-

tuple covariances can in turn be computed analytically. Note that Equation (3.9) involves
the multiplication of l terms, each of which containing variables related to a single at-
tribute. As a result, plugging Equation (3.9) into Equation (3.8) yields:

cov(θ̄i, θ̄j) = σ2
g

l

∏
k=1

∫ ei,k

si,k

∫ ej,k

sj,k

exp

(
−
(ak − a′k)

2

l2
g,k

)
da′kak (3.10)

The order of integrals are interchangeable, since the terms including no integration
variables can be regarded as constants (and thus can be factored out of the integrals).
Note that the double-integral of an exponential function can also be computed analyti-
cally (see section 3.13.1); thus, Verdict can efficiently compute cov(θ̄i, θ̄j) in O(l) times by
directly computing the integrals of inter-tuple covariances, without explicitly computing
individual inter-tuple covariances. Finally, we can compose the (n + 2)× (n + 2) matrix
Σ in Lemma 1 using Equation (3.6).

3.5 Verdict Process Summary

In this section, we summarize Verdict’s offline and online processes. Suppose the query
synopsis Qn contains a total of n query snippets from past query processing, and a new
query is decomposed into b query snippets; we denote the new query snippets in the
new query by qn+1, . . . , qn+b.

6The existence of such a continuous function is implied by the kernel density estimation tech-
nique [172].

33

Algorithm 1: Verdict offline process
Input: Qn including (qi, θi, βi) for i = 1, . . . , n
Output: Qn with new model parameters and precomputed matrices

1 foreach aggregate function g in Qn do
2 (lg,1, . . . , lg,l, σ2

g) ← learn(Qn) // section 3.8

// Σ(i,j) indicates (i, j)-element of Σ
3 for (i, j)← (1, . . . , n)× (1, . . . , n) do

// Equation (3.6)
4 Σ(i,j) ← covariance(qi, qj; lg,1, . . . , lg,l, σ2

g)
5 end
6 Insert Σ and Σ−1 into Qn for g
7 end
8 return Qn

Offline processing— Algorithm 1 summarizes Verdict’s offline process. It consists of
learning correlation parameters and computing covariances between all pairs of past
query snippets.

Online processing— Algorithm 2 summarizes Verdict’s runtime process. Here, we as-
sume the new query is a supported query; otherwise, Verdict simply forwards the AQP
engine’s query answer to the user.

3.6 Deployment Scenarios

Verdict is designed to support a large class of AQP engines. However, depending on
the type of AQP engine used, Verdict may provide both speedup and error reduction, or
only error reduction.

1. AQP engines that support online aggregation [68, 134, 184, 185]: Online aggregation
continuously refines its approximate answer as new tuples are processed, until users
are satisfied with the current accuracy or when the entire dataset is processed. In these
types of engines, every time the online aggregation provides an updated answer (and
error estimate), Verdict generates an improved answer with a higher accuracy (by paying
small runtime overhead). As soon as this accuracy meets the user requirement, the
online aggregation can be stopped. With Verdict, the online aggregation’s continuous
processing will stop earlier than it would without Verdict. This is because Verdict reaches
a target error bound much earlier by combining its model with the raw answer of the
AQP engine.

34

Algorithm 2: Verdict runtime process
Input: New query snippets qn+1, . . . , qn+b,

Query synopsis Qn
Output: b number of improved answers and improved errors

{(θ̂n+1, β̂n+1), . . . , (θ̂n+b, β̂n+b)},
Updated query synopsis Qn+b

1 fc← number of distinct aggregate functions in new queries

/* The new query (without decomposition) is sent to the AQP engine in
practice. */

2 {(θn+1, βn+1), . . . , (θn+b, βn+b)} ← AQP(qn+1, . . . , qn+b)

// improve up to Nmax rows
3 for i← 1, . . . , (fc · Nmax) do

// model-based answer/error
// (Equations (3.4) and (3.5))

4 (θ̈n+i, β̈n+i)← inference(θn+i, βn+i, Qn)

// model validation (section 3.9)
5 (θ̂n+i, β̂n+i)← if valid(θ̈n+i, β̈n+i) then (θ̈n+i, β̈n+i) else (θn+i, βn+i)
6 Insert (qn+i, θn+i, βn+i) into Qn
7 end

8 for i← (fc · Nmax + 1), . . . , b do
9 (θ̂n+i, β̂n+i)← (θn+i, βn+i)

10 end
// Verdict overhead ends

11 return {(θ̂n+1, β̂n+1), . . . , (θ̂n+b, β̂n+b)}, Qn

2. AQP engines that support time-bounds [15,38,47,71,86,144,187]: Instead of continu-
ously refining approximate answers and reporting them to the user, these engines simply
take a time-bound from the user, and then they predict the largest sample size that they
can process within the requested time-bound; thus, they minimize error bounds within
the allotted time. For these engines, Verdict simply replaces the user’s original time
bound t1 with a slightly smaller value t1 − ε before passing it down to the AQP engine,
where ε is the time needed by Verdict for inferring the improved answer and improved
error. Thanks to the efficiency of Verdict’s inference, ε is typically a small value, e.g.,
a few milliseconds (see section 3.11.5). Since Verdict’s inference brings larger accuracy
improvements on average compared to the benefit of processing more tuples within the
ε time, Verdict achieves significant error reductions over traditional AQP engines.

35

In this chapter, we use an online aggregation engine to demonstrate Verdict’s both
speedup and error reduction capabilities (section 5.6). However, for interested readers,
we also provide evaluations on a time-bound engine section 3.11.11.

Some AQP engines also support error-bound queries but do not offer an online ag-
gregation interface [16, 128, 146]. For these engine, Verdict currently only benefits their
time-bound queries, leaving their answer to error-bound queries unchanged. Support-
ing the latter would require either adding an online aggregation interface to the AQP
engine, or a tighter integration of Verdict and the AQP engine itself. Such modifications
are beyond the scope of this chapter, as one of our design goals is to treat the underlying
AQP engine as a black box (Figure 3.2), so that Verdict can be used alongside a larger
number of existing engines.

Note that Verdict’s inference mechanism is not affected by the specific AQP engine
used underneath, as long as the conditions in section 3.3 hold, namely the error estimate
β2 is the expectation of the squared deviation of the approximate answer from the exact
answer. However, the AQP engine’s runtime overhead (e.g., query parsing and planning)
may affect Verdict’s overall benefit in relative terms. For example, if the query parsing
amount to 90% of the overall query processing time, even if Verdict completely eliminates
the need for processing any data, the relative speedup will only be 1.0/0.9 = 1.11×.
However, Verdict is designed for data-intensive scenarios where disk or network I/O is
a sizable portion of the overall query processing time.

3.7 Formal Guarantees

Next, we formally show that the error bounds of Verdict’s improved answers are never
larger than the error bounds of the AQP engine’s raw answers.

Theorem 3.1. Let Verdict’s improved answer and improved error to the new snippet
be (θ̂n+1, β̂n+1) and the AQP engine’s raw answer and raw error to the new snippet be
(θn+1, βn+1). Then,

β̂n+1 ≤ βn+1

and the equality occurs when the raw error is zero, or when Verdict’s query synopsis is
empty, or when Verdict’s model-based answer is rejected by the model validation step.

Proof. Recall that (θ̂n+1, β̂n+1) is set either to Verdict’s model-based answer/error, i.e.,
(θ̈n+1, β̈n+1), or to the AQP system’s raw answer/error, i.e., (θn+1, βn+1), depending on
the result of the model validation. In the latter case, it is trivial that β̂n+1 ≤ βn+1, and
hence it is enough to show that β̈n+1 ≤ βn+1.

36

Computing β̈n+1 involves an inversion of the covariance matrix Σn+1, where Σn+1

includes the βn+1 term on one of its diagonal entries. We show β̈n+1 ≤ βn+1 by directly
simplifying β̈n+1 into the form that involves βn+1 and other terms.

We first define notations. Let Σ be the covariance matrix of the vector of random
variables (θ1, . . . , θn+1, θ̄n+1); kn be a column vector of length n whose i-th element
is the (i, n + 1)-th entry of Σ; Σn be an n× n submatrix of Σ that consists of Σ’s first n
rows/columns; κ̄2 be a scalar value at the (n+ 2, n+ 2)-th entry of Σ; and~θn be a column
vector (θ̃1, . . . , θ̃n)ᵀ.

Then, we can express kn+1 and Σn+1 in Equations (3.4) and (3.5) in block forms as
follows:

kn+1 =

(
kn

κ̄2

)
, Σn+1 =

(
Σn kn

kᵀn κ̄2 + β2
n+1

)
, ~θn+1 =

(
~θn

θ̃n+1

)

Here, it is important to note that kn+1 can be expressed in terms of kn and κ̄2 because
(i, n + 1)-th element of Σ and (i, n + 2)-th element of Σ have the same values for i =

1, . . . , n. They have the same values because the covariance between θi and θn+1 and the
covariance between θi and θ̄n+1 are same for i = 1, . . . , n due to Equation (3.6).

Using the formula of block matrix inversion [78], we can obtain the following alter-
native forms of Equations (3.4) and (3.5) (here, we assume zero means to simplify the
expressions):

γ2 = κ̄2 − kᵀnΣ−1
n kn, θ = kᵀnΣ−1

n
~θn (3.11)

θ̈n+1 =
β2

n+1 · θ + γ2 · θn+1

β2
n+1 + γ2

, β̈2
n+1 =

β2
n+1 · γ2

β2
n+1 + γ2

(3.12)

Note that β̈2
n+1 < βn+1 for βn+1 > 0 and γ2 < ∞, and β̈2

n+1 = βn+1 if βn+1 = 0 or
γ2 → ∞.

Lemma 2. The time complexity of Verdict’s inference is O(Nmax · l · n2) The space com-
plexity of Verdict is O(n · Nmax + n2), where n · Nmax is the size of the query snippets
and n2 is the size of the precomputed covariance matrix.

Proof. It is enough to prove that the computations of a model-based answer and a model-
based error can be performed in O(n2) time, where n is the number of past query snip-
pets. Note that this is clear from Equations (3.11) and (3.12), because the computation of
Σ−1

n involves only the past query snippets. For computing γ2, multiplying kn, a precom-
puted Σ−1

n , and kn takes O(n2) time. Similarly for θ in Equation (3.11)

37

These results imply that the domain sizes of dimension attributes do not affect Ver-
dict’s computational overhead. This is because Verdict analytically computes the co-
variances between pairs of query answers without individually computing inter-tuple
covariances (section 3.4.2).

3.8 Parameter Learning

In this section, we describe how to find the most likely values of the correlation pa-
rameters defined in section 3.4.2. In this process, we exploit the joint pdf defined in
Equation (3.2), as it allows us to compute the likelihood of a certain combination of
query answers given relevant statistics. Let ~θpast denote a vector of raw answers to past
snippets. Then, by Bayes’ theorem:

Pr(Σn | ~θpast) ∝ Pr(Σn) · Pr(~θpast | Σn)

where Σn is an n × n submatrix of Σ consisting of Σ’s first n rows and columns, i.e.,
(co)variances between pairs of past query answers, and ∝ indicates that the two values
are proportional, Therefore, without any preference over parameter values, determining
the most likely correlation parameters (which determine Σn) given past queries amounts
to finding the values for lg,1, . . . , lg,l, σ2

g that maximize the below log-likelihood function:

log Pr(~θpast | Σn) = log f (~θpast)

= −1
2
~θᵀpastΣ

−1
n
~θpast −

1
2

log |Σn| −
n
2

log 2π (3.13)

where f (~θpast) is the joint pdf from Equation (3.2).
Verdict finds the optimal values for lg,1, . . . , lg,l by solving the above optimization

problem with a numerical solver, while it estimates the value for σ2
g analytically from

past query answers (see section 3.13.3). Concretely, the current implementation of Verdict
uses the gradient-descent-based (quasi-newton) nonlinear programming solver provided
by Matlab’s fminuncon() function, without providing explicit gradients. Although our
current approach is typically slower than using closed-form solutions or than using
the solver with an explicit gradient (and a Hessian), they do not pose a challenge in
Verdict’s setting, since all these parameters are computed offline, i.e., prior to the arrival
of new queries. We plan to improve the efficiency of this offline training by using explicit
gradient expressions.

38

Since Equation (3.13) is not a convex function, the solver of our choice only returns
a locally optimal point. A conventional strategy to handle this issue is to obtain multi-
ple locally optimal points by solving the same problem with multiple random starting
points, and to take the one with the highest log-likelihood value as a final answer. Still,
this approach does not guarantee the correctness of the model. In contrast, Verdict’s
strategy is to find a locally-optimal point that can capture potentially large inter-tuple
covariances, and to validate the correctness of the resulting model against a model-free
answer (section 3.9). We demonstrate empirically in the following section that this strat-
egy is effective for finding parameter values that are close to true values. Verdict’s model
validation process in section 3.9 provides robustness against the models that may differ
from the true distribution. Verdict uses lg,k = (max(Ak) −min(Ak)) for the starting
point of the optimization problem.

Lastly, our use of approximate answers as the constraints for the ME principle is
properly accounted for by including additive error terms in their (co)variances (Equa-
tion (3.6)).

3.9 Model Validation

Verdict’d model validation rejects its model—the most likely explanation of the underly-
ing distribution given the answers to past snippets—if there is evidence that its model-
based error is likely to be incorrect. Verdict’s model validation process addresses two
situations: (i) negative estimates for FREQ(*), and (ii) an unlikely large discrepancy be-
tween a model-based answer and a raw answer.

Negative estimates for FREQ(*)— To obtain the prior distribution of the random vari-
ables, Verdict uses the most-likely distribution (based on the maximum entropy principle
(lemma 1)), given the means, variances, and covariances of query answers. Although this
makes the inference analytically computable, the lack of explicit non-negative constraints
on the query answers may produce negative estimates on FREQ(*). Verdict handles this
situation with a simple check; that is, Verdict rejects its model-based answer if θ̈n+1 < 0
for FREQ(*), and uses the raw answer instead. Even if θ̈n+1 ≥ 0, the lower bound of the
confidence interval is set to zero if the value is less than zero.

Unlikely model-based answer— Verdict’s model learned from empirical observations
may be different from the true distribution. Figure 3.4(a) illustrates such an example.
Here, after the first three queries, the model is consistent with past query answers
(shown as gray boxes); however, it incorrectly estimates the distribution of the unob-

39

0 0.5 1
0
1
2
3
4
5

a1

ν g
(t
)

True data Model (with 95% confidence interval)

(a) After three queries

0 0.5 1
0
1
2
3
4
5

a1

ν g
(t
)

(b) After ten queries

Figure 3.4: An example of (a) overly optimistic confidence intervals due to incorrect esti-
mation of the underlying distributon, and (b) its resolution with more queries processed.
Verdict relies on a model validation to avoid the situation as in (a).

served data, leading to overly optimistic confidence intervals. Figure 3.4(b) shows that
the model becomes more consistent with the data as more queries are processed.

Verdict rejects (and does not use) its own model in situations such as Figure 3.4(a)
by validating its model-based answers against the model-free answers obtained from the
AQP engine. Specifically, we define a likely region as the range in which the AQP engine’s
answer would fall with high probability (99% by default) if Verdict’s model were to be
correct. If the AQP’s raw answer θn+1 falls outside this likely region, Verdict considers its
model unlikely to be correct. In such cases, Verdict drops its model-based answer/error,
and simply returns the raw answer to the user unchanged. This process is akin to
hypothesis testing in statistics literatures [54].

Although no improvements are made in such cases, we take this conservative ap-
proach to ensure the correctness of our error guarantees. (See sections 3.7 and 3.11.8 for
formal guarantees and empirical results, respectively).

Formally, let t ≥ 0 be the value for which the AQP engine’s answer would fall within
(θ̈n+1 − t, θ̈n+1 + t) with probability δv (0.99 by default) if θ̈n+1 were the exact answer.
We call the (θ̈n+1 − t, θ̈n+1 + t) range the likely region. To compute t, we must find the
value closest to θ̈n+1 that satisfies the following expression:

Pr
(
|X− θ̈n+1| < t

)
≥ δv (3.14)

where X is a random variable representing the AQP engine’s possible answer to the new
snippet if the exact answer to the new snippet was θ̈n+1. The AQP engine’s answer can
be treated as a random variable since it may differ depending on the random samples
used. The probability in Equation (3.14) can be easily computed using either the central

40

limit theorem or the Chebyshev’s inequality [116]. Once the value of t is computed,
Verdict rejects its model if θ̃n+1 falls outside the likely region (θ̈n+1 − t, θ̈n+1 + t).

In summary, the pair of Verdict’s improved answer and improved error, (θ̂n+1, β̂n+1),
is set to (θ̈n+1, β̈n+1) if θ̃n+1 is within the range (θ̈n+1− t, θ̈n+1 + t), and is set to (θn+1, βn+1)

otherwise. In either case, the error bound at confidence δ remains the same as αδ · β̂n+1,
where αδ is the confidence interval multiplier for probability δ.

3.10 Generalization of Verdict under Data Additions

Thus far, we have discussed our approach based on the assumption that the database
is static, i.e., no tuples are deleted, added, or updated. In this section, we suggest the
possibility of using Verdict even for the database that allows an important kind of data
update: data append.

A naïve strategy to supporting tuples insertions would be to re-execute all past
queries every time new tuples are added to the database to obtain their updated an-
swers. This solution is obviously impractical.

Instead, Verdict still makes use of answers to past queries even when new tuples
have been added since computing their answers. The basic idea is to simply lower our
confidence in the raw answers of those past queries.

Assume that qi (whose aggregate function is on Ak) is computed on an old relation
r, and a set of new tuples ra has since been added to r to form an updated relation ru.
Let θ̄a

i be a random variable representing our knowledge of qi’s true answer on ra, and
θ̄u

i be qi’s true answer on ru.
We represent the possible difference between Ak’s values in r and those in ra by a

random variable sk with mean µk and variance η2
k . Thus:

θ̄a
i = θ̄i + sk

The values of µk and η2
k can be estimated using small samples of r and ra. Verdict uses

the following lemma to update the raw answer and raw error for qi:

Lemma 3.

E[θ̄u
i − θi] = µk ·

|ra|
|r|+ |ra|

E[(θ̄u
i − θi −

|ra| µk
|r|+ |ra|)

2] = β2
i +

(
|ra| ηk
|r|+ |ra|

)2

41

where |r| and |ra| are the number of tuples in r and ra, respectively.

Proof. Since we represented a snippet answer on the appended relation using a random
variable θ̄u

i , we can also represent a snippet answer on the updated relation ru using a
random variable. Let the snipept answer on ru be θ̄u

i . Then,

E[θ̄u
i − θi] = E

[
|r| θ̄i

|r|+ |ra| +
|ra| sk
|r|+ |ra|

]
− θ̄i =

|ra| µk
|r|+ |ra|

Also,

E
[
(θ̄u

i − θi −
|ra| µk
|r|+ |ra|)

2
]

= E
[(

θ̄i +
|ra| sk
|r|+ |ra| − θi −

|ra| µk
|r|+ |ra|

)]
= E

[
(θ̄i − θi)

2 +

(
|ra|

|r|+ |ra|

)2

(sk − µk)
2

+ 2
(
|ra|

|r|+ |ra|

)
(θ̄i − θi)(sk − µk)

]
= β2

i +

(
|ra| ηk
|r|+ |ra|

)2

where we used to independence between (θ̄i − θi) and (sk − µk).

Once the raw answers and the raw errors of past query snippets are updated using
this lemma, the remaining inference process remains the same.

3.11 Experiments

We conducted experiments to (1) quantify the percentage of real-world queries that bene-
fit from Verdict (section 3.11.2), (2) study Verdict’s average speedup and error reductions
over an AQP engine (section 3.11.3), (3) test the reliability of Verdict’s error bounds (sec-
tion 3.11.4), (4) measure Verdict’s computational overhead and memory footprint (sec-
tion 3.11.5), and (5) study the impact of different workloads and data distributions on
Verdict’s effectiveness (section 3.11.6). In summary, our results indicated the following:
• Verdict supported a large fraction (73.7%) of aggregate queries in a real-world work-

load, and produced significant speedups (up to 23.0×) compared to a sample-based
AQP solution.

42

• Given the same processing time, Verdict reduces the baseline’s approximation error
on average by 75.8%–90.2%.
• Verdict’s runtime overhead was <10 milliseconds on average (0.02%–0.48% of total

time) and its memory footprint was negligible.
• Verdict’s approach was robust against various workloads and data distributions.

Moreover, section 3.11.10 shows the benefits of model-based inference in comparison
to a strawman approach, which simply caches all past query answers. section 3.11.11
demonstrates Verdict’s benefit for time-bound AQP engines.

3.11.1 Experimental Setup

Datasets and Query Workloads— For our experiments, we used the three datasets de-
scribed below:
1. Customer1: This is a anonymized real-world query trace from one of the largest cus-

tomers of a leading vendor of analytic DBMS. This dataset contains 310 tables and
15.5K timestamped queries issued between March 2011 and April 2012, 3.3K of which
are analytical queries supported by Spark SQL. We did not have the customer’s origi-
nal dataset but had access to their data distribution, which we used to generate a 536
GB dataset.

2. TPC-H: This is a well-known analytical benchmark with 22 query types, 21 of which
contain at least one aggregate function (including 2 queries with min or max). We used
a scale factor of 100, i.e., the total data size was 100 GB. We generated a total of 500
queries using TPC-H’s workload generator with its default settings. The queries in this
dataset include joins of up to 6 tables.

3. Synthetic: For more controlled experiments, we also generated large-scale synthetic
datasets with different distributions (see section 3.11.6 for details).

Implementation— For comparative analysis, we implemented two systems on top of
Spark SQL [21] (version 1.5.1):
1. NoLearn: This system is an online aggregation engine that creates random sam-

ples of the original tables offline and splits them into multiple batches of tuples. To
compute increasingly accurate answers to a new query, NoLearn first computes an
approximate answer and its associated error bound on the first batch of tuples, and
then continues to refine its answer and error bound as it processes additional batches.
NoLearn estimates its errors and computes confidence intervals using closed-forms
(based on the central limit theorem). Error estimation based on the central limit

43

0 2 4 6 10
0
5

10
15
20
25

Runtime (sec)

Er
ro

r
Bo

un
d

(%
)

NoLearn Verdict

0 2 4 6 10
0
2
4
6
8

10

Runtime (sec)

A
ct

ua
lE

rr
or

(%
)

(a) Cached, Customer1

0 1 2 3 4 5 6
0
5

10
15
20
25

Runtime (min)

Er
ro

r
Bo

un
d

(%
)

0 1 2 3 4 5 6
0
2
4
6
8

10

Runtime (min)

A
ct

ua
lE

rr
or

(%
)

(b) Not Cached, Customer1

0 10 20 30 40 50 60
0

5

10

15

Runtime (sec)

Er
ro

r
Bo

un
d

(%
)

0 10 20 30 40 50 60
0

2

4

6

Runtime (sec)

A
ct

ua
lE

rr
or

(%
)

(c) Cached, TPC-H

0 6 12 18 24 30
0

5

10

15

Runtime (min)

Er
ro

r
Bo

un
d

(%
)

0 6 12 18 24 30
0

2

4

6

Runtime (min)

A
ct

ua
lE

rr
or

(%
)

(d) Not Cached, TPC-H

Figure 3.5: The relationship (i) between runtime and error bounds (top row), and (ii) be-
tween runtime and actual errors (bottom row), for both systems: NoLearn and Verdict.

44

Dataset Total # of Queries # of Supported Percentagewith Aggregates Queries
Customer1 3,342 2,463 73.7%
TPC-H 21 14 63.6%

Table 3.3: Generality of Verdict. Verdict supports a large fraction of real-world and
benchmark queries.

theorem has been one of the most popular approaches in online aggregation sys-
tems [68, 89, 184, 185] and other AQP engines [11, 15, 38].

2. Verdict: This system is an implementation of our proposed approach, which uses
NoLearn as its AQP engine. In other words, each time NoLearn yields a raw an-
swer and error, Verdict computes an improved answer and error using our proposed
approach. Naturally, Verdict incurs a (negligible) runtime overhead, due to supported
query check, query decomposition, and computation of improved answers; however,
Verdict yields answers that are much more accurate in general.

Experimental Environment— We used a Spark cluster (for both NoLearn and Verdict)
using 5 Amazon EC2 m4.2xlarge instances, each with 2.4 GHz Intel Xeon E5 processors
(8 cores) and 32GB of memory. Our cluster also included SSD-backed HDFS [159] for
Spark’s data loading. For experiments with cached datasets, we distributed Spark’s
RDDs evenly across the nodes using Spark SQL DataFrame repartition function.

3.11.2 Generality of Verdict

To quantify the generality of our approach, we measured the coverage of our supported
queries in practice. We analyzed the real-world SQL queries in Customer1. Among the
original 15.5K queries, we used 3.3K queries that (1) were on large tables and (2) included
Spark SQL-supported aggregate functions. Among those 3.3K queries, Verdict could
support 2.4K queries; that is, 73.7% of the Spark SQL-supported queries could benefit
from Verdict. Also, we analyzed the 21 TPC-H queries (that include aggregations) and
found 14 queries supported by Verdict. Most of the queries that could not be support
by Verdict (for both Customer1 and TPC-H) were due to the min/max functions in the
select clause, or the textual filters and disjunctions in the where clause. These statistics
are summarized in Table 3.3. This analysis proves that Verdict can support a large class
of analytical queries in practice. Next, we quantified the extent to which these supported
queries benefitted from Verdict.

45

3.11.3 Speedup and Error Reduction

In this section, we first study the relationship between the processing time and the size
of error bounds for both systems, i.e., NoLearn and Verdict. Based on this study, we
then analyze Verdict’s speedup and error reductions over NoLearn.

In this experiment, we used each of Customer1 and TPC-H datasets in two different
settings. In one setting, all samples were cached in the memories of the cluster, while in
the second, the data had to be read from SSD-backed HDFS.

We allowed both systems to process half of the queries (since Customer1 queries
were timestamped, we used the first half). While processing those queries, NoLearn

simply returned the query answers, but Verdict also kept the queries and their answers
in its query synopsis. After processing those queries, Verdict (i) precomputed the matrix
inversions and (ii) learned the correlation parameters. The matrix inversions took 1.6
seconds in total; the correlation parameter learning took 23.7 seconds for TPC-H and
8.04 seconds for Customer1. The learning process was relatively faster for Customer1

since most of the queries included COUNT(*) for which each attribute did not require a
separate learning. This offline training time for both workloads was comparable to the
time needed for running only a single approximate query (Table 3.4).

For the second half of the queries, we recorded both systems’ query processing times
(i.e., runtime), approximate query answers, and error bounds. Since both NoLearn

and Verdict are online aggregation systems, and Verdict produces improved answers
for every answer returned from NoLearn, both systems naturally produced more ac-
curate answers (i.e., answers with smaller error bounds) as query processing continued.
Approximate query engines, including both NoLearn and Verdict, are only capable of
producing expected errors in terms of error bounds. However, for analysis, we also
computed the actual errors by comparing those approximate answers against the exact
answers. In the following, we report their relative errors.

Figure 3.5 shows the relationship between runtime and average error bound (top
row) and the relationship between runtime and average actual error (bottom row). Here,
we also considered two cases: when the entire data is cached in memory and when
it resides on SSD. In all experiments, the runtime-error graphs exhibited a consistent
pattern: (i) Verdict produced smaller errors even when runtime was very large, and (ii)
Verdict showed faster runtime for the same target errors. Due to the asymptotic nature
of errors, achieving extremely accurate answers (e.g., less than 0.5%) required relatively
long processing time even for Verdict.

46

Cached?
Error Time Taken

Speedup
Bound NoLearn Verdict

Cu
st

om
er

1 Yes
2.5% 4.34 sec 0.57 sec 7.7×
1.0% 6.02 sec 2.45 sec 2.5×

No
2.5% 140 sec 6.1 sec 23.0×
1.0% 211 sec 37 sec 5.7×

TP
C-

H Yes
4.0% 26.7 sec 2.9 sec 9.3×
2.0% 34.2 sec 12.9 sec 2.7×

No
4.0% 456 sec 72 sec 6.3×
2.0% 524 sec 265 sec 2.1×

Cached? Runtime
Achieved Error Bound Error

NoLearn Verdict Reduction

Cu
st

om
er

1 Yes
1.0 sec 21.0% 2.06% 90.2%
5.0 sec 1.98% 0.48% 75.8%

No
10 sec 21.0% 2.06% 90.2%
60 sec 6.55% 0.87% 86.7%

TP
C-

H Yes
5.0 sec 13.5% 2.13% 84.2%
30 sec 4.87% 1.04% 78.6%

No
3.0 min 11.8% 1.74% 85.2%
10 min 4.49% 0.92% 79.6%

Table 3.4: Speedup and error reductions by Verdict compared to NoLearn.

Using these results, we also analyzed Verdict’s speedups and error reduction over
NoLearn. For speedup, we compared how long each system took until it reached a
target error bound. For error reduction, we compared the lowest error bounds that each
system produced within a fixed allotted time. Table 3.4 reports the results for each
combination of dataset and location (in memory or on SSD).

For the Customer1 dataset, Verdict achieved a larger speedup when the data was
stored on SSD (up to 23.0×) compared to when it was fully cached in memory (7.7×).
The reason was that, for cached data, the I/O time was no longer the dominant factor and
Spark SQL’s default overhead (e.g., parsing the query and reading the catalog) accounted
for a considerable portion of the total data processing time. For TPC-H, on the contrary,
the speedups were smaller when the data was stored on SSD. This difference stems from
the different query forms between Customer1 and TPC-H. The TPC-H dataset includes
queries that join several tables, some of which are large tables that were not sampled
by NoLearn. (Similar to most sample-based AQP engines, NoLearn only samples fact

47

1% 2% 4% 8% 16% 32%
0

5

10

15

20

25

30

Verdict Error Bound
A

ct
ua

lE
rr

or
(%

)

Figure 3.6: The comparison between Verdict’s error bound at 95% confidence and the
actual error distribution (5th, 50th, and 95th percentiles are reported for actual error
distributions).

tables, not dimension tables.) Consequently, those large tables had to be read each time
NoLearn processed such a query. When the data resided on SSD, loading those tables
became a major bottleneck that could not be reduced by Verdict (since they were not
sampled). However, on average, Verdict still achieved an impressive 6.3× speedup over
NoLearn. In general, Verdict’s speedups over NoLearn reduced as the target error
bounds became smaller; however, even for 1% target error bounds, Verdict achieved an
average of up to 5.7× speedup over NoLearn.

Table 3.4 also reports Verdict’s error reductions over NoLearn. For all target runtime
budgets we examined, Verdict achieved massive error reductions compared to NoLearn.

The performance benefits of Verdict depends on several important factors, such as the
accuracy of past query answers and workload characteristics. These factors are further
studied in sections 3.11.6 and 3.11.10.

3.11.4 Confidence Interval Guarantees

To confirm the validity of Verdict’s error bounds, we configured Verdict to produce error
bounds at 95% confidence and compared them to the actual errors. We ran Verdict for
an amount of time long enough to sufficiently collect error bounds of various sizes.

By definition, the error bounds at 95% confidence are probabilistically correct if the
actual errors are smaller than the error bounds in at least 95% of the cases. Figure 3.6
shows the 5th percentile, median, and 95th percentile of the actual errors for different
sizes of error bounds (from 1% to 32%). In all cases, the 95th percentile of the actual
errors were lower than the error bounds produced by Verdict, which confirms the prob-
abilistic correctness of Verdict’s error bound guarantees.

48

Latency Cached Not Cached
NoLearn 2.083 sec 52.50 sec
Verdict 2.093 sec 52.51 sec
Overhead 0.010 sec (0.48%) 0.010 sec (0.02%)

Table 3.5: The runtime overhead of Verdict.

3.11.5 Memory and Computational Overhead

In this section, we study Verdict’s additional memory footprint (due to query synopsis)
and its runtime overhead (due to inference). The total memory footprint of the query
synopsis was 5.79MB for TPC-H and 18.5MB for Customer1 workload (23.2KB per-query
for TPC-H and 15.8KB per-query for Customer1). This included past queries in parsed
forms, model parameters, covariance matrices, and the inverses of those covariance ma-
trices. The size of query synopsis was small because Verdict does not retain any of the
input tuples.

To measure Verdict’s runtime overhead, we recorded the time spent for its regular
query processing (i.e., NoLearn) and the additional time spent for the inference and
updating the final answer. As summarized in Table 3.5, the runtime overhead of Verdict
was negligible compared to the overall query processing time. This is because multiply-
ing a vector by a Cg × Cg matrix does not take much time compared to regular query
planning, processing, and network commutations among the distributed nodes. (Note
that Cg=2, 000 by default; see section 3.2.3.)

3.11.6 Impact of Data Distributions and Workload Characteristics

In this section, we generated various synthetic datasets and queries to fully understand
how Verdict’s effectiveness changes for different data distributions, query patterns, and
number of past queries.

First, we studied the impact of having queries with a more diverse set of columns
in their selection predicates. We produced a table of 50 columns and 5M rows, where
10% of the columns were categorical. The domains of the numeric columns were the real
values between 0 and 10, and the domains of the categorical columns were the integers
between 0 and 100.

Also, we generated four different query workloads with varying proportions of fre-
quently accessed columns. The columns used for the selection predicates were chosen
according to a power-law distribution. Specifically, a fixed number of columns (called
frequently accessed columns) had the same probability of being accessed, but the access

49

4% 10% 20% 40%
0

20

40

60

80

100

ratio of frequently accessed columns

Er
ro

r
R

ed
uc

ti
on

(%
)

(a) Workload Diversity

Uniform

Gaussia
n

Skewed
0

20

40

60

80

100

Er
ro

r
R

ed
uc

ti
on

(%
)

(b) Data distribution

10 100 200 300 400
0

20

40

60

80

of past queries

Er
ro

r
R

ed
uc

ti
on

(%
)

(c) Learning Behavior

10 100 200 300 400
0

2

4

6

8

10

of past queries

O
ve

rh
ea

d
(m

s)

(d) Overhead

Figure 3.7: The effectiveness of Verdict in reducing NoLearn’s error for different (a)
levels of diversity in the queried columns, (b) data distributions, and (c) number of
past queries observed. Figure (d) shows Verdict’s overhead for different number of past
queries.

50

probability of the remaining columns decayed according to the power-law distribution.
For instance, if the proportion of frequently accessed columns was 20%, the first 20% of
the columns (i.e., 10 columns) appeared with equal probability in each query, but the
probability of appearance reduced by half for every remaining column. Figure 3.7(a)
shows that as the proportion of frequently accessed columns increased, Verdict’s relative
error reduction over NoLearn gradually decreased (the number of past queries were
fixed to 100). This is expected as Verdict constructs its model based on the columns
appearing in the past. In other words, to cope with the increased diversity, more past
queries are needed to understand the complex underlying distribution that generated
the data. Note that, according to the analytic queries in the Customer1 dataset, most
of the queries included less than 5 distinct selection predicates. However, by process-
ing more queries, Verdict continued to learn more about the underlying distribution,
and produced larger error reductions even when the workload was extremely diverse
(Figure 3.7(c)).

Second, to study Verdict’s potential sensitivity, we generated three tables using three
different probability distributions: uniform, Gaussian, and a log-normal (skewed) dis-
tribution. Figure 3.7(b) shows Verdict’s error reductions when queries were run against
each table. Because of the power and generality of the maximum entropy principle
taken by Verdict, it delivered a consistent performance irrespective of the underlying
distribution.

Third, we varied the number of past queries observed by Verdict before running
our test queries. For this study, we used a highly diverse query set (its proportion
of frequently accessed columns was 20%). Figure 3.7(c) demonstrates that the error
reduction continued increasing as more queries were processed, but its increment slowed
down. This is because, after observing enough information, Verdict already had a good
knowledge of the underlying distribution, and processing more queries barely improved
its knowledge. This result indicates that Verdict is able to deliver reasonable performance
without having to observe too many queries.

This is because, after observing enough information, Verdict already has a good
knowledge of the underlying distribution, and processing more queries barely improves
its knowledge. This result indicates that Verdict is able to deliver reasonable performance
without having to observe too many queries.

Lastly, we studied the negative impact of increasing the number of past queries on
Verdict’s overhead. Since Verdict’s inference consists of a small matrix multiplication,
we did not observe a noticeable increase in its runtime overhead even when the number
of queries in the query synopsis increased (Figure 3.7(d)).

51

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True Correlation Parameter

Es
ti

m
at

ed
C

or
re

la
ti

on
Pa

ra
m

et
er

20 50 100# past queries:

Figure 3.8: Correlation Parameter Learning

Recall that the domain size of the attributes does not affect Verdict’s computational
cost since only the lower and upper bounds of range constraints are needed for covari-
ance computations (section 3.4.2).

3.11.7 Accuracy of Parameter Learning

In this section, we demonstrate our empirical study on the effectiveness of Verdict’s cor-
relation parameter estimation process. For this, we used the synthetic datasets generated
from pre-determined correlation parameters to see how close Verdict could estimate the
values of those correlation parameters. We let Verdict estimate the correlation param-
eter values using three different numbers of past snippets (20, 50, and 100) for various
datasets with different correlation parameter values.

Figure 3.8 shows the results. In general, the correlation parameter values discovered
by Verdict’s estimation process were consistent with the true correlation parameter val-
ues. Also, the estimated values tended to be closer to the true values when a larger
number of past snippets were used for the estimation process. This result indicates that
Verdict can effectively learn statistical characteristics of the underlying distribution just
based on the answers to the past queries.

3.11.8 Model Validation

This section studies the effect of Verdict’s model validation described in section 3.9. For
this study, we first generated synthetic datasets with several predetermined correlation
parameters values. Note that one can generate such synthetic datasets by first determin-

52

0.1 0.2 0.5 1.0 2.0 5.0 10.0
0

1

2

3

4

Artificial Correlation Parameter Scale (×)

R
at

io
of

A
ct

ua
lE

rr
or

to
Er

ro
r

Bo
un

d

Median without model validation
5th, 95th percentile without model validation
Median with model validation
5th, 95th percentile with model validation

Figure 3.9: Effect of model validation. For Verdict’s error bounds to be correct, the
95th percentile should be below 1.0. One can find that, with Verdict’s model validation,
the improved answers and the improved errors were probabilistically correct even when
largely incorrect correlation parameters were used.

ing a joint probabilistic distribution function with predetermined correlation parameter
values and sampling attribute values from the joint probability distribution function. In
usual usage scenario, Verdict estimates those correlation parameters from past snippets;
however, in this section, we manually set the values for the correlation parameters in Ver-
dict’s model, to test the behavior of Verdict running with possibly incorrect correlation
parameter values.

Figure 3.9 reports the experiment results from when Verdict was tested without a
model validation step and with a model validation step, respectively. In the figure, the
values on the X-axis are artificial correlation parameter scales, i.e., the product of the true
correlation parameters and each of those scales are set in Verdict’s model. For instance, if
a true correlation parameter was 5.0, and the “artificial correlation parameter scale” was
0.2, Verdict’s model was set to 1.0 for the correlation parameter. Thus, the values of the
correlation parameters in Verdict’s model were set to the true correlation parameters,
when the “artificial correlation parameter scale” was 1.0. Since the Y-axis reports the
ratio of the actual error to Verdict’s error bound, Verdict’s error bound was correct when
the value on the Y-axis was below 1.0.

In the figure, one can observe that, Verdict, used without the model validation, pro-
duced incorrect error bounds when the correlation parameters used for the model devi-

53

5% 10% 15% 20%
0

1.0

2.0

3.0

4.0

5.0

Proportion of the Number
of Appended Tuples

A
ve

ra
ge

Er
ro

r
(%

)
NoLearn error bound Verdict actual error
Verdict error bound (no adjustment)
Verdict error bound (with adjustment)

5% 10% 15% 20%
0

20

40

60

80

100

Proportion of the Number
of Appended Tuples

Er
ro

r
bo

un
d

V
io

la
ti

on
s

(%
)

no adjustment with adjustment

Figure 3.10: Data append technique (section 3.10) is highly effective in delivering correct
error estimates in face of new data.

ated largely from the true correlation parameter values. However, Verdict’s model val-
idation could successfully identify incorrect model-based answers and provide correct
error bounds by replacing those incorrect model-based answers with the raw answers
computed by the AQP system.

3.11.9 Data Append

In this section, we empirically study the impact of new data (i.e., tuple insertions) on
Verdict’s effectiveness. We generated an initial synthetic table with 5 million tuples
and appended additional tuples to generate different versions of the table. The newly
inserted tuples were generated such that their attribute values gradually diverged from
the attribute values of the original table. We distinguish between these different versions
by the ratio of their newly inserted tuples, e.g., a 5% appended table means that 250K
(5% of 5 million) tuples were added. We then ran the queries and recorded the error
bounds of VerdictAdjust and VerdictNoAdjust (our approach with and without the
technique introduced in section 3.10). We also measured the error bounds of NoLearn

and the actual error.
As shown in Figure 3.10(a), VerdictNoAdjust produced overly-optimistic error bounds

(i.e., lower than the actual error) for 15% and 20% appends, whereas VerdictAdjust pro-
duced valid error bounds in all cases. Since this figure shows the average error bounds
across all queries, we also computed the fraction of the individual queries for which each
method’s error bounds were violated. In Figure 3.10(b), the Y-axis indicates those cases

54

0.01 0.05 0.1 0.5 1.0
0

20
40
60
80

100

Sample Size (%)

A
ct

ua
lE

rr
or

R
ed

uc
ti

on
(%

)

Baseline2 Verdict

(a) Sample Sizes for Past Queries

0 20 40 60 80 100
0

20
40
60
80

100

Novel Query Ratio (%)

A
ct

ua
lE

rr
or

R
ed

uc
ti

on
(%

)

(b) Query Workload Composition

Figure 3.11: (a) Comparison of Verdict and Baseline2 for different sample sizes used by
past queries and (b) comparison of Verdict and Baseline2 for different ratios of novel
queries in the workload.

where the actual error was larger than the system-produced error bounds. This figure
shows more error violations for VerdictNoAdjust, which increased with the number
of new tuples. In contrast, VerdictAdjust produced valid error bounds in most cases,
while delivering substantial error reductions compared to NoLearn.

3.11.10 Verdict vs. Simple Answer Caching

To study the benefits of Verdict’s model-based inference, we consider another system
Baseline2, and make comparisons between Verdict and Baseline2, using the TPC-H

dataset. Baseline2 is similar to NoLearn but returns a cached answer if the new query
is identical to one of the past ones. When there are multiple instances of the same query,
Baseline2 caches the one with the lowest expected error.

Figure 3.11(a) reports the average actual error reductions of Verdict and Baseline2
(over NoLearn), when different sample sizes were used for past queries. Here, the
same samples were used for new queries. The result shows that both systems’ error
reductions were large when large sample sizes were used for the past queries. However,
Verdict consistently achieved higher error reductions compared to Baseline2, due to its
ability to benefit novel queries as well as repeated queries (i.e., the queries that have
appeared in the past).

Figure 3.11(b) compares Verdict and Baseline2 by changing the ratio of novel queries
in the workload. Understandably, both Verdict and Baseline2 were more effective for
workloads with fewer novel queries (i.e., more repeated queries); however, Verdict was
also effective for workloads with many novel queries.

55

Customer1 TPC-H0
20
40
60
80

100 80.61
63.42

Er
ro

r
R

ed
uc

ti
on

(%
)

(a) Cached

Customer1 TPC-H0
20
40
60
80

100 88.97 81.29

Er
ro

r
R

ed
uc

ti
on

(%
)

(b) Not Cached

Figure 3.12: Average error reduction by Verdict (compared to NoLearnTime) for the
same time budget.

3.11.11 Error Reductions for Time-Bound AQP Engines

In this section, we show Verdict’s error reductions over a time-bound AQP system. First,
we describe our experiment setting. Next, we present our experiment results.

Setup— Here, we describe two systems, NoLearnTime and Verdict, which we compare
in this section:
1. NoLearnTime: This system runs queries on samples of the original tables to obtain

fast but approximate query answers and their associated estimated errors. This is
the same approach taken by existing AQP engines, such as [10, 15, 38, 144, 148, 186].
Specifically, NoLearnTime maintains uniform random samples created offline (10%
of the original tables), and it uses the largest samples that are small enough to satisfy
the requested time bounds.

2. Verdict: This system invokes NoLearnTime to obtain raw answers/errors but modi-
fies them to produce improved answers/errors using our proposed inference process.
Verdict translates the user’s requested time bound into an appropriate time bound for
NoLearnTime.

Experiment Results— This section presents the error reduction by Verdict compared
to NoLearnTime. For experiments, we ran the same set of queries as in section 5.6
with both Verdict and NoLearnTime described above. For comparison, we used the
identical time-bounds for both Verdict and NoLearnTime. Specifically, we set the time-
bounds as 2 seconds and 0.5 seconds for the Customer1 and TPC-H datasets cached in
memory, respectively; and we set the time-bounds as 5.0 seconds for both Customer1

and TPC-H datasets loaded from SSD. Figure 3.12 reports Verdict’s error reductions over
NoLearnTime for each of four different combinations of a dataset and cache setting.

In Figure 3.12, one can observe that Verdict achieved large error reductions (63%–
86%) over NoLearnTime. These results indicate that the users of Verdict can obtain

56

-0
.1 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0

20

40

60

-0
.2

(Normalized) Inter-tuple Covariance
Pe

rc
en

ta
ge

(%
)

Figure 3.13: Inter-tuple Covariances for 16 real-life UCI datasets.

much more precise answers compared to the users of NoLearnTime within the same
time-bounds.

3.12 Prevalence of Inter-tuple Covariances in Real-World

In this section, we demonstrate the existence of the inter-tuple covariances in many real-
world datasets by analyzing well-known datasets from the UCI repository [107]. We
analyzed the following well-known 16 datasets: cancer, glass, haberman, ionosphere,
iris, mammographic-masses, optdigits, parkinsons, pima-indians-diabetes, segmenta-
tion, spambase, steel-plates-faults, transfusion, vehicle, vertebral-column, and yeast.

We extracted numeric attributes (or equivalently, columns) from those datasets and
composed each of the datasets into a relational table. Suppose a dataset has m attributes.
Then, we computed the correlation between adjacent attribute values in the i-th column
when the column is sorted in order of another j-th column—i and j are the values (in-
clusively) between 1 and m, and i 6= j. Note that there are m(m− 1)/2 number of pairs
of attributes for a dataset with m attributes. We analyzed all of those pairs for each of 16
datasets listed above.

Figure 3.13 shows the results of our analysis. The figure reports the percentage
of different levels of correlations (or equivalently, normalized inter-tuple covariances)
between adjacent attributes. One can observe that there existed strong correlations in the
datasets we analyzed. Remember that the users of Verdict do not need to provide any
information regarding the inter-tuple covariances; Verdict automatically detects them as
described in section 3.8, relying on the past snippet answers stored in the query synopsis.

57

3.13 Technical Details

In this section, we present the mathematical details we have omitted in the main body
of this chapter. First, we describe the analytics expression for the double-integrals in
Equation (3.10). Second, we extend the result of section 3.4 to categorical attributes.
Third, we provides details on some correlation parameter computations.

3.13.1 Double-integration of Exp Function

For the analytic computation of Equation (3.10), we must be able to analytically express
the result of the following double integral:

f (x, y) =
∫ b

a

∫ d

c
exp

(
− (x− y)2

z2

)
dx dy (3.15)

To obtain its indefinite integral, we used the Symbolic Math Toolbox in Matlab, which
yielded:

f (x, y) = −1
2

(
z2 exp

(
− (x− y)2

z2

))
−
√

π

2
z(x− y) erf

(
x− y

z

)
where erf(·) is the error function, available from most mathematics libraries. Then, the
definite integral in Equation (3.15) is obtained by f (b, d)− f (b, c)− f (a, d) + f (a, c).

3.13.2 Handling Categorical Attributes

Thus far, we have assumed that all dimension attributes are numeric. This section de-
scribes how to handle dimension attributes that contain both numeric and categorical
attributes. Let a tuple t = (a1, . . . , ac, ac+1, . . . , al), where c is the number of categor-
ical attributes; the number of numeric attributes is l − c. Also tc = (a1, . . . , ac) and
tl = (ac+1, . . . , al). The covariance between two query snippet answers in Equation (3.8)
is extended as:

∑
tc∈Fc

i

∑
t′c∈Fc

j

∫
tl∈Fl

i

∫
t′l∈Fl

j

cov(νg(t), νg(t
′)) dt dt′

where Fc
i is the set of tc that satisfies qi’s selection predicates on categorical attributes,

and Fl
i is the set of tl that satisfies qi’s selection predicates on numeric attributes. The

first question, then, is how to define the inter-tuple covariance, i.e., cov(νg(t), νg(t′)),
when two arbitrary tuples t and t′ follow the schema with both categorical and numeric

58

attributes. For this, Verdict extends the previous inter-tuple covariance in Equation (3.9),
which was defined only for numeric attributes, as follows:

cov(νg(t), νg(t
′)) ≈ σ2

g ·
c

∏
k=1

δ(ak, a′k)
l

∏
k=c+1

exp

(
−
(ak − a′k)

2

l2
g,k

)

where δ(a, a′) returns 1 if a = a′ and 0 otherwise. The inter-tuple covariance between two
tuples become zero if they include different categorical attribute values. Note that this is
a natural choice, since the covariance between the two random variables, independently
and identically drawn from the same distribution, is zero. With the above definition of
the inter-tuple covariance, cov(θ̄i, θ̄j) is expressed as:

σ2
g

c

∏
k=1
|Fi,k ∩ Fj,k|

l

∏
k=c+1

∫ ei,k

si,k

∫ ej,k

sj,k

exp

(
−
(ak − a′k)

2

l2
g,k

)
da′kak

(3.16)

where Fi,k and Fj,k are the set of the Ak’s categorical attribute values used for the in

operator in i-th and j-th query snippet, respectively. If qi includes a single equality con-
straint for a categorical attribute Ak, e.g., Ak = 1, the equality constraint is conceptually
treated as the in operator with the list including only that particular attribute value. If
no constraints are specified in qi for a categorical attribute Ak, Fi,k is conceptually treated
as a universal set including all attribute values in Ak. The above expression can be com-
puted efficiently, since counting the number of common elements between two sets can
be performed in a linear time using a hash set, and the double integral of an exponential
function can be computed analytically (section 3.13.1).

3.13.3 Analytically Computed Parameter Values

While Verdict learns correlation parameters, i.e., lg,1, . . . , lg,l, by solving an optimization
problem, the two other parameters, i.e., the expected values of query answers (namely ~µ)
and the multiplier for ρg(t, t′) (namely σg), are analytically computed as follows. Recall
that ~µ is used for computing model-based answers and errors (Equation (3.12)), and σg

is used for computing the covariances between pairs of query answers (Equation (3.16)).
First, we use a single scalar value µ for the expected values of the prior distribution;

that is, every element of ~µ is set to µ once we obtain the value. Note that it only serves
as the means in the prior distribution. We take different approaches for AVG(Ak) and

59

FREQ(*) as follows. For AVG(*), we simply set µ = ∑n
i=1 θi/n; whereas, for FREQ(*), we

set µ = ∑n
i=1 θi/|Fi| where |Fi| is the area of the hyper-rectangle ∏l

k=c+1(si,k, ei,k) specified
as qi’s selection predicates on numeric attributes.

Second, observe that σ2
g is equivalent to the variance of νg(t). For AVG(Ak), we use

the variance of θ1, . . . , θn; for FREQ(*), we use the variance of θ1/|Fi|, . . . , θn/|Fi|. We
attempted to learn the optimal value for σ2

g in the course of solving the optimization
problem (Equation (3.13)); however, the local optimum did not produce a model close to
the true distribution.

3.14 Related Work

Approximate Query Processing— There has been substantial work on sampling-based
approximate query processing [11,12,15,26,38,41,49,56,70,89,121,131,145,160,171]. Some
of these systems differ in their sample generation strategies. Some of these systems differ
in their sample generation strategies (see [127] and the references within). For instance,
STRAT [38] and AQUA [12] create a single stratified sample, while BlinkDB creates
samples based on column sets. Online Aggregation (OLA) [40, 68, 134, 177] continuously
refines its answers during query execution. Others have focused on obtaining faster
or more reliable error estimates [14, 178]. These are orthogonal to our work, as reliable
error estimates from an underlying AQP engine will also benefit DBL. There is also AQP
techniques developed for specific domain, e.g., sequential data [20, 140], probabilistic
data [59, 132], and RDF data [72, 164], and searching in high-dimensional space [137].
However, our focus in this chapter is on general (SQL-based) AQP engines.

Adaptive Indexing, View Selection— Adaptive Indexing and database cracking [73, 74,
141] has been proposed for a column-store database as a means of incrementally up-
dating indices as part of query processing; then, it can speed up future queries that
access previously indexed ranges. While the adaptive indexing is an effective mecha-
nism for exact analytic query processing in column-store databases, answering queries
that require accessing multiple columns (e.g., selection predicates on multiple columns)
is still a challenging task: column-store databases have to join relevant columns to recon-
struct tuples. Although Idreos et al. [74] pre-join some subsets of columns, the number
of column combinations still grows exponentially as the total number of columns in a
table increases. Verdict can easily handle queries with multiple columns due to its ana-
lytic inference. Materialized views are another means of speeding up future aggregate

60

queries [48, 65, 85, 126]. Verdict also speed up aggregate queries, but Verdict does not
require strict query containments as in materialized views.

Pre-computation— COSMOS [177] stores the results of past queries as multi-dimensional
cubes, which are then reused if they are contained in the new query’s input range, while
boundary tuples are read from the database. This approach is not probabilistic and is
limited to low-dimensional data due to the exponential explosion in the number of pos-
sible cubes. Also, similar to view selection, COSMOS relies on strict query containment.

Model-based and Statistical Databases— Statistical approaches have been used in databases
for various goals. MauveDB [46] constructs views that express a statistical model, hiding
the possible irregularities of the underlying data. MauveDB’s goal is to support statisti-
cal modeling, such as regression or interpolation. , rather than speeding up future query
processing. BayesDB [119] provides a SQL-like language that enables non-statisticians
to declaratively use various statistical models. Bayesian networks have been used for
succinctly capturing correlations among attributes [60]. Exploiting these correlations can
be an interesting future direction for DBL.

Maximum Entropy Principle— In the database community, the principle of maximum
entropy (ME) has been previously used for determining the most surprising piece of
information in a data exploration context [152], and for constructing histograms based on
cardinality assertions [92]. Verdict uses ME differently than these previous approaches;
they assign a unique variable to each non-overlapping area to represent the number of
tuples belonging to that area. This approach poses two challenges when applied to an
AQP context. First, it requires a slow iterative numeric solver for its inference. Thus,
using this approach for DBL may eliminate any potential speedup. Second, introducing
a unique variable for every non-overlapping area can be impractical as it requires O(2n)

variables for n past queries. Finally, the previous approach cannot express inter-tuple
covariances in the underlying data. In contrast, Verdict’s approach handles arbitrarily
overlapping ranges in multidimensional space with O(n) variables (and O(n2) space),
and its inference can be performed analytically.

3.15 Summary

In this chapter, we presented database learning (DBL), a novel approach to exploit past
queries’ (approximate) answers for speeding up new queries using a principled sta-
tistical methodology. We presented a prototype system of this vision, called Verdict,
implemented on top of Spark SQL. Through extensive experiments on real-world and

61

benchmark query logs, we demonstrated that Verdict supported 73.7% of real-world an-
alytical queries, speeding them up by up to 23× compared to an online aggregation AQP
engine.

Here, we finish the first part of this dissertation. Although our contribution in this
part is limited to showing that exploiting past computations can speed up the analytic
SQL queries, our future work aims to exploit past computations for speeding up general
SQL query processing. Chapter 6 describes more details on this future work.

62

Part II
Building Task-aware Synopses

63

Chapter 4

Accurate Approximate Searching by Learn-
ing from Data

Recall that this dissertation presents two approaches—exploiting past computations and
building task-aware synopses—for improving approximate query processing (AQP). In
this chapter, we present one of the techniques that speeds up AQP by building task-
aware synopses. This technique speeds up an essential task for many data mining algo-
rithms: similarity search.

4.1 Motivation

Finding the k most similar data items to a user’s query item (known as k-nearest neigh-
bors or kNN) is a common building block of many important applications. In machine
learning, fast kNN techniques boost the classification speed of non-parametric classi-
fiers [33, 95, 155, 188]. kNN is also a crucial step in collaborative filtering, a widely used
algorithm in online advertisement and movie/music recommendation systems [97,154].
Moreover, in databases and data mining, finding the k-most similar items to users’
queries is the crux of image and text searching [106, 163, 167].

Unfortunately, despite thirty years of research in this area [23, 44, 64, 76, 90, 108, 180],
exact kNN queries are still prohibitively expensive, especially over high-dimensional ob-
jects, such as images, audio, videos, documents or massive scientific arrays [173]. For
example, one of the most recent approaches for exact kNN that exploits sophisticated
pruning is only 9× faster than a baseline table scan [90]. This prohibitive cost has given
rise to approximate kNN.

One of the most common approaches to finding approximate kNN is using a set of bi-
nary hash functions that map each data item into a binary vector, called a hashcode. The

64

database then finds the kNN items using the Hamming distance1 among these (binary)
hashcodes. Due to special properties of these binary vectors [130], searching for kNN
in the hash space (a.k.a. Hamming space) can be performed much more efficiently than
the original high-dimensional space. These approaches are approximate because a query
item’s kNN in the Hamming space may be different than its kNN in the original space.
Thus, the accuracy of hashing-based approximations is judged by their effectiveness in
preserving the kNN relationships (among the original items) in the Hamming space. In
other words, given a query item q and its kNN set {v1, · · · , vk}, a hash function h should
be chosen such that most of the hashcodes in {h(v1), · · · , h(vk)} fall in the kNN set of
h(q) in the Hamming space.

Existing Approaches— Starting with the pioneering work of Gionis, Indyk, and Mot-
wani on locality sensitive hashing (LSH) over 15 years ago [61], numerous techniques
have been proposed to improve the accuracy of the hashing-based kNN procedures
[18, 37, 45, 63, 66, 69, 83, 84, 99, 100, 109, 113, 149, 174, 179]. Implicitly or explicitly, almost
all hashing algorithms pursue the following goal: to preserve the relative distance of the
original items in the Hamming space. That is, if we denote the distance between items
v1 and v2 by ‖v1− v2‖ and the Hamming distance between their respective hashcodes by
‖h(v1)− h(v2)‖H, the hash function h is chosen such that the value of ‖h(v1)− h(v2)‖H

is (ideally) a linear function of ‖v1− v2‖, as shown in Figure 5.1(c). Thus, while previous
techniques use different ideas, they tend to minimize the Hamming distance of nearby
items while maximizing it for far apart items.

Figure 5.1(a) uses a toy example with nine data items (including a query item q) to
illustrate how existing methods choose their hashcodes. In this example, four hyper-
planes h1, h2, h3, and h4 are used to generate 4-bit hashcodes. Here, each hyperplane hi

acts as a binary separator to determine the i-th leftmost bit of the output hashcode; the
i’th bit of h(x) is 0 if the item x falls on the left side of hi and this bit is 1 otherwise. For
instance, the hashcode for v3 is 1000 because v3 falls in the region to the right of h1 and
to the left of h2, h3 and h4 hyperplanes.

To preserve the original distances, existing hashing techniques tend to place fewer
(more) separators between nearby (far apart) items to ensure that their hashcodes differ
in fewer (more) positions and have a smaller (larger) Hamming distance. In other words,
the expected number of separators between a pair of items tends to be roughly propor-
tional to their relative distance in the original space.2 In this example, v5’s distance

1Hamming distance between two binary vectors of equal length is the number of positions at which
the corresponding bits are different.

2We provide a more precise dichotomy of previous work in Section 4.5.

65

from q is twice v4’s distance from q. This ratio remains roughly the same after hashing:
‖h(v5)− h(q)‖H = ‖1100− 0000‖H = 2 while ‖h(v4)− h(q)‖H = ‖1000− 0000‖H = 1.
Likewise, since v8 is the farthest item from q, four separators are placed between them,
causing their hashcodes to differ in four positions (0000 versus 1111) and thus yielding
a greater Hamming distance, namely ‖h(v8)− h(q)‖H = 4.

This goal is intuitive and can capture the intra-item similarities well. However, this
approach requires a large number of hash bits (i.e., separators) to accurately capture
all pair-wise similarities. Since using longer hashcodes increases the response time of
search operations, we need a better strategy than simply increasing the number of sep-
arators. In this chapter, we make the following observation. Since the ultimate goal of
the hashing phase is to simply find the kNN items, preserving all pair-wise similarities
is unnecessary and wasteful. Rather, we propose to spend our hash bits on directly
maximizing the accuracy of the kNN task itself, as described next.

Our Approach— In this work, we pursue the opposite goal of previous approaches.
Instead of preserving the proximity of similar items in the Hamming space, we maximize
their Hamming distance. In other words, instead of placing fewer separators between
nearby items and more between far apart items, we do the opposite (compare Figures
5.1(a) and (b)).

We argue that this seemingly counter-intuitive idea is far more effective at solving
the kNN problem, which is the ultimate goal of hashing. The key intuition is that we
should not use our limited hash bits on capturing the distances among far apart items.
Instead, we use our hash bits to better distinguish nearby items, which are likely to be
in each other’s kNN sets. Given a fixed number of hash bits (i.e., separators), we can
achieve this distinguishing power by placing more separators among similar items. In
the previous example, to find the 3-NN (i.e., k = 3) items for item q, we must be able
to accurately compare v3 and v4’s distances to q using their respective hashcodes. In
other words, we need to have ‖h(v3)− h(q)‖H < ‖h(v4)− h(q)‖H in order to infer that
‖v3 − q‖ < ‖v4 − q‖.

However, due to the proximity of v3 and v4, existing methods are likely to assign them
the same hashcode, as shown in Figure 5.1(a). In contrast, our strategy has a higher
chance of correctly differentiating v3 and v4, due to its higher number of separators
among nearby items. This is shown in Figure 5.1(b), v3 and v4’s hashcodes differ by one
bit. Obviously, our idea comes at the cost of confusing far apart items. As shown in
Figure 5.1(b), we will not be able to differentiate q’s distance to any of v5, v6, v7, or v8.
However, this is acceptable if the user is interested in k ≤ 4.

66

q v1 v2v3 v4 v5 v6 v7 v8

code:
0000

1000 1100 1110 1111h1 h2 h3 h4

0
distance from q

(a) Existing Methods

q v1 v2v3 v4 v5 v6 v7 v8

h1 h2 h3 h4

0
distance from q

(b) Our Method

original distanceH
am

m
in

g
di

st
an

ce

Ours (NSH)
Existing

(c)

Figure 4.1: In (a) and (b), the vertical arcs indicate the boundaries where the Hamming
distance from q increases by 1. The third figure (c) shows the relationship between data
items’ original distance and their expected Hamming distance.

This intuition can be applied to more general cases, where the query item q or the
value of k may not be necessarily known in advance. If we choose a neighborhood size
just large enough to include most of the kNN items that typical users are interested in,
e.g., for k = 1 to 1000, we expect an increased accuracy in correctly ordering such items,
and hence returning the correct kNN items to the user. Since the value of k is typically
much smaller than the total number of the items in a database, we expect significant
gains over existing techniques that seek to preserve all pair-wise distances using a fixed
number of hash bits.

The stark difference between our strategy and previous techniques is summarized
in Figure 5.1(c). The goal of existing methods is to assign hashcodes such that the
Hamming distance between each pair of items is as close to a linear function of their
original distance as possible. Our method changes the shape of this function, shown
as a solid line; we impose a larger slope when the original distance between a pair of
items is small, and allow the curve to level off beyond a certain point. This translates
to a higher probability of separating the kNN items from others in our technique (we
formally prove this in Section 4.3.1).

The main challenge then is how to devise a hashing mechanism that can achieve this
goal. We solve this problem by proposing a special transformation that stretches out
the distance between similar items (compared to distant items). Our method, called

67

Neighbor-Sensitive Hashing (NSH), uses these transformed representations of items to
achieve the goal described above.

Contributions— In this chapter, we make several contributions.
1. We formally prove that increasing the distance between similar items in the Ham-

ming space increases the probability of successful identification of kNN items (Sec-
tion 4.3.1).

2. We introduce Neighbor-Sensitive Hashing (NSH), a new hashing algorithm motivated
by our seemingly counter-intuitive idea (Sections 4.3.2, 4.3.3, and 4.3.4).

3. We confirm our formal results through extensive experiments, showing the supe-
riority of Neighbor-Sensitive Hashing over Locality-Sensitive Hashing [18] and other
state-of-the-art hashing algorithms for approximate kNN [57, 69, 83, 109, 113, 174].
(Section 5.6).

In summary, our algorithm for NSH achieves 250× speedup over the baseline, obtain-
ing an average recall of 57.5% for 10-NN retrieval tasks. Compared to the state-of-the-art
hashing algorithms, our algorithm reduces the search time by up to 34% for a fixed recall
(29% on average), and improves the recall by up to 31% for a fixed time budget.3

We overview the end-to-end workflow of hashing-based techniques in Section 4.2.
We present our NSH strategy in Section 4.3. Section 5.6 reports our empirical analysis
and comparisons against existing hashing algorithms. Section 4.5 overviews the related
work, and Section 4.6 concludes our chapter with future work.

4.2 Hashing-based kNN Search

In this section, we provide the necessary background on hashing-based approximate
kNN. Section 4.2.1 explains a typical workflow in hashing-based approximate kNN. Sec-
tion 4.2.2 reviews a well-known principle in designing hash functions to compare with
ours.

4.2.1 Workflow

Figure 4.2 summarizes the prototypical workflow of a hashing-based kNN system. Among
the three componenets, Hash Function and Hamming Search are more important. Hash
Function is the component that converts the data items residing in the database at index
time into binary vectors, known as hashcodes. The same function is used to also convert

3In approximate kNN, a simple post ranking step is used to mitigate the impact of low precision while
preserving the recall [79, 80]. See Section 4.4.1.

68

Hash Function
b

(code size)

Hamming Search

Re-rank

database query

database
hashcodes

query
hashcodes

rNN

kNN

LSH

SH

AGH

SpH

CH

CPH

NSH (Ours)

Any of the following methods
can be plugged into Hash Function.

Figure 4.2: The workflow in hashing-based search consists of two main components:
Hash Function and Hamming Search. Re-rank is an extra step to boost the search ac-
curacy. This chapter improves the most critical component of this workflow, i.e., Hash
Function.

the query item provided at run time into a hashcode. The choice of Hash Function is
critical for the accuracy of the kNN task. Ideally, the hashcodes should be generated such
that the kNN set retrieved based on these hashcodes is always identical to the kNN set
based on the original distances. However, no tractable method is known for achieving
this goal; even a simpler problem is proven to be NP-hard [174]. As a result, hashing-
based techniques are only approximate; they aim to return as many true kNN items as
possible. In this chapter, we focus on improving the accuracy of this component (or its
efficiency, given a required level of accuracy).

The length of the hashcodes (b) is an important design parameter that must be de-
termined at index time. In general, there is a trade-off between the hashcode length
and the search speed. The longer hashcodes tend to capture the original distances more
accurately, while they slow down the other runtime component, namely the Hamming
Search.

Once the hashcodes that capture the original distance information (to some extent)
are generated, Hamming Search is responsible for time-efficient retrieval of the kNN
items in the Hamming space. The simplest approach would be a linear scan during
which the distance between the query’s hashcode and the hashcode of every item in the
database is computed. Although this simple approach improves over a linear scan over

69

the original data vectors, there have been more efficient algorithms, such as Multi-Index
Hashing (MIH), developed for exact Hamming Search [130] in sub-linear time complexity.
Note that this search speedup is only possible because the hashcodes are (small) binary
vectors; the data structure cannot be used to speed up the search for general multi-
dimensional data representations.

The last component of the system, Re-rank, is a post-lookup re-ranking step designed
for mitigating the negative effects of the hashing step on accuracy. Instead of requesting
exactly k data items to Hamming Search, we can request r (≥ k) data items. Next,
we recompute the similarity of each retrieved item to the query item (in their original
representations), then sort and choose the top-k among these r items. Naturally, the
larger the value of r is, the more accurate the final kNN items are. However, using a
larger r has two drawbacks. First, it needs more time to obtain answers from Hamming
Search. Second, the re-ranking process takes more time.

4.2.2 Hash Function Design

Since the Hash Function choice in Figure 4.2 is independent of the Hamming Search
component, the primary objective in designing a good hash function has been finding
a hash function that produces high average recalls for a given hashcode length. The
Hash Function component is in fact composed of b bit functions, each responsible for
generating an individual bit of the overall hashcode. Next, we define the role of these
bit functions more formally.

Definition 3. (Bit Function) A function h that takes a data item v and produces h(v) ∈
{−1, 1} is called a bit function. Here, v can be a novel query item or any of the existing
items in the database. The value of the bit function, h(v), is called a hash bit.

Note that in reality binary bits are stored in their {0, 1} representations. However,
using signed bits {−1, 1} greatly simplifies our mathematical expressions. Thus, we will
use signed binary bits throughout the chapter.

Definition 4. (Hash Function) A hash function h is a series of b bit functions (h1, . . . , hb).
The hash bits produced by h1 through hb are concatenated together to form a hashcode of
length b.

We consider a hashcode of v as a b-dimensional vector whose elements are either of
{−1, 1}. A natural distance measure between two hashcodes is to count the number of
positions that have different hash bits, known as the Hamming distance. As mentioned

70

q v1v2 v3 q v1v2 v3Hash

(a) Regular Hashing

q v1v2 v3 q v1 v2v3 q v1 v2v3NST
LSH-like

Hash

(b) Hashing with NST

Figure 4.3: The motivation behind using Neighbor-Sensitive Transformation (NST) before
hashing: applying NST to data items makes the same hashing algorithm place more
separators between nearby items (v1 and v2), and place fewer separators between distant
items (v2 and v3).

in Section 5.1, we denote the Hamming distance between data items vi and vj by ‖h(vi)−
h(vj)‖H.

Finally, we formally state the locality-sensitive property [37, 45], which is a widely
accepted principle for designing hash functions. Let q be a query, and vi, vj be two
arbitrary data items. We say that a bit function h satisfies the locality-sensitive property,
if

‖q− vi‖ < ‖q− vj‖ ⇒ Pr(h(q) 6= h(vi)) < Pr(h(q) 6= h(vj)). (4.1)

where Pr(·) denotes the probability.
Datar et al. [45] showed that assigning hash bits based on their relative locations with

respect to a set of randomly-drawn hyperplanes satisfies the locality-sensitive property.
That is, for a b-bit hashcode, b independent hyperplanes are drawn from a normal dis-
tribution to compose a hash function. Using an unlimited number of hash bits using
this approach could perfectly capture the original distances. However, many recent al-
gorithms have shown that this simple approach does not achieve high kNN accuracy
when the hashcodes need to be short [69, 83, 84, 109, 174].

4.3 Neighbor-Sensitive Hashing

This section describes our main contribution, Neighbor-Sensitive Hashing (NSH). First,
Section 4.3.1 formally verifies our intuition introduced in Section 5.1: using more sep-
arators for nearby data items allows for more accurate distinction of kNN items. As

71

depicted in Figure 4.3, NSH is the combination of a hashing algorithm and our pro-
posed Neighbor-Sensitive Transformation (NST). Section 4.3.2 lays out a set of abstract
mathematical properties for NST, and Section 4.3.3 presents a concrete example of NST
that satisfies those properties. Lastly, Section 4.3.4 describes our final algorithm (NSH)
that uses the proposed NST as a critical component.

4.3.1 Formal Verification of Our Claim

In this section, we formally verify our original claim: using more separators between
data items leads to a more successful ordering of data items based on their hashcodes.
First, let us formalize the intuitive notions of “having more separators” and “correct
ordering based on hashcodes”:
• Let q be a query point, v1, v2 be two data items where ‖q− v1‖ < ‖q− v2‖, and h

be a hash function that assigns hashcodes to these items. Then, having more sepa-
rators between v1 and v2 means a larger gap in terms of their Hamming distance,
namely ‖h(q)− h(v2)‖H − ‖h(q)− h(v1)‖H will be larger.
• For v1 and v2 to be correctly ordered in terms of their distance to q, v1’s hashcode

must be closer to q’s hashcode compared to v2’s hashcode. In other words, ‖h(q)−
h(v2)‖H − ‖h(q)− h(v1)‖H must be a positive value.

In the rest of this chapter, without loss of generality, we assume that the coordinates
of all data items are normalized appropriately, so that the largest distance between pairs
of items is one. Next, we define the class of hash functions we will use.

Definition 5. (LSH-like Hashing) We call a bit function h LSH-like, if the probability of
two items vi and vj being assigned to different hash bits is linearly proportional to their
distance, namely Pr(h(vi) 6= h(vj)) = c · ‖vi − vj‖ for some constant c. We call a hash
function h LSH-like if all its bit functions are LSH-like.

Note that not all existing hashing functions are LSH-like. However, there are sev-
eral popular hashing algorithms that belong to this class, such as LSH for Euclidean
distance [45]. With these notions, we can now formally state our claim.

Theorem 4.1. Let q be a query, and v1 and v2 two data items. Also, let h be an LSH-
like hash function consisting of b independent bit functions h1, . . . , hb. Then, the following
relationship holds for all v1 and v2 satisfying 0.146 < ‖q− v1‖ < ‖q− v2‖: A larger value
of E‖h(q)−h(v2)‖H− E‖h(q)−h(v1)‖H implies a larger value of Pr(‖h(q)−h(v1)‖H <

‖h(q)− h(v2)‖H), i.e., the probability of successful ordering of v1 and v2 based on their
hashcodes.

72

Proof. Let us denote the probability that an individual bit function h assigns q and v1 into
different hash bits is p1, and the probability that assigns q and v2 into different hash bits
is p2. A reasonable bit function satisfies p1 < p2 ≤ 0.5. Note that E‖h(q)− h(v2)‖H −
E‖h(q) − h(v1)‖H = b · (p2 − p1). There are two cases in which the above expression
increases: first, p1 becomes smaller, and second, p2 becomes larger. Let us start with the
first case.

To compute the probability distribution of the difference of hamming distances,
p(‖h(q) − h(v2)‖H − ‖h(q) − h(v1)‖H), we take a look at the distribution of ‖h(q) −
h(v1)‖H. Since b number of bit functions that compose h are independent of one an-
other, ‖h(q) − h(v1)‖H follows the binomial distribution with mean bp1 and variance
bp1(1− p1). Similarly, ‖h(q)− h(v2)‖H follows the binomial distribution with mean bp2

and variance bp2(1− p2). Exploiting the fact that binomial distributions can be closely
approximated by the normal distributions with the same mean and the variance, and
that the difference between two normal distributions follows another normal distribu-
tion, we can state the following:

p(‖h(q)− h(v1)‖H < ‖h(q)− h(v2)‖H)

≈
∫ ∞

0
N (bp2 − bp1, bp2(1− p2) + bp1(1− p1)) dx

where N denotes the probability distribution function of a normal distribution. Note
that the above quantity is a function of two values: mean and standard deviation. Due to
the shape of a normal distribution, higher mean and smaller standard deviation results
in a higher chance of successful ordering of v2 and v1 based on their hashcodes. If
p1 decreases, the mean of the above normal distribution increases, and the standard
deviation of the distribution decreases. Therefore, the quantity of our interest increases.
(End of the first case)

Next, let us discuss the case where p2 increases. This case asks for more careful
analysis because the standard deviation of the normal distribution increases. Recall
that the area computed by the integration is a function of the mean and the standard
deviation of the normal distribution; thus, if the mean increases faster than the standard
deviation, the quantity of our interest still increases. Let us compute the condition that the
mean increases faster. Since we are dealing with the case in which p2 increases,

∂(bp2 − bp1)

∂p2
= b (4.2)

73

must be larger than

∂
√

bp2(1− p2) + bp1(1− p1)

∂p2
= b · 1− 2p2

2
√

p2 − p2
2

(4.3)

The condition for this is p2 > 0.146. Then, what is the fraction of the data items that
do not satisfy this condition? For this, a pair of data items should be assigned to the
different hash bits with the probability less than 0.146. For a single dimensional case,
the fraction of such area is 0.146/0.5. For a 10-dimensional case, the fraction of such area
is (0.146/0.5)10 = 4.5 · 10−6. Because the dimensions of the data items we are interested
in are usually over 100, the fraction of the data items that do not satisfy this condition is
very small. (End of the second case)

This theorem implies that having more separators between two data items helps with
their successful ordering using their hashcodes. Since the total number of separators is a
fixed budget b, we need to borrow some of the separators that would otherwise be used
for distinguishing distant (or non-kNN) items. The following sections describe how this
theorem can be used for designing such a hash function.

4.3.2 Neighbor-Sensitive Transformation

As shown in Figure 4.3, the main idea of our approach is that combining our Neighbor-
Sensitive Transformation (NST) with an LSH-like hash function produces a new hash func-
tion that is highly effective in distinguishing nearby items. In this section, we first define
NST, and then formally state our claim as a theorem.

Definition 6. (Neighbor-Sensitive Transformation (NST)) Let q be a query. A coordinate-
transforming function f is a q-neighbor-sensitive transformation for a given distance
range (ηmin, ηmax), or simply a q-(ηmin, ηmax)-sensitive transformation, if it satisfies the
following three properties:

1. Continuity: f must be continuous.4

2. Monotonicity: For all constants ti and tj where ti ≤ tj, f must satisfy E(‖ f (q)−
f (vi)‖) < E(‖ f (q)− f (vj)‖), where the expectations are computed over data items
vi and vj chosen uniformly at random among items whose distances to q are ti and
tj, respectively.

4This condition is to prevent a pair of similar items in the original space from being mapped to radically
different points in the transformed space.

74

0 1.0
0

1.0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(a) Only Monotonic

0 1.0
0

1.0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(b) No Larger Gap

0 µmax 1.0

0
1.

0

original distance

tr
an

sf
or

m
ed

di
st

an
ce

(c) Satisfies All

Figure 4.4: Visual demonstration of NST properties.

3. Larger Gap: For all constants ti and tj where ηmin ≤ ti ≤ tj ≤ ηmax, f must satisfy
E(‖ f (q) − f (vj)‖ − ‖ f (q) − f (vi)‖) > tj − ti, where the expectation is computed
over data items vi and vj chosen uniformly at random among items whose dis-
tances to q are ti and tj, respectively.

The coordinates are re-normalized after the transformation, so that the maximum
distance between data items is 1.

To visually explain the properties described above, three example functions are pro-
vided in Figure 4.4. Among these three functions, Figure 4.4(c) is the only function that
satisfies all three properties — the function in Figure 4.4(a) is neither continuous nor
satisfies the Larger Gap property, and the function in Figure 4.4(b) is continuous and
monotonic but does not satisfy the Larger Gap property.

The third property of NST (Larger Gap) plays a crucial role in our hashing algorithm.
Recall that our approach involves an LSH-like hashing whereby two data items are dis-
tinguished in the Hamming space with a probability proportional to their distance. This
implies that if we alter the data items to stretch out their pairwise distances, their pair-
wise Hamming distances are also likely to increase. Thus, such data items become more
distinguishable in Hamming space after the transformation.

Thus far, we have defined NST using its three abstract properties. Before presenting
a concrete example of a NST, we need to formally state our claim.

Theorem 4.2. Let h be an LSH-like hash function and f be a q-(ηmin, ηmax)-sensitive
transformation. Then, for all constants ti and tj, where ηmin ≤ ti ≤ tj ≤ ηmax, we have
the following:

E(‖h(f (q))− h(f (vj))‖H − ‖h(f (q))− h(f (vi))‖H)

> E(‖h(q)− h(vj)‖H − ‖h(q)− h(vi)‖H)
(4.4)

75

where the expectations are computed over data items vi and vj chosen uniformly at
random among data items whose distances to q are ti and tj, respectively.

Proof. Since h is LSH-like,

E(‖h(f (q))− h(f (vj))‖H) = Ev(Eh(‖h(f (q)))− h(f (vj)‖H))

= Ev(c · b · ‖ f (q)− f (vj)‖)
= c · b · Ev(‖ f (q)− f (vj)‖)

where Eh is an expectation over h and Ev is an expectation over vj. Similarly,

E(‖h(f (q))− h(f (vi))‖H) = c · b · Ev‖ f (q)− f (vi)‖
E(‖h(q)− h(vj)‖H) = c · b · Ev‖q− vj‖
E(‖h(q)− h(vi)‖H) = c · b · Ev‖q− vi‖

where Ev is either an expectation over vi or an expectation over vj depending on the
random variable involved. Due to the third property of NST,

Ev‖ f (q)− f (vj)‖ − Ev‖ f (q)− f (vi)‖ > ‖q− vj‖ − ‖q− vi‖

Therefore, the relationship we want to show also holds.

Now that we have established that NST can help with constructing more effective
hashcodes, our next task is to find a concrete transformation function that satisfies NST’s
three properties.

4.3.3 Our Proposed NST

In this section, we first propose a coordinate transformation function for a known query
q, and describe its connection to NST (Definition 6). Then, we extend our transformation
to handle unknown queries as well. The proposed NST is also a crucial component of
our hashing algorithm, which will be presented in the following section.

Definition 7. (Pivoted Transformation) Given a data item p, a pivoted transformation fp

transforms an arbitrary data item v as follows:

fp(v) = exp
(
−‖p− v‖2

η2

)
(4.5)

where η is a positive constant. We call p the pivot.

76

For a pivoted transformation fp(v) to be a q-neighbor-sensitive transformation, we
need the distance between p and q to be small enough. The proximity of p and q is
determined by the ratio of their distance to the value of η. For example, our lemma
below shows that ‖p− q‖ < η/2 is a reasonable choice.

To gain a better understanding of the connection between a pivoted transformation
and NST, suppose that the pivot p is at the same point as the query q, and that v1

and v2 are two data items satisfying ‖q− v2‖ ≥ ‖q− v1‖. We consider two cases: the
first is that v1 and v2 are close to q so that their distances are less than η, and the
second case is that v1 and v2 are distant from q so that their distances are much larger
than η. In the first case, the distance between v1 and v2 after the transformation is
exp(−‖q− v1‖2/η2)− exp(−‖q− v2‖2/η2), which tends to be relatively large because
the exponential function exp(−x2) decrease fast around 1. In the second case, when the
data items are far from the query, the value of the exponential function becomes almost
zeros, and so does the distance between those data items after the transformation. In
other words, the transformation has an effect of stretching out the space near the query
while shrinking the space distant from the query.

Next, we establish a connection between a pivoted transformation and NST. First, it is
straightforward that a pivoted transformation satisfies continuity, since it only uses con-
tinuous functions. The second property of NST, monotonicity, is shown by the following
lemma.

Lemma 4. A pivoted transformation fp satisfies the second property of NST, i.e., mono-
tonicity.

Proof. Let q be a query, p be a pivot, and t be an arbitrary positive constant. Also, v is a
data item chosen uniformly at random among items whose distance to q is t. In addition,
let α denote an angle between −→qv and −→qp. Since v is chosen uniformly at random, α is a
random variable whose probability distribution function is a uniform between 0 and 2π.

To show the monotonicity, it is enough to show the following:

E(| f (q)− f (v)|)
∂t

≥ 0 =⇒ E
(

∂| f (q)− f (v)|
∂t

)
≥ 0

The interchange of E and the partial derivative is valid since the random variable inside
the expectation (v) only depends on α.

To simplify the notations, let tq = ‖p − q‖ and tv = ‖p − v‖. Then, t2
v = t2 + t2

q −
2tqt cos α from the law of cosines. Note that tq is constant while tv varies depending on

77

t and α. Therefore,

2tv
∂tv

∂t
= 2t− 2tq cos α,

∂tv

∂t
=

t− tq cos α

tv

We divide this proof into two cases: (1) t ≥ 2tq and (2) t < 2tq. For the first case
when t ≥ tq, we get tv ≥ tq using the triangular inequality. As a result, | f (q)− f (v)| =
exp(−t2

q/η2)− exp(−t2
v/η2). Therefore,

∂| f (q)− f (v)|
∂t

=
2tv

η2

t− tq cos α

tv
exp

(
− t2

v
η2

)
From tv ≥ tq, we know 2t− 2tq cos α ≥ t ≥ 0, so

E
(

∂| f (q)− f (v)|
∂t

)
≥ 0

For the second case, when t < 2tq, the sign of f (q) − f (v) depends on the sign of
tq − tv. In other words,

∂| f (q)− f (v)|
∂t

=
f (q)− f (v)
| f (q)− f (v)|

2tv

η2

t− tq cos α

tv
exp

(
− t2

v
η2

)
=

f (q)− f (v)
| f (q)− f (v)|

2(t− tq cos α)

η2 exp

(
−

t2 + t2
q − 2tqt cos α

η2

)

We further simplify the above expression by substituting l1η and l2η for t and tq, respec-
tively, and we treat the expression as a function of l1 and l2. Then, we obtain

g(l1, l2) =
1

2π

∫ 2π

0

f (q)− f (v)
| f (q)− f (v)|

2(l1 − l2 cos α)

η
exp(−l2

1 + l2
2 − 2l1l2 cos α) dα

Unfortunately, showing that g(l1, l2) > 0 for all l1 and l2 such that 0 < l2 < 0.5
and 0 < l1 << 1 analytically is difficult because a closed-form solution of the above
integration does not exist. However, we can obtain high confidence from numerical
analysis due to the following reasons:

1. g(l1, l2) is a continuous function of l1 and l2.

2. The function of the form x exp(x) does not fluctuate fast and is can be approxi-
mated well by piece-wise linear functions.

78

Therefore, if we pick four closely located points in the space of l1 and l2 and the values of
g(l1, l2) at all those four points are positive, we obtain high confidence that the function
values of the area enclosed by those four points will be positive as well.

For this, we generated 1,000,000 pairs of (l1, l2) where l1 and l2 are evenly spaced
between 0 and 1 and between 0 and 0.5, respectively. Next, we computed the value of
the function g(l1, l2) for all 1,000,000 pairs. In the end, we confirmed that every pair we
generated are positive. This result implies that g(l1, l2) > 0 for all l1 and l2 such that
0 < l2 < 0.5 and 0 < l1 < 2l2 < 1.

The next lemma is regarding the third property of NST, namely a Larger Gap.

Lemma 5. A pivoted transformation fp with ‖p − q‖ < η/2 and η < 0.2 satisfies the
third property of NST, i.e., Larger Gap, for (ηmin, ηmax) = (0.13η, 1.6η). That is, fp is a
q-(0.13η, 1.6η)-sensitive transformation.5

Proof. Let q be a query, p be a pivot, and t be an arbitrary positive constant. Also, v is a
data item chosen uniformly at random among items whose distance to q is t. In addition,
let α denote an angle between −→qv and −→qp. Since v is chosen uniformly at random, α is a
random variable whose probability distribution function is a uniform between 0 and 2π.

To show the monotonicity, it is enough to show the following:

E(| f (q)− f (v)|)
∂t

≥ 1 =⇒ E
(

∂| f (q)− f (v)|
∂t

)
≥ 1

for t ∈ (0.13η, 1.6η). The interchange of E and the partial derivative is valid since the
random variable inside the expectation (v) only depends on α.

To simplify the notations, let tq = ‖p − q‖ and tv = ‖p − v‖. Then, t2
v = t2 + t2

q −
2tqt cos α from the law of cosines. Note that tq is constant while tv varies depending on
t and α. Therefore,

2tv
∂tv

∂t
= 2t− 2tq cos α,

∂tv

∂t
=

t− tq cos α

tv

and

∂| f (q)− f (v)|
∂t

=
f (q)− f (v)
| f (q)− f (v)|

2tv

η2

t− tq cos α

tv
exp

(
− t2

v
η2

)
=

f (q)− f (v)
| f (q)− f (v)|

2(t− tq cos α)

η2 exp

(
−

t2 + t2
q − 2tqt cos α

η2

)
5When working with non-normalized distances, η should be smaller than 0.2 · tmax, where tmax is the

maximum distance between data items.

79

We substitute l1η and l2η for t and tq, respectively, and consider the above expression
as a function of l1 and l2. Then, we should show that

g(l1, l2) =
1

2π

∫ 2π

0

f (q)− f (v)
| f (q)− f (v)|

2(l1 − l2 cos α)

η
exp(−l2

1 + l2
2 − 2l1l2 cos α) dα ≥ 1

Since η < 0.2, it is enough to show that

g′(l1, l2) =
1

2π

∫ 2π

0

f (q)− f (v)
| f (q)− f (v)|2(l1 − l2 cos α) exp(−l2

1 + l2
2 − 2l1l2 cos α) dα ≥ 0.2

for all l1 and l2 such that 0 < l2 < 0.5 and 0.13 < l1 < 1.6. Similar to Lemma 4,
analytically computing the above integration is not easy because a closed-form solution
of the above integration does not exist. Thus, to numerically verify this lemma, we
generated 1,000,000 pairs of (l1, l2) where l1 and l2 are evenly spaced between 0.13 and
1.6 and between 0 and 0.5, respectively. Next, we computed the value of g′(l1, l2) for
all pairs. In the end, we confirmed that every pair we generated is not smaller than
0.204.

A q-(0.13η, 1.6η)-sensitive transformation implies that our intended effect may not be
achieved for those data items whose distances to q are smaller than 0.13η. Fortunately, a
simple case study shows that the number of such data items is negligibly small: consider
100 million data points that are uniformly distributed in a 10-dimensional space; then,
the number of data items that fall within the distance 0.13 η (or 0.026) from q will be 100 ·
106 · 0.02610 = 1.4× 10−8. Considering that users are typically interested in a relatively
small number of results from their search engines, say the top 1–1000 items, we see that
this condition can cover most of the practical cases.

Handing Novel Queries— Thus far, we have described our NST for a known query
q. However, we also need to handle queries that are not known a priori. Note that,
from Lemma 5, we know that NST properties hold for all queries that are within a
η/2 distance from a pivot. Handling queries that are extremely far apart from all data
items in the database will therefore be difficult. However, assuming that novel queries
will be relatively close to at least one of the data items, we can handle such queries by
selecting multiple pivots that can collectively cover the existing data items. Based on this
observation, we propose the following transformation to handle novel queries.

Definition 8. (Multi-Pivoted Transformation) Let fp be a pivoted coordinate transfor-
mation in Definition 7 using a pivot p. Our extended version to handle novel queries
is as follows. Choose m pivots {p1, . . . , pm}, and compute the below to obtain a multi-

80

dimensional representation of a data item v:

f (v) = (fp1(v), . . . , fpm(v)) (4.6)

To understand how a multi-pivoted transformation works for novel queries, assume
for the moment that there is at least one pivot pi that is close enough to a novel query
q. Then, this pivot works in the same way as in a single pivoted transformation: it
stretches out the distances between this novel query and other data items around it. As
a result, when combined with an LSH-like hash function, more separators are used to
distinguish q and its nearby items. On the other hand, from the perspective of other
(far-apart) pivots, the distances between the q and its nearby items tend to be very small
after the transformation, due to the exponential function used in the pivoted transfor-
mation. Consequently, those far-apart pivots are effectively ignored by a multi-pivoted
transformation when computing the distance of q and its neighbors. This effect of the
multi-pivoted transformation is examined empirically in Section 4.4.2. However, one
question remains: how can we ensure that there will be at least one nearby pivot for
every novel query?

Parameter η— To ensure that there is at least one pivot close enough to each novel
query, we use the assumption that each novel query is close to at least one data item in
the database. Then, it will suffice to select pivots in such a way that every data item in
the database is close to at least one pivot. Specifically, assume that m pivots are chosen
by one of the algorithms presented in the next section (Section 4.3.4), and let γ denote
the average distance between a pivot and its closest neighbor pivot. Then, to ensure
that any data item is within a η/2 distance from its closest pivot, we should set η to a
value larger than γ. This is because the maximum distance between data items and their
respective closest pivots will be larger than γ/2. Our numerical study in Section 4.4.2
shows that, with our choice of η = 1.9 γ, most of the novel queries fall within a η/2
distance from their closest pivot. We also show, in Section 4.4.6, that the search accuracy
does not change much when η is larger than γ.

For a multi-pivoted transformation, we also need to determine (1) the number of
pivots (m) and (2) a strategy for selecting m pivots. We discuss these two issues in
Section 4.3.4 after presenting the technical details of our algorithm.

81

4.3.4 Our NSH Algorithm

This section describes our algorithm, Neighbor-Sensitive Hashing (NSH). Besides NST,
another ingredient for our hashing algorithm is enforcing the even distribution of data
items in Hamming space, which is a widely-adopted heuristic. Let h∗i represent a column
vector (hi(v1), . . . , hi(vN))

T where v1, . . . , vN are the data items in a database. In other
words, h∗i is a column vector of length N that consists of all i-th bits collected from the
generated hashcodes. Then, the technical description of the even distribution of the data
points in the Hamming space is as follows:

(h∗i)
T
1 = 0 ∀i = 1, . . . , b (4.7)

(h∗i)
Th∗j = 0 ∀i, j = 1, . . . , b and i 6= j (4.8)

The first expression induces that the hash bits are turned on with 50% chance. The
second expression induces that two hash bits in different positions are uncorrelated so
that they have different hash bits in different positions. The second condition also means
that the conditional probability that a data item receives 1 for i-th hash bit is independent
of the probability that the data item receives 1 for j-th hash bit if i 6= j.

The primary objective NSH is to generate a hash function using NST, while best en-
suring the above requirement for the data items that reside in the database. First, if we
consider a data item v as a d-dimensional column vector, the hash bits are determined
by NSH in the following way: hi = sign(wT

i f (v) + ci), where f is a multi-pivoted trans-
formation with m pivots, wi is a m-dimensional vector, and ci is a scalar value. Our
main goal in this section is to find the appropriate values for wi and ci that can satisfy
Equations 4.7 and 4.8. To find these values, NSH performs the following procedure:

1. Choose m pivots.
2. Convert all data items using a multi-pivoted transformation in Definition 8, and

obtain N number of m-dimensional transformed items.
3. Generate a vector w1 and a bias term c1 using an (m + 1)-dimensional Gaussian

distribution.
4. Adjust the vector w1 and the bias term c1 so that the resulting hash bits satisfy

Equation 4.7.
5. For each i = 2 to b (hashcode length),

(a) Generate a vector wi and a bias term ci from an (m + 1)-dimensional Gaussian
distribution.

82

(b) Adjust wi and the bias term ci so that the resulting hash bits h∗i satisfy Equa-
tions 4.7 and 4.8 with respect to the already generated hash bits h∗j for j =

1, . . . , i− 1.
6. Collect wi and ci for i = 1, . . . , b, which compose our hash function of length b.

A natural question is how to adjust the random vectors wi and compute the bias
terms so that the hash bits follow Equations 4.7 and 4.8. For this purpose, we maintain
another series of (m + 1)-dimensional vectors zj where j = 1, . . . , b. When we generate
wi, the set of vectors zj for j = 1, . . . i work as a basis to which wi must be orthogonal.6

From now on, we think wi for i = 1, . . . , b is (m + 1)-dimensional vectors including the
bias term in its last element. Let F denote a N-by-(m + 1) design matrix, for which the
rows are the transformed data items (f (v1), . . . , f (vN)) and the number of the columns
is the number of the pivots plus one (the last column is one-padded to be multiplied
with the bias component of wi). Then the collection of i-th hash bits can be expressed
compactly as follows: h∗i = sign(Fwi).

When we compute the coefficient w1 for the first bit function, h∗1 must be orthogonal
to 1 according to Equation 4.7. As a result, when generating w1 for the first hash bits,
we aim to satisfy the following expression: sign(Fw1)

T
1 = 0. We relax this expression

for efficient computation as follows: wT
1 FT

1 = 0. From this expression, we can easily see
that z1 can be set to FT

1/norm(FT
1), then w1 is obtained by first generating a random

vector l and subtracting the inner product of l and z1 from l
When we compute the coefficient vector w2 for the second bit function, it should

satisfy the following two conditions according to Equations 4.7 and 4.8:

sign(Fw2)
T
1 = 0, sign(Fw2)

Th∗1 = 0.

For computational efficiency, these conditions are relaxed as:

wT
2 FT

1 = 0, wT
2 FTh∗1 = 0.

We can simply ignore the first requirement among the two because z1 already holds
the necessary information. For the second requirement, we set z2 to FTh∗1 − (FTh∗1)

Tz1

and normalize it, which is the component of FTh∗1 that is orthogonal to z1. With those two
vectors of z1 and z2, the process of finding w2 is as straightforward as before: generate a
random vector, project the vector onto the subspace spanned by z1 and z2, and subtract
the projected component from the random vector. Computing other coefficients wi for

6More concretely, w1 must be orthogonal to z1, and w2 must be orthogonal both to z1 and z2, and so
on.

83

Algorithm 3: Neighbor Sensitive Hashing
input : V = {v1, . . . , vN}, N data items

b, code length
η, a parameter for coodinate transformation

output: W, a (m + 1)-by-b coefficient matrix

1 P← m pivots
2 F ← transform(V, P, η) // Definition 8

3 W ← []

4 Z ← FT
1/norm(FT

1)
5 for k = 1 to b do
6 w← random (m + 1)-by-1 vector
7 w← w− ZZTw
8 z← FT sign(Fw)

9 z← z− ZZTz
10 Z ← [Z, z/norm(z)] // append as a new column
11 end
12 return W

i = 3, . . . , b can be performed in the same way. Our algorithm is presented in more detail
in Algorithm 3.

The resulting time complexity of the process is O(Nmd + b(mb + Nm)), which is lin-
ear with respect to the database size. We have empirical runtime analysis in Section 4.4.5.

Number of Pivots (m) and Pivot Selection Strategy— Using a large number of pivots
helps keep the ratio of η to the maximum distance small, which is one of the conditions
for Lemma 5. However, in practice, we observed that increasing the number of pivots
beyond b (where b is the length of hashcodes) only marginally improved the search
accuracy. This is shown in Figure 4.9(b). On the other hand, the technical conditions in
Equations 4.7 and 4.8 and the time complexity analysis above imply important criteria
for determining the number of pivots (m):

1. m must be equal to or larger than the hashcode length (b).
2. The smaller the m, the faster the hashing computation.

For these reasons, we recommend m = c · b, where c is a small positive integer, e.g.,
1, . . . , 10. To obtain a value of m that is well tailored to a given dataset, one can ad-
ditionally employ a standard cross validation procedure that is widely used in machine
learning literature. For this, we should first partition our original dataset into two, which
are called training set and holdout set, respectively. Next, we generate a b-bit hash func-
tion with m pivots based on the training set, and test the performance of the generated

84

hash function by using the holdout set as our queries. This procedure is repeated with
different values of m, and the value yielding the highest search accuracy on the holdout
set is chosen for the actual hashcode generation process.

Once the number of pivots is determined, we need to generate these pivots. We
consider three different strategies for this:

1. Uniform strategy: Given the min and max coordinate of existing data items along
each dimension, determine the respective coordinates of the pivots by picking m
values from that interval uniformly at random.

2. Random strategy: Pick m data items from the database at random, and use them
as pivots.

3. k-means strategy: Run the k-means++ algorithm on the existing items, and use the
resulting centroids as pivots.

In Section 4.4.6, we study how these pivot selection strategies produce different search
accuracies for different query workloads.

Impact of the Data Distribution— Unlike traditional hashing algorithms such as LSH [18,
37, 45, 61], different data distributions lead to different hash functions in our approach.
This effect is due to the pivot selection process; once the m pivots are chosen, the re-
maining steps of our algorithm are agnostic to the data distribution.

The random and k-means strategies tend to choose more pivots in the dense areas.
Thus, the locations of the selected pivots are balanced for a balanced dataset, and are
skewed for a skewed dataset. In contrast, the uniform strategy is not affected by the
skewness of the data distribution, Rather, it is only affected by the range of the data
items (i.e., the boundary items).

Our search results are more accurate when there are data items around queries. This
is because our algorithm is more effective when there is a pivot close to each query, and
we select pivots from areas where data items exist. Thus, when the random or k-means
strategy is used, our algorithm is more effective when queries are mostly from the dense
areas. When the uniform strategy is used, our algorithm is effective when queries are
generated uniformly at random within the data items’ boundary.

On the other hand, since our algorithm is based on a q-(ηmin, ηmax)-sensitive trans-
formation, we may not be successful at retrieving all k items when there are fewer than
k items within a ηmax distance of the query. We empirically study this observation in
Section 4.4.6.

Finally, note that even for uniformly distributed items, our proposed approach out-
performs traditional counterparts for kNN tasks. This is because the core benefit of our
approach lies in its greater distinguishability for nearby data items, which is still valid for

85

Dataset # Items Dim Note
MNIST [169] 69,000 784 Bitmap datasets
80M Tiny [169] 79,301,017 384 GIST image descriptors
SIFT [80] 50,000,000 128 SIFT image descriptors
LargeUniform 1,000,000 10 Standard uniform dist.8

SmallUniform 10,000 10 Standard uniform dist.
Gaussian 10,000 10 Standard normal dist.9

LogNormal 10,000 10 A log-normal dist.10

Island 10,000 10 SmallUniform + two clusters. See Section 4.4.6.

Table 4.1: Dataset Summary. Three real and five synthetic datasets in order. For each
dataset, 1,000 data items were held out as queries.

uniform distributions. Our empirical studies in Section 4.4.3 confirm that our technique
outperforms not only LSH but also other state-of-the-art learning-based approaches even
for uniform datasets.

4.4 Experiments

The empirical studies in this section have two following goals: first, we aim to verify our
claim (more hash bits for neighbor items) with numerical analysis, and second, we aim
to show the superiority of our algorithm compared to various existing techniques. The
results of this section include the following:

1. Neighbor-Sensitive Transformation enlarges the distances between close by data items,
and the same goal is achieved for the hashcodes generated by Neighbor-Sensitive
Hashing in terms of their Hamming distance.

2. Our hashing algorithm was robust for all settings we tested and showed supe-
rior performance in kNN tasks. Specifically, our method achieved the following
improvements:
(a) Up to 15.6% recall improvement7 for the same hashcode length,
(b) Up to 22.5% time reduction for the same target recall.

We start to describe our experimental results after stating our evaluation settings.

86

4.4.1 Setup

Datasets and Existing Methods— For numerical studies and comparative evaluations,
we use three real image datasets and five synthetic datasets. A database means a collection
of data items from which the k most similar items must be identified, and a query set
means a set of query items we use to test the search performance. As in the general
search setting, the query set does not belong to the database and is not known in advance;
thus, offline computation of kNN is impossible. Table 4.1 summarizes our datasets.

For a comprehensive evaluation, we compared against three well-known approaches
and five recent proposals: Locality Sensitive Hashing (LSH) [45], Spectral Hashing (SH) [174],
Anchor Graph Hashing (AGH) [113], Spherical Hashing (SpH) [69], Compressed Hashing
(CH) [109], Complementary Projection Hashing (CPH) [83], Data Sensitive Hashing (DSH) [57],
and Kernelized Supervised Hashing (KSH) [112]. Section 4.5 describes the motivation be-
hind each approach. Except for CH and LSH, we used the source code provided by the
authors. We did our best to follow the parameter settings described in their work. We
exclude a few other works that assume different settings for kNN item definitions [75].
For our algorithm, we set the number of pivots (m) to 4b and used k-means++ [22] to
generate the pivots unless otherwise mentioned. The value of η was set to 1.9 times of
the average distance from a pivot to its closest pivot. (Section 4.4.6 provides an empirical
analysis of different pivot selection strategies and different values of m and η param-
eters.) All our time measurements were performed on a machine with AMD Opteron
processor (2.8GHz) and 512GB of memory. All hashing algorithms used 10 processors
in parallel.

Quality Metric— Recall that Hamming Search is the component responsible for search-
ing in the Hamming space. Once the Hamming Search component returns r candidate
items, finding the k most similar items to a query is a straightforward process. Note that
if there exists a data item that belongs to the true kNN among those r items returned, the
data item is always included in the answer set returned by Re-rank. Therefore, a natural
way to evaluate the quality of the entire system is to measure the fraction of the data
items that belong to the true kNN among the r data items returned by Hamming Search.

7Recall improvement is computed as (NSH’s recall - competing method’s recall).
8For each dimension, the standard uniform distribution draws a value between 0 and 1, uniformly at

random.
9For each dimension, a value is drawn from a Gaussian distribution with a mean value of 0 and a

standard deviation of 1.
10Log-normal is a popular heavy-tailed distribution. In our experiments, we used (µ, σ) = (1, 0).

87

In other words, we compute the following quantity:

recall(k)@r =
(# of true kNN in the retrieved)

k
× 100. (4.9)

This is one of the most common metrics for evaluating approximate kNN systems [79,
80, 151]. When choosing the r data items with the smallest Hamming distance from a
query, it is possible for multiple items to have the same distance at the decision boundary.
In such case, a subset of them are chosen randomly. This implies that the recall score
of a trivial approach i.e., mapping all the data items to the same hashcodes, cannot be
high. Typically, r is chosen as r = 10k or r = 100k to keep the Re-rank speed fast.11

Evaluation Methodology— Note that the choice of the Hash Function is independent of
the Hamming Search component, and using a different algorithm for Hamming Search
can only affect the runtime. Thus, we consider two evaluation settings in this chapter.

1. Hashcode Length and Recall: This setting is to purely evaluate the quality of hash-
ing algorithms without any effects from other components. This evaluation setting
is to answer the following question: “what is the best hashing algorithm if the
search speed is identical given the same hashcode size?” This evaluation is re-
peated for different choices of hashcode sizes, because the accuracy of different
hashing algorithms can differ greatly based on their hashcode size. For example,
it is not uncommon if some methods become less effective as the hashcode size
increases.

2. Search Speed and Recall: Another evaluation methodology is to study the trade-
off between search speed and resulting search accuracy. The search time consists
of the time required to convert a query into a hashcode and the time to find the
rNN data items in the Hamming space. Usually, the time required for hashcode
generation is marginal compared to the Hamming Search process.

Another important criteria is the memory requirement for the generated hashcodes.
This quantity can be easily inferred from the hashcode size because the size of the bit
vectors in memory is identical regardless of the hashing algorithm used. When there
are N data items in a database and we generate hashcodes of length b, the amount of
memory required to store all hashcodes is Nb/8 bytes (since hashcodes are stored as bit
vectors). Usually, this quantity is several orders of magnitude smaller than the size of the
original database (e.g., 128-dimensional floating point type vectors will take 128 · 4 · N
bytes), making it possible to keep all the hashcodes in memory.

11Larger values of r (e.g., close to the total number of items in the database) will improve recall; however,
this will also make the search process as slow as the exact kNN.

88

0 0.5 1
0

0.2
0.4
0.6
0.8

1
Dataset: Gaussian

‖q− p‖/η

Fr
ac

ti
on

(a) Queries from: Dense Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

ti
on

(b) Queries from: Sparse
Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

ti
on

(c) Queries from:
Same Dist as Data

0 0.5 1
0

0.2
0.4
0.6
0.8

1
Dataset: LogNormal

‖q− p‖/η

Fr
ac

ti
on

(d) Queries from: Dense Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

ti
on

(e) Queries from: Sparse Area

0 0.5 1
0

0.2
0.4
0.6
0.8

1

‖q− p‖/η

Fr
ac

ti
on

(f) Queries from:
Same Dist as Data

Figure 4.5: The histogram of distances between queries q and their respective closest
pivots p divided by η (the parameter from Definition 7).

4.4.2 Validating Our Main Claims

In this section, we numerically verify two important claims we have made: (i) the dis-
tance between novel queries and their closest pivot is small, and (ii) NST and NSH
achieve their intended goal of placing more separators between closeby items.

First, to study how data items are mapped to pivots, we used Gaussian and LogNor-

mal as representatives of balanced and skewed datasets, respectively. For each dataset,
we considered three different cases: (1) when queries are chosen from the dense area
of the dataset, (2) when they are drawn from the sparse area (i.e., outlier items), and
(3) when queries come from the same distribution as the original dataset. In each case,
we selected 128 pivots using the k-means strategy and measured the distances between
queries and their respective closest pivot. Figure 4.5 shows the histogram of these dis-
tances. The results show that, for queries from the dense area and from the same dis-
tribution as the datasets, the measured distances mostly belong to the range with which
NSH can work effectively, i.e., smaller than η/2. For queries from the sparse area, there
were some cases where the measured distances were outside the desired range. This is

89

0 0.5 1 1.5 2
0

1

2

3

Original Distance

Tr
an

sf
or

m
ed

D
is

ta
nc

e

(a) NST’s effect for
the SmallUniform dataset

0 0.5 1 1.5 2
0
5

10
15
20

Original Distance

H
am

m
in

g
D

is
ta

nc
e

LSH NSH

(b) Hamming distance for
the SmallUniform dataset

0 2 4 6 8
0

0.2
0.4
0.6
0.8

Hamming distance difference
between v50 and v101

Fr
ac

ti
on

LSH
NSH

(c) Hamming gap comparison
for the SmallUniform dataset

0 5 10 15
0

10

20

Original Distance

H
am

m
in

g
D

is
ta

nc
e

LSH SH NSH

(d) Hamming distance
for the MNIST dataset

Figure 4.6: The effects of NST and NSH. Figure (a) shows that NST enlarges the distances
among nearby data items. Figure (b) shows that NSH makes nearby data items have
larger Hamming distances compared to LSH. Figure (c) shows that there are more sep-
arators (hence, a larger Hamming distance gap) between pairs of data items when they
are close to queries. Figure (d) shows using a real dataset (MNIST) that NSH produces
larger Hamming distances between nearby data items compared to SH (a learning-based
algorithm) and LSH.

expected since our pivot selection strategy assumes that queries are from an area where
existing data items reside. Interestingly, as shown in Section 4.4.6, our final hashing
algorithm still provides reasonable performance even for those queries that are drawn
from sparse areas.

We also studied whether our proposed mechanisms (NST and NSH) achieve their
intended properties, namely increasing the distance gap exclusively for close-by items.
Here, we first transformed the data items of the SmallUniform dataset using 128 pivots
to see how our multi-pivoted transformation (from Definition 8) alters the distances be-
tween items. Figure 4.6(a) shows the result. When the original distances between two

90

16 64 256
0

20
40
60
80

100

Improvement over:

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

LSH AGH CH SH
CPH SpH DSH KSH

(a) The MNIST dataset

16 64 256
0

20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

(b) The LargeUniform dataset

16 64 256
0

20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

(c) The 80M Tiny dataset

16 64 256
0

20
40
60
80

100

Hashcode Length

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

(d) The SIFT dataset

Figure 4.7: Hashcode length and recall improvements. The recall improvement is com-
puted as (NSH’s recall - competing method’s recall).

items were smaller than the average distance between a query and its k-th closest item
(e.g., 0.53 for 10-NN, 0.71 for 100-NN, and 0.97 for 1000-NN), their distances were am-
plified by NST in the transformed space. When we generated 32-bit hashcodes using
NSH and LSH, NSH also produced larger Hamming distances (compared to its tradi-
tional counterpart, LSH), as reported in Figure 4.6(b). Figure 4.6(c) depicts the same
effect by NSH, but using a histogram of the number of separators between the 50th
and 101st closest data items to queries. Figure 4.6(d) shows NSH’s effectiveness using
a real dataset (MNIST). Here, NSH again achieved larger Hamming distance gaps than
both SH (a learning-based hashing algorithm) and LSH. Note that while the difference
between NSH and SH may seem small, it translates to a significant difference in search
performance (see Sections 4.4.3 and 4.4.4).

4.4.3 Hashcode Length and Search Accuracy

Recall that the hashcode length (b) is an important design parameter that determines the
accuracy of approximate kNN and runtime of Hamming Search. In general, those two

91

factors (search accuracy and runtime) are in a trade-off relationship, i.e., larger hashcodes
result in a more accurate but also slower search, and vice versa.

This subsection compares the search accuracies of various hashing algorithms with
fixed hashcode lengths. For this experiment, we used the four datasets (MNIST, LargeU-
niform, 80M Tiny, and SIFT) and generated different lengths of hashcodes ranging from
16 to 256. Next, we examined how accurately different algorithms capture 10-NN data
items for novel queries. For this, we report recall(10)@100 for the two relatively small
datasets (MNIST and LargeUniform) and recall(10)@1000 for the other two large datasets.
We present the experimental results for different choices of k in Section 4.4.7.

Figure 4.7 shows the results. we report the recall improvements over other competing
hashing algorithms. In most cases, the second best methods were SpH and KSH. How-
ever, the other recently developed algorithms (such as SH and CPH) worked relatively
well too. AGH and CH showed surprisingly bad performance. In all cases, our proposed
algorithm showed significant search accuracy gains, showing up to 15.6% improvement
of recall over SpH and up to 39.1% over LSH.

4.4.4 Search Time and Search Accuracy

The second setting for performance evaluation is seeing the recall scores by different
hashing algorithms when the search time is bounded. For the Hamming Search module,
we used Multi-Index Hashing (MIH) [130], a recently developed data structure for exact
kNN search in Hamming space. MIH has a parameter that determines the number of
internal tables, and the search speed varies depending on the parameter setting. We
followed a few different options based on the suggestions by its author, and reported
the best results for each hashing algorithm.12

There are two ways we can improve the search accuracy at the cost of search speed.
The first is to increase the hashcode length, and the second is to increase the number
of data items returned by Hamming Search (r) and let Re-rank find the k most similar
answers. When we tested the first approach, however, we observed that MIH’s perfor-
mance degrades rapidly whenever the hashcode length is over 128, and MIH did not
show considerable speed boost compared to a linear scan over hashcodes. For this rea-
son, we used the second approach — increasing the value of r — to adjust the search
accuracy and search speed. Then, we collected all 64-bit hashcodes generated by differ-
ent hashing algorithms, configured MIH to return different number (r) of data items as
answers, and measured the recall scores of those answers as well as the time MIH took

12We set the number of tables to either 2 or 3.

92

10 30 50
−10

0
10
20
30
40
50

Improvement over:

Search Time (ms)

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

LSH AGH CH SH
CPH SpH DSH KSH

10 30 50
−20

0
20
40
60
80

100

Target Recall (%)

Ti
m

e
R

ed
uc

ti
on

(%
)

(a) The 80M Tiny dataset

10 20 30
−10

0
10
20
30
40
50

Search Time (ms)

R
ec

al
l

Im
pr

ov
em

en
t

(%
)

10 30 50
−20

0
20
40
60
80

100

Target Recall (%)
Ti

m
e

R
ed

uc
ti

on
(%

)
(b) The SIFT dataset

Figure 4.8: Search time and recall improvements. The recall improvement is computed
as (NSH’s recall - competing method’s recall). Time reduction is (competing method’s search
time - NSH’s search time) / (competing method’s search time) ×100.

to return them. Note that even if we use the same data structure (MIH) for Hamming
Search, systems with different hashing algorithms produce very different results since
the hashing mechanism is key in producing high search accuracies.

Figure 4.8 reports recall improvements for a target time bound using two large
datasets of 80M Tiny and SIFT. In most cases, NSH showed significant improvements
over existing methods. Also, it is impressive that the system with our algorithm achieved
as high as 50% average recall for 80M Tiny within only 49 ms search time requirement.
Note that a simple linear scan over the original data items took more than 17 seconds.

4.4.5 Indexing Speed

As we generate hashcodes of different lengths in the above experiments, we also mea-
sured the times they took to generate hash functions and to convert the whole database
(80M Tiny) to hashcodes. The result is summarized in Table 4.2. CPH uses expensive
statistical optimization to generate hash functions, so it took a much longer time than
other methods. All other methods, including NSH, reported reasonable indexing time.

93

Method Hash Gen (sec) Compression (min)
32bit 64bit 32bit 64bit

LSH 0.38 0.29 22 23
SH 28 36 54 154
AGH 786 873 105 95
SpH 397 875 18 23
CH 483 599 265 266
CPH 34,371 63,398 85 105
DSH 3.14 1.48 24 23
KSH 2,028 3,502 24 29
NSH (Ours) 231 284 37 46

Table 4.2: Time requirement for hash function generation and database compression,
i.e., converting 79 million data items in a database to hashcodes.

4.4.6 The Effect of Parameters on NSH

This section studies the effect of various parameters on the search accuracy of NSH. The
parameters we consider are pivoting (the number of pivots and the selection strategy),
the neighborhood parameter (η), the type of query workloads, and the data distribution.

Pivot Selection— As discussed after presenting Definition 8, the goal of choosing pivots
is to ensure that the average distance of every data item in the database to its closest
pivot is minimized. We studied the three different strategies described in Section 4.3.4:
uniform strategy, random strategy, and k-means. For each strategy, we generated 32-bit
hashcodes and used the Gaussian dataset with two different sets of queries: one set from
the dense area (center of the normal distribution) and the other from the sparse area (tail
of the distribution). Figure 4.9(a) shows the results. Both uniform and k-means strategies
produced almost the same search accuracy, regardless of the query workload. However,
the random strategy failed for queries from the spare area. This is because most of the
randomly-chosen pivots are naturally from dense areas; thus, the pivots cannot cover the
queries from sparse areas. Also, in our experiments, k-means strategy exhibited slightly
better performance than the uniform one.

The number of pivots (m) is also important. To empirically study the effect of m on
search accuracy, we generated 32-bit hashcodes for three datasets (Gaussian, SmallUni-
form, and LogNormal) and varied m between 3 and 512. Figure 4.9(b) shows the results.
The results suggest that our algorithm is not very sensitive to the value of m, as long as
m ≥ b.

Neighborhood Parameter (η)— The value of η is closely related to the size of the neigh-
borhood for which we want to amplify the Hamming gap. To see η’s effect on our

94

Dense Area Sparse Area
0

20
40
60
80

100

Queries are from

re
ca

ll
(1

0)
@

10
0

Uniform strategy
Random strategy
k-means strategy

(a) Pivoting Strategy

3 16 32 64 128 256 512
0

20
40
60
80

100

m

re
ca

ll
(1

0)
@

10
0

The Gaussian dataset
The SmallUniform dataset

The LogNormal dataset

(b) Numbers of Pivots

0 γ 2γ 3γ 4γ 5γ
0

20
40
60
80

100

η

re
ca

ll
(1

0)
@

r

k = 10 k = 20
k = 50 k = 100

(c) Neighborhood Size

Normal LogNormal Island
0

20
40
60
80

100

Dataset Name

re
ca

ll
(1

0)
@

10
0

Queries from Dense Area
Queries from Sparse Area
Queries from Very Sparse Area

(d) Data distribution

Figure 4.9: We study our method’s search performance by varying four important pa-
rameters: (a) the pivot selection strategy, (b) the number of pivots, (c) neighborhood
parameter η, and (d) the data distribution.

algorithm’s performance, we generated 32-bit hashcodes for the MNIST dataset and mea-
sured the recall while varying η between 0 and 5γ, where γ was the average distance
between pairs of closest pivots. The results, plotted in Figure 4.9(c), indicate that our al-
gorithm yields high accuracy when η > γ, and its accuracy curve improves unto η ≈ 2γ.
Note that this empirical result is consistent with our discussion in Section 4.3.3.

Data Distribution— To study the effect of data distribution, we generated two datasets
from standard distributions: Gaussian and LogNormal. Note that LogNormal has a
skewed distribution with a heavy tail. In addition, to see how our kNN search accu-
racy is affected when there are fewer than k data items around a query, we created
another dataset, called Island. In Island, we added two small clusters to the SmallU-

niform dataset, where each clusters consisted of 3 data items, and they were placed far
away (a distance of 1 and 5, respectively) from other data items.

95

1 10 100 1000
40

60

80

100

k

re
ca

ll
(k
)@

10
k

LSH SH SpH NSH

(a) The MNIST dataset

1 10 100 1000
0

20

40

60

k

re
ca

ll
(k
)@

10
0k

(b) The 80M Tiny dataset

Figure 4.10: kNN Accuracies with different values of k.

For each dataset, we generated three different queries. For the Gaussian dataset, the
first query was from its mode.13 The second and the third queries were twice and three
times the standard deviation away from the mode, respectively. The three queries were
similarly generated for LogNormal. For Island, the first query was from the area where
the SmallUniform dataset resides, and the second and the third queries were from the
two small clusters we added. Due to the placements of the two clusters, the third query
was much far away from the other data items compared to the second query. For every
dataset, we refer to these three queries as ‘Q from Dense’, ‘Q from Sparse’, and ‘Q from
Very Sparse’, respectively.

We repeated each experiment 30 times, each time with a different random seed, and
reported the average recall scores in Figure 4.9(d). In general, the performance drops
were more significant for queries drawn from ‘Very Sparse’ areas. One reason is the
lack of nearby pivots around such queries. The second reason (especially for the Island

dataset) is that the distance to kNN items were outside the neighborhood size for which
NSH can work effectively.

4.4.7 Neighbor Sensitivity

Since our motivation was moving separators (or equivalently, bit functions) to have
higher power in distinguishing neighbor items, it is likely that our algorithm loses its
power to capture the similarities to the distant items. This potential concern leads to a
natural question: up to what value of k does our algorithm have advantage over other
algorithms?

13A mode is the point at which a probability distribution function takes its maximum.

96

To answer this question, we varied the value of k while fixing r = 10 · k (Recall r
is the number of the items returned by Hamming Search, and Re-rank module returns
final k answers) and observed how the search accuracy changed. More concretely, we
generated 128-bit and 64-bit hashcodes respectively for MNIST and 80M Tiny, and varied
k from 1 to 1,000. See Figure 4.10 for the results.

Interestingly, for MNIST, we observed that our algorithm outperformed other methods
only up to until k = 100 (0.14% of the database). The reason that our method showed su-
perior performance only up to k = 100 was that due to the small size of the dataset (only
69K items in the database). When we ran the same experiment with a big dataset (80M
Tiny), we did not observe the performance decrease until k = 1000, and our algorithm
consistently outperformed other methods regardless of the choice of k. Considering that
the dataset sizes in the real-world are large — the reason of approximate kNN— our
algorithm can achieve superior performance in most practical cases.

4.5 Related Work

The growing market for ‘Big Data’ and interactive response times has created substantial
interest in Approximate Query Processing both from academia [14, 47, 134, 187] as well
as the commercial world [6, 7, 15]. While these techniques focus on general aggregate
queries, this work focuses on approximating kNN queries as an important sub-class of
them (see [127] and the references within).

Gionis et al. [61] were the first to apply Locality Sensitive Hashing to approximate
search problems. In their work, unary representation of integers were used as hash
functions to generate binary hash codes. Later, Charikar [37] proposed to use random
hyperplanes as hash functions. These random hyperplanes were drawn from multi-
dimensional Gaussian distributions, and generated hashcodes that could retain the lo-
cality sensitive property for cosine similarity. Datar et al. [45] proposed a variant of
random hyperplane method for the Euclidean distance. Athitsos et al. [24] employed
L1-embedding for a similar purpose. Distance-based Hashing [25] generalizes this tech-
nique to non-Euclidean distances.

Recent work in this area, however, has started to exploit statistical optimization tech-
niques to learn more intelligent hash functions. These techniques, known as learning-
based or data-dependent hashing, take the distribution of data into account in order to
obtain more effective hash functions. A notable approach in this category is Spectral
Hashing [174], which motivated others including Binary Reconstructive Embedding [99],
Anchor Graph Hashing [113], Random Maximum Margin Hashing [84], Spherical Hash-

97

Method Year Motivation / Intuition
LSH [45] 2004 Random hyperplanes tend to preserve locality
SH [174] 2009 Minimize Hamming distance in proportion to similarities
AGH [113] 2011 Speed up SH by approximation
SpH [69] 2012 Spheres for capturing similarities
CH [109] 2013 Adopt sparse coding theory
CPH [83] 2013 Hash functions should go through sparse areas
DSH [57] 2014 Keep kNN items together using Adaptive Boosting

Table 4.3: Several Notable Hashing Algorithms.

ing [69], Compressed Hashing [109], Complementary Projection Hashing [83], and Data
Sensitive Hashing [57]. All these methods use different motivations to learn more accu-
rate hashcodes for the kNN task. See Table 4.3 for a summary.

There are several techniques developed for efficient indexing and querying of the
hashcodes generated by LSH [55, 117, 153, 166, 168, 180]. As explained in Section 4.2.1
these methods belong to the Hamming Search stage; thus, they are orthogonal to our
contribution. In our implementation, we employed Multi-Index Hashing (MIH) [130], as
the state-of-the-art in this area.

Finally, it is important to note that using alternative representations of the original
data points for hashing is not a new topic. Different approaches have used different
representations to achieve their own motivations. For instance, AGH [113] used one to
speed-up SH [174], and CH [109] used one to obtain sparse representations. When we
used their representations in place of ours, the resulting algorithm produced a much
worse performance. Finally, in machine learning, non-linear transformations have also
been used for learning distance metrics for kNN classifiers [93, 124].

4.6 Summary

In this chapter, we have presented Neighbor-Sensitive Hashing, a algorithm that improves
approximate kNN search based on an unconventional observation that magnifying the
Hamming distances among neighbors helps in their accurate retrieval. We have formally
proven the effectiveness of this novel strategy. We have also shown empirically that NSH
yields better recall than its state-of-the-art counterparts given the same number of hash
bits. NSH is a “drop-in replacement” for existing hashing methods. As a result, any ap-
plication that chooses NSH can either enjoy an improved search quality, or trade NSH’s
recall advantage for a significant speed-up (i.e., reduced time and memory footprint by
using shorter hashcodes).

98

This chapter demonstrated the possibility of speeding up AQP by building task-
aware synopses. The kNN algorithm, which this chapter has focused on, is an essential
building block for many data mining algorithms, such as k-nearest neighbor classifiers
and collaborative filtering. We believe our contribution can improve the performance
of many advanced data analytics tasks that rely on retrieving similar items. In the
following chapter, we present another technique that speeds up AQP by building task-
aware synopses.

99

Chapter 5

High-quality Approximate Visualizations
by Learning from Data

In this chapter, we present our second technique that speeds up AQP by building task-
ware synopses. This technique speeds up approximate visualizations by choosing a
subset of data items wisely. Similar to the previous techniques we have presented in
this dissertation, the technique in this section also produces higher-quality results (here,
visualizations) given fixed time-bounds, or requires shorter query processing time for
meeting certain target quality.

5.1 Motivation

Data scientists frequently rely on visualizations for analyzing data and gleaning insight.
For productive data exploration, analysts should be able to produce ad hoc visualizations
in interactive time (a well-established goal in the visualization and human-computer in-
teraction (HCI) community [28, 42, 43, 51, 52, 67, 110, 115, 142, 175]). However, with the
rise of big data and the growing number of databases with millions or even billions of
records, generating even simple visualizations can take a considerable amount of time.
For example, as reported in Figure 5.2, we found that the industry standard Tableau
visualization system takes over 4 minutes on a high-end server to generate a scatterplot
for a 50M-tuple dataset that is already resident in memory. (see Section 5.6.1 for ex-
perimental details.) On the other hand, HCI researchers have found that visualizations
must be generated in 500ms to 2 seconds in order for users to stay engaged and view
the system as interactive [114,123,157]. Unfortunately, dataset sizes are already growing
faster than Moore’s Law [165] (the rate at which our hardware is speculated to improve),
so technology trends will likely exacerbate rather than alleviate the problem.

100

(a) Stratified Sampling
(overview)

(b) Stratified Sampling
(zoom-in)

(c) VAS (overview) (d) VAS (zoom-in)

Figure 5.1: Samples generated by fined-grained stratified sampling and our approach
respectively. When the entire range is visualized, both methods seem to offer the visual-
ization of the same quality. However, when zoomed-in views were requested, only our
approach retained important structures of the database.

This chapter addresses the problem of interactive visualization in the case of scatter-
plots and map plots. Scatterplots are a well-known visualization technique that represent
database records using dots in a 2D coordinate system. For example, an engineer may
investigate the relationship between time-of-day and server-latency by processing a database
of Web server logs, setting time-of-day as the scatterplot’s X-axis and the server-latency as
its Y-axis. Map plots display geographically-tied values on a 2D plane. Figure 5.1(a) is
an example of a map plot, visualizing a GPS dataset from OpenStreetMap project with
2B data points, each consisting of a latitude, longitude, and altitude triplet (altitude encoded
with color).

One approach for reducing the time involved in visualization production is via data
reduction [29]. Reducing the dataset reduces the amount of work for the visualization
system (by reducing the CPU, I/O, and rendering times) but at a potential cost to the
quality of output visualization. Effective data reduction will shrink the dataset as much
as possible while still producing an output that preserves all important information of
the original dataset. Sampling is a popular database method for reducing the amount of
data to be processed, often in the context of approximate query processing [13,15,27,38,

101

1M 10M 100M 500M
100
101
102
103
104

Dataset Size (Number of data points)
V

iz
Ti

m
e

(s
ec

)

MathGL
Tableau

Figure 5.2: The latency for generating scatter plot visualizations using Tableau and
MathGL (a library for scientific graphics).

68,81,125,131,187]. While uniform (random) sampling and stratified sampling are two of
the most common and effective approaches in approximate query processing [127], they
are not well-suited for generating scatter and map plots: they can both fail to capture
important features of the data if they are sparsely represented [115].

Figure 5.1 depicts an example using the Geolife dataset [189]. This dataset contains
GPS-recorded locations visited by the people living in and around Beijing. In this ex-
ample, we visualized 100K datapoints using both stratified sampling and our approach.
For stratified sampling, we created a 316-by-316 grid and set the strata sizes (the number
of datapoints in each cell) as balanced as possible across the cells created by the grid. In
the zoomed-out overview plots, the visualization quality of the two competing methods
seem nearly identical; however, when a zoomed-in plot is generated, one can observe
that our proposed method delivers significantly richer information.

Previous Approaches— Architecturally, our system is similar to ScalaR [29], which inter-
poses a data reduction layer between the visualization tool and a database backend; how-
ever, that project uses simple uniform random sampling. Researchers have attempted
a number of approaches for improving visualization time, including binned aggrega-
tion [110, 115, 175], parallel rendering [42, 142], and incremental visualization [51, 52].
These methods are orthogonal to the one we propose here.

Our Goals— This chapter tackles the technical challenge of creating a sampling strategy
that will yield useful and high-quality scatter and map plots at arbitrary zooming resolutions
with as few sampled tuples as possible. Figure 5.1(d) shows the plot generated by our
proposed method, which we call Visualization-Aware Sampling (VAS). Using the same
number of tuples as random and stratified sampling, VAS yields a much higher-fidelity
result. The use of VAS can be specified as part of the queries submitted by visualization
tools to the database. Using VAS, the database returns an approximate query answer
within a specified time bound using one of multiple pre-generated samples. VAS chooses

102

Relational
Database

Visualization
Application

User

Interactive
Visualization

Requests

Tool-
Generated

Queries

Relational
Query Results

Visualization
Bitmap

Figure 5.3: Standard model of user interaction with the combined visualization and
database system.

an appropriate sample size by converting the specified time bound into the number of
tuples that can likely be processed within that time bound. VAS is successful because
it samples data points according to a visualization-oriented metric that correlates well
with user success across a range of scatter and map plot tasks.

Contributions— We make the following contributions:
• We define the notion of VAS as an optimization problem (Section 5.3).

• We prove that the VAS problem is NP-hard and an offer efficient approximation
algorithm. We establish a worst-case guarantee for our approximate solution (Sec-
tion 5.4).

• In a user study, we show that our VAS is highly correlated with the user’s success
rate in various visualization tasks. We also evaluate the efficiency and effectiveness
of our approximation algorithm over several datasets. We show that VAS can de-
liver a visualization that has equal quality with competing approaches, but using
up to 400× fewer data points. Alternatively, if VAS can process an equal number of
data points as competing methods, it can deliver a visualization with a significantly
higher quality (Section 5.6).

Finally, we cover related work in Section 5.7 and conclude with a discussion of future
work in Section 5.8.

5.2 System Overview

5.2.1 Software Architecture Model

Figure 5.3 shows the software architecture model that we focus on in this chapter. This
is a standard architecture supported by the popular Tableau system [8]. It is also similar
to ScalaR’s “dynamic reduction” software architecture [29]. The user interacts with a

103

visualization tool to describe a desired visualization — say, a scatterplot of Web server

time vs latency. This tool has been configured to access a dedicated RDBMS, and the
schema information from the RDBMS is visible in the user’s interaction with the tool.
For example, in Tableau, a user can partially specify a desired scatterplot by indicating
a column name (say, server latency) from a list of options populated from the RDBMS
metadata. The user must not only choose just which fields and ranges from the database
are rendered, but also choose image-specific parameters such as visualization type, axis
labels, color codings, and so on.

Once the user has fully specified a visualization, the tool requests the necessary data
by generating the appropriate SQL query and submitting it to the remote RDBMS. The
RDBMS then returns the (relational) query results back to the visualization tool. Finally,
the tool uses the fetched records to render the final visualization bitmap, which is dis-
played to the user. During these last three steps, the user waits idly for the visualization
tool and the RDBMS.

When large datasets are being visualized, extremely long waits can negatively affect
the analyst’s level of engagement and ability to interactively produce successive visu-
alizations [28, 67, 114, 123, 157]. As reported in Figure 5.2, our own experiments show
that the industry-standard Tableau tool can take more than four minutes to produce a
scatterplot on just 50M tuples fetched from an in-memory database.

Note that our sampling approach is not limited to the software architecture in Fig-
ure 5.3, as reducing the number of visualized records almost always brings performance
benefits. Thus, even if engineers decide to combine the visualization and data manage-
ment layers in the future, sampling-based methods will still be useful.

5.2.2 Data Sampling

Approximate query processing via sampling is a popular technique [12, 16, 27, 38, 68,
81, 125, 131] for reducing the number of returned records, and random sampling or
stratified sampling are two well-known methods for this. When using these methods, the
visualization tool’s query is run over a sampled table(s) (or simply, a sample) that is smaller
than, and derived from, the original table(s). The sample(s) can be maintained by the
same RDBMS. Since sampling approaches incur an additional overhead to produce the
sample(s), these are typically performed in an offline manner [15, 38]: Once the sample
is created and stored in the database, they can be interactively queried and visualized
many times. (A sample can also be periodically updated when new data arrives [16].)

104

There is, of course, a tradeoff between output result quality and the size of the sam-
ple1 (and thus, runtime). In the limit, a random sample of 100% of the original database
will produce results with perfect fidelity, but will also not yield any reduction in runtime.
Conversely, a sample of 0% of the database will yield a result with no fidelity, albeit very
quickly. The exact size of the sample budget will be determined by deployment-specific
details: the nature of the application, the patience of the user base, the amount of hard-
ware resources available, and so on. As a result, the usefulness of a sampling method
must be evaluated over a range of sample budgets, with a realistic measure of final out-
put quality. Choosing a correct sampling budget is a known issue in the approximate
query processing literature [15]. Of course, in any specific real-world deployment, we
expect that the application will have a fixed maximum runtime or the size of a sample
that the system must observe.

5.2.3 Visualization Quality

In this work, we focus on the production of scatterplots (including map plots, such as Fig-
ure 5.1) as one of the most popular visualization techniques. We leave other visualization
types (such as bar charts, line charts, chloropleths, and so on) to future work.

Since the final value of a visualization is how much it helps the user, evaluating
any sampling method means examining how users actually employ the visualizations
they produce. Schneiderman, et al. proposed a taxonomy for information visualization
types [158] and compiled some of common visualization-driven goals/tasks. Their list
of goals included (i) regression, (ii) density estimation, and (iii) clustering. Our system
aims to yield visualizations that help with each of these popular goals. We make no claim
about other user goals and tasks for visualization, such as pattern finding and outlier
detection, which we reserve for future work (although we have anecdotal evidence to
suggest our system can address some of these tasks, too).

In this context, regression is the task of (visually) estimating the value of dependent
variables given the value of independent variables. For example, if we want to know
the temperature of the location specified by a pair of latitude and longitude coordinates,
it belongs to the regression task. Density estimation is the task of understanding the
distribution of the original data. For instance, one can use a map plot to understand the
geometric area with the most cell phone subscribers. Clustering is a task that assigns
data elements into distinct sets such that the data in the same group tend to be close to
one another, while data in different groups are comparatively far apart.

1Here, the size of a sample means the number of the data points contained in the sample.

105

Schneiderman, et al.’s list also included goals/tasks that are either poor fits for scatter
plots, or are simply outside the scope of what we aim to accomplish in this chapter:
shape visualization (DNA or 3D structures), classification, hierarchy understanding, and
community detection in networks. We explicitly do not attempt to produce visualizations
that can help users with these tasks.

5.2.4 Our Approach

Our proposed method proceeds in two steps: (1) during offline preprocessing, we produce
a sample that enable fast queries later, and (2) at query time, we choose a sample whose
size is appropriate for the specific query.

Similar to any offline indexing technique, VAS also requires (1) the user to make
choices about indexed columns and (2) an upfront computational work to speed up fu-
ture queries. In other words, VAS can be considered as a specialized index designed for
visualization workloads (e.g., Tableau). Note that, currently, even if users want to use
offline indexing, there is no indexing technique that ensures fast and accurate visualiza-
tions, a problem solved by VAS.

Indexed columns can be chosen in three ways:
1. manually, by the DBA;
2. based on the most frequently visualized columns [15, 73]; or
3. based on statistical properties of the data [135].

Among these approaches, the second one is the simplest, works reasonably well in prac-
tice, and can be made resilient against workload changes [126]. Furthermore, note that
visualization workloads, especially those supported by BI tools and SQL engines, are
similar to exploratory SQL analytics (i.e., grouping, filtering, aggregations). Real-world
traces from Facebook and Conviva [15] reveal that 80-90% of exploratory queries use
5-10% of the column combinations. Moreover, VAS only requires frequently visualized
column pairs, not groups or filters.

The core innovation of our work is that we generate a sample according to a visualization-
specific metric. That is, we believe that when a sample is generated according to the met-
ric we propose in Section 5.3 below, the user will be able to accomplish their goals from
Section 5.2.3 above (i.e., regression, density estimation, clustering) using the resulting
visualization, even with a small number of rendered data points. We do not claim that
our method will work for other visualization types, or even for other visualization goals.
Indeed, our method of generating a sample could in principle be harmful to some goals
(such as community detection tasks that require all members of a latent set to be sam-
pled). However, scatter plots, map plots, and the three visualization goals we focus on

106

are quite widespread and useful. Furthermore, modifying a visualization tool to only
use our sampling method if a user declares an interest in one of these goals would be a
straightforward task.

5.3 Problem Formulation

The first step in our approach to obtain a good sample for scatter plot visualizations
is defining a mathematical loss function that is closely correlated with the loss of vi-
sualization quality/utility from the user’s perspective. Once we define a function that
captures the visualization utility, our goal will be to solve an optimization problem; that
is, finding a sample of a given size that has the minimum value for the loss function. In
the rest of this section, we formally define our loss function and optimization problem.
The algorithm for solving the derived optimization problem will be presented in Section
5.4. Also, in Section 5.6.2, we will report a comprehensive user study confirming that
minimizing our loss function does indeed yield more useful visualizations for various
user tasks.

We start our problem formulation by defining notations. We denote a dataset D of
N tuples by D = {t1, t2, . . . , tN}. Each tuple ti encodes the coordinate at which the
associated point is displayed. For example, ti is a pair of longitude and latitude in a map
plot. A sample S is a subset of the dataset D and is denoted by S = {s1, s2, . . . , sK}.
Naturally, si is one of tj where j = 1, . . . , N. The size of the sample S (which is denoted
by K) is pre-determined based on the interactive latency requirement (see Section 5.2.2)
and is given as an input to our problem.

In designing our loss function, the objective is to measure the visualization quality
degradation originating from the sampling process. The traditional goal of sampling in
database systems is to maximize the number of tuples that match a selection predicate,
particularly those on categorical attributes [15]. In contrast, the selection predicates of
a scatter/map plot are on a continuous range, for which traditional approaches (e.g.,
uniform or stratified sampling) may not lead to high quality visualizations.

Therefore, to develop a more visualization-focused sampling technique, we first imag-
ine a 2D space on which a scatter plot is displayed, and let x denote any of the points on
the space. To measure the visualization quality loss, we make the following observations:

1. The visualization quality loss occurs, as the sample S does not include all tuples of
D.

107

2. The quality loss at x is reduced as the sample includes points at or near x —
two plots drawn using the original dataset (D) and the sample (S) might not look
identical if S does not include a point at x whereas D includes one at x, but they
will look similar if the sample contains points near x.

3. When there are already many points at or near x, choosing more points in that
neighborhood does not significantly enhance a visualization.

To express the above observations in a formal way, we consider the following measure
for visualization quality degradation at the point x:

point-loss(x) =
1

∑si∈S κ(x, si)
.

where κ(x, si) is the function that captures the proximity between the two points, x and
si. In this chapter, we use κ(x, si) = exp(−‖x − si‖2/ε2) (see footnote2 for ε) although
other functions can also be used for κ if the function is a decreasing convex function
of ‖x− si‖ — the convexity is needed due to the third observation we described above.
The equivalent quality metric can also be obtained by considering the problem as the
regression problem that aims to approximate the original tuples in D using the sample
S. See our technical report for an alternative derivation [136]. Note that the above loss
value is reduced if there exists more sampled points near x where the proximity to x is
captured by κ(x, si). In other words, the visualization quality loss at x is minimized if S
includes as many points as possible at and around x.

Note that the above loss function is defined for a single point x on the space on which
a scatter/map plot is visualized, whereas the space on which a scatter plot is drawn has
many of those points. As a result, our goal should be to obtain a sample S that minimizes
the combined loss of all possible points on the space. Due to the reason, our objective is
to find a sample S that minimizes the following expression:

Loss(S) =
∫

point-loss(x) dx =
∫ 1

∑si∈S κ(x, si)
dx (5.1)

Here, the integration is performed over the entire 2D space.
Now, we perform several mathematical tricks to obtain an effectively equivalent but a

more tractable problem, because the exact computation of the above integration requires
an computationally expensive method such as a Monte Carlo experiment with a large

2In our experiments, we set ε ≈ max(‖xi − xj‖)/100 but there is a theory on how to choose the optimal
value for ε as the only unknown parameter [39].

108

number of points. Using a second-order Taylor expansion, we can obtain a simpler form
that enables an efficient algorithm in the next section:

min
∫ 1

∑si∈S κ(x, si)
dx

= min
∫

1− (∑ κ(x, si)− 1) + (∑ κ(x, si)− 1)2 dx

= min
∫
(∑ κ(x, si))

2 − 3 ∑ κ(x, si) dx

= min
∫

∑
si,sj∈S

κ(x, si)κ(x, sj) dx

To obtain the last expression, we used the fact that the term
∫

∑ κ(x, si) dx is constant
since κ(x, si) is a similarity function and we are integrating over every possible x, i.e.,∫

∑ κ(x, si) dx has the same value regardless of the value of si. For the same reason,∫
∑[κ(x, si)]

2 dx is also constant. By changing the order of integration and summation,
we obtain the following optimization formulation, which we refer to as Visualization-
Aware Sampling (VAS) problem in this chapter.

Definition 9 (VAS). Given a fixed K, VAS is the problem of obtaining a sample S of size
K as a solution to the following optimization problem:

min
S⊆D; |S|=K

∑
si,sj∈S; i<j

κ̃(si, sj)

where κ̃(si, sj) =
∫

κ(x, si)κ(x, sj)dx

In the definition above, we call the summation term ∑ κ̃(si, sj) the optimization objec-
tive. With our choice of the proximity function, κ(si, sj) = exp(−‖si − sj‖2/ε2), we can
obtain a concrete expression for κ̃(si, sj): exp(−‖si − sj‖2/2ε2), after eliminating con-
stant terms that do not affect the minimization problem. In other words, κ̃(si, sj) is in the
same form as the original proximity function. In general, κ̃(si, sj) is another proximity
function between the two points si and sj since the integration for κ̃(si, sj) tends to have
a larger value when the two points are close. Thus, in practice, it is sufficient to use any
proximity function directly in place of κ̃(si, sj).

In the next section, we show that the VAS problem defined above is NP-hard and we
present an efficient approximation algorithm for solving this problem. Later in Section
5.6.2 we show that by finding a sample S that minimizes our loss function, we obtain a
sample that, when visualized, best allows users to perform various visualization tasks.

109

5.4 Solving VAS

In this section, we focus on solving the optimization problem derived in the previous
section to obtain an optimal sample S. In the following section, we also describe how to
extend the sample obtained by solving VAS to provide a richer set of information.

5.4.1 Hardness of VAS

First, we analyze the hardness of VAS formally.

Theorem 5.1. VAS (Problem 9) is NP-hard.

Proof. We show the NP-hardness of Problem 9 by reducing maximum edge subgraph prob-
lem to VAS.

Lemma 6. (Maximum Edge Subgraph) Given a undirected weighted graph G = (V, E),
choose a subgraph G′ = (V′, E′) with |V′| = K that maximizes

∑
(u,v)⊂E′

w(u, v)

This problem is called maximum edge subgraph, and is NP-hard [50].

To reduce the above problem to VAS, the following procedure is performed: map
i-th vertex vi to i-th instance xi, and set the value of κ̃(xi, xj) to wmax − w(vi, vj), where
wmax = maxvi,vj⊂V′ w(vi, vj). The reduction process takes O(|E| + |V|). Once the set
of data points that minimize ∑si,sj∈X κ̃(si, sj) is obtained by solving VAS, we choose a
set of corresponding vertices, and return them as an answer to the maximum edge sub-
graph problem. Since the maximum edge subgraph problem is NP-hard, and the reduction
process takes a polynomial time, VAS is also NP-hard.

Due to the NP-hardness of VAS, obtaining an exact solution to VAS is prohibitively
slow, as we will empirically show in Section 5.6.4. Thus, in the rest of this section, we
present an approximation algorithm for VAS (Section 5.4.2), followed by additional ideas
for improvement (Section 5.4.2).

5.4.2 The Interchange Algorithm

In this section, we present our approximation algorithm, called Interchange. The Interchange

algorithm starts from a randomly chosen set of size K and performs a replacement op-
eration with a new data point if the operation decreases the optimization objective (i.e.,

110

the loss function). We call such a replacement, i.e., one that decreases the optimization
objective, a valid replacement. In other words, Interchange tests for valid replacements as it
sequentially reads through the data points from the dataset D.

One way to understand this algorithm theoretically is by imagining a Markov net-
work in which each state represents a different subset of D where the size of the subset
is K. The network then has a total of (D

K) states. The transition between the states is de-
fined as an exchange of one of the elements in the current subset S with another element
in D − S. It is easy to see that the transition defined in this way is irreducible, i.e., any
state can reach any other states following the transitions defined in such a way. Because
Interchange is a process that continuously seeks a state with a lower optimization objective
than the current one, Interchange is a hill climbing algorithm in the network.

Expand/Shrink procedure— Now we state how we can efficiently perform valid replace-
ments. One approach to finding valid replacements is by substituting one of the elements
in S with a new data point whenever one is read in, then computing the optimization
objective of the set. For this computation, we need to call the proximity function O(K2)

times as there are K elements in the set, and we need to compute a proximity function
for every pair of elements in the set. This computation should be done for every element
in S. Thus, to test for valid replacements, we need O(K3) computations for every new
data point.

A more efficient approach is to consider only the part of the optimization objective
for which the participating elements are responsible. We formally define the notion of
responsibility as follows.

Definition 10. (Responsibility) The responsibility of an element si in set S is defined as:

rspS(si) =
1
2 ∑

sj∈S, j 6=i
κ̃(si, sj).

Using the responsibility, we can speed up the tests for valid replacements in the
following way. Whenever considering a new data point t, take an existing element si in
S, and compute the responsibility of t in the set S− {si}+ {t}. This computation takes
O(K) times. It is easy to see that if the responsibility of t in S − {si} + {t} is smaller
than the responsibility of si in the original set S, the replacement operation of si with the
new data point t is a valid replacement. In this way, we can compare the responsibilities
without computing all pairwise proximity functions. Since this test should be performed
for every element in S, it takes a total of O(K2) computations for every new data point.

111

Algorithm 4: Interchange algorithm.
input : D = {t1, t2, . . . , tN}
output: A sample S of size K

// set for pairs of (item, responsibility)
1 R ← ∅
2 foreach ti ∈ D do
3 if |R| < K then R← Expand (R, ti)
4 else
5 R← Expand (R, ti)
6 R← Shrink (R)
7 end
8 end
9 S← pick the first item of every pair in R

10 return S

11 subroutine Expand (R, t)
12 rsp← 0 // responsibility
13 foreach (si, ri) ∈ R do
14 l ← κ̃(t, si)
15 ri ← ri + l
16 rsp← rsp+ l
17 end
18 insert (t, rsp) into R
19 return R
20 end

21 subroutine Shrink (R)
22 remove (t, r) with largest r from R
23 foreach (si, ri) ∈ R do
24 ri ← ri − κ̃(t, si)
25 end
26 return R
27 end

112

However, it is possible to make this operation even faster. Instead of testing for valid
replacements by substituting the new data point t for one of the elements in S, we simply
expand the set S by inserting t into the set, temporarily creating a set of size K + 1. In this
process, the responsibility of every element in S is updated accordingly. Next, we find
the element with the largest responsibility in the expanded set and remove that element
from the set, shrinking the set size back to K. Again, the responsibility of every element
in S should be updated. Algorithm 4 shows the pseudo-code for this approach. The
theorem below proves the correctness of the approach.

Theorem 5.2. For si ∈ S, if replacing si with a new element t reduces the optimization
objective of S, applying Expand followed by Shrink in Algorithm 4 replaces si with t.
Otherwise, S remains the same.

Proof. Let κ̃(S) indicate ∑si,sj∈S,i<j κ̃(si, sj). Also, define S− = S− {si} and S+ = S + {t}.
We show that if the optimization objective before the replacement, namely κ̃(S− + {si}),
is larger than the optimization objective after the replacement, namely κ̃(S−+ {t}), then
the responsibility of the existing element si in an expanded set, rspS+(si), is also larger
than the responsibility of the new element t in the expanded set, rspS+(t). The proof is
as follows:

κ̃(S− + {si}) > κ̃(S− + {t})
⇐⇒ ∑

sj∈S−

κ̃(si, sj) > ∑
sj∈S−

κ̃(t, sj)

⇐⇒ κ̃(si, t) + ∑
sj∈S−

κ̃(si, sj) > κ̃(si, t) + ∑
sj∈S−

κ̃(t, sj)

⇐⇒ rspS+(si) > rspS+(t).

Since the responsibility of si is larger than that of t in the expanded set S+, the Shrink

routine will remove si. If no element exists whose responsibility is larger than that of t,
then t is removed by this routine and S remains the same.

In both the Expand and Shrink routines, the responsibility of each element is updated
using a single loop, so both routines take O(K) computations whenever a new data
point is considered. Thus, scanning the entire dataset and applying these two routines
will take O(NK) running time.

The Interchange algorithm, if it runs until no replacement decreases the optimization
objective, has the following theoretical bound.

113

Theorem 5.3. Let’s say that the sample obtained by Interchange is Sint, and the optimal
sample is Sopt. The quality of Sint, or the optimization objective, has the following upper
bound:

1
K(K− 1) ∑

si,sj∈Sint; i<j
κ̃(si, sj)

≤ 1
4
+

1
K(K− 1) ∑

si,sj∈Sopt; i<j
κ̃(si, sj)

In the expression above, we compare the difference between the averaged optimization
objectives.

Proof. Due to the submodularity of VAS, which we show in our technical report [136],
we can apply the result of Nemhauser, et al. [129] and obtain the result above.

Ideally, Interchange should be run until no more valid replacements are possible. How-
ever, in practice, we observed that even running the algorithm for half an hour produces
a high quality sample. When more time is permitted, the algorithm will continuously
improve the sample quality until convergence.

Speed-Up using the Locality of Proximity function— Proximity functions such as
exp(−‖x − y‖2/ε2) have a property called locality. The locality property of a proxim-
ity function indicates that its value becomes negligible when the distance between the
two data points is not close—an idea also used in accelerating other algorithms [98]. For
example, our proximity function value is 1.12× 10−7 when the distance between the two
points is 4ε; thus, even though we ignore pairs whose distance is larger than a certain
threshold, it will not affect the final outcome much. Exploiting this property, we can
make the Expand and Shrink operations much faster by only considering the data points
that are close enough to new data points. For a proximity check, our implementation
used R-tree.

5.5 Extending VAS: Embedding Density

VAS aims to minimize a visualization-driven quality loss, yielding scatter/map plots
that are highly similar to those generated by visualizing the entire dataset. However, we
need a different strategy if the user’s intention is to estimate the density or find clusters
from the scatter plot. This is because humans cannot visually distinguish multiple data
points on a scatter plot if they are duplicates or extremely close to one another. This can
make it hard to visually estimate the number or density of such data points. One way

114

to address this is to account for the number of near-duplicate points in each region. For
example, points drawn from a dense area can be plotted with a larger legend size or
some jitter noise can be used to provide additional density in the plot. In other words,
the font size of each point or the amount of jitter noise will be proportional to the original
density of the region the point is drawn from. VAS can be easily extended to support
such an approach, as follows:

1. Obtain a sample using our algorithm for VAS.

2. Attach a counter to every sampled point.

3. While scanning the dataset once more, increase a counter if its associated sampled
point is the nearest neighbor of the data point that was just scanned.

With these extra counters, we can now visualize the density of areas (each of which is
represented by its nearest sampled point), e.g., using different dot sizes or by adding
jitter noise in proportion to each point’s density. (See Section 5.6.2 for a scatter plot
example.)

Note that the above process only adds an extra column to the database and, therefore,
does not alter our basic Interchange algorithm for VAS. Also, this extension does not
require any additional information from users.

Note that, for the above density embedding process, a special data structure such as
a k-d tree [30] can be used to make the nearest neighbor tests more efficient. This is
done by using the sample obtained in the first pass to build a k-d tree, then using the
tree to identify the nearest data points in the sample during the second pass. Since k-d
trees perform the nearest neighbor search in O(log K), the overall time complexity for
the second pass is O(N log K).

5.6 Experiments

We run four types of experiments to demonstrate that VAS and VAS with density em-
bedding can produce high-quality plots in less time than competing methods.

1. We study the runtime of existing visualization systems that were introduced in
Figure 5.2.

2. In a user study, we show that users were more successful when they used visualiza-
tions produced by VAS than with other methods. We also show that user success
and our loss function were negatively correlated (that is, users were successful
when our loss function is minimized).

115

1M 5M 10M 50M
100

101

102

103

Sample Size

V
iz

Ti
m

e
(s

ec
s)

Geolife SPLOM

(a) Tableau

1M 5M 10M 50M
100

101

102

103

Sample Size

V
iz

Ti
m

e
(s

ec
)

Geolife SPLOM

(b) MathGL

Figure 5.4: Time to produce plots of various sizes using existing visualization systems.

3. We show that VAS could obtain a sample of a fixed quality level (that is, loss
function level) with fewer data points than competing methods. We demonstrate
this over a range of different datasets and sample quality levels.

4. We empirically study the Interchange algorithm: we compare its quality and runtime
to those of the exact method, examine the relationship between runtime and sample
quality, and investigate the impact of our optimization on runtime.

All of our experiments were performed using two datasets: the Geolife dataset and
the SPLOM dataset. The Geolife dataset was collected by Microsoft Research [189]. It
contained latitude, longitude, elevation triples from GPS loggers, recorded mainly around
Beijing. Our full database contained 24.4M tuples. We also used SPLOM, a synthetic
dataset generated from several Gaussian distributions that had been used in previous
visualization projects [88, 115]. We used parameters identical to previous work, and
generated a dataset of five columns and 1B tuples. We performed our evaluations on an
Amazon EC2 memory instance (r3.4xlarge) which contained 16 cores and 122G memory.

5.6.1 Existing Systems are Slow

Our discussions in this chapter are based on the idea that plotting a scatter plot using an
original dataset takes an unacceptably long period of time. We tested two state-of-the-art
systems: Tableau [9] and MathGL [120]. Tableau is one of the most popular commercial
visualization software available on Windows, and MathGL is an open source scientific
plotting library implemented in C++. We tested both the Geolife and SPLOM datasets.
The results are shown in Figure 5.4.

In both systems, the visualization time includes (1) the time to load data from SSD
storage (for MathGL) or from memory (for Tableau) and (2) the time to render the data
into a plot. We can see that even when the datasets contained just 1M records, the

116

(a) Stratified Sampling (b) VAS

Figure 5.5: Example figures used in the user study for the regression task. We asked the
altitude of the location pointed by ‘X’. The left was generated by stratified sampling and
the right was generated by VAS.

visualization time was more than the 2-second interactive limit. Moreover, visualization
time grew linearly with sample size.

5.6.2 User Success and Sample Quality

In this section we make two important experimental claims about user interaction with
visualizations produced by our system. First, users are more successful at our specified
goals when using VAS-produced outputs than when using outputs from uniform ran-
dom sampling or stratified sampling. Second, user success and our loss function — that
is, our measure of sample quality — are correlated. We validate these claims with a user
study performed using Amazon’s Mechanical Turk system.

User Success

We tested three user goals: regression, density estimation, and clustering.

Regression— To test user success in the regression task, we gave each user a sampled
visualization from the Geolife data. We asked the users to estimate the altitude at a spec-
ified latitude and longitude. Naturally, the more sampled data points that are displayed
near the location in question, the more accuracy users are likely to achieve. Figure 5.5
shows two examples of test visualizations given to users for the regression task (users
were asked to estimate the altitude of the location marked by ‘X’). We gave each user a
list of four possible choices: the correct answer, two false answers, and “I’m not sure”.

We tested VAS, random uniform sampling, and stratified sampling. We generated a
test visualization for each sampling method at four distinct sample sizes ranging from

117

Figure 5.6: An example figure used in the user study for the density estimation task.
This figure was generated using VAS with density embedding. The left-hand image is
the original figure. The right-hand image contains four test markers, used to ask users
to choose the densest area and the sparsest areas.

100 to 100K. For each test visualization, we zoomed into six randomly-chosen regions
and picked a different test location for each region. Thus, we had 72 unique test ques-
tions (3 methods * 4 sample sizes * 6 locations). We gave each package of 72 questions to
40 different users and averaged the number of correct answers over each distinct ques-
tion. To control for worker quality, we filtered out users who failed to correctly answer
a few trivial “trapdoor” questions.

The uniform random sampling method chooses K data points purely at random, and
as a result, tends to choose more data points from dense areas. We implemented the
single-pass reservoir method for simple random sampling. Stratified sampling divides
a domain into non-overlapping bins and performs uniform random sampling for each
bin. Here, the number of the data points to draw for each bin is determined in the most
balanced way. For example, suppose there are two bins and we want a sample of size
100. If there are enough data points to sample from those two bins, we sample 50 data
points from each bin. Otherwise, if the second bin only has 10 available data points,
then we sample 90 data points from the first bin, and 10 data points from the second bin.
Stratified sampling is a straightforward method that avoids uniform random sampling’s
major shortcoming (that is, uniform random sampling draws most of its data points
from the densest areas). In our experiment, stratified sampling divided the domain of
Geolife into 100 exclusive bins and performed uniform random sampling for each bin
using the reservoir method.

Table 5.1(a) summarizes user success in the regression task. The result shows that
users achieved the highest accuracy in the regression task when they used VAS, signifi-
cantly outperforming other sampling methods.

118

Sample size Uniform Stratified VAS
100 0.213 0.225 0.428

1,000 0.260 0.285 0.637
10,000 0.215 0.360 0.895

100,000 0.593 0.644 0.989
Average 0.319 0.378 0.734

(a) Regression

Sample size Uniform Stratified VAS VAS w/ density
100 0.092 0.524 0.323 0.369

1,000 0.628 0.681 0.311 0.859
10,000 0.668 0.715 0.499 0.859

100,000 0.734 0.627 0.455 0.869
Average 0.531 0.637 0.395 0.735

(b) Density Estimation

Sample size Uniform Stratified VAS VAS w/ density
100 0.623 0.486 0.521 0.727

1,000 0.842 0.412 0.658 0.899
10,000 0.931 0.543 0.845 0.950

100,000 0.897 0.793 0.864 0.965
Average 0.821 0.561 0.722 0.887

(c) Clustering

Table 5.1: User Performance in Three Tasks

Density Estimation— For the density estimation task, we created samples whose sizes
ranged 100-100K using four different sampling methods: uniform random sampling,
stratified sampling, VAS, and VAS with density embedding. Using those samples, we
chose 5 different zoomed-in areas. For each zoomed-in area, we asked users to identify
the densest and the sparsest areas among 4 different marked locations. Figure 5.6 shows
an example visualization shown to a test user. As a result, we generated 80 unique
visualizations. We again posed the package of 80 questions to 40 unique users, and
again filtered out users who failed to answer easy trapdoor questions.

The result of the density estimation task is shown in Table 5.1(b). Interestingly, the
basic VAS method without density estimation yielded very poor results. However, when
we augmented the sample with density embedding, users obtained even better success
than with uniform random sampling. One of the reasons that ‘VAS with density’ was

119

superior to uniform random sampling was because we not only asked the users to esti-
mate the densest area, but also asked them to estimate the sparsest area of those figures.
The figures generated by uniform random sampling typically had few points in sparse
areas, making it difficult to identify the sparsest area.

Clustering— Lastly, we compared user performance in the clustering task. Since the
Geolife dataset did not have ground-truth for clustering, we used synthetic datasets
that we generated using Gaussian distributions instead. Using two-dimensional Gaus-
sian distributions with different covariances, we generated 4 datasets, 2 of which were
generated from 2 Gaussian distributions and the other 2 were generated from a single
Gaussian distribution. (This dataset was similar to SPLOM, which unfortunately has a
single Gaussian cluster, making it unsuitable for this experiment.)

Using the same 4 sampling methods that were used in the density estimation task, we
created samples whose sizes ranged 100-100K, and tested if users could correctly identify
the number of underlying clusters given the figures generated from those samples. In
total, we created 64 questions (4 methods, 4 datasets, and 4 sample sizes). We again
asked 40 Mechanical Turk users (or simply Turkers) and filtered out bad workers.

Table 5.1(c) summarizes the result of the clustering task. As in the density estima-
tion task, ‘VAS with density’ allowed users to be more successful than they were with
visualizations from uniform random sampling. Although VAS without density did not
perform as well as uniform random sampling, it produced a roughly comparable score.

We think the reason VAS without density estimation showed comparable performance
was that we used no more than 2 Gaussian distributions for data generation, and the
Turkers could recognize the number of the underlying clusters from the outline of the
sampled data points. For example, if the data were generated from two Gaussian dis-
tributions, the data points sampled by VAS would look like two partially overlapping
circles. The Turkers would have shown poorer performance if there was a cluster sur-
rounded by other clusters.

On the other hand, stratified sampling did poorly in this clustering task because it
performed a separate random sampling for each bin, i.e., the data points within each bin
tend to group together, and as a result, the Turkers found that there were more clusters
than actually existed.

Correlation with Sample Quality

In this section, we test whether the VAS’s optimization criterion of Loss(S) had a close
relationship to our visualization users’ success in reaching their end goals. If they were

120

highly correlated, we have some empirical evidence that samples which minimize the
VAS loss function will yield useful plots.

In particular, we examined this relationship for the case of regression. For each com-
bination of sample size and sampling method, we produced a sample and corresponding
visualization. We computed Loss(S) using the expression in Equation 5.1. We then mea-
sured the correlation between the loss and average user performance on the regression
task for that visualization.

To compute the loss (Equation 5.1), which includes integration, we used the Monte
Carlo technique using 1,000 randomly generated points in the domain of the Geolife
dataset. For this process, we determined that randomly generated points were within
the domain if there existed any data point in the original dataset whose distance to the
randomly generated data points was no larger than 0.1. Now, the integral expression
was replaced with a summation as follows:

Loss(S) =
1

1000

1000

∑
i=1

1
∑si∈S κ(xi, si)

.

This loss computed above is the mean of one thousand values. One problem we encoun-
tered in computing the mean was that the point-loss often became so large that double

precision could not hold those quantities. To address this, we used the median instead
of the mean in this section because the median is less sensitive to outliers. Note that the
median is still valid for a correlation analysis because we did not observe any case where
a sample with a larger mean has a smaller median compared to another sample.

Next, to compare loss in a more consistent way, we computed the following quantity:

log-loss-ratio(S) = log10

[
Loss(S)
Loss(D)

]
where D is the original dataset. Loss(D) is the lowest loss that a sample can achieve;
thus, samples with log-loss-ratios close to zero can be regarded as good samples based
on this metric.

Next we examined the relationship between a sample’s log-loss-ratio and the per-
centage of the questions that were correctly answered in the regression task using the
sample’s corresponding visualization. If the two metrics yield similar rankings of the
sampled sets, then the VAS optimization criterion is a good guide for producing end-user
visualizations. If the two metrics yield uncorrelated rankings, then our VAS criterion is
faulty.

121

100 101 102
0

0.2
0.4
0.6
0.8

1

Error (log-loss-ratio)

U
se

r
Su

cc
es

s
R

at
io

Figure 5.7: The relationship between the loss and user performance on the regression
task. The samples with smaller losses resulted in better success ratios in general in the
regression task.

Figure 5.7 depicts the results. The figure clearly shows the negative correlation be-
tween the loss and user success ratio in the regression task. Because the X-axis of the
figure is the loss function that we aim to minimize to obtain a good sample, the negative
correlation between the two metrics shows the validity of our problem formulation.

Also, when we computed Spearman’s rank correlation coefficient3, the correlation
coefficient was −0.85, indicating a strong negative correlation between user success and
the log-loss-ratio. (Its p-value was 5.2× 10−4.) Put another way, minimizing our loss
function for a sample should do a good job of maximizing user success on the resulting
visualizations. This result indicates that the problem formulation in Section 5.3 and the
intuition behind it was largely valid.

5.6.3 VAS Uses a Smaller Sample

This section shows that VAS can produce a better sample than random uniform sampling
or stratified sampling. That is, for a fixed amount of visualization production time, its
quality (loss function value) is lower; or, that for a fixed quality level (loss function
value), it needs less time to produce the visualization. (The visualization production
time is linear with the number of data points.)

We used the Geolife dataset and produced samples of various sizes (and thus, dif-
ferent visualization production times). Figure 5.8(a) shows the results when we varied
the visualization time: VAS always produced a sample with lower loss function values
(i.e., higher quality) than other methods. The quality gap between the methods did not
become smaller until after an entire minute of runtime. We show a similar result with
the other dataset in our technical report [136]

3Spearman’s rank correlation coefficient produces −1.0 for pairs of variables that are completely nega-
tively correlated, and 1.0 for pairs of variables that are completely positively correlated.

122

0.1 1 10 100
0

20

40

60

Visualization Time (secs)

Er
ro

r
(l

og
-l

os
s-

ra
ti

o)

uniform stratified VAS

(a) Error given time

010203040
0

1m

2m

3m

Error (log-loss-ratio)

V
iz

Ti
m

e
(s

ec
s)

(b) Time given error

Figure 5.8: Relationship between visualization production time and error for the three
sampling methods.

Figure 5.8(b) shows the same data using a different perspective. We fixed the loss
function value (quality) and measured how long it takes to visualize the corresponding
samples. Because the samples generated by our method had much smaller losses com-
pared to other methods, all of the data points in the figure are in the bottom right corner.
Competing methods required much more time than VAS to obtain the same quality (loss
function value).

5.6.4 Algorithmic Details

We now examine three internal qualities of the VAS technique: approximate vs. exact
solution, runtime analysis, and optimization contributions.

Exact vs. Approximate— The NP-hardness of VAS supports the need for an approxima-
tion algorithm. This section empirically examines the NP-hardness of VAS.

We think one of the best options for obtaining an exact solution to VAS is by convert-
ing the problem to an instance of integer programming and solving it using a standard
library. Refer to our report [136] for converting VAS to an instance of Mixed Integer Pro-
gramming (MIP). We used the GNU Linear Programming Kit [118] to solve the converted
MIP problem.

Table 5.2 shows the time it took to obtain exact solutions to VAS with datasets of
very small sizes. The sample size K was fixed to 10 in all of the experiments in the
table. According to the result, the exact solutions to VAS showed better quality, but
the procedure to obtain them took considerably longer. As shown, obtaining an exact
solution when N = 80 took more than 40 minutes, whereas the time it took by other

123

N Metric MIP Approx. VAS Random

50
Runtime 1m 7s 0s 0s
Opt. objective 0.160 0.179 3.72
Loss(S) 1.5e+26 1.5e+26 2.5e+29

60
Runtime 1m 33s 0s 0s
Opt. objective 0.036 0.076 3.31
Loss(S) 3.8e+11 1.6e+16 2.5e+29

70
Runtime 14m 26s 0s 0s
Opt. objective 0.047 0.048 3.02
Loss(S) 1.8e+13 1.8e+13 9.45e+33

80
Runtime 48m 55s 0s 0s
Opt. objective 0.043 0.048 2.25
Loss(S) 8.5e+13 1.8e+13 9.4e+35

Table 5.2: Loss and runtime comparison

0 30 60 90 120 150 180
0

0.2
0.4
0.6
0.8

1

Processing Time (mins)

O
bj

ec
ti

ve

Sample Size: 100K
Sample Size: 1M

Figure 5.9: Processing Time vs. Quality. The lower the objective, the higher the quality is.
The Interchange algorithm for VAS produces a high-quality visualization in a relatively
short period of time. The quality is improved incrementally as more processing time is
allowed.

sampling methods was negligible. Clearly, the exact solution is not feasible except for
extremely small data sizes.

Runtime Analysis— VAS gradually improves its sample quality as more data is read
and processed. As observed in many statistical optimization routines, VAS offers good-
quality plots long before reaching its optimal state. To investigate this phenomenon, we
measured the relationship between “processing time” and “visualization quality.” The
result is shown in Figure 5.9. Note that the Y-axis of the figure is the objective4 of our
minimization problem; thus, the lower the objective, the higher the associated visualiza-
tion’s quality. In this experiment, we used the Geolife dataset. Figure 5.9 demonstrates
that our Interchange algorithm improved the visualization quality quickly at its initial

4We scaled the objectives appropriately for a clearer comparison.

124

0 50 100

ES+Loc

ES

No ES

Offline Runtime (min)

(a) Small Sample Size (100)

0 50 100 150 200

ES+Loc

ES

Offline Runtime (min)

(b) Large Sample Size (5K)

Figure 5.10: Runtime comparison of different levels of optimizations. For this exper-
iment, we used the Geolife dataset. ES+Loc indicates that both Expand/Shrink (ES)
operation and the locality of a proximity function were used.

stages, and the improvement rate slowed down gradually. Notably, VAS produced low-
error plots within only tens of minutes of processing time. The storage overhead of our
algorithm is only O(K), where K is the sample size.

Optimization Contribution— To quantify the impact of our optimization efforts on the
runtime reduction, we measured the runtime of three different settings:

1. No Expand/Shrink (No ES): This is the most basic configuration that does not use
the Expand/Shrink approach, but instead compares the responsibility when a new
point is switched with another one in the sample.

2. Expand/Shrink (ES): This version uses the Expand/Shrink operation, reducing the
time complexity by O(K), where K is the sample size.

3. Expand/Shrink+Locality (ES+Loc): This version uses an additional R-tree to speed
up the Expand/Shrink operations. This version is possible due to the locality of
our loss function.

Figure 5.10 shows the results. When the sample size was relatively small (100), the sec-
ond approach (Expand/Shrink), which does not exploit the locality, showed the short-
est runtime due to no extra overhead coming from maintaining an extra R-tree data
structure. However, when the sample size was relatively large (5K), the last approach
(ES+Loc) that exploits the locality of the loss function showed the fastest runtime. When
the user is interested in large samples (more than 10K at least), the last approach that
uses R-tree to exploit locality will be the most preferable choice. The runtime sensitivity
to sample size suggests that in the future, it may be useful to employ an optimizer that
chooses the most appropriate algorithm setting, given a requested sample size.

125

5.7 Related Work

Support for interactive visualization of large datasets is a fast-growing area of research
interest [28,29,42,43,51,52,67,110,115,142,175], along with other approximate techniques
for interactive processing of non-conventional queries [137]. Most of the work to date
has originated from the user interaction community, but researchers in database man-
agement have begun to study the problem. Known approaches fall into a few different
categories.

The most directly related work is that of Battle, et al. [29]. They proposed ScalaR,
a system for dynamic reduction of query results that are too large to be effectively ren-
dered on-screen. The system examines queries sent from the visualization system to
the RDBMS and if necessary, inserts aggregation, sampling, and filtering query opera-
tors. ScalaR uses simple random sampling, and so could likely be improved by adopting
our sampling technique. For bar graphs, Kim et al. [96] proposed an order-preserving
sampling method, which examines fewer tuples than simple random sampling.

Binned aggregation approaches [110, 115, 175] reduce data by dividing a data domain
into tiles or bins, which correspond to materialized views. At visualization time, these
bins can be selected and aggregated to produce the desired visualization. Unfortunately,
the exact bins are chosen ahead of time, and certain operations — such as zooming
— entail either choosing a very small bin size (and thus worse performance) or living
with low-resolution results. Because binned aggregation needs to pre-aggregate all the
quantities in advance, the approach is less flexible when the data is changing, such as
measured temperatures over time; our method does not have such a problem.

Wickham [175] proposed to improve visualization times with a mixture of binning
and summarizing (very similar to binned aggregation) followed by a statistical smooth-
ing step. The smoothing step allows the system to avoid problems of high variability,
which arise when the bins are small or when they contain eccentric values. However, the
resulting smoothed data may make the results unsuitable for certain applications, such
as an outlier finding. This smoothing step itself is orthogonal to our work, i.e., when
there appears to be high variability in the sample created by our proposed method, the
same smoothing technique can be applied to present more interpretable results. The
smoothing process also benefits from our method because VAS creates a sample much
smaller than the original database, thus, makes smoothing faster. The abstract rendering
pipeline [43] also maps bins to regions of data, but the primary goal of this system is to
modify the visualization, not performance.

126

Parallel rendering exploits parallelism in hardware to speed up visual drawing of the
visualization [42,142]. It is helpful but largely orthogonal to our contributions. SeeDB is
a system that discovers the most interesting bar graphs [170] from datasets.

Incremental visualization proposes a streaming data processing model, which quickly
yields an initial low-resolution version of the user’s desired bitmap [51, 52]. The sys-
tem continues to process data after showing the initial image and progressively re-
fines the visualization. When viewed in terms of our framework in Section 5.2, this
method amounts to increasing the sample budget over time and using the new sam-
ples to improve the user’s current visualization. Thus, incremental visualization and
sample-driven methods should benefit from each other.

5.8 Summary

We have described the VAS, a data reduction method for visualizations. VAS is able
to choose a subset of the original database that is very small (and thus, fast) while
still yielding a high-quality scatter or map plot. Our user study showed that for three
common user goals — regression, density estimation, and clustering — VAS outputs are
substantially more useful than other sampling methods’ outputs with the same number
of tuples.

The result of this chapter shows another possibility of speeding up AQP by building
task-aware synopses. We believe the data analytics systems for visualization tools are
still in its infancy and entails a range of interesting challenges. In particular, we plan to
investigate techniques for rapidly generating visualizations for other user goals (includ-
ing outlier detection, trend identification) and other data types (such as large networks).
Task-aware synopses will be the key components in supporting those visualization tasks
as well.

We have presented our two techniques—neighbor-sensitive hashing and visualization-
aware sampling—which builds task-aware synopses for higher-quality data analytics.
We end the second part of this dissertation.

127

Chapter 6

Conclusions and Future Work

Real-time data analytics has been the goal of many years of research in various commu-
nities. Since approximate query processing was proposed in the database community
more than a decade ago, it has gained a renewed attention recently due to the rapid
growth of data volume. If the current trend—faster growth in data volume compared
to the growth in computational power—continues, approximate query processing will
remain as an essential technique for real-time data analytics.

In this dissertation, we have shown that two approaches—exploiting past computa-
tions and building task-aware synopses—are effective for further speeding up approx-
imate query processing. The proposed techniques in this dissertation cover important
data analytics tasks: analytic SQL queries, data mining, and visualizations. Those ana-
lytics have been popular tools for data analysts and are projected to remain as important
tools for analyzing data [147].

6.1 Lessons Learned

Approximate data analytics is like humans— Our database learning originates from
the idea that, if data analytics systems were humans, how would they behave as an-
swering queries? One similarity between AQP and humans is they show great ability in
producing instant answers, albeit inexact. If we could employ thousands of humans for
data analytics tasks instead of those computing devices, those human workers gradually
acquire knowledge; thus, they can more quickly answer the future queries if those future
queries are somewhat related to the queries they answered in the past.

Our prototype system, Verdict, formalizes this simple intuition based on probabilistic
modeling of the answers to the SQL queries that include aggregate functions. As a result,
our approach provides very natural ability as a learning agent. For instance, when past

128

queries does not involve any common values with new queries for their aggregations and
when those values are very weakly correlated, Verdict can barely improve the quality of
the answers to new queries. This is analogous to asking a domain expert of a question
unrelated to her expertises. Then, the domain expert would not be able to quickly answer
the question.

We believe a similar idea can be applied to other types of data analytics tasks. Imag-
ine one is interested in visualizing a massive graph. As a data visualization system
processes many queries on many subparts of the graph, the system could gradually ac-
quire more knowledge on various parts of the graph; thus, it would be able to combine
its past visualizations somehow to generate a new visualization.

Target outliers to bound the worst-case latency— The primary reason of uniform ran-
dom sampling’s popularity would be its simplicity. However, uniform random sam-
pling seriously priorities the items that belong to dense subpopulations. If our goal is,
however, to lower the worst case query latency (e.g., to bound all query processing be-
low 3 seconds), we must have enough sampled items from rare subpopulations. Our
visualization-aware sampling is one way to achieve this goal by sampling data items in
the most balanced way.

Approaches similar to visualization-aware sampling can be developed for other types
of data analytics tasks to lower the worst-case performance. For instance, a similar ap-
proach could be used in place of the current stratified sampling for constructing samples
in relational AQP databases. The current stratified sampling is effective only when the
predefined strata coincides with the group-by attributes; however, an approach similar
to visualization-aware sampling could benefit even when the group-by attributes of the
future queries are not known in advance.

6.2 Future Work

As working on this dissertation, we have realized several interesting opportunities for
applying and generalizing AQP. In this section, we present three interesting problems
for future work.

6.2.1 Exploiting Past Computations for General SQL Processing

Data analysis with declarative languages is an important feature for both conventional
RDMBS and modern distributed data analytics systems [2–4]. For those systems, ac-
curate cardinality estimations are crucial for finding an optimal query plan. A study

129

shows the errors in cardinality estimations caused more than 10× slowdowns for 8% of
benchmark queries and more than 100× slowdowns for 5% of benchmark queries, for
both open source and commercial database systems [103]. These slowdowns are more
significant for large-scale data analysis; even a small relative efficiency difference can
lead to a big absolute time difference.

In reality, accurate cardinality estimations are hard when (1) correlations exist among
attributes or (2) a query selectivity is low. These conditions make commonly used static
cardinality estimation techniques (such as per-attribute histograms [77] or sampling
based methods [104, 111]) inaccurate. In general, high-accuracy estimations demand
more histogram bins or more sampled tuples; however, larger numbers of bins and sam-
pled tuples inherently cause larger memory footprints and increased estimation times.
Given fixed budgets of space and time, static cardinality estimation techniques are essen-
tially suboptimal unless query workloads are completely uniform over the entire data, or
future query workloads are fully known in advance (so, those techniques are optimized
for those workloads).

We can instead gradually improve the quality of selectivity estimations in a workload-
sensitive manner by exploiting past computations, i.e., the selectivities of the past queries.
The true selectivities are naturally obtained as byproducts of query processing. If data-
base systems support AQP, approximate selectivities of the past queries will be obtained.
Still, we can gradually refine our knowledge on the data distribution based on those se-
lectivity information, which in turn can be used for estimating the selectivities of future
queries.

6.2.2 AQP on Any Databases

Many AQP approaches have been proposed in the literature [11, 38, 68, 89, 184, 185], and
we see several open-source implementations available [15,185]. However, AQP database
systems still not the first priority for big data analytics due to their limitation in support-
ing general SQL queries. Common choices for large-scale data analytics are the database
systems based on distributed storage systems, such as Apache Hive, Apache Spark (and
Spark SQL), and so on.

In contrast to existing approaches for AQP, i.e., dedicated AQP engines, we can build
AQP functionality on top of existing large-scale database systems. For instance, for esti-
mating an average and its confidence interval, we need to compute the average and the
variance of the values using a sample table. Then, we can apply the central limit theorem
(Chapter 2) to obtain the confidence interval. Note that both average and the variance
of the values can be computed by obtaining the mean of the values and the mean of

130

squared values. All we need is to obtain a sample of the original data and manage the
information (e.g., location of the sample, sample size, etc.) in a separate metadata ta-
ble. Then, when the user issues a query that can be approximately computed, an AQP
module that exists on top of existing large-scale data analytics systems should redirect
an rewritten query to the sample table (instead of the original table), and compose an
answer to the query appropriately.

We believe this approach will be available on top of most of existing database systems,
even including conventional databases, such as Oracle, IBM DB2, MySQL, etc. Then, the
customers of those existing (and more stable due to longer history) database systems can
enjoy AQP capability without modifying those existing systems. All they need is to issue
an query to our module (instead of issuing the query directly to the database); then, our
module will communicate with the underlying database and compute an approximate
answer.

6.2.3 Diverse Approximate Analytics

Another problem in making AQP databases more general is the limitation in supported
queries. Currently, most of existing systems support only the queries that include ba-
sic aggregate functions (e.g., sum, avg, count) without general joins and nested sub-
queries. When the select clause in SQL queries include complex expressions (e.g.,
avg(discount) / avg(price * (1-discount))) or when the queries include joins and
nested subqueries, it is hard to derive confidence intervals of the approximate answers
efficiently.

The goal of this project is to develop an efficient approach for computing the confi-
dence intervals of such queries that may include complex aggregate expressions, joins,
or nested subqueries. This development should also consider the previous project—AQP
on any databases.

131

Bibliography

[1] https://db.apache.org/derby/docs/10.6/tuning/ctuntransform36368.html.
Accessed: 2017-05-05.

[2] Apache hadoop. http://hadoop.apache.org/. Accessed: 2017-05-05.

[3] Apache hadoop. https://hive.apache.org/. Accessed: 2017-05-05.

[4] Apache impala (incubating). https://impala.incubator.apache.org/. Accessed:
2017-05-05.

[5] Apache spark. http://spark.apache.org/. Accessed: 2017-05-05.

[6] Presto: Distributed SQL query engine for big data. https://prestodb.io/docs/
current/release/release-0.61.html. Accessed: 2017-05-05.

[7] SnappyData. http://www.snappydata.io/. Accessed: 2017-05-05.

[8] Tableau for the enterprise: An overview for it. http://www.tableausoftware.com/
sites/default/files/whitepapers/whitepaper_tableau-for-the-enterprise_
0.pdf. Accessed: 2017-05-05.

[9] Tableau software. http://www.tableausoftware.com/. Accessed: 2017-05-05.

[10] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast decision support system
using approximate query answers. In VLDB, 1999.

[11] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for ap-
proximate query answering. In SIGMOD, 1999.

[12] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
The Aqua approximate query answering system. In SIGMOD, 1999.

[13] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
The aqua approximate query answering system. In SIGMOD, 1999.

[14] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,
Samuel Madden, Barzan Mozafari, and Ion Stoica. Knowing when you’re wrong:
Building fast and reliable approximate query processing systems. In SIGMOD,
2014.

132

https://db.apache.org/derby/docs/10.6/tuning/ctuntransform36368.html
http://hadoop.apache.org/
https://hive.apache.org/
https://impala.incubator.apache.org/
http://spark.apache.org/
https://prestodb.io/docs/current/release/release-0.61.html
https://prestodb.io/docs/current/release/release-0.61.html
http://www.snappydata.io/
http://www.tableausoftware.com/sites/default/files/whitepapers/whitepaper_tableau-for-the-enterprise_0.pdf
http://www.tableausoftware.com/sites/default/files/whitepapers/whitepaper_tableau-for-the-enterprise_0.pdf
http://www.tableausoftware.com/sites/default/files/whitepapers/whitepaper_tableau-for-the-enterprise_0.pdf
http://www.tableausoftware.com/

[15] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. BlinkDB: queries with bounded errors and bounded response times
on very large data. In EuroSys, 2013.

[16] Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Anand P. Iyer, Samuel Madden,
and Ion Stoica. Blink and it’s done: Interactive queries on very large data. PVLDB,
2012.

[17] Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
Brainwash: A data system for feature engineering. In CIDR, 2013.

[18] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In FOCS, 2006.

[19] Dolan Antenucci, Michael R Anderson, and Michael Cafarella. A declarative query
processing system for nowcasting. PVLDB, 2016.

[20] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over
sliding windows. In PODS, 2004.

[21] Michael Armbrust et al. Spark sql: Relational data processing in spark. In SIG-
MOD, 2015.

[22] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In SODA, 2007.

[23] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The ts-tree: efficient
time series search and retrieval. In EDBT, 2008.

[24] Vassilis Athitsos, Marios Hadjieleftheriou, George Kollios, and Stan Sclaroff.
Query-sensitive embeddings. TODS, 2007.

[25] Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George Kollios.
Nearest neighbor retrieval using distance-based hashing. In ICDE, 2008.

[26] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample selection for
approximate query processing. In VLDB, 2003.

[27] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample selection for
approximate query processing. In SIGMOD, 2003.

[28] Mike Barnett, Badrish Chandramouli, Robert DeLine, Steven M. Drucker, Danyel
Fisher, Jonathan Goldstein, Patrick Morrison, and John C. Platt. Stat!: an interactive
analytics environment for big data. In SIGMOD, 2013.

[29] Leilani Battle, Michael Stonebraker, and Remco Chang. Dynamic reduction of
query result sets for interactive visualizaton. In BigData Conference, pages 1–8,
2013.

133

[30] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 1975.

[31] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maximum
entropy approach to natural language processing. Computational linguistics, 1996.

[32] Christopher M Bishop. Pattern recognition. Machine Learning, 2006.

[33] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor
based image classification. In CVPR, 2008.

[34] Erik Brynjolfsson, Lorin M Hitt, and Heekyung Hellen Kim. Strength in numbers:
How does data-driven decisionmaking affect firm performance? 2011.

[35] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. An overview of
machine learning. In Machine learning. 1983.

[36] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka Jr, and Tom M Mitchell. Toward an architecture for never-ending language
learning. In AAAI, 2010.

[37] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, 2002.

[38] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sam-
pling for approximate query processing. TODS, 2007.

[39] Pavel Cizek, Wolfgang Karl Härdle, and Rafał Weron. Statistical tools for finance and
insurance. Springer, 2005.

[40] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-
egy, and Russell Sears. Mapreduce online. In NSDI, 2010.

[41] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. Approximate aggre-
gation techniques for sensor databases. In ICDE, 2004.

[42] Joseph A. Cottam and Andrew Lumsdaine. Automatic application of the data-state
model in data-flow contexts. In IV, pages 5–10, 2010.

[43] Joseph A. Cottam, Andrew Lumsdaine, and Peter Wang. Overplotting: Unified
solutions under abstract rendering. In BigData Conference, 2013.

[44] Bin Cui, Beng Chin Coi, Jianwen Su, and K-L Tan. Indexing high-dimensional data
for efficient in-memory similarity search. TKDE, 2005.

[45] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In SoCG, 2004.

[46] Amol Deshpande and Samuel Madden. Mauvedb: supporting model-based user
views in database systems. In SIGMOD, 2006.

134

[47] Alin Dobra, Chris Jermaine, Florin Rusu, and Fei Xu. Turbo-charging estimate
convergence in dbo. PVLDB, 2009.

[48] Amr El-Helw, Ihab F Ilyas, and Calisto Zuzarte. Statadvisor: Recommending sta-
tistical views. VLDB, 2009.

[49] Wenfei Fan, Floris Geerts, Yang Cao, Ting Deng, and Ping Lu. Querying big data
by accessing small data. In PODS, 2015.

[50] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Al-
gorithmica, 29, 2001.

[51] Danyel Fisher, Steven M. Drucker, and Arnd Christian König. Exploratory vi-
sualization involving incremental, approximate database queries and uncertainty.
IEEE Computer Graphics and Applications, 2012.

[52] Danyel Fisher, Igor O. Popov, Steven M. Drucker, and m. c. schraefel. Trust me, i’m
partially right: incremental visualization lets analysts explore large datasets faster.
In CHI, 2012.

[53] Brad Fitzpatrick. Distributed caching with memcached. Linux journal, 2004.

[54] D. Freedman, R. Pisani, and R. Purves. Statistics. 2007.

[55] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive hashing
scheme based on dynamic collision counting. In SIGMOD, 2012.

[56] Venkatesh Ganti, Mong-Li Lee, and Raghu Ramakrishnan. Icicles: Self-tuning
samples for approximate query answering. In VLDB, 2000.

[57] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin Ooi. Dsh:
data sensitive hashing for high-dimensional k-nnsearch. In SIGMOD, 2014.

[58] Minos Garofalakis and Philip Gibbons. Approximate query processing: Taming
the terabytes. In VLDB, 2001. Tutorial.

[59] Wolfgang Gatterbauer and Dan Suciu. Approximate lifted inference with proba-
bilistic databases. PVLDB, 2015.

[60] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation using
probabilistic models. In SIGMOD Record, 2001.

[61] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[62] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. Ap-
proxhadoop: Bringing approximations to mapreduce frameworks. In SIGARCH,
2015.

[63] Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean ap-
proach to learning binary codes. In CVPR, 2011.

135

[64] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, 1984.

[65] Alon Y Halevy. Answering queries using views: A survey. VLDBJ, 2001.

[66] Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chang, and Claus Bauer. Com-
pact hashing with joint optimization of search accuracy and time. In CVPR, 2011.

[67] Jeffrey Heer and Sean Kandel. Interactive analysis of big data. XRDS, 2012.

[68] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In
SIGMOD, 1997.

[69] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon.
Spherical hashing. In CVPR, 2012.

[70] Katja Hose, Daniel Klan, and Kai-Uwe Sattler. Distributed data summaries for
approximate query processing in pdms. In IDEAS, 2006.

[71] Ying Hu, Seema Sundara, and Jagannathan Srinivasan. Estimating Aggregates in
Time-Constrained Approximate Queries in Oracle. In EDBT, 2009.

[72] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Approximating query answering
on rdf databases. WWW, 2012.

[73] Stratos Idreos, Martin L Kersten, and Stefan Manegold. Database cracking. In
CIDR, 2007.

[74] Stratos Idreos, Martin L Kersten, and Stefan Manegold. Self-organizing tuple re-
construction in column-stores. In SIGMOD, 2009.

[75] Go Irie, Zhenguo Li, Xiao-Ming Wu, and Shih-Fu Chang. Locally linear hashing
for extracting non-linear manifolds. In CVPR, 2014.

[76] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
idistance: An adaptive b+-tree based indexing method for nearest neighbor search.
TODS, 2005.

[77] HV Jagadish, Hui Jin, Beng Chin Ooi, and Kian-Lee Tan. Global optimization of
histograms. SIGMOD Record, 2001.

[78] J. S. Roger Jang. General formula: Matrix inversion lemma. http://www.cs.nthu.
edu.tw/~jang/book/addenda/matinv/matinv/.

[79] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. TPAM, 2011.

[80] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching
in one billion vectors: re-rank with source coding. In ICASSP, 2011.

136

http://www.cs.nthu.edu.tw/~jang/book/addenda/matinv/matinv/
http://www.cs.nthu.edu.tw/~jang/book/addenda/matinv/matinv/

[81] Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable
approximate query processing with the dbo engine. TODS, 2008.

[82] Yuntao Jia. Running tpc-h queries on hive. https://issues.apache.org/jira/
browse/HIVE-600.

[83] Zhongming Jin, Yao Hu, Yue Lin, Debing Zhang, Shiding Lin, Deng Cai, and
Xuelong Li. Complementary projection hashing. In ICCV, 2013.

[84] Alexis Joly and Olivier Buisson. Random maximum margin hashing. In CVPR,
2011.

[85] Shantanu Joshi and Christopher Jermaine. Materialized sample views for database
approximation. TKDE, 2008.

[86] Shantanu Joshi and Christopher Jermaine. Sampling-Based Estimators for Subset-
Based Queries. VLDB J., 2009.

[87] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, et al. H-store: a high-performance, distributed main memory transaction
processing system. PVLDB, 2008.

[88] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey
Heer. Profiler: Integrated statistical analysis and visualization for data quality
assessment. In AVI, 2012.

[89] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. In SIGMOD, 2016.

[90] Shrikant Kashyap and Panagiotis Karras. Scalable knn search on vertically stored
time series. In SIGKDD, 2011.

[91] Martin Kaufmann and Donald Kossmann. Storing and processing temporal data
in a main memory column store. PVLDB, 2013.

[92] Raghav Kaushik, Christopher Ré, and Dan Suciu. General database statistics using
entropy maximization. In DBPL, 2009.

[93] Dor Kedem, Stephen Tyree, Fei Sha, Gert R Lanckriet, and Kilian Q Weinberger.
Non-linear metric learning. In NIPS, 2012.

[94] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In ICDE, 2011.

[95] Daniel Keysers, Christian Gollan, and Hermann Ney. Local context in non-linear
deformation models for handwritten character recognition. In ICPR, 2004.

137

https://issues.apache.org/jira/browse/HIVE-600
https://issues.apache.org/jira/browse/HIVE-600

[96] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and
Ronitt Rubinfeld. Rapid sampling for visualizations with ordering guarantees.
PVLDB, 2015.

[97] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender
Systems Handbook. 2011.

[98] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical studies. JMLR,
2008.

[99] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive em-
beddings. In NIPS, 2009.

[100] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing. TPAM,
2012.

[101] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early Accurate Results for Advanced
Analytics on MapReduce. PVLDB, 2012.

[102] Neil Lawrence, Matthias Seeger, Ralf Herbrich, et al. Fast sparse gaussian process
methods: The informative vector machine. NIPS, 2003.

[103] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? PVLDB, 2015.

[104] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neu-
mann. Cardinality estimation done right: Index-based join sampling. In CIDR,
2017.

[105] Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander Zeier. Speeding
up queries in column stores. In DaWaK, 2010.

[106] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based
multimedia information retrieval: State of the art and challenges. TOMCCAP,
2006.

[107] M. Lichman. UCI machine learning repository, 2013.

[108] King-Ip Lin, Hosagrahar V Jagadish, and Christos Faloutsos. The tv-tree: An index
structure for high-dimensional data. The VLDB Journal, 1994.

[109] Yue Lin, Rong Jin, Deng Cai, Shuicheng Yan, and Xuelong Li. Compressed hash-
ing. In CVPR, 2013.

[110] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheidegger.
Nanocubes for real-time exploration of spatiotemporal datasets. TVCG, 2013.

[111] Richard J Lipton, Jeffrey F Naughton, and Donovan A Schneider. Practical selectivity
estimation through adaptive sampling. 1990.

138

[112] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised
hashing with kernels. In CVPR, 2012.

[113] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In
ICML, 2011.

[114] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory
visual analysis. 2002.

[115] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying of
big data. In Computer Graphics Forum, volume 32, 2013.

[116] Miodrag Lovric. International Encyclopedia of Statistical Science. Springer, 2011.

[117] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
lsh: efficient indexing for high-dimensional similarity search. In VLDB, 2007.

[118] A Makhorin. Glpk (gnu linear programming kit), version 4.54. http: // www. gnu.
org/ software/ glpk .

[119] Vikash Mansinghka et al. Bayesdb: A probabilistic programming system for query-
ing the probable implications of data. arXiv, 2015.

[120] Mathgl. http://mathgl.sourceforge.net/doc_en/Main.html.

[121] Alexandra Meliou, Carlos Guestrin, and Joseph M Hellerstein. Approximating
sensor network queries using in-network summaries. In IPSN, 2009.

[122] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. JMLR,
2006.

[123] Robert B Miller. Response time in man-computer conversational transactions. In
fall joint computer conference, 1968.

[124] Renqiang Min, David Stanley, Zineng Yuan, Anthony Bonner, Zhaolei Zhang, et al.
A deep non-linear feature mapping for large-margin knn classification. In ICDM,
2009.

[125] Barzan Mozafari. Verdict: A system for stochastic query planning. In CIDR, Bien-
nial Conference on Innovative Data Systems, 2015.

[126] Barzan Mozafari, Eugene Zhen Ye Goh, and Dong Young Yoon. CliffGuard: A
principled framework for finding robust database designs. In SIGMOD, 2015.

[127] Barzan Mozafari and Ning Niu. A handbook for building an approximate query
engine. IEEE Data Eng. Bull., 2015.

[128] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik
Chakraborty, Hemant Bhanawat, and Kishor Bachhav. Snappydata: A unified clus-
ter for streaming, transactions, and interactive analytics. In CIDR, 2017.

139

http://www. gnu. org/software/glpk
http://www. gnu. org/software/glpk
http://mathgl.sourceforge.net/doc_en/Main.html

[129] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functions-I. Mathematical Program-
ming, 14, 1978.

[130] Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast search in hamming
space with multi-index hashing. In CVPR, 2012.

[131] Christopher Olston, Edward Bortnikov, Khaled Elmeleegy, Flavio Junqueira, and
Benjamin Reed. Interactive analysis of web-scale data. In CIDR, 2009.

[132] Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence com-
putation in probabilistic databases. In ICDE, 2010.

[133] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, et al. The case for ramclouds: scalable high-performance
storage entirely in dram. SIGOPS, 2010.

[134] Niketan Pansare, Vinayak R. Borkar, Chris Jermaine, and Tyson Condie. Online
aggregation for large mapreduce jobs. PVLDB, 4, 2011.

[135] Aditya Parameswaran, Neoklis Polyzotis, and Hector Garcia-Molina. Seedb: Visu-
alizing database queries efficiently. PVLDB, 2013.

[136] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. Technical report for
visualization-aware sampling. http://arxiv.org/abs/1510.03921.

[137] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. Neighbor-sensitive hash-
ing. PVLDB, 2015.

[138] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. Visualization-aware sam-
pling for very large databases. In ICDE, 2016.

[139] Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella, and Barzan Mozafari. Data-
base learning: Toward a database that becomes smarter every time. In SIGMOD,
2017.

[140] Kasun S Perera, Martin Hahmann, Wolfgang Lehner, Torben Bach Pedersen, and
Christian Thomsen. Efficient approximate olap querying over time series. In
IDEAS, 2016.

[141] Eleni Petraki, Stratos Idreos, and Stefan Manegold. Holistic indexing in main-
memory column-stores. In SIGMOD, 2015.

[142] Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger. A
multi-threading architecture to support interactive visual exploration. IEEE Trans.
Vis. Comput. Graph., 2009.

[143] Hasso Plattner. A common database approach for oltp and olap using an in-
memory column database. In SIGMOD, 2009.

140

http://arxiv.org/abs/1510.03921

[144] Abhijit Pol and Christopher Jermaine. Relational confidence bounds are easy with
the bootstrap. In SIGMOD, 2005.

[145] Navneet Potti and Jignesh M Patel. Daq: a new paradigm for approximate query
processing. PVLDB, 2015.

[146] Jags Ramnarayan, Barzan Mozafari, Sudhir Menon, Sumedh Wale, Neeraj Ku-
mar, Hemant Bhanawat, Soubhik Chakraborty, Yogesh Mahajan, Rishitesh Mishra,
and Kishor Bachhav. Snappydata: A hybrid transactional analytical store built on
spark. In SIGMOD, 2016.

[147] Philip Russom et al. Big data analytics. TDWI best practices report, fourth quarter,
2011.

[148] Florin Rusu, Chengjie Qin, and Martin Torres. Scalable analytics model calibration
with online aggregation. IEEE Data Eng. Bull., 2015.

[149] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal
of Approximate Reasoning, 2009.

[150] Arthur L Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 1959.

[151] Harsimrat Sandhawalia and Hervé Jégou. Searching with expectations. In ICASSP,
2010.

[152] Sunita Sarawagi. User-adaptive exploration of multidimensional data. In VLDB,
2000.

[153] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensitive hashing for
fast similarity search. PVLDB, 2012.

[154] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative fil-
tering recommender systems. In The adaptive web. 2007.

[155] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with
parameter-sensitive hashing. In ICCV, 2003.

[156] Nikita Shamgunov. The memsql in-memory database system. In IMDM@VLDB,
2014.

[157] Ben Shneiderman. Response time and display rate in human performance with
computers. CSUR, 1984.

[158] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996.

[159] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In MSST, 2010.

141

[160] Lefteris Sidirourgos, Martin L. Kersten, and Peter A. Boncz. SciBORQ: Scientific
data management with Bounds On Runtime and Quality. In CIDR, 2011.

[161] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. Database system
concepts. 1997.

[162] John Skilling. Data Analysis: A Bayesian Tutorial. Oxford University Press, 2006.

[163] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and
Ramesh Jain. Content-based image retrieval at the end of the early years. TPAM,
2000.

[164] Asma Souihli and Pierre Senellart. Optimizing approximations of dnf query lin-
eage in probabilistic xml. In ICDE, 2013.

[165] Ion Stoica. For big data, moore’s law means better decisions. http://www.
tableausoftware.com/.

[166] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. Srs: Solving
c-approximate nearest neighbor queries in high dimensional euclidean space with.
PVLDB, 2014.

[167] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,
Piotr Indyk, Samuel Madden, and Pradeep Dubey. Streaming similarity search
over one billion tweets using parallel locality-sensitive hashing. PVLDB, 2013.

[168] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, 2009.

[169] Antonio Torralba, Robert Fergus, and William T Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. TPAM, 2008.

[170] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. Seedb: Efficient data-driven visualization recommendations to
support visual analytics. PVLDB, 2015.

[171] Jiannan Wang, Sanjay Krishnan, Michael J Franklin, Ken Goldberg, Tim Kraska,
and Tova Milo. A sample-and-clean framework for fast and accurate query pro-
cessing on dirty data. In SIGMOD, 2014.

[172] Larry Wasserman. All of Nonparametric Statistics. Springer, 2006.

[173] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
VLDB, 1998.

[174] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In NIPS, 2009.

[175] Hadley Wickham. Bin-summarise-smooth: a framework for visualising large data.
Technical report, had.co.nz, 2013.

142

http://www.tableausoftware.com/
http://www.tableausoftware.com/

[176] Christopher KI Williams and Matthias Seeger. Using the nyström method to speed
up kernel machines. In NIPS, 2000.

[177] Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. Continuous sampling for online aggre-
gation over multiple queries. In SIGMOD, 2010.

[178] Fei Xu, Christopher Jermaine, and Alin Dobra. Confidence bounds for sampling-
based group by estimates. TODS, 2008.

[179] Hao Xu, Jingdong Wang, Zhu Li, Gang Zeng, Shipeng Li, and Nenghai Yu. Com-
plementary hashing for approximate nearest neighbor search. In ICCV, 2011.

[180] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and HV Jagadish. Indexing the distance:
An efficient method to knn processing. In VLDB, 2001.

[181] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In NSDI, 2012.

[182] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In USENIX HotCloud 2010,
2010.

[183] Jeremy Zawodny. Redis: Lightweight key/value store that goes the extra mile.
Linux Magazine, 2009.

[184] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. G-
OLA: Generalized on-line aggregation for interactive analysis on big data. In SIG-
MOD, 2015.

[185] Kai Zeng, Sameer Agarwal, and Ion Stoica. iolap: Managing uncertainty for effi-
cient incremental olap. 2016.

[186] Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. Abs: a system
for scalable approximate queries with accuracy guarantees. In SIGMOD, 2014.

[187] Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. The analytical bootstrap:
a new method for fast error estimation in approximate query processing. In SIG-
MOD, 2014.

[188] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn:
Discriminative nearest neighbor classification for visual category recognition. In
CVPR, 2006.

[189] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding
mobility based on gps data. In Ubiquitous computing, 2008.

143

	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Data Analytics Tasks and Synopses Construction
	Data Analytics Tasks
	Approaches to Building Synopses

	Overview and Contributions
	Exploiting Past Computations
	Task-Aware Synopses
	Summary of Results

	Background
	Techniques for Exact Data Analytics
	Horizontal Scaling
	Columnar Databases
	In-memory Databases

	Approaches for Approximate Query Processing
	Random Sampling
	Random Projections

	Part I Exploiting Past Computations
	Faster Data Aggregations by Learning from the Past
	Motivation
	Verdict Overview
	Architecture and Workflow
	Supported Queries
	Internal Representation
	Why and When Verdict Offers Benefit
	Limitations

	Inference
	Problem Statement
	Inference Overview
	Prior Belief
	Model-based Answer
	Key Challenges

	Estimating Query Statistics
	Covariance Decomposition
	Analytic Inter-tuple Covariances

	Verdict Process Summary
	Deployment Scenarios
	Formal Guarantees
	Parameter Learning
	Model Validation
	Generalization of Verdict under Data Additions
	Experiments
	Experimental Setup
	Generality of Verdict
	Speedup and Error Reduction
	Confidence Interval Guarantees
	Memory and Computational Overhead
	Impact of Data Distributions and Workload Characteristics
	Accuracy of Parameter Learning
	Model Validation
	Data Append
	Verdict vs. Simple Answer Caching
	Error Reductions for Time-Bound AQP Engines

	Prevalence of Inter-tuple Covariances in Real-World
	Technical Details
	Double-integration of Exp Function
	Handling Categorical Attributes
	Analytically Computed Parameter Values

	Related Work
	Summary

	Part II Building Task-aware Synopses
	Accurate Approximate Searching by Learning from Data
	Motivation
	Hashing-based kNN Search
	Workflow
	Hash Function Design

	Neighbor-Sensitive Hashing
	Formal Verification of Our Claim
	Neighbor-Sensitive Transformation
	Our Proposed NST
	Our NSH Algorithm

	Experiments
	Setup
	Validating Our Main Claims
	Hashcode Length and Search Accuracy
	Search Time and Search Accuracy
	Indexing Speed
	The Effect of Parameters on NSH
	Neighbor Sensitivity

	Related Work
	Summary

	High-quality Approximate Visualizations by Learning from Data
	Motivation
	System Overview
	Software Architecture Model
	Data Sampling
	Visualization Quality
	Our Approach

	Problem Formulation
	Solving VAS
	Hardness of VAS
	The Interchange Algorithm

	Extending VAS: Embedding Density
	Experiments
	Existing Systems are Slow
	User Success and Sample Quality
	VAS Uses a Smaller Sample
	Algorithmic Details

	Related Work
	Summary

	Conclusions and Future Work
	Lessons Learned
	Future Work
	Exploiting Past Computations for General SQL Processing
	AQP on Any Databases
	Diverse Approximate Analytics

	Bibliography

