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ABSTRACT

In the big data era, the ability to handle high-volume, high-velocity and high-variety

information assets has become a basic requirement for data analysts. Traditional learning

models, which focus on medium size, single source data, often fail to achieve reliable

performance if data come from multiple heterogeneous sources (views). As a result, robust

multi-view data processing methods that are insensitive to corruptions and anomalies in the

data set are needed.

This thesis develops robust learning methods for three problems that arise from real-

world applications: robust training on a noisy training set, multi-view learning in the pres-

ence of between-view inconsistency and network topology inference using partially ob-

served data. The central theme behind all these methods is the use of information-theoretic

measures, including entropies and information divergences, as parsimonious representa-

tions of uncertainties in the data, as robust optimization surrogates that allows for efficient

learning, and as flexible and reliable discrepancy measures for data fusion.

More specifically, the thesis makes the following contributions:

1. We propose a maximum entropy-based discriminative learning model that incorpo-

rates the minimal entropy (ME) set anomaly detection technique. The resulting prob-

abilistic model can perform both nonparametric classification and anomaly detection

simultaneously. An efficient algorithm is then introduced to estimate the posterior

distribution of the model parameters while selecting anomalies in the training data.

2. We consider a multi-view classification problem on a statistical manifold where class

labels are provided by probabilistic density functions (p.d.f.) and may not be con-

xiv



sistent among different views due to the existence of noise corruption. A stochastic

consensus-based multi-view learning model is proposed to fuse predictive informa-

tion for multiple views together. By exploring the non-Euclidean structure of the

statistical manifold, a joint consensus view is constructed that is robust to single-view

noise corruption and between-view inconsistency.

3. We present a method for estimating the parameters (partial correlations) of a Gaussian

graphical model that learns a sparse sub-network topology from partially observed re-

lational data. This model is applicable to the situation where the partial correlations

between pairs of variables on a measured sub-network (internal data) are to be esti-

mated when only summary information about the partial correlations between vari-

ables outside of the sub-network (external data) are available. The proposed model

is able to incorporate the dependence structure between latent variables from external

sources and perform latent feature selection efficiently. From a multi-view learning

perspective, it can be seen as a two-view learning system given asymmetric informa-

tion flow from both the internal view and the external view.

xv



CHAPTER 1

Introduction

In the past decade, the emerging field of data science has attracted significant attention
from researchers and developers in the field of statistics, machine learning, information
theory, data management and communications. Data in these fields is growing at an un-
precedented rate in terms of volume, velocity and variety. Volume means the size of the
data set. Velocity corresponds to the speed of data communication and processing. Vari-
ety indicates the range of data types and sources.. These three aspects are dimensions that
determine the applicability of data processing techniques to increasingly demanding appli-
cations. As a result, Big Data 1 has gained great popularity and become one of the current
and future research frontiers [McAfee et al., 2012, Mayer-Schönberger and Cukier, 2013,
Chen and Zhang, 2014]. In this thesis, we primarily focus on the variety aspect of the Big
data analysis under the condition that the data set may contain corrupted or irregular sam-
ples, known as anomalies. In particular, we exploit several reliable models and efficient
implementations to deal with large-scale data from multiple possibly unreliable sources.

As large-scale data acquisition becomes common and diversified, data quality can be-
come degraded, especially when data collection is conducted without sampling design,
when devices are unreliable, or when users are sloppy data collectors. On the other hand,
as the size of datasets increases, the existing off-the-shelf models and algorithms in ma-
chine learning may not function efficiently and robustly [Szalay and Gray, 2006, Lynch,
2008]. Consequently, robust large-scale data processing from multiple sources has become
an important field, a field called robust multi-view learning. Here the term robustness

means that the learning algorithm should be insensitive to noise corruption, sensor failures,
or anomalies in the data set. Our main contributions in this thesis to robust multi-view
learning are described in the next subsection.

1 http://blogs.gartner.com/it-glossary/big-data/
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1.1 Thesis Outline and Contributions

The thesis addresses the following topics in robust multi-view learning:

1. Robust training on noisy training data sets. In Chapter 3, a robust maximum entropy
discrimination method, referred as GEM-MED, is proposed that minimizes the gen-
eralization error of the classifier with respect to a nominal data distribution2. The
proposed method exploits the versatility of the kernel method in combination with
the power of minimal-entropy-sets, which allows one to perform anomaly detection
in high dimensions. Instead of focusing on robustifying classification loss functions,
GEM-MED combines anomaly detection and classification explicitly as joint con-
straints in the maximum entropy discrimination framework. This allows GEM-MED
to suppress the training outliers more effectively.

2. Multi-view learning on a statistical manifold of probability distributions in the pres-
ence of between-view inconsistency. In Chapter 4, we consider a multi-view classi-
fication problem where the labels in each view come in the form of probability dis-
tributions or histograms, which encodes label uncertainties. Different from the con-
ventional feature fusion and decision fusion approaches, an alternative model fusion

approach, called COM-MED, is presented that learns a consensus view to fuse pre-
dictive information from different views. Using information-theoretic divergences
as a stochastic consensus measure, COM-MED takes into account the intrinsic non-
Euclidean geometry of the statistical manifold. Our proposed method is insensitive
to both noise corruption in single views and between-view inconsistency.

3. Sub-network topology inference from partially observed relational data. In Chapter
5, we introduce a method to infer the topology of a sub-network, given a partially
accessible dataset. We assume that the set of measurements are taken at nodes of a
graph whose edges specify pairwise node dependencies. The joint distribution of the
measurements is assumed to be Gaussian distributed with a sparse inverse covariance
matrix whose zero entries are specified by the topology of the graph. In the sub-net
topology inference problem one only directly measures a subset of nodes while only
noisy information on the inverse covariance matrix of the remaining nodes is avail-
able. The objective is to estimate the (non-marginal) sub-graph associated with the
set of directly measured nodes. We propose a solution to this problem that generalizes
the existing Latent variable Gaussian graphical model (LV-GGM), which explicitly

2A set of data is nominal if it contains no anomalies.
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takes into account the local effect of the latent variables. The proposed Decayed-

influence Latent variable Gaussian Graphical Model (DiLat-GGM) is well-suited
for applications such as competitive pricing models where two companies operate in
a market where each can only directly measure the behaviors of their own customers.

1.2 Robust Multi-view Learning

Multi-view learning is concerned with the problem of information fusion and learning
from multiple feature domains, or views. Canonical Correlation analysis (CCA) [Hotelling,
1936, Hardoon et al., 2004] and co-training [Blum and Mitchell, 1998] are two represen-
tative algorithms in multi-view learning. Canonical correlation analysis finds maximal-
correlated linear representations from two views by learning two individual subspaces
jointly. The co-training method seeks to learn multiple classifiers by minimizing their
mutual disagreement on a common target. Both of these algorithms function by combin-
ing information from multiple feature sets while minimizing the information discrepancy
between different views. Following the perspective of co-training, the co-EM was pro-
posed in [Nigam and Ghani, 2000] to handle latent variables in statistical models. In semi-
supervised learning, the framework of co-regularization was proposed in [Farquhar et al.,
2005, Sindhwani et al., 2005, Sindhwani and Rosenberg, 2008, Sun and Jin, 2011] as gen-
eralizations of the co-training algorithm. This framework is referred as semi-supervised

learning with disagreement in [Zhou and Li, 2010]. Similarly, in [Ganchev et al., 2008],
information divergence, such as the Bhattacharya distance measure [Bhattachayya, 1943],
was proposed as a surrogate disagreement measure for different classifiers. See Figure 1.1
for a comparison of learning procedures of CCA (the left column), co-training (the mid-
dle column) and our proposed consensus-based learning framework (the right column, see
Chapter 4).

One of the critical drawbacks of these multi-view learning algorithms is their sensitivity
to noisy measurements and anomalies in the data set [Schölkopf et al., 1999, Breunig et al.,
2000, Zhao and Saligrama, 2009]. To achieve robustness, the co-training algorithm can be
extended to incorporate the uncertainties in data or labels [Ganchev et al., 2008, Sun and
Jin, 2011]. In [Muslea et al., 2002], a subsampling and active learning strategy is introduced
to reduce the influence of corrupted samples. The Bayesian co-training proposed in [Yu
et al., 2011] reformulates standard co-training under a Bayesian learning framework using
a Gaussian process prior [Rasmussen and Williams, 2006] to provide a confidence level for
each decision. In spite of these advances, a unified principle underling the robust design of
multi-view learning algorithm is still needed.

3



Figure 1.1: A classification of multi-view learning methods according to the information fusion
strategy. At the top of each column are three sensors (acoustic, seismic and optical) that provide
different views of a common scene. The left column corresponds to the feature fusion or early
fusion approach, where the fusion stage takes place before the learning stage. The middle column
corresponds to the decision fusion or late fusion approach, where the final decisions take place after
each individual learner has made its own decision. The right column corresponds to the proposed
consensus-based method in Chapter 4. Note that the proposed method iteratively retrains each
individual learner based on their mutual disagreement.

On the other hand, the field of robust learning provides methods that systematically
address the stability and robustness of the learning algorithm, e.g. [Kearns, 1998, Bous-
quet and Elisseeff, 2002, Song et al., 2002, Bartlett and Mendelson, 2003, Xu et al., 2006,
Tyler, 2008, Wang et al., 2008, Masnadi-Shirazi and Vasconcelos, 2009, Yang et al., 2010].
Among these works, the entropy-based learning methods have recently drawn significant
attention [Eguchi and Kato, 2010, Basseville, 2013]. In [Grünwald and Dawid, 2004, Cover
and Thomas, 2012], it is shown that the distribution that maximizes the entropy over a fam-
ily of distributions also minimizes the worst-case expected log-loss. Other researchers
[Grünwald and Dawid, 2004, Nock and Nielsen, 2009] have shown that the Bregman di-
vergence [Bregman, 1967] can be used as a discrepancy function to reduce regret in robust
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decision-making. In this thesis, we focus on the entropy-based robust multi-view learning
framework in which entropy and information divergences are used to define the robust sur-
rogate function and the nominal region 3 (in Chapter 3) and the multi-view discrepancy (in
Chapter 4). Other related works are summarized in Chapter 2.

1.3 Entropy-based Learning and Anomaly Detection

As basic measures of uncertainty and information in physics and information theory [Cover
and Thomas, 2012], entropies and information divergences are known to be invariant un-
der data transformations such as transition, rotation and geometric distortions [Skilling and
Bryan, 1984, Maes et al., 1997, Swaminathan et al., 2006]. Such invariances makes them
natural candidates for robust learning. In this section, we discuss both parametric infer-
ence via entropy maximization, and nonparametric anomaly detection via entropy estima-
tion. The former treats the information divergences as surrogate loss functions for learning
problems, as in [Jaakkola et al., 1999, Nock and Nielsen, 2009, Basseville, 2013] and the
latter defines the nominal region based on the concept of minimal entropy (ME) set [Hero,
2006, Sricharan and Hero, 2011]. We will discuss the maximum entropy learning models
in detail in Chapter 2.

1.3.1 Parametric Inference via Maximum Entropy and Statistical Man-
ifold

The maximum entropy principle states that the best representative of a class of distribu-
tions that describe the current state of observation given prior data is the one with largest
entropy [Cover and Thomas, 2012]. As a generative learning framework, this principle em-
bodies the Bayesian integration of prior information with observed constraints. Since first
introduced by E.T. Jaynes in [Jaynes, 1957a,b], maximum entropy learning models have
become popular in natural language processing [Berger et al., 1996, Manning et al., 1999,
Ratnaparkhi et al., 1996, Charniak, 2000, Malouf, 2002, Jurafsky and Martin, 2014], object
recognition [Jeon and Manmatha, 2004, Lazebnik et al., 2005], image restoration [Minerbo,
1979, Burch et al., 1983, Skilling and Bryan, 1984, Gull and Skilling, 1984] and structured
learning in computer vision [Nowozin et al., 2011]. These models are well-studied in
branches of machine learning such as probabilistic graphical models [Lafferty et al., 2001,
Wainwright et al., 2008], neural networks [Ackley et al., 1985, Hinton and Salakhutdi-
nov, 2006], boosting [Murata et al., 2004, Rätsch et al., 2007, Schapire and Freund, 2012],

3The nominal region is the set of all possible regular data in the data set.
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nonparametric Bayesian learning [Jaakkola et al., 1999, Zhu et al., 2014], multi-task and
multi-view learning [Jebara, 2011], anomaly detection [Jaakkola et al., 1999, Xie et al.,
2017] and model selection [Hastie et al., 2009].

In [Jaakkola et al., 1999], T. Jaakkola proposed a discriminative learning framework
based on the maximum entropy principle, namely Maximum Entropy Discrimination (MED),
which allows for training of both parameters and the structure of the joint probability
model. Relying on the choice of discriminative functions and margin prior, Maximum
Entropy Discrimination (MED) incorporates large-margin classification into the Bayesian
learning framework and it subsumes the support vector machine (SVM). MED can also
be used to handle the parametric anomaly detection problem when the nominal region is
defined by the level sets of the underlying parametric data distribution. Furthermore, due to
its flexible formulation, MED can be extended to nonparametric Bayesian inference [Zhu
et al., 2011, Chatzis, 2013, Zhu et al., 2014], which robustly captures local nonlinearity of
complex data. In [Jebara, 2011], the multi-task MED was proposed to combine multiple
datasets in learning. MED can also be used as a parametric anomaly detection method,
which is introduced in Chapter 3. MED serves as a prototype in our development in Chap-
ter 3 and Chapter 4. In Chapter 2, we give a more detailed derivation of the MED problem.

Figure 1.2: Maximum entropy learning relies on an information projection of the prior distribution
p0(Θ) onto the feasible region (shaded region). The margin variable γ allows for adjustment of
the feasible region. Note that the projection q∗(Θ) is unique due to the Pythagorean property of
Bregman divergences [Amari and Nagaoka, 2007]. The information divergence also induces an non-
Euclidean structure of the feasible region, which forms a sub-manifold of the set of all probability
distributions.

It is worth mentioning that in information geometry [Amari and Nagaoka, 2007], max-
imum entropy learning can be interpreted as information projection 4 over a feasible region

4In [Amari and Nagaoka, 2007], it is called the e-projection.
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defined by a set of linear constraints, as shown in Figure 1.2. This justifies that max-
imum entropy learning will yield a unique efficient solution that lies in the exponential
family [Kupperman, 1958, Wainwright et al., 2008]. Furthermore, the divergence func-
tion D (· ‖ ·) also induces a non-Euclidean geometry on the feasible region, which forms a
finite-dimensional statistical sub-manifold 5 [Amari and Nagaoka, 2007]. These geometric
properties help to build intuition about the minimum entropy discrimination approaches.

1.3.2 Nonparametric Entropy Estimation and Anomaly Detection

Anomaly detection [Chandola et al., 2009] is another important application that addresses
identification of anomalies in corrupted data. Here information-theoretical measures such
as entropy and information divergences can also be used to evaluate the anomalies in a data
set [Lee and Xiang, 2001, Noble and Cook, 2003, Chandola et al., 2009]. The main ad-
vantage of entropy-based anomaly detection methods is that they do not make any assump-
tions about the underlying statistical distribution for the data except that the nominal data
are i.i.d. Furthermore, entropy and information divergences can be estimated efficiently
using nonparametric approaches, e.g., [Beirlant et al., 1997, Hero and Michel, 1999, Hero
et al., 2002, Sricharan et al., 2012, Sricharan and Hero, 2012, Moon and Hero, 2014a].
Hero [Hero, 2006] proposed the Geometric Entropy Minimization (GEM) approach for
non-parametric anomaly detection based on the the concept of a minimal-entropy set. In
[Sricharan and Hero, 2011], the computational complexity of GEM is improved using the
bipartite k-Nearest-Neigbor-Graph (BP-kNNG). These will be used to construct our joint
anomaly detection and classification method (GEM-MED) for learning to classify in the
presence of possible sensor failiures.

Note that entropy-based anomaly detection and robust supervised learning adopt two
different perspectives in handling anomalous data. The former evaluates the underlying
distribution of covariate data and the latter investigates the relationship between the co-
variate and the response. In Chapter 3, a new model that combines both of these two
perspectives is proposed. We will demonstrate better performance than the state-of-the-art
algorithm in robust supervised learning.

5A finite-dimensional statistical sub-manifold is the space of probability distributions that are parameter-
ized by some smooth, continuously-varying parameter Θ.
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1.4 Multi-view Interpretation of Graph Signal Processing

In many applications, data is provided as records in a relational database that are sampled
in an irregular manner. For instance, in a social network such as Facebook, each record
consists of the account information for each user and his/her friendship connections. Face-
book users annotate their profiles in different ways and with different levels of care, leading
to noisy relational data. This dataset can represented by a graph G := (V , E) with the node
set V being the set of personal records for each individual and the edge set E being the
set of all relationships in the dataset. Similarly, in a sensor network, each node represents
the measurements taken from one sensor and the link describes the conditional dependency
relationship between two sensor variables given data from all other sensors. See Figure 1.3.

... ... ...

personal info. friendship

node attribute

(meta data)
edge structure

ID

⇒
Figure 1.3: The facebook social media can be described as a network with node (personal infor-

mation) and link (the friendship connection).

A graph provides a generic two-view data representation: the node view (vertex do-
main) represents the information content of the node attributes and the link view (edge
domain) represents the structure of connectivity between different nodes. In such terms,
learning on graphs or Graph Signal Processing (GSP) [Gori et al., 2005, Ando and Zhang,
2007, Shuman et al., 2013, Sandryhaila and Moura, 2013, 2014a,b, Zhang et al., 2015] can
be seen as a generalization of multi-view learning when the samples interact through their
connections in a graph. Figure 1.4 illustrates differences between multiview learning and
learning on graphs in terms of the graph topology. Note that the probabilistic graph signal
processing models involve both centralized model in Figure 1.4 (left) or a decentralized
model in Figure 1.4 (right). The topology of network depends on the data of interest. In
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this section, we provide an overview of the graph signal processing.

Figure 1.4: The graph structure for multi-view learning (left) and the graph signal processing

(right). Note that for multi-view learning, all nodes (views) are connected to the central node (con-

sensus view), while for the graph signal processing, the structure could be more general. Specifi-

cally, it can be a centralized network (left) or a decentralized network (right).

1.4.1 Graph Signal, Graph Laplacian and Graph Fourier Transform

The primary subject of interest in GSP is the graph signal. Defined as a real-valued function
over the vertex domain of a given graph, a graph signal summarizes the relational informa-
tion of data in vertex domain. The GSP is a field that is concerned with the approximation,
representation and transformation of graph signals, especially when the data are corrupted
by noises [Shuman et al., 2013, Sandryhaila and Moura, 2013, 2014a,b]. To analyze graph
signal, the graph Laplacian matrix is introduced. The graph Laplacian matrix plays an im-
portant role in spectral graph theory [Chung, 1997, Agaskar and Lu, 2013]. It also proves
useful in machine learning, such as spectral clustering [Ng et al., 2002, Von Luxburg, 2007],
manifold learning [Belkin and Niyogi, 2003, Coifman and Lafon, 2006] and manifold reg-
ularization [Belkin et al., 2006, Belkin and Niyogi, 2008]. From spectral graph theory,
both eigenvectors and eigenvalues of the graph Laplacian have interpretations: the eigen-
values are associated with the connectivity, invariance and various geometrical properties
regarding the network topology. The innovation of graph signal processing was to identify
the eigenvectors of the graph Laplacian as an orthonormal basis of the function space of
the graph signals. The role of eigenvectors resembles the role of Fourier basis in digital
signal processing (DSP). This interpretation led to the definition of Graph Fourier Trans-
forms (GFT) as the fundamental building block in spectral analysis of graph signal. Similar
to Discrete Fourier transform, the GFT defines an orthogonal transformation over the space
of graph signals via the eigenspace of the underling graph Laplacian matrix. With the GFT,
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it is thus natural to extend the traditional signal processing techniques into the graph do-
main, creating the field of graph filter design [Chen et al., 2015, Wang et al., 2015], graph
signal interpolation [Zhu and Rabbat, 2012, Narang et al., 2013b, Anis et al., 2015, Wang
et al., 2015, Zhang et al., 2015, Tsitsvero et al., 2016] and sampling theorems for graph
signal [Agaskar and Lu, 2013, Narang et al., 2013b, Anis et al., 2014, Chen et al., 2015,
Wang et al., 2015, Tsitsvero et al., 2016]. For instance, in [Narang et al., 2013a, Anis et al.,
2014, Chen et al., 2015], a set of sampling theorems for graph signal were developed to
reconstruct band-limited graph signals based on the graph spectral analysis [Chung, 1997]
and harmonic analysis [Kim et al., 2016]. In [Narang et al., 2013b], Narang et al. pro-
posed localized graph filtering based methods for interpolating signals defined on arbitrary
graphs.

All of these methods assume that a graph signal is smooth on given graph, i.e., that the
GFT of the graph signal concentrates on the low frequencies. Under a graph signal smooth-
ness assumption, an edge between two nodes indicates the presence of correlation between
the signals at these nodes. The dichotomy between the nodes that generate signals and the
edges that correlate the signals reflects synergy between node and link view: samples col-
lected in a small neighborhood in edge domain tend to embody similar information content
in vertex domain. However, such assumption may not hold in practice, especially when
some of data are missing, the remaining data may not be smooth over the sub-network. In
Chapter 5, we seeks a relaxation of the existing universal smoothness condition that is im-
posed upon every vertex and its neighbors. The proposed model is generative and it allows
data in a subset of the network to be non-smooth with respect to the underlying topology.

1.4.2 Statistical Graph Signal Processing

Conventional GSP only cares about the deterministic graph signals [Shuman et al., 2013,
Sandryhaila and Moura, 2013, 2014a,b]. One of the major drawbacks of these methods is
that they lack of ability to represent the uncertainty inherited in the observations, making
them sensitive to the noises and anomalies in the data set. This motivates the introduc-
tion of statistical graph signal processing, which incorporates the GSP into probabilistic
graphical models [Koller and Friedman, 2009], inverse covariance estimation [Friedman
et al., 2008, Rothman et al., 2008, Yuan, 2010, Wiesel et al., 2010, Chen et al., 2011, Hsieh
et al., 2011, Wiesel and Hero, 2012, Danaher et al., 2014] and Bayesian inference. In
[Marques et al., 2016], the author extended the classical definition of stationary random
process to random graph signals. They also proposed a number of nonparametric methods
to estimate the power spectral density of random graph signal. [Mei and Moura, 2016] pre-
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sented an efficient algorithm to estimate a directed weighted graph that captures the causal
spatial-temporal relationship among multiple time series. In [Xu and Hero, 2014], Xu et al
introduced a state-space model for dynamic network that extended the well-known stochas-
tic blockmodel for static networks to the dynamic setting. An extended Kalman filter based
model was proposed that achieved a near-optimal performance in terms of estimation ac-
curacy.

Probabilistic graphical models [Lauritzen, 1996, Wainwright et al., 2008, Koller and
Friedman, 2009] provides a systematic framework in representation, inference and learn-
ing of high-dimensional data. It have deep connections with information theory, convex
analysis as well as graph theory. In Chapter 2, we review several connections between
graphical models, information geometry and maximum entropy learning. This serves as a
preliminary for Chapter 5 in which we will discuss the applications of graphical models in
robust learning and multi-view learning. In particular, we consider the situation where the
graph signal is generated by a Gaussian graphical model (GGM). That is, the joint distri-
bution of graph signal is Gaussian distributed that factorizes according to the underlying
network. To infer the underling network topology, the GGM provides a convenient tool
that associates the model selection problem with a inverse covariance estimation problem
[Lauritzen, 1996, Rue and Held, 2005, Banerjee et al., 2008, Friedman et al., 2008, Roth-
man et al., 2008, Wainwright et al., 2008, Yuan, 2010, Chen et al., 2011, Pavez and Ortega,
2016]. The latter is convex and is much easier to solve.

1.4.3 Graph Topology Inference

Most tasks in GSP require a full knowledge of the network topology. However, in many
applications such as recommendation systems [Aggarwal et al., 1999] and artificial intelli-
gence [Ferber, 1999], sensor networks [Hall and Llinas, 1997] and market prediction [Choi
et al., 2010a], a complete network topology may not be available. For these applications,
the main task is to infer the network topology given measurements on vertices.

Learning graph topology given data requires additional assumption on the data. In
GSP [Hammond et al., 2011, Zhu and Rabbat, 2012, Narang et al., 2013a, Sandryhaila and
Moura, 2013, 2014b, Shuman et al., 2013], smoothness conditions are necessary in order
to make sure that the data contain sufficient graph information to perform reliable network
inference. Under various smoothness assumptions, several algorithms are proposed to solve
the network inference problem. For instance, Done et al. [Dong et al., 2016] propose
to learning Laplacian matrix by solving a regression problem with graph regularization
[Belkin et al., 2006]. Similarly, Liu et al. [Chepuri et al., 2016] learns the graph topology
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by solving a convex relaxation of edge selection problem in the context of signal recovery.
The regularization and penalties used in these approaches amount to imposing different
degrees of smoothness on the solution. Graph Laplacians can also be learned implicitly
in the context of multiple kernel learning [Argyriou et al., 2005, Shivaswamy and Jebara,
2010], where additional feature transformation are used to learn a convex combination of
graph Laplacians.

For probabilistic GSP [Zhang et al., 2015], learning of graph topology is closely asso-
ciated with graphical model selection [Lauritzen, 1996, Koller and Friedman, 2009], based
on the assumption that the graphical model factorizes according to the underlying network
G. For instance, Ravikumar et al [Ravikumar et al., 2010] propose a high-dimensional
Ising model selection method based on `1-regularized logistic regression. Anandkumar et
al. [Anandkumar et al., 2011] introduce a threshold-based algorithm for structure learning
of high-dimensional Ising and Gaussian models based on condition mutual information.
For Gaussian graphical models (GGM), the sparse inverse covariance (precision) estima-

tion has attracted a lot of attention in the field of statistics and machine learning [Lauritzen,
1996, Rue and Held, 2005, d’Aspremont et al., 2008, Banerjee et al., 2008, Friedman et al.,
2008, Rothman et al., 2008, Wainwright et al., 2008, Yuan, 2010, Chen et al., 2011, Pavez
and Ortega, 2016]. Finding the sparse precision matrix from sample covariance involves
solving a `1-regularized Log-Determinant (LogDet) problem [Wang et al., 2010], which
can be achieved in polynomial time via interior point methods [Boyd and Vandenberghe,
2004], or by fast coordinate descent [Banerjee et al., 2008, d’Aspremont et al., 2008, Fried-
man et al., 2008, Mazumder and Hastie, 2012]. For instance, the graphical Lasso [Friedman
et al., 2008] is among the most popular algorithm and it is often solved using descent meth-
ods such as Newton’s algorithm, as in the QUIC algorithm of [Hsieh et al., 2013, 2014], or
coordinate descent, as in the `0 approach of [Marjanovic and Hero, 2015]. In [Pavez and
Ortega, 2016], a generalized Laplacian matrix is learned based on a modified dual graphi-
cal Lasso [Mazumder and Hastie, 2012] which can be used in spectrum analysis of graph
signal. In [Ravikumar et al., 2008], it is shown that, under some incoherence conditions,
the support of estimated precision matrix recovers the edge set of the underlying network
with high probability.

If the latent variables are present, the marginal precision matrix is no longer sparse due
to the marginalization effect. Chandrasekaran et al. [Chandrasekaran et al., 2011, 2012]
introduced the latent variable Gaussian graphical model (LV-GGM) which effectively rep-
resent the marginal precision matrix using a sparse plus low-rank structure. The LV-GGM
is a convex problem and can be solved via interior point methods. Fast implementations
include the LogdetPPA in [Wang et al., 2010], the ADMM in [Ma et al., 2013] or AltGD in
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[Xu et al., 2017]. The sign consistency and rank consistency for LV-GGM are also proved
in [Chandrasekaran et al., 2012], under some conditions addressing the identifiability is-
sues. The identifiability of LV-GGM implies that the latent variables have global influence
regardless its position on the network. Additional properties of the LV-GGM were estab-
lished in [Meng et al., 2014]. In particular, they obtained Frobenius norm error bounds
for estimating the precision matrix of an LV-GGM under weaker conditions than [Chan-
drasekaran et al., 2011, 2012]. A more flexible assumption is based on a decayed-influence
latent variable model, which associates the strength of latent effect with a distance measure
between the corresponding latent vertices and observed vertices. In Chapter 5, we proposed
the DiLat-GGM, which accommodates noisy side information about the unobserved latent
variables.
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CHAPTER 2

Background: Information Theory, Graphical
Models and Optimization in Robust Learning

2.1 Introduction

This chapter provides background material to facilitate the understanding of the rest of
the thesis. The purpose is to discuss several important concepts and methods that have
influence to our work but are not explained in detail in the following chapters.

The central theme behind all the methods developed in the thesis is the use of information-

theoretic measures, including entropies and various divergence measures, as parsimonious
representations of uncertainties in the data, as robust optimization surrogates that allows for
efficient learning, and as flexible and reliable discrepancy measures in data fusion. Since
its introduction in 1948 [Shannon, 1948], information theory has played an important role
in the field of digital communications [Shannon, 1948, Gallager, 1968, Shannon, 2001],
physics [Jaynes, 1957a,b] and statistics [Kullback, 1997, Akaike, 1998, Cover and Thomas,
2012]. In theoretical machine learning, information theory has been widely used as mea-
sure of capacity [MacKay, 2003] and sample complexity [Devroye et al., 2013, Mohri et al.,
2012]. Combinations of non-parametric estimation theory and information theory also pro-
vides efficient and robust estimators for Bayes error [Hero and Michel, 1999, Hero et al.,
2001, 2002, Sricharan et al., 2010, Sricharan and Hero, 2012, Sricharan et al., 2012, Moon
and Hero, 2014a,b].

Much of this thesis builds on the concept of the maximum entropy learning models. The
class of maximum entropy models have deep connections with the exponential family of
distributions and probabilistic graphical models [Wainwright et al., 2008, Koller and Fried-
man, 2009]. From the perspective of convex analysis, [Wainwright et al., 2008] show that
the maximum entropy estimation problem and the maximal likelihood estimation problem
are conjugate dual to each other for exponential families. This leads to an alternative in-
terpretation of a given statistical model, which is often useful in formulating alternative
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Table 2.1: The various concepts discussed in different chapters of this thesis (•)
Index terms Chapter 3 Chapter 4 Chapter 5

information theory • • •
KL-divergence • • •

latent variable models • • •
exponential family • • •

minimum discrimination information • •
maximum entropy discrimination • •

regularized Bayesian inference • •
information projection • •

convex duality • •
statistical manifold •

posterior regularization •
Hellinger distance •

Bhattacharyya distance •
graphical models •

matrix Bregman divergence •

computation and optimization methods. Maximum entropy learning and the exponential
family are also studied in the field of information geometry [Amari and Nagaoka, 2007],
which investigates the geometric properties of the space of parametric probability distribu-
tions.

In Section 2.2, we review a variety of information-theoretic measures and discuss their
application to maximum likelihood estimation, Bayesian inference and robust statistics. In
Section 2.3, we discuss the formulation a maximum entropy learning method, the method
of minimum entropy discrimination, especially MED. MED is associated with graphical
models, which are discussed in Section 2.4. We then introduce some concepts in infor-
mation geometry in Section 2.5, which provides geometric interpretations of maximum
entropy models. We also establish the convex duality between maximum likelihood and
maximum entropy for exponential families in Section 2.5. In Table 2.1, we list the set of
concepts and algorithms discussed in this chapter as well as their occurrence in various
chapters of the thesis.

2.2 Information-theoretic Measures

For more details on information theory and associated measured of uncertainty and infor-
mation the reader may refer to [Cover and Thomas, 2012]. Let x, y be continuous random
variables, whose joint distribution is P (x, y) with Lebesgue continuous density p(x, y).
Define the marginal probability density over x as p(x). The Shannon entropy [Shannon,
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1948] over a single variable x is defined as

H(x) := H(p) = Ep [− log p] := −
∫
p(x) log p(x)dx.

The Shannon entropy is a measure of uncertainty of random variable [Cover and Thomas,
2012] and H(x) ≥ 0. The joint Shannon entropy over (x, y) is H(x, y) = −

∫
p(x, y)

log p(x, y)dxdy and the conditional entropy is H(y|x) := −
∫
p(x, y) log p(y|x)dydx =

Ep(x) [H(p(y|x))] where H(p(y|x)) = Ep(y|x) [− log p(y|x)] = −
∫
p(y|x) log p(y|x)dy.

An important property of Shannon entropy is the chain rule: H(y, x) = H(x) +H(y|x).

The Shannon entropy is a concave functional [Gelfand et al., 2000] over the space of
probability density functions {p ≥ 0 :

∫
p = 1}, and the expectation operator Ep [·] is a

linear functional with respect to p.
One of the most important concepts for our work is the Kullback-Leibler divergence

(KL-divergence), also known as the relative entropy [Kullback, 1997]. Given two proba-
bility densities p and q for random variable x, the KL-divergence from q to p is defined
as

KL (p ‖ q) = −Ep
[
log

(
q

p

)]
=

∫
p(x) log

(
p(x)

q(x)

)
dx. (2.1)

KL-divergence is a measure (but not a metric) of the non-symmetric difference between
distributions p and q. KL-divergence is non-symmetric, KL (p ‖ q) 6= KL (q ‖ p), and
KL (p ‖ q) ≥ 0 for all (p, q) distributions, where the equality holds if and only if p = q.
KL (p ‖ q) is convex in the pair (p, q); that is, for any two pairs of distributions (p1, q1) and
(p2, q2),

KL (λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2) ≤ λKL (p1 ‖ q1) + (1− λ)KL (p2 ‖ q2)

for any λ ∈ [0, 1]. The entropy of a random variable with density p with finite support
can be viewed as a special case of the KL divergence between p and a uniform density u
over the support set. Specifically, H(p) = log |X | −KL (p ‖ u), where X is the support of
distributions p and u, u is uniform distribution on X , and |X | is the Lebesgue measure of
the support set.

Using KL-divergence, we can reformulate the maximum likelihood estimation as the
solution to a geometric projection problem. Consider a set of i.i.d data {xi}ni=1 gener-
ated by a parametric distribution p(x; θ) and let the empirical distribution be pn(x) :=∑n

i=1 δxi(x). The maximum likelihood estimate θ̂ of θ ∈ Ω is the optimal solution of the
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following problem

min
θ∈Ω

KL (pn(x) ‖ p(x; θ)) = −
n∑
i=1

log p(xi; θ). (2.2)

Here the empirical distribution pn(x) represents the distribution from data and p(x; θ) rep-
resents the distribution from model. Thus maximum likelihood estimation can be seen as
minimizing the divergence from the model distribution to the data distribution, where the
divergence quantifies the model fitting error.

In the thesis, we consider the KL-divergence KL (p ‖ q) from a Bayesian perspective.
For a Bayesian statistician, KL (p ‖ q) describes the amount of information gain about the
random parameter θ if one’s belief is revised from prior distribution p(θ) to the posterior
distribution q(θ) as a result of observing data from p(x; θ). In particular, the posterior
distribution p(θ|x1, . . . , xn) =

q(θ)
∏n
i=1 p(xi;θ)

p(x1,...,xn)
from the Bayes’ theorem can be obtained

alternatively by solving

min
q(θ)∈∆

KL (q(θ) ‖ p(θ))−
n∑
i=1

∫
θ

log p(xi; θ)q(θ)dθ, (2.3)

where ∆ := {q(θ) > 0, θ ∈ Ω :
∫
q(θ)dθ = 1}. Note that compared to (2.2), the un-

known variable in (2.3) is on the first argument. The problem (2.3) is referred as the vari-

ational formulation of Bayes’ theorem in [Zhu et al., 2014]. In [Ganchev et al., 2010], the
scheme of posterior regularization is proposed to incorporate additional prior information
in the semi-supervised learning process. The KL-divergence is used as a regularizer, which
separates out the model complexity and the complexity of structural constraints. In [Zhu
et al., 2014], this framework is generalized to Bayesian inference with the non-parametric
Bayesian priors [Müller and Quintana, 2004]. They proposed the regularized Bayesian

inference of θ as follows

min
q(θ),q(µ)∈∆

KL (q(θ) ‖ p(θ))−
n∑
i=1

∫
θ

log p(xi;θ)q(θ)dθ +KL (q(µ) ‖ p(µ)) , (2.4)

s.t. Eq [φ(x,θ)− µ] ≤ 0

where x := [xi]
n
i=1 and φ : X × Ω → R is a feature mapping. Note that the parameter

θ := θ(x) is infinite-dimensional and depends on the data. The variational formulation
of Bayesian inference is the basis for our development of robust and multi-view learning
in Chapter 3 and Chapter 4. Note that since KL (p ‖ q) is a convex function in (p, q), the
problems (2.3) and (2.4) are both convex and have an unique global optima.
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Besides the KL-divergence, several other divergence measures will appear in this the-
sis, including the Hellinger distance [Hellinger, 1909], the Bhattacharyya distance [Bhat-
tacharyya, 1946] and the f -divergence [Csisz et al., 1963, Ali and Silvey, 1966] as their
generalization. These measures are popular in robust statistics [Beran, 1977, Lindsay,
1994, Cutler and Cordero-Brana, 1996], physics [Braunstein and Caves, 1994], signal pro-
cessing [Beigi, 2011, Nielsen and Boltz, 2011] and data mining [Cieslak et al., 2012]. In
the presence of noisy mixture components, these measures are more robust as compared
to KL-divergence. The Hellinger distance between two continuous distributions p(x) and
q(x) is defined as

H(p, q) :=

√
1

2

∫ (√
p(x)−

√
q(x)

)2

dx

=

√
1−

∫ √
p(x)q(x)dx,

where
∫ √

p(x)q(x)dx is referred to the Bhattacharyya coefficient. H(p, q) ∈ [0, 1] and it
provides lower and upper bounds for the total variation distance between two distributions;
H2(p, q) ≤ ‖p− q‖1 ≤

√
2H(p, q).With the Bhattacharyya coefficient, the Bhattacharyya

distance is defined as

B(p, q) := − log

(∫ √
p(x)q(x)dx

)
.

The Bhattacharyya distance B(p, q) ∈ [0,∞] and it measures the amount of overlap be-
tween p and q. In Chapter 4, we use a variational formulation of the Bhattacharyya distance

B(p, q) = min
r∈∆

KL (r(x) ‖ p(x)) +KL (r(x) ‖ q(x)) , (2.5)

where p, q are predictive distributions over x in two different views.
A generalization of the KL-divergence and the Hellinger distance is the f -divergence,

which is defined as

Df (p ‖ q) :=

∫
f

(
p(x)

q(x)

)
p(x)dx.

where f : R → R is convex function and f(1) = 0. The KL-divergence corresponds
to the case where f(x) = x log x and the square of Hellinger distance corresponds to the
case when f(x) = (

√
x − 1)2. Note that for all pairs (p, q), the f -divergence Df (p ‖ q) is

non-negative and convex.
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The variational formulations in (2.3), (2.4) and (2.5) can be seen as learning maximum
entropy models. We next discuss maximum entropy learning in Section 2.3.

2.3 Maximum Entropy Discrimination

As discussed in Section 1.3, maximum entropy learning has many applications. In this
section, we discuss its natural extension, called the Principle of Minimum Discrimination

Information (MDI). When dealing with continuous random variable with non-uniform prior
distribution, a maximum entropy model follows the MDI, which states that given new data,
the information gain of a new distribution q from the original distribution p should be as
small as possible; that is, KL (q ‖ p) is minimized. Specifically, in MDI one solves the
convex optimization problem

min
q≥0

KL (q(θ) ‖ p(θ)) (2.6)

s.t. Eq [ηj(θ)] :=

∫
ηj(θ)q(θ)dθ = Tj(x), j = 1, . . . , s.∫

q(θ)dθ = 1,

where ηj : θ 7→ ηj(θ) ∈ R corresponds to a mapping of parameters θ and Tj(x) is a
constant that depends only on data.

The Lagrangian functional associated with (2.6) is

L(q,λ) =

∫
q log

q

p
+ λ0

∫
q +

s∑
j=1

λj

∫
q ηj. (2.7)

Since (2.6) is a convex optimization, calculus of variations over q(θ) asserts that the solu-
tion to (2.6) must satisfy

∂L
∂q(θ)

= log q(θ)− log p(θ) + 1 + λ0 +
s∑
j=1

λjηj(θ) = 0.

The stationary point condition yields the global optimal solution

q∗(θ) = p(θ) exp

(
−

s∑
j=1

λjηj(θ)− λ0 + 1

)
(2.8)

where λ0, . . . , λs are chosen so that the equality constraints are satisfied. This implies
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that h(x) := exp(−λ0 + 1) defines the normalization factor Z−1(x;λ1, . . . , λs), where
Z(x;λ1, . . . , λs) =

∫
p(θ) exp

(
−
∑s

j=1 λjηj(θ)
)
dθ is referred as the partition function

of q∗(θ). Substituting (2.8) into the Lagrangian functional (2.7), we have the dual objective
function

L(q∗,λ) =
1

Z(x;λ1, . . . , λs)

∫
p(θ) exp

(
−

s∑
j=1

λjηj(θ)

)[
−

s∑
j=1

λjηj(θ)

]
dθ

+
1

Z(x;λ1, . . . , λs)

s∑
j=1

λj

∫
p(θ) exp

(
−

s∑
j=1

λjηj(θ)

)
ηj(θ)dθ

− λ0 + 1

= −λ0 + 1 = − logZ(x;λ1, . . . , λs).

Therefore, the variables (λ1, . . . , λs) are optimal solutions of the dual optimization problem

max
λ1,...,λs

− log

∫
p(θ) exp

(
−

s∑
j=1

λjηj(θ)

)
dθ (2.9)

s.t. Eq(θ;λ) [ηj(θ)] = Tj(x), j = 1, . . . , s.

The final solution of (2.8) has the form

q∗(θ|x) := p(θ) exp

(
s∑
j=1

Tj(x)ηj(θ)− A(x)

)
(2.10)

where A(x) := logZ(x) is the log-partition function. A family of distributions that can
be expressed in (2.10) is said to belong to the exponential family, denoted as P . The func-
tions η := [ηj(θ)] ∈ Rs correspond to a set of natural parameters (or mean parameters)
and T = (Tj(x))j is a set of sufficient statistics since the conditional distribution q does
not depend on the data x given T . Note that the formulation (2.6) directly learns a natural
parameterization of exponential families, since the data x and the canonical parameters
θ only affect the linear constraints via the sufficient statistics T and the natural parame-
ters η. The exponential families include many of the most common distributions, such as
the normal distribution, exponential distribution, Poisson distribution, Bernoulli distribu-
tion, gamma distribution, beta distribution, binomial distribution, multinomial distribution,
Dirichlet distribution etc.

To learn discriminative models using maximum entropy principle, T. Jaakkola proposed
the Maximum Entropy Discrimination (MED) [Jaakkola et al., 1999]. Let {(xi,yi)}

n
i=1
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be i.i.d data from joint distribution p(xi,yi;θ), where xi ∈ X ⊂ Rd and yi ∈ Y :=

{e1, e2, . . . , ek} for ei ∈ Rk is an all-0’s vector with i-th entry as 1. The MED replaces the
mapping ηj(θ) with the log-likelihood ratio test function

f(xi,yi;y,θ) := log

(
p(xi,yi;θ)

p(xi,y;θ)

)
= log

(
p(yi|xi,θ)

p(y|xi,θ)

)
, i = 1, . . . , n.

The last equality holds since p(xi) is fixed. Then the MED solves the following problem:

min
q≥0

KL (q(θ) ‖ p(θ)) +
∑
i

KL (q(ρi) ‖ p(ρi)) (2.11)

s.t. Eq [f(xi,yi;y,θ)− ρi] ≥ 0, ∀ y 6= yi, i = 1, . . . , n.∫
q(θ)dθ = 1,

where {ρi} defines a set of margins with the prior distribution p(ρi) ∝ exp(−c(sα − ρi))
for ρi ≤ sα, sα is chosen to be some α-percentile of the margins obtained by standard
MAP procedure. The prior of θ is usually chosen to be the Gaussian process with p(θ) =

N (0,K) and [K]i,j := K(xi,xj). Similar to above derivations, the optimal solution is

q∗(θ;λ) =
1

Z(x,λ)
p(θ) exp

− n∑
i=1

∑
y∈Y,y 6=yi

λi,yf(xi,yi;y,θ)

 exp

− n∑
i=1

∑
y∈Y,y 6=yi

ρiλi,y

 ,

where the dual variables {λi,y} are obtained by solving the dual optimization problem

max
λ≥0
− log

∫
p(θ) exp

− n∑
i=1

∑
y∈Y,y 6=yi

λi,yf(xi,yi;y,θ)

 exp

− n∑
i=1

∑
y∈Y,y 6=yi

ρiλi,y

 dθ.

The classifier is defined as ŷ := arg maxy∈Y Eq(θ) [log p(y|x,θ)]. Compared with (2.6),
the solution of MED problem in (2.11) does not necessarily belong to the exponential
family P , since the log-likelihood ratio function f(xi,yi;y,θ) usually is not separable
as ηi(θ)Ti(x). As discussed in [Jaakkola et al., 1999, Jebara, 2011], MED is a Bayesian
extension of the support vector machine (SVM), and it can be seen as learning a convex
combination of random classifiers as opposed to SVM, which learns a single classifier.
From a computational perspective, computing the dual variables is a challenging problem
since it involves determining a log-partition function as in (2.9).
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2.4 Graphical Models and Exponential Families

Graphical models [Lauritzen, 1996, Wainwright et al., 2008, Koller and Friedman, 2009]
bring together the graph theory and probabilistic modeling into a power formalism in mul-
tivariate statistical analysis. For a random vector x := (x1, . . . , xd) ∼ p(x;θ), p(x;θ)

is a graphical model associated with some graph G := (V , E), if V = {1, . . . , d} and
xi ⊥⊥ xj|xd−{i,j} if (i, j) 6∈ E . The main task in graphical model learning is to infer the
parameters θ from i.i.d. data {xm}nm=1. Various inference algorithms, such as the sum-
product and max-product message-passing algorithms [Lauritzen, 1996], the expectation
propagation algorithm [Rasmussen and Williams, 2006, Koller and Friedman, 2009] and
the Markov chain Monte Carlo methods [Robert and Casella, 1999, Koller and Friedman,
2009].

In [Wainwright et al., 2008], Wainwright et al. introduce the variational inference meth-
ods which are based on the maximum entropy learning model in (2.6). As discussed in pre-
vious section, the variational form (2.6) provides a natural parameterization of the exponen-
tial family P . It is known that a few well-studied graphical models belong to the exponen-
tial family, including the Gaussian graphical models (GMM) [Lauritzen, 1996], the Ising
model [Ising, 1925], Boltzmann machine [Ackley et al., 1985, Hinton and Salakhutdinov,
2006] and the log-linear models [Lauritzen, 1996]. For instance, the Gaussian graphical
model has the form

N (x; Θ,θ) = exp

{
θTx− 1

2
tr
(
ΘxxT

)
− A(θ,Θ)

}
where Θ � 0 is the precision matrix, θ := Θµ for mean µ andA(θ,Θ) ∝ −1

2
log det Θ+

1
2
tr
(
Θ−1θθT

)
is the log-partition function. For high-dimensional data, the inference of

graphical model lack of inefficiency and accuracy. Wainwright et al. then propose to use
the marginal polytope, which defines each ηj so that it only involves a few variables. Then
the constraint Eq [ηj(θ)] = Tj in (2.6) only involves the marginal distribution, which can
be computed efficiently via message-passing algorithm.

The feasible region M := {q ∈ ∆ : Eq [ηj(θ)] = Tj, j = 1, . . . , s} defines a set of
distributions whose mean parameters satisfies the equality constraint Eq [η] = T . Note
that for any p, q ∈ M, αp+ (1− α)q ∈ M, α ∈ [0, 1], thus the distributions inM belong
to a mixture family [Amari and Nagaoka, 2007]. The mixture familyM is not a subset of
exponential family P . On the other hand, for any p, q ∈ P , pαq1−α/Z ∈ P , where Z is the
partition function. In Chapter 4, we use this fact in multi-view fusion.
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2.5 Convex Duality, Information Geometry and Bregman
Divergence

According to information geometry [Amari and Nagaoka, 2007], the set of solutions of
the maximum entropy problem (2.6), for all possible mean parameters η ∈ Rs, defines a
smooth manifold S := {q∗ ∈ ∆ : q∗ = arg minpKL (q ‖ u) s.t. Eq [T (x)] = η, ∀η ∈
Rs} ⊂ P ∩M, where u is the uniform distribution. The reason why S is a manifold is
because there exists a smooth one-to-one mapping η : S → Rs so that for each q ∈ S,
there corresponds to a unique mean parameter η(q) := η ∈ Rs. The uniqueness comes
from the convexity of the maximum entropy problem. η is a coordinate system and S
is referred as a statistical manifold. Formally speaking, a statistical manifold is a set of
distributions equipped with a coordinate system that locally maps from a neighborhood of
distributions to a neighborhood in Euclidean space. Both the exponential family P and
the mixture family M are statistical manifolds. Unlike the Euclidean space, a statistical
manifold is non-Euclidean, meaning that a geodesic curve on a statistical manifold is not a
straight line in space.

Given the smooth manifold P , the KL-divergence in (2.6) as well as the Hellinger dis-
tance can be seen as inducing a geometric structure on P . Moreover, we refer to the opera-
tor q∗ = e-projM(p) := arg minq∈MKL (q ‖ p) as the e-projection overM, since for p ∈
P , e-projM(p) ∈ P . Similarly, the operator q∗ = m-projP(p) := arg minq∈P KL (p ‖ q) is
defined as the m-projection over P , since for p ∈M, m-projP(p) ∈M. As shown in Fig-
ure 1.2 in Section 1.3, the maximum entropy learning is seen as e-projection of prior p over
M. An important fact from the information geometry is that P andM have dual geometric
structure to each other [Amari and Nagaoka, 2007], which means that the e-projection on
M is orthogonal.

There is a corresponding convex analysis perspective through the convex duality be-
tween the maximum entropy learning and the maximum likelihood estimation. Given a
convex function f : Ω ⊂ Rs → R and an inner product 〈µ , θ〉 on Rs × Rs, the conjugate
dual function of f is defined as

f ∗(µ) := sup
θ∈Ω
{〈µ , θ〉 − f(θ)} . (2.12)

The variable µ ∈ Rs is referred as the dual variable. Denote f(θ) := A(θ) = log
∫
q(θ)dθ

as the log-partition function for q(θ) := exp {〈T (x) , θ〉 − A(θ)} ∈ P in exponential fam-
ily. As seen in Section 2.3, if µ = Eq(θ) [T (x)], the mean parameter of q(θ), then in this
case the right-hand side is the optimal value of the maximum log-likelihood estimation of
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θ. Following the proof in [Wainwright et al., 2008], the conjugate dual function f ∗(µ) :=

A∗(µ) = −H(q(θ(µ))), the negative entropy of q, where θ(µ) is the unique canonical
parameter satisfying the dual matching condition Eq(θ(µ)) [T (x)] = ∇A(θ(µ)) = µ. Also
since for a convex closed function f , f ∗∗ = f , the log-partition function A(θ) has a varia-
tional representation in turns of its dual

A(θ) = sup
µ∈T
{〈θ , µ〉+H(q(θ′(µ)))} (2.13)

where T := {µ ∈ Rs : ∃q ∈ P , µ = Eq [T (x)]} , H(q(θ′(µ))) = −A∗(µ) is the entropy
of distribution q(θ′(µ)). The problem in (2.13) is essentially maximum entropy learn-
ing under a linear constraint in T . In other word, the maximum likelihood estimation
in (2.12) and the maximum entropy learning in (2.13) are dual problems to each other.
The mean parameter µ and the canonical parameter θ satisfy the dual matching condition
µ = Eq(θ) [T (x)].

Finally, a related divergence measure is the Bregman divergence [Bregman, 1967].
which is defined as

Dφ (θ ‖ µ) := φ(θ)− φ(µ)−∇φ(µ)T (θ − µ) ,

where φ : Ω ⊂ Rs → R is a real-valued strictly convex function defined over a convex
domain Ω ⊂ Rs. Dφ (θ ‖ µ) ≥ 0 for all (θ,µ), where the equality holds if and only if θ =

µ. For φ(θ) := ‖θ‖2
2, the resulting Bregman divergence is the Euclidean distance between

θ and µ. For φ(θ) :=
∑

i(θi log θi − θi), the resulting Bregman divergence becomes
the unnormalized KL-divergence Dφ (θ ‖ µ) =

∑
i(θi log θi

µi
− θi + µi). Similar to KL-

divergence, the Bregman divergence is used as a robust surrogate function in the field of
supervised learning [Murata et al., 2004, Nock and Nielsen, 2009, Santos-Rodrı́guez et al.,
2009, Liu and Vemuri, 2011], clustering [Banerjee et al., 2007, Ackermann and Blömer,
2010], matrix factorization [Dhillon and Sra, 2005, Tsuda et al., 2005], low-rank kernel
approximation [Kulis et al., 2009], graphical model learning [Friedman et al., 2008] etc.

In Chapter 5, we deal with the matrix Bregman divergence. For instance, the LogDet

divergence [Kulis et al., 2009, Wang et al., 2010] is defined as

Dφ (Θ1 ‖ Θ2) = Ddet (Θ1 ‖ Θ2) := tr
[
Θ1 (Θ2)−1]− log det

[
Θ1 (Θ2)−1]− s, (2.14)

for Θ1,Θ2 ∈ Rs×s and all positive definite Θ1,Θ2 � 0. Here the corresponding φ(Θ) :=

−
∑

i log λi, for (λ1, . . . , λs) are eigenvalues of Θ.
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CHAPTER 3

Robust Maximum Entropy Training on
Approximated Minimal-entropy Set

3.1 Introduction

Large margin classifiers, such as the support vector machine (SVM) [Schölkopf and Smola,
2002] and the MED classifier [Jaakkola et al., 1999], have enjoyed great popularity in the
signal processing and machine learning communities due to their broad applicability, ro-
bust performance, and the availability of fast software implementations. When the training
data is representative of the test data, the performance of MED/SVM has theoretical guar-
antees that have been validated in practice [Bousquet and Elisseeff, 2002, Schölkopf and
Smola, 2002, Bartlett and Mendelson, 2003]. Moreover, since the decision boundary of the
MED/SVM is solely defined by a few support vectors, the algorithm can tolerate random
feature distortions and perturbations.

Figure 3.1: Due to corruption in the training data the training and testing sample distributions are
different from each other, which introduces errors into the decision boundary.

However, in many real applications, anomalous measurements are inherent to the data
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set due to strong environmental noise or possible sensor failures. Such anomalies arise in
industrial process monitoring, video surveillance, tactical multi-modal sensing, and, more
generally, any application that involves unattended sensors in difficult environments (Fig.
3.1). Anomalous measurements are understood to be observations that have been cor-
rupted, incorrectly measured, mis-recorded, drawn from different environments than those
intended, or occurring too rarely to be useful in training a classifier Yang et al. [2010].
If not robustified to anomalous measurements, classification algorithms may suffer from
severe degradation of performance. Therefore, when anomalous samples are likely, it is
crucial to incorporate outlier detection into the classifier design. This chapter provides a
new robust approach to design outlier resistant large margin classifiers.

3.1.1 Problem setting and our contributions

We divide the class of supervised training methods into four categories, according to how
anomalies enter into different learning stages.

Table 3.1: Categories for supervised training algorithms via different assumption of anomalies
Training set (uncorrupted) Training set (corrupted)

Test set (un-
corrupted)

classical learning algorithms
(e.g. [Freund and Schapire,
1995, Vapnik and Vapnik,

1998, Jaakkola et al., 1999])

Robust classification & training
(e.g. [Bartlett and Mendelson,
2003, Bousquet and Elisseeff,

2002, Krause and Singer, 2004,
Xu et al., 2006, Wang et al., 2008,
Tyler, 2008, Masnadi-Shirazi and

Vasconcelos, 2009, Long and
Servedio, 2010, Forero et al.,
2012, Ding et al., 2013], this

chapter)

Test set
(corrupted)

anomaly detection (e.g.
[Schölkopf et al., 1999, Scott

and Nowak, 2006, Hero, 2006,
Sricharan and Hero, 2011])

Domain adaptation & transfer
learning (e.g. [Blitzer et al., 2006,

Dai et al., 2007, Pan and Yang,
2010])

As shown in Table 3.1, a majority of learning algorithms assume that the training and
test samples follow the same nominal distribution and neither are corrupted by anomalies.
Under this assumption, an empirical error minimization algorithm can achieve consistent
performance on the test set. In the case that anomalies exist only in the test data, one can
apply anomaly detection algorithms, e.g. [Scott and Nowak, 2006, Hero, 2006, Chandola
et al., 2009, Sricharan and Hero, 2011], to separate the anomalous samples from nominal
ones. Under additional assumptions on the nominal set, these algorithms can effectively
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identify an anomalous sample under given false alarm rate and miss rate. Furthermore,
in the case that both training and test set are corrupted, possibly with different corruption
rate, domain adaptation or transfer learning methods may be applied [Blitzer et al., 2006,
Daume III and Marcu, 2006, Pan and Yang, 2010].

This chapter falls into the category of robust classification & training in which possibly
anomalous samples occur in the training set. Such a problem is relevant, for example, when
high quality clean training data is too expensive or too difficult to obtain. In [Bousquet
and Elisseeff, 2002, Bartlett and Mendelson, 2003, Krause and Singer, 2004], the test set
is assumed to be uncorrupted so that the test error provides an unbiased estimate of the
generalization error on the nominal data set, which is a standard measure of performance
for robust classifiers. We adopt this assumption, although we also evaluate the proposed
robust classifier when the test set is also corrupted with limited corruption rate. Our goal is
to train a classifier that minimizes the generalization error with respect to the nominal data
distribution when the training set may be corrupted.

The area of robust classification has been thoroughly investigated in both theory [Bartlett
and Mendelson, 2003, Bousquet and Elisseeff, 2002, Krause and Singer, 2004, Xu et al.,
2006, Wu and Liu, 2007, Tyler, 2008, Masnadi-Shirazi and Vasconcelos, 2009] and appli-
cations [Wang et al., 2008, Long and Servedio, 2010, Forero et al., 2012, Ding et al., 2013].
Tractable robust classifiers that identify and remove outliers, called the Ramp-Loss based
learning methods, have been studied in [Song et al., 2002, Bartlett and Mendelson, 2003,
Xu et al., 2006, Wang et al., 2008]. Among these methods, Xu et al. [Xu et al., 2006] pro-
posed the Robust-Outlier-Detection (ROD) method as an outlier detection and removal al-
gorithm using the soft margin framework. Training the ROD algorithm involves solving an
optimization problem, for which dual solution is obtained via semi-definite programming
(SDP). Like all the Ramp-Loss based learning models, this optimization is non-convex re-
quiring random restarts to ensure a globally optimal solution [Long and Servedio, 2010,
Yang et al., 2010]. In this chapter, in contrast to the models above, a convex framework for
robust classification is proposed and a tractable algorithm is presented that finds the unique
optimal solution of a penalized entropy-based objective function.

Our proposed algorithm is motivated by the basic principle underlying the so-called
minimal volume (MV) /minimal entropy (ME) set anomaly detection method [Schölkopf
et al., 1999, Scott and Nowak, 2006, Hero, 2006, Sricharan and Hero, 2011]. Such meth-
ods are expressly designed to detect anomalies in order to attain the lowest possible false
alarm and miss probabilities. In machine learning, nonparametric algorithms are often pre-
ferred since they make fewer assumptions on the underlying distribution. Among these
methods, we focus on the Geometric Entropy Minimization (GEM) algorithm [Hero, 2006,
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Sricharan and Hero, 2011]. This algorithm estimates the ME set based on the k-nearest
neighbor graph (k-NNG), which is shown to be the Uniformly Most Powerful Test at given
level when the anomalies are drawn from an unknown mixture of known nominal density
and uniform anomalous density[Hero, 2006]. A key contribution of this chapter is the in-
corporation of the non-parametric GEM anomaly detection into a binary classifier under a
non-parametric corrupt-data model.

The proposed framework, called the GEM-MED, follows a Bayesian perspective. It is
an extension of the well-established MED approach proposed by Jaakkola et al. [Jaakkola
et al., 1999]. MED performs Bayesian large margin classification via the maximum entropy
principle and it subsumes SVM as a special case. The MED model can also solve the
parametric anomaly detection [Jaakkola et al., 1999] problem and has been extended to
multitask classification [Jebara, 2011]. A naive application of MED to robust classification
might use a two-stage approach that implements an anomaly detector on the training set
prior to training the MED classifier, which is sub-optimal. In this chapter, we propose
GEM-MED as a unified approach that jointly solves an anomaly detection and classification
problem via the MED framework. The GEM-MED explicitly incorporates the anomaly
detection false-alarm constraint and the mis-classification rate constraint into a maximum
entropy learning framework. Unlike the two-stage approach, GEM-MED finds anomalies
by investigating both the underlying sample distribution and the sample-label relationship,
allowing anomalies in support vectors to be more effectively suppressed. As a Bayesian
approach, GEM-MED requires no tuning parameter as compared to other anomaly-resistant
classification approaches, such as ROD [Xu et al., 2006]. We demonstrate the superior
performance of the GEM-MED anomaly-resistant classification approach over other robust
learning methods on simulated data and on a real data set combining sensor failure. The
real data set contains human-alone and human-leading-animal footsteps, collected in the
field by an acoustic sensor array [Damarla et al., 2011, Damarla, 2012, Huang et al., 2011].

What follows is a brief outline of the chapter. In Section II, we review MED as a
general framework to perform classification and other inference tasks. The proposed com-
bined GEM-MED approach is presented in Section III. A variational implementation of
GEM-MED is introduced in Section IV. Experimental results based on synthetic data and
real data are presented in Section V. Our conclusions are discussed in Section 3.6.

3.2 From MED to GEM-MED: A General Routine

Denote the training data set as Dt := {(yn,xn)}n∈T , where each sample-pair (yn,xn) ∈
Y × X = D are independent. Denote the feature set X ⊂ Rp and the label set as Y . For
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simplicity, let Y = {−1, 1}. The test data set is denoted as Ds := {xm}m∈S . We assume
that {(yn,xn)}n∈T are i.i.d. realizations of random variable (Y,X) with distribution Pt,
conditional probability density p(X|Y = y,Θ) and prior p(Y = y), y ∈ Y , where Θ is the
set of unknown model parameters. We denote by p(Y = y,X; Θ) = p(X|Y = y,Θ)p(Y =

y) the parameterized joint distribution of (Y,X). The distribution of test data, denoted as
Ps, is defined similarly. Pnom denotes the nominal distribution. Finally, we define the
probability simplex ∆Y×X over the space Y × X .

3.2.1 MED for Classification and Parametric Anomaly Detection

The Maximum entropy discrimination (MED) approach to learning a classifier was pro-
posed by Jaakkola et al [Jaakkola et al., 1999]. The MED approach is a Bayesian maxi-
mum entropy learning framework that can either perform conventional classification, when
Pt = Ps = Pnom, or anomaly detection, when Pt 6= Ps, and Pt = Pnom. In particular,
assume that all parameters in Θ are random with prior distribution p0(Θ). Then MED is
formulated as finding the posterior distribution q(Θ) that minimizes the relative entropy

KL (q(Θ) ‖ p0(Θ)) :=

∫
log

(
q(Θ)

p0(Θ)

)
q(dΘ) (3.1)

subject to a set of P constraints on the risk or loss:∫
Li (p, (yn,xn); Θ) q(dΘ) ≤ 0, ∀n ∈ T, 1 ≤ i ≤ P. (3.2)

The constraint functions {Li}Pi=1 can correspond to losses associated with different type of
errors, e.g. misdetection, false alarm or misclassification. For example, the classification
task defines a parametric discriminant function FC : ∆Y×X ×D → R+ as

FC (p, (yn,xn); Θ) := log p(Y = yn|xn; Θ)/p(Y 6= yn|xn; Θ).

In the case of the SVM classification, the loss function is defined as

Li = LC (p, (yn,xn); Θ) := [ξn −FC (p, (yn,xn); Θ)] . (3.3)

Other definitions of discriminant functions are also possible [Jaakkola et al., 1999].
An example of an anomaly detection test function Li = LD : ∆X ×X → R, is

LD (p,xn; Θ) := − [log p(xn; Θ)− β] , (3.4)
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where p(xn; Θ) is the marginal likelihood p(xn; Θ) =
∑

yn∈Y p(X = xn|Y = yn,Θ)p(Y =

yn). The constraint function (3.4) has the interpretation as local entropy of X in the neigh-
borhood of X = xn. Minimization of the average constraint function yields the minimal
entropy anomaly detector [Hero, 2006, Sricharan and Hero, 2011]. The solution to the min-
imization (3.2) yields a posterior distribution p(Y = y|xn,Θ) where Θ := Θ∪{ξn}∪{β}.
This lead to a discrimination rule

y∗ = argminy

{
−
∫

log p(y,xm ; Θ)q(dΘ)

}
, xm ∈ Ds. (3.5)

when applied to the test data Ds.
The decision region {x ∈ X |Y = y} of MED can have various interpretations depend-

ing on the form of the constraint function (3.3) and (3.4). For the anomaly detection con-
straint (3.4), it is easily seen that the decision region is a β-level-set region for the marginal
p(x; Θ), denoted as Ψβ := {xn ∈ X | log p(xn; Θ) ≥ β}. Here Ψβ is the rejection region

associated with the test: declare xm ∈ Ds as anomalous whenever xm 6∈ Ψβ; and declare it
as nominal if xm ∈ Ψβ . With a properly-constructed decision region, the MED model, as a
projection of prior distribution p0(Θ) into this region, can provide performance guarantees
in terms of the error rate or the false alarm rate and can result in improved accuracy [Jebara,
2011, Zhu et al., 2011].

Similar to the SVM, the MED model readily handles nonparametric classifiers. For
example, the discriminant function FC (p, (y,x); Θ) can take the form y[Θ(x)] where Θ =

f is a random function, and f : X → Y can be specified by a Gaussian process with
Gaussian covariance kernel K(·, ·). More specifically, f ∈ H, where H is a Reproducing
Kernel Hilbert Space (RKHS) associated with kernel function K : X × X → R. See
[Jebara, 2011] for more detailed discussion.

MED utilizes a weighted ensemble strategy that can improve the classifier stability
[Jaakkola et al., 1999]. However, like SVM, MED is sensitive to anomalies in the training
set.

3.2.2 Robustified MED with Anomaly Detection Oracle

Assume an oracle exists that identifies anomalies in the training set. Using this oracle,
partition the training set asDt = Dnomt ∪Danmt , where (xn, yn) ∼ Pnom if (xn, yn) ∈ Dnomt

and (xn, yn) 6∼ Pnom, if (xn, yn) ∈ Danmt . Given the oracle, one can achieve robust
classification simply by constructing a classifier and an anomaly detector simultaneously
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on Dnomt . This results in a naive implementation of robustified MED as

min
q(Θ)∈∆Θ

KL
(
q(Θ) ‖ p0(Θ)

)
(3.6)

s.t.
∫
LC
(
p, (yn,xn); Θ

)
q(dΘ) ≤ 0, (xn, yn) ∈ Dnomt , (3.7)∫

LD
(
p,xn; Θ

)
q(dΘ) ≤ 0, (xn, yn) ∈ Dnomt , (3.8)

where Θ = Θ∪{β}∪{ξn}n∈T , the large-margin error functionLC is defined in (3.3) and the
test functionLD is defined in (3.4). The prior is defined as p0(Θ) = p0(Θ)p0(β)

∏
n∈T p0(ξn).

Of course, the oracle partition Dt = Dnomt ∪ Danmt is not available a priori. The
parametric estimator Ψ̂β of Ψβ can be introduced in place of Dnomt in (3.6). However,
the estimator Ψ̂β is difficult to implement and can be severely biased if there is model
mismatch.

Below, we propose an alternative nonparametric estimate of the decision region Ψβ that
learns the oracle partition.

3.3 The GEM-MED: Model Formulation

3.3.1 Anomaly Detection using Minimal-entropy Set

As an alternative to a parametric estimator of the level-set Ψβ := {xm ∈ X | log p(xm; Θ) ≥
β}, we propose to use a non-parametric estimator [Wasserman, 2010] based on the minimal-

entropy (ME) set Ω1−β . The ME set Ω1−β := arg minA{H(A)|
∫
A
p(x)dx ≥ β} is referred

as the minimal-entropy-set of false alarm level 1−β, where H(A) = −
∫
A

log p(x) p(x)dx

is the Shannon entropy of the density p(x) over the region A. This minimal-entropy-set is
equivalent to the epigraph-set {A :

∫
A
p(x)dx ≥ β} as illustrated in Fig. 3.2.

Given Ω1−β , the ME anomaly test is as follows: a sample xn is declared anomalous if
xn 6∈ Ω1−β; and it is declared nominal, when xn ∈ Ω1−β . It is established in [Hero, 2006]
that when p(x) is a known density, this test is a Uniformly Most Powerful Test (UMPT)
[Scharf, 1991] at level β of the hypothesis H0 : x ∼ p(x) vs. H1 : x ∼ p(x) + εU(x),
where U(x) is the uniform density and ε ∈ [0, 1] is an unknown mixture coefficient.

3.3.2 The BP-kNNG Implementation of GEM

Several methods have been proposed to empirically approximate the ME set Ω1−β includ-
ing: kernel density estimation [Scott and Nowak, 2006]; the k-point minimal spanning tree
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Figure 3.2: The comparison of level-set (left) and the epigraph-set (right) w.r.t. two continuous
density function p(x). The minimum-entropy-set is computed based on the epigraph-set.

[Hero and Michel, 1999]; the leave-one-out k-nearest-neighbor graph [Sricharan and Hero,
2011]; and the average k-nearest-neighbor distance [Root et al., 2015]. In [Sricharan and
Hero, 2011], the Bipartite k-Nearest-Neighbor (BP-kNN) based algorithm was proposed
as an alternative approximation. The BP-kNN solves the following discrete optimization
problem:

A∗c ∈ arg min
Ac⊂DN,ct

L(Ac,DM,c
t ),

where L(Ac,DM,c
t ) :=

∑
xn∈Ac

dk(xn,DM,c
t ),

and where Ac is a set of distinct K = |T | (1 − β) points in DN,ct (see Fig. 3.3 for il-
lustration). It is shown in [Sricharan and Hero, 2011] that A∗c = Ω̂1−β is an asymptot-
ically consistent estimator of the ME set. Equivalently, let ηn ∈ {0, 1} be the indicator
function of the event xn ∈ Ac and define dn := dk(xn,DM,c

t ). Then it can easily be
shown that the algorithm in [Sricharan and Hero, 2011] finds the optimal binary variables{
ηn ∈ {0, 1} |xn ∈ DN,ct

}
, n = 1, . . . , N, that minimize

∑
xn∈DN,ct

ηndn subject to
∑

xn∈DN,ct

ηn ≥ K. (3.9)
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(a)

(b)

Figure 3.3: Figure (a) illustrates ellipsoidal minimum entropy (ME) sets for two dimensional
Gaussian features in the training set for class 1 (orange region) and class 2 (green region). These ME
sets have coverage probabilities 1 − β under each class distribution and correspond to the regions
of maximal concentration of the densities. The blue disks and blue squares inside these regions
correspond to the nominal training samples under class 1 and class 2, respectively. An outlier (in
red triangle) falls outside of both of these regions. Figure (b) illustrates the bipartite 2-NN graph
approach to identify the anomalous point, where the yellow disks and squares are reference samples
in each class that are randomly selected from the training set. Note that the average 2-NN distance
for anomalies should be significantly larger than that for the nominal samples.

This representation makes the BP-kNN implementation of GEM naturally adaptable to
our GEM-MED framework. Specifically, the binary weights ηn ∈ {0, 1} are relaxed to
continuous weights in the unit interval [0, 1] for all n ∈ T . After relaxation, the constraint
in (3.9) becomes

∑
n ηn/ |T | ≥ β̂, where β̂ = K/ |T | = (1 − β) > 0 is set so that

the optimal solution {ηn|xn ∈ A∗c} is feasible and the all-zero solution is infeasible. With
the set of weights {ηn}n∈T , the GEM problem in (3.9) can be transformed into a set of
nonparametric constraints that fit the framework (3.6). This is discussed below.
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3.3.3 The GEM-MED as Non-parametric Robustified MED

Now we can implement the framework in (3.6). Denote Θ := Θ ∪
{
β̂
}
∪ {ξn}n∈T ∪

{ηn}n∈T ∪ {γz}z∈{±1}, where Θ, {ξn}n∈T are parameters as defined in (3.6), {ηn}n∈T are
weights in Sec. 3.3.2 and β̂, {γz}z∈{±1} are variables to be defined later.

According to the objective function in (3.9), we specify the test function L̃D as

L̃D(Θ,y; z,d) := L̃D({ηn} , {γz} ,y; z,d)

=

(∑
n

1 {yn = z} ηndn/ |T | − γz

)
, z ∈ {±1} ,

where γz ≥ 0, z ∈ {±1} is the threshold associated with dn on Dt ∩ {xn|yn = z}. Com-
pared with (3.9), if γz = L∗z + ε, where L∗z is the optimal value in (3.9) and ε > 0 is small
enough, then for {ηn}n∈T satisfying L̃D ≤ 0, the region

{
xn : ηn >

1
2

}
is concentrated on

Ω̂1−β ∩ {xn|yn = z} , z ∈ {±1}.
As discussed in 3.3.2, the constraint in (3.9) becomes the inequality constraint

∑
n|yn=z ηn/ |T | ≥

β̂.
Assuming that Θ is random with unknown distribution q(Θ), the above expected con-

straints becomes ∫
L̃D(Θ,y; z,d)q(dΘ) ≤ 0, z ∈ {±1} , (3.10)∫ [ ∑
n:yn=z

ηn/ |T |

]
q(dΘ) ≥ β̂, z ∈ {±1} . (3.11)

The constraint (3.10) is referred as the entropy constraint and constraint (3.11) is the epi-

graph constraint. As discussed above, the region
{
xn|ηn > 1

2

}
for q(Θ) satisfying (3.10)

and (3.11) is concentrated on Ω̂1−β ∩ {xn|yn = z} in each class z ∈ {±1} on average.
With L̃D, the test constraint in (3.6) is replaced by (3.10) and (3.11).

For the classification part in (3.6), given ηn associated with each sample, the error
constraints in (3.6) is replaced by reweighted error constraints∫ [

ηnLC
(
p, (yn,xn); Θ

)]
q(dΘ) ≤ 0, n ∈ T,

with LC defined as in (3.3). Note that these constraints are applied to the entire training
set. Summarizing, we have the following:

Definition The Geometric-Entropy-Minimization Maximum-Entropy-Discrimination (GEM-MED)
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method solves

min
q(Θ)∈∆Θ

KL
(
q(Θ) ‖ p0(Θ)

)
(3.12)

s.t.
∫ [

ηnLC
(
p, (yn,xn); Θ

)]
q(dΘ) ≤ 0, n ∈ T,∫

L̃D(Θ,y; z,d)q(dΘ) ≤ 0, z ∈ {±1} ,∫ [ ∑
n:yn=z

ηn/ |T |

]
q(dΘ) ≥ β̂, z ∈ {±1}

where Θ, LC and L̃D are defined as before.

3.4 Implementation

3.4.1 Projected Stochastic Gradient Descent Algorithm

Note that (3.12) is a convex optimization w.r.t. the unknown distribution q(Θ) [Jaakkola
et al., 1999, Cover and Thomas, 2012]. Therefore, it can be solved using the Karush-Kuhn-
Tucker (KKT) conditions, which will result in a unique solution. We make the following
simplifying assumptions under which our a computational algorithm is derived to solve
(3.12).

1. Assume that a kernelized SVM is used for the classifier discriminant FC function.
Following [Zhu et al., 2014, Jebara, 2011], we assume that the decision function f
follows a Gaussian random process on X , i.e., a positive definite covariance kernel
K(xi,xj) is defined for all xi,xj ∈ X and all finite dimensional distributions, i.e.,
distributions of samples (f(xi))i∈T , follow the multivariate normal distribution

(f(xi))i∈T ∼ N (0,K), (3.13)

whereK = [K(xi,xj)]i,j∈T is a specified covariance matrix. For example,K(xi,xj) :=

exp(−γ‖xi − xj‖2
2) for Gaussian RBF kernel covariance function.

2. Assume a separable prior, as commonly used in Bayesian inference [Jaakkola et al.,
1999, Blei et al., 2003, Zhu et al., 2014]

p0(Θ) = p0(Θ)
∏
n∈T

p0(ξn)
∏
n∈T

p0(ηn)
∏

z∈{±1}

p0(γz). (3.14)
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3. Assume that the hyperparameters {ξn} are exponential random variables and the in-
dicator variables {ηn} are independent Bernoulli random variables,

p0(ξn) ∝ exp(−cξ(1− ξn)), ξn ∈ (−∞, 1], n ∈ T ;

p0(ηn) = Ber(pη)

with pη =
1

1 + exp(−(aη − ηn))

:= σ(aη − ηn), ηn ∈ {0, 1} , n ∈ T ;

p0(γz) = δγ̂z(γz); z ∈ {±1} , (3.15)

where (aη, cξ) are parameters and γ̂z is the upper bound estimate for minimal-entropy
in each class z = ±1 given by GEM algorithm. σ(x) = 1/(1 + exp(−x)) is the
sigmoid function.

Now by solving the primal version of optimization problem (3.12), we have

Theorem 3.4.1 The GEM-MED problem in (3.12) is convex with respect to the unknown

distribution q(Θ) and the unique optimal solution is a generalized Gibbs distribution with

the density:

q(dΘ) =
1

Z(λ,µ,κ)
p0(dΘ) exp

(
−E(Θ;λ,µ,κ)

)
, (3.16)

where

E(Θ;λ,µ,κ) := E(Θ, β̂, {ξn} , {ηn} , {γz} ;λ,µ,κ)

=
∑
n∈T

λnηnLC,Θ,ξn −
∑

z∈{±1}

µzL̃D,z

−
∑

z∈{±1}

κz
∑
n:yn=z

ηn/ |T |+
∑

z∈{±1}

κzβ̂

with Θ = Θ ∪
{
β̂
}
∪ {ξn}n∈T ∪ {ηn}n∈T ∪ {γ+1, γ−1}and where the dual variables λ =

{λn, n ∈ T}, µ = (µz, z ∈ ±1) and κ = (κz, z ∈ ±1) are all nonnegative. Z(λ,µ,κ) is

the partition function, which is given as

Z(λ,µ,κ) =

∫
exp

(
−E(Θ;λ,µ,κ)

)
p0(dΘ). (3.17)

The factor LC,Θ,ξn := LC(·; Θ, ξn) is defined as in (3.3), L̃D,z := L̃D(·; z, ·) is defined as

in (3.10). See the Appendix Sec. 3.7.1 for a detailed derivation.

36



Algorithm 1 The (kernel) GEM-MED algorithm
Require: The training set Dt ⊂ X × {±1} and the test set Ds. The projection gradient step

parameter ϕ,ψ, τ > 0. Prior distribution and assumptions given as (13)-(15). The kernel
function K : X × X → R is specified.

1: Initialize: Set µ0 = 0,κ0 = 0. λ0 is set by applying conventional MED on D

2: for t = 1, . . . , T or until converge do
3: Compute the gradient of log-partition function w.r.t λt, µt and κt, respectively, i.e.

∂−logZ(λt,µt,κt)
∂λn

, ∂−logZ(λt,µt,κt)
∂µz

and ∂−logZ(λt,µt,κt)
∂κz

according to the formula (23)-(25)
where the expectation is approximated via Gibbs sampling described as above.

4: Update λn, µz and κz via projected gradient descent, i.e.

λn,(t+1) = proj{λ: 0≤λ≤C1}

{
λn,t − ϕ

∂ logZ((µt,λt,κt))

∂λn

}
n ∈ T,

µz,(t+1) = proj{µ:µ≥0}

{
µz,t − ψ

∂ logZ(µt,λt,κt)

∂µz

}
z ∈ {−1,+1},

κz,(t+1) = proj{κ:κ≥0}

{
κz,t − τ

∂ logZ(µt,λt,κt)

∂κz

}
z ∈ {−1,+1},

where proj{x: 0≤x≤C}{w} ≡ min (max(x, 0), C) defines the projection of x on the feasible
set {z : 0 ≤ z ≤ C}.

5: end for

Ensure: Assign label for test sample xm ∈ Ds as

y∗ = sign

{∑
n∈T

η̂nλ
∗
nynK(xm,xn)

}
, xm ∈ Ds

where η̂n = E [ηn|f ] at the final iteration of step 4.

Moreover, we specify the error function as

LC (p, (yn,xn); Θ, ξn) := ξn − ynf(xn), (3.18)

where Θ := f : X → Y is a decision function associated with a nonparametric classifier
as defined in Sec 3.2.1.

Theorem 3.4.2 Assume that (3.13), (3.14), (3.15) hold, the dual optimization problem is

given as

max
λ,µ,κ≥0

− logZ(λ,µ,κ) (3.19)

= − log

∫
exp

(
−E(Θ;λ,µ,κ)

)
p0(dΘ)
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=
∑
n∈T

(λn + log (1− λn/c))−
∑

z∈{±1}

µzγ̂z + β̂
∑

z∈{±1}

κz

− log

∫
exp

(
1

2
Q(K � (yyT ), (λ� η))

)
× p0(η) exp

(
ηT (−µ⊗ d+ κ⊗ e)

)
dη (3.20)

where (λ,µ,κ) are nonnegative dual variables as defined in (3.16), e is the all 1’s vector,

� is Hadamard product, ⊗ is the Kronecker product, respectively, and

Q(K,x) = xTKx

is the quadratic form associated with the kernel K.

See Appendix Sec. 3.7.2 for derivations of this result.
It is seen from (3.19) that the dual objective function is concave w.r.t. dual variables

(λ,µ,κ). However, the integral in (3.20) is not closed form, so an explicit form as a
quadratic optimization in SVM is not available. Nevertheless, the only coupling in (3.20)
comes from the joint distribution q(f,η). In particular, under the prior assumption (3.13),
(3.14), (3.15), the optimal solution (3.16) satisfies

1. q(Θ) = q(f,η)
∏

n q(ξn)q(γ+1)q(γ−1) is factorized.

2. q(η|f) =
∏

n∈T q(ηn|f), i.e. the {ηn, n ∈ T} are conditional independent given the
decision boundary function f . Moreover,

q(ηn|f) = Ber(qη), (3.21)

with qη = σ (ρnFn(f))

where ρn := log 1−p0(ηn=1)
p0(ηn=1)

, Fn(f) := λn [ynf(xn)− 1] −µynhn + κyn/ |T | , σ(·) is
the sigmoid function as (3.15).

3. f |η ∼ N (f |f̂η,λ(·),K), where

f̂η,λ(·) =
∑
n∈T

λnηnynK(·,xn) ∈ H (3.22)

See Appendix Sec. 3.7.3 for details.
Given above results, we propose to use the projected stochastic gradient descent (PSGD)

[Bertsekas, 1999, Murphy, 2012] algorithm to solve the dual optimization problem in
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(3.20). The gradient vectors of the dual objective function in (3.20) w.r.t. λ, µ, κ, re-
spectively, are computed as

∂

∂λn
[− logZ(λ,µ,κ)]

= 1− Eq(f,η) [ηnynf(xn)] +
c

c− λn
, n ∈ T ; (3.23)

∂

∂µz
[− logZ(λ,µ,κ)]

= Eq(f,η)

{ ∑
n:yn=z

ηndn

}
− γ̂z, z ∈ {±1} ; (3.24)

∂

∂κz
[− logZ(λ,µ,κ)]

= β̂ − 1

|T |
Eq(f,η)

[ ∑
n:yn=z

ηn

]
, z ∈ {±1} . (3.25)

Note that the expectation w.r.t. q(f,η) are approximated by Gibbs sampling with each
conditional distribution given by (3.21), (3.22). For a detailed implementation of the Gibbs
sampler, see the Appendix Sec. 3.7.4.

A complete description of algorithm is presented in Algorithm 1. It is remarked that in
(3.21) the probability of {ηn = 0} is proportional to the sum of margin of classification and
negative local entropy value. The role of the dual variables (ηn, µc) in (3.21) and (3.22) is to
balance the classification margin y f(·) and local entropy h in determining the anomalies.

3.4.2 Prediction and Detection on Test Samples

The GEM-MED classifier is similar to the standard MED classifier in (3.5):

y∗ = argmaxy

{∫
yf(xm)q(f |η̂,Dt)df

}
,

= sign

{∑
n∈T

η̂nλ
∗
nynK(xm,xn)

}
xm ∈ Ds. (3.26)

where η̂ is the conditional mean estimator of η given by Algorithm 1.
The GEM-MED was optimized on the training set to detect and mitigate anomaly cor-

rupted training samples. When there are also anomalies in the test sample, an anomaly
detection method can be applied independently to screen out these samples (at a given false
positive rate) before applying GEM-MED to classify them. Such a two-stage approach to
handling anomalies in the test sample is obviously not optimal. An optimal joint approach
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Figure 3.4: The classification decision boundary for SVM, ROD and GEM-MED on the simulated
data set with two bivariate Gaussian distribution N (m+1,Σ), N (m−1,Σ) in the center and a set
of anomalous samples for both classes distributed in a ring. Note that SVM is biased toward the
anomalies (within outer ring support) and ROD and GEM-MED are insensitive to the anomalies.

to handling anomalies in the training and test samples is worthwhile future direction which
will not be investigated here.

3.5 Experiments

We illustrate the performance of the proposed GEM-MED algorithm on simulated data as
well as on a real data collected in a field experiment. We compare the proposed GEM-MED
with the SVM implemented by LibSVM [Chang and Lin, 2011] and the ROD algorithm
implemented with code obtained from the authors of [Xu et al., 2006]. For the simulated
data experiment, a linear kernel SVM is implemented, and for the real data, a Gaussian
RBF kernel SVM with kernel K(xi,xj) = exp(−γ‖xi − xj‖2

2) is implemented and the
kernel parameter γ > 0 is tuned via 5-fold-cross validation.

3.5.1 Simulated Experiment

For each class c ∈ {±1}, we generate samples from the bivariate Gaussian distribution
N (m+1,Σ) and N (m−1,Σ), with mean m−1 = (3, 3) and m+1 = −m−1 and common

covariance Σ =

[
20 16

16 20

]
. The sample follows the log-linear model log p(y,x; Θ) ∝

1/2 y(wT x+b) where Θ = (w, b). A Gaussian prior was used as p0(Θ) = N (w; 0, σ2
wI)N (b; 0, σ2

b ).
We followed the same models as in [Xu et al., 2006]. In particular, the anomalies in

the training set were drawn uniformly from a ring with an inner radius of R and outer
radius R + 1, where R was assigned as one of the values [15, 35, 55, 75]. Define R to be
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Figure 3.5: The Illustration of anomaly score η̂n for GEM-MED and ROD. The GEM-MED is
more accurate than ROD in term of anomaly detection.

the noise level of the data set, since the larger R the higher the discrepancy between the
nominal distribution and the anomalous distribution. The samples then were labeled as
{0, 1} with equal probability. The size of the training set was 100 for each class, and the
ratio of anomaly samples was ra. The test set contained 2000 uncorrupted samples from
each class. See Fig. 3.4 for a realization of the data set and the classifiers.

We first compare the classification accuracy of SVM, Robust-Outlier-Detection (ROD)
with outlier parameter ρ and GEM-MED, under noise level R and a range of corruption
rates ra ∈ {0.2, 0.3, 0.4, 0.5}. We used the BP-kNNG implementation of GEM, where
the k-nearest neighbor parameter k = 5. In the update of the GEM-MED dual variables
(λ, µ, κ), the learning rate (ϕ, ψ, τ) is chosen based on a comparison of classification per-
formance of the GEM-MED under a range of noise levels R and corruption rates ra, as
shown in Fig. 3.7 (a)-(c). Note that when ϕ ∈ [1, 4] × 10−3, ψ ∈ [1, 4] × 10−2, τ ∈
[1, 5]×10−2, the performance of the GEM-MED is stable in terms of the averaged missclas-
sification error and the variance. We fix (ϕ, ψ, τ) in the stable range in the following exper-
iments. For the ROD, we investigated a range of algorithm parameters, in particular outlier
parameter ρ ∈ {0.02, 0.2, 0.6} for comparison, and we observed that the value ρ = 0.02

gives the best classification performance regardless of the setting of R ∈ {15, 35, 55, 75}
or ra ∈ {0.2, 0.3, 0.4, 0.5}. Recall that the ROD parameter ρ is a fixed threshold that de-
termines the proportion of anomalies, i.e., the proportion of nonzero ηn [Xu et al., 2006].
Compared to the ROD, the GEM-MED as a Bayesian method requires no tuning parameter
to control the proportion of anomalies. In the experiments below, we compare the ROD
for a range of outlier parameters ρ with GEM-MED for a single choice of (ϕ, ψ, τ), which

41



were tuned via 5-fold-cross-validation of misclassification rate over 50 trial runs.
We first compare the classification accuracy of SVM, Robust-Outlier-Detection (ROD)

with outlier parameter ρ and GEM-MED, under noise level R and a range of corruption
rates ra ∈ {0.2, 0.3, 0.4, 0.5}. We used the BP-kNNG implementation of GEM, where
the k-nearest neighbor parameter k = 5. In the update of the GEM-MED dual variables
(λ, µ, κ), the learning rate (ϕ, ψ, τ) is chosen based on a comparison of classification per-
formance of the GEM-MED under a range of noise levels R and corruption rates ra, as
shown in Fig. 3.7 (a)-(c). Note that when ϕ ∈ [1, 4] × 10−3, ψ ∈ [1, 4] × 10−2, τ ∈
[1, 5]×10−2, the performance of the GEM-MED is stable in terms of the averaged missclas-
sification error and the variance. We fix (ϕ, ψ, τ) in the stable range in the following exper-
iments. For the ROD, we investigated a range of algorithm parameters, in particular outlier
parameter ρ ∈ {0.02, 0.2, 0.6} for comparison, and we observed that the value ρ = 0.02

gives the best classification performance regardless of the setting of R ∈ {15, 35, 55, 75}
or ra ∈ {0.2, 0.3, 0.4, 0.5}. Recall that the ROD parameter ρ is a fixed threshold that de-
termines the proportion of anomalies, i.e., the proportion of nonzero ηn [Xu et al., 2006].
Compared to the ROD, the GEM-MED as a Bayesian method requires no tuning parameter
to control the proportion of anomalies. In the experiments below, we compare the ROD
for a range of outlier parameters ρ with GEM-MED for a single choice of (ϕ, ψ, τ), which
were tuned via 5-fold-cross-validation of misclassification rate over 50 trial runs.

Fig. 3.6(a) shows the miss-classification error (%) versus various noise level R (with
ra = 0.2), and Fig. 3.6(b) shows the miss-classification error under different corruption
rate settings (with R = 55). In both experiments, GEM-MED outperforms ROD and SVM
in terms of classification accuracy. Note that when the noise level or the corruption rate
increases, the training data become less representative of the test data and the difference
between their distributions increases. This causes a significant performance deterioration
for the SVM/MED method, which is demonstrated in Fig. 3.6(a) and Fig. 3.6(b). Fig.
3.5 also shows the bias of the SVM classifier towards the anomalies that lie in the ring.
Comparing to GEM-MED and ROD in Fig 3.6(a) and Fig. 3.6(b), the former method is less
sensitive to the anomalies. Moreover, since the GEM-MED model takes into account the
marginal distribution for the training sample, it is more adaptive to anomalies in the training
set, as compared to ROD, which does not use any prior knowledge about the nominal
distribution but only relies on the predefined outlier parameter ρ to limit the training loss.
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Figure 3.6: (a) Miss-classification error (%) vs. noise level R for corruption rate ra = 0.2. (b)
Miss-classification error (%) vs. corruption rate E [η] for ring-structureed anomaly distribution
having ring R = 55. (c) Recall-precision curve for GEM-MED and RODs on simulated data for
corruption rate = 0.2. (d) The AUC vs. corruption rate ra for GEM-MED and ROD with a range
of outlier parameters ρ. From (a) and (b), GEM-MED outperforms both SVM/MED and ROD
for various ρ in classification accuracy. From (c), under the same corruption rate, we see that
GEM-MED outperforms ROD in terms of the precision-recall behavior. This due to the superiority
of GEM constraints in enforcing anomaly penalties into the classifier. From (d), The GEM-MED
outperforms RODs in terms of AUC for the range of investigated corruption rates.
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In Fig. 3.6(c) we compare the performance of GEM-MED and ROD in terms of pre-
cision vs recall for the same corruption rate as in Fig. 3.6(a) and 3.6(b). In ROD and
GEM-MED, the estimated weights ηn ∈ [0, 1] for each sample can be used to infer the
likelihood of anomalies. In particular, in GEM-MED the corresponding latent variable es-
timate η̂n is obtained at the final iteration of the Gibbs sampling procedure, as described
in Appendix Sec. 3.7.4. Following the anomaly ranking procedure in [Xu et al., 2006],
these anomaly scores are placed in ascending order. We compute the precision and recall
using this ordering by averaging over 50 runs. Precision and recall are measures that are
commonly used in data mining [Japkowicz and Shah, 2011]:

Precision =
|{n : ηn ≤ ρc} ∩ {n : (xn, yn) are anomalous}|

|{n : ηn ≤ ρc}|

Recall =
|{n : ηn ≤ ρc} ∩ {n : (xn, yn) are anomalous}|

|{n : (xn, yn) are anomalous}|
,

where the threshold ρc is a cut-off threshold that is swept over the interval [0, 1] to trace
out the precision-recall curves in Fig. 3.6(c). It is evident from the figure that the proposed
GEM-MED outlier resistant classifier has better precision-recall performance than ROD.
Other corruption rates ra lead to similar results. In Fig. 3.6(d), we compare the performance
of GEM-MED, RODs under different corruption rates in terms of the Area Under the Curve
(AUC), a commonly used measure in data mining [Japkowicz and Shah, 2011]. Similar to
Fig.3.6(c), the GEM-MED outperforms RODs in terms of AUC for the range of investigated
corruption rates.
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Figure 3.7: The classification error of GEM-MED vs. (a) learning rates ϕ, when (ψ = 0.01, τ =
0.02); (b) vs. ψ when (ϕ = 0.001, τ = 0.02) and (c) vs. τ when (ϕ = 0.001, ψ = 0.01). The
vertical dotted line in each plot separates the breakdown region (to the right) and the stable region
of misclassification performance. These threshold values do not vary significantly as the noise level
R and corruption rate ra vary over the ranges investigated.
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3.5.2 Footstep Classification

The proposed GEM-MED method was evaluated on experiments on a real data set col-
lected by the U.S. Army Research Laboratory [Huang et al., 2011, Damarla, 2012, Nguyen
et al., 2011]. This data set contains footstep signals recorded by a multisensor system,
which includes four acoustic sensors and three seismic sensors. All the sensors are well-
synchronized and operate in a natural environment, where the acoustic signal recordings
are corrupted by environmental noise and intermittent sensor failures. The task is to dis-
criminate between human-alone footsteps and human-leading-animal footsteps. We use the
signals collected via four acoustic sensors (labeled sensor 1,2,3,4) to perform the classifi-
cation. See Fig. 3.8. Note that the fourth acoustic sensor suffers from sensor failure, as
evidenced by its very noisy signal record (bottom panel of Fig. 3.8). The data set involves
84 human-alone subjects and 66 human-leading-animal subjects. Each subject contains 24

75%-overlapping sample segments to capture temporal localized signal information. We
randomly selected 25 subjects with 600 segments from each class as the training set. The
test set contains the rest of the subjects. In particular, it contains 1416 segments from
human-alone subjects and 984 segments from human-leading-animal subjects. A more
detailed description of the dataset is given in [Huang et al., 2011, Damarla, 2012].

In a preprocessing step, for each segment, the time interval with strongest signal re-
sponse is identified and signals within a fixed size of window (1.5 second) are extracted
from the background. Fig. 3.9 shows the spectrogram (dB) of human-alone footsteps
and human-leading-animal footsteps using the short-time Fourier transform [Sejdić et al.,
2009], as a function of time (second) and frequency (Hz). The majority of the energy is
concentrated in the low frequency band and the footstep periods differ between these two
classes of signals. For features, we extract a mel-frequency cepstral coefficient (MFCC,
[Mermelstein, 1976]) vector using a 50 msec. window. Only the first 13 MFCC coeffi-
cients were retained, which were experimentally determined to capture an average 90%

of the power in the associated cepstra. There are in total 150 windows for each segment,
resulting in a matrix of MFCC coefficients of size 13 × 150. We reshaped the matrix of
MFCC features to obtain a 1950 dimensional feature vector for each segment. We then
apply PCA to reduce the dimensionality from 1950 to 50, while preserving 85% of the total
power. The above procedures for preprocessing follows exactly from [Nguyen et al., 2011].

We compare the performance of kernel SVM, kernel MED, ROD for outlier parameter
ρ ∈ [0.01, 1], and GEM-MED by training on the four sensors individually as well as in
combination. For the combined sensors we used an augmented feature vector of dimension
200 via feature concatenation. We used a Gaussian RBF kernel function for the matrix
K in the Gaussian process prior for the SVM decision function f . For the optimization
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Figure 3.8: A snapshot of human-alone footstep collected by four acoustic sensors.

of GEM-MED we used a separable prior and exponentially distributed hyperparameters, as
indicated by (3.14) and (3.15). Finally, the BP-kNNG implementation of GEM was applied
on the training samples in the MFCC feature space with k = 10 nearest neighbors. The
threshold ϑ is set using the Leave-One-Out resampling strategy [Hero, 2006], where each
holdout sample corresponds to an entire segment.

Note that all classifiers were learned from a corrupted training set. Since the test set is
also corrupted we used an anomaly detection algorithm (GEM with 5% false alarm rate)
to produce a test set with few anomalies, called the nominal test set. This allows us to
report the performance of the various algorithms on both the clean test data and on the
corrupted test data. Table 3.2 shows the classification accuracy of the methods (trained
on the training set alone) applied to nominal test set and Table 3.3 shows the result on
the entire corrupted test set. For ROD only ρ = 0.02 and ρ = 0.20 are shown; it was
determined that ρ = 0.20 achieves the best performance in the range ρ ∈ [0.01, 1]. In Table
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Table 3.2: Classification accuracy on nominal (clean) test set for footstep experiment with differ-
ent sensor combinations, with the best performance shown in bold.

Classification Accuracy (%) mean ± standard error

sensor
no.

kernel SVM
kernel
MED

ROD-0.02 ROD-0.2
GEM +

SVM
GEM-MED

1 71.2± 8.2 71.1± 5.3 73.7± 3.7 76.0± 2.5 72.5± 4.2 78.4± 3.3

2 60.8± 12.5 62.3± 10.2 71.5± 7.3 76.5± 5.3 70.3± 2.5 82.1± 3.1

3 60.5± 14.2 60.0± 13.1 63.2± 5.4 67.6± 4.2 56.5± 3.5 66.8± 4.5

4 59.6± 10.1 58.4± 8.2 71.8± 7.2 73.2± 4.2 76.5± 2.7 80.1± 3.1

1,2,3,4 75.9± 7.5 78.6± 5.1 79.2± 3.7 79.8± 2.5 75.2± 3.3 84.0± 2.3

Table 3.3: Classification accuracy on the entire (corrupted) test set for footstep experiment with
different sensor combinations, with the best performance shown in bold.

Classification Accuracy (%) mean ± standard error

sensor
no.

kernel SVM
kernel
MED

ROD-0.02 ROD-0.2
GEM +

SVM
GEM-MED

1 65.2± 10.6 65.8± 10.2 68.5± 8.3 70.0± 6.8 70.2± 5.5 72.5± 4.8

2 54.9± 11.8 55.2± 11.0 63.2± 9.8 68.1± 7.5 68.5± 7.8 76.3± 3.9

3 50.7± 10.0 52.0± 10.5 56.8± 8.5 56.9± 7.3 56.5± 3.5 60.1± 5.3

4 57.0± 12.3 57.5± 12.1 69.6± 9.2 69.8± 5.1 70.2± 4.2 75.0± 4.0

1,2,3,4 70.8± 8.8 71.0± 8.5 73.6± 7.2 74.8± 6.9 75.1± 3.3 76.8± 2.5

3.2, it is seen that the GEM-MED method outperforms the ROD-ρ algorithms for all values
of ρ as a function of classification accuracy when individual sensors 1,2,4 are used. Notice
that when used alone neither kernel MED nor kernel SVM is resistant to the sensor failures
in the training set, which explains their poor accuracy in sensor 3 and sensor 4. Also in the
column GEM+MED of Table 3.2, we first trained a GEM anomaly detector to screen out
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Table 3.4: Anomaly detection accuracy with different sensors, with the best performance shown in
bold.

Anomaly Detection Accuracy (%) mean ± standard error

sensor no. ROD-0.02 ROD-0.2 GEM-MED

1 30.2± 1.3 59.0± 3.5 70.5± 1.3

2 23.5± 2.6 63.5± 2.8 63.4± 2.5

3 5.3± 1.4 48.1± 3.3 72.8± 1.5

4 22.8± 3.2 65.2± 4.2 88.1± 2.1

1, 2, 3, 4 38.5± 6.3 63.3± 5.5 88.5± 4.1

5% of the noisy training set, then trained a MED classifier on the rest of the training data.
Note that GEM-MED learns both the detector and the classifier jointly on noisy training
data. Table 3.2 shows that the two stage training approach has poor performance in highly
corrupted sensors 3 and 4. This is due to the fact that when the GEM detector is learned
without inferring the classification margin, it cannot effectively limit the negative influence
of those corrupted samples that are close to the class boundary. In Table 3.3, we show the
classification accuracy when both the nominal and anomalous test samples are involved in
evaluation. We observe a performance degradation for all methods due to the irregularity of
the outliers in the test set. In spite of this, the GEM-MED maintains a superior performance
over all other methods. This reflects the superiority of the proposed joint classification and
detection approach of GEM-MED as compared with GEM + MED approach.

Table 3.4 compares the anomaly detection accuracies on both training and test data for
ROD and GEM-MED, where the accuracy is computed relative to ground truth anomalies.
Note that GEM-MED has significant improvement in accuracy over ROD when trained in-
dividually on sensors 1,3,4, respectively, and when trained on all of the combined sensors.
When trained on sensor 2 alone, the accuracies of GEM-MED and ROD-0.2 are essentially
equivalent. In sensor 2 the anomalies appear to occur in concentrated bursts and we con-
jecture that that a GEM-MED model that accounts for clustered and dependent anomalies
may be able to do better. Such an extension is left to future work.
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3.6 Conclusion

In this chapter we proposed a unified GEM-MED approach for anomaly-resistant classifica-
tion. We demonstrated its performance advantages in terms of both classification accuracy
and detection rate on a simulated data set and on a real footstep data set, as compared to
an anomaly-blind Ramp-Loss-based classification method (ROD). Further work could in-
clude generalization to the setting of multiple sensor types where anomalies exist in both
training and test sets.
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3.7 Appendices

3.7.1 Derivation of theorem 3.4.1

Proof: The proof of the convexity of the problem can be seen in chapter 12 of the standard
textbook [Jaakkola et al., 1999], since the problem is with respect to the distribution q. The
uniqueness of the solution follows directly from the fact that the problem is convex.

The Lagrangian function is given as

L(q,λ,µ,ν)

= Eq [log q − log p0] +
∑
n∈T

λnEq [ηnLC ]−
∑

z∈{±1}

µzEq

[
L̃D,z

]

−
∑

z∈{±1}

κzEq

[ ∑
n:yn=z

ηn/ |T | − β̂

]

with dual variables λ = {λn, n ∈ T} � 0, µ = (µz, z ∈ ±1) � 0 and ν ≥ 0.
Then the result follows directly from solving a system of equations according to the

KKT condition.
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3.7.2 Derivation of theorem 3.4.2

Proof: According to [Jaakkola et al., 1999], the dual optimization is given as

max
λ,µ,κ≥0

− logZ(λ,µ,κ)

= − log
∏
n∈T

∫
exp (−c(1− ξn)− λnξn) dξn

×
∫ ∫

exp

(
−1

2
fTK−1f +

∑
n

λnηnynfn

)
df

× p0(η) exp

− ∑
z∈{±1}

µz
∑
n:z

ηndn +
∑

z∈{±1}

µzγ̂z

+
∑

z∈{±1}

κz
∑
n:z

ηn +
∑

z∈{±1}

κzβ̂

 dη

=
∑
n∈T

(λn + log (1− λn/c))−
∑

z∈{±1}

µzγ̂z − (
∑

κz)β̂

− log

∫
exp

(
1

2
Q(K, (λ� η � y)) + ηT (−µ⊗ d+ κ⊗ e)

)
× p0(η)dη

where

Q(K,x) = xTKx

Q(K, (λ� η)) := (λ� η)T K (λ� η)

= λT
(
K � (ηηT )

)
λ

= Q(K(η),λ).

3.7.3 Derivation of (3.21), (3.22)

Proof: The expression for q(Θ) is given as

q(Θ) ∝ exp

(
−1

2
fTK−1f +

∑
n

λnηnynfn

)

× p0(η) exp

− ∑
z∈{±1}

µz
∑
n:z

ηndn +
∑

z∈{±1}

κz
∑
n:z

ηn
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×
∏
n∈T

exp (−c+ (c− λn)ξn)

= q(f,η)
∏
n

q(ξn)

Given all ηn, n ∈ T ,

q(f |η) ∝ exp

(
−1

2
fTK−1f +

∑
n

(λnηn)fn

)

= exp

(
−1

2
(f −K (λ� η � y))T K−1 (f −K (λ� η � y))

)
= N (K (λ� η � y) ,K).

On the other hand, given f , η = (ηn, n ∈ T ) are fully separated in above formula, therefore
q(η|f) =

∏
n q(ηn|f).

3.7.4 Implementation of Gibbs sampler

We implement a Gibbs sampler [Robert and Casella, 2013] to estimate Eq(f,η) [G(f,η)],
where G is a general function of f and η, as expressed in (3.23), (3.24), (3.25). The
following procedure is applied iteratively

• Initialization: Set η̂0 = [1, . . . , 1]T and set a fixed dual parameter (λ,µ,κ). Let
G0 = 0.

• For each t = 1, 2, . . . , TG or until convergence

1. Given η̂t−1 = (η̂n,t−1), generate decision value ft(xn), n = 1, . . . , N according
to the Gaussian process with mean function f̂t(·) =

∑
n∈T λnη̂n,t−1ynK(·,xn).

2. Given {ft(xn)}1≤n≤N , for r = 1, . . . , Nr,

(a) generate latent variables η(r)
n,t ∈ {0, 1} according to the Bernoulli distribu-

tion with parameter as in (3.21) for each n independently.

3. Compute the sample mean of η̂n,t = 1
Nr

∑Nr
r=1 η

(r)
n,t ∈ [0, 1], n = 1, . . . , N . Let

η̂t = (η̂n,t)1≤n≤N .

4. Evaluate Gt via Gt = t−1
t
Gt−1 + 1

t
G(f̂t, η̂t)

• Output the approximate expectation Êq(f,η) [G(f,η)] = GT as well as the mean esti-
mate η̂T and f̂T (xn), 1 ≤ n ≤ N when the Gibbs chain process becomes stationary.
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(a)

(b)

Figure 3.9: The power spectrogram (dB) vs. time (sec.) and frequency (Hz.) for a human-alone
footstep (a) and a human-leading-animal footstep (b). Observe that the period of periodic footstep
is a discriminative feature that separates these two signals.

53



CHAPTER 4

Multi-view Learning on Statistical Manifold via
Stochastic Consensus Constraints

4.1 Introduction

In many applications, data are available from multiple sources (views) for which to train
an object multiclass classifier. However, multi-view samples are often not fully annotated
leading to degradation of classifier performance. For example, crowdsourcing [Whitla,
2009] has been used to annotate data in applications ranging from network analysis [Xiong
and Svensson, 2002], video surveillance [Snoek and Worring, 2005] and multimedia re-
trieval [Snoek et al., 2010] For other applications, data are collected from less controlled
environments like mobile devices [Satyanarayanan, 2011], open-source databases [Kush-
merick, 1999] or public webpages [Craven et al., 2000]. Such approaches can lead to
problems of missing labels [Mann and McCallum, 2010], of noise corruptions [Xie et al.,
2014] and of multi-view inconsistency [Christoudias et al., 2008, Yoon et al., 2014] These
problems can be formulated as semi-supervised multi-view learning problems with weakly-

labeled data [Ivanov et al., 2001, Bockhorst and Craven, 2002, Bergamo and Torresani,
2010]. Data are called weakly-labeled when their class labels are provided according to
conditional probability distributions. In other words, true label instances are only proba-
bilistically linked to their associated multi-view sample instances. In this chapter, our goal

is to perform weakly-labeled multi-view classification in the presence of such multi-view
inconsistency.

Conventional multi-view learning methods fall into two categories: feature fusion (early

fusion) and decision fusion (late fusion). In the former case, the goal of the algorithm is
to find a joint feature representation of multiple views for classifications [Hardoon et al.,
2004, Kakade and Foster, 2007, Ngiam et al., 2011], and in the latter case, multiple mod-
els are learned independently within each view and their outputs are combined to form a
final classification result [Yager, 1987, Collins and Singer, 1999, Klein, 2004]. When noise

54



corruption and multi-view inconsistency exist, neither of these two schemes works well.
Feature fusion approaches are known to be sensitive to the noise in a single view [Hardoon
et al., 2004, Pan and Yang, 2010, Ngiam et al., 2011]. Decision fusion approaches, on the
other hand, have difficulty handling the multi-view inconsistency problem, since the partial
observations from single views may reveal inconsistent or even contradictory information,
causing unreliable final decisions [Christoudias et al., 2008]. This chapter provides an al-
ternative model fusion approach, where a consensus view is learned by fusing probabilistic
models from different views. The predictions of all single view models are enforced to
agree in the consensus view. Fig 4.1 illustrates the difference between the two conven-
tional methods and our proposed method. Note that for the case of Gaussian features with
unknown means and known covariances, all three cases give the identical result, because
the posterior distribution of a Gaussian random variable X given another Gaussian random
variable Y is itself Gaussian with mean parameter equal to E [X|Y ], which is linear in Y .

Figure 4.1: Illustration of multi-view learning approaches for classifying the multi-class label y
given multi-view data v(1), v(2) with two views. Early multi-view fusion (a) combines the views into
a composite view s, e.g., using algebraic combining rules, from which a posterior probability p(y|s)
is determined and a MAP estimator ŷ =argmaxyp(y|s) is derived. High level multi-view fusion (b)
fuses single view MAP estimates ŷ(1) and ŷ(2), obtained by maximizing the respective single view
posteriors p(y|v(1)) and p(y|v(1)). The proposed consensus-based multi-view maximum entropy
discrimination (COM-MED) method (c) forms a consensus estimate q(y|v(1), v(2)) of the posterior
distribution given pairs of multi-views from which a multi-view MAP estimator ŷ is derived.

In this chapter, we assume that data in each view come in the form of probability dis-
tributions or histograms. Such data representations are widely used in database index-
ing [Agarwal et al., 2009], image and action recognition [Lowe, 2004, Scovanner et al.,
2007], gene micro-array expression [Yang and Speed, 2002], manifold learning [Carter
et al., 2009] and classification [Muandet et al., 2012]. In these tasks, a histogram or an em-
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Table 4.1: The comparison of multi-view learning methods (Bold for the proposed method,
√

for
yes and × for no.)

fusion
category parsimony1 partially-

labeled
noise
tolerance

multi-view
inconsis-
tency

# of
views

CCA [Hardoon
et al., 2004]

feature ×
√

× × 2

Bi-DAE
[Ngiam et al.,
2011]

feature ×
√

× × 2

Bayes-Fusion decision
√

×
√

× ≥ 2

Co-Boosting
[Collins and
Singer, 1999]

decision
√ √

× × ≥ 2

Co-training
[Blum and
Mitchell, 1998]

consens.
√ √ √

× 2

Bayes Co-trn
[Yu et al.,
2007]

consens. ×
√ √ √

≥ 2

SVM-2K
[Farquhar
et al., 2005]

consens. ×
√

× × 2

MV-MED
[Sun and Chao,
2013]

consens.
√ √

× × 2

COM-MED consens.
√ √ √ √

≥ 2

pirical probability distribution function (p.d.f.) provides an efficient low-dimensional non-

Euclidean representation as compared to the original vectorial representation. For instance,
in [Ivanov et al., 2001], a p.d.f. is provided by crowd-sourcing, indicating the reliability
of each sample. In this paper, we propose to learn a set of parametric conditional p.d.f.
representations for multi-view data simultaneously as well as a consensus-view model on
the space of all parametric conditional p.d.f.s, i.e., a statistical manifold [Amari and Na-
gaoka, 2007]. These learned p.d.f.s can further be used to construct local classifiers, while
the consensus-view model maintains the shared information among multiple views.

A key contribution of this chapter is a multi-view learning framework on statistical
manifolds, namely the COM-MED, using stochastic consensus-based regularization. This

1Parsimony means that there are few tuning parameters.
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framework extends to the conventional co-regularlization method [Sindhwani et al., 2005,
Farquhar et al., 2005, Kakade and Foster, 2007, Sindhwani and Rosenberg, 2008, Sun and
Chao, 2013] on Euclidean space to non-Euclidean statistical manifolds. The proposed
stochastic consensus measure is defined using information-theoretic divergences, such as
the Kullback-Leibler divergence (KL-divergence), the Bhattacharyya distance [Kailath,
1967] or the α-divergence [Hero et al., 2001]. According to [Hero et al., 2001, Carter et al.,
2009], these divergence measures take into account the intrinsic non-Euclidean geometry
of the statistical manifold [Amari and Nagaoka, 2007] and are robust to noise corruption
in single views. The COM-MED is based on the well-established Maximum Entropy Dis-
crimination (MED) approach proposed by Jaakkola et al [Jaakkola et al., 1999]. MED
performs Bayesian large-margin classification via the maximum entropy principle and it
subsumes the support vector machine (SVM) as a special case. Note that Sun et al. [Sun
and Chao, 2013] have proposed a multi-view version of MED recently, referred as MV-
MED, where they imposed a shared-margin constraint over all view-specific discriminate
functions. Our method does not rely on this heuristic constraint, but directly projects onto
the underlying statistical manifold.

4.1.1 A Comparison of Multi-view Learning Methods

The proposed Consensus-based Multi-view Maximum Entropy Discrimination (COM-MED)
method can be compared qualitatively with several popular multi-view learning methods
[Table 4.1]. These include early fusion methods such as Canonical Correlation Analy-
sis (CCA [Hardoon et al., 2004, Kakade and Foster, 2007]) and Bi-modal Deep Autoen-
coder (Bi-DAE) [Ngiam et al., 2011] methods, late fusion methods such as Bayesian fusion
[Klein, 2004] and Co-Boosting [Collins and Singer, 1999], and the co-regularization meth-
ods [Sindhwani et al., 2005, Sindhwani and Rosenberg, 2008] (abbreviated as consens.),
such as Co-training [Blum and Mitchell, 1998], Bayesian Co-training [Yu et al., 2007] and
SVM-2K [Farquhar et al., 2005] algorithms. In Table 4.1 the comparison criteria include
parsimony (few model parameters), the capability to handle noise corruption and multi-
view inconsistency, the accommodation of partially-labeled data and the applicability to
more than two views. Feature fusion methods such as the CCA and Bi-DAE are both sensi-
tive to noise in each view and suffer from the problem of noise propagation across different
views. The Bayesian methods have high sample complexity due to the high dimension-
ality of joint distribution. The consensus-based methods such as Co-training, Bayesian
Co-training, SVM-2K and our proposed method are less sensitive to local noise and re-
quires less parameters in modeling since we learn a predictive distribution on each single
view independently. As shown in Table 4.1, the COM-MED method enjoys all of these
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advantages. As will seen in Section 4.4, COM-MED scales well when the number of views
increases, since it can learn each single view predictive distribution in parallel given a
consensus-view distribution.

We quantitatively demonstrate the superior performance of the COM-MED over these
methods in Section 4.5 on a collection of simulated data sets and two publicly available
real data sets, the WebKB dataset for web-page classification [Craven et al., 2000] and the
Internet Ads dataset in the UCI Machine Learning Repository [Lichman, 2013]. We also
demonstrate COM-MED on a multi-sensor data set containing human-alone and human-
leading-animal footsteps, collected in the field by an acoustic sensor array [Damarla et al.,
2011, Nguyen et al., 2011, Damarla, 2012].

What follows is a brief outline of the chapter: In Section 4.2.1, we review the co-
regularization method in the Euclidean space. The proposed COM-MED method as a co-
regularization method on statistical manifold is presented in Section 4.2.3. In Section 4.3,
we analyze the robustness of the proposed stochastic consensus measure under noise per-
turbations. A variational Expectation-Maximization (EM) based algorithm is introduced
in Section 4.4. Experimental results based on synthetic data and real data are presented in
Section 4.5. Our conclusions are given in Section 4.6.

4.2 Problem formulation

Consider a multi-view domain X 1 × . . .X V × Y := X × Y , where X i ⊂ Rdi is the
sample domain of view i, X is the joint sample domain and Y is the shared multiclass label
domain and V is the number of views. Let xn := [x1

n, . . . ,x
V
n ] be a multi-view sample in

X . Assume that xn is associated with a label yn for n ∈ L, the set of indices of labeled
samples, but that there is no label for xn for n ∈ U , the set of indices of unlabeled samples.
For each view i, there is a mapping xi 7→ pi(·|xi) that associates the sample xi with a
conditional p.d.f. pi(·|xi) : Y → R, i.e., the associated posterior probability. Denote
D[V ] := {xn}n∈L∪U as a set of the N independent multi-view sample points, including
|L| labeled points and |U | unlabeled points. Note that for labeled points, the posterior
probability is a point mass at yn, i.e., pi(y|xin) := δy=yn , n ∈ L. A slice of D[V ] within
view i is denoted as Di := {xin}.

Consider a parametric family of p.d.f.s p, referred asM, i.e.,

M := {pθ := p(y;θ), y ∈ Y | θ ∈ Θ} ,

where θ is a parameterization of the p.d.f. pθ ∈ M, and Θ ⊂ Rk is the parameter set. The
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setM is called a statistical manifold on domain Y [Amari and Nagaoka, 2007]. Denote
pθin := pi(y|θi(xin)) ∈ M, for n ∈ L ∪ U , 1 ≤ i ≤ V as the parameterized conditional
p.d.f. with parameter θin := θi(x

i
n) ∈ Θ. The notation emphasizes the dependence of a

parameter θ on the associated point xin.
In the following, we first consider a semi-supervised multi-view learning model on the

Euclidean feature space X .

4.2.1 Co-regularization on Euclidean space

The co-regularization methods for semi-supervised multi-view learning were proposed in
[Farquhar et al., 2005, Sindhwani et al., 2005, Sindhwani and Rosenberg, 2008]. These
methods learn multiple view-specific discriminate functions fi : X i → R jointly, where
each fi ∈ Hi, the Reproducing Kernel Hilbert Space (RKHS) associated with a kernel
Ki : Xi × Xi → R+ for 1 ≤ i ≤ V . In the case of V = 2, they find an optimal pair of
{f1, f2} that minimizes the sum of the empirical loss functions over all views

2∑
i=1

{
Ên∈L

[
Li(yn,xin, fi)

]
+ ‖fi‖2

Hi

}
under a consensus constraint

Êm∈U

[∥∥f1(x1
m)− f2(x2

m)
∥∥2

2

]
≤ ρ, (4.1)

where Ên∈L is the empirical expectation over L, ‖·‖Hi is a norm defined in Hi, ρ > 0 is a
threshold and Li : Y × X i ×Hi → R+ ∪ {0} defines a classification loss function within
view i, for i = 1, 2. The prediction for a two-view point x = [x1,x2] is then made from
the output of an averaged discriminate function

g(x) =
1

2

2∑
i=1

fi(x
i).

In [Dasgupta et al., 2002], it is shown that a high probability of agreement between out-
puts of f1 and f2 guarantees that there exists a polynomial time algorithm to learn g(·) with
small generalization error. The underling principle is referred as the consensus principle

[Xu et al., 2013]. In other words, even if each function fi is biased, they could learn from
each other in order to reach a general agreement and the consensus of opinion will reveal
the ground truth.

In [Yu et al., 2007], the consensus constraint in (4.1) is extended to cover the multi-view
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case V > 2, where each function fi(·) is compared with a common function g(·) so that

g(·) := arg min
h:X→R

Êm∈U

[
V∑
i=1

∥∥h(xm)− fi(xim)
∥∥2

2

]
,

which gives g(·) = 1
V

∑V
i=1 fi(·) if U is sufficiently large.

4.2.2 Measure Label Inconsistency on Statistical Manifold via Stochas-
tic Consensus Constraint

In the presence of noise corruption and multi-view label inconsistency, however, the use of
a `2-distance-based consensus measure becomes unsatisfactory. First, by comparing their
absolute difference, it does not take into account the reliability of the prediction of each fi.
In other word, insisting upon an agreement between a high-confidence classifier and a low-
confidence, one will increase the bias for the overall system. Moreover, as demonstrated in
[Christoudias et al., 2008], the co-regularization method using constraint (4.1) is sensitive
to inconsistency among views.

In this chapter, we take into account of the effect of noise corruption and multi-view la-
bel inconsistency as a perturbation of posterior distribution pi(y|θi(xin)) over the statistical
manifoldM. A stochastic consensus constraint using an information-theoretic divergence
D (· ‖ ·) : M ×M → R+ ∪ {0} is proposed to address this noise effect [Amari and
Nagaoka, 2007]. Examples of D (· ‖ ·) include the KL-divergence [Kullback and Leibler,
1951],

D
(
pθin ‖ pθjn

)
:= KL

(
pθin ‖ pθjn

)
=
∑
y

pi(y|θin) log

(
pi(y|θin)

pj(y|θjn)

)
,

and the Bhattacharyya distance [Bhattachayya, 1943]

B
(
pθin ‖ pθjn

)
= −2 log

∑
y

√
pi(y|θin)pj(y|θjn)

The stochastic consensus constraint is then defined as

Êm∈U

[
V∑
i=1

D
(
q(y|xm) ‖ pi(y|θim)

)]
≤ ρ, (4.2)
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where q(y|xm) ∈ M is a common p.d.f. shared among all views, also referred as the
consensus-view p.d.f. Here ρ > 0 is a fixed threshold.

Similar to the role of `2-distance in Euclidean space, the divergenceD (pθ′ ‖ pθ) defines
a Riemannian metric [Amari and Nagaoka, 2007] on the manifoldM in a local neighbor-
hood of pθ using the Fisher information matrix J(θ) :=

[
−E

[
∂2

∂θs∂θt
log p(y;θ)

]]
. Indeed,

J(θ) is the Riemannian metric tensor associated withM, and any f -divergence is locally
equivalent to the it in the sense that:

KL (pθ′ ‖ pθ) =
1

2
∆θTJ(θ)∆θ + o(‖∆θ‖2),

where ∆θ := θ′−θ [Carter et al., 2011]. It is this local equivalence to a Riemannian metric
over the space of posterior distributions that is the primary motivation for the proposed
consensus constraint (4.2).

The consensus-view p.d.f. q(y|xm) is defined as

q(y|·) := arg min
h(y|·)∈M

Êm∈U

[
V∑
i=1

D
(
h(y|xm) ‖ pi(y|θim)

)]
. (4.3)

In the case of KL-divergence in (4.2), according to Appendix 4.8.1, log q(y|xn) = 1
V

∑V
i=1 log pi(y|θin)+

c(x), where c(.) is a function of the multiview data xn that makes q(y|x) a properly nor-
malized distribution over y. Fig. 4.2 illustrates a region defined by the consensus constraint
in (4.2), whenM is the space of all finite dimensional histograms, which is the upper hemi-
sphere shown in Fig 4.2, and there are 5 views. In this case the consensus constraint (4.2) is
a hyperspherical simplex (shown in yellow) and the consensus view is the centroid denoted
by q.

4.2.3 Co-regularization on Statistical Manifold via COM-MED

Besides the stochastic constraint in (4.2), we need to reformulate the learning task in each
single view. Note that each p.d.f. pi(y|θi(xin)), n ∈ L ∪ U, 1 ≤ i ≤ V, is indexed by the
parameter function θi(xin). Our goal for each view is to learn the parameters θin := θi(x

i
n),

for n ∈ L ∪ U, 1 ≤ i ≤ V. This is equivalent to learn parameterizations on the manifold
M.

The Maximum Entropy Discrimination (MED), proposed by Jaakkola et al. [Jaakkola
et al., 1999], provides a flexible way to achieve such a goal in each view. Let Ψi be the
set of all unknown model parameters in view i, including

{
θin, n ∈ L ∪ U

}
. Assume that

all these parameters in Ψi are random with a prior distribution p0(Ψi). The MED learns a
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Figure 4.2: The illustration of a region defined by the consensus constraint in (4.2), when M
is the space of all finite dimensional histograms, which is the upper hemisphere shown above, and
there are 5 views. In this case the consensus constraint (4.2) is a hyperspherical simplex (shown in
yellow) and the consensus view is the centroid denoted by q.

posterior distribution q(Ψi) := q(Ψi|Di) that minimizes the KL-divergence

KL (q(Ψi|Di) ‖ p0(Ψi)) =

∫
log

(
q(Ψi|Di)
p0(Ψi)

)
q(Ψi|Di)dΨi (4.4)

subject to a set of constraints on the classification loss∫
Li(yn, pθin ; Ψi)q(Ψi|Di)dΨi ≤ 0, n ∈ L, (4.5)

where the loss function Li : Y ×M → R+ ∪ {0}, for instance, is defined to be a large-
margin loss in the SVM binary classification, i.e.,

Li(yn, pθin ; Ψi) := ξin − log

(
pi(y = yn|θin)

pi(y 6= yn|θin)

)
, (4.6)

with a set of additional non-negative slack variables {ξin}n∈L defined in Ψi.
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Figure 4.3: The comparison for two-view-consensus measures. (a) corresponds to the pro-
posed stochastic consensus measure in (4.2); (b) corresponds to the `2-distance measure in the
co-regularization in RKHS (4.1); (c) corresponds to the exp-distance measure in the Co-Boosting
[Collins and Singer., 1999]. The red dash-line in the diagonal for (p1, p2) is the consensus line,
when p1 = p2. Note that the curvature of the stochastic consensus measure around the consen-
sus line is smaller than the rest of two measures, indicating its robustness in the presence of noise
perturbation and multi-view inconsistency.
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Combing (4.2), (4.4) and (4.5), we introduce the Consensus-based Multi-view Maxi-

mum Entropy Discrimination (COM-MED) method as a co-regularization method onM,
which solves

min
q(Ψ1),...,

q(ΨV ),q(ρ)∈∆

V∑
i=1

KL (q(Ψi) ‖ p0(Ψi)) +KL (q(ρ) ‖ p0(ρ)) (4.7)

s.t.
∫
Li(yn, pθin ; Ψi)q(Ψi)dΨi ≤ 0, n ∈ L, 1 ≤ i ≤ V,

Êm∈U

[
V∑
i=1

∫ [
D
(
q(y|xm) ‖ pθim

)
− ρ
]
q(Ψi)q(ρ)dΨidρ

]
≤ 0, (4.8)

where the threshold ρ > 0 is random with prior distribution p0(ρ), ∆ is the probability
simplex and the consensus-view p.d.f. q(y|·) is given from (4.3). For a test sample x =

[x1, . . . ,xV ], the predicted label is given according to the Maximum a posteriori (MAP)
rule

ŷ = arg max
y∈Y

log q(y|x).

From (4.7), we see that the COM-MED method solves V learning tasks via MED
jointly, using the expectation of the stochastic consensus constraint in (4.2). Note that
the optimization problem (4.7) can be decoupled into V independent subproblems, given
a fixed consensus-view p.d.f. q(y|x) on the unlabeled samples. As seen in (4.3), q is the
centroid of {pθi}

V
i=1, which is in turn determined by the results of all subproblems in each

view. This motivates a solution method based on the variational Expectation-Maximization

(EM) [Ganchev et al., 2010, Zhu et al., 2011], which will be discussed in Section 4.4. In
the following section, we analyze the behavior of the stochastic consensus constraint (4.2)
under small perturbations of pi.

4.3 Analysis of Consensus Constraints

For simplicity, let V = 2 and we use the KL-divergence KL
(
q ‖ pθim

)
in (4.2). Consider

a perturbation of pθi onM due to the noise corruption in xi, resulting in pθi+∆θi ∈ M.
As discussed in Section 4.2.2, since the consensus-view p.d.f. between pθ1 and pθ2 is
proportional to the average of two p.d.f.s in the log-space, we denote it as q(θ1,θ2).

Substituting log q(θ1,θ2) ∝ 1
2
(log pθ1 + log pθ2) to the stochastic constraint (4.2), we

have
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2∑
i=1

KL
(
q(θ1,θ2) ‖ pθi

)
= −2 log

∑
y

√
p1(y|θ1)p2(y|θ2) + C(θ1,θ2)

= B (pθ1 ‖ pθ2) + C(θ1,θ2),

which is proportional to the Bhattacharyya distance between p.d.f.s pθ1 and pθ2 . Note that
B (pθ1 ‖ pθ2) = 0, when a consensus is reached, i.e., θ2 = θ1.

Fig 4.3 shows the consensus measure as a function of the two single-view prediction
values. We compare the stochastic consensus measure in Fig 4.3 (a) with the `2-distance
measure (4.1) in Fig 4.3 (b) and the exp-distance measure for Co-Boosting [Collins and
Singer, 1999] in Fig 4.3 (c). Note that the stochastic consensus measure grows slowly
as compared to the other two measures when ∆θ1 is large. This shows its robustness
with respect to anomalies and noise corruptions. Moreover, in the neighborhood of the
consensus line

{
(θ1,θ2)|θ1 = θ2

}
, the curvature of the stochastic consensus measure is

determined adaptively via the Fisher information matrix at θ1, as compared to a constant
curvature for both the `2-distance and the exp-distance measures. In terms of this, for a poor
estimator of θ1 with small J(θ1) , the consensus constraint (4.2) becomes loose, reducing
the negative impact of the inconsistency upon the whole system.

4.4 Algorithm

Note that given q ∈ M, the primal problem in (4.7) is convex in each view. We can solve
them view-by-view using the Karush-Kuhn-Tucker (KKT) conditions. On the other hand,
given all {pθi}

V
i=1 ∈ M, q ∈ M lies in the centroid of the region spanned by {pθi}

V
i=1

onM. A variational EM-based algorithm [Ganchev et al., 2010, Zhu et al., 2011] can be
derived to solve (4.7) under the following model assumptions:

1. Assume binary classifications, i.e., Y = 2, and the logistic posterior distribution
pi(y|θin) is

pi(y = 1|θin) =
1

1 + exp (−θin)
,

pi(y = −1|θin) =
1

1 + exp (θin)
(4.9)

for i = 1, . . . , V . θin ∈ Θ ⊂ R.

2. In each view i, assume that (θin)n=1,... follows a Gaussian random process [Ras-
mussen and Williams, 2006] onX i , i.e., a positive-definite covariance kernelKi(x

i
m,x

i
n)
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is defined for all xim,x
i
n ∈ X i and for any N ≥ 1,

(θin)Nn=1 ∼ N (0,Ki), (4.10)

where Ki = [Ki(x
i
m,x

i
n)]Nm,n=1 is a covariance matrix. An example is the Gaussian

RBF kernel coveriance function Ki(x
i
m,x

i
n) := exp

(
−γi ‖xim − xin‖

2
2

)
.

3. Assume a separable prior, as commonly used in Bayesian inference [Jaakkola et al.,
1999, Zhu et al., 2014]

p0(Ψi) = p0((θin)Nn=1)
∏
n∈L

p0(ξin), i = 1, . . . , V. (4.11)

4. Assume that the hyperparameters {ξin} and ρ are exponential random variables. For
1 ≤ i ≤ V ,

p0(ξin) ∝ exp(−c(i)
ξ (1− ξin)), ξin ∈ (−∞, 1], n ∈ L;

p0(ρ) ∝ exp(−cρρ), ρ ∈ [0,∞), (4.12)

where {c(i)
ξ }Vi=1 and cρ are parameters.

4.4.1 Solving the Subproblem in Each View, given q ∈M
Given q ∈ M, the stochastic consensus constraint function in (4.8) can be decoupled into
V sub-constraint functions. For view i, the sub-constraint function is∫

Êm∈U
[
KL

(
q(y|xm) ‖ pi(y|θim)

)]
q(Ψi)dΨi

∝ −
∫
Êm∈U

[
Eq(y|xm)

[
log pi(y|θim)

]]
q(Ψi)dΨi, (4.13)

where the integrand is the cross-entropy loss [De Boer et al., 2005]. From (4.22) in Ap-
pendix 4.8.2, we see that given a reference θim from the previous iteration, the cross-entropy
loss has second-order approximation

(4.13) = H(θim)− 1

2
d(q, θim)θim +

1

8
Ri
m

(
θim − θim

)2

+ o(
∥∥∥θim − θim∥∥∥3

), (4.14)

where H(θim) is the entropy of p
θ
i
m

, dm := d(q, θim) = (Eq [y]− Ep
θ
i
m

[y])) is the averaged
difference between the prediction by the consensus-view p.d.f q(y|xm) and that by the
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single view p.d.f. pi(y|θim). And Ri
m := [1− |Ep

θ
i
m

[y] |2] → 0, for |Ep
θ
i
m

[y] | → 1. Using
this approximation, we can solve the primal problem in (4.7) for each view i. The result is
given below.

Theorem 4.4.1 Given q ∈M, the threshold ρ > 0 and the reference parameters {θim}m∈U ,

the primal problem in (4.7) in each view i is convex with respect to the unknown distribution

q(Ψi) and the unique optimal solution is a generalized Gibbs distribution with the density:

q(dΨi) =
1

Z(λi, µi)
p0(dΨi) exp

(
−E(Ψi;λ

i, µi)
)
, (4.15)

where

E(Ψi;λ
i, µi) := E

({
θin
}N
n=1

,
{
ξin
}
n∈L ;

{
λin
}
n∈L , µ

i
)

=
∑
n∈L

λinLi(yn, ξin, θin)

− µi
∑
m∈U

(
1

2
d(q, θim)θim −

1

8
Ri
m((θim)2 − 2θimθ

i
m)

)
,

with Ψi = {θin}
N
n=1 ∪ {ξin}n∈L and where the dual variables λi = (λin)n∈L and µi are all

nonnegative. Z(λi, µi) is the partition function, which is given as

Z(λi, µi) =

∫
p0(dΨi) exp

(
−E(Ψi;λ

i, µi)
)
. (4.16)

We use the large-margin classification loss (4.6) in Li(yn, ξin, θin). See the Appendix 4.8.3

for a detailed derivation.

Since the subproblem in each view i is convex, we can equivalently solve a dual version
of the optimization problem (4.7). In fact, we have the following result:

Theorem 4.4.2 Under assumptions (4.9)-(4.12), the dual optimization problem in view i is

given as

max
λi�0,µi≥0

∑
n∈L

(
λin + log

(
1− λin/c

(i)
ξ

))
+ (µi + log(1− µi/cρ))

− 1

2

[
(λi)T , µi

]
AT
i K̃iAi

[
(λi)T , µi

]T
, (4.17)

where K̃i := Ki−KiQ
(
αD−1

Ri
+ (Ki)uu

)−1
QTKi,

[
(λi)T , µi

]T ∈ R|L|+1 are the non-

negative dual variables. di := (dim)m∈U ,R
i := (Ri

m)m∈U are defined in (4.14), ∆yi :=

(di/2 +Ri � θi/4) ∈ R|U |, and � is the point-wise matrix product.
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Ai :=

[
diag (y) 0

0 ∆yi

]
∈ RN×(|L|+1), Q :=

[
0

I |U |

]
∈ RN×|U |, (4.18)

DRi := 1
4
diag (Ri

m)m∈U = diag
([
J(θ

i
)
])

is the diagonal of the Fisher information

matrix at θ
i

and α > 0 is a constant shrinkage factor.

See Appendix 4.8.4 for detailed derivations. Note that the dual optimization problem (4.17)
can be solved by any SVM solver, such as the LibSVM [Chang and Lin, 2011]. We sum-
marize the result as follows,

Theorem 4.4.3 The primal solution q(Ψi), i = 1, . . . , V satisfies the following::

1. The posterior distribution q(Ψi) is factorized as q(Ψi) = q(θi1, . . . , θ
i
N)
∏

n q(ξ
i
n)q(ρ).

2. The conditional mean Eq(Ψi)
[
θis|xis,θ

i
,Di
]

is given as

∑
n∈L

ynλ
i
nK̃i(x

i
n,x

i
s) + µi

∑
m∈U

∆ȳimK̃i(x
i
m,x

i
s),

where K̃i(·, ·) is the modified kernel function in (4.17) and ∆ȳim := 1
2
dim+1

4
Ri
mθ

i

m,m ∈
U with dim, R

i
m defined in Appendix 4.8.2.

3. The conditional variance Vq(Ψi)[θ
i|θi,Di] is given as

K̃i = Ki −KiQ
(
αD−1

Ri
+ (Ki)uu

)−1
QTKi

whereDRi is the diagonal of Fisher information matrix evaluated at θ
i
.

Note that the conditional variance above depends on Ri
m = [J(θ

i
)]m,m. When Ri

m → 0

for all m ∈ U , the conditional variance becomes Ki. From a geometric point of view,
pi(y|θ

i

m) has reached the vertex of the manifold M and thus the algorithm should stop,
since no further information gain is expected given the previous predictions.

From Appendix 4.8.1, we see that the consensus-view p.d.f. q(y|x) is proportional to
the average of {pθi}Vi=1 in log-space, i.e.,

log q(y|xs) ∝
1

V

V∑
i=1

log pi(y|θ̂is), s ∈ L ∪ U.
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where θ̂is = Eq(Ψi)[θ
i
s|xis,θ

i
,Di] is provided by each single-view classifier. Finally, the

variational EM-based algorithm is summarized in Algorithm 2.

Algorithm 2 COM-MED via variational EM
Require: Training samples D[V ] from V views, with the fully labeled part {(xn, yn), n ∈ L} and

the unlabeled part {xm,m ∈ U}. The kernel function Ki defined on Xi×Xi. The nonnegative

hyperparameter {c(i)
ξ }

V
i=1 and cρ for ξi, 1 ≤ i ≤ V and ρ. The shrinkage factor α > 0.

1: Initialize: Choose an random subset of labeled data D̂L[V ]. Learn an initial p.d.f. pi,0 from

D̂Li independently for each view i via SVM. Find an initial estimate of the model parameter

θ̂im,0 ≡ Epi,0
[
θim|xim, D̂Li

]
, m ∈ Di/D̂Li for each i.

2: for t = 0, . . . , T or until converge do
3: (E-step) Find the consensus-view distribution qt+1 ∈M.

log qt+1(y|xs) ∝
1

V

V∑
i=1

log pi(y|θ
i
s,t), s ∈ L ∪ U

4: Make predictions via the consensus-view p.d.f. ȳm,(t+1) = Eqt+1(y) [y|xm], m ∈ U

5: for i = 1, . . . , V do
6: Make single-view predictions via p.d.f. p

θ
i
m,t

as

ŷim,t = E
θ
i
m,t

[y|xim] and Rim,t = (1− |ŷim,t|2).

7: Compute the difference dim,(t+1) = ȳm,(t+1) − ŷim,t and then compute ∆ȳim,(t+1)
:=

1
2d

i
m,(t+1) + 1

4R
i
m,tθ

i
m,t for m ∈ U .

8: (M-step) Solve for the optimal dual variables (λi, µi) via (4.17) for view i.

9: Update the p.d.f. p
θ
i
s,(t+1)

using the posterior mean

θ
i
s,(t+1) = Eqi

[
θis|xis, θ

i
s,t, Di

]
=
∑
n∈L

ynλ
i
nK

i(xis,x
i
n) + µi

∑
m∈U

∆ȳimK
i(xis,x

i
m),

s ∈ L ∪ U,

10: end for
11: end for

Ensure: Assign label for test sample xs as

ŷ = arg max
y∈Y

log q(y|xs).
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4.4.2 Implementation Complexity

For each iteration, our COM-MED algorithm has O((|L| + k)3) time complexity for the
dual optimization (4.17) along with an update of a (|L| + k) × (|L| + k) matrix in each
view, where |L| is the size of labeled samples and k is the number of clusters in unlabeled
samples. Also it has O(V N2) memory complexity, which is prohibited for N > 1000. The
major advantage of the COM-MED is that the time complexity does not grow with respect
to |U |, the size of the unlabeled samples, since the information measure in (4.8) provides
an efficient summary of the unlabeled data.

4.5 Experiments
We compare the proposed COM-MED model with the SVM-2K method proposed by Far-
quhar et al. [Farquhar et al., 2005], the Co-Laplacian SVM (CoLapSVM) by Sindahwani
et al. [Sindhwani et al., 2005], the MV-MED by Sun et al. [Sun and Chao, 2013] as
well as the standard MED for each view. For a fair comparison, we focus on two-view
learning, i.e. V = 2 since the SVM-2K is for two-views only. For all MED-based al-
gorithms, we use the Gaussian Process as a prior with the radial basis kernel function
Ki(x

i
n,x

i
m) = exp(−γi ‖xin − xim‖2),∀m,n, i ≤ V , where ci is obtained by 5-fold cross-

validation.

4.5.1 Footstep Classification
In the first experiment, we use the ARL-Footstep [Damarla et al., 2011, Nguyen et al.,
2011] data. This data set contains footstep signals recorded by a multisensor system, which
includes four acoustic sensors (, labeled as 1-4, respectively,) and two seismic sensors (, la-
beled as 5,6). All the sensors are well-synchronized and operates in a natural environment,
where the environmental noises may exist in the either view.

The task is to discriminate between human footsteps and human-leading-animal foot-
steps. The data set involves 84 human-alone subjects and 66 human-leading-animal sub-
jects. Each subject contains 24 75%-overlapping sample segments to capture temporal lo-
calized signal information. We randomly selected 25 subjects with 600 segments from each
class as the training set. The test set contains the rest of the subjects. In particular, it con-
tains 1416 segments from human-alone subjects and 984 segments from human-leading-
animal subjects. A more detailed description of the dataset is given in [Huang et al., 2011,
Damarla, 2012, Xie et al., 2014].

In the preprocessing step, the time periods containing strongest signal response are
identified and signals within a fixed size of window (i.e. 23 sec.) are extracted from the
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Table 4.2: Classification accuracy with different data set, with the best performance shown in bold.
Classification Accuracy (%) mean ± standard error

Dataset. MED (single views) SVM-2K CoLapSVM MV-MED COM-MED
ARL Footstep

(Sensor 1,2,
|L| = 50)

71.1±5.3 69.1±7.5 73.3±5.2 75.2± 6.0 77.5± 6.5 85.5± 6.1

WebKB4
(|L| = 15)

76.6±
10.2

77.1±
10.1

79.0±
10.0

83.6± 9.0 85.9± 8.7 91.7± 5.8

Internet Ads
(|L| = 50) 87.3±0.9 86.2±1.4 82.5±4.3 85.9± 3.2 88.8± 2.3 92.7± 0.7

Table 4.3: The classification accuracy (%) for two homoegenous views in ARL-Footstep dataset (The best
one is in bold.)

MED view i MED view j SVM-2K CoLapSVM MV-MED COM-MED

Sensor 1, 2 71.1± 5.3 69.1± 7.5 73.3± 5.2 75.2± 2.6 77.5± 6.5 85.5± 6.1

Sensor 1, 3 74.4± 9.7 52.8± 18.5 56.1± 7.8 73.5± 3.5 72.8± 3.7 80.2± 3.1

Sensor 1, 4 72.6± 7.3 63.7± 15.6 58.1± 8.5 70.5± 6.5 73.2± 1.5 77.0± 5.3

Sensor 2, 3 66.0± 9.3 57.2± 12.3 60.2± 7.1 75.2± 8.1 73.1± 4.2 81.3± 5.7

Sensor 2, 4 70.8± 7.8 65.6± 12.3 73.7± 7.0 73.5± 5.2 72.7± 4.8 75.6± 6.5

Sensor 5, 6 89.3± 1.5 86.1± 2.2 90.3± 2.1 90.5± 0.8 93.1± 0.5 95.5± 3.2

background noises. We extract mel-frequency cepstral coefficients (MFCC, [Rabiner and
Juang, 1993]) for acoustic signals using a 50 msec. window. Only the first 13 MFCC co-
efficients were retained, which were experimentally determined to capture an average 90%

of the power in the associated cepstra. There are in total 150 windows for each segment,
resulting in a matrix of MFCC coefficients of size 13 × 150. We reshaped the matrix of
MFCC features to obtain a 1950 dimensional feature vector for each segment. We then
apply PCA to reduce the dimensionality from 1950 to 50, while preserving 85% of the total
power. For each seismic signal, we use the multilevel discrete wavelet transform (DWT)
[Mallat, 1999] with 3 levels of the Daubechies wavelets [Daubechies, 1992, Mahmood-
abadi et al., 2005, Sinha et al., 2005]. Then we apply PCA to reduce the dimensionality of
wavelet coefficients to 200, while preserving 85% of the total power. The above procedures
for preprocessing follows exactly from [Nguyen et al., 2011].

In Table 4.3 and 4.4, we compare the classification accuracy of our COM-MED meth-
ods with SVM-2K, CoLapSVM, MV-MED and single-view MED as baseline. Specifically,
two out of six sensors are chosen to build two-view models. Table 4.3 compares the classifi-
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Table 4.4: The classification accuracy (%) for two heterogenous views in ARL-Footstep dataset (The best
one is in bold.)

MED view i MED view j SVM-2K CoLapSVM MV-MED COM-MED

Sensor 1, 5 71.4± 3.6 89.5± 2.4 86.5± 1.1 90.1± 1.5 91.5± 2.1 96.2± 2.1

Sensor 1, 6 75.6± 3.5 85.1± 3.2 83.2± 2.0 91.0± 2.3 90.3± 2.4 93.2± 4.1

Sensor 2, 5 73.4± 4.1 89.2± 5.3 90.1± 2.5 90.5± 3.6 90.8± 4.2 94.5± 3.8

Sensor 2, 6 72.8± 6.1 87.2± 3.8 88.7± 2.3 91.1± 2.5 92.5± 2.7 94.3± 4.2

Sensor 3, 5 56.5± 12.1 89.2± 2.8 77.6± 6.8 78.6± 1.5 79.8± 6.8 81.5± 2.0

Sensor 3, 6 54.1± 15.2 87.5± 3.1 78.7± 7.5 79.3± 1.2 80.2± 5.6 83.1± 6.5

Sensor 4, 5 52.9± 10.8 89.0± 3.0 72.1± 9.8 75.3± 5.3 76.2± 6.5 84.5± 1.8

Sensor 4, 6 52.7± 12.5 87.0± 2.6 70.9± 8.5 72.8± 6.5 73.8± 5.6 85.6± 2.5

cation accuracy for SVM-2K, CoLapSVM, MV-MED and COM-MED using homogeneous

views, i.e., sensors are of the same type, while in Table 4.4, we compare these models using
heterogeneous views, i.e. sensors are of different types. Note that it is also known from the
data source that sensors [3, 4] have more corruption than the other acoustic sensors [1, 2]

and the seismic sensors [5-6] are of high quality. Therefore, we drop the case [3, 4], since
there is no good sensor in this combination.

We see that our COM-MED outperforms SVM-2K, CoLapSVM and MV-MED in terms
of the accuracy of classification and it improves over the single-view MED. This is partially
due to the incorporation of both the decision and the confidence level of classification in
the COM-MED model. The SVM-2K does not consider the confidence level explicitly and
the model only optimizes the average decision of two classifiers by enforcing a common
decision made on both views. The CoLapSVM learns multiple view-specific classifiers by
assuming smoothness of classifiers on the underlying data manifold. Similar to SVM-2K,
CoLapSVM still relies on the Euclidean distance as the measure of disagreement between
view-specific classifiers, therefore it suffers from the view-corruption and multi-view in-
consistency problem as well.

On the other hand, for homogeneous-view in Table 4.3 such as sensors [1, 2], it is seen
that the SVM-2K, CoLapSVM and MV-MED all improve over the single view method.
This is because the corresponding samples from homogenous sensors can be viewed as fol-
lowing the same distribution. Co-regularization methods such as SVM-2K and CoLapSVM
can then take advantages of extra information from the alternative view to improve the per-
formance of single-view classifier. The proposed COM-MED method does account for this
heterogeneity of distributions, thus improves over the other methods.

Table 4.3 and 4.4 also show the robustness of our COM-MED method, compared with
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Figure 4.4: The classification accuracy vs. the size of labeled set for ARL-Footstep data set
(Sensor 1,2). The proposed COM-MED outperforms MV-MED, CoLapSVM, SVM-2K and two
single-view MEDs (view 1 and 2) and it has good stability when the number of labeled samples is
small.

SVM-2K, CoLapSVM, MV-MED and single-view MED. For single-view MED, it is a
large-margin classifier, which is known to be sensitive to corruption in the training sets
[Xie et al., 2014]. In other words, including more sensors does not ensure better perfor-
mance due to the intermittency in failed sensors and increased variance. For instance,
compare the case of sensors [1, 2] with sensors [1, 4] and sensors [2, 4], it is seen that if any
sensor is of poor quality, neither SVM-2K, CoLapSVM nor MV-MED provides guarantee
to improve over the best one-view classifier. This is due to the lack of robustness of the `2

consensus-measure used in both methods. Note that noisy measurement and the outliers
may cause perturbations in output of the decisions, thus both the decision regularization
and margin regularization are unreliable under this situation. On the other hand, COM-
MED uses the stochastic consensus constraints that are insensitive to the data perturbations
and outliers. Therefore it achieves superior performance in both accuracy and variance
compared to single view classifiers and conventional co-regularization methods such as
SVM-2K, CoLapSVM.

Fig. 4.4 shows the accuracy and the standard deviation for the four methods as the size
of the labeled set increases. As more ground truth labels are used, the performances of all
training methods increases, while COM-MED shows its superior performance consistently.
On the other hand, it is seen from the plot that the relative performance gain of COM-MED
is larger when the size of the weakly-labeled set are much larger than the fully-labeled
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Figure 4.5: The classification accuracy vs. the size of labeled set for WebKB4 data set. Unlike
previous example, for this dataset, all multi-view learning algorithms are performing similarly well,
although COM-MED still outperforms the rest. Note that WebKB4 is the first dataset used by
Co-training to demonstrate its success. It is a easy dataset for our task.

one. COM-MED is more suitable for large multi-view dataset with few annotations, since
in this case, neither the conventional co-regularization such as SVM-2K and CoLapSVM
or the heuristic-based MV-MED yields reliable and reasonably good initial estimate of the
classifier.

4.5.2 Web-Page Classification

The WebKB4 [Craven et al., 2000] data set is widely-used in multi-view learning literature
[Blum and Mitchell, 1998, Sindhwani and Rosenberg, 2008]. It consists of 1051 two-view
web pages collected from computer science department web sites at four universities. There
are 230 course pages and 821 non-course pages. The two natural views are words in a web
page and words appearing in the links pointing to that page. We follow the preprocessing
step in [Sindhwani and Rosenberg, 2008], and extract a 3000-dimensional feature vector
via the bag-of-words representation in the page view and a 1840-dimensional feature vector
in the link view. Then we compute the term frequency-inverse document frequency weights
(TF-IDF) features from the document word matrix. The feature vector is length normalized.

In Table 4.2, we see that our COM-MED has significantly better classification perfor-
mance as compared to SVM-2K, CoLapSVM and MV-MED, when the labeled set is small,
i.e., |L| = 15. Also, according to Fig. 4.5, when more labeled samples are included, all four
methods have similarly good performance, even for the single-view MED. The COM-MED
performs better with a few labeled samples because its stability relies on a good estimate
of confidence on the unlabeled training samples, which is less affected by the amount of
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Figure 4.6: The classification accuracy vs. the corruption rate (%) for (a) WebKB4 data set and
(b) Internet Ads data set, where i.i.d. Gaussian random noise N (0, σ2) is added in either of the
two views. Here we choose the signal-to-noise ratio SNR := E

[
‖X‖2

]
/σ2 = 10. Also, the

classification accuracy vs. the SNR(dB) (i.e. 10 log10(SNR)) with corruption rate 10% for (c)
WebKB4 data set and (d) Internet Ads data set. The proposed COM-MED outperforms MV-MED,
CoLapSVM, SVM-2K and two single-view MEDs (view 1 and 2) and it is robust when both corrupt
rate increases and SNR decreases.

the labeled training samples.
To evaluate the robustness of the single view MED, SVM-2K, CoLapSVM, MV-MED

and COM-MED, we randomly add i.i.d. Gaussian noise N (0, σ2) to a random subset of
data in either of the two views. Each view is selected with equal probability. Note that since
the underlying distribution of data are changed by noise corruption, there exists inconsis-
tency among different views. Experiments are conducted under different corrupt rate and
signal-to-noise ratios (SNR). The former is defined as the percentage of corrupted data in
dataset and the latter SNR := E [‖X‖2] /σ2. Fig. 4.6 (a) and (c) show the classification
accuracy vs. the corrupt rate (%) and SNR, respectively. It is seen that as the noise level
and the corrupt rate increases, SVM-2K has the worst performance since it relies on the
CCA, which is sensitive to the noise in each single view. By using the stochastic consensus
constraint, the COM-MED outperforms CoLapSVM, SVM-2K and MV-MED in terms of
reliability of its performance.

4.5.3 Internet Advertisement Classification

75



50 100 150 200 250

number of labeled samples

0

20

40

60

80

100

a
c
c
u

ra
c
y
 (

%
)

MED v1

MED v2

SVM-2K

CoLapSVM

MV-MED

COM-MED

Figure 4.7: The classification accuracy vs. the size of labeled set for Internet Ads data set. Similar
to above results, the proposed COM-MED outperforms MV-MED, CoLapSVM, SVM-2K and two
single-view MEDs (view 1 and 2) and it has good stability when the number of labeled samples is
small.
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Figure 4.8: The classification accuracy vs. the corruption rate (%) for (a) WebKB4 data set and
(b) Internet Ads data set, where i.i.d. Gaussian random noise N (0, σ2) is added in either of the
two views. Here we choose the signal-to-noise ratio SNR := E

[
‖X‖2

]
/σ2 = 10. Also, the

classification accuracy vs. the SNR(dB) (i.e. 10 log10(SNR)) with corruption rate 10% for (c)
WebKB4 data set and (d) Internet Ads data set. The proposed COM-MED outperforms MV-MED,
CoLapSVM, SVM-2K and two single-view MEDs (view 1 and 2) and it is robust when both corrupt
rate increases and SNR decreases.
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The Internet Ads [Kushmerick, 1999] data set consists of 3279 instances including 458

ads images and 2820 non-ads images. The first view describes the image itself, i.e., words
in images’ URL and caption, while the other view contains all other features, i.e., words
from URLs of pages that contain the image and pages which the image points to. For each
view, we extract the bag-of-words representations, which results in a 587−dimensional
vector in view 1 and a 967−dimension vector in view 2. We set the size of training set as
600 and |L| = 50.

From Table 4.2 and Fig. 4.7, we see that our COM-MED still performs better than
SVM-2K, MV-MED and single-view MED. It is seen that COM-MED is more stable as
the size of the labeled training set increases, while SVM-2K has much worse stability per-
formance. Also, similar to the experiment in WebKB dataset, we manually contaminated
the Internet Ads datasets by randomly adding i.i.d. Gaussian noise. Adopting the same
setting as the WebKB experiments, we see in Fig. 4.8 (a) and (b) that the COM-MED is
more robust in the presence of noise corruption in single view, compared to single-view
MED, CoLapSVM, SVM-2K and MV-MED.

4.6 Conclusion

In this chapter, we proposed a multi-view maximum entropy learning model on statistical
manifolds via stochastic consensus constraints. In particular, the Kullback-Liebler diver-
gence is used to measure the dissimilarity of information contents in different views. Ex-
periments show that the proposed COM-MED method is robust in the presence of corrup-
tion and outliers and it achieves superior classification performance over other multi-view
learning methods. A further improvement of COM-MED might be achieved by introduc-
ing a nonparametric Bayesian framework such as the Dirichlet process [Blei et al., 2006]
to handle clusters in sample domain, e.g., [Zhu et al., 2014].
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4.8 Appendices

4.8.1 Result for consensus-view p.d.f. in (4.3)
Let q(y|x) ∈M be the consensus-view p.d.f.. From (4.3), for the KL-divergence,

q(y|x) := arg min
h(y|x)∈M

V∑
i=1

KL
(
h(y|xm) ‖ pi(y|θim)

)
.

Given {pθi} where pθi := pi(y|θi), we take the derivative with respect to h and let it to be
zero, i.e.,

∂

∂h(y|x)

V∑
i=1

∑
y

h(y|x) log

(
h(y|x)

pi(y|θi)

)
+ λ

(∑
y

h(y|x)− 1

)

=
V∑
i=1

h(y|x)

(
h(y|x)

pi(y|θi)

)−1
1

pi(y|θi)
+

V∑
i=1

log

(
h(y|x)

pi(y|θi)

)
+ λ = 0,

where λ ≥ 0 is the dual variable for the normalization constraint.The optimal consensus
posterior q(y|x) is the function h(y|x) that is the solution to the above equation. This
yields:

log q(y|x) =
1

V

V∑
i=1

log pi(y|θi)− c(x),

where c(x) corresponds to the log-normalization factor.

4.8.2 Approximation of the cross-entropy loss in (4.13)
The cross-entropy loss in (4.13) is

−
∫
Êm∈U

[
Eq(y|xm)

[
log pi(y|θim)

]]
q(Ψi)dΨi,

where

log pi(y|θim) =
1

2
yθim − log

(
exp

(
1

2
θim

)
+ exp

(
−1

2
θim

))
=

1

2
yθim − log

(
2 cosh

(
1

2
θim

))
(4.19)

Eq(y|xm)

[
log pi(y|θim)

]
=

1

2
ȳθim − log

(
2 cosh

(
1

2
θim

))
(4.20)
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for ȳ = Eq(y|xm) [y], cosh(x) = exp(x)+exp(−x)
2

. For the nonlinear part, the Taylor expansion
at θim = θim gives

log

(
2 cosh

(
1

2
θim

))
= log

(
2 cosh

(
1

2
θim

))
+

1

2
tanh(0.5θim)

(
θim − θim

)
+

1

8
R(θim)

(
θim − θim

)2

+ o(
∥∥∥θim − θim∥∥∥3

),

= Ep
θ
i
m

[y] θim +H(θ
i

m) +
1

8
R(θim)

(
θim − θim

)2

+ o(
∥∥∥θim − θim∥∥∥3

), (4.21)

where θim ∈ Θ is a reference point, H(θ
i

m) = −E
θ
i
m

[log p
θ
i
m

] is the entropy of p
θ
i
m

,
R(θim) := (1 − |Ep

θ
i
m

[y] |2) ∈ [0, 1]. Note that tanh(0.5θim) = Ep
θ
i
m

[y] is a sigmoid
function as shown in Fig. 4.9. Substituting (4.21) into (4.20), we have
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Figure 4.9: The function tanh(θ/2)

(4.20) = −H(θim) +
1

2
d(q, θim)θim −

1

8
R(θim)

(
θim − θim

)2

+ o(
∥∥∥θim − θim∥∥∥3

), (4.22)

where d(q, θim) = (ȳ − Epi
[
y|θim

]
). See that 1

4
R(θim) ≡ −∇2 log p(y|θim) ≈ 0 for large∥∥∥θim∥∥∥

2
, which makes (4.22) linear.

4.8.3 Proof of theorem 4.4.1
For given q ∈M, the Lagrangian in view i is

F
({
θin
}N
n=1

,
{
ξin
}
n∈L ;

{
λin
}
n∈L , µ

i, κ
)
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=

∫
q(Ψi) log

(
q(Ψi)

p0(Ψi)

)
+

∫
q(Ψi)

∑
n∈L

λinLi,n,Ψi

+

∫
q(Ψi)µ

i

[∑
m∈U

(
−1

2
dmθ

i
m +

1

8
Rm((θim)2 − 2θimθ

i
m)

)
−ρ] + κ

(∫
q(Ψi)− 1

)
Taking the derivative with respect to q(Ψi) and letting it to be zero, we have

log q(Ψi) = log p0(Ψi)−
∑
n∈L

λinLi,n,Ψi

+
∑
m∈U

µi
(

1

2
dmθ

i
m −

1

8
Rm((θim)2 − 2θimθ

i
m) + ρ

)
− κ− 1,

which gives the Result 4.4.1.

4.8.4 Proof of theorem 4.4.2
Proof: Following [Jaakkola et al., 1999], by strong duality, the optimal dual variables can
be computed by

max
λi�0,µi≥0

− logZ(µi, λi)

where Z is defined as (4.16). Under assumption (4.9)-(4.12), the objective function is
computed as

− log

∫
Ψi

p0(Ψi) exp

(
−
∑
n∈L

λinξ
i
n +

∑
n∈L

λinynθ
i
n+

∑
m∈U

µi
[

1

2
dm +

1

4
Rmθim

]
θim −

1

8
µi
∑
m∈U

Rm(θim)2

)
=
∑
n∈L

(
λin + log

(
1− λin/c

(i)
ξ

))
− log

∫
θi

exp

(
−1

2
θTi K

−1
i θi + θTi [ν(λi, µi)]− µi

8
θTi QDRiQ

Tθi

)
=
∑
n∈L

(
λin + log

(
1− λin/c

(i)
ξ

))
− 1

2
ν(λi, µi)T

[
K−1

i +
µi

4
QDRiQ

T

]−1

ν(λi, µi)
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=
∑
n∈L

(
λin + log

(
1− λin/c

(i)
ξ

))
− 1

2
ν(λi, µi)TAT

i

[
K−1

i +
µi

4
QDRiQ

T

]−1

Aiν(λi, µi) (4.23)

where di := (dim)m∈U , Ri := (Ri
m)m∈U , and ∆yi := (1

2
di + 1

4
Ri � θi), ν(λi, µi) =[

(λi � y)T , µi
]T ∈ R|L|+1,

Ai :=

[
I |L| 0

0 ∆yi

]
∈ RN×(|L|+1), Q :=

[
0

I |U |

]
∈ RN×|U |,

DRi =
1

4


Ri

1

. . .

Ri
|U |


and � is the point-wise matrix product. Note that by the Matrix inversion lemma,[

K−1
i +

µi

4
QDRiQ

T

]−1

= Ki −KiQ

(
4

µi
D−1
Ri

+QTKiQ

)−1

QTKi

= Ki −KiQ

(
4

µi
D−1
Ri

+ (Ki)uu

)−1

QTKi

where

KiQ =

[
(Ki)lu

(Ki)uu

]
, QTKiQ = (Ki)uu

AT
i KiQ =

[
(Ki)lu

(∆yi)T (Ki)uu

]

As discussed in Appendix 4.8.2, when θi deviates from the reference θi, then the pertur-
bation factor R → 0 and the kernel matrix becomes Ki, which implies that the unlabeled
samples are of no use since the classifier is already good enough. The dual variable µi has
a shrinkage effect on the perturbation term when µi is small and when µi is large, we can
drop it. In the formulation (4.17), we replace (µi)−1 by a constant shrinkage factor α > 0.

Finally, given (λi, µi), the meanEq(Ψi) [θim] is computed using the property of the Gaus-
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sian process, i.e. ∑
n∈L

ynλ
i
nK̃i(x

i
n,x

i
s) + µi

∑
m∈U

∆ȳimK̃i(x
i
m,x

i
s),

where K̃i(·, ·) is the modified kernel function in (4.17) and ∆ȳim := 1
2
dim+ 1

4
Ri
mθ

i

m,m ∈ U
with dim, R

i
m as above. This completes the proof.
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CHAPTER 5

Collaborative Network Topology Learning from
Partially Observed Relational Data

5.1 Introduction

Learning a dependency graph G given relational data x is an important task for natural
language processing [Jurafsky and Martin, 2014]; sensor networks [Hall and Llinas, 1997];
recommendation systems [Aggarwal et al., 1999] and artificial intelligence [Ferber, 1999].
In many situations, however, a learner only has access to a limited amount of data, while
the rest of data are either missing or protected by the system due to the privacy or security
concerns. For instance, recommendation system of a company has proprietary information
regarding its own registered customers, who may be influenced by a number of agents,
including other customers of the company but also including other people whose infor-
mation is not accessible to the company. Without such external information confounding
marginal correlations may exist between customers who are conditionally uncorrelated. In
this case, the conditional dependencies, specifically, partial correlations, between the cus-
tomers may be more accurately estimated if information about the partial correlations of
the non-customers is available. Similarly, in a sensor network with limited power budget,
a subset of sensors that were actively collecting data in the recent past may have gone
into sleeping mode. A processor thus only has measurements from the active sensors at
the current time as well as a possible information summary (e.g., spatial correlation) of
the sleeping nodes based on their recent past data. The spatial partial correlations of the
sleeping network may be used to better estimate the partial correlations between the awake
sensors.

In each of these scenarios, the inaccessible (latent 1) data have influence on the depen-
dency structure underling the accessible (observed) ones. It may therefore be advantageous

1In this chapter, the words latent and inaccessible are used interchangeably. Similar for the words ob-
served and accessible.
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Figure 5.1: An illustration of the problem of learning sub-network toplogy from partially observed
data. The red rectanges represent observed data x1, which is a subset of full data x. The red
vertices are affected by the blue vertices through some unknown links. Data on the blue vertices are
not observed directly but a noisy summary Θ̂2 regarding their relationship graph G2 is given. The
task is to infer the unknown edges of subnetwork G1 from partially observed data x1 in G1 and a
summary Θ̂2 of G2.

to collaborate with external sources in order to improve the performance of a graph learning
system on the observed dataset. In this chapter, we consider a situation where in addition
to an observed subset of data x1, the learner may receive a noisy summary of the partial
correlations of latent data from external sources. These partial correlations are, up to a
constant, specified by the inverse covariance matrix, denoted by Θ̂2. The task is to learn
the dependency sub-network G1 among x1 collaboratively given asymmetric information
from two sources.

Learning graph topology from data may be an ill-conditioned problem in the sense that
there may be insufficient data to accurately determine the topology - there is high sensitivity
of the topology estimate to small variations in the data. Regularization is commonly used
to address ill-conditioned problems. For example, in the graph signal processing GSP [Zhu
and Rabbat, 2012, Narang et al., 2013a, Sandryhaila and Moura, 2013, 2014b, Shuman
et al., 2013], it is assumed that the data x is smooth over the underlying graph G in the sense
that its graph Fourier transform is band-limited. That is, for each v ∈ V , the datum xv is
similar to its nearest neighbors in G. However, in the case that the signals obey a Gaussian
graphical model the marginal distribution of observed variables in a sub-graph may not
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be smooth relative to the graph Fourier transform that is based on the eigenspectrum of
the graph Laplacian over the entire network. As a result, the task of learning sub-network
topology from partially observed data is challenging, especially for GSP. In this chapter,
we focus on a random graph signal that follows a Gaussian graphical model [Lauritzen,
1996, Koller and Friedman, 2009, Zhang et al., 2015]. Specifically, the joint distribution is
multivariate Gaussian that factorizes according to an unknown network G. The network G
is partitioned into the target network G1 and the external network G2, and the observed data
x1 follow a marginal Gaussian distribution. See Figure 5.3 for an illustration.

Given complete observations over all nodes of the graph, learning the Gaussian graph-
ical model can be solved efficiently via sparse inverse covariance estimation [Lauritzen,
1996, Rue and Held, 2005, Banerjee et al., 2008, Friedman et al., 2008, Rothman et al.,
2008, Wainwright et al., 2008, Yuan, 2010, Chen et al., 2011, Pavez and Ortega, 2016].
However, these methods have difficulties dealing with partially observed data. This is due
to the effect of marginalization [Koller and Friedman, 2009], which introduces phantom
dependency edges between vertices that connects to common latent variables. In other
words, due to the existence of latent factors, the marginal precision matrix (or, inverse of
marginal covariance matrix) defines a dependency structure that is equivalent to the corre-
sponding subgraph of the Gaussian graphical model. To take into account of this effect,
the LV-GGM was introduced by Chandrasekaran et al. [Chandrasekaran et al., 2011, 2012]
and extended to learning latent variable precision matrices by [Meng et al., 2014]. It sum-
marizes the effect of marginalization as a dense low-rank matrix. The LV-GGM then effec-
tively separates out this low-rank matrix from the marginal precision matrix by solving a
semi-definite programming (SDP) problem, resulting in a sparse matrix whose support set
coincides with the edge set of the the underling sub-network. Despite its success, LV-GGM
has two limitations: First, it assumes that the effect of latent variables is global and there
exist edges between each latent vertex and the observed vertex set. Second, LV-GGM does
not fully utilize partial information that may be available on the latent variables. In many
applications, a noisy summary Θ̂2 of correlation structure between the latent variables is
available. Therefore it is plausible for us to improve over LV-GGM given this additional
relevant information.

In this chapter, we consider the situation where the influence of each latent variable
decayed outside a neighborhood so that only a small potion of them have influence on
topology of the target network G1. This occurs in applications such as the spatial correla-
tion analysis of sensor networks [Jindal and Psounis, 2004, Vuran et al., 2004, Jindal and
Psounis, 2006, Dai and Akyildiz, 2009], field estimation [Nowak et al., 2004], image clus-
tering [Kumar and Hebert, 2003] and geographical data analysis [Mai and Beroza, 2002].
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Specifically, the proposed Decayed-influence Latent variable Gaussian Graphical Model

(DiLat-GGM) generalizes the LV-GGM by incorporating the dependence structure between
latent variables. In company customer example above, the decayed influence model as-
sumes that the behavior of each individual customer is affected only by people who have
direct friendship relationship with him/her. Similarly, in sensor network examples above, it
is assumed that the spatial correlation of measurements between two sensors decays dras-
tically with respect to their relative distance. Besides the decayed-influence assumption,
the proposed DiLat-GGM also includes a latent feature selection procedure by introduc-
ing additional row sparsity structure on the conditional cross-covariance matrix. From a
network perspective, it induces a topology with sparse inter-connection between the tar-
get network and the external network. The full network G thus resembles a network with
block structure, which is common in social networks, sensor networks and other distributed
systems [Barthelemy, 2004, Newman, 2005, Brandes, 2008, Jackson, 2010]. From a multi-
view learning perspective, DiLat-GGM can be seen as a two-view learning system given
asymmetric information flow from both the internal view and the external view.

What follows is an outline of the chapter: In Section 5.2, we review and discuss the
network topology inference with a Gaussian graphical model. In Section 5.2.2, we deal
with the case when full information from a single source is available and in Section 5.2.3,
we consider the situation where only a subset of data from a single source is accessible.
These lead to solutions based on the graphical Lasso and the LV-GGM, respectively. The
DiLat-GGM method as a generalization of LV-GGM is proposed in Section 5.2.4. In Sec-
tion 5.3, an sparsity constrained precision matrix estimation algorithm based on convex-
concave programming is introduced. Experimental results based on synthetic data and real
data are presented in Section 5.4. Our conclusions are given in Section 5.5.

5.2 Problem Formulation

5.2.1 Notation and Preliminaries

Consider an undirected network G = (V , E), where V is the vertex set and E is the edge set.
|V| = n. Define theA = [ai,j] ∈ Rn×n as the adjacency matrix. For simplicity, assume that
G is unweighted. The normalized graph Laplacian matrix L := I −D−1/2AD−1/2, where
D is a diagonal matrix with diagonal entries di,i =

∑
j∈V ai,j . Each vertex of the graph is

associated with m i.i.d samples xv ∈ Rm. Denote X = [xv]v∈V ∈ Rn×m with xv as its
v-th row. Let x = [x1, . . . , xn] be the random vector whose i.i.d realizations correspond to
columns {X(j)}mj=1 of X . We assume that each row x of X obeys a Gaussian graphical
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model faithful to G [Lauritzen, 1996]. Specifically, x is n-variate Gaussian distributed
with zero mean and covariance Σ where the inverse covariance, or precision, matrix Θ

is sparse with non-zero entries corresponding to the location of edges in G. We use the
shorthand notation x ∼ N (0,Θ−1), where Θ := Σ−1 ∈ Rn×n denotes the inverse of
covariance matrix Σ, or, the precision matrix. Assume that the Gaussian graphical model
(GGM) N (0,Θ) factorizes according to G, i.e., in the condition independence notation of
[Lauritzen, 1996], xi ⊥⊥ xj|x − {xi, xj} ⇔ (i, j) 6∈ E . Thus the support of off-diagonal
entries {(i, j) ∈ V × V : Θi,j 6= 0, i 6= j} is equal to E .

Let the n vertices of G be partitioned into two sets V1 and V2 of cardinalities |V1| = n1

and |V2| = n2, respectively, i.e., V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Define the corresponding
n1 × n1 and n2 × n2 sub-matrices Θ1 = ΘV1 and Θ2 = ΘV2 of the precision matrix Θ.
Likewise, let E1 and E2 denote the edges in G associated with the partition, i.e., Ei are the
edges in E that connect vertices in Vi, i=1,2. The sub-graph G1 = (V1, E1) is called the
target sub-network while G2 = (V2, E2) is called the external network.

The learning problem we consider here is to infer Θ1, and in particular the edges in the
graph G1, given measurements of only the subsetV1 of the vertices of the complete graph
G, i.e., estimate Θ1 when only measurements from the target network xV1 are available. It
is well known that, unless there are no edges in G connecting V1 and V2, in which case Θ is
block diagonal, unbiased estimation of Θ1 from partial measurements xV1 is not possible
[Lauritzen, 1996, Koller and Friedman, 2009, Wiesel et al., 2010]. This is because the
precision matrix of xV1 is not necessarily equal to Θ1, unless Θ is block diagonal. Indeed,
the marginal distribution of target variables xV1 contains phantom edges not in subgraph G1

that are due to marginalization over unobserved external variables xV2 in the larger graph
G. Marginalization has in effect converted these unobserved variables into latent variables

creating phantom edges. The latent data x2 := [xv]v∈V2 are inaccessible to the learner, but
a noisy summary Θ̂2 ∈ Rn2×n2 of their dependency structure G2 is provided by an external
source. The task of the learner is to learn G1 given xV1 and Θ̂2, where Θ̂2 � 0 has the
representation

Θ̂2 = L̂2 + σ2
LG (5.1)

where L̂2 is an estimate of inverse covariance matrix over x2, σL > 0 andG = 1
n2

2
HHT is

a Gram matrix generated by Gaussian random matrixH ∈ Rn2×n2 withH i,j
i.i.d.∼ N (0, 1).

It will be assumed that the Θ̂2 is statistically independent of the target data xV1 .
The representation (5.1) can be motivated by the following social networking exam-

ple. In a certain market there are n = n1 + n2 active customers connected by friendship
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network G and whose behaviors are random variables x that follow a GGM that is faith-
ful to the friendship graph G. Company A and company B have exclusive access to the
behaviors of customers V1 and V2, respectively. Each company is trying to infer their re-
spective customer’s friendship networks G1 and G2 from observed customer behaviors xV1

and xV2 , respectively. As the companies are in competition they do not want to share their
raw behavior data but they do want to improve their ability to learn about their own cus-
tomer’s friendship networks by sharing summary information. In particular, Company A
is interested in learning G1 from xV1 and Company B is willing to share (or sell) a noisy
summary of its own customer behaviors in the form of (5.1). In this setting, L̂2 corresponds
to Company B’s empirical estimate of its customer’s precision matrix. G corresponds to
a Wishart noise of level σ2

L that is added to L̂2 in order to preserve the IP of Company B
or the privacy of its customers. If the empirical precision matrix estimate G is constructed
from Company B’s archival data, collected in the distant past, then Θ̂2 will be statistically
independent of Company A’s current data.

We use the standard O-notation and Ω-notation [Cormen, 2009]: f(n) = O(g(n)) if
f(n) ≤ cg(n) for some constant c < ∞; f(n) = Ω(g(n)) if f(n) ≥ c′g(n) for some
constant c′ > 0.

5.2.2 Inference Network Topology with Full Data

When the learner has access to all the vertices in the network there have been many ap-
proaches proposed for estimating the precision matrix Θ of the GGM. In [Meinshausen
and Bühlmann, 2006] a lasso regression approach was proposed where the measurements at
each node are regressed onto the measurements of all other nodes, with a sparsity constraint
to determine nearest neighbors. In [Marjanovic and Hero, 2015] an `0-penalized maximum
likelihood approach was taken using coordinate ascent optimization. This method extended
the `1-penalized maximum likelihood approach of [Yuan and Lin, 2007, d’Aspremont
et al., 2008, Friedman et al., 2008, Yuan, 2010], which maximizes the `1-regularized log-
likelihood function. Note that maximizing the likelihood function is equivalent to mini-
mizing the KL-divergence between the model distribution N (0,Θ−1) and the empirical
distribution. In particular, the maximum penalized likelihood estimator has the representa-
tion

Θ̂ = arg min
Θ�0

KL
(
p̂(x) ‖ N (0,Θ−1)

)
+ αm ‖Θ‖1

= arg min
Θ�0

− log det Θ + tr
(
Σ̂Θ

)
+ αm ‖Θ‖1 , (5.2)
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where KL (p ‖ q) =
∫
p log p

q
is the KL-divergence, p̂(x) =

∑
m δxm(x) is the empirical

distribution from data setX := {x}m, Σ̂ := XXT/m is the n×n sample covariance ma-

trix ofX , αm = O(
√

log(n)
m

) > 0 is a regularization parameter that depends on the number

of vertices n and the number of samples m. The support set of Θ̂ then corresponds to an
estimate of the edge set E . Problem (5.2) is convex and many efficient algorithms have been
proposed to solve it [Wang et al., 2010, d’Aspremont et al., 2008, Duchi et al., 2008, Fried-
man et al., 2008, Yuan, 2010, Hsieh et al., 2011, 2013, 2014, Treister and Turek, 2014].
For instance, the graphical Lasso and its variants [Friedman et al., 2008, Mazumder and
Hastie, 2012] are popular algorithms. In [Pavez and Ortega, 2016] , the authors considered
an extended framework to learn a generalized Laplaican matrix [Biyikoğu et al., 2007],
which is suitable for graph signal analysis. In [Ravikumar et al., 2008], an `0-penalized
version of (5.2) was proposed. It is shown that, if m = Ω(d2 log(n)) with maximal vertex
degree d > 0, high-dimensional consistency of edge recovery using Θ̂ can be achieved,
under incoherence conditions.

If only a marginal covariance matrix Σ̂1 := X1X
T
1 /m is available for a subset V1 of

the vertices, inverse covariance estimation using (5.2) does not guarantee recovery of the
underlying sub-network G1, due to the inclusion of phantom edges in the network after
marginalization, as explained above. If there exist edges between V1 and the remaining
vertices V2 = V − V1, then V2 introduce hidden factors that globally affect the observed
data. In this situation, the true marginal precision matrix may not even be sparse, and using
a sparse GGM to represent the marginal distribution p(x1) may lead to severe bias.

5.2.3 Sub-network Inference via Latent Variable Gaussian Graphical
Model

To interpret for the global effect of latent variables explicitly, one can use a partitioned
matrix inverse identity [Petersen and Pedersen, 2012] that has been previously used to
elucidate local vs global views of GGM’s [Meng et al., 2014]

Θ̃1 := (Σ1)−1 = Θ1 −Θ12 (Θ2)−1 Θ21, (5.3)

where Θ̃1 is the marginal precision matrix over x1, Θ1 is the principal submatrix of the
global precision matrix Θ over V1. Similarly, Θ12 and Θ2 are sub-blocks of full precision
matrix Θ for V1 × V2 and V2 × V2. It is seen from (5.3) that the marginal precision matrix
consists of two terms: the first term is the inverse of conditional covariance matrix Θ1 =(
Σ1|2

)−1 and it is sparse. The second term characterizes the effect of marginalization and
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it is low-rank for |V2| = n2 < n1. Therefore, according to (5.3), there exists a sparse plus
low-rank separation for the marginal precision matrix. Also it is seen that the support of
Θ1 coincides with the edge set of G1, since P (x1|x2; Θ1) factorizes over G1.

Chandrasekaran et al. [Chandrasekaran et al., 2011, 2012] introduced the latent vari-
able Gaussian graphical model (LV-GGM), which explicitly finds such separation (Ĉ,M̂ )

while maximizing the regularized marginal log-likelihood

min
C,M

− log det (C −M ) + tr
(
Σ̂1 (C −M )

)
+ αm ‖C‖1 + βm ‖M‖∗ (5.4)

s.t. C −M � 0

M � 0,

where Σ̂1 is the sample marginal covariance, αm = O(
√

log(n)
m

) > 0 and βm = O(‖Σ1‖2

√
n
m

)

are regularization parameters for the `1-norm and the nuclear-norm, respectively. By solv-
ing (5.4), LV-GGM finds an estimate of marginal precision matrixR whereR := Ĉ−M̂ ,

for which Ĉ is sparse due to the `1-norm regularizer and M̂ is low-rank due to the nuclear-
norm regularizer. In [Chandrasekaran et al., 2012], it is proved that, given that some iden-
tifiability conditions hold and m = Ω (d4 n) for maximal vertex degree d, the support of
estimated sparse matrix Ĉ equals to the support of conditional precision matrix Θ1 with
high probability. It then provides a theoretical guarantee for edge recovery of G1 using
marginalized data. Note that the identifiability condition requires that the low-rank matrix
is dense and incoherent. In other word, the effect of latent variables due to marginaliza-
tion must not be confused with the dependency structure in p(x1|x2; Θ1). In [Meng et al.,
2014], the authors proved Frobenius norm error bounds for estimating the precision matrix
of an LV-GGM under weaker conditions than [Chandrasekaran et al., 2011, 2012].

Solving (5.4) requires solving a semi-definite program, which is slow. Efficient imple-
mentations based on LogdetPPA [Wang et al., 2010], the ADMM [Ma et al., 2013] and
AltGD [Xu et al., 2017] have been proposed.

The disadvantages of the LV-GGM are two-fold: First, it cannot be used to infer the
latent variables. In fact, LV-GGM has no knowledge on the latent variables directly except
that their size is smaller than the observed ones. Second, the incoherence of low-rank ma-
trix M implies that the influence of each latent variable is uniform and global. In network
perspective, it means that every latent variable has direct influence on the observed data,
regardless its network geodesic distance to observed vertices. This is overcomplicated, es-
pecially when the size of latent vertex set is greater than that of the observed vertex set but
only a small potion of them are effective in inference of G1. In Figure 5.2 (b), it is seen than
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LV-GGM implicitly assumes that there exist dense interactions between the observed ver-
tices and the latent vertices, while there is no interaction between latent vertices. This does
no fit the ground truth network in Figure 5.2 (a), which has sparser interactions between
the observed vertices and the latent vertices, and has interactions between latent vertices.
This motivates us to find a localized latent variable model in Section 5.2.4.

(a)

(b) (c)

Figure 5.2: (a) A network-structured dataset. Data on red vertice are observed and data on the
blue vertex are not. The dashed edges represent the underlying unknown network. (b) The global
influence model for the LV-GGM. Note that every latent variable has at least one direct link to the
observed dataset and there is no direct interactions between latent variables. The shaded region
is the neighborhood N (V1) of observed vertices, which indicates that all latent variables have an
effect in inference of the sub-network. (c) The decayed influence model. Only latent vertices within
a local neighborhood (shaded region) have influence in inference of the sub-network.

5.2.4 Sub-network Inference under Decayed Influence

The LV-GGM induces a global influence model for latent variables, which has limitations
in real applications. A better model is a decayed influence model: the influence of each
variable decays drastically outside its neighborhood regions. Such neighborhood can be
defined according to, for example, k-nearest neighbors, or the graph geodesic distances
between two variables [Tenenbaum et al., 2000, Costa and Hero, 2004, Cormen, 2009].
The comparison between the global influence model and the decayed influence model is
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illustrated in Figure 5.2.
Specifically, let N (v) be a neighborhood of v in G. Denote N (V1) := ∪u∈V1N (u).

For latent vertex set V2, we can partition it into two groups: the boundary set δV2 := V2 ∩
N (V1) = {v ∈ V2 : v ∈ N (u) for some u ∈ V1} and the interior set V̊2 := V2 − N (V1).

According to the decayed influence model, the influence of latent variables in V̊2 over V1 is
negligible.

To better characterize the local effect, define B := Θ12Θ
−1
2 ∈ Rn1×n2 so that Θ12 =

BΘ2. With the partition V2 = V̊2 ∪ δV2, we have

Θ2B
T = ΘT

12 = Θ21 =

[
ΘV̊2,1

ΘδV2,1

]
=

[
0

ΘδV2,1

]
, (5.5)

which has row-sparse structure. With B := Θ12Θ
−1
2 , we can reparameterize the low rank

matrix in (5.3) as

M := Θ12Θ
−1
2 Θ21

=
[
Θ12 (Θ2)−1]Θ2

[
(Θ2)−1 Θ21

]
= BΘ2B

T . (5.6)

Combining (5.6) and (5.5) with the objective function in (5.4), we obtained a Decayed-

influence Latent variable Gaussian Graphical Model (DiLat-GGM) as

min
C,B

− log det
(
C −BΘ̂2B

T
)

+ tr
(
Σ̂1

(
C −BΘ̂2B

T
))

+ αm ‖C‖1 + βm

∥∥∥Θ̂2B
T
∥∥∥

2,1

(5.7)

s.t. C −BΘ̂2B
T � 0,

where αm, βm > 0 are regularization parameters and
∥∥∥Θ̂2B

T
∥∥∥

2,1
:=
∥∥∥Θ̂21

∥∥∥
2,1

=
∑

i

∥∥∥(Θ̂21

)
i

∥∥∥
2

is the mixed-`2,1 norm that induces row sparsity on
{(

Θ̂21

)
i

}n2

i=1
[Bach et al., 2012]. The

matrix Θ̂2 ∈ Rn2×n2 is a fixed pre-defined positive definite matrix.

Remark • Similar to graphical Lasso and LV-GGM, the choice of regularization pa-
rameter α and β depends on the size of the graph n (or n1), the number of measure-
ments on each node m and the relative rank of the marginal covariance Σ̂1 [Raviku-
mar et al., 2008, Chandrasekaran et al., 2012, Meng et al., 2014]. In Section 5.4,

we choose α = ϕ
√

log(n)
m

and β = r
√

n
m

for ϕ ∈ [0.1, 0.5] and r ∈ [0.5, 2], which
results in a good performance.

• The matrix Θ̂2 summarizes the inter-dependency between latent variables, which
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comes from an external sources. The key for this setting is that, due to the privacy and
security concerns, the external source cannot share with the proprietary information
of its own data x2 directly except for a noisy summary of the past correlation of x2

or a dependency structure Ĝ2 that specify the relationships among x2. In practice, the
matrix Θ̂2 can be obtained in external source via

Θ̂2 = L̂2 + σ2
LG,

where L̂2 is an estimate of inverse covariance matrix over x2, σL > 0 and G =
1
n2

2
HHT is a Gram matrix generated by Gaussian random matrix H ∈ Rn2×n2

with H i,j
i.i.d.∼ N (0, 1). L̂2 can also be chosen as the generalized Laplacian ma-

trix [Pavez and Ortega, 2016] of the true graph G2. If the external source is un-
willing to share any data-related information with the learner, it can simply choose
Θ̂2 = I or Θ̂2 = diag (θ2), where θ2 := (θ21, . . . θ2,n2) ∈ Rn2 . In the latter case,
the `21 norm in (5.7) imposes an weighted regularization on different columns ofB.
From Bayesian perspective, the external source can generate Θ̂2 ∼Wishart−1

n2
(Ψ, r),

where Wishart−1
n2

(Ψ, r) is a n2-variate inverse Wishart distribution with scale matrix
Ψ ∈ Rn2×n2 and degree of freedom r.

• Given B, we can infer the effective (non-zero) latent variables via the conditional
mean µ2|1 := BTx1. This is another benefit for using the proposed DiLat-GGM.

The main advantages of the DiLat-GGM are 1) it takes into account the matrix Θ̂2,
which summarizes the inter-dependency among latent variables. As compared to LV-GGM,
which does not exploit knowledge regarding the latent variables, DiLat-GGM exploits ex-
ternal network structure of latent variables and their influence on the target network. 2)
DiLat-GGM explicitly learns the linear mapping B, which enables estimation of the hid-
den variables via the conditional mean µ2|1 := BTx1. Thus it can be used as a graph
signal interpolation method on V2, given that we have prior knowledge of the network G2.
This benefit comes at the expense of losing the convexity of the problem. As a result,
DiLat-GGM can be seen as a non-convex generalization of LV-GGM with the row-sparsity
penalty controlling the rank of low-rank term M . 3) DiLat-GGM learns the sub-network
by combining both the reliable proprietary data from an internal source and the unreliable
summary of data from an external source. In the next section, we propose to learn DiLat-
GGM using the convex-concave algorithm.
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5.3 Efficient Optimization Solver for DiLat-GGM

In this section, we propose an efficient algorithm to solve (5.7).

5.3.1 A Difference-of-Convex Programming Reformulation

We first reformuate the problem (5.7). Note that, since Θ̂2 � 0, by the Schur complement
theorem [Boyd and Vandenberghe, 2004], the constraint

C −BΘ̂2B
T � 0⇔

[
C B

BT Θ̂
−1

2

]
� 0

and − log det
(
C −BΘ̂2B

T
)

+ log det Θ̂2 = − log det

[
C B

BT Θ̂
−1

2

]
.

Thus the problem (5.7) can be reformulated as

min
C,B

− log det

[
C B

BT Θ̂
−1

2

]
+ tr

(
Σ̂1

(
C −BΘ̂2B

T
))

+ αm ‖C‖1 + βm

∥∥∥Θ̂2B
T
∥∥∥

2,1

(5.8)

s.t.

[
C B

BT Θ̂
−1

2

]
� 0

It is seen that the feasible region is convex in terms of (C,B). However, the problem
(5.8) is non-convex, since tr

(
Σ̂1

(
C −BΘ̂2B

T
))

= tr
(
Σ̂1C

)
− tr

(
Σ̂1BΘ̂2B

T
)

is
non-convex with respect to (C,B). Let

f(C,B) := − log det

[
C B

BT Θ̂
−1

2

]
+ tr

(
Σ̂1C

)
+ αm ‖C‖1 + βm

∥∥∥Θ̂2B
T
∥∥∥

2,1
(5.9)

g(B) := tr
(
Σ̂1BΘ̂2B

T
)
. (5.10)

See that the f(C,B) is convex in (C,B). For g(B), we have the following proposition:

Proposition 5.3.1 Given that Σ̂1 � 0 and Θ̂2 � 0 are positive definite matrices, the

function g(B) is convex inB. Moreover, the Hessian of g(B) is Σ̂1 ⊗ Θ̂2 � 0.

Proof: We can vectorize the matrix B ∈ Rn1×n2 as vec (B) ∈ Rn1 n2×1 by stacking
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Figure 5.3: An illustration of convex-concave procedure. f(x) and g(x) are both convex functions
and we want to find the x∗ = argmin(f(x)− g(x)) (red point). We begin by x0 and iteratively find
xt := argmin(f(x)−g(xt−1)−∇g(xt−1)(x−xt−1)), where g(xt)+∇g(xt)(x−xt) is the tagent
plane of g(x) at xt. Also see that the convergence rate is determined by the difference between
curvatures of f and curvatures of g.

columns ofB. Then

g′(vec (B)) := g(B) = tr

((
BT Σ̂1

)T
Θ̂2B

T

)
= vec

(
BT Σ̂1

)T
vec
(
Θ̂2B

T
)
.

Since vec (AB) = (I ⊗A) vec (B) =
(
BT ⊗ I

)
vec (A), we have

g′(vec (B)) =
((

Σ̂1 ⊗ I
)

vec
(
BT
))T ((

I ⊗ Θ̂2

)
vec
(
BT
))

= vec
(
BT
)T ((

Σ̂1 ⊗ I
)(
I ⊗ Θ̂2

))
vec
(
BT
)

= vec
(
BT
)T (

Σ̂1 ⊗ Θ̂2

)
vec
(
BT
)

Thus the Hessian is

∂2g′(vec (B))

∂vec
(
BT
)
∂vec

(
BT
)T =

(
Σ̂1 ⊗ Θ̂2

)
.

Since Σ̂1 � 0 and Θ̂2 � 0, and the eigenvalue of
(
Σ̂1 ⊗ Θ̂2

)
is given as λi(Σ̂1)λj(Θ̂2) >

0, i = 1, . . . , n1, j = 1, . . . , n2, where λi(Σ̂1) is i-th eigenvalue of Σ̂1 and λj(Θ̂2) is j-th
eigenvalue of Θ̂2. Since the Hessian is positive definite, it follows that g(B) is a convex
function. �
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From the above proposition, the objective function of f(C,B)−g(B) is a difference of
two convex functions, which implies that (5.8) is a difference of convex (DC) programming
problem. The convex-concave procedure (CCP) introdued in [Yuille et al., 2002, Yuille and
Rangarajan, 2003, Lipp and Boyd, 2016] provides a powerful heuristic method that finds
the local solution of DC problem. Specifically, it convexifies the concave function −g(B)

by linearization as

g̃(B;Bt) = g(Bt) + tr
(
∇Bg(Bt)

T (B −Bt)
)

where∇Bg(Bt) = ∇Btr
(
Σ̂1BΘ̂2B

T
) ∣∣∣

Bt

= 2Σ̂1BtΘ̂2

Then the CCP iteratively solves a convex programming problem [Wang et al., 2010] given
Bt ∈ Rn1×n2 ,

(Ct+1,Bt+1)

:= arg min
C,B
− log det

[
C B

BT Θ̂
−1

2

]
+ tr

(
Σ̂1C

)
− g(Bt)− tr

(
∇Bg(Bt)

T (B −Bt)
)

+ αm ‖C‖1 + βm

∥∥∥Θ̂2B
T
∥∥∥

2,1

= arg min
C,B

− log det

[
C B

BT Θ̂
−1

2

]
+ tr

(
Σ̂1

(
C − 2BDT

t

))
+ αm ‖C‖1 + βm

∥∥∥Θ̂2B
T
∥∥∥

2,1

(5.11)

s.t.

[
C B

BT Θ̂
−1

2

]
� 0,

where Dt := BtΘ̂2 := Θ
(t)
12 since by definition B := Θ12Θ̂

−1

2 . Software packages such
as CVX [Grant et al., 2012] and CVXPY [Diamond and Boyd, 2016] can be used to solve
above problem. The CCP is also known as a majorization minimization (MM) algorithm
[Ortega and Rheinboldt, 2000, Hunter and Lange, 2004], which is a generalization of the
EM algortihm [Dempster et al., 1977]. In [Lange et al., 2000, Naghsh et al., 2013], DC
problems are solved using MM approaches.

5.3.2 Solving Convex Subproblems

The subproblem (5.11) is a convex programming problem, so it can be solved via a general
solver. However, due to its special structure, we can find a fast implementation.
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First, we reformulate the objective function of (5.11) as

min
C,B

− log det

[
C B

BT Θ̂
−1

2

]
+ tr

([
Σ̂1 −Σ̂1Dt

−DT
t Σ̂1 γtI

][
C B

BT Θ̂
−1

2

])

+ αm

∥∥∥∥∥[ I 0
] [ C B

BT Θ̂
−1

2

][
I

0

]∥∥∥∥∥
1

+ βm

∥∥∥∥∥[ 0 Θ̂2

] [ C B

BT Θ̂
−1

2

][
I

0

]∥∥∥∥∥
2,1

(5.12)

s.t.

[
C B

BT Θ̂
−1

2

]
� 0.

The parameter γt >
∥∥∥DT

t Σ̂1Dt

∥∥∥
2
, the `2 norm, so that γtI −DT

t Σ̂1Dt � 0. Therefore

Sγt (Dt) :=

[
Σ̂1 −Σ̂1Dt

−DT
t Σ̂1 γtI

]
� 0 (5.13)

is positive definite. We can compare the CCP that iteratively solves (5.12) with the EM
algorithm developed in Appendix 5.6.1. Note that for the EM algorithm, Θ̂2 is not fixed
but rather is updated during the iterations. Also the EM algorithm has no additional sparsity
regularization on the off-diagonal terms. As a result, the CCP in (5.11) yields a different
solution than the EM algorithm.

Define a new variable R :=

[
C B

BT Θ̂
−1

2

]
∈ Rn×n and denote J1 :=

[
In1 0

]T
∈

Rn×n1 , J2 :=
[

0 In2

]T
∈ Rn×n2 , Q :=

[
0 Θ̂2

]T
∈ Rn×n2 . The problem (5.12)

becomes

min
R

− log detR+ tr (Sγt (Dt)R) + αm
∥∥JT1 RJ1

∥∥
1

+ βm
∥∥QTRJ1

∥∥
2,1

s.t. JT2 RJ2 = Θ̂
−1

2 (5.14)

R � 0.

We can find the optimal C and B from the R1 and R12 blocks of the optimal R. Note
that the functionDlog

(
R ‖ S−1

)
:= tr (RS)− log det (RS)−n is referred as the LogDet

divergence [Kulis et al., 2009]. It belongs to the family of Bregman matrix divergences,
which is widely used in machine learning [Murata et al., 2004, Dhillon and Sra, 2005,
Banerjee et al., 2007, Kulis et al., 2009, Santos-Rodrı́guez et al., 2009, Ackermann and
Blömer, 2010]. Therefore the CCP that iteratively optimizes (5.14) can be also seen as a
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Algorithm 3 DiLat-GGM initialization based on heuristic rule
Require: Sample covariance on observed data Σ̂1 � 0 ∈ Rn1×n1 . The nonnegative regularization

parameter α, β > 0. The pre-defined nonegative definite matrix Θ̂2 � 0 ∈ Rn2×n2 .

1: Find the marginal precision matrix Σ̂
−1

1 .

2: Compute the sparse part C0 = soft-threshold(Σ̂
−1

1 , α);

3: Compute the low-rank partM0 = ProxM (C0− Σ̂
−1

1 , β
′
) , where ProxM (Z, β

′
) is defined in

(5.15).

4: FindB0 from C0,M0 according to (5.16);

Ensure: Output (C0,B0,M0).

sequential LogDet divergence minimization problem.

Remark The subproblem (5.14) can be solved using interior point method [Boyd and Van-
denberghe, 2004] implemented via CVX [Grant et al., 2012] and CVXPY [Diamond and
Boyd, 2016]. The drawback is that its time complexity can be as high asO(a2b2.5+ab3.5) =

O(n6.5), where a = O(n2) is the number of optimization parameters and b = O(n) is the
size of semi-definite matrices [Nemirovskii, 2004]. In Appendix 5.6.3, we have developed
a faster implementation using Alternating direction methods of multipliers (ADMM) [Bert-
sekas, 2015], summarized in Algorithm 5. The proposed Algorithm 5 has time complexity
O(n3), much faster compared to the interior point method.

5.3.3 Initialization and Stopping Criterion

Learning DiLat-GGM model involves solving a non-convex optimization problem, whose
performance relies on the choice of initial feasible solution (C0,B0). Following the
idea from [Xu et al., 2017], we can choose the matrix (C0,B0) via a heuristic-based
rule. Specifically, C0 := soft-threshold(Σ̂

−1

1 , α) where soft-threshold(x, α) := sign(x)

(|x| − α)+ is acted on each entry of the matrix. Note that M 0 := B0Θ̂2B
T
0 can be ob-

tained byM 0 = ProxM (C0 − Σ̂
−1

1 , β
′
). The operator ProxM (Z, β

′
) is defined as

ProxM (Z, β
′
) := min

M

1

2
‖M −Z‖2

F + β
′ ‖M‖∗ + 1 {M � 0} . (5.15)

The optimal solution L∗ has the eigen-decomposition

M ∗ = Udiag (ζ)UT

where the eigenvalues ζi = max{σi − β
′
, 0} for Z := Udiag ([σi])U

T .
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Algorithm 4 DiLat-GGM via Convex-concave procedure
Require: Sample covariance on observed data Σ̂1 � 0 ∈ Rn1×n1 . The nonnegative regularization

parameter α, β > 0. The index set of observed data V1 and the index set of the latent data V2.
The pre-defined nonegative definite matrix Θ̂2 � 0 ∈ Rn2×n2 .

1: Initialize: Use heuristic-based rule as in Algorithm 3 or random initialization with best result
reported. Return (C0,B0,M0).

2: for t = 1, . . . , T or until converge do

3: Construct matrix St−1 :=

[
Σ̂1 −Σ̂1Dt−1

−DT
t−1Σ̂1 γt−1I

]
� 0, where Dt−1 := Bt−1Θ̂2,

γt−1 >
∥∥∥DT

t−1Σ̂1Dt−1

∥∥∥
2
, the `2 norm.

4: Solve the convex subproblem (5.14). See Algorithm 5 in Appendix 5.6.2. Return Rt =[
Ct Bt

BT
t Θ̂

−1

2

]
.

5: end for
Ensure: Output CT := [RT ]V1×V1 andBT := [RT ]V1×V2 .

Finally, we obtain B0 ∈ Rn1×n2 from M 0 ∈ Rn1×n1 and Θ̂2 ∈ Rn2×n2 . Let Θ̂2 =

V ΛV T be the eigen-decompostion of Θ̂2, where the eigenvalue 0 < λ0 ≤ λ1 ≤ . . . ≤ λn2

in increasing order and M 0 = Udiag (ζ)UT with eigenvalues ζ0 ≥ ζ1 ≥ . . . ≥ ζr =

0 = . . . ζn1 in decreasing order, where r = rank(M 0). We want to find B0 satisfying the
quadratic equation

M 0 = B0Θ̂2B0.

It is seen that

B0 =


U

[
Ψ

0

]
V T , if n1 ≥ n2

U
[

Ψ 0
]
V T , if n2 > n1

(5.16)

is a feasible solution. Here Ψ := diag (ψ0, ψ1, . . . , ψk, 0, . . . , 0) where ψi =
√

ζi
λi

for
0 ≤ i ≤ k and k = min {r, n2} if n1 ≥ n2 or k = r for n2 > n1. Note that ψi ≥ ψi+1.
In [Yuille and Rangarajan, 2003, Lanckriet and Sriperumbudur, 2009], it is suggested to
start with random initialization and choose the best solution that has the minimal objective
value. We can replace Σ̂1 by a random positive definite matrix to achieve this. In our
experiments in Section 5.4, we choose the heuristic-based initialization with inverse of
empirical covariance matrix.
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A reasonable stopping criterion is that the improvement of objective values being less
than a fixed threshold δ:

h(Ct+1,Bt+1)− h(Ct,Bt) ≤ δ,

where h(C,B) := f(C,B) − g(B) be the objective function of problem (5.7), where
f(C,B) is defined in (5.9) and g(B) is defined in (5.10).

Finally, the CCP-based algorithm to solve DiLat-GGM is summarized in Algorithm 4.

5.3.4 Local Convergence Analysis

It is shown in [Lanckriet and Sriperumbudur, 2009] that a general CCP is a special form of
the MM algorithm [Ortega and Rheinboldt, 2000, Hunter and Lange, 2004]. It is seen that
for the proposed Algorithm 4, the following theorem holds:

Theorem 5.3.2 ([Yuille and Rangarajan, 2003, Lanckriet and Sriperumbudur, 2009, Lipp

and Boyd, 2016]) Let h(C,B) := f(C,B) − g(B) be the objective function of (5.7),
where both f(C,B) as defined in (5.9) and g(B) as defined in (5.10) are convex in (C,B).

Assumes {(Ct,Bt)}∞t=0 is a sequence of solutions of sub-problems (5.14) in Algorithm

4. Then at each iteration, the value of objective function monotonically decreases, i.e.

h(Ct+1,Bt+1) ≤ h(Ct,Bt). Thus {h(Ct,Bt)}∞t=0 converges.

Proof: Assume that (Ct,Bt) is a feasible solution of (5.7). So (Ct,Bt) is also a feasible
solution of the convex subproblem (5.14). Let the objective value be vt := h(Ct,Bt).
Then

vt = f(Ct,Bt)− g(Bt) = f(Ct,Bt)− g̃(Bt;Bt) ≥ f(Ct+1,Bt+1)− g̃(Bt+1;Bt),

where the last inequality follows since at iteration t, (Ct+1,Bt+1) minimizes the objective
function f(C,B) − g̃(B;Bt). Finally, since −g(B) is concave in B, −g̃(B;Bt) ≥
−g(B) for allB with equality holds if and only ifB = Bt. So we have

vt ≥ f(Ct+1,Bt+1)− g̃(Bt+1;Bt) ≥ vt+1.

Since the sequence {vt}∞t=0 is nonincreasing and vt ≥ 0, the iterations will converge. �

Although the objective value converges, there is no guarantee for general CCP problems
that {(Ct,Bt)}∞t=0 converges, even to a local minima [Lipp and Boyd, 2016]. However,
according to the Theorem 4 in [Lanckriet and Sriperumbudur, 2009], if both f and g are
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real-valued differentiable functions and∇g is continuous, and if some additional conditions
are satisfied, then all limit points of the solution sequence {(Ct,Bt)}∞t=0 are stationary
points of the original DC-problem (5.7). Specifically, we have the following theorem:

Theorem 5.3.3 Let f(C,B) and g(B) be the convex functions defined in (5.9) and (5.10),
respectively. Denote the point-to-set map S(Z) := arg minC,B{f(C,B) − g̃(B;Z) :

(C,B) ∈ Ω}, where f(C,B)−g̃(B;Z) is the objective function of the subproblem (5.14),
and Ω :=

{
(C,B) : C −BΘ̂2B

T � 0
}

is the feasible region. Then all limit points of

{(Ct,Bt)}∞t=0 are stationary points of the original DC-problem (5.7). Moreover, the limit

of the objective value lim
t→∞

f(Ct,Bt) − g(Bt) = f(C∗,B∗) − g(B∗), where (C∗,B∗) is

some stationary point of (5.7).

Proof: We establish the theorem by confirming the condition of Theorem 4 in [Lanckriet
and Sriperumbudur, 2009]. First observe that both f and g are differentiable function in
(C,B) and ∇g(B) = 2Σ̂1BtΘ̂2 is continuous in B. Next note that at each iteration t,
the new subproblem S(Bt) does not depends on previous result Ct. Let Ct be fixed and
the feasible region Ω is reparameterized in terms of B as ΩB :=

{
B : BΘ̂2B

T � C
}

.
Since the subproblem (5.14) is convex, there exists a unique global minimizer, thus the set
S(Bt) 6= ∅ for anyBt ∈ ΩB. Finally, note that ‖Ct‖2 ≤ ρ, sinceCt is an optimal solution
for the subproblem (5.14) in previous iteration. We see that ΩB ⊂

{
B : BΘ̂2B

T � ρI
}

,
which is a compact subset in Rn1×n1 . As a result, S(Bt) is uniformly compact over ΩB.
Hence, according to Theorem 4 in [Lanckriet and Sriperumbudur, 2009], the above results
hold. �

Note that the above convergence result holds for any random initialization. However,
since the DiLat-GGM is non-convex, it may have multiple stationary points. Thus the final
limit point does depend on the initialization.

5.4 Experiments

In this section, we compare the performance of the DiLat-GGM 2 on synthetic datasets
with two graph topology learning algorithms: the graphical Lasso (GLasso) [Friedman
et al., 2008], the latent variable Gaussian graphical model (LV-GGM) [Chandrasekaran
et al., 2012] and the EM version of LV-GGM (EM-GLasso) [Yuan, 2012] described in
Appendix 5.6.1. The gLasso is implemented using scikit-learn Python package [Pedregosa
et al., 2011]. The LV-GGM is implemented via ADMM algorithm as in [Ma et al., 2013].

2The code is available in https://github.com/TianpeiLuke/LatNet
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Table 5.1: Edge selection error for different graphs, with the best performance shown in bold.
Mean Jaccard distance error (×100%)

Network GLasso
EM-

GLasso
GenLap

LV-
GGM

DiLat-
GGM

complete binary tree
(h = 3, n1 = 10)

55.7 65.2 12.8 36.4 18.8

complete binary tree
(h = 4, n1 = 17)

11.3 32.1 22.4 3.5 2.2

complete binary tree
(h = 5, n1 = 36)

15.0 26.6 50.9 3.3 2.5

grid
(w = 5, h = 5, n1 = 15)

39.3 40.7 5.7 23.3 12.8

grid
(w = 7, h = 7, n1 = 30)

10.4 18.0 20.8 7.7 4.6

grid
(w = 9, h = 9, n1 = 49)

10.3 25.1 32.7 7.8 5.4

Erdős-Rényi
(n = 15, p = 0.05, n1 = 10)

19.6 25.4 7.9 15.0 13.9

Erdős-Rényi
(n = 30, p = 0.05, n1 = 20)

9.6 22.3 23.0 6.2 4.5

Erdős-Rényi
(n = 60, p = 0.05, n1 = 40)

10.8 32.5 61.1 8.1 6.5

Erdős-Rényi
(n = 60, p = 0.1, n1 = 40)

39.3 43.5 63.4 34.1 27.2

Erdős-Rényi
(n = 60, p = 0.15, n1 = 40)

54.9 56.2 62.1 52.2 50.2

See Appendix 5.6.2. We also includes the generalized Laplacian learning (GenLap) [Pavez
and Ortega, 2016] which is a variant of dual gLasso.

To illustrate performance of the proposed algorithm 5, we use a synthesis data set
(X,G). First, a full network G = (V , E) with n = |V| is generated. Let L be the nor-
malized Laplacian matrix. The random graph signal x ∈ Rn is generated from the Lapla-
cian matrix L according to the distribution x ∼ N (0,Σ), where the covariance matrix
Σ = (L+ εI)−1 , for a small ε > 0. Note that the true precision matrix for the full data
Θ = L + εI , whose support set is equal to the edge set E of the graph G. A set of m i.i.d
realizations of x is generated, which is referred to as X = [xv]v∈V ∈ Rn×m with xv as its
v-th row. Let m > n. In all experiments below, we choose m = 500, which is sufficiently
large for well-conditioned estimates, given the size of graph under consideration.

A local sub-network G1 is sampled via the breadth-first search strategy [Cormen, 2009]:
we randomly choose an initial point u0 ∈ V , and set V(0)

1 = {u0}. At each iteration
t = 1, . . . ,, for each v ∈ V1, we find all neighbors of v as Nv = {w|(w, v) ∈ E}. Then
V(t)

1 := V(t−1)
1 ∪

⋃
v∈V(t−1)

1
Nv. The sampling procedure stops when |V1| > n

′
0. Let |V1| = n1
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(a) Ground truth
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(b) GLasso
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(c) LV-GGM
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(d) DiLat-GGM

Figure 5.4: (a) The ground truth is a balanced binary tree with height h = 3. (b) The graph learned
by GLasso with optimal α = 0.6 (c) The graph learned by LV-GGM with optimal α = 0.1, β =
0.15 (d) The graph learned by DiLat-GGM with optimal α = 0.15, β = 1. It is seen that GLasso
has high false positives (cross-edges between leaves) due to the marginalization effect. Compare to
LV-GGM, the DiLat-GGM has fewer missing edges and less false positives.

and define the sub-network G1 := (V1, E1) with E1 := E ∩ (V1 × V1). The remaining vertex
set is V2 and it forms a network G2. Let L1 be the normalized Laplacian matrix for G1.

Given V1, we choose the corresponding data X1 := [xv]v∈V1 . The task is to find the
sub-network topology G1 given partially observed data X1. To measure the accuracy of
the edge selection, we use the Jaccard distance [Jaccard, 1901, Choi et al., 2010b] between
two sets A,B as

distJ(A,B) = 1− |A ∩B|
|A ∪B|

∈ [0, 1].

The Jaccard distance is a widely used similarity measure in structure estimation [Toldo

103



(a) Ground truth (b) GLasso

(c) LV-GGM (d) DiLat-GGM

Figure 5.5: (a) The ground truth of size n1 = 40 with a grid structure. (b) The graph learned by
GLasso with optimal α = 0.4 (c) The graph learned by LV-GGM with optimal α = 0.1, β = 0.15
(d) The graph learned by DiLat-GGM with optimal α = 0.2, β = 1. It is seen that GLasso has
high false positives (cross-edges between leaves) due to the marginalization effect. Compare to
LV-GGM, the DiLat-GGM has fewer missing edges and less false positives.

and Fusiello, 2008], clustering [Ferdous et al., 2009] and information retrieval [Manning
et al., 2008]. In the experiment, the set A :=

{
(i, j) | Ĉi,j 6= 0, i > j

}
is the support set

of estimated sparse precision matrix Ĉ is chosen to compare with the true edge set B :=

{(i, j) | L1 6= 0, i > j}. In most of the experiments in this section, we choose the best
performance after a grid search of regularization parameter α ∈ [10−2, 0.7], β ∈ [0.01, 5].
For DiLat-GGM, we choose the matrix Θ̂2 as

Θ̂2 = L̂2 + σ2
LG,

where L̂2 is an estimate of inverse covariance matrix over x2, σL > 0 andG = 1
n2

2
HHT is

a Gram matrix generated by Gaussian random matrixH ∈ Rn2×n2 withH i,j
i.i.d.∼ N (0, 1).

We first compare the performance of edge selection for GLasso, GenLap, LV-GGM
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(b)

Figure 5.6: (a) The sensitivity of DiLat-GGM for a fixed complete binary tree graph (h = 4) under
the different choice of regularization parameter α and β. The network is illustrated as G in (b). The
performance is measured in terms of Jaccard distance error. (b) Illustration of experiments in (a).
The ground truth network G on the right is a complete binary tree graph (h = 4) with observed
variables on red vertices. The task is to infer the marginal network G1 for red vertices (left) given
data xV1 on its nodes (red) and a summary of latent network (center) Θ̂V2 = L̂2, where L̂2 is an
estimate of inverse covariance matrix over x2 (blue vertices). See that all the latent variables are
conditional independent given the observed data xV1 .

and the proposed DiLat-GGM. In Figure 5.4 and Figure 5.5, we compare these methods
qualitatively by showing their learned network under the choice of optimal parameters.
The ground truth is a balanced binary tree with h = 3 in Figure 5.4 and a neighborhood
in a 8 × 8 grid network in Figure 5.5, respectively. It is seen that the learned network by
DiLat-GGM has fewer missing rate and false positive rate in edge detection compared to
GLasso and LV-GGM in both networks. The GLasso, however, has a higher false positive
rate in boundary vertices due to the effect of marginalization. Table 5.1 shows the mean
edge selection error under different graphs for GLasso, GenLap, LV-GGM and DiLat-GGM
in terms of the Jaccard distance. All results are based on an average of 50 runs and for
each run we choose the best performance after a grid search of regularization parameter
α ∈ [10−2, 0.7], β ∈ [0.01, 5]. For DiLat-GGM, Θ̂2 = L̂2 + σ2

LG as defined above with
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Figure 5.7: (a) The sensitivity of DiLat-GGM for a Erdős-Rényi graph model with n = 30, p =
0.16 in (b) under the different choice of regularization parameter α and β. The performance is
measured in terms of Jaccard distance error. (b) Illustration of experiments in (a). The underling
network is a realization of a Erdős-Rényi graph model with observed variables on red vertices. The
task is to infer the marginal network G1 for red vertices (left) given data xV1 on its nodes (red) and
a summary of latent network (center) Θ̂V2 = L̂2, where L̂2 is an estimate of inverse covariance
matrix over x2 (blue vertices). Compared with Figure 5.6, latent variables are conditional depedent
on each other given the observed data xV1 .

σL = 0.1. We compare the result with different graph topology, including the complete
binary tree with height h, the grid network with width w and height h and the Erdős-Rényi
graph with size n and edge probability p. As shown in the table, our proposed DiLat-
GGM reaches superior performance compared to GLasso, LV-GGM, EM-GLasso for all
investigated networks. When the size of full network is very small, the GenLap algorithm
reach the best performance. This is due to the strong interaction between latent variables
and the observed variables, which causes a decrease in performance for GLasso, LV-GGM
and DiLat-GGM. These three algorithms rely on the soft-regularizer such as the `1 norm to
learn a sparse graph, which is not as strong as the non-negative constraint in GenLap. The
performance of the GenLap algorithm decreases drastically when the size of the network
getting large due to the bias induced by the strong non-negative constraint. For the Erdős-
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Figure 5.8: A comparison between DiLat-GGM and LV-GGM when Θ̂2 = diag(θ̂) where θ̂ =
[θ̂1, . . . , θ̂n2 ] is an estimate of conditional variance over x2 and when Θ̂2 = I . We use the same
balanced binary tree as in Figure 5.6 but with non-identical conditional variances over x2. See
that for DiLat-GGM, Θ̂2 = diag(θ̂) performs better than Θ̂2 = I , since θ̂ accounts for the actual
conditional variances in x2.

Rényi graph, the performance for all algorithms decreases as the edge probability increases.
This reflects the increase of the bias induced by the sparsity penalty.

We also compare the EM-GLasso and DiLat-GGM in Table 5.1. As mentioned in
Section 5.3, both algorithms share some similarities and DiLat-GGM can be seen as a
generalization of EM-Glasso. However, the ability of conditional feature selection imposed
by the row sparsity regularization in DiLat-GGM permits a better to fit to the underlying
structures of the graph. As a result, DiLat-GGM outperforms EM-GLasso in all cases
investigated.

In Figure 5.6, we demonstrate the sensitivity of the DiLat-GGM model under different
choices of regularization parameter α and β. The results are based on an average of 20

runs with fixed graph topology and fixed choice of observed sub-network. We use the Θ̂2

as above. The results in Figure 5.6 (a) is based on smooth data over a complete binary tree
in Figure 5.6 (b). Figure 5.6 (c) shows the external network G2 corresponding to Θ̂2. Note
that the latent variables in G2 are all independent. Similarly, the results in Figure 5.7 (a) is
over a realization of Erdős-Rényi graph (n = 30, p = 0.16) in Figure 5.7 (b). From both
Figure 5.6 (a) and Figure 5.7 (a) we see that when α increases the learned graph becomes
too sparse so the Jaccard distance error increases. The choice of β controls the row sparsity
of the conditional cross precision Θ21, if it is too small, the DiLat-GGM cannot capture
the local effect of the latent variables, which decreases its performance in sub-network
learning. Both plots show that an optimal choice of (α, β) exists for the DiLat-GGM,
which is the same as the other graphical model selection methods such as the GLasso and

LV-GGM. In practice, it is observed that α = ϕ
√

log(n)
m

and β = r
√

n
m

for ϕ ∈ [0.1, 0.5]

and r ∈ [0.5, 2] will result in a good performance.
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Figure 5.9: (a) The robustness of DiLat-GGM under different (α, β) when Θ2 is corrupted. The

underlying network is the same as Figure 5.7. Note that when the Signal-to-Noise Ratio (SNR)

decreases, the performance of DiLat-GGM decreases. (b)-(c) A comparison between DiLat-GGM

and LV-GGM when Θ̂2 = L̂2 for the inverse covariance of x2 and when Θ̂2 = I . In (b), we use the

same graph as in Figure 5.6 with equal conditional variance over x2. In (c), we use the same graph

as in Figure 5.7. Note that when the non-informative prior Θ̂2 = I is chosen, the performance

of DiLat-GGM is slightly worse than that of LV-GGM due to its non-convexity. The performance

of DiLat-GGM improves for a great amount when Θ̂2 is known to fit the latent network G2. Also

see that when the latent variables are all conditional independent with equal conditional variance,

the identity matrix Θ̂2 = I is optimal. In this case, the LV-GGM has better performance than

DiLat-GGM.

In Figure 5.9 (a), we evaluate the robustness of DiLat-GGM when the pre-defined ma-
trix Θ̂2 is corrupted by noise. In specific, we define Θ̂2 = L̂2+σ2

LG, where σL ∈ [10−2, 5],
L̂2 is the inverse covariance of x2 evaluated using the ground truth data x2. The Signal-

to-Noise Ratio (SNR) is defined as
(

log
‖L̂2‖2

F

‖σ2
LG‖

2

F

)
(dB). It is seen that when the SNR
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Figure 5.10: A comparison of the Jaccard distance error of DiLat-GGM when Θ̂2 is estimated by
the GLasso or the inverse of sample covariance matrix L̂2. The underling network is generated from
the Erdős-Rényi (ER) graph model with different (n, p). See that using the GLasso as a precision
matrix estimator, the DiLat-GGM has better performance compared to the case of the inverse of
sample covariance matrix. This is because the GLasso esimator has lower variance compared with
the inverse of sample covariance matrix.

decreases, the performance of DiLat-GGM deteriorates. However, it is also seen that when
the noise level is within a range of relatively small values, the performance of DiLat-GGM
is stable, indicating its robustness under the uncertainty in Θ̂2. In Figure 5.9 (b) and (c),
we compare the performance of DiLat-GGM and LV-GGM when Θ̂2 = L̂2, inverse co-
variance of ground truth x2 and when Θ̂2 = I , the uniform prior. In (b), we choose the
network as illustrated in Figure 5.6 with equal conditional variance over x2. In (c), we use
the same graph as in Figure 5.7. It is seen that when Θ̂2 = I , no prior knowledge of latent
variables is given, the performance of DiLat-GGM is slightly worse than that of LV-GGM,
since DiLat-GGM is seen as a non-convex reformulation of LV-GGM and its performance
is affected by the choice of initialization. However, when the prior knowledge regarding the
dependency structure of latent variables is given, the performance of DiLat-GGM improves
a lot since it utilizes the inner structure of latent variables to effectively reduce the number
of latent variables in concern. This is equivalent to a feature selection procedure in latent
space. Also, a comparison between Figure 5.9 (b) and (c) shows that when the latent vari-
ables are all conditional independent with equal conditional variance, the identity matrix
Θ̂2 = I is optimal. In this case, the LV-GGM has better performance than DiLat-GGM. In
Figure 5.8, we compare the performance of DiLat-GGM and LV-GGM over the balanced
tree network as in Figure 5.6 but with non-identical conditional variances over x2. It is
seen that for DiLat-GGM, Θ̂2 = diag(θ̂) performs better than Θ̂2 = I , since θ̂ accounts
for the actual conditional variances in x2.
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In Figure 5.10, we compare the performance of DiLat-GGM when the inverse of sample
covariance matrix L̂2 is replaced by the GLasso precision matrix estimator. Note that since
the GLasso estimator has lower variance compared to the inverse of sample covariance
estimator, i.e., the DiLat-GGM has improved topology estimation accuracy.

5.5 Conclusion

We proposed the DiLat-GGM, a delayed-influence latent variable Gaussian graphical model
to learn the conditional connectivity of a sub-graph of a GMM with partially observed data.
By incorporating a row-sparsity regularization, DiLat-GGM performs the feature selection
during the model selection and learns a linear mapping to estimate the latent variables.
The problem involves solving a DC-programming and an efficient solver based on CCP
and ADMM has been proposed. Theoretical analysis shows that the proposed algorithm
guarantees to converge to a local stationary point. Experiments on synthetic dataset show
its superior performance compared to the conventional Gaussian graphical model selection
methods such as the Glasso and the LV-GGM. Future research directions including devel-
opment of fast optimization method for large-scale datasets and extension of DiLat-GGM
to learn both sub-networks G1 and G2 simultaneously.
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5.6 Appendix

5.6.1 The EM algorithm to solve LV-GGM

A great advantage of LV-GGM is that it is a convex problem and the global optimal solution
is guaranteed. Before Chandrasekaran et al. [Chandrasekaran et al., 2011, 2012], a natural
way to solve a latent variable inference problem such as LV-GGM is via Expectation Max-
imization (EM) algorithm. EM algorithm is a heuristic based algorithm that minimizes the
upper bound of the negative log-marginal likelihood functions (w.r.t. the latent variables)

min
Θ1�0

− log

∫
p(x1,x2|Θ1)dx2 + α ‖Θ1‖1

≤ E
x2|x1,Θ̂

(t) [− log p(x1,x2,Θ1)]−H(x2|x1, Θ̂
(t)

) + α ‖Θ1‖1 . (5.17)

where the first term is the joint log-likelihood conditioned on the observed variables and
H(x2|x1, Θ̂

(t)
) = −Epx2|x1

[
log px2|x1

]
is the Shannon entropy. We find the upper bound

in (5.17)

Q(Θ|Θ̂
(t)

) := E
x2|x1,Θ̂

(t) [− log p(x1,x2|Θ) + α ‖Θ1‖1]

= − log det Θ + tr
(
E
x2|x1,Θ̂

(t)

[
Σ̂
]

Θ
)

+ α ‖Θ1‖1

where Σ̂ is the covariance matrix for full data. Then using the fact that P (x2|x1, Θ̂
(t)

) is
also a Gaussian distribution with mean and covariance

E
[
x2|x1, Θ̂

(t)
]

= Σ̂
(t)

21

(
Σ̂

(t)

1

)−1

x1

Cov(x2|x1, Θ̂
(t)

) = Σ̂
(t)

2 − Σ̂
(t)

21

(
Σ̂

(t)

1

)−1

Σ̂
(t)

12

for Σ̂
(t)

=
(
Θ̂

(t)
)−1

, the EM algorithm is described as below:

For t = 1, . . . , until convergence:

1. M-step: Find the estimate of joint inverse covariance matrix Θ̂
(t)

via graphical Lasso.
That is solve the following problem

Θ̂
(t)

= arg min
Θ�0
− log det Θ + tr

(
Σ̂

(t−1)
Θ
)

+ α
∥∥JT1 ΘJ1

∥∥
1

(5.18)
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where J1 :=
[
In1 0

]T
∈ Rn×n1 .

2. E-step: Find the conditional expectation of the full covariance Σ̂
(t)

:= E
x2|x1,Θ̂

(t)

[
Σ̂
]

given the observed data via imputation

Σ̂
(t)

=

 Σ1 −Σ1Θ̂
(t)

12

(
Θ̂

(t)

2

)−1

−
(
Θ̂

(t)

2

)−1

Θ̂
(t)

21 Σ1

(
Θ̂

(t)

2

)−1

+ Θ̂
(t)

21 Σ1Θ̂
(t)

12

 (5.19)

where Θ̂
(t)

2 = I if all hidden variables are conditional independent. Here Σ1 is the
empirical covariance matrix on the observed node.

Note that compared to (5.13), the matrix in (5.19) is equal to
[
I Θ̂2

]
S1 (Dt)

[
I

Θ̂2

]
except for the principal submatrix corresponding to the latent variables. Also in the CCP
in (5.14), the conditional covariance Θ̂2 is fixed, but the EM algorithm also learns Θ̂2 in
M-step.

5.6.2 Solving the latent variable Gaussian graphical model via ADMM

From the formulation of LV-GGM,

(S∗,L∗) = arg min
L, S
−m

2
log det (S− L) +

m

2
tr
(
Σ̂o (S− L)

)
+ αm (λ‖S‖1 + ‖L‖∗)

s.t. S− L � 0

L � 0

we can instead separate the constraints and the log-likelihood function with additional copy
ofR := S −L. Then the above problem becomes

(R∗,S∗,L∗) = arg min
L, R, S

−m
2

log det (R) +
m

2
tr
(
Σ̂oR

)
+ αm‖S‖1 + γm‖L‖∗

s.t. R− S + L = 0

R � 0

L � 0.
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Denote Z := (R,S,L). We can again separate out the linear equality constraint with an-
other copy Z ′ := (R′,S′,L′). Therefore, we solve the ADMM with concensus constraint

min
L, R, S, L′, R′, S′

− m

2
log det (R) +

m

2
tr
(
Σ̂oR

)
+ αm‖S‖1 + γm‖L‖∗ + 1 {R′ − S′ + L′ = 0}

s.t. R− S + L = R′ − S′ + L′

R � 0

L � 0. (5.20)

ADMM relies on the easy computation of the proximal projection

Prox(Z, ξ) := min
R

1

2ξ
‖R−Z‖2

F +R(R)

1. ForR � 0,

ProxR(Z, ξ) := min
R

1

2ξ
‖R−Z‖2

F − log det (R) + tr
(
Σ̂oR

)
which has optimal solution

R = Udiag (γ)UT

for ξΣ̂o −Z := Udiag (σ)UT

γi =
−σi +

√
σ2
i + 4 ξ

2

2. For S sparse,

ProxS(Z, ξ) := min
S

1

2ξ
‖S −Z‖2

F + α ‖S‖1

which has optimal solution

S = soft-threshold(Z, ξ α)

3. For L � 0 low-rank,

ProxL(Z, ξ) := min
L

1

2ξ
‖L−Z‖2

F + γ ‖L‖∗ + 1 {L � 0}
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which has optimal solution

L = Udiag (ζ)UT

for Z := Udiag (σ)UT

ζi = max{σi − ξ γ, 0}

Finally we need to adjust Z := (R,S,L), according to the dual variables Λ :=

(ΛR.ΛS,ΛL). The ADMM solution is as below:

1. UpdateW := Z + µΛ;

2. Find new Z := (R,S,L), given W := (WR,W S,W L) and ξ = µ, via proximal
projection as above;

3. Update T := Z − µΛ;

4. Update

R′ = TR − (TR − T S + T L) /3

S′ = T S + (TR − T S + T L) /3

L′ = T L − (TR − T S + T L) /3

5. Update the dual variables via direction of multipliers

Λ← Λ− 1

µ
(Z −Z ′)

Note that the original problem is convex, so the ADMM (5.20) guarantee to converge
to the global minimal. See [Ma et al., 2013] for details.

5.6.3 Solving subproblem (5.14) using ADMM

Denote Θ̂
−1

2 = T . By introducing an auxiliary variable P =

[
P 1 P 12

P 21 P 2

]
= R and

W = Θ̂2P 21, problem (5.14) becomes

min
R,P ,W

− log detR+ tr (SR) + αm
∥∥JT1 P J1

∥∥
1

+ βm ‖W ‖2,1

s.t. JT2 P J2 = T
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R = P

W = QTPJ1

R � 0.

where J1 :=
[
In1 0

]T
∈ Rn×n1 , J2 :=

[
0 In2

]T
∈ Rn×n2 , Q :=

[
0 Θ̂2

]T
∈

Rn×n2 . Following the ADMM procedure, we form an augmented Lagrangian as

L(R,P ) = − log detR+ tr (SR) + αm
∥∥JT1 P J1

∥∥
1

+ βm ‖W ‖2,1

+ 1 {R � 0}+ 1
{
JT2 P J2 − T = 0

}
+ tr

(
ΛT (R− P )

)
+
ρ

2
‖R− P ‖2

F

+ tr
(
ΛT
w

(
W − Θ̂2P 21

))
+
ρw
2

∥∥∥W − Θ̂2P 21

∥∥∥2

F
,

where Λ ∈ Rn×n and Λw form dual matrices. ADMM minimizes the augmented La-
grangian via block coordinate descent. In specific, it solves two separable problems:

min
R

− log detR+ tr (SR) + tr
(
ΛT (R− P )

)
+
ρ

2
‖R− P ‖2

F (5.21)

= − log detR+ tr (SR) +
ρ

2

∥∥∥∥R− P +
1

ρ
Λ

∥∥∥∥2

F

s.t. R � 0,

and

min
P ,W

αm
∥∥JT1 P J1

∥∥
1

+ βm ‖W ‖2,1 + tr
(
ΛT (R− P )

)
+
ρ

2
‖R− P ‖2

F

+ tr
(
ΛT
w

(
W − Θ̂2P 21

))
+
ρw
2

∥∥∥W − Θ̂2P 21

∥∥∥2

F
(5.22)

= αm
∥∥JT1 P J1

∥∥
1

+ βm ‖W ‖2,1 +
ρ

2

∥∥∥∥P −R− 1

ρ
Λ

∥∥∥∥2

F

+
ρw
2

∥∥∥∥W − Θ̂2P 21 −
1

ρw
Λw

∥∥∥∥2

F

s.t. JT2 P J2 = T .

From Section 5.6.2, we see that (5.21) corresponds to a proximal operator

ProxR(Z, ξ) := min
R�0

1

2ξ
‖R−Z‖2

F − log det (R) + tr (SR) . (5.23)
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The optimal solution of above satisfies that the gradient of the objective function

1

ξ
(R−Z)−R−1 + S = 0.

Let the eigen-decomposition of ξS − Z := Udiag (σ)UT , where σ := (σi). Then the
optimal solution

R = Udiag (γ)UT

where γi =
−σi +

√
σ2
i + 4 ξ

2
> 0.

To solve (5.22), we see that the objective of (5.22) is separable as well. Problem (5.22)
is equivalent to

min
P 1,P 21,W

αm ‖P 1‖1 +
ρ

2

∥∥∥∥P 1 −R1 −
1

ρ
Λ1

∥∥∥∥2

F

+ βm ‖W ‖2,1 +
ρ

2

∥∥∥∥P 21 −R21 −
1

ρ
Λ21

∥∥∥∥2

F

+
ρw
2

∥∥∥∥W − Θ̂2P 21 −
1

ρw
Λw

∥∥∥∥2

F

(5.24)

and P 2 = T . It involves three proximal operators: first,

ProxP 1,α(Z, ξ) := min
P 1

1

2ξ
‖P 1 −Z‖2

F + α ‖P 1‖1

which is equivalent to

ProxP 1,α(Z, ξ) = soft-threshold(Z, ξ α). (5.25)

Then,

ProxP 21(Z,Z
′
, ξ, ξw) := min

P 21

1

2ξ
‖P 21 −Z‖2

F +
1

2ξw

∥∥∥Θ̂2P 21 −Z
′
∥∥∥2

F

This is a linear transformation

ProxP 21(Z,Z
′
, ξ, ξw)

=
(
ξwI + ξΘ̂

2

2

)−1 (
ξwZ + ξΘ̂2Z

′
)

= Udiag
[

ξw
ξw + ξλ2

i

]
i,i

UTZ +Udiag
[

ξλi
ξw + ξλ2

i

]
i,i

UTZ
′

(5.26)
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Algorithm 5 DiLat-GGM subproblem via ADMM
Require: Positive definite matrixS � 0 andS ∈ Rn×n. The nonnegative regularization parameter

α, β > 0. The pre-defined nonegative definite matrix Θ̂2 � 0 and Θ̂2 ∈ Rn2×n2 . Let T =

Θ̂
−1

2 . Let n1 = n− n2. Dual update parameter µ, µw > 0.

1: Initialize: Choose an random matrixR(0) =

[
R

(0)
1 R

(0)
12

R
(0)
21 R

(0)
2

]
∈ Rn×n andR(0) � 0. Λ(0) =

0 ∈ Rn×n =

[
Λ

(0)
1 Λ

(0)
12

Λ
(0)
21 Λ

(0)
2

]
. Λ

(0)
W = 0 ∈ Rn2×n1 . Let P (0) =

[
P

(0)
1 P

(0)
12

P
(0)
21 P

(0)
2

]
= R ∈

Rn×n. ChooseW (0) = Θ̂2P
(0)
21 .

2: for t = 1, . . . , T or until converge do

3: Find P (t)
1 ∈ Rn1×n1 via P (t)

1 = ProxP 1,α(R
(t−1)
1 + µΛ

(t−1)
1 , µ) as in (5.25);

4: if Θ̂2 := diag
(
Θ̂2

)
then

5: Find P (t)
21 ∈ Rn2×n1 via P (t)

21 = Prox
′
P 21,β

(R
(t−1)
21 + µΛ

(t−1)
21 , µ) as in (5.29)

6: else
7: FindW (t) ∈ Rn2×n1 viaW (t) = ProxW ,β(Θ̂2P

(t−1)
21 − µwΛ

(t−1)
W , µw) as in (5.27);

8: Find P (t)
21 = ProxP 21(R

(t−1)
21 + µΛ

(t−1)
21 ,W (t) + µwΛ

(t−1)
W , µ, µw) as in (5.26);

9: Update dual variables ΛW .

Λ
(t)
W = Λ

(t−1)
W +

1

µw

(
W (t) − Θ̂2P

(t)
21

)
10: end if

11: Set P (t)
2 = T and P (t)

12 =
(
P

(t)
21

)T
. Construct P (t).

12: FindR(t) ∈ Rn×n viaR(t) = ProxR,α(P (t) − µΛ(t−1), µ) as in (5.23).

13: Update dual variables Λ

Λ(t) = Λ(t−1) +
1

µ

(
R(t) − P (t)

)
.

14: end for
Ensure: Output (R(T ),P (T )) if Θ̂2 is diagonal and (R(T ),P (T ),W (T )) otherwise.

where Θ̂2 = Udiag [λi]i,iU
T is the eigen-decomposition. And the proximal operator

ProxW ,β(Z
′
, ξ) := min

W∈Rn2×n1

1

2ξ

∥∥∥W −Z ′
∥∥∥2

F
+ β ‖W ‖2,1 ,

which has optimal solutionW with i-th row

W i =

(
1− βξ∥∥Z ′i∥∥2

)
+

Z
′

i, i = 1, . . . , n2 (5.27)

Note that if the matrix Θ̂2 is a diagonal matrix Θ̂2 = diag
(
θ̂2

)
, where θ2 := (θ21, . . . θ2,n2) ∈
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Rn2 , θ2,i > 0, i = 1, . . . , n2, we can compute P 21 directly without introducing W and Λw

using the proximal operator

Prox
′

P 21,β
(Z, ξ) := min

P 21∈Rn2×n1

1

2ξ
‖P 21 −Z‖2

F + β
∥∥∥Θ̂2P 21

∥∥∥
2,1

(5.28)

The optimal solution P 21 of problem (5.28) has its i-th row

(P 21)i =

(
1− θ2,iβξ

‖Zi‖2

)
+

Zi, i = 1, . . . , n2 (5.29)

where (x)+ := max {x, 0}.
Finally, we have the dual updates

Λ(t) := Λ(t−1) + ρ (R− P )

Λ(t)
w := Λ(t−1)

w + ρw

(
W − Θ̂2P 21

)
The algorithm of ADMM is summarized in Algorithm 5.
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CHAPTER 6

Conclusion, Discussion and Future Research
Directions

6.1 Conclusion and Discussion

In many practical machine learning problems, information comes from multiple sources.
Modern information processing systems, such as recommendation systems, vision and au-
dio processing systems, control systems and automated vehicle systems, often need to
handle large-scale multi-view data. There is therefore a need for data analyst to develop
methodologies that naturally accommodate large-scale data from multiple sources. This
thesis proposes approaches that are motivated by information theory and robust multi-view
learning. Of principal concern is the robustness of the learning algorithm in the pres-
ence of noisy corruption, multi-view inconsistency, intervention of external sources and
various uncertainties within the processing system. As seen in Chapter 2, information the-
ory provides a great variety of measures and divergences, which quantify the amount of
information and uncertainties shared among multiple systems. This thesis focused on a
small subset of information theoretic measures, including KL-divergence in robust learn-
ing, multi-view learning and graphical model inference. Use of other divergence measures
such as the α-divergence [Hero et al., 2001, Cichocki et al., 2007, Póczos and Schneider,
2011], f -divergence [Moon and Hero, 2014b] and Hellinger distance [Hellinger, 1909, Be-
ran, 1977, Lindsay, 1994, Cutler and Cordero-Brana, 1996, Cieslak et al., 2012] may be
worthwhile extensions of this work. Like KL-divergence, these measures and divergences
have been shown to be robust to the presence of noise and mixture components in some
settings. This make them natural candidates to study in the context of extending beyond
the role of KL-divergence in Chapter 3 and Chapter 4.

The success and popularity of KL-divergence in robust multi-view learning lies in its
close association with the exponential family, graphical model and information geome-
try. Each of these fields has extraordinary rich contents and they are all united under the
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framework of maximum entropy learning. This unique property of KL-divergence makes it
preferable to other measures as a robust surrogate function in machine learning and statis-
tics. For our work, maximum entropy learning plays a key role, related to the role of
maximum likelihood estimation in machine learning and statistics. As seen in Chapter 2,
maximum entropy learning and maximum likelihood estimation are conjugate dual to each
other from the perspective of convex analysis and information geometry. However, the role
of data in both problems are different: in maximum likelihood, the learning objective to
choose a parametric model that matches the empirical distribution of data; in maximum
entropy, data are used to generate constraints and an non-parametric model is learned from
prior distribution and data constraints. In the former case, data are trusted and dominate the
learning process, but in the latter case, data constraints are allowed to fluctuate, allowing
more flexibility in modeling. Maximum entropy learning explicitly separates out the task-
related structural information and the task-independent model information. It then allows
us to extend and combine different learning tasks into a single unified framework. This is
the basis for our development in Chapter 3 and Chapter 4.

One of the principal contributions of this thesis is the development of multi-view inter-
pretation of graph signal analysis. This provides a fresh perspective at the intersection of
the fields of network analysis and graphical models. The former focuses on the represen-
tation, inference and characterization of network topology. The latter focuses on the repre-
sentation and inference of the structure of high dimensional data. The definition of smooth
graph signals in graph signal processing (GSP) brings together the correlation between the
view of graph and the view of data on graph: the behavior of a datum is closely associ-
ated with the position of its corresponding vertex within the network. Unlike multi-view
learning algorithms discussed in Chapter 1, the multi-view graph signal learning is formu-
lated as a hierarchical model, with a graph layer on the top of a data layer. Before GSP,
the idea of coupling graph and data views was pursued independently in social network
analysis through definitions of various centrality measures [Barthelemy, 2004, Newman,
2005, Brandes, 2008, Jackson, 2010], and in graphical models through inverse covariance
estimation, correlation screening [Hero and Rajaratnam, 2011, Firouzi et al., 2013] and
model selection methods [Ravikumar et al., 2008, Anandkumar et al., 2011, Ravikumar
et al., 2010]. For GSP, such correlation naturally resides in the eigenvalues and eigenvec-
tors of graph Laplaican matrix. The eigenvalues of graph Laplacian reflect the invariant and
geometric property of the graph and the eigenvectors of graph Laplacian form an orthonor-
mal basis in a function space of graph signals. The development of alternative hierarchical
models in analyzing the coupling effect between data and network topology is an important
extension of this thesis. This serves as a future research direction.
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To some extent, the effort of graph signal processing is still unidirectional: the graph
signal analysis is based on prior knowledge on the underling network topology. The alter-
native direction which seeks to infer graph topology given data is also important in knowl-
edge discovery and data representation. In graphical models, this is the problem of the
graphical model selection [Ravikumar et al., 2008, Anandkumar et al., 2011, Ravikumar
et al., 2010]. However, for general graphical models, learning graphical model topology
is still challenging for large-scale data. Even for Gaussian graphical models, where effi-
cient learning algorithms exist, it is difficult to impose additional topological constraint on
learning task. In terms of this, our work in Chapter 5 generalizes the standard Gaussian
graphical model by imposing a sparsity constraint on the cross edges between two clus-
ters. We show that by borrowing the strength of multi-view learning graphical models with
specific topological structure is possible.

We summarize the main contributions of the thesis as follows.

• Chapter 3 was dedicated to robust maximum entropy learning. In particular, we
solved a classification problem when the underling feature distribution is a mixture
of anomalous and nominal distributions. The proposed GEM-MED generalizes the
standard maximum entropy discrimination (MED) by minimizing the generalization
error of the classifier with respect to a nominal data distribution. To circumvent the
difficulty in learning the support of nominal distribution for high dimensional data,
we exploited the versatility of the kernel method in combination with the power of
minimal-entropy-sets. This allows one to perform classification and anomaly de-
tection simultaneously under a unified maximum entropy learning framework. We
demonstrated its performance advantages in terms of both classification accuracy and
detection rate on a simulated data set and on a real footstep data set, compared to the
state-of-the-art robust learning algorithms.

• Chapter 4 addressed the problem of label uncertainty and multi-view inconsistency
in multi-view classification problem. In many applications such as video surveillance
and multi-media retrieval, labels are collected via crowd sourcing or from less con-
trolled environments such as the Internet. To avoid using corrupted labels directly,
it is assumed that we are provided a set of label distributions associated with the
dataset. The label distribution measures the uncertainty of assigning label to each
given sample. In Chapter 4, we proposed a multi-view maximum entropy learning
model on statistical manifolds via stochastic consensus constraints. In particular, the
Kullback-Liebler divergence was used to measure the dissimilarity of information
contents in different views. The resulting consensus-view distribution is the Karcher
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mean [Nielsen and Bhatia, 2013, Nielsen et al., 2013] of multiple view-specific distri-
butions on the statistical manifold. An efficient algorithm based on constrained EM
was proposed to learn the consensus-view distribution and multiple view-specific dis-
tributions iteratively. Experiments showed that the proposed COM-MED method is
robust in the presence of corruption and outliers and it achieved superior classifica-
tion performance over other multi-view learning methods.

• Chapter 5 extended the problem of multi-view learning to network topology infer-
ence problem. Relational database naturally has a two-view representation. It con-
sists of a set of measurements taken at nodes of a graph whose edges specify pairwise
node dependencies. In Chapter 5, the joint distribution of the measurements is as-
sumed to be Gaussian distributed with sparse inverse covariance matrix whose zero
entries are specified by the topology of the graph. The objective is to estimate the
(non-marginal) sub-graph associated with the set of directly measured nodes. With
the help of an external source, which provides a noisy summary of dependency struc-
ture among latent data, we proposed the DiLat-GGM, which generalizes the existing
LV-GGM by taking into account the local effect of the latent variables explicitly. The
proposed DiLat-GGM includes a latent feature selection procedure by introducing
additional row sparsity structure on the conditional cross-covariance matrix. From
a multi-view learning perspective, DiLat-GGM is seen as learning the sub-network
by combining both the reliable proprietary information from an internal source and
the unreliable information from an external source. Experiments on synthesis dataset
showed that DiLat-GGM improve over LV-GGM and GLasso by a margin in terms
of the edge selection accuracy. The proposed model is well-suited for applications
such as competitive pricing models where two companies operate in a market where
they can only directly measure the behaviors of their own customers.

Despite our contributions in this thesis that advanced the state-of-the-art, the under-
standing of robust multi-view learning remains incomplete. In the next section, we will
discuss some interesting research topics that might be fruitful pursuits.

6.2 Directions for Future Research

In this section, several interesting topics and projects are provided.
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6.2.1 Multi-view Gaussian Graphical Model Selection

In Chapter 4, we proposed a multi-view maximum entropy discrimination model for cat-
egorical data analysis. It is natural to extend this work to handle high-dimensional real-
valued data. In specific, assume that the joint distribution of response and covariates are
Gaussian with sparse inverse covariance matrix whose support set defines the topology of
a graph. Also assume that data are collected from different information sources, and they
shared the common response variables. Our task is to fuse Gaussian graphical models from
different source in order to learn a consensus graphical model whose structure reflects the
shared information among different views. This work can be used to learn shared informa-
tion for multi-layer network, which is useful in biological analysis, social network analysis
and sensor network analysis.

Assume that the response y ∈ Rd is high-dimensional. For each view i, the covari-
ates are denoted as xi ∈ Rs, i = 1, . . . , V . Assume that pi(y,xi) = N (0,Θi) where

Θi :=

[
Θi
y Θi

y,x

Θi
x,y Θi

x

]
is the precision matrix for view i. Thus the predictive distribution

pi(y|xi) = N (T T
i x

i,Θi
y), i = 1, . . . , V for some T i = Θi

x,y(Θ
i
y)
−1. Denote Θi

x,y := Bi

so that BT
i x

i = Θi
yT

T
i x

i := Θi
yµy|xi . We have no knowledge regarding the conditional

cross covariance Θi,j between two different views i 6= j and it is not easy to estimate due
to the high dimensionality of remaining data. Using the KL-divergence, it is known that the
Karcher mean of multiple Gaussian graphical models is also Gaussian. Denote the mean of
consensus Gaussian model as µc and precision matrix Θc. Our task is to infer the predic-
tive Gaussian graphical model for each view pi(y|xi;Bi,Θ

i
y) and a consensus distribution

q(y;µc,Θc).
Following the formulation of COM-MED in Chapter 4, we can formulate a multi-view

predictive Gaussian graphical model learning as

min
Bi,Θ

i
y,i=1,...,V

µc,Θc,q∈∆

V∑
i=1

{
Li(y,xi;Bi,Θ

i
y) + αi

∥∥Θi
y

∥∥
1

}
+ β ‖Θc‖1

s.t. Θi
y � 0, i = 1, . . . , V

Θc � 0

V∑
i=1

KL
(
q(y;µc,Θc) ‖ pi(y|xi;Bi,Θ

i
y)
)
≤ ρ

whereLi(y,xi;Bi,Θ
i
y) = − log pi(y|xi;Bi,Θ

i
y) is the conditional negative log-likelihood

loss function in view i. αi, β, ρ > 0 are all fixed non-negative parameters, They can be set
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by cross-validations.
This problem can be seen as a hierarchical graphical model selection problem with

a linear mapping Bi connecting the layer of covariates xi and the layer of response y.
Moreover, the conditional negative log-likelihood function L(y,xi;Bi,Θ

i
y) is non-convex

in (Bi,Θ
i
y) due to the log-partition function. Note that the Karcher mean constraint is

convex-concave, since it is convex in q and concave in each pi.
Note that the Karcher mean of zero mean Gaussian graphical model on statistical man-

ifold is equivalent to the Karcher mean of a set of positive definite matrices on matrix
manifold. Matrix information geometry [Ando, 1979, Bhatia, 2003, Bhatia and Holbrook,
2006, Nielsen and Bhatia, 2013, Nielsen et al., 2013, Cherian et al., 2013] has provided a
solid mathematical foundation for research in this field. It can also be seen as a two-layer
multi-view generative neural network with linear neurons. Therefore, this work can be
viewed as learning multi-layer network with hierarchical models.

6.2.2 Multi-view Generative Adversarial Network

Neural network are essentially hierarchical graphical models with non-linear connections
between successive layers. Learning a multi-view neural network to combine data of differ-
ent type is a challenging task, especially when data contain images. In the past five years,
the most significant advances in the field of deep learning is the development of Generative
Adversarial Network (GAN) in [Goodfellow et al., 2014]. GAN trains two neural networks
with competitive goals: a generative model that captures the data distribution, and a dis-
criminative model that estimates the probability that a sample came from the training data
rather than the generative model. During the training step, the generative model maximizes
the error probability of the discriminative model. This framework corresponds to a min-
imax two-player game [Nisan et al., 2007]. GAN has been the state-of-the-art algorithm
in domain adaptation [Ajakan et al., 2014, Ganin et al., 2016], text-to-image synthesis
[Reed et al., 2016], semi-supervised learning [Springenberg, 2015] and multi-modal learn-
ing [Liu and Tuzel, 2016]. For instance, in [Springenberg, 2015], a discriminative classifier
is learned using GAN under the semi-supervised setting. Their method is based on an ob-
jective function that trades-off mutual information between observed examples and their
predicted label distribution, against robustness of the classifier to an adversarial generative
model. In [Reed et al., 2016], the GAN is used to learn a conditional multi-modal distri-
bution to generate image from text data. According to all these recent developments, GAN
is a promising method for robust multi-view learning model and it is capable to learn high
dimensional multi-modal distribution.
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The idea of GAN resembles the use of KL-divergence as a consensus measure in Chap-
ter 4, so we can use our multi-view learning framework to learn multi-view GAN. Note
that the KL-divergence is also a min-max objective with respect to the consensus view
and each individual view. As opposed to our work in Chapter 4, we can learn a multi-
view model using competitive objectives. In particular, we train a set of discriminative
view-specific models and a generative consensus-view model. The goal for each individual
model to maximize their disagreement with the consensus model. And the role of gener-
ative consensus-view model is to fool these adversarially-trained view-specific classifiers
into predicting that the synthesis data are real. The primary goal is to learn a multi-modal
consensus-view model from multi-view data that captures the feature characteristic of each
view. This will be one of interesting projects to pursue in future.

6.2.3 Dimensionality Reduction of Graph Signal with Gaussian Graph-
ical Models

A topic not directly addressed in this thesis is the problem of dimensionality reduction on

high dimensional graph signals. That is, we are given a network G = (V , E) and a high-
dimensional graph signal data x ∈ Rp whose dependency is depicted by G. The data are
indexed by V . Our goal is to learn a proximity matrix that preserve both the similarity of
data and the topological structure of the network. We can use some of the results in this
thesis to achieve this using Gaussian graphical model and kernel approximation.

Dimensionality reduction [Peason, 1901, Kruskal, 1964, Schölkopf et al., 1997, Tipping
and Bishop, 1999, Tenenbaum et al., 2000, Roweis and Saul, 2000, Jolliffe, 2002, Donoho
and Grimes, 2003, Belkin and Niyogi, 2003, Lawrence, 2004, 2005, Lafon and Lee, 2006,
van der Maaten et al., 2009] is an indispensable technique for data analyst to understand the
structure of high dimensional data. To achieve dimensionality reduction, it is commonly
required to pre-compute a proximity matrix to measure all pair-wise distances between
sample objects. Then the low-dimensional representations of data are learned under the
condition that the pairwise proximity is preserved. If the high-dimensional data lie in a
low-dimensional smooth manifold, measures such as the k-nearest-neighbor distance can
be used to compute proximity matrix that resembles the geodesic distance on the manifold
[Tenenbaum et al., 2000, Roweis and Saul, 2000]. Other way to find such proximity is by
metric learning [Xing et al., 2002, Weinberger et al., 2006, Davis et al., 2007], which learns
a positive definite matrix under the constraints that the cluster information is preserved un-
der the projected space. According to spectral graph theory [Chung, 1997, Coifman and
Lafon, 2006], a graph is a discrete approximation of a smooth manifold, where the shortest
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path between vertices resembles the geodesic curve between two points on manifold. In
terms of this, Gaussian graphical models, which describe a random smooth mapping from
graph vertex domain to the Euclidean space, can be used to approximate the manifold co-
ordinate map as well. In [Lawrence, 2004], Lawrence proposed the Gaussian process latent
variable model (GPLVM). GPLVM learns the proximity matrix directly from the sample
covariance matrix of high dimensional data. In addition to this, it uses a kernel function
to project the high dimensional data in Rp to a low dimensional Euclidean space Rd in-
duced by kernel function. The learned projection preserves the proximity measure. The
problem of GPLVM is that the sample covariance matrix cannot characterize the topologi-
cal structure of the underling graph, thus the learned proximity cannot capture the existing
topological information in the network.

Denote the proximity matrix as a symmetric matrixH ∈ Rn×n, whereHi,j := ‖zi − zj‖2
2,

where z ∈ Rd is some low-dimensional representation of data x ∈ Rp. Let x be a graph
signal on graph G = (V , E). DenoteM E = [1 {(i, j) ∈ E}]i,j as a mask of edge set E . As-
sume thatX ∈ Rn×p is a set of n i.i.d data. Denote the sample Gram matrix S = XXT/p.
Define a kernel map Kθ : R → R, which is operated on each entry of H i,j = ‖zi − zj‖2

2

independently. For instance, for heat kernel, Ki,j = exp(−θH i,j). Assume that K ∈ Kθ,
where Kθ is the class of kernel functions parameterized by θ. The problem of learning a
proximity matrix can be solved under the framework of Gaussian graphical model infer-
ence, i.e.

min
θ,H

− log detKθ(H) + tr (SKθ(H))

s.t. Kθ(H) � 0

[Kθ(H)]i,j ≤ ε, (i, j) 6∈ E

rank(H) ≤ r

0 ≤H i,j ≤ ρ(ε),

where r, ρ, ε > 0 are fixed parameters. The first two constraints ensures that the learned
kernel matrix is a valid precision matrix and fit the given graph topology. The last two
constraints finds a valid proximity matrix. Note that for the distance-induced matrix H , it
should be low-rank. The choice of ρ and ε are not independent, since the kernel function is
monotonic decreasing with respect to the distance proximity.

The work of Monotonic Single-Index model [Kakade et al., 2011, Foster et al., 2013,
Ganti et al., 2015] provides similar formulation as above, which may be served as a starting
point of our model. Note that compared with Monotonic Single-Index model, our model
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use a LogDet Divergence (Chapter 2). It is thus expected to achieve more robustness from
the above formulation. Future work remains to find an efficient solution for above problem.
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