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Figure 3.8: Representative region of strain analysis used in the generation of the stress 
vs. strain response curves of the AM bundles. The shaded mid-substance region of the 
tissue is used, whereas ‘grip-to-grip’ indicates measurements taken from the point-to-
point measurement capability of standard uniaxial tension test equipment. [1] ........... 119 

Figure 3.9: Stress vs. strain responses of eight AM bundles, with DIC curves shown with 
solid lines and grip-to-grip shown with dashed lines. Each color represents a unique 
bundle. Dashed lines at 20 MPa and 3% nominal strain mark locations of tangent 
moduli calculation, as discussed in Figures 3.10a and 3.10b. [1] ................................ 120 

Figure 3.10: Tangent moduli at 20 MPa and 3% nominal strain (a,b). c) Hysteresis 
difference between DIC and Grip-to-trip responses. [1] .............................................. 121 

Figure 3.11: a) PL bundle prior to loading b) Pl bundle raw DIC contour image coverage 
in the depth (into the page) direction. c) and d) PL bundle expansion and contour 
coverage at image before de-correlation occurs. e) PL bundle axial strain data. [1] ... 122 

Figure 3.12: Loading response to 12% grip-to-grip strain of representative AM and PL 
bundles measured via DIC and grip-to-grip. Test specimens were taken from paired 
knees of the same donor, with the AM bundle demonstrating higher stiffness, lower 
strain to failure, and higher stress at failure than the PL bundle. [1] ............................ 123 

Figure 3.13: AM bundle at peak displacement (left) and the resulting shear strains 
(right). The blue and red markers indicate specific fascicles at the femur and tibia. The 
blue markers show a band of fascicles misaligned vertically, originating into the femur 
near the right side of the image at the top and inserting into the tibia at the left on the 
bottom. The red show a relative vertical fascicle band. This intrinsic fascicle orientation 
dominates the shear response. [1] .............................................................................. 128 

Figure 4.1: Experimental setup of posterolateral bundle in uniaxial tension. Excess 
femur and tibia has been removed to visualize the tissue at both insertions. .............. 141 

Figure 4.2: Experimental setup of anterior tibial translation test.  Anterior translation of 
the tibia occurs in the sagittal plane of the knee. The ACL is visible after removal of the 
medial femoral condyle, and can be visualized spanning from the femoral to tibial 
insertions. .................................................................................................................... 142 

Figure 4.3: Full-field (8% strain) PL bundle vertical (left) and horizontal (right) 
displacement contours at peak displacement. ............................................................. 143 

Figure 4.4: Strain contour evolution of a PL bundle during loading to 8% grip-to-grip 
applied strain.  Left: Axial strains are along the axis of loading (vertical in the plane of 
the page), and demonstrate homogeneity in the mid-substance of the tissue during 
loading. Center: Strains transverse to the axis of loading (horizontal in the plane of the 
page) demonstrate lateral expansion, unexpected for traditional uniaxial loading. Right: 
Shear strains (in-plane) are non-zero, another unexpected result that is possible to 
visualize through the use of full-field tissue-level measurements. ............................... 144 
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Figure 4.5: PL bundle axial (along the axis of loading, vertical in the plane of the page) 
strain contours for all PL bundles loaded to 8% true strain (calculated from grip-to-grip 
displacement measurements. Stress vs. strain data and tangent moduli are calculated 
from the 5 bundles in the top row. ............................................................................... 145 

Figure 4.6: PL bundle transverse (to the axis of loading, horizontal in the plane of the 
page) strain contours for bundles loaded to 8% true strain (calculated from grip-to-grip 
displacement measurements. Stress vs. strain data and tangent moduli are calculated 
from the 5 bundles in the top row. ............................................................................... 146 

Figure 4.7: PL bundle shear strain contours (shear in the plane of the page) at an 
average DIC-computed mid-substance true strain of 8%. Stress vs. strain data and 
tangent moduli are calculated from the 5 bundles in the top row. ............................... 147 

Figure 4.8: Stress vs. strain responses of 5 PL bundles. The response curves based on 
strains calculated from DIC measured displacements are shown with solid lines. The 
corresponding bundle’s response curve based on strains calculated from grip-to-grip 
data is shown with a dashed line. Colors represent distinct bundles. Tangent moduli 
were calculated at the black dashed line indicators: 5 MPa nominal stress and 3% 
nominal strain. ............................................................................................................. 148 

Figure 4.9: Tangent moduli at 5 MPa (nominal stress, top) and 3% nominal strain 
(bottom) (n=5). ............................................................................................................ 149 

Figure 4.10: Full-field ATT test vertical (left) and horizontal (right) displacement contours 
at peak displacement. ................................................................................................. 150 

Figure 4.11: Strain contour evolution of the ACL during ATT loading to peak applied 
grip-to-grip strain. Left: Strains are along the axis of loading (vertical in the plane of the 
page), and appear  fairly homogeneous during loading in comparison with the PL strain 
contour evolutions in Figure 4.4. Center: Strains transverse to the axis of loading 
(horizontal in the plane of the page) demonstrate a somewhat banded nature during 
loading (peak load shear contour). Right: Shear strains (in-plane of the page) are 
highest at the bony insertions, and in excess of 10% at the femoral insertion. ........... 151 

Figure 4.12: ATT shear strain (shear in the plane of the page) contours at peak applied 
grip-to-grip strain. Left knees are shown in the top row and right knees in the bottom 
row. The femoral insertion occurs at the bottom of the contour, and tibial insertions at 
the top. ........................................................................................................................ 152 

Figure 4.13: ATT vertical strain contours (along the axis of loading, vertical in the plane 
of the page) at peak applied grip-to-grip strain. ........................................................... 153 

Figure 4.14: ATT horizontal strain contours (transverse to the axis of loading, horizontal 
in the plane of the page) at peak applied grip-to-grip strain. ....................................... 154 

Figure 4.15: Load vs. displacement curves from 7 ATT tests. The response curves 
based on strains calculated from DIC are shown with solid lines and strains from grip-to-
grip displacement data with dashed lines. Colors represent distinct bundles. The dashed 
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black line indicates 0.134 kN for comparison of results of DIC and grip-to-grip data sets.
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Figure 4.16: Load vs. displacement curves from DIC data for 7 ATT tests. The dashed 
black line indicates 0.134 kN for comparison of DIC and grip-to-grip displacements. . 156 

Figure 5.1: Alignment of AM bundle specimen for tension testing. The aligned fibrils of 
the AM bundle can be seen spanning from femur to tibia. .......................................... 166 

Figure 5.2: Inner components of the FE AM bundle. Matrix and fibril components within 
the FE model of AM bundle. The tissue is sectioned into fascicles and matrix. Each 
fascicle is further sectioned into individual fibrils, and the fascicles are separated by 
matrix .............................................................................. Error! Bookmark not defined. 

Figure 5.3: Full AM computational bundle model is comprised of left: inner components 
(both fibril and matrix) surrounded by an outer ‘sheath’ made of matrix (center). The 
bundle assembly is connected to femur and tibia components in the overall model, with 
reference nodes attached to the rigid femur and tibia (right). The length of the full bundle 
is 35.71 ± 0.01 mm and has a mid-substance width of 5.54 ± 0.01  mm and thickness of 
2.37 ± 0.01  mm. ............................................................. Error! Bookmark not defined. 

Figure 5.4: Femoral and tibial insertions. The back surface of the inner fibril and matrix 
components outlined in red are tied to the femur and tibia during deformation. ...... Error! 
Bookmark not defined. 

Figure 5.5: Mean response of 8 AM bundles tested in uniaxial tension. The 
representative experimental bundle chosen for the basis of the simulations lies within 
the standard deviation of the mean bundle response, and is chosen for direct 
comparison of the computational model with the experimental full-field strain contours.
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Figure 5.6: Decomposition of experimental AM bundle stress vs. stretch response into 
fibril and matrix contributions. Experimental data are from an AM bundle tension test to 
~4.3% nominal strain. Fibril and matrix responses are derived assuming the fibril 
material is 200 times stiffer than the matrix, and applying rule of mixtures based on the 
cross-sectional area of the computational AM model (having a ratio of 60.9% fibril and 
39.1% matrix). ............................................................................................................. 172 

Figure 5.7: One-element validation of fibril constitutive model of Equation 2. This model 
is based on the MacKintosh derivation of the Kratky-Porod chain model, with the eight-
chain model used to extend the 1D force extension behavior to three dimensions. This 
model is capable of capturing the toe response and stiffening response characteristic of 
ligament constitutive behavior. .................................................................................... 175 

Figure 5.8: One-element validation of neo-Hookean matrix constitutive model. The neo-
Hookean model lacks the curvature to capture the toe region and subsequent stiffened 
response of the tissue, and manifests a lower R2 value compared to the fibril validation.
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Figure 5.9: Comparison of the vertical displacement contours of the numerical response 
and experimental AM bundle data (adapted from [40]). The shorter AM computational 
bundle displacement scale has been adjusted to match the experimental bundle 
displacements. The simulation prescribed vertical displacement along the ‘3’ axis to 
both the femoral and tibial reference nodes, with all other translations and rotations held 
fixed. The numerical contour demonstrates the striated displacement ranges visible in 
the experimental contour. The entire AM bundle is outlined in grey in the experimental 
image. ......................................................................................................................... 177 

Figure 5.10: Comparison of the horizontal displacement contours of the numerical 
response and experimental AM bundle data (adapted from [40]). The AM computational 
bundle displacement scale has been adjusted to match the experimental bundle 
displacements. This is the horizontal displacement resulting from a prescribed vertical 
displacement along the ‘3’ axis. The numerical contour demonstrates the striated 
displacement ranges visible in the experimental contour, and demonstrates lateral 
expansion of the numerical bundle, matching the unexpected expansion in the 
experimental bundle. The entire AM bundle is outlined in grey in the experimental 
image. ......................................................................................................................... 178 

Figure 5.11: Comparison of numerical and experimental axial true strains (along ‘3’ 
axis). Both contours are scaled to -5% to 20% true strain, and use the same color 
scheme. The computational element strains have been averaged within ABAQUS 
2016.The numerical bundle shows a similar response as that of the experimental 
bundle, demonstrating the relative homogeneity in the mid-substance of the tissue. The 
experimental contour is adapted from the study detailed in [40]). ............................... 179 

Figure 5.12: Comparison of numerical and experimental transverse true strains (along 
‘2’ axis). The computational element strains have been averaged within ABAQUS 2016. 
Both contours are scaled between -25% and 45% true strain with the same color 
scheme. The numerical bundle demonstrates lateral expansion, similar to what is seen 
experimentally. The experimental contour is adapted from the study detailed in [40]). 180 

Figure 5.13: Comparison of numerical and experimental in-plane shear true strains 
(within ‘2-3’ plane). The computational element strains have been averaged within 
ABAQUS 2016. Both bundles are scaled from -10% to 10% true strain with the same 
color scheme. The numerical bundle manifests high shear throughout the bundle, as 
was seen by the experimental bundle shown here, as well as all other bundles tested in 
the experimental study discussed in Chapter 3. The experimental contour is adapted 
from the study detailed in [40]). ................................................................................... 181 

Figure 5.14: Stress vs. stretch comparison of the numerical simulation and experimental 
stress vs. stretch response. The numerical and experimental results have good 
agreement. At the peak experimental displacement, the nominal strains are 4.19% and 
4.26% for the numerical and experimental results respectively, and nominal stresses of 
42.7 MPa and 40.7 MPa for the numerical and experimental results. The R2 value of 
0.968 demonstrates reasonable fit of the overall numerical data to the experimental 
response. .................................................................................................................... 182 
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Chapter 1: Introduction 

This chapter was originally published in [1], Copyright © ASME 2015 

1.1 Introduction 

 

The anterior cruciate ligament (ACL) is one of four major ligaments in the knee, 

playing a critical role in stabilizing the joint during daily loading activities. The other three 

stabilizing ligaments are the posterior cruciate ligament (PCL), the medial collateral 

ligament (MCL), and the lateral collateral ligament (LCL). The location of the ACL within 

the joint renders it highly susceptible to injury, often precipitating catastrophic long-term 

joint outcomes [2]. Tears of the ACL in sporting activities are relatively frequent, with the 

native tissue demonstrating a limited ability to repair itself. Currently the highest 

incidence of initial ACL injury is in females in the 14-17 year old age group (18-21 for 

males); this is also the population with the current greatest rate of increase in ACL 

injuries [3]. The sex-based disparity in sports related ACL injury rates is also well 

documented, with females suffering these injuries between 2-7 times more frequently 

than their male counterparts [4].  

 

Full tears of the ligament tissue require a complete surgical replacement if a 

return to moderate physical activities is desired. The ideal replacement for a torn ACL 

would restore native anatomy and function to the knee. Mounting evidence, however, 

suggests current strategies, typically using a patellar tendon or hamstrings tendon graft, 



2 

substantially alter the biomechanics of the joint. This altered mechanical profile is 

posited to promote a hazardous mismatch between joint and underlying articular 

cartilage mechanics [5,6] driving an increased risk of early onset osteoarthritis [7,8]. 

While mechanical factors governing this debilitative progression remain unclear, 

structural and mechanical inconsistencies between the graft tissue and native ACL are 

thought to play important roles [9–11]. Instabilities could be developed over time 

through a graft tissue that is more lax than the native tissue [12,13], arising either 

through loosening [14,15], mechanical degradation [16,17], or possibly a combination of 

both. Limited additional sources for native graft tissue exist but tissue-engineering 

approaches may one day offer a solution [18–20].  

 

With ACL injury carrying significant short- and long-term morbidities, accurate 

characterization of the tissue’s structural and mechanical properties seems paramount 

for two key reasons. First, it provides critical baseline information for elucidating and 

ultimately countering the mechanism/s of ACL injury. Second, it affords a platform for 

designing a more appropriate graft replacement that can essentially restore and 

maintain pre-injury joint function and control. With these facts in mind, this review 

examines the current level of understanding pertaining to ACL structure and mechanics. 

In doing so, it highlights what is considered to be critical knowledge gaps compromising 

the success of current ligament injury risk screening and prevention and reconstructive 

methods. It additionally proposes future methods and technologies that could plausibly 

fill these gaps. Through such steps, enhanced short and longer term joint health and 

general life quality may ultimately be possible.  
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Chapter 1 is organized as follows. 

In Section 1.2 forces, moments, and 

motions relevant to the knee joint and 

referred to within this review are defined. 

This is followed by a discussion on of ACL 

structure in Section 1.3. Next, ACL 

mechanics are discussed, first in terms of 

function during knee motions (Section 

1.4) and then at the level of the tissue 

biomechanics (Section 1.5). Mechanics 

comparisons between native ACL and 

common replacement grafts (Section 

1.6), the use of animal models in 

understanding the ACL response 

(Section 1.7), and computational models (Section 1.8), are discussed in subsequent 

sections, with conclusions in Section 1.9.  

 

1.1 A knee biomechanics primer 

The ACL is most frequently injured during dynamic landing tasks that typically 

incorporate rapid deceleration and an equally rapid direction change [4]. The external 

forces and moments that drive these high-risk maneuvers are illustrated acting at the 

foot and hip in Figure 1.1. The ground reaction forces are shown acting in the positive 

 

Figure 1.1: External forces and moments 
acting on the human leg. [1] 
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sense. Upper and lower leg weights and the accelerations that balance these forces are 

not shown. All six degrees of freedom exist in the knee [21–24]. Knee motion can be 

described as movement in relation to the three mutually perpendicular principle axes: 

the tibial shaft axis (y-axis), the femoral epicondylar axis (z-axis), and the anterior-

posterior axis (x-axis) [21,24]. The three associated body planes are xy – saggital, yz – 

coronal and xz – transverse. Typically, translations along these respective axes are 

defined as proximal-distal, lateral-medial and anterior-posterior where all three 

translation pairs list the positively directed motion first. Knee flexion/extension is rotation 

about the z-axis. The knee flexion angle, 𝛳𝑍, is measured from the y-axis; 𝛳𝑍 = 0 is full 

extension. Knee abduction or adduction bends about the x-axis. The 

abduction/adduction rotation moment as illustrated would result in an abducted knee, 

also known clinically as a valgus deformation. Adduction or varus deformation is the 

result of bending about the x-axis in the opposite sense shown. The twisting moment 

(torque) about the y-axis in the sense illustrated in Figure 1.1 results in external tibial 

rotation of the proximal end of the tibia (near the knee) with respect to its distal end 

(near the foot) [21,23–26]. Excessive anterior tibial shear load [27] or knee abduction 

motions and/or loads [28,29] have typically been posited to play a critical role in the 

resultant injury mechanism. Consensus continues to grow, however, that injury arises 

through more complex combined 3D joint biomechanical maneuvers, which necessarily 

incorporates internal tibial rotation [30–32].  
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1.2 Structure of the ACL 

Characterization of ACL mechanical properties in physiologically relevant 

positions is impeded by difficulties associated with finding fully unloaded configurations 

that coincide with physiologically relevant ones. The complexities in the shape, 

structure, and orientation of the ACL all contribute to this challenge. The ACL originates 

on the posterior aspect of the medial surface of the lateral femoral condyle, with the 

attachment observed to be oval in shape and covering an area of approximately 2 cm2 

[33–38]. The ligament courses anteriorly, medially, and distally from the femur to the 

tibia, spiraling laterally (counter-clockwise in the right knee, clockwise in the left) as it 

does so. It then fans out, inserting over a broad flattened hourglass shaped region of 

approximately 3 cm2 between and slightly anterior to the tibial spines [36,38,39]. The 

tibial attachment is also substantially wider and stronger than the femoral one in adults 

[40]. Harner et al. 1999 [41], digitizing ACL attachments in three dimensions, found both 

ACL insertions to be relatively planar, with the femoral attachment being more circular 

than the larger, more oval shaped tibial attachment. At the tibial insertion, the ligament 

passes beneath the transverse meniscal ligament. It is believed that some fibers of the 

ACL may blend with the anterior attachment of the lateral meniscus [42]. The clinical 

significance of this blending, however, has not been established. Cross-sectional area 

varies along the length of the ligament, with the smallest value evident in the mid-

substance [38,41]. This geometric phenomenon has long been postulated to serve to 

minimize stress concentrations that may arise on the ligament-bone interface [41,43–

45]. It may also explain why the majority of adult ACL injuries occur within the proximal 

third of the tissue mid-substance [4]. Conversely, ACL injuries in skeletally immature 

individuals arise primarily through tibial avulsions [46]. The adult ACL also demonstrates 
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sex-dimorphic size characteristics, with the male ligament tending to be longer, wider, 

and thicker [34,36,38,40].  

 

The ACL possesses two functionally discrete bundles demonstrating similarly 

divergent spatial/mechanical properties - the anteromedial bundle (AM) and the 

posterolateral bundle (PL) [33,34,36,38,40,47–50]. Anatomically, the bundles have been 

previously reported to wrap about each other as they extend between insertions and 

vary in length, with the AM reported to be significantly longer [49,51,52]. The twist of the 

AM around the PL increases with flexion angle. At the respective insertion sites, each 

bundle component is reported to occupy approximately 50% of the attachment area, 

with this separation being relatively consistent between individuals [50,53]. The AM 

inserts posteriorly and superiorly at the femur and medially at the tibia, while the PL 

inserts anteriorly and inferiorly into the femur and laterally into the tibia [53]. Functional 

delineation of the these bundles arises through their observed reciprocal tensioning 

pattern during passive flexion-extension of the knee joint, with the longer AM (29 mm – 

35 mm) observed to be more taut in flexion and the PL (18 mm- 26 mm) in extension  

[23,33,39,42,47,53–56]. Others have posited the ligament comprises more bundles 

[53,57–59]. However, it is unlikely that these supposed anatomical distinctions are 

functionally discrete. There is evidence of a series of near isometric bands that runs 

along the length of the ACL, being taut at all flexion angles [33,56,60]. Precise 

understanding of the mechanical relevance of such fibers, however, remains unclear. 

Methods to elucidate this and other features of the deformation and failure response of 
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the ACL have been developed by the experimental mechanics community, and their 

application to ACL mechanics has lagged behind. 

 

The ACL is clearly geometrically complex. It is structurally unique among the 

ligaments and tendons of the body. Commonly utilized replacement graft tissues, 

therefore, such as the patellar tendon (PT) and the semitendinosus tendon alone or in 

conjunction with the gracilis tendon - often referred to clinically as the hamstring 

tendon(s) (HT), may not successfully replicate this structure. A double-bundle geometry 

is achieved if the HT graft is comprised of both the semitendinosus and gracilis tendons, 

which may more effectively replicate native ACL structure. Of course, restoring ACL 

structure is secondary to recapturing the pre-injury biomechanics of the knee. The 

argument can be made, however, for the need to similarly match the structural 

uniqueness of the ACL in order to achieve native function over the entire range of knee 

motion. Mechanical properties of the native and graft tissues and structural properties of 

normal and reconstructed (ACLr) knees are both important to the question of whether 

biomechanics have been altered in the ACLr knee [5,61,62]. This outcome is particularly 

important considering modified joint mechanics post-surgery are posited to incur 

debilitative mismatches between the joint contact profile and underlying articular 

cartilage mechanics [10,63]. With this fact in mind, a detailed description of the ACL’s 

role in controlling and/or limiting explicit joint motions is critical to optimizing the 

ligament reconstruction process, both in terms of graft design and fixation. If ACL-

constrained motions can be accurately quantified, then it is feasible that graft tissues 
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can be mechanically optimized to replicate these motions, independent of structural 

consistencies. 

 

1.3 Native ACL function 

Many methods exist for experimentally characterizing either the response of the 

ACL as the entire knee joint or limb is articulated, or the tissue level properties of the 

ACL itself. The former type of testing assesses the functional performance of the ACL 

structure while measuring in situ forces and displacements, often in clinically relevant 

loading situations  [64].  As the ACL is often not the only tissue deforming in the knee 

joint in these types of experiments, however, the applied loads on the ACL itself cannot 

be determined.  ACL strains and strain rates during these structural tests may be 

measured via various contact or non-contact methods, which, in some instances may 

require the removal of other soft tissues.  Care must be taken here as the ACL is often 

not undergoing a well-defined strain state and the strains are not necessarily uniform, 

although both assumptions have oftentimes been made [49,51,52,65].  Structural tests 

provide clinically relevant information about ACL failure conditions, and can be 

extremely useful when coupled with a computational framework to validate constitutive 

models of the ACL alone or as part of larger knee structure.  Historically however, these 

experiments often failed to report geometric data such as the length and cross-sectional 

area of the ACL [66–69]. Such omissions obfuscate attempts to compare results from 

one structural experiment to another and to develop geometrically relevant simulation 

models. The majority of experiments characterizing ACL behaviors have focused on its 

role in stabilizing the knee joint, rather than on its mechanical properties. With 
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successful reconstruction of the ACL injured knee requiring a graft that can successfully 

replicate the ligament’s functional role, this bias is intuitive. Extensive research efforts, 

for example, have been undertaken to define the ACL’s role in restraining 3D knee 

motions and to thus understand the types of movements that place it at risk for rupture.  

 

1.3.1 The role of the ACL in knee translation 

The role of the ACL in restraining anterior tibial translation (ATT) has been the 

most thoroughly investigated and thus the most clearly defined [24,55,70–76]. There is 

general consensus that the ACL is the primary restraint to ATT under application of an 

anterior force [70,73,77]. Through the nature of its attachments, the ACL is oriented 

primarily in the sagittal plane [34,40]. Anterior translation of the tibia therefore, 

necessarily moves the attachments further apart, causing fibers to become taut and 

restrain the motion. There is no other passive knee joint structure that has an equally 

ideal orientation to restrict anterior tibial motion. As a result, a sagittal plane loading 

mechanism has long been viewed to drive the resultant ACL injury mechanism [27,78]. 

 

Noyes et al. 1976 sequentially sectioned knee joint structures to determine their 

relative contributions to restraining knee motion and reported that for 5 mm of ATT with 

the knee in 30° flexion, the ACL carried 87% of the load [77]. Piziali et al. 1980 similarly 

examined the contribution of the ACL to restraining anterior loads (500 – 600 N) in 

cadaveric knees, reporting similar results (73% and 87%) [76]. Both Fukubayashi et al. 

1982 and Markolf et al. 1976 found that isolated removal of the ACL produced more 

than twice the amount of anterior tibial displacement measured prior to sectioning 
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[72,73]. Butler and associates 1980, reported similar findings, but noted that the degree 

of displacement measured depended on the order of ligament cutting, reflecting the 

often complex ligament interactions that act to restrain knee motion [70]. Marans et al. 

1989, using an externally fixed 6-degree of freedom electrogoniometer, observed 

significant increases in in vivo ATT as a result of ACL deficiency. Despite agreement 

with cadaveric observations, the accuracy with which translations of such small 

magnitudes can be accurately measured in vivo should be questioned [79–84]. 

Regardless, the ACL’s role as a primary restraint in the sagittal plane is well 

established.  

 

The role of the ACL in controlling medial-lateral tibial movement has been 

afforded far less attention. Early investigations, such as those conducted by Brantigan 

and Voshel 1941, claimed that medial-lateral knee translation was prevented purely by 

contact between the articulating bones of the joint [85]. Piziali et al. 1980, however, 

demonstrated that large medial loads (660 – 690 N) applied to the tibia stretch the ACL, 

while laterally applied loads are restrained primarily by the PCL and LCL [76]. Marans et 

al. 1989 found that ACL deficiency did not affect medial-lateral tibial translations in vivo 

during walking [25]. The ability to accurately measure knee joint translations externally, 

however, has been called into question by some of these investigators themselves [25]. 

Regardless, with the ACL injury mechanism increasingly posited to manifest by a 

combined 3D loading mechanism [30–32], accurately defining the ACL’s role in 

constraining/controlling medial-lateral knee motions remains critical.  
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1.3.2 The role of the ACL in knee rotation 

The exact role of the ACL in controlling/limiting axial tibial rotation appears to be 

unclear, with descriptions of its function ranging from almost non-existent, to one of 

extreme importance. Lane et al. 1994, attempting to simulate vertical stance in fresh 

human cadaveric knee joints, reported that the ACL had a limited effect in controlling 

tibial rotation, with rotational instability not a major factor after isolated ACL sectioning 

[86]. Reuben and associates 1989 observed similar results in vitro, with ACL sectioning 

producing anterior but not rotational instabilities [87]. Others however, viewed the ACL 

as a fine-tuning mechanism, guiding and controlling tibial rotations under external load 

application. Fukubayashi et al. 1982 for example, observed significant changes in tibial 

rotation patterns in ACL sectioned cadavers under anterior-posterior loading (100 N to 

125 N) [72].  Anderson and Dyhre-Poulson 1997 similarly found that sectioning the ACL 

produced significant increases in axial rotation magnitudes under externally applied (6 

N-m to 14 N-m) internal-external tibial torques [88].  

 

In the past, the ACL has been viewed to play a secondary role in restraining 

internal tibial rotation, acting in conjunction with medial and lateral compartmental 

structures [73,89–93]. Lipke et al. 1981 for example, applied compressive and torsional 

loads to cadaveric knees and observed increased internal tibial rotation with isolated 

ACL sectioning, which became significantly greater with additional sectioning of the LCL 

and posterolateral corner structures (fibular (lateral) collateral ligament, popliteus 

tendon, and popliteofibular ligament) [89]. Wroble and associates 1993, similarly found 

that removal of these same structures increased resultant cadaveric knee external tibial 

rotation and abduction magnitudes in both flexed and extended postures [94]. 
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Discrepancies in the precise rotation response (internal versus external) likely stemmed 

from concomitant differences in the overarching load application protocols.  However, 

more recently Wojtys et al. 2016 discussed relative ACL strains under a dynamic jump 

landing. This study found that internal tibial rotation, combined with a knee flexion 

moment and knee impulsive compression, as well as large trans-knee forces, 

manifested the largest relative ACL strains [95]. This study points to a more critical role 

played by internal tibial rotation on ACL strains; especially in worst-case scenarios for 

dynamic pivot jump landings. Beaulieu et al. 2013 investigated the effect of constraining 

internal femoral rotation during dynamic loading in a study of male and female knees. 

While sex was not found to be a significant factor in the prediction of ACL failure, knees 

with constrained ranges of motion had a chance of failure 8.3 times that of 

unconstrained knees [96].  

 

The ACL’s role in restraining knee adduction-abduction rotations has similarly 

been viewed as secondary [58,73,93,94,97,98]. Both Grood et al. (1981, 1988) and 

Markolf et al. 1976 for example, found the ACL to be a secondary restraint to knee 

abduction - adduction with the knee in full knee extension [73]. Hollis and associates 

1991 additionally observed increases in ACL length under abduction load application 

with increased knee flexion angle [58]. Direct comparison among these investigations is 

confounded, however, by differences in the applied joint constraints. This has likely also 

contributed to discrepancies regarding the ACL’s role in knee rotational control, since 

variations in pre-test joint constraint will necessarily impact the resultant load-induced 

movement response. Examining the ligament response with the knee unconstrained to 
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move freely in response to the external load application (Hollis et al. 1991), for example, 

eliminates the concern of unknown constraint forces and moments. It does, however, 

necessarily require accurate 6 DoF kinematic measures. Understanding precisely how 

knee motion impacts resultant ACL response under well-defined load states appears 

critical. With this in mind, the next section explores the effects of joint constraints on 

resultant ACL function in more detail below. 

 

1.3.3 Effects of constraints on ACL function 

As noted, a key factor compromising successful comparison of observed in vitro 

ACL responses to external load states is the degree to which knee motion is 

constrained during the test protocol [23,24,99,100]. Restrictions or constraints placed on 

the joint can have a significant impact on the amount of movement possible for each of 

the remaining unconstrained degrees of freedom [55,99,101,102]. Such constraints, 

while assisting in determining the ACL’s role in controlling explicit joint motions, have 

limited relevance to in vivo joint motions and resultant passive tissue behaviors. Takai et 

al. 1993 found that with all but one DoF constrained, the ACL provided 82% - 90% of 

the total anterior restraint between 0°- 90° knee flexion. When the test was replicated for 

an unconstrained (5 DoF) joint condition, however, the ACL only provided 74% - 83% of 

the anterior restraint [55]. Inoue et al. 1987 similarly found that limiting knee motion to 

three degrees of freedom (varus-valgus, proximal-distal and medial-lateral) resulted in 

the MCL being the major restraint to knee abduction. When five degrees of freedom 

were allowed however, abduction was restrained primarily by the ACL. Specifically, 

sectioning the ACL for the unconstrained case produced a 123% increase in knee 
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abduction compared to the ACL-intact state [99]. The coupled anterior tibial 

displacement and internal tibial rotation presenting with valgus rotation (i.e. pivot shift) 

[24,103], likely alters the relative ACL attachment locations, its resultant orientation and 

its instantaneous axis of rotation [57] such that it becomes taut in abduction. Such 

outcomes highlight the likely critical need to not only replicate the native ACL’s 

structural and mechanical properties during the reconstruction process, but also its 

position and orientation.  Further, data necessary to successfully drive this process 

should be obtained under conditions when overarching knee motions remain 

unconstrained, more effectively reflecting the joint and resultant ligament response. 

 

Multiple degree of freedom testing apparatus involving combined robotics 

technology and universal force sensors have been successfully developed with the 

above goal in mind [101,102,104–106]. Using this same approach, in situ ACL loads in 

combined low magnitude 3D load states have also been quantified [64,107,108]. By 

enabling predetermined motion pathways to be replicated with high precision, such 

efforts have been vital in understanding ACL load responses to clinically relevant knee 

displacements. By adopting the superposition principle, these methods rely on relative 

bone positions being identical before and after ACL sectioning [106]. Superposition 

holds for linear viscoelastic materials [109], but if any of the loaded soft tissue 

components of the knee are viscoelastically non-linear, the superposition assumption 

breaks down. Moreover, for more dynamic high impact loading conditions, increased 

stiffness in the viscoelastic joint structures due to higher load rates may render such 

calculations more sensitive to joint position errors. Thus, while this approach may be 
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accurate for quasi-static or low (e.g. clinical) load rate scenarios [64,107], accuracy will 

be compromised under more dynamic states consistent with injury causing events. 

 

1.3.4 Dynamic knee loading models 

To address the above concerns, recent efforts have assessed ACL mechanical 

behaviors under more realistic dynamic movement scenarios. As noted, relations 

between 3D knee mechanics and resultant ACL loading have been examined 

extensively in vitro under relatively low, clinically relevant load states [106,107,110,111]. 

Such models can present with similar benefit, however, when assessing specific injury 

scenarios [78], which is not feasible for in vivo human experimentation. This information 

is not only critical to elucidating injury causality, but also significantly enhances 

prevention efforts that rely on reducing impact-induced ACL strain magnitudes [112]. 

Cadaveric models have recently been used with this direct intent, where ACL responses 

under isolated [78], combined [112], and impact-induced external loads [113,114] have 

been examined, providing some of the highest ACL strain rate data available (~5/s, or 

equivalently, 500%/s). Comprehensive methods capable of simulating 3D knee joint 

dynamics associated with high-risk single limb impacts represent the current state of the 

art in this area [114]. With these models, the effects of specific muscle activation 

strategies [115], 3D joint load combinations [31,116], and joint geometric configurations 

[117,118] on ACL strains and resultant injury risk have been explored. Other, equally 

complex models have begun to emerge, providing important new insights into the 

destructive versus protective role of overarching muscle activation strategies 

synonymous with high-risk movements [119,120]. Few of these models, however, 
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induce actual injuries [121], failing to capture the necessary joint load magnitudes and 

associated ligament strain rates necessary to compromise tissue integrity. Enhanced 

determination of ACL mechanics in response to more extreme knee joint and ligament 

loading scenarios thus seems critical to elucidating ACL injury mechanisms. This may 

be equally critical for determining optimal replacement tissues moving forward. Further, 

the recent suggestion of a tissue fatiguing-induced injury mechanism [121], whereby 

multiple sub-failure loads may ultimately contribute to tissue compromise, appears novel 

and worthy of further exploration, particularly within similar experimental frameworks.  

 

There is growing consensus that the ACL injury mechanism is multifactorial, 

arising through a combination of morphologic, mechanical, strength, and neuromuscular 

factors [30]. While cadaveric modeling efforts have contributed greatly to our evolving 

understanding of knee and associated ACL loading behaviors in naturalistic settings, 

their ability to truly characterize the in vivo 3D joint neuromechanical response is limited. 

Further, associated ACL force/strain estimates are typically derived from sensors 

attached directly to isolated portions of the ligament, which cannot obtain a zero strain 

state and fail to adequately capture both the true nature of the strain state and the 

heterogeneous 3D ligament response.  To address these concerns, computational 

models have recently been developed to quantify knee joint and/or resultant ACL 

loading during complex and highly dynamic movement scenarios [122–125]. Models of 

this type enable explicit load outcomes to be examined in detail, during normal and 

injury causing events, while controlling all aspects of the overarching neuromuscular 

control pattern [122]. Recent surrogate modeling methods extend this concept, coupling 
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forward dynamic and structurally relevant tissue deformation models [126] and could be 

highly beneficial in our understanding of the complex 3D ACL and graft replacement 

tissue mechanical response. Computational model success, however, is often 

compromised by an inability to validate predicted responses against the true in vivo 

state [30]. Recent experimental advances with the potential for characterizing ACL 

loading during highly dynamic movement tasks in vivo [127–130] may assist in this 

process.  

 

1.4 Biomechanical properties of the native ACL  

Characterization of the biomechanical properties of the ACL requires isolating the 

ACL as the only load-bearing structure spanning the femur and tibia, and designing 

gripping and loading geometries that provide well-characterized deformation states. 

With such an approach the stresses, strains, and strain rates acting on the ACL may be 

experimentally collected in a straightforward manner and used to determine underlying 

material properties. Obtaining well-characterized load and displacement boundary 

conditions in soft tissue structures is often quite challenging, and it is also imperative 

that the tissue is tested from an initially unloaded configuration.  Additional assumptions 

of linearity vs. non-linearity, elasticity vs. viscoelasticity, homogeneity vs. heterogeneity, 

and isotropy vs. anisotropy must be experimentally probed in order to completely 

characterize the tissue response. Moreover, anisotropic tissues such as the ACL usually 

require characterization in more than one strain state, e.g. uniaxial tension and shear, 

but the geometric realities of the ACL limit the accessible strain states. These critical 
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factors should be considered when interpreting previous efforts (below) attempting to 

characterize ACL material properties under a variety of explicit loading conditions.   

 

1.4.1 Elastic properties of the ACL 

The response of the ACL to axial deformation is non-linear. Elastic properties of 

the ACL are often measured by deforming the tissue at constant displacement rate or 

constant strain rate until failure, noting the load and displacement at failure, converting 

the raw load vs. displacement data to stress and strain, and reporting properties such 

as the tangent modulus at a given strain level, the ultimate (peak) strength, and the 

failure strain. As a viscoelastic tissue, these properties are directly sensitive to the 

applied strain rate and thus comparisons among studies require reporting of strain rates 

of loading. In particular the tangent modulus will increase with increased strain rate, 

whereas the failure strain will decrease. 

 

Essentially it is strain that determines the risk of ligament injury [48,131,132] and 

hence, this parameter has been central to investigations examining potential ACL injury 

mechanisms. There has been a great deal of work investigating the ultimate strain or 

strain to failure of the ACL under uniaxial tensile loads [49,71,77,133–135]. However, 

there is a paucity of tensile data providing the critical strain magnitudes at strain rates 

associated with ACL injury risk; typical test methods used are limited to strain rates of 

about 1/s whereas injury rates may exceed 4/s [114]. This limitation is typically 

governed by the inherent difficulty in developing a testing apparatus that can quantify 

mechanical behaviors at physiologic strain rates. Further, dynamic load simulators that 
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can replicate such conditions [31,32] are necessarily unable to examine strain 

responses in a repeatable and systematic fashion. Future efforts into examining ACL 

mechanical properties at higher, more naturalistic loading rates, thus appear well 

justified.  

 

The results stemming from the existing research, while providing significant 

insights into the non-linear ACL strain response, are far from conclusive. Noyes and 

Grood 1976 reported ACL failure strains at a strain rate of 1.0/s in old (48 - 86 years) 

and young (16 - 26 years) human femur-ACL-tibia complex (FATC) specimens of 0.485 

± 0.119 and 0.602 ± 0.068 respectively [77]. Chandrashekar et al. also using FATC 

specimens, reported ACL failure strains of 0.30 ± 0.06 for males and 0.27 ± 0.08 for 

females at 1.0/s [134]. Kennedy et al. 1976 reported strain values at damage onset of 

0.23 ± 0.02 at low (2 mm/s) and 0.28 ± 0.03 at high (8 mm/s) displacement rates [135]. 

Given an approximate ACL length of 34 mm [34], these displacement rates correspond 

to strain rates on the order of 0.06/s and 0.25/s, respectively. In the Kennedy et al. 

study, the testing device was clamped directly to ligamentous tissue making direct 

comparison between it and the other studies difficult. It has been reported, for example, 

that gripping any collagenous tissue can produce premature failure in the fibers and/or 

slippage in the grips, resulting in either a lower (failure) or higher (slippage) strain 

response [71]. In work that followed Noyes and Grood 1976, Noyes et al. reported 

failure strains for several soft tissues using two displacement measurements – the grip-

to-grip displacement and the direct tissue level displacements (the latter via the 

application of fiduciary markers on the tissues) and showed that grip-to-grip 
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measurements exceeded actual tissue level strains by more than a factor of two [136]. 

Testing the bone-ligament-bone complex also presents complications however, as 

ligament length is not always easy to define and the strains along the specimen are not 

uniform under tension, especially at the ligament-bone interface [132,137]. In particular 

it has been shown previously that ACL bundle femoral insertion location has a 

significant effect on strain measurement [59,138,139]. Some authors have taken this 

into consideration, conducting bone-ligament-bone tests in a series of relative 

orientations [59,140–142]. This approach has not yet been used to determine ultimate 

strains in the ACL however. 

 

Table 1.1: Mechanical properties of native human ACL and common replacement graft tissues: 
patellar tendon (PT) and hamstrings tendon (HT). [1] 

Authors 
Strain 

Rate (/s) 
Failure 
Strain 

Initial 
Modulus 

(MPa) 

Tangent 
Modulus 

(MPa) 

Tensile 
Strength 

(MPa) 
Notes 

Chandrashekar 
et al. 

1.0 
0.30 ± 0.06 - 128 ± 35 - 

ACL, 
male 

0.27 ± 0.08 - 99 ± 50 - 
ACL, 

female 
Hashemi et al, 
Chandrashekar 

et al. 
1.0 

0.18 ± 0.03 103 ± 64 479 ± 141 - PT, male 

0.18 ± 0.04 140 ± 75 490 ± 131 - 
PT, 

female 

Donahue et al. 0.02 0.088 - 904 66 
HT, 

without 
co sexes 

 

In addition to failure strain, other ACL elastic properties of interest are its tensile 

strength and tangent modulus, the latter computed as the terminal slope of the nominal 

stress (load divided by initial cross-sectional area) vs. nominal strain (change in length 

between two points divided by initial separation) response curve. Here again, the results 

are not conclusive. Noyes and co-workers for example reported the tensile strength of 
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the ACL at 1/s as 38 ± 9 MPa whereas Chandrashekar et al. also at 1/s, found 26 ± 10 

MPa for males and 23 ± 9 MPa for females  [77,134,136]. Noyes and co-workers did not 

report tangent moduli but did provide data from which values of 110 ± 15 MPa (young) 

and 62 ± 7 (old) may be calculated (geometric stiffness, 182 ± 56 kN/m; length, 26.9 ± 

1.5  mm; cross-sectional area, 44.4 ± 10.0 mm2 (young), 129 ± 39 kN/m; length, 27.5 ± 

2.8  mm; cross-sectional area, 57.5 ± 16.2 mm2 (old) [136]. Chandrashekar et al. found 

tangent moduli of 128 ± 35 MPa for males and 99 ± 50 MPa for females (see Table 1.1) 

[134].  

 

The tangent modulus depends on strain and is therefore sensitive to 

discrepancies associated with the method of strain measurement and uncertainties in 

strain determination as discussed above. The tangent modulus at a given strain level is 

also sensitive to the 

strain rate of loading in 

the viscoelastic ACL. 

Thus it is imperative 

that the community 

adopts e.g. optical 

tracking methods for 

accurately determining 

and reporting tissue 

level strains and strain 

Figure 1.2: For uniaxial ACL loading, the fully extended knee in the 
anatomical position (left) undergoes a posterior and lateral 
translation of the tibia relative to the femur (center) followed by a 90° 
internal rotation of the tibia (right) [65]. [1] 
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rates that do not carry the inherent inaccuracies associated with grip-to-grip 

measurements. 

  

1.4.2 Elastic properties of the ACL bundles 

As discussed earlier, it is not possible to untwist and align the intact ACL from 

femur to tibia. Nor is the anatomical orientation conducive to material property 

determination. Figure 1.2 illustrates a sequence of motions of the tibia relative to the 

femur applied to orient the ACL uniaxially. At full knee extension the tibia is posteriorly 

and laterally translated (Figure 1.2, 

left to 1.2, center) then internally 

rotated approximately 90° to untwist 

the bundles (Figure 1.2, center to 

1.2, right).  

 

Although the two bundles of 

the ACL are aligned with the load 

axis of a test apparatus in this 

orientation, owing to their 

mismatched lengths, there is no 

flexion or abduction/adduction angle 

at which both bundles are in 

unloaded and unslackened 

configurations. Butler et al. 

Figure 1.3: AM separated from the PL via a 
transection of the tibia at their natural separation. 
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recognized this when separating the ACL into bundles at the femoral insertion 

[49,51,133]. In each knee specimen they preserved only one of the bundles for testing. 

Butler et al. 1992 separated ACLs from seven young (21-30 years) human donors into 

three discrete bundles (with nomenclature of anteromedial (AMB), anterolateral (ALB) 

and posterolateral (PLB)), and reported varying maximum strain values for each. At a 

strain rate of 1.0/s, the AMB resisted the greatest elongation prior to disruption, failing at 

0.191 ± 0.028. The ALB and the PLB failed at 0.161 ± 0.039 and 0.152 ± 0.052 

respectively. The bundle divisions adopted by Butler et al. 1992 do not correspond to 

those that have been commonly defined, however this is one of the few works that has 

studied the mechanical properties of the individual bundles as opposed to the entire 

ACL [48,50,53]. Other investigators similarly separated the ACL, albeit into two bundles, 

in these instances removing either the AMB or the PLB, for functional testing of the 

remaining bundle [53,106,107,143–145]. Understanding the mechanical response of the 

ACL bundles goes beyond reporting strains and stresses at failure. The entire response 

curve to imposed deformation is 

needed to describe and fully 

characterize the non-linear 

viscoelastic response. Ma 2012 

demonstrated that the AM and PL 

may be separated by cutting the 

tibia along the plane that 

intersects the delineation between 

the AM and PL tibial insertions 

Figure 1.4: Load-unload responses of ovine AM and PL. 
This is representative data from a study of bundles from 
6 ovine knees.  [1] 
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[65]. With both bundles attached at the femoral insertion, the AM was retracted for PL 

testing and then the PL retracted for AM testing of both bundles from the same knee. 

Figure 1.3 illustrates the separated bundles prior to individual uniaxial tension loading. 

The bundles were tested via load-unload, and not strained to failure, to elucidate 

viscous effects. Typical results from 6 ovine knees are shown in Figure 1.4. The data 

are plotted as nominal stress vs. nominal strain. The data in Figure 1.4 illustrate 

heterogeneity in the mechanical properties of the two bundles, non-linearity of the 

response with an initial toe region” and the small, but important viscous effects manifest 

as the difference between the loading and unloading paths. The terminal slope of the 

loading path is the tangent modulus. It is from this maximum slope of the stress vs. 

strain response curve at a strain of 0.07 that the tangent modulus of each bundle is 

determined as 105 ± 67 MPa for the AM and 210 ± 58 MPa for the PL. Such isolated 

testing of the individual AM and PL reveals that the differences in the mechanical 

responses of these two ACL structures extend beyond strain to failure, as the stress vs. 

strain response curves diverge at small strains. It is clear from the literature examining 

the ACL bundles individually that treating the ACL as a homogeneous material with 

uniform mechanical properties in analytical and computational models is inaccurate. 

Moreover the ability to design replacement tissue requires more than end point 

measures (e.g. strength) but knowledge of the entire response path to failure. As will be 

seen in the next section, characterization of the viscous response has also historically 

lacked the reporting of critical data. 
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1.4.3 Viscoelastic properties of the ACL 

As a viscoelastic structure, the ACL demonstrates specific properties that 

significantly influence its role in stabilizing the knee against daily, often high-rate loading 

phenomena. Accurate characterization of these properties is particularly important in 

designing graft replacement tissues, since compromised stabilization in reconstructed 

joints is most evident for dynamic scenarios in which viscoelastic behaviors prevail [5]. 

Limitations of tissue availability and specimen-to-specimen variability have generally 

motivated investigators to maximize the number of characterization experiments 

conducted on one specimen. The goal in most instances, therefore, has been to probe 

the entire physiologically relevant viscoelastic strain range with each loading excursion, 

without damaging the tissue. This can be problematic in viscoelastic materials; care 

must be taken to insure each subsequent test is not influenced by the past history of 

loading, i.e. linearity of response must be maintained, and the tissue must fully relax 

after each load excursion before the next is applied [109]. Usual practice is to 

randomize the order in which the suite of tests is conducted for each specimen to 

minimize biased results in the event of non-linear effects. Beynnon et al. found the AM 

bundle of the ACL strains up to 0.05 in a variety of weightbearing and non-

weightbearing knee flexion and extension activities [146–149].  This peak magnitude, 

being consistent with that measured in vivo for landing maneuvers [127], is well below 

that reported necessary to compromise tissue integrity [51,71]. Figure 1.4 demonstrates 

that at a strain of 0.05 the response curves of the ACL bundles are well within their toe 

regions. If this strain level is assumed to be the approximate limit of the normal 

physiological response, it might therefore be expected that the viscoelastic response 

probed within this range will be highly non-linear. 
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The viscoelastic properties of the ACL have been quantified by investigating 

either its strain rate dependent response to uniaxial loading or its uniaxial stress 

relaxation and/or creep responses. Data on human tissue are extremely limited; 

therefore some of what is presented below to illustrate viscoelastic phenomena is 

derived from studies utilizing animal models or other human connective tissue 

structures.   

 

Stress relaxation 

Stress relaxation tests are ideally conducted by deforming the tissue as rapidly 

as possible to a pre-determined strain level, holding the deformation constant, and 

monitoring the time dependent stress response until it ceases to evolve. Kwan et al. 

1993 investigated the viscoelastic properties of the AM bundle of porcine ACL by 

straining specimens to a strain of 0.05 at a strain rate of 0.03/s and holding it at that 

strain level for 3,600 s [145]. They found a reduction in stress of 50% between the peak 

and minimum values. In addition, the stress relaxation was not linear with logarithmic 

time, indicating it was not describable by a single exponential relaxation function [109]. 

The peak stress and final stress values were not reported, making it difficult to compare 

with other studies. Yamamoto et al. 1999 studied the mechanical properties of bulk 

rabbit patellar tendon and individual collagen fascicles [150]. They performed stress 

relaxation experiments by deforming to a strain of 0.02 at a strain rate of 0.02/s and 

holding at constant strain for 350 seconds. The resulting initial stress of approximately 7 

MPa also relaxed by about 50% over the time interval tested. Other investigators have 
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sought to compare the stress relaxation responses of various tissues by deforming to 

pre-determined stress levels. For example, Johnson et al. 1994 studied the viscoelastic 

nature of the patellar tendon in young (29-50) and old (64-93) populations [151]. They 

strained the tissues in each instance to initial stresses of 1 and 4 MPa, and held the 

strain constant for 900 seconds. Tendons from the older population stress relaxed to 

50% of the initial value, whereas the younger tendon group stress relaxed to 55% of the 

initial value [151]. 

 

 

The majority of studies in the literature report the initial and final stress levels, but 

not the entire stress relaxation response curves. The latter are important for 

characterizing the viscoelastic response of the ACL and for developing accurate 

analytical models that can be incorporated into simulation tools of ACL and entire knee 

mechanics. An example of the data required appears in Figure 1.5 for the AM of a 

human knee. When isolated from the PL and tested under uniaxial stress relaxation 

Figure 1.5: Viscoelastic response of a human AM. Non-linear stress relaxation experiments 
from various initial strain levels (left). The initial and equilibrium (elastic) responses from the 
initial and final stress vs. strain pairs in the stress relaxation experiments (center). 
Relaxation modulus function at 0.18 strain plotted on a logarithmic scale to demonstrate its 
three distinct relaxation regions (right) [65]. [1] 
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conditions the AM exhibits non-linear stress relaxation as evidenced by the lack of 

superposition of the normalized relaxation modulus function response – the time 

dependent stress response divided by the constant strain input – for various initial strain 

levels (Figure 1.5, left). Additionally, substantial nonlinearity is manifest in the 

equilibrium elastic response, determined from the endpoints of the stress relaxation 

response functions for each initial stress – strain pair (Figure 1.5, center). The initial 

loading response of the AM at 0.025/s, which is also highly non-linear, is also 

represented in Figure 1.5 (center). Figure 1.5 (right) demonstrates that the AM stress 

relaxation response at an initial strain of 0.18 contains three characteristic relaxation 

times. Previously, Ma 2012 examined the stress relaxation response of the AM and PL 

of sheep and similarly found the AM to be non-linear in both its elastic and viscous 

responses whereas the PL was elastically non-linear but linearly viscous [65]. Moreover 

the sheep bundles each had two characteristic relaxation times, in contrast to the 

human bundles.  

 

The relaxation response of the data in Figure 1.5 (right) may be represented as 

follows, 

𝐸𝑅(𝑡) = 𝐸𝑖𝑛𝑓 + 𝐸1𝑒
(

−𝑡
𝜏1

)
+ 𝐸2𝑒

(
−𝑡
𝜏2

)
+ 𝐸3𝑒

(
−𝑡
𝜏3

)
 

 

(1) 

 where 𝐸𝑖𝑛𝑓 is the equilibrium modulus and the exponential terms contain the 

characteristic moduli (𝐸𝑖, i=1,2,3) and characteristic times (𝜏𝑖, i=1,2,3). At times 𝑡 ≫

𝜏1, 𝜏2 the pair 𝜏3, 𝐸3 may be found from 

𝑙𝑛(𝐸𝑅(𝑡) − 𝐸𝑖𝑛𝑓) ≅ 𝑙𝑛𝐸3 −
𝑡

𝜏3
 

(2) 
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using the slope and intercept of the best line fit through the data in Figure 1.5 

(right) at long times. Once these parameters are determined, the other parameters may 

be found in pairs by assuming 𝜏3 ≫ 𝑡 ≫ 𝜏1 to find 𝜏2 and 𝐸2, followed by assuming 𝑡 ≪

𝜏2, 𝜏3 to find 𝜏1 and 𝐸1.  

 

Reporting only the initial 

and final stress levels is 

insufficient for characterizing 

the viscous response. Very 

little data exist in the literature 

to support or refute the results 

in Figure 1.5 and therefore 

there is no acceptance of 

whether the ACL bundles are 

linear viscoelastic structures, 

what their equilibrium stress vs. 

strain response functions are, and how many viscoelastic parameters are needed to 

characterize them. An improved understanding of the detailed viscoelastic response of 

the ACL is important in developing modeling tools that can be predictive of ACL 

mechanics, and, as will be discussed in the next paragraph, in reconciling creep vs. 

stress relaxation responses. 

 

Creep 

Figure 1.6: The strain rate dependent uniaxial loading 
response of bovine ACL, adapted from Pioletti et al. 1999 
[153]. [1] 
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Creep tests monitor the time dependent deformation response to a fixed stress 

level. Creep data for the ACL are less prevalent in the literature than stress relaxation 

data. One study that examined both creep and stress relaxation is due to Thornton et al. 

1997, which examined creep and stress relaxation in the same tissue, in this case rabbit 

MCL [152]. Creep and stress relaxation specimens were both initially loaded to 14 MPa. 

The stress (load) was held constant in creep, and the displacement (strain) in stress 

relaxation, for 1,200 seconds. Thornton et al. found a 14% decrease in stress over the 

relaxation period and a 65% increase in strain during creep over the same amount of 

time, highlighting the non-linearity that results in differences between the characteristic 

creep and stress relaxation times. Again, very little creep data exist that would allow one 

to determine if the response is linear or non-linear, to e.g. model the response such that 

the creep response could be predicted from the stress relaxation response, and to 

design replacement ACL materials and structures that replicate the native viscous 

response. The data needed are the entire response curves in creep, not just the 

beginning and ending strain levels.  

 

Strain rate dependent response 

The lack of data characterizing human (or animal) ACL tissue at strain rates 

commensurate with injury risk is a critical problem. According to the data in Withrow et 

al. 2006, conditions during non-contact ACL injury exceed strains of approximately 0.05 

at strain rates of 4/s [114]. Studies detailing the effect of strain rate on ACL mechanical 

properties are helpful, although as mentioned previously, such data in the literature 

often test the same tissue over multiple rates, therefore they rarely contain failure strain 
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information. In one comprehensive examination of rate effects, Pioletti et al. 1999 

investigated bovine ACL over a broad range of strain rates (0.001, 0.01, 0.05, 0.10, 

0.20, 0.30, and 0.40/s) up to 300 N load [153]. They found that the stress response to a 

strain of 0.04 (4%) increased by a factor of three from the lowest to highest strain rates. 

The data in Figure 1.6, adapted from Pioletti et al. 1999, demonstrate the strain rate 

effect over the entirety of the strain region examined. Although none of these tests was 

taken to failure it is evident from the trend that the failure strain decreases markedly with 

strain rate, highlighting the need for more information on the strain to failure response of 

the ACL at the high strain rates associated with injury, strain rates that are at least an 

order of magnitude higher than the highest strain rate response shown in Figure 1.6.  

Methods to control the strain rates of loading beyond about 1/s are rare, however 

impact and blast loading experiments in which the strain rate history of the loading is 

collected during testing would significantly reduce the knowledge gap in failure 

strengths and strains at high strain rates. 

 

1.4.4 Effects of pre-conditioning 

Experiments on ligaments often incorporate a pre-conditioning phase prior to 

actual data collection [70,71]. Pre-conditioning is the application of cyclic loading and 

unloading during which the response curve of a viscoelastic material softens and 

eventually stabilizes. Figure 1.7 illustrates the initial loading-unloading excursion (red) 

and the stabilized (pre-conditioned) response (blue) of a hypothetical viscoelastic tissue 

that undergoes softening during pre-conditioning. The black dashed line indicates the 

equilibrium response achieved if the tissue were to be loaded at a strain rate that is not 
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only slower than the strain rate used to pre-condition, but also much slower than any 

relaxation rate associated with the tissue. Softening 

experienced during pre-conditioning without 

damage is the result of accumulated effects of the 

previous history of loading when the strain rate is 

on the order of the relaxation processes occurring 

within [109]. For this reason pre-conditioning probes 

the long-term or equilibrium (elastic) response of 

the material, and does so at a strain rate that is 

faster than the equilibrium response strain rate, 

rather than the response of the tissue to the strain 

rate actually used during pre-conditioning and data 

collection. The practice of pre-conditioning is not 

universal in ACL experiments [154–158], contributing to discrepancies among various 

studies. 

 

1.4.5 Effects of sex 

Sex-based differences in ACL injury rates are well established, with females 

suffering sports related injuries 2-7 times more frequently than males in comparable 

sports [4,159] (males demonstrate higher frequencies of ACL injuries overall). This 

disparity rises to 10/1 for women vs. men in military training [160–165]. While 

neuromuscular factors are commonly viewed to drive this disparity [166–168], explicit 

ACL structural and/or mechanical indices may play an equally important role. Sex 

Figure 1.7: The initial (red) and 
stress-softened via pre-conditioning 
(blue) load-unload response of a 
hypothetical viscoelastic tissue. The 
equilibrium response of this tissue is 
illustrated by the black dashed line. 
[1] 
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differences exist in a number of inherently non-modifiable ACL factors. Females have 

ACLs of smaller length, cross-sectional area and volume [169–172]. Even after 

accounting for these relative size differences, female ACLs demonstrate structural and 

mechanical characteristics that make them inherently different from male ACLs. 

Chandrashekar et al. 2005, for example, found that female cadaveric ACLs possess 

significantly lower load at failure (1266 ± 527 N), stiffness (199 ± 88 N/mm) and 

modulus of elasticity (99 ± 50 MPa) magnitudes compared to male ACLs (1818 ± 699 N, 

308 ± 89 N/mm, 128 ± 35 MPa) [170]. The two structural characteristics (failure load 

and stiffness) may be attributable to differences in female vs. male ACL size. The 

modulus of elasticity is independent of size; therefore female vs. male differences in 

moduli reflect differences in material constitution. Sex-dimorphic ligament ultrastructure, 

particularly fibril number and size, are posited to govern these structural and mechanical 

differences. Hashemi et al. 2008, found that female ACLs possessed lower fibril 

concentrations and lower percent area occupied by collagen fibrils compared to male 

ACLs [173]. Furthermore for the female ACL, stiffness and modulus of elasticity were 

strongly associated with fibril concentration. For the male ACL, load to failure and 

ultimate strength were associated with the percentage of ligament area occupied by 

collagen fibrils. It is unclear and counterintuitive as to why the female presents with 

structural and mechanical properties that seemingly increase its risk of injury. These 

differences are often posited to be driven developmentally by the increased presence of 

sex-specific hormones, which may promote a more lax female ACL [174,175]. Joint 

function is dictated by multiple structural, mechanical, geometric, strength and 

neuromuscular factors [4,176]. With this in mind, it is unclear whether tissues used to 
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reconstruct the ruptured ligament should similarly demonstrate sex-specific structural 

and mechanical characteristics. Chandrashekar et al. 2008 has shown that the PT graft, 

at least within its non-linear loading range, elicits sex-specific mechanics that are 

somewhat consistent with that seen for the ACL [177]. The PT, however, is still 

significantly stiffer geometrically and mechanically than the native ACL regardless of 

sex, suggesting that neither will adequately promote pre-injury joint motion patterns.  

 

1.4.6 Effects of joint geometry 

The knee joint presents as a combination of complex geometries [178,179] that 

drive an equally complex joint mechanical response [30]. Being largely non-modifiable, 

these factors are typically ignored in ACL injury risk screening and prevention models 

[4,167]. Many of these factors, however, are strong predictors of ACL injury, suggesting 

their consideration is well warranted. This consideration should also be extended to the 

reconstructive process, where as noted the goal is to restore native ACL knee motions. 

While not influencing ACL mechanics explicitly, knee joint geometric factors can impact 

the resultant ligament loading response and its potential to be high risk, either directly or 

indirectly. A smaller, less round (“A-shaped”) and narrower notch [180,181], for 

example, demonstrating clear prospective [182] and retrospective [180] injury links, is 

posited to promote injury via either indirect or direct mechanisms. The first (indirect) 

mechanism is that a smaller notch corresponds to a smaller ACL that will fail at lower 

load magnitudes irrespective of any size dependent material properties [172,183,184]. 

With a smaller notch suggested more common in women than in men [185,186], and 

females possessing a comparatively smaller [186] and potentially weaker ACL 
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[118,134,170], this indirect mechanism seems possible. Considering ACL ultrastructure 

demonstrates significant sex-based divergence [173], however, and relations between 

sex and notch size are inconclusive [186–189], additional mechanisms may similarly 

prevail. A second and equally plausible (direct) mechanism, for example, is that a 

smaller notch promotes ACL injury directly via excessive impingement on a 

comparatively large ligament [180,190,191], particularly under combined transverse and 

axial loading [192–194]. The existence of a boney ridge in the anteromedial aspect of 

an already smaller notch may further exacerbate high-risk ACL impingement loading 

under similar load states [195]. The underlying rationale for these “notch-driven” injury 

mechanisms suggests either is viable. It is worth noting, however, that a larger ligament 

will possess greater comparative load carrying capability [170,173], and may thus be 

capable of withstanding greater impingement-induced loading when housed within a 

small notch. Conversely, a smaller and weaker ligament will undergo far less 

impingement-induced loading when housed within a comparatively large notch. 

Considering these possibilities, in conjunction with the fact that ACL injury presents for a 

wide variety of femoral notch-ACL volume combinations [196,197], it appears injury may 

arise via more complex scenarios. 

 

Several key tibial plateau indices are also directly linked to sex-based ACL injury 

risk. Individuals previously suffering an ACL injury, for example, particularly females 

[198,199], demonstrate larger lateral posterior tibial slope angles compared to healthy 

controls. The combination of a large lateral slope and a shallow medial tibial plateau 

depth of concavity is viewed to promote an even greater risk of ACL injury in females 
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[200]. Specifically, a larger lateral slope anteriorly shifts the tibiofemoral contact point 

under impact-induced compressive loading [61]. In this position, the anterior shear 

component of the resultant joint reaction force is similarly larger, increasing anterior 

tibial motions [117,200,201] and ACL strains [37,110]. A shallow medial plateau depth 

of concavity additionally fails to restrain or catch these large and often rapidly occurring 

anterior motions, precipitating even greater ligament deformation [200]. Large inter-joint 

differences between lateral and medial posterior tibial slope angles in females are also 

posited to elicit high-risk out of plane knee motions with the propensity to injure the ACL 

[201]. Bojicic et al. 2017 recently found that increases of 1° of posterior tibial slope and 

lateral middle cartilage slope increased the chances of ACL injury by 12% and 13% 

respectively [202].  

 

Considering the above findings, understanding the roles that explicit knee 

geometric factors play in the resultant joint mechanical profile appears critical, both to 

elucidating injury mechanisms and enhancing ACL reconstructive methods. A graft 

replacement that is substantially more lax than the native ACL, for example, a common 

long-term reconstruction outcome [203–205], will be particularly problematic in a knee 

joint with a large lateral tibial slope. In this instance, the more lax graft will take longer to 

arrest the rapidly accelerating tibia, resulting in greater and potentially debilitative 

deviations from the pre-injury articular cartilage contact profile [63]. Similarly, a graft 

tissue that is too large for the notch within which it is housed may be at a greater risk of 

impingement driven injury moving forward [192]. Further consideration of individual-

specific joint geometric and resultant mechanical factors in the reconstructive process 
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may thus be vital to long-term joint mobility and health. Such considerations seem 

equally critical for future injury risk screening efforts and associated prevention efforts.  

 

1.5 Replacement graft mechanics 

Currently, two types of tissue grafts are most commonly used for ACL 

replacements, the patellar tendon (PT) and the modulated semitendinosus- gracilis 

tendon, referred to clinically as simply the hamstrings tendon (HT). Grafts may be 

autografts or cadaveric allografts.  Outcomes for ACL reconstruction using these 

techniques are limited by graft availability, risk of rejection, and increased morbidity. The 

region of the graft within the bone tunnel does not fully integrate with native tissue 

[45,206] and the initial response of the body to grafts is one that results in a lowering of 

the stiffness of the replacement [207]. Moreover, because the graft may not fully 

integrate with native tissue within the bone tunnel, the graft may not complete the 

ligamentization process nor restore the original biomechanics to the knee, even 2-3 

years postoperatively [45,206,207]. Common sequelae of ACL injury include articular 

cartilage degeneration and osteoarthritis (OA). While the goal of ACL reconstruction 

should be to utilize tissues that replicate the structural and particularly mechanical 

properties of the native ACL tissue, this critical outcome is rarely achieved.  

 

Because of the fact that the PT and HT grafts have significantly higher tangent 

moduli than that of the ACL at all strain levels [145,176,208], these grafts have been 

very successful historically in stabilizing the knee and allowing the patient to return to 

strenuous physical activities. Notwithstanding these satisfactory short-term clinical and 
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functional outcomes [7,209–212], the ACL reconstructed patient still has a high risk of 

developing early-onset OA [7,213–215], with symptoms presenting 5-15 years post-

surgery [7]. Studies show incidences of OA within 7-14 years following knee injury as 

high as 50% [7,213,216], and sub-optimal improvements in outcomes as a result of ACL 

reconstruction with current graft methods [2].  In addition to the risk of developing OA, 

the altered graft properties typically manifest in a similarly altered and potentially 

hazardous joint mechanical profile, during both functional and especially highly dynamic 

maneuvers [5,6]. The net result is an increased risk of “ligament” re-rupture compared 

to the original native tissue state [217]. Graft failure rates are nearing 25% for the 

youngest, most active patients (i.e. teens) [218,219]. Long-term follow-up studies of 

ACL reconstructions report increased knee laxity over time [220,221] placing the graft at 

a greater risk of rupture. 

 

In attempts to more effectively replicate the native ACL condition, a number of 

studies have compared explicit structural and mechanical properties between this and a 

series of commonly used replacement tissues under various movement/load scenarios 

[49,50,100,151,208,222–226]. These data consistently highlight substantial differences 

in the mechanical properties between the native and graft tissue, as well as how these 

differences promoted concomitant differences in knee function. For example, Woo et al. 

2002 compared the mechanical response of PT and HT autografts to intact and ACL 

deficient cadaveric knees under explicit combined external joint load applications. 

Specifically, either an anterior tibial translation (ATT) load of 134 N, or ATT combined 

internal tibial (10 N-m) and valgus moments (10 N-m) were applied at two different (15° 
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and 30°) knee flexion angles. For each loading condition, both the PT and HT graft 

conditions resulted in significantly greater (by approximately 3-4 mm) peak anterior tibial 

translation magnitudes compared to the intact ACL state. They did not result in as great 

an increase, however, as the ACL deficient condition (approximately 5-11 mm). That the 

addition of internal rotation and valgus torques produced only minor translation 

increases compared to the isolated ATT case is somewhat logical, since as noted, the 

ACL’s orientation renders it a secondary restraint to in-plane loading [76,93,94].  

 

Table 1.2: Gender and age differences in the human ACL. (*Quantities were calculated by the 
authors from available data in the literature.) [1] 

 

The fact that HT and PT grafts resulted in increased translations compared to the 

intact case is less intuitive, however, since they both possess comparatively higher 

tangent moduli and geometric stiffnesses [65,177,227]. It could be that each graft was 

positioned within the knee joint at a lower active tension compared to the native ACL, 

countering these increased stiffness characteristics. It is also plausible that the overly 

stiff graft may immediately slip upon application of the external load, resulting in a more 

Authors 
Strain 

Rate (/s) 
Failure 
Strain 

Tensile 
Strength 

(MPa) 

Tangent 
Modulus 

(MPa) 
Notes 

Noyes and 
Grood 

1.0 0.485 ± 0.119 13 ± 5 62 ± 7* old 

Noyes and 
Grood 

1.0 0.602 ± 0.068 38 ± 9 110 ± 15* young 

Chandrashekar 
et al. 

1.0 0.30 ± 0.06 26 ± 10 128 ± 35 male 

Chandrashekar 
et al. 

1.0 0.27 ± 0.08 23 ± 9 99 ± 50 female 

Kennedy et al. 0.6 0.23 ± 0.02   2 mm/s 

Kennedy et al. 0.25 0.28 ± 0.03   8 mm/s 
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lax outcome than the native ACL condition.  Such details were not reported, however, 

meaning underlying causes remain speculative at best. 

Patellar tendon autografts were tested in uniaxial tension at a strain rate of 1.0/s 

to failure in male and female cadaveric knees by Hashemi, Beynnon, and co-workers, 

comparing properties to those of the native ACL condition [134,177,228]. Initial and 

tangent moduli were reported for the PTs but they reported only tangent moduli for the 

ACLs. The initial and tangent moduli observed for male PTs were approximately 103 ± 

64 MPa and 479 ± 141 MPa, respectively, compared to a tangent modulus of 128 ± 35 

MPa for the native ACL. The initial and tangent moduli of the female tendons were 140 

± 75 MPa and 490 ± 131 MPa, compared to the ACL tangent modulus of 99 ± 50 MPa. 

The increased linear moduli observed in both male and female PTs compared to the 

native state again highlight an important mechanical mismatch that likely compromises 

long-term joint integrities. That failure strains in the male 0.30 ± 0.06 and female 0.27 ± 

0.08 ACLs [134] were significantly greater compared to corresponding PT values 0.18 ± 

0.03 for male and 0.18 ± 0.04 for female; [173] further supports this tenet, especially 

since injury risk is strain dependent [48,131,132]. Donahue et al. 2001 measured the 

mechanical properties of human HT at a strain rate of 0.02/s, and found a tangent 

modulus of 904 MPa, strength of 66 MPa and failure strain of 0.088 [227]. These data 

indicate the HT is more overdesigned for stiffness as well as strength (as shown in 

Table 1.2) and potentially carries a higher risk of (re)injury, than the PT. Donahue et al. 

also reported stress relaxation to about 80% of the original value for PT which is in 

contrast to results reported for the ACL of about 50% [145,150], but comparable to the 

results in Figure 1.5. 
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1.6 Use of animal models in ACL research 

Animal models have been used frequently in a variety of experiments designed 

to give insight into the properties of the human knee joint and its various components. 

Many tests have been conducted on different animal species, including rhesus monkeys 

[77,229], rabbits [152,230–234], rats [235–238], dogs [6,43,239,240], sheep [223,241–

244], pigs [145,156,245–248], and cows [153,227,249]. From a biomechanics 

perspective, joints and tissues with structural features and biomechanical properties 

similar to those of human tissues would provide appropriate animal models. For small 

animal ACL replacement studies, appropriately scaled grafts are required. However, 

debate exists as to whether these animal models accurately reflect the structures and 

biomechanics of the human ACL and knee joint [229,250–256]. Others have called 

small animal models clinically inaccurate, due to their inability to support common ACL 

replacement surgery techniques [257]. Seitz et al. 1997 also characterized the rabbit 

ACL vascularity as more sparse than that of humans, citing it as an inappropriate 

model, but it isn’t clear whether the vascularity was scaled appropriately in this study 

[258]. For this reason and others, such as the inability of small animal models to support 

human sized loads, small animal models have been all but ruled out within the clinical 

test model. Direct comparison of structural characteristics affords limited insights, 

however, since they fail to take into consideration underlying size differences in the 

respective tissues.  Some small animal models may therefore need to be revisited as 

appropriately scaled (e.g. body weight) loads or material level properties such as moduli 
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and failure strength, rather than geometric stiffness and load magnitudes, should be the 

factors used in determining suitable animal surrogates. 

 

Others have explored size independent properties to eliminate some small 

animal models.  Noyes et al. 1976 compared the mechanical and structural properties of 

human (16-26 yrs) and rhesus monkey specimens loaded uniaxially under tension 

(1.0/s) to failure. Human ACL stiffness (~180 kN/m) and particularly peak load 

magnitudes (~1.7 kN) were noticeably different from those observed  (~190 kN/m and 

~0.8 kN) for the monkey specimens [77]. When accounting for underlying structural 

differences, Noyes et al. 1976 found the human ACL elastic modulus (111 MPa) and 

strength (38 MPa) to be significantly lower than corresponding values (186 MPa and 66 

MPa) in the monkey specimens. These outcomes, highlighting important constitutive 

differences, suggest that the monkey ACL model does not adequately represent the 

human tissue response.  

 

Danto and Woo 1993 used the rabbit model to explore strain rate dependent 

responses of the medial portion of the ACL and PT at three different strain rates: 

0.00017/s, 0.017/s and 3.8/s.  They calculated the tangent modulus as the fit of the 

linear portion of the stress-strain curve between strains of 0.040 and 0.065, and 

reported an increase of 31% in the tangent modulus at the highest rate over that at the 

lowest rate for the ACL. Measuring the tangent modulus between strains of 0.020 and 

0.045 in the PT, they found a 94% difference between the low and high strain rate 

tangent moduli [259]. These results provide an indication of the inability of the PT to 
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replicate the native ACL response, in this case its strain rate dependence. Particularly, 

the existing discrepancies between the moduli of the ACL and PT at low strain rates are 

amplified at high strain rates in the rabbit model. 

 

Sheep have been increasingly used as a large animal model as their stifle joint 

properties are anatomically similar to the human knee joint [260]. The relatively large 

size of the ovine stifle joint and its mechanical, histological, and molecular biological 

similarities similarly renders it suitable for in vivo investigations of knee and ACL 

function [261,262]. The sheep ACL contains two distinct sections, the craniomedial and 

caudolateral bundles (comparable to the AM and PL respectively). The two bundles 

have more distinct separate tibial insertions than the human bundles [261], as human 

ACLs demonstrate more of a continuum ribbon-like structure. However, in sheep as in 

humans the bundles are readily separated as described earlier. Seitz, et al.1997  

discovered that the vascular anatomy of the ovine ACL is similar to that observed in 

humans [258]. Murray et al. also concluded that cell number density, blood vessel 

density, and percentage of intrinsic cells expressing smooth muscle actin, which are 

known to influence the response to injury in other musculoskeletal tissues, are similar 

between human and ovine ACL cells [263]. Several investigators have reported 

geometric stiffness values for sheep ACL [243,244,257,264]. When converted to 

tangent modulus using the geometrical properties provided by these authors, a fairly 

uniform consensus value of 130 ± 15 MPa is attained. Recall from Table 1 the recent 

study by the Beynnon group [134] giving a human ACL a tangent modulus of 128 ± 35 

MPa for males and 99 ± 50 MPa for females.  
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The sheep model is also appealing for ACL studies because of the similarities of 

its soft-tissue graft healing processes and biomechanical outcomes in response to 

current surgical techniques compared to those of humans [257]. Sheep tend to tolerate 

the surgical grafting procedure well, regain knee stability without visible restrictions of 

motion, and display little macroscopic evidence of osteoarthritis [257]. Disadvantages 

with the sheep model include the substantially different metabolic processes between 

animals and humans. Wound healing in sheep is found to be faster than in humans, 

which may affect the time-dependent changes of graft remodeling [244]. 

 

Other investigations have noted similar attributes between the ACLs of large 

animals other than sheep (and goats) and those of humans. Fuss et al. 1991 found that 

although the knee range of motion is different for humans vs. pigs, there is no functional 

difference between the ACL in either model [246]. However, the porcine ACL structure 

shows a distinct difference from that of the human as its AM is further divided into two 

distinct sections. Xerogeanes et al. 1998 compared the in situ forces present in the ACL 

overall and its individual AM and PL separately in humans, pigs, goats, and sheep 

[265]. Force, moment, and displacement data were acquired by applying an anterior 

displacement to the tibia of the intact knee at 90° of knee flexion to 100 N at a rate of 

0.333 mm/s. All soft tissue other than the ACL was then removed from the specimen, 

the displacements found in the first test reapplied, and the resulting forces measured. 

The porcine model was found to be most similar to the human model in terms of the 

load carried by the ACL, with differences evident between both the goat and sheep 
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model. However, one cannot attribute differences among the loads carried by the 

various animal tissues to size of the ligament, its constitution, or both, without 

knowledge of the relative sizes of the animal ACLs.  

 

It was noted earlier that Donahue et al. 2001 examined the viscoelastic 

properties of human HT  [227]. That study compared the properties of human HT to 

those of the bovine digital extensor. Stress relaxation tests were performed by pulling 

the tissue at an elongation rate of 250 mm/s (approximately 3/s) to a strain of 0.025, 

corresponding to a force of around 500 N, and holding the displacement constant for 

around 900 seconds. Creep tests were performed using load control (at a rate of 315 

N/s) to around 250 N, and holding at constant load for approximately 900 seconds. The 

structural and material properties were found through uniaxial tension testing to failure 

at a rate of 0.02/s. They found no significant differences in the viscoelastic properties of 

the bovine and human grafts; the loads at the end of the stress relaxation tests differed 

by only around 5 N (393 N for the human and 388 N for the bovine specimens). In 

addition, the strains at the end of the creep tests were approximately 0.012 for both 

tissues. The structural and material properties were also similar in the human and 

bovine models. The linear stiffness was found to be 418 N/mm in human and 444 N/mm 

in bovine, while average peak loads and ultimate stresses were around 2914 N and 66 

MPa for human and 2901 N and 72 MPa for bovine. Ultimate displacement and ultimate 

strains were 8.4 mm and 0.88 for the human and 8.6 mm and 0.90 for the bovine tissue 

[227].  
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In recent years the sheep (or goat) has pulled ahead of the pack as the most 

widely used animal model for ACL biomechanics because of the data described above. 

Whether smaller animals have been virtually discounted for the right reasons remains 

unclear. Sheep clearly exhibit important similarities – joint and ACL structure and 

anatomy, and ACL material properties. A paucity of similar data for smaller animals 

precludes identification of potential models from this cohort. Cost considerations may 

one day entice investigators to revisit the possibility of a substitute for sheep. To some 

extent, a paradigm shift away from structural parameters towards mechanical concepts 

of stress and strain rather than load and displacement and material properties such as 

modulus, strength, and strain to failure is also required.  

 

1.7 Mathematical models 

Structurally viable finite element (FE) computational knee models may be highly 

useful for understanding ACL biomechanics in normal and pathological conditions, 

extending information that can be obtained from experiments. The reliability of FE 

models strongly depends on accurate geometric representations of the knee structures, 

appropriate constitutive models of the tissues, and correct boundary conditions 

including contact algorithms.  Many computational efforts to date have focused on 

building accurate geometrical models and computationally efficient schemes, and 

advances in these areas have been remarkable. Mathematical modeling approaches for 

the ACL have included bilinear elastic one-dimensional springs [266–269], isotropic 

neo-Hookean materials [270], and general isotropic hyperelastic models [271,272]. 

More recently investigators have turned to developing more accurate mathematical 
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models of the ACL as well as other tissues of the knee within a computational 

framework. Several investigators isolate the ACL and its attachments to the femur and 

tibia. The bones are assumed to be rigid therefore the computational framework is 

limited to just the ACL [194,273–276]. Others digitize the bones, ligaments, tendons, 

cartilage, and menisci [277–279]. The majority of these models use a transversely 

isotropic, non-linear elastic constitutive law for the ACL, writing the strain energy density 

function as a linear combination of the dilatational (volumetric) and distortional 

(isochoric) parts of the deformation gradient [194,273,275,278–280]: 

 

𝑊 = 𝑊𝐼𝑆𝑂
̅̅ ̅̅ ̅̅ (𝐼1̅, 𝐼4̅) + 𝑊𝑉𝑂𝐿(𝐽) (3) 

 

where the isochoric part of the strain energy density function, 𝑊𝐼𝑆𝑂
̅̅ ̅̅ ̅̅ , depends on 

the first and fourth invariants of the isochoric right Cauchy-Green tensor (𝐶̅), and the 

volumetric part, 𝑊𝑉𝑂𝐿, depends on the volume change, 𝐽 [281]. Both terms in the strain 

energy density function are non-linear, and, depending on the specific form of the 

functions chosen, the models have between four and six elastic constants. The first 

invariant, 𝐼1̅ = 𝑡𝑟𝑎𝑐𝑒(𝐶̅), is a scalar and therefore provides isotropic behavior. The fourth 

invariant, 𝐼4̅ = 𝐶̅: 𝑚0 ⊗ 𝑚0, in which 𝑚0 is a unit vector that indicates an initial “fiber” 

direction, provides anisotropy.  Peña et al. 2006 also incorporate an initial stretch into 

their model [278]. Other investigators studying cartilage or meniscus and requiring an 

ACL in their computational framework have opted for a non-linear 1D spring model 

[282,283]. 
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The elastic constants in a constitutive model should ideally be determined from 

experiments. Caution must be exercised when determining the best fit of the model 

constants to experimental data as the constants used must also provide a strain energy 

density function that is an increasing function of deformation. Xie et al. 2009 did not fit 

their model to ACL data but used a model from the literature that was developed for skin 

and contained elastic constants that violate this requirement [284]. Park et al. 2010 

used an anisotropic model from the literature and fit the model to experiments they 

conducted on strips of ACL tissue tested in tension along and perpendicular to the fiber 

direction [194].  Unfortunately their elastic constants resulted in a strain energy density 

function that is also not an increasing function of deformation. The same is potentially 

true for the form the of constitutive model used by Dhaher et al. 2010 in that the choice 

of elastic constants could result in an invalid strain energy density function but their 

particular choices for elastic constants do not render their function invalid [279].  Peña 

et al. 2006 fit their ACL model parameters to data obtained by Butler et al. 1990 

[278,285]. The Peña approach was used by Zhang et al. 2008, who used the model 

constants determined by Peña et al. manually digitized one human ACL to map the 

local collagen bundle direction, and assigned the local bundle direction to 𝑚0 [273]. 

Recently Kiapour et al. 2014 also using the form of Equation 3, fit the ACL tension data 

to their model but they did not report the specific form of the strain energy density 

function they used nor their modal constants [280]. 

 



49 

1.8 Conclusions 

An extensive review of the literature herein reveals that graft tissues most 

commonly used to reconstruct the injured ACL (e.g. PT and HT) are substantially stiffer 

than the native tissue [100]. Studies also show that when reconstructing the ligament 

with these tissues, the common long-term outcome is an overly lax graft [12], arising as 

noted either through graft loosening [15] or a devolved and increasingly compliant tissue 

[16], although this is not true clinically. As other sources for replacement graft tissue are 

not available, methods to engineer ACL grafts may one day yield an alternative 

approach. From a design perspective, the challenges associated with matching the 

structure, function, and biomechanical properties of native ACL and its interfaces with 

materials available for scaffolds are arduous and multifaceted, as recently reviewed by 

Lu 2012 [19].  Recent efforts have demonstrated that at least for the sheep, a tissue 

engineering approach in which the graft grows and remodels in vivo to histologically and 

mechanically approach the native tissue condition appears promising [18]. Others have 

focused on augmented repair of the torn ACL using a bio-enhanced regenerative 

approach [20]. 

 

A key limitation of current research into ACL and/or graft mechanics is that data 

have typically been obtained under simple assumed uniaxial loading (tension) 

conditions. Studies extending analyses to examine more complex joint loading 

scenarios, both in vitro [114,118] and in vivo [127], have still only produced overly 

simplistic (regional) mechanical descriptions. With the ACL possessing substantial 

anatomical and functional complexity [35], its resultant mechanical response will likely 

be equally complex. It is thus plausible that current data drastically underrepresent the 
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ACL mechanical response. Similarly, the methods used to characterize ACL strain 

assuming uniformity oversimplify reality.  Novel full-field methods have become 

established in studies of the mechanics of non-biological structural materials and are 

becoming increasingly utilized in tissue mechanics studies [18,45,286–290].  

 

Digital image correlation (DIC) analysis provides the strain contours from the 

displacement information. In either bundle it is clear that strain averaged along the 

entire bundle length grossly simplifies the actual strain state which may lead to 

inaccuracies in predicting injury mechanisms. DIC provides transverse and shear 

strains as well, vastly expanding the data collected from a single experiment. Increased 

utilization of innovations such as the full-field DIC method during structural and 

functional testing of the ACL and the knee joint is critically needed to enhance our 

understanding of the ACL response. 

 

A torn anterior cruciate ligament is a traumatic knee joint injury that carries 

significant morbidities. Central to identifying and countering the mechanisms of these 

injuries and their long-term sequelae is a thorough knowledge of the native tissue’s 

mechanical properties. Over the past five decades, an abundance of (in vitro, in vivo 

and animal model) research has been undertaken with this direct intent, affording 

significant insights into the ligament’s response to various isolated and combined load 

states. Despite these extensive efforts, however, limited data exist that successfully 

characterize 3D ligament mechanical behaviors under highly dynamic physiologic 

loading conditions synonymous with injury. The net outcomes of this ongoing void 
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include a lack of insight into the true mechanisms of ACL injury and means to 

successfully screen for and counter their debilitative impact. In addition, the ACL 

biomechanics community lags behind the rest of the mechanics community in the use of 

experimental techniques and computational tools to characterize, model, and predict 

biomechanics, kinematics, and injuries. Filling these knowledge gaps is critical and is a 

primary focus of the research discussed in this work.  

 

The remaining chapters are organized as follows. In Chapter 2, a novel 

stochastic patterning method for soft biological tissue for use with digital image 

correlation is discussed. Chapter 3 outlines the experimental results of the AM bundle 

of the ACL using digital image correlation and traditional strain measuring techniques. In 

Chapter 4, the experimental results for the PL bundle and the clinically relevant anterior 

tibial translation (ATT) test are discussed. Chapter 5 details the development of a finite-

element AM bundle model derived and validated from the experimental results. Chapter 

6 concludes, with a focus on proposed next steps for future work.  
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Chapter 2: Development of a Stochastic Patterning Technique for Use with 

Digital Image Correlation Analysis of Biological Soft Tissues 

 

 

2.1 Introduction 

Developed as a non-contact, full-field displacement measurement technique with 

no intrinsic length scale, digital image correlation (DIC) takes as inputs digital images of 

a specimen undergoing mechanical strain. It functions by optically identifying unique 

subsets of pixels throughout the entire area of interest on the surface of the specimen. 

As shown in Figure 2.1, these subsets deform with the specimen, not necessarily in an 

affine manner, and each deformed subset throughout each image frame is uniquely 

identified using a least squares algorithm and related back to its original undeformed 

orientation. The DIC algorithm computes the deformations of these subsets, from which 

strains are calculated. Because the subsets exist on the specimen surface, 2D 

displacements and strains are the usual outputs of the DIC analysis.  

 

3D DIC is a variation of the 2D DIC method. Two cameras (with known 

orientations relative to each other) are used to generate two sets of camera images. 

The position of the specimen in the out-of-plane direction is determined by triangulating 

the two sets of images. This technique provides 2D displacements and strains along the 

surface of the specimen (similar to 2D DIC), as well as out-of-plane displacements. Due 
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to the surface-only input information from the cameras, 3D DIC does not provide out-of-

plane strains. However, it has several advantages over 2D DIC, namely that in providing 

positional data in the out-of-plane direction, it has the capability to correlate surface 

strains of non-planar specimens. It also provides surface strains for specimens that 

move in or out-of-plane during deformation, which is not uncommon for specimens 

undergoing finite deformations, such as many biological soft tissues.   

 

DIC is well known in the mechanics community for the great advantages it has in 

obtaining full-field surface strains without invasively interacting with the material under 

consideration. However, the crux of the technique is the requirement of uniquely 

identified subsets throughout the area of interest. This necessitates the use of a 

pseudo-random high contrast stochastic (speckle) pattern on the surface of the material 

Figure 2.1: Example of DIC subsets tracking the deformation of a specimen. The undeformed 
specimen (left) contains originally undeformed subsets of a certain size (measured in pixels). 
After deformation, subsets in each image frame (center and right) are uniquely identified, and 
related to the undeformed frame, providing displacement data. Pseudo-random stochastic 
patterns are needed to uniquely identify the subsets in each frame.  
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(as seen in Figure 2.2). There has been success in generating patterns for DIC to study 

a variety of structural materials, from uniaxial loading of woven-fiber ceramic matrix 

composites to deformations present in cold-rolling processes [1,2]. With these 

materials, the stochastic pattern can be relatively easily achieved using layers of paint, 

often applied with commonly available spray paints. By overlaying white and black 

layers of paint, it is usually not difficult to apply a high-contrast pseudo-random pattern 

to hard surfaces. The density of the pattern is also of critical importance (Figure 2.2), as 

areas of low density will not have enough information to calculate displacements. 

Density is often accomplished in traditional DIC patterning methods by controlling the 

distance between the pattern applicator and the specimen. However, as will be 

discussed in detail in Section 2.1.2, there are significant challenges in adapting 

traditional patterning methods to soft biological tissue. 

 

The size of the speckles is also crucial. DIC algorithms typically recommend a '3 

x 3' rule (individual speckles contained within a 3 x 3 pixel area), as described in Sutton 

et al. 2009 [3]. Patterns containing speckles of highly varying size will require different 

image magnifications, and optimizing the DIC analysis for one size will cause lack of 

Figure 2.2: Examples of pseudo-random stochastic patterns for DIC. For many macro-scale 
non-soft material experiments, the density and overall particle size can be controlled to provide 
a variety of patterns according to the requirements of the test setup. 
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correlation, due either to low resolution for speckles smaller than the optimal size, or 

areas that are too dense/sparse due to larger speckles. Regarding pattern density, 

Sutton et al. recommends that subsets should contain 3 x 3 pixels for accuracy of the 

subset matching process. [3]. The specific density and speckle size of the stochastic 

pattern is largely constrained by the material under consideration, especially the size of 

the material, and by the capability of the imaging systems utilized. Achieving this 

recommended density and size is another challenge with biological materials and there 

is a need to develop methods rendering DIC more amenable to use with soft tissues. 

 
 

2.1.1 Traditional ligament strain measurement techniques 

Far-field displacement measurement systems have been widely used to measure 

deformation of soft biological tissue, usually by measuring tissue displacement via the 

movement of the test frame. However, compliance along the load train of the specimen 

due to components of the testing apparatus, including the test frame itself or tissue 

fixation techniques, can contribute to higher measured strains than those actually 

experienced by the tissue. Notwithstanding this issue with compliance, several 

foundational ACL mechanics studies have utilized these types of strain measurement 

devices [4–6]. Other studies have gathered displacement data of biological specimens 

directly at the tissue surface. Several studies on the knee ligaments have used a linear 

variable differential transformer (LVDT), a point-to-point measurement system that 

operates by clamping onto a specimen at two locations and measuring the absolute 

displacement between those points during deformation [7–9]. For example, Butler et al. 

[7] studied individual bone-ligament-bone ACL bundles using an LVDT, and reported 
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mechanical properties of the bundles. There are several limitations with this kind of 

system. Point-to-point systems are one-dimensional in nature, and provide average 

displacements and strains across the gauge length of a specimen. In addition, the local 

mechanical deformation of the tissue is highly likely to be adversely affected by the 

direct contact of the measurement prongs. 

 

The use of surface-level markings has been utilized to contribute to mechanics 

data of soft tissue. Woo et al. and Wren et al. used tissue-surface markers to measure 

the gauge length, and Butler et al. used similar markers to visualize slippage of 

specimens within the test grip system [10–12]. Others have used small numbers (~9-15) 

of beads or markers to measure strains optically. However, in each of these cases, only 

data along the axis of loading was reported, neglecting the rich amount of data full-field 

techniques such as DIC can provide [13–15]. Indeed, little attention has been given to 

the strain response of soft tissues specifically outside of strains along the axis of 

loading, leading to a paucity of data on and understanding of their full-field intrinsic 

behavior. 

 

2.1.2 Challenges of applying DIC to soft tissues 

There are significant challenges in adapting the pattern requirements of DIC to 

soft tissue. The traditionally used spray paint medium can adversely affect the material 

properties of softer materials, and thus is not an effective medium for soft biological 

tissue. In addition, maintaining tissue hydration during loading is greatly important for 

biological materials. The use of full layers of spray paint can contribute to tissue 
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desiccation, further affecting the measured material properties. Over-coverage of the 

specimen surface during application of the patterning medium is another serious 

challenge in the creation of viable DIC patterns. This is often unintentional, as minor 

shifts in the position or pressure applied to the medium applicator (i.e. an aerosol air 

can or airbrush with compressed air tank) can cause a burst of patterning fluid or 

particles to cover the specimen surface. If the patterning medium is extremely difficult to 

remove or permanent, this over-coverage can result in untestable specimens. 

Patterning biological tissue is challenging, and the ability to remove and reapply 

patterns is essential. Thus, the optimal DIC patterning medium would be both 

biologically-friendly and amenable to pattern reapplication.  

 

Graphite particles have been used to pattern soft biological tissue [16]. These are 

sometimes referred to as powdered graphite lubricant, and extra fine particles range in 

size from 44-75 m.  This medium has advantages in its non-harmful nature, and it can 

be used in combination with talcum powder to create a high-contrast pattern. However, 

the use of graphite particles as a patterning medium is often subject to particle 

clumping. The application of DIC patterns for soft biological tissue testing is ideally 

performed once the specimen is mounted in the test system, as motion of the tissue 

post-patterning can cause movement of the pattern, clumping particles in some regions 

while removing particles completely in others. Grids can be utilized to sift graphite 

particles in order to minimize this problem, but grids are more amenable to horizontally-

oriented specimens; vertically-aligned test systems further the difficulty of creating a 

consistent particle density and speckle size throughout the specimen surface. As 
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mentioned previously, unintentional over-coverage of the surface can necessitate the 

removal of the particles to repeat patterning afresh. These multiple applications of 

graphite powder often render the tissue surface gray, as it is extremely challenging to 

remove all particles after application. Hydrating the tissue during testing exacerbates 

this ‘graying out’ phenomenon, as particles tend to aggregate in areas of heavy 

hydration. Other patterning mediums have been used for optical tracking and for 2D DIC 

of soft biological tissue, including Verhoeff’s stain [17]. However, these types of ink are 

often permanent in nature, necessitating the creation of optimal patterns on the first 

patterning attempt and risking the loss of specimens with any excess pattern coverage.  

 

Another challenge in patterning biological tissue is the controllability of the 

speckle size and density, as required for optimal DIC contour coverage. Airbrushes and 

compressed air tanks are an option for applying fluid-based patterns for DIC. With an 

airbrush, the user manually controls the speckle size and density during pattern 

application, often by prescribing a set air pressure and needle/nozzle configuration, and 

adjusting the distance of the airbrush from the specimen surface to achieve the desired 

speckle size and density. This 'free-form' manner of application offers a variety of 

particle size and pattern densities (as seen in Figure 2.2), but can suffer from the issue 

of unintentional over-coverage as discussed previously. As the optimal speckle size 

parameters are largely constrained by the requirements of the test setup (including 

camera resolution and specimen dimensions), larger speckles can be desired. To 

achieve this with an airbrush, the needle is commonly positioned further back in the 

airbrush assembly, allowing larger drops of ink to flow from the airbrush [18]. However, 
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the size of these drops is often unpredictable, and can lead to higher uncontrollability of 

the final pattern. For these reasons, the use of the free-form airbrush alone is not 

sufficient to provide uniform coverage. It was hypothesized that the use of the airbrush 

in conjunction with a stencil to apply a stochastic larger speckle size to control the 

pattern size and density would produce the optimal speckle pattern. The goal of this 

work is to develop a pattern design, fabrication technique, and application method that 

produces a stochastic pattern with controlled pattern density and individual speckle size, 

providing enhanced and more repeatable DIC patterns for data correlation in soft tissue 

testing.  

 

2.2 Methods 

A non-toxic alcohol-based ink (ShowOffs Body Art LC, Clarkston, MI) was 

identified as a potentially attractive patterning medium for DIC on soft tissue. This 

medium is commonly used for temporary ‘tattoos’. It is designed to be water-insoluble, 

and this specifically allows for hydration of the tissue while maintaining ink coverage. Its 

alcohol-solvable nature renders it temporary, allowing for easy and complete removal 

with isopropyl alcohol in the case of unintentional over-coverage.  

 

As mentioned previously, the optimal speckle size and pattern density for DIC is 

largely dependent on the experimental setup, camera resolution, and field of view (FOV) 

required for the specimen to be tested. Fastcam SA1.1 cameras (Photron USA, Inc., 

San Diego, CA) and Nikon AF Micro-Nikkor 200 mm lenses (Nikon Inc., Melville, NY) 

were used in this investigation. The ligament chosen was the anteromedial (AM ) bundle 

of the ACL, and it was positioned within the 1024x1024 pixel field of view (FOV), leaving 
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space in the FOV above and below the ligament to allow for the tissue to remain in view 

while undergoing axial deformation during testing. In order to determine a baseline for 

the goal speckle size, a representative tissue length of 35mm was selected (based on 

data from preliminary ACL tissue experiments under the same test conditions), and the 

representative overall test setup and tissue orientation within the FOV provided an 

estimate of the speckle size according to the 3x3 speckle rule of 100 m. The test setup 

varies with the size of the bundle to be viewed and its orientation within the camera 

FOV (based on the physical position of the cameras relative to each other and to the 

bundle, as well as the camera lens’ positions). Variation in setups for different bundles 

are unavoidable, and are necessary to obtain the optimal position and focus of each 

bundle in the FOV. The estimated 100 m speckle size was set as the goal speckle size 

for pattern generation prior to testing the patterns experimentally, with the 

understanding that the optimal experimental goal speckle size would vary according to 

each individual specimen’s dimensions and test setup. In the experimental tests 

detailed later, the optimal speckle size for the eight specimens tested was 152 ± 9 m. 

This variation in optimal speckle size from specimen to specimen was sufficiently small 

to enable the use of a single stencil pattern for all specimens (see Results section for 

further detail).  

 

A stencil approach was identified as a method to control the size, density and 

pseudo-random nature of the DIC pattern. Masking tape and washi (和紙, ‘Japanese 

paper’) tape were examined as candidate stencil materials due to their thin and 

adhesive nature (i.e. ability to stick to the soft, pliable, and hydrated surface of the ACL). 
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A laser cutter was utilized to fabricate the stencil pattern. Laser cutters function by 

taking as input a 2D drawing object, and as output a prescription of the x-y motion of a 

laser crosshead over a bed positioned at a particular z distance from the crosshead. 

Laser cutters interface with CAD or technical drawing software and function similarly to 

traditional laser printers, however, the intensity of the laser beam allows the “printing” 

operation to generate a perforated pattern on the stencil material. 

 

An Epilog Mini 24 Laser Helix model (Epilog Laser, Golden, CO), located at 

MakerWorks, a member-based workshop (Ann Arbor, MI) was used for fabrication of 

the stencil patterns. The maximum laser power (intensity of the beam) was 50 W, and 

maximum crosshead speed was 160 in/s (4.1 m/s). The laser wavelength was 10.6 m 

with a spot size of 76 - 127 m. The maximum crosshead x-y travel was 610 x 305 mm, 

with a resolution (at 1200 dpi) of 21 m. The commercial software package controlling 

the laser allowed for variation in the input settings of laser power and crosshead speed, 

and both parameters were defined as percentages of the maximum speed and power.  

 

All patterns were generated using MATLAB R2014 (MathWorks, Natick, MA) 

(see last paragraph in this section for more detail on MATLAB pattern generation). After 

the pattern designs were created in MATLAB, they were converted to a compatible 

image file and exported to the graphics editor CorelDRAW X6 (Corel Corporation, 

Ottawa, ON). Within CorelDRAW, the pattern image was scaled to the desired physical 

size and sent to the laser cutter’s commercial software package to be printed as a raster 
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(pixelated) image. The laser cutter system used to fabricate the stencil patterns is 

shown in Figure 2.3. 

 

A fixture was designed to position the stencil material within the laser cutter 

system. Within this fixture, the tape was suspended on two raised platforms beneath the 

laser crosshead. These raised platforms suspended the stencil over the laser cutter bed 

and provided an intact stencil, by preventing melting and adherence of the stencil to the 

laser cutter bed due to the intensity of the laser beam. Investigations were carried out to 

identify the optimal pattern for DIC, by studying the capabilities of the laser to print the 

actual individual speckle sizes prescribed, as well as collections of speckles. These 

Figure 2.3: Epilog laser cutter used for pattern fabrication.  The stencil material shown here 
(masking tape) was suspended between raised platforms, creating a ‘substrate’ of air between 
the material and the bed of the laser. The adhesive side of the material faced away from the 
laser source. The bed of the laser was set at a prescribed z distance from the laser head, and 
the laser head was controlled in the x-y plane above the material. 
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investigations served three purposes: to identify 1) the smallest individual speckle and 

2) the smallest spacing between two speckles the laser could produce, and 3) to extend 

the individual and paired speckle size and density to a full pattern of a stochastic 

collection of speckles.  

 

For the individual speckle tests, speckle size control was first investigated by 

varying the speed of the laser crosshead as a function of the prescribed size of the 

speckles (at a constant power setting of 100%). This prescribed speckle size was 

specified within the CorelDRAW software that interfaced with the laser. To investigate 

the effect of laser power on the speckle size, laser speed vs. power tests were 

performed (at a prescribed speckle size of 100 m). Paired speckle patterns were also 

created by prescribing the spacing between two speckles in the original pattern created 

10% black 

15% black 30% black 50% black 

 5% black Scanned Image 

Figure 2.4: Pseudo-random patterns generated in MATLAB R2014. The density of the 
patterns was controlled as a percentage of black particles and specified to 5, 10, 15, 30 
and 50%. The speckle size was also controlled using the MATLAB script. The scanned 
image of a traditional spray paint pattern is shown for reference, taken from [3]. 
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in MATLAB.  For the paired speckle tests, the distance between the two speckles was 

controlled using a spacing parameter ‘j’ in the MATLAB script, and the speed vs. power 

tests were repeated. 

 

Sample patterns were generated within MATLAB at densities of 5 - 50% of black 

particles within an area of interest (Figure 2.4). These patterns were created through a 

script to generate a pseudo-random spatial distribution of ‘particles’ in order to 

demonstrate control over the density of the stencil pattern design within MATLAB. This 

was done by first defining a grid, with all spaces initially specified to be white. Next, the 

percentage of speckles to add was specified, and this percentage was pseudo-

randomly distributed throughout the grid. However, without any prescription of the 

spacing between particles, clusters of particles can occur (Figure 2.5, left), which could 

contribute to burning.  

 

Prescribing the minimum spacing between individual particles can be used to 

control the densities of the pseudo-randomly distributed patterns and prevent burning 

Figure 2.5: Optimal pattern density determination. Left: original pattern with no specification 
on spacing between particles. Center: ‘sparse’ pattern, with a minimum spacing prescribed 
between all points. Right: ‘grown’ pattern, where all speckles from the sparse pattern have 
been enlarged. 
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due to long laser dwell times. This exclusion process was prescribed to the original 

speckle pattern (Figure 2.5, left) by removing all but one particle in clustered areas on 

the pattern, generating a sparser pattern (Figure 2.5, center). Figure 2.5 (right) is 

another adaptation; created by enlarging the particle size in the MATLAB script by 

converting the points in the neighborhood of each existing particle from white to black, 

effectively enlarging the speckle size.  

 

Fabricated stencils were directly applied to the surfaces of the test specimens. 

The minimally tacky nature of the stencil allowed for adhesion during ink application, but 

easy removal of the stencil as well. The ink was applied to the surface through the 

stencil using an Iwata Custom Micron Series B Airbrush (Iwata Medea, Portland, OR). 

The airbrush compressed air tank was set to a pressure of ~40psi (maximum pressure 

possible). The stencil pattern was removed after applying the ink. If needed (due to 

unintentional over-coverage during pattern application), excess ink was easily 

removable from the tissue surface using a 70% Isopropyl rubbing alcohol (Vi-Jon 

Laboratories Inc., Saint Louis, MO). After application of the speckles through the stencil, 

the free-form airbrush was used to augment the stencil pattern with a finer speckle. The 

free-form speckles were created by manually controlling the speckle size and density 

during application of the pattern, by adjusting the distance of the airbrush from the 

specimen surface.  Figure 2.6 shows an example of the stencil on the surface of the 

tissue (Figure 2.6, left), and the speckle pattern on the surface of the tissue after 

removal of the stencil (Figure 2.6, center and right).  
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As mentioned previously, DIC requires a pseudo-random distribution of speckles, 

which necessitates that no portion of the pattern can be repeated within the FOV. This 

was ensured by using a large random stencil, and care was taken to apply unique areas 

of the stencil pattern to any particular specimen. After applying the stencil patterning 

and free-form airbrush speckle patterns, the Fastcam SA1.1 cameras (1024x1024 

pixels) were utilized to visualize AM bundle specimens with dimensions 31.7±12.3 mm 

by 5.5±0.5 mm (n=8) [19]. The resolution of the Fastcam cameras based on the position 

of the specimens within the camera FOV was 51 ± 3 m (n=8). Tests were then 

performed to elucidate the full-field axial, transverse, and shear strain responses of the 

ACL bundles under tensile loading. 

 
 

Figure 2.6: Left: Stencil applied to test specimen. Stencil material has minimal adherence to 
tissue and was easily removed after application of ink medium. Center: Stencil pattern overlay 
showing high contrast and fidelity in the majority of the tissue surface. Right: Close-up view of 
pattern on tissue surface.  
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2.3 Results 

As mentioned previously, 100 m was estimated as the optimal speckle size based on 

the representative test setup discussed previously. Figure 2.7 shows the results of 

investigating the speckle size as a function of crosshead speed at constant power of 

100%. Microscopic images were taken at 5x magnification using an Olympus 

microscope (Center Valley, PA), with a resolution of 1 m. Speckle diameters were 

measured from the dark region where the stencil has been fully perforated, not including 

the damaged area around the perforation. The speckle produced at 1% speed and 100 

m prescribed speckle size was larger (839 m) than 100 m, due to the long dwell 

time (i.e. slow speed) of the laser.  

 

Figure 2.7: Microscopic images (5x mag) of prescribed speckle size vs. speed test at 100% 
power on final produced speckle size. As the speed increased, the speckle size decreased, due 
to shorter laser dwell times. The produced speckle size decreased as the prescribed speckle 

size in the software decreased. The smallest speckles produced were 242  1 m; these were 

achieved at 12% crosshead speed and 75 m prescribed speckle size.  



90 

As the laser speed was increased, the speckle produced at 100 m prescribed 

size decreased to 317 m at 12% speed. However, at 25% speed the laser did not dwell 

long enough at the speckle location to fully perforate the stencil. For smaller prescribed 

speckle sizes (10 m – 75 m), the resulting speckle size decreased, and increasing 

the crosshead speed further decreased the resulting speckle. The minimum speckle 

Figure 2.9: Effects of laser head speed vs. laser power at a constant prescribed speckle size of 

100 m on final produced speckle size. In this test, 75% power/25% speed produced the 

smallest speckle (150  1 m). Microscopic images at 5x mag.   

Figure 2.8: Paired speckle trials of at constant prescribed speckles of 100 m. As speed 
decreased, the longer laser dwell time caused the laser to burn though the material between 
the two holes (as seen at 75% power/1% speed). The smallest produced pairs of speckles 

were 263  1 m, with a spacing 254  1 m between them, at 75% power/25% speed. 
Microscopic images at 5x mag.   



91 

size for a constant laser power (100%) was 242  1 m at 75 m prescribed size and 

12% speed. Smaller prescribed speckle sizes and faster speeds failed to generate full-

thickness holes in the stencil.  

 

The results for the individual speckle size as a function of varying speed and 

power (at constant prescribed speckle size of 100 m) are shown in Figure 2.8. 

Similarly to the previous tests on speckle size vs. speed, increasing the speed of the 

laser reduced the speckle size, but often resulted in an un-perforated stencil at high 

speeds. Reducing the power reduced the speckle size, and the smallest achieved 

speckle size with this method was 150  1 m at 75% power/25% speed. 

 

The paired speckle laser speed and power tests are shown in Figure 2.9. As before, the 

smallest perforated pair of speckles occurred at 75% power/25% speed (and constant 

prescribed speckle size 100 m). At higher power or slower speed settings, the laser, in 

Figure 2.10: Microscopic images at 5x mag of best individual speckle and spacing between 

paired speckles in this set of experiments. Left: 75% power/25% speed, final diameter: 150  1 

m. Right: 75% power/25% speed, final diameter: 263  1 m. Spacing between speckles:  254 

 1 m. 
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addition to increasing the size of each speckle, effectively burned the stencil material 

between individual speckles, eliminating the spacing between them. Figure 2.10 shows 

the smallest completely perforated individual and paired speckles generated. For the 

individual speckle, the diameter was 150  1 m taken at a power/speed setting of 

75%/25%. The minimum paired test speckle size was 263  1 m with 254  1 m 

between the speckles.  

 

Figure 2.11: Example printed stencil patterns at various densities. The original and grown 
patterns exhibit enlarged ‘burnt’ areas due to the high dwell time of the laser at these positions, 
either to create a group of speckles at one point (original pattern) or to create larger individual 
speckles (grown). The sparse pattern is ideal, containing distinct speckles without presence of 
excessive burning and controlled speckle size. 
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The printed full stencil patterns vs. prescribed 

speckle size are shown in Figure 2.11. These images 

were taken with a Canon Rebel T1i camera with 

resolution of 13  0 m (Canon U.S.A. Inc., Lake 

Success, NY). As mentioned previously, the ‘original’ 

patterns are created without any specification on the 

spacing between particles, while the ‘sparse’ pattern 

specifies a minimum spacing between individual 

particles. The ‘grown’ patterns additionally enlarge the 

size of the particles in the sparse pattern. Patterns were printed at several power/speed 

combinations, and 100% power/12% speed was found to provide the optimal results; all 

patterns in Figure 2.11 were printed at this setting. The brown edges surrounding 

portions of the original pattern are evidence of burning. This was exaggerated in the 

grown pattern, along with greater merging of individual speckles where the space 

between particles disintegrated, and this degradation is apparent as the prescribed 

speckle size decreases as well. However, burning was not apparent for the majority of 

the sparse patterns, where the integrity of the individual particles and the spacing 

between particles were preserved. As the prescribed particle size decreased, the 

spacing between the particles decreased, with evidence of speckles merging together in 

all patterns. For this reason, the sparse pattern at 100 m was selected as the optimal 

stencil. This sparse pattern is shown in Figure 2.12 (right). The average speckle size 

and spacing was measured within a 5 mm x 5 mm subset of the stencil, this region 

contained 28 speckles. In this pattern, the average size of the particles was 264  20 

Figure 2.12: Sparse pattern with 

speckle diameter 264  20 m 
(n=28) and average spacing 429 

 160 m (n=28). 
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m (n=28), and the average minimum spacing between any two particles (measured 

from speckle outside edge to outside edge) was 429  160 m (n=28). 

 

The sparse patterns chosen as the final stencil were used in conjunction with the 

freeform airbrush to produce patterns for DIC. A representative final pattern and DIC 

contour overlay at peak displacement is shown in Figure 2.13.  This work (detailed in 

Chapter 3) patterned and tested 8 

AM specimens in a tensile test 

setup using the stencils outlined in 

this work.  

 

Briefly, the focus of these 

experiments was to utilize DIC to 

quantify the full-field strain response 

of the bundles of the ACL 

undergoing deformation in a well-

known loading state. Samples were 

aligned in an MTS 810 Material Test 

System (MTS Systems Corporation, 

Eden Prairie, MN) and visualized 

with the Fastcam cameras mentioned previously. A LabVIEW DAQ device (National 

Instruments Corporation, Austin, TX) and custom script were used for control of the 

MTS, and a Tektronix function generator (Tektronix, Inc, Beaverton, OR) synced the 

Figure 2.13: Final pattern for DIC deformation 
measurement. Specimen is an AM bundle aligned for 
tensile testing, with mid-substance outlined in gray. 
Right:  DIC contour overlay on AM bundle at peak 
vertical displacement, adapted from [19]. 
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Fastcam cameras with the LabVIEW program. DIC data was analyzed using VIC 3D 

2010 (Correlated Solutions, Inc., Colombia, SC), and strain data was exported to 

MATLAB for presentation of the axial strain figures. Each specimen was loaded along 

the long axis of the tissue to ~12% global (grip-to-grip) nominal strain at a true strain 

rate of 0.05/s. 

Figure 2.14: Experimental DIC strain contours of 8 AM bundles at peak displacement. For the 
majority of the specimens, the contours maintain high coverage, especially in the bundle mid-
substance. 
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DIC can be used to validate the final pattern achieved with the combination 

sparse stencil and freeform airbrush, namely in providing the ideal speckle size, 

spacing, and amount of contour coverage loss at the edges of the sample from the 

experimental data. Although the goal speckle size was estimated to be 100 m with an 

“assumed representative test setup”, the actual goal speckle size according to Sutton et 

al. 2009 [3] varies according to test conditions, especially the length of the specimen 

and its size within the camera FOV. As mentioned in the Methods section, the AM 

bundle specimens tested in Chapter 3 had dimensions 31.7 ± 12.3 mm by 5.5 ± 0.5 mm 

[19]. This variation in actual length and small variations in test setup change the 

experimental speckle size from the estimated 100 m size. As a validation of the actual 

size required, the average DIC recommended speckle size for the set of experiments 

can be calculated. By taking the final resolution of the experimental tests in Chapter 3 

(51 ± 3 m, n=8), and assuming 3 x 3 pixels per speckle ([3]), the recommended 

speckle size for the 8 experimental data sets is 152 ± 9 m (n=8). For the specific 

experiment in Figure 2.13, the recommended speckle size is 150 ± 50 m. For 

comparison, measurements of 20 speckles were taken in the mid-substance region of 

the specimen (outlined in white in Figure 2.13), and manifested an average size of 223 

± 114 m (n=20), with minimum speckle 88  50 m and maximum 515  50 m). 

Within the 3D DIC software subsets of pixels are monitored for each set of image data, 

and should ideally contain 3 speckles (and two spaces between speckles) across the 

subset. For the representative contour shown in Figure 2.13, the subset was chosen to 

maximize contour coverage without loss of correlation, with a resulting subset size of 15 
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pixels. This subset size and the average speckle size for the representative bundle 

provide an estimate of the ideal spacing parameter in the final pattern as 41  56 m.  

 

The efficacy of the underlying DIC pattern can also be discussed in terms of the 

coverage loss at the edges of the final contour overlay. The width of the tissue lacking a 

pattern was measured in 5 locations in the representative contour overlay shown in 

Figure 2.13, (right), with an average width of 362  48 m (n=5). This compares well 

with the subset size for this pattern of 15 pixels (750 m). A final measure of the pattern 

Figure 2.15: Microscopic (5x mag) view of different patterning densities. The dwell time of the 
laser (original and grown patterns) created a limitation for controlling the spacing and density of 
the laser.  
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fidelity is its capability to maintain correlation during specimen deformation. As shown in 

Figure 2.14, the patterns generated using this technique correlated throughout the full 

loading path of the tissue, even up to strains of ~5% axial and ~35% transverse strains 

the patterns maintain high contour coverage for the majority of the sample surface.  

 

2.4 Discussion 

The difference in speckle size in the single speckle test (150  1 m) compared 

with that of the paired (263  1 m) and sparse pattern (264  20 m, n=28) is likely due 

to the longer dwell time of the laser to print multiple speckles at once. Good agreement 

is shown between the paired and sparse pattern individual speckles. In addition, the low 

variability for the final sparse stencil pattern is a demonstration of the controllability of 

the speckle size with the laser cutter stencil perforation technique.  

 

Regarding density, the smallest spacing with the sparse stencil pattern (chosen 

at 100 m prescribed size) was 429  160 m (n=28). Further insight on the choice of 

stencil pattern can be gained from Figure 2.15, showing microscopic images of the 

stencil patterns at 5x magnification. Both the original and grown patterns demonstrate 

disintegration of the space between individual particles, due to the longer time the laser 

spent in specific locations to create multiple particles. This disintegration was also 

apparent in the sparse patterns at 50 m and 70 m prescribed speckle size. The 

sparse pattern at 100 m did not contain this pattern degradation, and was the optimal 

choice for final stencil. The spacing and particle size of the final stencil is a limitation of 

the density capable by the laser cutter, but is mitigated by combining the sparse stencil 
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with the freeform airbrush, resulting in the final pattern with satisfactory density and 

fidelity.  

 

Prior to patterning tissue samples, 

the freeform airbrush was utilized to print 

patterns on a paper substrate as a 

measure of its capability to produce 

speckles. As seen in Figure 2.16, the 

freeform airbrush contains the initially 

estimated goal speckle size (100 m) 

within the range of speckles produced: 8 

 1 m to 495  1 m (n=20). However, 

the lack of consistency in particle size 

demonstrates the uncontrollability of the freeform airbrush technique at this length 

scale. 

A section of the mid-substance region in Figure 2.13 was selected for 

measurement of the average speckle size, and twenty speckles in this region averaged 

223 ± 114 m (n=20). This lies within the experimental error of the average hole size 

produced with the sparse stencil patterns (264  20 m, measured from 28 speckles in 

Figure 2.12). The experimental speckle size is above the recommendation by Sutton et 

al. (150  50 m), and although a spacing parameter can be calculated from the Sutton 

et al. subset recommendation (41  56 m), it lies below the resolution of the cameras 

utilized in this study. However, an extremely low subset size of 15 pixels (750 m) was 

Figure 2.16: Pattern generated using 

freeform airbrush technique, speckle size 8  

1 to 495  1 m. The uncontrollability of the 
speckle pattern at this length scale is evident 
in the range of speckle sizes.  
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attainable using this pattering method; the minimum possible subset size in the VIC 3D 

software is 9 pixels. The subset of 15 is quite close to this minimum possible subset 

size, indicating fine detail of the speckle pattern for correlation. In addition, the small 

loss of contour coverage seen at the specimen edges, averaging 362  48 m (n=5), is 

possible with such a small subset. Some pattern loss on the edges is unavoidable with 

the DIC technique, as subsets on the edge of the contour cannot be compared to their 

neighbors. The subset size achieved in the test shown in Figure 2.13, is a testament to 

the good coverage possible with this patterning method. 

 

The efficacy of this patterning technique is also demonstrated in the consistency 

of the pattern generation process, with most bundles patterned within 2-3 applications. 

Unlike graphite powder, any re-applications with the non-toxic alcohol-based ink could 

be done with no holdover of previous patterning attempts, as the pattern could be 

virtually completely removed with isopropyl alcohol. This patterning technique also 

allows for small subsets of the DIC technique, difficult to achieve with biological tissue, 

taking advantage of the camera resolution and macro-lens used in testing. 

 

Finally, a major advantage of this patterning technique is the capability of the 

pattern to deform with the large deformation of soft biological tissue, while 

demonstrating high DIC contour coverage: the initial pattern (Figure 2.13, left) deforms 

with the specimen, and the contour overlay demonstrates high fidelity up to the peak 

displacement (Figure 2.13, right). This is also present in the axial strain contours of 8 

bundles, as seen in Figure 2.14.  
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2.5 Summary 

The goal of this work was to develop a patterning technique using a non-toxic 

patterning medium, and allowing user control over the pattern density, contrast, and 

individual particle size. A biologically friendly alcohol-based ink was identified and used 

in conjunction with a novel stencil design for stochastic patterning of soft biological 

structures. This water-insoluble, yet removable, patterning medium allows for continual 

tissue hydration without loss of pattern integrity, while also allowing for pattern 

reapplication. Using laser cutting technology, a novel stencil design was identified as a 

random speckle pattern fabrication method, and used to create a final pattern at the 

limits of the laser capabilities. The pattern fabrication method produces speckles for DIC 

as required by the camera resolution, specimen dimensions, and test setup. This 

pattern design and fabrication technique produces a stencil pattern with controlled 

pattern density and individual speckle size, providing enhanced and more repeatable 

DIC patterns for data correlation.  
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Chapter 3: Experimental Characterization of the AM Bundle 

 
This chapter was originally published in [1], Copyright © Acta Materialia Inc. 2017 

 

3.1 Introduction 

The anterior cruciate ligament (ACL) plays a significant role as a major stabilizer 

of the articular knee joint [2–8]. The ACL is also the most commonly injured soft tissue 

structure in the knee, and demonstrates a low ability to self-heal [9–12]. Many patients 

with ACL tears opt for surgical replacements, and upwards of 300,000 ACL replacement 

(ACLr) surgeries are performed in the U.S. each year [13]. There is also growing 

concern for the populations most affected by ACL tears and replacements, specifically 

females aged 14-19, which represent the group with both the largest incidence of ACL 

injuries and the largest rate of increase of these injuries [14–20]. In addition, long-term 

outcomes of ACLr reconstructions manifest as degraded knee kinematics, tears of the 

replacement tissue, and early onset osteoarthritis [21–29]. Several reasons have been 

postulated for re-failure, especially the inability of tissue replacement options to restore 

native ACL response [21,30,22,31–42,29,43–45]. There is a pressing need to 

understand the intrinsic mechanical behavior of the ACL and its role in knee 

stabilization. To this end, a plethora of research has been performed to investigate 

these mechanical properties, in order to better identify possible replacement materials. 

However, the complex nature of the ACL, including its heterogeneity, orientation, and 
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enthesis morphology, have made performing traditional mechanical characterization 

tests with well-defined boundary conditions difficult [46–52,8].  

  

Much of the previously conducted work to characterize ACL mechanics has 

sought to elucidate the mechanical properties of the entire ACL in various loading 

states. Noyes and Grood tested entire human ACL femur-ligament-tibia complexes of 

young (16-26 yrs) and old (48-86 yrs) human cadaveric knees at a strain rate of 1/s and 

a knee flexion angle of 45° [48]. While no tangent modulus values were reported, 

McLean et al. later calculated the terminal tangent moduli in the Noyes and Grood study 

to be 110 ± 15 MPa and 62 ± 7 MPa for the young and old populations, respectively 

[53]. In two different studies, Weiler et al. tested intact ovine ACLs at 90° knee flexion 

and loading rates of 1 mm/s [54,55]. While neither paper reported tangent moduli, the 

reported tensile strength was 54 ± 14 MPa in one study [54], and 42 ± 5 MPa in the 

other [55]. Chandrashekar et al. tested entire human ACL specimens with femur and 

tibia bone plugs attached at a strain rate of 1/s, with reported tangent moduli of 128 ± 35 

MPa and 99 ± 50 MPa for male and female populations, respectively [52]. Meller et al. 

reported a Young’s modulus of 217 ± 58 MPa at an unreported strain level for ovine 

ACLs [56]. While these studies form a basis for understanding the range of ACL 

mechanical properties, significant differences in loading rates, specimen orientations, 

and data reported have made direct comparisons among studies difficult, if not 

impossible.  
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The heterogeneity of the ACL is seen in its anteromedial (AM) and posterolateral 

(PL) bundles, with their distinct geometric and mechanical properties 

[57,16,17,58,59,18,60–62,46,63–71]. Despite their differences, the bundles of the ACL 

have received little individualized attention in the biomechanics community. Butler et al. 

tested the human ACL as three distinct bundles, testing bone-ligament-bone samples in 

uniaxial tension at strain rates of ‘100% of the initial subunit (bundle) length per second’ 

[49]. The reported tangent moduli were 283 ± 114 MPa, 286 ± 141 MPa, and 155 ± 120 

MPa for the anteromedial, anterolateral, and posterolateral bundles, respectively. It is 

now widely accepted that the ACL consists of two bundles, namely the anteromedial 

(AM) and posterolateral (PL) bundles [53]. Ma et al. studied fresh ovine AM and PL 

bundles at a strain rate of 0.05/s [47]. In these tests, the tibia was split at the ACL tibial 

footprint to separate the AM and PL bundles, with each bundle connected to a distinct 

tibial bony section. Each bundle was tested in isolation at 0.05/s, to obtain its distinct 

mechanical properties. Ma et al. reported tangent moduli of 105 ± 67 MPa and 210 ± 58 

MPa for the AM and PL bundles, respectively; the bundles were tested up to ~5% 

applied strain. The isolation of the bundles is a crucial first step to elucidate the intrinsic 

mechanical properties of the ACL, but further consideration of the bundle definitions, 

alignment procedures, and strain measurement approaches should be taken into 

account when comparing studies. 

  

It is of critical importance to report mechanical properties of soft tissues in well-

defined loading states as measured from un-deformed reference states. These 

properties may be used to design better ACL replacement grafts, or they may be 
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implemented into FE models to provide insight into the strain response of complex 

materials in orientations unable to be reproduced in experimental studies. One example 

is the clinically relevant anterior tibial translation (ATT) test to determine knee laxity or 

diagnose an ACL deficiency.  However, the efficacy of FE models relies on 

experimental data that comply with boundary conditions matching constitutive modeling 

assumptions. Test system compliance is an unavoidable consequence of both the 

methods of interfacing the specimens with the testing system, and the characteristics of 

the bone-ligament interfaces – especially the circular femoral insertions of both bundles 

and the tibial AM insertion along the anterior aspect of the tibial spines. System 

compliance can be overcome using digital image correlation (DIC), a non-contact, 

direct, tissue level displacement measurement technique. With DIC, local strains can be 

focused on, particularly those of the mid-substance of bundles undergoing uniaxial 

loading. The heterogeneity of the strain field can also be assessed. At the bone-

ligament interfaces, because of their irregular shapes, the loading state is not well 

known. DIC also allows for visualizing surface strains (through post-processing of the 

displacement field images) across the surface of the tissue, without having to rely on the 

point-to-point measurements available from traditional LVDT sensors. However, away 

from the interfaces, the mid-substance is in a much more uniform axial deformation 

state. The purpose of this work is to elucidate the properties of the AM and PL bundles 

in uniaxial tension beyond the strain range seen in physiological loading situations using 

DIC displacement measurements and strain calculations, and to compare their 

responses with those determined via traditional strain measurement techniques. 
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3.2 Materials 

 20 fresh ovine knees were tested in this study. Knees were obtained from a local 

butcher ~12 hours after sacrifice, and refrigerated until testing. Knees came as a paired 

set from one animal (breed: Suffolk, age: <1yr). All knees were dissected to remove all 

soft tissue except the intact ACL, and each ACL was visually inspected for damage. 

Each knee in a pair was randomly assigned for testing of the PL or AM bundle, and the 

bundles of the intact ACL were then separated using forceps. The non-tested bundle 

was transected with a scalpel and removed at the tibial and femoral insertions, with care 

taken not to damage the remaining bundle. A MM30 Multi-Max™ Oscillating Power Tool 

(Robert Bosch Tool Corporation, Mt. Prospect, IL) was used to trim excess bone from 

both the tibia and femur to create ‘bone plugs’ for bone-ligament-bone specimens. The 

bone sections were cut to align the femoral and tibial entheses of the bundle, orienting 

the tissue along its long axis (see Figure 3.1). The alignment and bone-ligament-bone 

(BLB) isolation processes are described in detail below.  

  

In the native ACL orientation, the AM bundle tibial insertion can be seen on the 

anterior aspect of the tibia (Figure 3.1a). At the femoral insertion, the AM is visualized 

between the femoral condyles, facing towards the lateral part of the knee (Figure 3.1b). 

After removing the PL bundle (Figure 3.1c), an initial ~90° twist of external rotation of 

the femur relative to the tibia is needed to align the   entheses (Figure 3.1d). Next, a 

~90° flexion of the tibia relative to the femur aligns the tissue in a uniaxial orientation, 

and excess bone from the tibia must be removed to allow this rotation (Figures 3.1e 

and 3.1f show the bundle orientation prior to this removal). The final orientation of the 

AM BLB specimen aligned uniaxially is shown in Figure 3.1g. The PL bundle BLB 
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specimens were created in a similar manner. To align the PL uniaxially, a ~90° twist 

about the PL longitudinal axis of the femur in external rotation relative to the tibia is 

required to untwist the PL bundle completely. The aligned BLB PL specimen is shown in 

Figure 3.1h. 

 

 
Figure 3.1: Creation of AM bundle BLB specimens. a) anterior view of complete ACL at  ~90° 
knee flexion in physiological ‘native’ orientation. b) posterior view of complete ACL ~0° knee 
flexion in native orientation. c) Anterior view of femur, tibia and AM after removal of the PL, 
showing the ‘twist’ of AM bundle in the native orientation. d) Medial view of AM bundle after 
~90° external rotation of femur relative to tibia. e) Medial view of AM bundle after removing 
excess femur. f) Profile view of AM bundle with femoral bone removed, note that additional bone 
must be removed from the tip of the remaining femoral condyle and the posterior aspect of the 
tibia to fully orient the AM bundle in uniaxial tension. g) Final BLB specimen with AM bundle 
oriented in uniaxial tension. h) Final BLB specimen of the PL bundle oriented in uniaxial tension. 
[1]  
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3.3 Methods 

After isolating and aligning the BLB specimens, they were potted in custom grips 

using a biodegradable and non-toxic thermoplastic (McMaster-Carr, Aurora, OH). The 

grips holding the BLB specimens were installed in a servo-hydraulic MTS 810 Material 

Test System (MTS Systems Corporation, Eden Prairie, MN). As seen in Figure 3.2a, 

Specimens were manually aligned with the loading axis of the MTS. In addition, the 

MTS was custom-built with two opposing actuators, enabling the center of specimens to 

remain stationary during loading, keeping the region of interest in full view of the 

cameras throughout the entire loading excursion. 

 
Figure 3.2: a) Uniaxial tension testing of an AM bundle in a MTS 810 Material Test System with 
dual actuators.  Two Photron Fastcam SA1.1cameras are used to visualize the 3D surface 
strain contours c, left front and d, right front), while one Point Grey Gras-50SM-C camera 
captures the profile (b). [1] 
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The MTS interfaced with a custom data acquisition program built in LabVIEW 

(National Instruments Corporation, Austin, TX).  The analog voltage signals for force 

and displacement from the MTS were acquired and recorded with a NI USB-6361 DAQ 

device (National Instruments Corporation, Austin, TX). The custom LabVIEW program 

prescribed a load-unload path under displacement control to a user-defined final 'grip-

to-grip' strain (essentially the strain computed from the applied displacement of the 

servo-hydraulic actuators).  This grip-to-grip strain may be greater than the actual tissue 

strain if there is compliance in the grips. The approximate length of each specimen was 

measured with an ABSOLUTE Solar Caliper Series 500 caliper (Mitutoyo America 

Corporation, Aurora, IL). This measurement was used to calculate and prescribe the 

approximate grip-to-grip final strain for the load-unload tests. The mid-substance cross-

sectional area (CSA) of the AM bundle was calculated assuming a rectangular CSA with 

rounded semi-circular edges, using the width and thickness of the middle section of the 

tissue. The PL bundle demonstrates a more ‘undulated’ surface than the AM, where 

fascicles are oriented more randomly in the anterior-posterior direction (into and out of 

the page from an anterior view).  A rectangular CSA was assumed for the PL, due to 

this undulation. In both cases several options for the shape of the CSA were 

considered, and, for the AM in particular, this CSA assumption matches the flat surface 

of the AM bundle. Thus the E33 strains reported by the DIC data are representative of 

the majority of the surface the specimen. 

  

Three cameras were used for full-field displacement measurement of the tissue 

during loading. In this case, the term ‘full-field’ refers to the surface view of the tissue 
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visible within the field of view of the camera(s). Two Fastcam SA1.1 cameras (Photron 

USA, Inc., San Diego, CA) were used to visualize the front surface of the BLB 

specimens during testing in uniaxial tension, in conjunction with Nikon AF Micro-Nikkor 

200 mm lenses (Nikon Inc., Melville, NY). In addition, one Grasshopper Gras-50SM-C 

(Point Grey Research Inc., Richmond, BC, Canada) visualized the narrow medial or 

lateral surface at the mid-substance of the tissue (profile view). This profile view camera 

was intended to measure the change in thickness of the bundles during testing, as 

negative Poisson’s ratios for soft tissues have been reported [72].  The FASTCAM 

cameras were chosen for their excellent resolution of the front surface of the tissue. 

However, the lower resolution of the Grasshopper camera, combined with the difficulty 

of lighting two surfaces (front and profile) during testing, resulted in less accuracy for the 

thickness measurements compared to the width and length measurements.  

 

Reference images were taken from each camera with a scale for measurement 

of the actual length, width, and thickness of the tissue specimens, and ImageJ software 

(National Institutes of Health, Bethesda, MD) was utilized to obtain dimensions. The 

acquisition of load and displacement data was synchronized with image capture using 

an AFG3021C single channel arbitrary/function generator (Tektronix, Inc, Beaverton, 

OR). All three cameras were triggered by a 3 V TTL signal from the function generator, 

and this voltage was recorded by the data acquisition system. Load and displacement 

data were acquired at 500 Hz, and the Fastcam SA1.1 and Grasshopper Gras-50SM-C 

cameras acquired images at 50 Hz and ~12 Hz respectively.  
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For full-field displacement measurements over the surface of each specimen, 

DIC, a non-contact and length scale independent technique, was used. This technique 

measures displacements and calculates strains on the surface of a material undergoing 

deformation. The correlation algorithm functions by identifying unique pixel subsets 

within a pseudo-random high-contrast pattern on the surface. By tracking the 

translation, rotation and deformation of each subset, the algorithm can measure the full-

field surface displacements and calculate the corresponding strains. Two types of DIC 

are commonly used. 2D DIC calculates full-field strains of planar test specimens. In 

addition to this, the 3D DIC technique utilizes two sets of camera images for the same 

test, and is capable of tracking out-of-plane deformation by triangulating the position of 

the specimen in 3D space. 3D DIC was performed for all test specimens, and the stereo 

angle between the cameras was 18.75 ± 0.85 from six camera calibrations. 

 

For many materials, an artificial pseudo-random stochastic pattern is required for 

the tracking of material displacements. For these experiments, a non-toxic alcohol-

based ink (ShowOffs Body Art LC, Clarkston, MI) was applied to the front surface of the 

specimen using a Custom Micron CM-B airbrush and Power Jet air compressor (Iwata 

Medea Inc., Portland, OR). This alcohol-based ink is easily removable using a 70% 

solution of isopropyl alcohol (Vi-Jon Laboratories Inc., St. Louis, MO), but water-

insoluble. This provides great flexibility in creating patterns with optimal density and 

contrast, as it allows for easy removal and reapplication if necessary e.g., if the initial 

pattern is not adequate, or for subsequent load excursions. A humidifier was also 
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utilized during testing to hydrate the environment (EE-5301 drop humidifier, Crane USA 

Inc., Bensenville, IL).  

 

During testing, each knee was pre-tensioned to 3 mN (to ensure the tissue was 

not slack), in a procedure similar to that used previously and loaded to 12% grip-to-grip 

strain at a 0.05/s true strain rate [73,74]. The strain rate is consistent with strain rates 

traditionally chosen [75]. The maximum strain was chosen outside of the physiological 

range in order to fully capture the tissue’s physiological response, including unloading, 

without causing tearing during the loading excursion. Each specimen was then 

unloaded at the same strain rate and allowed to relax for 15 minutes, then tested to 

failure at 0.05/s. The stochastic ink pattern was reapplied prior to the test to failure if 

necessary, and the tissue kept hydrated throughout testing by spritzing with Dulbecco’s 

Phosphor Buffered Saline (ThermoFisher Scientfic, Waltham, MA). Data were acquired 

through the full load/unload path of the test, in order to quantify the hysteresis of the 

material response, measured as the difference between the load and unload curves, in 

MPa. The raw load and actuator displacement data are converted to nominal stress 

(load divided by mid-substance CSA) and grip-to-grip nominal strain (displacement 

divided by initial length) curves. Raw camera images were correlated using VIC-3D 

(Correlated Solutions, Inc., Columbia, SC). The DIC data from VIC-3D was extracted to 

MATLAB (The MathWorks, Inc., Natick, MA). The output DIC data was extracted as 

Green-Lagrange strain, a finite strain measure given by 

 

    𝑬 =
𝟏

𝟐
(𝑪 − 𝑰)                                              (1) 
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where 𝑪 is the right Cauchy-Green tensor and 𝑰 is the identity tensor (tensors 

indicated in boldface).  The nominal axial strain is used for plotting the stress/strain 

response, and is defined in terms of the axial component of the Green-Lagrange strain 

tensor as 

 

𝑒33 = √2𝐸33 + 1 − 1                          (2) 

 
 

3.4 Results 

The specimen dimensions of the AM and PL BLB specimens are shown in Table 

3.1. Two of the AM bundles were excluded due to changes in the testing environment 

and data synchronization issues. The AM bundle is longer than the PL bundle, but it has 

a smaller average and mid-substance cross-sectional area. The AM bundle has a 

ribbon-like CSA, almost three times as wide as it is thick, while the PL bundle has a 

more rectangular CSA.  

 

 

Representative 

displacement contours of 

the front surface of an 

AM bundle are shown in 

Figure 3.3. The 

displacement path of the 

test machine was 

prescribed using a 
Figure 3.3: Full-field AM bundle vertical (left) and horizontal 
(right) displacement contours at peak displacement. [1] 
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constant true strain rate formulation. Thus, the displacement is quasi-linear in the small 

strain regime. These contours show the full-field tissue response of the AM at a peak 

applied grip-to-grip strain of 12%. The use of dual actuators keeps the specimen in the 

center of the camera frames, and the resulting vertical displacement shows this, with 

0.85 mm and -1.05 mm displacement at the femoral and tibial ends of the tissue, 

respectively. The horizontal contours reveal significant transverse expansion of this AM 

bundle of a total of 1.35 mm from an original mid-substance width of 4.80 mm. 

   

Table 3.1: Dimensional data of AM and PL bundles 

Bundle Length (mm) 
Mid-substance 

Width (mm) 
Mid-substance 

Thickness (mm) 

Mid-substance 
Cross Sectional 

Area (mm2) 
AM (n=8) 31.7± 12.3 5.5 ± 0.5 2.3 ± 0.6 11.8 ± 4.3 
PL (n=10) 18.9 ± 2.6 5.0 ± 0.8 4.2 ± 0.9 21.1 ± 7.1 

 

There is debate in the field about whether soft tissue tendons and ligaments 

demonstrate a negative Poisson’s ratio [76–78]. However, many of these works have 

ignored changes in the third direction. In this work, low resolution in the profile view 

camera, as well as lighting and camera placement constraints hindered measurement of 

the bundle thickness. Although these issues reduced the accuracy of the profile 

thickness displacement, dilatation from 5 of the bundles (calculated using the strains in 

the axial, transverse and thickness directions as well as the initial tissue volume of the 

mid-substance) was found to be 1.7e-3 ± 1.8e-3 /mm3 at an axial tissue strain of 3%. 

Thus, overall, this AM bundle slightly increased in volume under a tensile load, which is 

typical for elastic materials in tension. 

 



116 

Figure 3.4 illustrates the strain contour of a 

typical AM bundle at maximum 12% grip-to-grip 

strain. The contours are those at pre-load, mid-

displacement, and peak displacement (~12% global 

strain). It should be noted that the applied global 

displacement was based on the caliper estimate of 

the bundle length, whereas the actual bundle length 

was determined after testing from camera images 

using ImageJ software as described above, so the 

actual applied grip-to-grip strains varied.  Figure 

3.4a shows the pre-load response, with essentially 

zero strain on the specimen, as expected. By mid-

displacement (Figure 3.4b), the AM bundle shows a 

homogenous axial strain (E33) response, and a band 

of an expanding fascicle is visible in the transverse 

strain (E22) contour. This positive transverse strain is 

in agreement with the outward horizontal 

displacement contours shown in Figure 3.4.  

Shear is also present (E23).  At the peak 

applied displacement (Figure 3.4c), the axial strain 

is still homogeneous in the mid-substance and the 

lateral expansion of the AM bundle is strongly 

evident, with local strains as much as 55%.  

Figure 3.4: Strain contour evolution 
of an AM bundle during loading 
under uniaxial tension a) Pre-
displacement axial (vertical 
direction, E33), transverse 
(horizontal, E22), and shear (E23) 
strains b) Mid-displacement axial, 
transverse, and shear strain 
contours c) Peak displacement 
axial, transverse, and shear strain 
contours at ~12% applied global 
strain. [1] 
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The axial strains in Figure 3.5 show relative homogeneity within the mid-

substance region of the bundle surface contours (see Figure 3.8 for an example of the 

Figure 3.5: AM bundle axial (vertical) strains at an average DIC-computed mid-substance 
Green-Lagrange strain of 3%. [1] 
Figure 3.6: AM bundle transverse (horizontal) strains at an average DIC-computed mid-
substance Green-Lagrange strain of 3%. [1] 
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mid-substance region). Inhomogeneity and higher strain regions manifest in the axial 

strain contours in the regions of the tissue where the AM bundle attaches to the femur 

and tibia. It is critical to recognize the loading state in these regions cannot be defined 

Figure 3.7: AM bundle shear strains at an average DIC-computed mid-substance Green-
Lagrange strain of 3%. [1] 
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as uniaxial, as the bone-enthesis-ligament geometries are complex morphologically. 

The mid-substance region sufficiently far from the bones experiences uniaxial loading, 

therefore it is the appropriate region for determining bundle mechanical properties. 

  

Transverse strains are shown in Figure 3.6. All AM bundles manifested high 

transverse strains, with many exceeding 55% local strain. The profile camera view data 

was observed and it was verified that with loading, the thickness of the AM bundles 

decreases.  While the thickness direction had lower accuracy, overall the thickness 

direction of the AM bundles did decrease. 

  

The shear response 

(Figure 3.7) is also distinct, 

and not zero, which is what 

would be expected for 

traditional materials tested in 

uniaxial tension. This shear 

response is likely due to 

inherent misalignment of the 

fascicles in the AM to PL 

bundles, and is covered in 

more detail in the Discussion 

section.  

 

Figure 3.8: Representative region of strain analysis used in 
the generation of the stress vs. strain response curves of the 
AM bundles. The shaded mid-substance region of the tissue 
is used, whereas ‘grip-to-grip’ indicates measurements taken 
from the point-to-point measurement capability of standard 
uniaxial tension test equipment. [1] 
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The homogenous longitudinal strains measured via DIC within the mid-substance 

of the AM bundles provide the basis for determining the mechanical properties of the 

AM bundles. Figure 3.8 shows a representative mid-substance region selected from the 

DIC strain contours used in calculating the stress/strain response of an AM bundle. This 

mid-substance region was selected away from the edges of the tissue to avoid regions 

of sparse DIC data. This region is also well away from the femoral and tibial insertion 

regions of the tissue, to ensure the characterization is that of a tissue undergoing a well-

defined uniaxial loading state. 

 
 
The DIC strain data from the mid-substance of the AM bundles was used to 

compute the nominal-stress vs. nominal strain response curves of the tissue, and these 

are shown in Figure 3.9. Also in Figure 3.9 are response curves generated using the 

Figure 3.9: Stress vs. strain responses of eight AM bundles, with DIC curves shown with solid 
lines and grip-to-grip shown with dashed lines. Each color represents a unique bundle. Dashed 
lines at 20 MPa and 3% nominal strain mark locations of tangent moduli calculation, as 
discussed in Figures 3.10a and 3.10b. [1] 
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grip-to-grip strains. All of the 

curves demonstrate an initial 

‘toe’ region, with low nominal 

stress for the initial applied 

strains, followed by stiffening in 

the stress response. This 

response is common for 

ligament tissue, with the toe 

region understood to be the 

straightening of initially crimped 

collagen fibers. Hysteresis, a 

measure of the viscoelastic 

response of a material, can be 

observed in a variety of 

experimental testing 

techniques. For materials 

deformed at constant strain 

rate, the viscoelastic behavior 

will manifest as the area 

between the load/unload paths 

of the stress/strain response, 

and is evident in the curves 

calculated using grip-to-grip 

Figure 3.10: Tangent moduli at 20 MPa and 3% nominal 
strain (a,b). c) Hysteresis difference between DIC and 
Grip-to-trip responses. [1] 
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displacements. 

 

As can be inferred from the low strains of the homogenous contours of Figures 

3.9, the DIC based curves (solid lines) demonstrate much lower strain levels compared 

to the measured grip-to-grip strain levels for all bundles. There is also more variability of 

the grip-to-grip response vs. the mid-substance response. Comparing the DIC and grip-

to-grip data, it should be noted that the grip-to-grip method cannot differentiate what is 

Figure 3.11: a) PL bundle prior to loading b) Pl bundle raw DIC contour image coverage in the 
depth (into the page) direction. c) and d) PL bundle expansion and contour coverage at image 
before de-correlation occurs. e) PL bundle axial strain data. [1] 
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happening on the surface of the material from compliant grip related information; DIC 

more accurately shows the strain response of the tissue during loading.  

 
 
Figures 3.10a and 3.10b show the average tangent moduli of the eight AM 

bundles at a constant stress of 20 MPa and a constant strain of 3%, respectively. 

Tangent moduli computed both ways (1.07 ± 0.17 GPa at 20 MPa and 1.04 ± 0.24 GPa 

at 3% nominal strain) were significantly higher using DIC contour strain data compared 

to traditional grip-to-grip strain measurement techniques. The grip-to-grip data agree 

with previous studies of the bundles of the ACL when the spread of that data is 

considered (Butler et al. [49]). Figure 3.10c is the hysteresis response of the DIC vs. 

grip-to-grip strain methods. The hysteresis is drastically reduced when DIC is used to 

Figure 3.12: Loading response to 12% grip-to-grip strain of representative AM and PL 
bundles measured via DIC and grip-to-grip. Test specimens were taken from paired knees 
of the same donor, with the AM bundle demonstrating higher stiffness, lower strain to 
failure, and higher stress at failure than the PL bundle. [1] 
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compute strains vs. when grip-to-grip strains are used (n=8), and there is virtually no 

hysteresis in the mid-substance regions at the applied strain rate of 0.05/s.   

 

The PL bundle poses additional challenges in obtaining surface level strains 

during load/unload testing. Figure 3.11a and 3.11b show a representative PL bundle 

prior to loading, and an un-deformed DIC contour of out-of-plane distance relative to an 

arbitrary zero on the tissue surface.  This un-deformed contour shows good coverage of 

the bundle, especially the bundle mid-substance. The PL bundle lacks the flat, ribbon-

like geometry of the AM bundle, and individual fascicles move out-of-plane during 

loading (Figures 3.11c and 3.11d). For this reason, one representative contour is 

shown from the PL results due to poor correlation. However, axial strain data from 

regions retaining correlation demonstrate peak nominal strains ~6%.  

 

A comparison between the AM and PL bundle stress/strain responses is shown 

in Figure 3.12. The data for these curves were taken from the same animal, to avoid 

differences due to biological variability. The AM bundle manifests a stiffer response with 

a lower strain to failure compared to the PL, with the PL experiencing a peak stress 

prior to failure of 60% of that of the AM. This diverse response of the AM and PL 

bundles supports the need to characterize them separately, as single bundle models 

cannot capture the complete mechanical response of both bundles. 

  



125 

3.5  Discussion 

Several challenges were faced in this work, including the use of specimens from 

a local butcher, and the design of the experimental testing protocol. Knees were 

obtained from a local butcher via a commercial slaughterhouse, and it was not possible 

to control for specimen gender. In addition, the adaptation of DIC for biological 

specimens, and the alignment and uniaxial loading of the AM and PL bundles is 

particularly challenging. The use of DIC allows for non-contact full-field deformation 

visualizations, and provides a wealth of information for material characterization. 

Previous studies of ligaments and tendons have utilized surface markers to optically 

measure tissue strains. Woo et al. and Wren et al. used markers to measure the gauge 

length of specimens during testing, while Butler et al. optically tracked grip slippage with 

marks at the tissue-grip interface [79–81]. 2D marker bead arrays have also been used 

to calculate surface strains [82–84]. However, in each of these cases, these studies 

only reported strains along the axis of loading, and did not include transverse or shear 

strains. In addition, small numbers of markers were employed, ranging from ~9-15 per 

specimen, likely due to the labor-intensive process of manually placing each marker. 

These techniques do not have the resolution DIC provides and cannot assess 

homogeneity vs. heterogeneity. In addition, although 2D displacement measurement 

techniques have been employed, little attention has been given to the non-axial strains 

(i.e. transverse and shear strains), leading to lack of insight on complex tissue 

deformations [82–84]. In a study of Achilles tendons, Rigozzi et al. in particular 

compares the optically measured strains with the traditional point to point measurement, 

and reports that ‘...strains in the [mid-substance] were typically half that of the machine-

based tendon strains.” [84] The study concludes this difference is due to a combination 
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of ‘relative movement between internal tendon substructures’ or slippage of the tissue 

within the grip system. It should be emphasized that while compliance is a challenge for 

soft tissue experiments, DIC measures the tissue-level response only, and is not 

affected by the rest of the testing system (bone plugs, grips, load train). ACL fibers are 

known to fail around 6% strain; this is supported by the strains computed via DIC as 

opposed to the strains computed via traditional grip-to-grip measurement methods. 

 
  
Another challenge was the alignment of the bundles under uniaxial loading. In 

addition to the twist of the AM around the PL, the AM entheses insert along curved 

aspects of the femur and tibia. At the tibia, the AM inserts along the anterior aspect of 

the tibial spine, and is attached to the tibial spine at all points of the bone. At the femur, 

the AM inserts superiorly to the PL at the interior aspect of the lateral femoral condyle, 

again along the curved surface of the bone. The PL bundle femoral enthesis inserts 

along the interior aspect of the lateral femoral condyle. The PL splays out from the 

femur, inserting into the middle of the tibia with an oblong morphology. At the tibial 

insertion the PL bundle can be visualized from the anterior side of the knee. At the 

femur, the PL can only be fully visualized along its entire length from the posterior side 

of the knee. This is due to the AM wrapping around the PL at the medial and anterior 

viewpoints of the knee. In addition, from the lateral viewpoint, the lateral femoral 

condyle extends past the enthesis, obscuring it from view. However, isolating the tibial 

bone plug for the PL is relatively straightforward, due to the normal insertion of the PL 

into the tibia.  
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The axial response of the AM bundle is relatively homogenous within the mid-

substance of the tissue, making this section ideal for mechanical characterization. The 

femoral and tibial insertions are regions where the boundary conditions diverge from the 

uniaxial tension loading state, and, as would be expected, these regions demonstrate 

inhomogeneity in the axial strain response. As mentioned in the introduction, previous 

work in this area has focused on a variety of challenges in ACL characterization, and 

there is a paucity of work isolating the individual ACL bundles in well-known loading 

states. The work by Butler et al. [49] is one of very few studies of individual BLB 

specimens of the ACL bundles. In these tests, ‘anterolateral’ and ‘anteromedial’ bundles 

were defined and tested independently by separating the ‘anterior’ ACL bundle (likely a 

split of the now commonly defined AM bundle). In addition to this bundle separation, 

strains were measured using a linear variable differential transformer (LVDT), in this 

case a grip-to-grip measurement device. Butler et al. reports tangent moduli of 283 ± 

114 and 286 ± 141 MPa for the anteromedial and anterolateral bundles, while this work 

reports 1.07 ± 0.17 GPa for DIC and 0.37 ± 0.17 GPa for grip-to-grip (at constant 20 

MPa stress) and 1.04 ± 0.24 GPa for DIC and 0.33 ± 0.19 GPa for grip-to-grip (at 

constant 3% strain) for the AM bundle. The grip-to-grip measurements encompass the 

results reported by Butler et al. when the spread of that data is considered. The large 

differences in the testing methods, especially bundle definitions and strain 

measurement approaches, contribute to the differences between the tissue-level DIC 

data and point-to-point measurements.  This work contained good alignment of the 

entire tissue bundle, and axial strains were uniform in the mid-substance and larger 

outside the mid-substance region (Figure 3.5). 
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The transverse strains of the AM bundle are high, especially for a specimen in 

uniaxial loading, and positive, likely due 

to individual fascicles expanding 

laterally. This expansion may be 

explained by the fact that the fascicles 

flatten out as they insert into the 

enthesis, and are rounded in the mid-

substance. The shear response of 

Figure 3.7 is unexpected for an 

orthotropic material in uniaxial tension 

that has its principal material direction 

aligned with the loading direction. 

Figure 3.13 shows the un-contoured 

bundle with a selected contour from 

Figure 3.8. As can be seen by the red 

and blue markers, some fascicles are 

aligned on the right side of the bundle at 

the femur, but insert into the tibia on the 

left side of the bundle (blue arrows). Other bundles are more aligned axially (red 

arrows). This indicates that some level of shear deformation is due to the detailed level 

of misalignment of the stiff fascicles within the AM bundle, rather than a systemic 

problem stemming from the grips or possible differences in left and right knees.  

Figure 3.13: AM bundle at peak displacement 
(left) and the resulting shear strains (right). The 
blue and red markers indicate specific fascicles at 
the femur and tibia. The blue markers show a 
band of fascicles misaligned vertically, originating 
into the femur near the right side of the image at 
the top and inserting into the tibia at the left on 
the bottom. The red show a relative vertical 
fascicle band. This intrinsic fascicle orientation 
dominates the shear response. [1] 
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The undeformed PL contour (Figure 3.11a) demonstrates undulation of the 

bundle surface; the section of tissue on the right inserts into the tibia more anteriorly or 

towards the camera. During loading (Figures 3.11c and 3.11d), it is common for 

individual fascicles to move anteriorly, further undulating the surface, resulting in loss of 

correlation. However, axial strain data from regions retaining correlation can be used for 

stress/strain analysis, and the lower left region of this representative PL bundle shows 

strains around 6% close to peak displacement. 

 

Failure tests were also conducted on all 20 bundles. In 17 of 19 data sets, the 

BLB specimens failed at the bone rather than the ligament proper or even the enthesis. 

The uniaxial testing configuration is not the physiological orientation, so drawing 

conclusions about clinical relevancy could be problematic. Great care was taken in 

gripping and orientating the tissue such that specimens were uniaxially loaded; however 

in some cases a small amount of bending was indicated (1.24 mm overall out-of-plane 

displacement along a 38 mm bundle in the case shown in Figure 3.3). Due to the 

complex structure of the bundles, fascicles are longer on the anterior surface than the 

posterior, and DIC only provides measurements on the front surface. Full-volumetric 

displacement measurements would be needed to accurately determine the through-

thickness material response of the tissue. 

  

This work achieves better alignment of full bone-ligament-bone specimens than 

that seen in the literature to date, and that is likely the source of the presented higher 
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moduli. Good alignment and minimized compliance provides stiffer measurements even 

in the grip-to-grip. The mid-substance is less affected by regional loading condition 

variations, as the DIC analysis is limited to a region that is undergoing uniform loading, 

exhibiting homogenous uniaxial strains in that region, and is a true tissue level 

measurement with no system compliance.  

  

In addition to direct bundle axial strains, DIC provides transverse and shear 

strain data, pointing to the further complexity of the bundles of the ACL. Future 

applications of this work would include the development of mathematical models for the 

bundles and their implementation into computational models.  The individual bundle 

mechanical responses can be used to develop individually characterized computational 

structures, and the ACL can then be computationally reconstructed to determine the 

pre-strained state of the ACL in its physiologically relevant state at any knee flexion 

angle. This sequence of steps would provide the needed information to generate truly 

accurate computational models of the ACL. 

 

3.6 Conclusions 

    This work demonstrates that DIC is an attractive way to characterize the 

longitudinal response of soft tissue due to its non-contact and full-field nature. The use 

of DIC provides local full-field deformation data. However, DIC patterning requirements 

have created challenges for its use in biological tissue testing, as traditional patterning 

mediums can adversely affect the tissue surface and mechanical response. In this study 

custom-designed pattern stencils were implemented in combination with airbrush 



131 

applicators and a water insoluble ink.  This method allows for the control of the pattern 

density and speckle size, while allowing multiple reapplications (if needed), and the 

ability to keep soft tissues hydrated during testing. 

 

In this work, DIC axial strains are significantly lower than data provided from the 

grip-to-grip response, and shear and transverse strain data would typically not even be 

measured using traditional techniques. This full tissue information gives valuable insight 

on the unexpected transverse and shear responses of the ACL in uniaxial tension. 

Taking the shear especially into account, it is recognized that E33 is not a principal 

strain, but despite this, DIC greatly reduces the specimen-to-specimen variability that 

has come to take for granted in biological tissue testing, signifying that some of these 

issues could come from alignment and compliance effects. 

  

The results of this work provide new information on the mechanical response of 

the bundles of the ACL under a well-understood loading configuration. The mid-

substance axial DIC data, used to develop the stress/strain response of the tissue, 

demonstrate lower strains in the AM bundle than that of traditional grip-to-grip methods. 

The actual bundle mechanical properties are stiffer than previously thought.  The 

hysteresis in the AM bundle is low at this strain rate, and specimen-to-specimen 

variability is less of an issue than previously thought. The AM is also stiffer than the PL 

bundle, and care should be taken to characterize each of these structures 

independently, in order to provide meaningful experimental results and contributions to 

computational models. 
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Chapter 4: Experimental Characterization of the Posterolateral Bundle and 

Anterior Tibial Translation Experiments 

 

Introduction 

This chapter focuses on the experimental results of PL bundle tensile tests and 

anterior tibial translation tests of entire ACLs. As discussed in Chapter 1, it is critically 

important to elucidate the properties of the anteromedial (AM) and posterolateral (PL) 

bundles separately for accurate characterization of the ACL. Several studies have 

investigated the PL, often in a combined study of both the AM and PL. Many of these 

studies are focused on the kinematics or gross displacement of the entire knee due to 

removal of one or both bundles [1–4]. As discussed in Chapter 3, research on the 

characterization of the ACL has largely focused on the entire tissue as a homogenous 

structure [5–9] . The mechanical properties of the isolated AM and PL bundles have 

received little attention. In a rare study, Butler et al. divided the ACL into 3 bundles 

(anteromedial, anterolateral and posterolateral) and further divided these bundles into 

subunits [10–12] for mechanical testing. This paper is one of few available for 

comparison of the mechanical properties of the individual bundles of the ACL.  

 

Anterior tibial translation (ATT) is commonly employed as a method to identify 

possible ACL failures. As discussed in Chapter 1, the role of the ACL in restraining ATT 

has been heavily investigated, and the ATT test is accepted as an established method 
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for probing ACL failure. With this technique, the tibia is loaded along an axis directed 

anteriorly and oriented perpendicular to the tibial shaft. As anterior translation is a 

benchmark for ACL rupture, ATT tests are also performed in laboratory settings to 

understand the role of the ACL in normal and injured knee kinematics. Gabriel et al. 

2004 utilized a 5DOF system to measure the kinematics of the knee undergoing ATT 

with missing AM or PL bundles, and reported knee kinematics for a range of knee 

flexion angles [13]. Furman et al. 1976 also investigated the displacements and 

rotations that occur with portions of the knee’s soft tissues removed under ATT loading 

[14]; these studies will be highlighted in the discussion of this chapter. 

 

4.1 Methods 

The results in this chapter include 9 PL and 8 ATT specimens from fresh ovine 

knees, and the testing protocol utilized is outlined in detail in Chapter 3. Briefly, knees 

were obtained from a local butcher and refrigerated prior to testing. All soft tissue was 

removed from each knee, leaving attached to the tibia and femur either the PL bundle 

for the PL tension tests, or the entire ACL for ATT testing. A MM30 Multi-Max™ 

Oscillating Power Tool (Robert Bosch Tool Corporation, Mt. Prospect, IL) was used to 

trim excess bone in order to visualize the entire PL for DIC. A custom grip system was 

used for testing of the PL BLB and ATT specimens. Specimens were mounted in a 

servo-hydraulic MTS 810 Material Test System, with a 661.20 force transducer and DC 

load controller with resolution 0.001 ± 2 N (MTS Systems Corporation, Eden Prairie, 

MN). The final orientation of the aligned PL BLB is shown in Figure 4.1, with the tissue 
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aligned with the axis of the loading. Figure 4.2 shows the experimental setup of the 

ATT specimens, with the knee oriented at 30 knee flexion. 

 

Motion for both the PL and ATT specimens 

was prescribed with the dual actuators of the MTS, 

keeping the specimen in the cameras’ view during 

loading. The MTS was controlled through a custom 

LabVIEW program (National Instruments 

Corporation, Austin, TX) in displacement control. 3D 

DIC was performed through the use of two Fastcam 

SA1.1 cameras (Photron USA, Inc., San Diego, CA) 

focused on the surface of the PL and ATT 

specimens throughout loading. The cameras had a 

field of view (FOV) of 1024 x 1024 pixels and a 

resolution of 0.051 ± 0.003 mm (n=8). The pseudo-

random stochastic patterns discussed in Chapter 2 

were applied to the surface of the specimens for 

DIC displacement measurements and strain 

calculations. A 3 mN tare load was used to ensure the tissue was not slack prior to 

testing, and tests were performed at 0.05/s true strain rate. 4 of the PL specimens 

discussed in this chapter were a part of the study discussed in Chapter 3, in which 

load-unload paths were prescribed to 12% grip-to-grip strain, as opposed to the load-

unload paths to 8% grip-to-grip strain for PL bundles in a similar study. For comparison, 

Femur 

Tibia 

Figure 4.1: Experimental setup of 
posterolateral bundle in uniaxial 
tension. Excess femur and tibia has 
been removed to visualize the tissue 
at both insertions. 
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the contour plots shown in this chapter are reported at 8% grip-to-grip strain. The tissue 

was hydrated using Dulbecco’s Phosphor Buffered Saline (ThermoFisher Scientfic, 

Waltham, MA). The initial mid-substance width and thickness were measured from the 

digital images, and used to calculate the cross-sectional area (CSA), assuming a 

rectangular CSA for the PL bundle, as discussed in Chapter 3. The raw load and 

actuator displacement data (along the axis of loading) were converted to nominal stress 

(load divided by mid-substance CSA, with a load cell resolution of 0.001 ± 2 N) and grip-

to-grip nominal strain (displacement divided by initial length) curves. Strains computed 

via DIC were generated in VIC-3D (Correlated Solutions, Inc., Columbia, SC), and the 

contours shown created with MATLAB R2014 (The MathWorks, Inc., Natick, MA).  

 

Figure 4.2: Experimental setup of anterior tibial translation test.  Anterior translation of the 
tibia occurs in the sagittal plane of the knee. The ACL is visible after removal of the medial 
femoral condyle, and can be visualized spanning from the femoral to tibial insertions. 
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4.2 Results 

4.2.1 Posterolateral bundle tests 

The displacement contours for a representative PL bundle are shown in Figure 

4.3. The vertical displacement contour (Figure 4.3, left) shows upwards displacement 

of the femur and downwards displacement of the tibia, due to the dual actuators used in 

testing. The displacement at the femur also follows the angle of the insertion of the 

bundle into the bone (top right), showing higher displacements along the sharp angle of 

the femoral insertion. Figure 4.3 (right) demonstrates lateral expansion similar to that 

of the AM bundle discussed in Chapter 3.  

Figure 4.3: Full-field (8% strain) PL bundle vertical (left) and horizontal (right) 
displacement contours at peak displacement. 
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As seen in Figure 4.1, the front surface of the PL is not flat, but wavy, with 

certain fascicles appearing closer to the camera than others. This variation in position of 

Figure 4.4: Strain contour evolution of a PL bundle during loading to 8% grip-to-grip applied 
strain.  Left: Axial strains are along the axis of loading (vertical in the plane of the page), and 
demonstrate homogeneity in the mid-substance of the tissue during loading. Center: Strains 
transverse to the axis of loading (horizontal in the plane of the page) demonstrate lateral 
expansion, unexpected for traditional uniaxial loading. Right: Shear strains (in-plane) are non-
zero, another unexpected result that is possible to visualize through the use of full-field tissue-
level measurements. 
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the tissue surface relative to the camera is exacerbated during loading, as certain 

fascicles move towards the camera while others shrink from view, leading to 

decorrelation of the contour coverage in regions in the resulting DIC contours. 

 

The axial, transverse, and in-plane strain contour evolution for a representative 

PL bundle is shown in Figure 4.4. High contour coverage of the bundle is seen in the 

Figure 4.5: PL bundle axial (along the axis of loading, vertical in the plane of the page) strain 
contours for all PL bundles loaded to 8% true strain (calculated from grip-to-grip displacement 
measurements. Stress vs. strain data and tangent moduli are calculated from the 5 bundles in 
the top row. 
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top row prior to loading. At mid-load, a band manifesting high transverse and shear 

strains can be seen along the central portion of the tissue (Figure 4.4, center row, 

center and right columns). At peak load, strains are localized within this band to more 

than 55% transverse strain and 10% shear strain (Figure 4.4, lower row, center and 

right columns).  

 

Figure 4.6: PL bundle transverse (to the axis of loading, horizontal in the plane of the page) 
strain contours for bundles loaded to 8% true strain (calculated from grip-to-grip displacement 
measurements. Stress vs. strain data and tangent moduli are calculated from the 5 bundles in 
the top row. 
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The axial strain contours (along the axis of loading) at an applied average axial 

strain of 8% are shown for the 9 PL bundles in Figure 4.5. The PL response is typically 

somewhat homogenous, although the response is more heterogeneous throughout the 

tissue surface and within the mid-substance for the PL bundles compared to the AM 

experiments. 

 

Figure 4.7: PL bundle shear strain contours (shear in the plane of the page) at an average DIC-
computed mid-substance true strain of 8%. Stress vs. strain data and tangent moduli are 
calculated from the 5 bundles in the top row. 
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Transverse strain contours for all 9 PL bundles are depicted in Figure 4.6. The 

majority of bundles show high lateral expansion, especially within certain bands of the 

tissue. These strains are often in excess of 55% strain. The loss of correlation can also 

been seen in certain portions of the tissue surface for the PL bundle, likely due to the 

variation in tissue surface position mentioned previously.  

 

Shear contours are shown in Figure 4.7. Shear manifests for all the bundles 

shown, similar to the data for the AM bundle. However, the shear for the PL bundle is 

often in excess of 10% strain, indicating significant motion of individual fascicles relative 

to each other.   

Figure 4.8: Stress vs. strain responses of 5 PL bundles. The response curves based on strains 
calculated from DIC measured displacements are shown with solid lines. The corresponding 
bundle’s response curve based on strains calculated from grip-to-grip data is shown with a 
dashed line. Colors represent distinct bundles. Tangent moduli were calculated at the black 
dashed line indicators: 5 MPa nominal stress and 3% nominal strain. 
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The stress vs. strain data are 

shown in Figure 4.8. For 4 of the PL 

bundles (those in the bottom row of 

Figures 4.5, 4.6 and 4.7), some data 

from image frames during loading did 

not correlate, but later images did 

correlate (including the peak 

displacement image frame). As strains 

were calculated with respect to the 

reference image frame, the strain 

contours at peak displacement can be 

used for comparison, as seen in 

Figures 4.5 to 4.7. 

 

 The remaining 5 PL bundles 

with correlation throughout the loading path (top row, Figures 4.5, 4.6 and 4.7) were 

used to generate full stress-strain response curves and compute tangent moduli, and 

are shown in Figure 4.8. Strains from grip-to-grip displacement data are shown with 

dashed lines, and strains computed via DIC (indicated with solid lines) were calculated 

from the mid-substance of the tissue, as described in Chapter 3 for the AM bundle. The 

toe region of the stress vs. strain response, expected in ligaments, is evident, followed 

Figure 4.9: Tangent moduli at 5 MPa (nominal 
stress, top) and 3% nominal strain (bottom) (n=5). 
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by a stiffened response. Similar to the AM bundle, the PL manifests smaller strains 

computed via DIC than those computed grip-to-grip displacements.  

 

 
Figure 4.9 shows the tangent stiffness of the 5 PL bundles taken at 3% nominal 

strain and 5 MPa nominal stress. The tangent moduli at 3% nominal strain were 242 ± 

117 and 117 ± 84 MPa for the strains computed via DIC and grip-to-grip displacements 

respectively, and 254 ± 116 and 173 ± 49 MPa for the strains computed via DIC and 

grip-to-grip displacements at 5 MPa. In both cases, the tangent moduli measured via 

DIC strains were higher than those measured via grip-to-grip strains, although these 

differences were not significant.  

 

Figure 4.10: Full-field ATT test vertical (left) and horizontal (right) displacement contours at 
peak displacement. 

 



151 

 

Figure 4.11: Strain contour evolution of the ACL during ATT loading to peak applied grip-to-grip 
strain. Left: Strains are along the axis of loading (vertical in the plane of the page), and appear  
fairly homogeneous during loading in comparison with the PL strain contour evolutions in Figure 
4.4. Center: Strains transverse to the axis of loading (horizontal in the plane of the page) 
demonstrate a somewhat banded nature during loading (peak load shear contour). Right: 
Shear strains (in-plane of the page) are highest at the bony insertions, and in excess of 10% at 
the femoral insertion. 
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4.2.2 Anterior tibial translation tests 

Figure 4.10 shows the displacement contours at peak displacement of a 

representative ATT test. The vertical displacement demonstrates motion of the femur 

downwards and tibia upwards in the sagittal plane of the tissue, while the horizontal 

displacement shows lateral expansion in the mid-substance. 

 

The contour evolution during ATT is shown in Figure 4.11. The high contour 

coverage of the bundle pre-load (Figure 4.11, top row) is maintained during loading at 

mid and peak load (Figure 4.11, center and bottom rows). For the shear strains in 

particular, strains exceeding 10% concentrate at the AM bundle femoral insertion.  

 

Figure 4.12: ATT shear strain (shear in the plane of the page) contours at peak applied grip-to-
grip strain. Left knees are shown in the top row and right knees in the bottom row. The femoral 
insertion occurs at the bottom of the contour, and tibial insertions at the top.  
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The shear strain contours of 8 ATT specimens are shown in Figure 4.12. The 

femoral insertion of all knees occurs at the bottom of the contour, and tibial insertions 

are at the top of the contour. 4 right and 4 left knees are shown, with left knees 

originating at the femur and inserting into the tibia from the left to right side of the 

contours, and vice versa for the right knee. The contours demonstrate the AM bundle of 

the ACL in ATT develops shear strains of ~10% at the femoral insertion (see Discussion 

for further detail). 

 

Vertical strain contours for the ATT tests are shown in Figure 4.13 and horizontal 

strain contours are seen in Figure 4.14. As the ATT test represents a complex loading 

Figure 4.13: ATT vertical strain contours (along the axis of loading, vertical in the plane of the 
page) at peak applied grip-to-grip strain. 
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state of the ACL, and includes both bundles, these strain contours cannot be used to 

calculate stress vs. strain curves. However, both sets of contours show relative 

homogeneity along the surface of the specimen. 

 

Figure 4.15 shows the load vs. displacement data from 7 ATT experiments. With 

the use of dual MTS actuators, the peak displacements occur at the femoral and tibial 

insertions. For the plot in Figure 4.15, the DIC displacement data was taken at the 

femoral insertion, and 1 of the 8 bundles shown in Figures 4.12 to 4.14  was excluded, 

as it did not contain correlated DIC data at the insertion. The displacements measured 

via DIC are lower than those measured via grip-to-grip for all cases. The dashed line 

indicates 0.134 kN, selected for comparison of the displacements measured via DIC 

and grip-to-grip in this study with those reported in the literature. For the two curves that 

Figure 4.14: ATT horizontal strain contours (transverse to the axis of loading, horizontal in the 
plane of the page) at peak applied grip-to-grip strain. 
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manifested a force of 0.134 kN, the displacements were 0.176 mm and 0.179 mm for 

the DIC data, and 1.97 mm and 2.473 mm for the grip-to-grip data. Figure 4.16 shows 

the DIC data only, with notable specimen-to-specimen variability, as would be expected 

for force and displacement data, where specimen dimensions are not taken into 

account.  

 

4.3 Discussion 

Previous studies have investigated the displacement response of the knee to 

anterior tibial translation. Furman et al. 1976 performed ATT tests in an investigation on 

the displacements and rotations that occur in the knee after removal of the AM or PL 

bundles, as well as the resultant motions due to cutting the entire ACL, LCL, superficial 

Figure 4.15: Load vs. displacement curves from 7 ATT tests. The response curves based on 
strains calculated from DIC are shown with solid lines and strains from grip-to-grip 
displacement data with dashed lines. Colors represent distinct bundles. The dashed black line 
indicates 0.134 kN for comparison of results of DIC and grip-to-grip data sets. 
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portion of the MCL, the posterior part of the joint capsule, or combinations of removing 

these tissues. For the intact knee control, they manually performed anterior translation 

of the tibia “until firm resistance was reached”, and reported displacements of 1.8 ± 0.2 

mm at 0° flexion and 2.9 ± 0.5 mm at 45° flexion [14]. It is difficult to compare the data in 

this chapter with this study, as the force applied was not specified. Gabriel et al. 2004 

performed ATT tests and measured the resulting kinematics, reporting 5.9 ± 2.6 mm of 

displacement with the application of 134 N load at 30° of knee flexion, whereas this 

work reports 1.97 mm and 2.473 mm for the grip-to-grip data. The difference in reported 

data is likely due to variations in test setup (and possible sources of compliance), as 

well as the difficulty in comparing non-normalized data between studies. Beynnon et al. 

1997 reported strains as a function of knee flexion/extension, measured in the ACL 

Figure 4.16: Load vs. displacement curves from DIC data for 7 ATT tests. The dashed black 
line indicates 0.134 kN for comparison of DIC and grip-to-grip displacements. 
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using an arthroscopically implanted DVRT (positioned in the mid-substance of the AM 

bundle) [15]. Although a direct comparison is difficult to make between the point-to-point 

measurements in this previous work and the full-field contours presented here, it is 

notable that Beynnon et al. found strains of less than 2% at a knee flexion angle of 30.  

 

In this work, the shear strain contours of 8 ATT specimens (Figure 4.12) 

manifest an excess of ~10% strain at the femoral insertion at 30 knee flexion. This 

demonstrates that in ATT, the ACL develops large shear strains, especially at the 

femoral insertion. This result could be indicative of tears originating at the femoral 

insertion, and point to ACL injury mechanisms.  

 

The tangent moduli of the PL bundles discussed in this chapter are comparable 

to previous studies. Butler et al. 1992 reported a modulus of 155 ± 120 MPa for the PL, 

with a reported CSA resolution of 0.01 mm2 and length measurement resolution of 0.05 

mm (the resolution of the load cell utilized in the study was not reported) [10]. In this 

chapter, tangent moduli computed via grip-to-grip motion were 117 ± 84 MPa at 3% 

nominal strain and 173 ± 49 MPa at 5 MPa nominal stress, both well within 

experimental error of the values reported in the previous work. The tangent moduli 

computed via DIC (242 ± 117 MPa at 3% nominal strain and 254 ± 116 MPa at 5 MPa) 

are stiffer than both the tangent moduli computed using grip-to-grip motion and those of 

the previous work. It is not surprising that the results via grip-to-grip motion are within 

the range of the study by Butler et al., as that work utilized an Instron LVDT to obtain 

grip-to-grip displacement measurements. 
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The PL bundle tangent moduli can also be compared to those of the AM bundle. 

At 3% nominal strain, the AM manifested tangent moduli of 1.04 ± 0.24 GPa (n=8) from 

strains computed via DIC and 0.33 ± 0.19 GPa (n=8) for strains computed via grip-to-

grip motion [16], compared to PL levels of 242 ± 117 MPa (n=5) or strains computed via 

DIC and 117 ± 184 MPa (n=5) for strains computed via grip-to-grip motion. When 

comparing the mean response of the AM and PL bundles, it is apparent that the AM is 

stiffer than the PL for both DIC and grip-to-grip data. In a comparison of a single AM 

and PL from the same animal, the AM also manifested a stiffer response than the PL 

(Figure 3.12 in Chapter 3).  

 

As mentioned earlier, the PL bundle surface is notably wavy on the front surface 

when aligned for tensile testing—it is not flat and smooth like the AM bundle—and this 

is not conducive to maintaining a good speckle pattern in the camera FOV during tensile 

loading. As discussed in Chapter 3, certain portions of the tissue move anteriorly and 

others posteriorly during loading. This motion is not possible to predict prior to 

deformation of the tissue, and causes decorrelation of the DIC pattern as portions of the 

tissue move into or out of the field of view, and this phenomena creates a limitation on 

measuring the surface level displacements and strains of the PL bundle via DIC. 

 

4.4 Conclusions 

The ATT data demonstrate lower displacements sustained by the tissue during 

loading as measured via DIC as opposed to grip-to-grip motion. Full-field surface strain 
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data gives insight into the response of the ACL in loading states both familiar to 

clinicians and indicative of injury. For the PL data, tangent moduli measured grip-to-grip 

compare well with those found in previous studies. In addition, the tangent moduli of the 

PL are less than those of the AM bundle (284.0 ± 80.1 MPa for PL vs. 1.04 ± 0.24 GPa 

for the AM at the same strain level), demonstrating the need to individually characterize 

the bundles for accurate models of the ACL mechanical response. The PL bundle 

demonstrates a variation in its frontal profile during tensile loading resulting in loss of 

correlation in regions, and is a limitation of this work. However, the portions of the 

surface that did maintain correlation were useful for obtaining data for characterization. 

Reports of full-field contour information are extremely rare for ATT studies and difficult 

to obtain for PL bundle tensile tests; this work provides new insight on the both the full-

field and tissue level mechanical response of the PL bundle and the entire ACL under 

anterior tibial translation. 
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Chapter 5: Finite Element Modeling of the Hyperelastic Full-Field Response of 

the Anteromedial Bundle of the Anterior Cruciate Ligament 

 

5.1 Introduction 

The ACL is the most commonly injured soft tissue structure in the knee, and 

often requires invasive surgery to restore pre-injury kinematics. Due to its tendency for 

injury, and its role as a major stabilizing ligament within the knee, understanding the 

mechanical responses of the native ACL and proposed ACL replacements is of critical 

importance. Finite element (FE) frameworks are valuable tools to study ACL injury, as 

simulations can recreate diverse loading conditions difficult to perform in a laboratory 

environment, often with lower cost and time requirements. However, the accuracy of FE 

simulations greatly depends on the experimental data used for validation, the 

constitutive models used to mathematically capture the experimental data, as well as 

the ability of the computational geometry to mimic tissue physiology.  A plethora of 

computational studies have been performed in the biomechanics community. Many of 

these studies focus on a particular soft tissue structure, such as the responses of 

articular cartilage, menisci or medial collateral ligament (MCL) [1–5] and whole knee 

models incorporating most soft tissues within the knee [6–19]. The ACL in particular has 

also received attention, often with a focus on the biomechanics of ACL graft 

replacements [20–23]. Other works in the computational biomechanics field have 
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focused on the development of FE methods and constitutive models for analyzing soft 

tissue structures [24–28].  

 

A variety of models exist for the constitutive behavior of ligaments. While some 

works still use linear elastic descriptions to describe ligament response [16,29], it is 

widely understood that ligaments are non-linear, and comprised of collagen fibers 

embedded in a ground substance matrix [3,9,10,19,30–34]. The matrix is often modeled 

as a neo-Hookean or Mooney-Rivlin material, and is significantly less stiff than the 

collagen fibers [32,35]. The collagen fibers are commonly modeled using a 

phenomenological approach, assuming a piecewise continuous strain energy density 

function wherein the fibers do not support compressive loads, and contain a nonlinear 

term governing the small strain regime and a linear expression for finite strains. 

Microstructurally-based strain energy density functions combined with three-

dimensional networks offer an alternative approach to constitutive modeling, and have 

the advantage of providing model parameters with physical meaning. 

 

There is a lack of connection between experimental results and the 

computational models that depend on them, especially in the geometry of the FE 

models and the experimental characterization data used for model validation. The vast 

majority of FE studies of the articular knee joint use computed tomography (CT) or 

magnetic resonance (MR) scans of intact cadaver knees to produce 3D FE models of 

relevant tissue structures, with great detail on the in-vivo knee anatomy, while some 

studies have used experimental measurements of tissue orientations [31,33,35]. 
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However, with in-vivo models, it is difficult to ascertain the full-field response of tissue 

structures, and the complicated tissue loading state is an additional barrier to 

connecting the simulation results to traditional mechanics concepts. The gap between 

experiments and FE models is compounded by the experimental data utilized in many 

FE studies. The studies by Butler et al. ([36,37]) are frequently used as the basis for the 

material properties of the ACL in FE models. These studies studied the mechanical 

properties of the ACL by dividing it into bone-fascicle-bone units for uniaxial tensile 

testing and demonstrated a difference in the mechanical properties of the distinct ACL 

bundles. However, these studies used grip-to-grip displacement measurements, and, as 

discussed in Chapter 3, the lack of tissue-level measurements leads to a significant 

over-prediction of tissue strains and under-estimation of tangent moduli.  

 

Of the studies that develop FE models for the intact ACL, few base those models 

on individual anteromedial (AM) and posterolateral (PL) bundle structures. Most studies 

that include the ACL treat it as a homogenous solid with a preferred material direction, 

and do not develop distinct constitutive models for the AM and PL. Orsi et al. 2015 

focused on the failure response of the entire knee, using a constitutive model for the AM 

and PL bundles that consisted of a combined Mooney Rivlin and three term 

phenomenological model to capture the tissues’ responses [34]. This is one of a few 

studies with a focus on the native AM and PL, but no information was reported on the 

resulting bundle mechanical properties.  
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There is clearly a need for tissue-level full-field experimental data for accurate 

validation of FE models and for comparison of numerical results over the entire surface 

of investigated biological structures. The vast majority of FE models present the full-field 

mechanical results in the form of stress distributions, regardless of the tissue structure 

under investigation. As is discussed in Limbert et al. 2004 [35], the stress distribution 

alone is not sufficient for validation of FE models, but there is a paucity of full-field 

experimental data available for comparison. Weiss et al. 2005 and Gardiner and Weiss 

2003 are rare studies that report the strain distribution within ligament tissue in an FE 

model [4,26]. Gardiner and Weiss 2003 created an FE model of the MCL, femur and 

tibia from CT scans, with the MCL modeled as a transversely isotropic hyperelastic 

material. The matrix component of the MCL was modeled with a neo-Hookean model, 

and the collagen fibers with a piecewise strain energy density function with separate 

terms for the compressive, small strain and finite strain regimes. In addition to reporting 

the FE strain contours, this study also made a comparison of the FE contours with full-

field MCL experimental strain contours as a validation of the model. The MCL has been 

afforded attention not given to the ACL regarding its full-field strain response and its 

transverse mechanical response [4,38,39]. There remains a need to expand the 

knowledge base of ACL biomechanics in a similar manner. 

 

Digital image correlation is well known in the mechanics community for the great 

advantages it has in obtaining full-field surface strains without invasively interacting with 

the material under consideration. In Chapter 3, the full-field experimental surface 

strains of the AM and PL bundles, as well as the mechanical responses of both bundles 
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were reported [40]. The response of the AM bundle in tension was surprising, 

demonstrating lateral local strains exceeding 50%. Shear strains of or exceeding ~10% 

were also present in all tested AM bundles, and this is unexpected for an orthotropic 

material uniaxially loaded along its principal material direction.  

 

The shear response confirms the presence of separate structures within the 

individual bundles of the ACL, i.e. several collagen fascicles separated and surrounded 

by extracellular matrix [3,9,10,19,20,30–35]. These fascicles are further divided into 

collections of fibrils at the macroscale. The expansion demonstrated in the lateral 

direction could be due to the ‘flattening’ out of fascicles as they insert into the femoral 

and tibial entheses; these fascicles are initially rounded in the bundle mid-substance. 

Both the lateral and shear strain responses demonstrate the need for a complex model 

of the bundles that replicates the bundle physiology. It is hypothesized that the 

surprising experimental results can be captured in the geometry of an FE model, and 

the combination of this geometry and a physically relevant constitutive model can be 

utilized to capture the experimental mechanical response of the AM bundle. The goal of 

this work is to develop a computational FE model of the AM bundle of the ACL that 

demonstrates both the constitutive and full-field experimental responses of the AM 

under tensile loading. 
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5.2 Methods 

5.2.1 Bundle geometry formation 

The AM bundle geometry was created from AM 

bone-ligament-bone (BLB) specimens isolated according 

to the protocol discussed in Chapter 3 [40]. Briefly, this 

method aligned the AM bundle of the ACL for tensile 

testing. This was done by first dissecting all soft tissues 

except the ACL from fresh ovine knees. The PL bundle 

was also removed, leaving the AM bundle intact. Excess 

bone was trimmed to create femoral and tibial bone plugs. 

This facilitated alignment of the bundle by untwisting the 

AM from its native configuration and orienting the fascicles 

such that they spanned longitudinally from the femur to the 

tibia, as seen in Figure 5.1. A pseudo-random stochastic 

speckle pattern (using a non-toxic, biologically-friendly 

patterning medium) was placed on the surface of the 

bundle for measurement of displacements using digital 

image correlation (DIC).  Speckle patterns were created using the custom pattern 

application technique developed for soft biological tissue discussed in Chapter 2, 

allowing for control of the speckle size and density according to the constraints of the 

test setup. DIC was used to obtain full-field surface displacements, and to determine 

axial (along the direction of loading), transverse (perpendicular to the direction of 

loading in the plane of the page), and in-plane shear strains. The bundle shown in 

Figure 5.1 is representative of an aligned bundle prior to DIC patterning and testing. 

Figure 5.1: Alignment of AM 
bundle specimen for tension 
testing. The aligned fibrils of 
the AM bundle can be seen 
spanning from femur to tibia. 



167 

After patterning, the experimental AM 

bundles (n=8) were tested in uniaxial 

tension up to ~12% grip-to-grip strain 

at 0.05/s true strain rate, although 

surface-level strains determined 

through DIC demonstrated tissue 

surface strains of ~5% at peak 

displacement. These tissue-level 

strains calculated via DIC were set as 

the benchmark for the simulation 

discussed in this chapter. 

 

To capture the AM bundle 

geometry within an FE model, digital 

images were taken of the front and 

profile views of an aligned AM BLB 

specimen. This specimen was not included in the study discussed in Chapter 3, but its 

dimensions align well with the bundles in that study. The length of this representative 

specimen was 35.71 ± 0.01 mm, within the range of the average length of the AM 

bundles in the experimental study (31.7 ± 12.3 mm, n=8). The mid-substance of the FE 

bundle was contoured to achieve the hourglass mid-substance shape seen in the 

majority of the bundles in the experimental study. The width of the FE bundle was 5.54 

± 0.01 mm and the thickness of 2.37 ± 0.01 mm, matching the average dimensions of 

Figure 5.2: Inner components of the FE AM 
bundle. Matrix and fibril components within the FE 
model of AM bundle. The tissue is sectioned into 
fascicles and matrix. Each fascicle is further 
sectioned into individual fibrils, and the fascicles 
are separated by matrix 
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the bundles in the experimental study (width 5.5 ± 0.5 mm and thickness 2.3 ± 0.6 mm, 

n=8 [40]).   

 

2D sketches of the bundle and bones were outlined in CorelDRAW X6 (Corel 

Corporation, Ottawa, ON). The 2D sketches of the front and profile views of the bundle 

were imported to the commercial finite element (FE) analysis code ABAQUS 2016 

(Dassault Systèmes Americas Corp., Waltham, MA). Within ABAQUS, the 2D sketches 

Figure 5.3: Full AM computational bundle model is comprised of left: inner components (both 
fibril and matrix) surrounded by an outer ‘sheath’ made of matrix (center). The bundle assembly 
is connected to femur and tibia components in the overall model, with reference nodes attached 
to the rigid femur and tibia (right). The length of the full bundle is 35.71 ± 0.01 mm and has a 
mid-substance width of 5.54 ± 0.01  mm and thickness of 2.37 ± 0.01  mm. 
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were extruded to a 3D deformable solid of the AM 

bundle. The femoral and tibial bone plugs were also 

outlined as 2D sketches and extruded as 3D discrete 

rigid shells. The AM bundle was discretized into 

fascicle, fibril, and matrix components, shown in 

Figure 5.2. Using the digital image of a physical 

bundle as a guide, the computational AM bundle was 

delineated into four fascicles spanning the length of 

the bundle from the femur to the tibia. These fascicles 

where separated by matrix components (defined to be 

0.25 mm in width at the tissue mid-substance). Each 

fascicle was divided into individual fibrils, again using 

the physical bundle as a basis. The fibril and matrix 

components form the ‘inner components’ of the 

bundle, shown in Figure 5.3.  

 

A matrix sheath was created to encompass the 

inner fibril and matrix components. This matrix sheath 

was created using the profile digital image of the 

bundle and specifying the sheath to have the same width (0.25 mm) as the inner 

component matrix. Bone plugs were also created using the digital images. The full 

assembly can be seen Figure 5.3 (right). Fibril and matrix components were meshed 

with 10-node quadratic tetrahedron elements, and 3 node 3D rigid triangular facets for 

Figure 5.4: Femoral and tibial 
insertions. The back surface of the 
inner fibril and matrix components 
outlined in red are tied to the 
femur and tibia during 
deformation. 
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the rigid bone plugs. Tie constraints were used to connect the fibril and matrix in the 

inner component of the bundle (Figure 5.3, left). The surfaces of each matrix were tied 

to their respective neighboring fibril surfaces, and the outer matrix sheath (Figure 5.3, 

center) was selectively tied to fibrils in the inner component. Portions of the FE femur 

and tibial bone plugs were removed at both insertions; Figure 5.4 shows the insertions 

at the femur and tibia, outlined in red. The back surface of the bundle within the femur 

and tibia insertions were tied to the femoral and tibial bone plugs using surface tie 

constraints.  A general contact interaction was also prescribed between the fascicles 

(with finite sliding and hard contact), such that no fascicle was permitted to penetrate its 

neighbor fascicles during deformation. 

 

 The entire model was computationally deformed using ABAQUS Standard, with 

a static general step accounting for non-linear geometry. Displacement boundary 

conditions were applied to reference points attached to the rigid femur and tibia (Figure 

5.3, right), and for the simulation discussed, all rotations and translations were fixed 

except for translation along the vertical '3' axis. Displacement of the femur and tibial 

reference nodes along the axial (‘3’) direction (Figure 5.3, right) were prescribed to the 

level necessary to produce ~4.3% nominal strain in the mid-substance of the bundle, 

matching the experimental strains calculated via DIC. Numerical nominal strain values 

were extracted from a set of nodes within the mid- substance (Figure 5.3, right), similar 

to the mid-substance region selected for evaluation of the experimental properties of the 

AM bundle (see [40] for more detail). The numerical nominal stress was calculated by 
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dividing the reaction force output at the femoral reference node by the cross-sectional 

area of the mid-substance of the FE bundle. 

 

5.2.2 Fiber and matrix constitutive models 

The constitutive model for the computations utilized the experimental stress vs. 

strain response of the AM bundle data discussed in Chapter 3. Figure 5.5 shows the 

mean response of 8 AM bundles (with standard deviation bars in black). The smallest 

peak stretch of the eight bundles was 1.0339; the mean response is calculated and 

plotted up to this point. A representative bundle from the set of 8 knees was selected as 

the basis of the constitutive model (Figure 5.5).  

 

Figure 5.5: Mean response of 8 AM bundles tested in uniaxial tension. The representative 
experimental bundle chosen for the basis of the simulations lies within the standard 
deviation of the mean bundle response, and is chosen for direct comparison of the 
computational model with the experimental full-field strain contours. 
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An actual experimental contour was selected as opposed to the average 

response in order to make direct comparisons between the full-field computational strain 

contours and the full-field experimental strain contours for that particular bundle. The 

representative bundle chosen lies within the standard deviation of the mean response, 

and has a R2 of 0.997 to the mean response, indicating it is a reasonable choice for the 

constitutive model. Figure 5.6 shows the decomposition of the experimental AM stress 

vs. stretch response into estimated fibril and matrix responses. The individual fibril and 

matrix contributions to the overall AM bundle response were determined by calculating 

the tangent modulus of each component assuming the fibril was 200 times stiffer than 

the matrix, and utilizing rule-of-mixtures for the tangent modulus as seen in Equation 1: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝜈 𝑓𝐸𝑓 + (1 − 𝜈𝑓)𝐸𝑚 (1) 

Figure 5.6: Decomposition of experimental AM bundle stress vs. stretch response into fibril 
and matrix contributions. Experimental data are from an AM bundle tension test to ~4.3% 
nominal strain. Fibril and matrix responses are derived assuming the fibril material is 200 
times stiffer than the matrix, and applying rule of mixtures based on the cross-sectional area 
of the computational AM model (having a ratio of 60.9% fibril and 39.1% matrix). 
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where 𝐸𝑡𝑜𝑡𝑎𝑙, 𝐸𝑓, and 𝐸𝑚are the tangent moduli of the entire bundle, fascicle 

components, and matrix components respectively, and 𝜈𝑓 is the fiber volume fraction. 

 

The constitutive model used for the fibrils in this model is based on the work by 

Palmer and Boyce 2008 [41]. Other works have combined the worm-like and eight-chain 

models to capture the constitutive response of anisotropic biopolymer networks [42,43]. 

Palmer and Boyce 2008 utilized a combination of the Kratky-Porod chain and Arruda-

Boyce eight-chain model to capture the constitutive response of densely cross-linked 

cytoskeletal networks. Specifically, Palmer and Boyce invented the MacKintosh 

derivation of the Kratky-Porod model to describe the 1D force-extension behavior of 

single actin filaments. This 1D force-extension model was then extended to an 

incompressible isotropic 3D network of actin filaments using the Arruda-Boyce eight-

chain model [44], capable of capturing non-affine deformations in an idealized network 

structure [41]. This work by Palmer and Boyce 2008 was recently developed into a 

slightly compressible form and then incorporated into a custom ABAQUS UMAT by B.C. 

Marchi. The strain energy density function for the fibrils has the form:  

 

𝑈𝑀𝑎𝑐 =
𝐶𝑟

12Λ− 4𝜌0√3𝐼1

(3Λ2 + (4𝜌0√3𝐼1 − 12Λ) ln (
𝐴(3Λ2 − 6Λ + 2𝜌0√3𝐼1)

𝜌0√3𝐼1 − 3Λ
))

+
𝐵

2
(𝐽 − 1)2 −

𝐶𝑟Λ
2𝜌0(6𝜌0 + Λ2 − 6Λ)

12(Λ− 𝜌0)2(2𝜌0 + Λ2 − 2Λ)
ln(𝐽) 

(2) 
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where the first two terms derive from the model developed by Palmer and Boyce 2008 

and the second two terms are the volumetric components needed for compressibility. In 

the equation, 𝐽 is the Jacobian, 𝐼1 is the first invariant of the right Cauchy-Green 

deformation tensor, 𝐶𝑟 is the rubbery modulus, 𝐵 is the compressibility, Λ = 𝐿
𝐴⁄   and  

𝜌0 =
𝑟0

𝐴⁄  where 𝐿 is the final contour length, 𝑟0 is the chain length in its reference 

configuration, and 𝐴 is its persistence length. It should be noted that while the 

persistence length 𝐴 appears in the strain energy density, it drops out in the final 

Cauchy stress expression. The matrix components in this work were modeled using 

the standard neo-Hookean model provided within ABAQUS 2016 (Dassault 

Systèmes Americas Corp., Waltham, MA), with the form:  

 

𝑈𝑁𝐻 = 𝐶10(𝐼1̅ − 3) +
1

𝐷1

(𝐽𝑒𝑙 − 1)2 (3) 

  

where 𝐶10 is the stiffness parameter proportional to the shear modulus, 𝐷1 is for 

compressibility (proportional to the inverse of the bulk modulus), 𝐼1̅ is the deviatoric first 

strain invariant of the left Cauchy-Green strain tensor, and 𝐽𝑒𝑙 is the elastic volume 

strain. The standard neo-Hookean model provided within ABAQUS 2016 (Dassault 

Systèmes Americas Corp., Waltham, MA) was used for the matrix constitutive 

formulation.  The neo-Hookean model is commonly used in the literature for the 

modeling of matrix for ligament models [3,4,9,10,19,20,33,35,38]. This model lacks 

the necessary curvature to capture the typical response of soft collagenous tissue, 

i.e. a ‘toe region’ of low stress followed by a stiffening of the stress vs. strain curve. 
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However, with matrix stiffness 200 times less than the fibril stiffness, the matrix does 

not significantly contribute to the longitudinal (along the axis of loading) response of 

the material, and thus the neo-Hookean material is reasonable for this model.  

 

One-element validations of the MacKintosh and neo-Hookean models were 

performed to determine the constitutive model parameters to the estimated fibril and 

matrix responses, as shown in Figure 5.7 and Figure 5.8. The fibril model has an R2 of 

0.978. The matrix model has a R2 of 0.977 (smaller compared to that of the fibril model), 

indicating a slightly better fit with the fibril model. Table 5.1 contains the material 

parameters used in the simulation, with slight compressibility enforced for both the fibril 

Figure 5.7: One-element validation of fibril constitutive model of Equation 2. This model is 
based on the MacKintosh derivation of the Kratky-Porod chain model, with the eight-chain 
model used to extend the 1D force extension behavior to three dimensions. This model is 
capable of capturing the toe response and stiffening response characteristic of ligament 
constitutive behavior. 
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and matrix constitutive models (i.e. the bulk modulus is 1-2 orders of magnitude higher 

than the shear modulus for both material models) The initial Poisson’s ratios are 0.452 

and 0.490 for the fibril  and matrix material models, respectively. 

 

Table 5.1: Constitutive parameters for AM bundle simulation. The fibril components are 
modeled with Equation 2 and the matrix components with Equation 3.  

Component Material Properties 

Fibril (MacKintosh) 

Cr  = 7.290e10 Pa 
B  = 7.290e11 Pa 

0  = 1.228 

= 1.722 

Matrix (neo-Hookean) C10 = 1.031e6 Pa 
D1 = 1.940e-8 Pa-1 

 

Figure 5.8: One-element validation of neo-Hookean matrix constitutive model. The neo-
Hookean model lacks the curvature to capture the toe region and subsequent stiffened 
response of the tissue, and manifests a lower R2 value compared to the fibril validation. 
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5.3 Results 

Figure 5.9 (left) shows the vertical displacement contours of the AM FE model to 

the prescribed 1.50 mm displacement (selected to generate 4.24% nominal strain in the 

mid-substance of the bundle for a FE bundle initial length of 35.71 ± 0.011 mm). The 

experimental vertical displacement contour is shown in Figure 5.9 (right, adapted from 

Figure 5.9: Comparison of the vertical displacement contours of the numerical response and 
experimental AM bundle data (adapted from [40]). The shorter AM computational bundle 
displacement scale has been adjusted to match the experimental bundle displacements. The 
simulation prescribed vertical displacement along the ‘3’ axis to both the femoral and tibial 
reference nodes, with all other translations and rotations held fixed. The numerical contour 
demonstrates the striated displacement ranges visible in the experimental contour. The entire 
AM bundle is outlined in grey in the experimental image. 
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[40]), at peak displacement (for a bundle with length of 38.10 ± 0.050 mm). The FE 

bundle is compared to the displacement and strain contours obtained via DIC of the 

representative bundle selected in Figure 5.5 and used as the constitutive basis for the 

 

Figure 5.10: Comparison of the horizontal displacement contours of the numerical response 
and experimental AM bundle data (adapted from [40]). The AM computational bundle 
displacement scale has been adjusted to match the experimental bundle displacements (i.e. all 
contours are shown on the experimental bundle scale). This is the horizontal displacement 
resulting from a prescribed vertical displacement along the ‘3’ axis. The numerical contour 
demonstrates the striated displacement ranges visible in the experimental contour, and 
demonstrates lateral expansion of the numerical bundle, matching the unexpected expansion in 
the experimental bundle. The entire AM bundle is outlined in grey in the experimental image. 



179 

FE model. Although the absolute displacement values differ (partially due to the 

difference in length, the FE geometry is slightly smaller than the dimensions of the 

experimental bundle), agreement can be seen between the numerical and experimental 

results, with the simulation capturing the striated displacement ranges at both insertions 

seen experimentally. The entire AM has been outlined in grey; some loss of DIC 

Figure 5.11: Comparison of numerical and experimental axial true strains (along ‘3’ axis). Both 
contours are scaled to -5% to 20% true strain, and use the same color scheme. The 
computational element strains have been averaged within ABAQUS 2016.The numerical bundle 
shows a similar response as that of the experimental bundle, demonstrating the relative 
homogeneity in the mid-substance of the tissue. The experimental contour is adapted from the 
study detailed in [40]). 
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correlation is unavoidable at the edges of the tissue. 

 

Figure 5.10 shows the horizontal displacement contours. The computational 

model demonstrates a similar expansion as that of the experimental AM bundle, with 

both the left and right edges of the computational and experimental contours moving 

outward laterally. The constructed geometry allows the individual fibrils to translate 

Figure 5.12: Comparison of numerical and experimental transverse true strains (along the ‘2’ 
axis). The computational element strains have been averaged within ABAQUS 2016. Both 
contours are scaled between -25% and 45% true strain with the same color scheme. The 
numerical bundle demonstrates lateral expansion, similar to what is seen experimentally. The 
experimental contour is adapted from the study detailed in [40]). 
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outward as the bundle is loaded uniaxially; this freedom likely contributes to the lateral 

expansion demonstrated in the numerical results.  

 

Figure 5.11 shows the comparison of the axial numerical strain response (along 

the ‘3’ axis, also the direction of loading) to the AM bundle strains measured via DIC. 

Figure 5.13: Comparison of numerical and experimental in-plane shear true strains (within ‘2-3’ 
plane). The computational element strains have been averaged within ABAQUS 2016. Both 
bundles are scaled from -10% to 10% true strain with the same color scheme. The numerical 
bundle manifests high shear throughout the bundle, as was seen by the experimental bundle 
shown here, as well as all other bundles tested in the experimental study discussed in Chapter 
3. The experimental contour is adapted from the study detailed in [40]). 
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Both contours are scaled from -5% to 20% true strain using the same color scheme, 

and the computational element strains have been averaged within ABAQUS 2016. The 

numerical results demonstrate relative homogeneity in the mid-substance as well as 

strains at the same levels as the seen in the experimental contour. This behavior would 

be expected in traditional tensile testing of homogenous materials. However, the 

transverse true strain contours shown in Figure 5.12 are unexpected for uniaxial tensile 

loading. As with the horizontal displacement contours, the transverse strain contours 

demonstrate lateral expansion in both the numerical and experimental data, with the 

numerical model capturing the localized nature of the experimental transverse 

expansion. Figure 5.13 shows the shear contours, and the computational model 

Figure 5.14: Stress vs. stretch comparison of the numerical simulation and experimental stress 
vs. stretch response. The numerical and experimental results have good agreement. At the 
peak experimental displacement, the nominal strains are 4.19% and 4.26% for the numerical 
and experimental results respectively, and nominal stresses of 42.7 MPa and 40.7 MPa for the 
numerical and experimental results. The R2 value of 0.968 demonstrates reasonable fit of the 
overall numerical data to the experimental response. 
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demonstrates the surprising banded nature 

and large shear present in the experimental 

contour.  

 

Figure 5.14 shows the nominal stress 

vs. stretch response of the AM computational 

model to the prescribed 1.50 mm 

displacement. This displacement generated 

4.24% nominal strain in the mid-substance of 

the FE AM bundle, and is compared to the 

experimental stress vs. stretch data that had 

nominal strains up to 4.26%. At these strains, 

the numerical bundle manifested a nominal 

stress of 42.7 MPa, while the experimental 

bundle manifested 40.7 MPa. Overall, the 

numerical response has an R2 of 0.968, 

demonstrating reasonable fit between the curves.  The tangent moduli for the numerical 

model were calculated for comparison of the numerical response to the experimental 

data and are seen in Figure 5.15, calculated either at a stress of 20 MPa (1.41 GPa) or 

at 3% nominal strain (1.44 GPa). These values compare quite well with the tangent 

moduli of the specific experimental bundle used for the creation of the constitutive 

model properties (1.35 GPa at 20 MPa and 1.42 GPa at 3% nominal strain). The 

numerical tanagent moduli are reasonably in line with the range of AM experimental 

Figure 5.15: Tangent moduli of the 
experimental and numerical results, 
demonstrating 1.44 GPa at 3% nominal 
strain (experimental data 1.04 ± 0.24 GPa, 
n=8) and 1.41 GPa at 20 MPa (compared 
with 1.07 ± 0.17 GPa, n=8 for 
experiments). 
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tangent moduli of 1.07 ± 0.17 GPa (n=8) at 20 MPa and 1.04 ± 0.24 GPa (n=8) at 3% 

nominal strain. 

 

5.4 Discussion 

As mentioned previously, full-field displacements and strains provide a plethora 

of information on the behavior of complex materials, and there is a paucity of full-field 

surface-level strains reported for the ACL and its bundles. This model demonstrates 

expected axial strains, as well as the unexpected shear and transverse strains. In 

addition, the tangent moduli from the numerical model, measured at constant strain and 

stress, are in line with the experimental results (discussed in detail in Chapter 3 [40]). 

The tangent moduli computed via DIC and demonstrated numerically are significantly 

higher than tangent moduli calculated using grip-to-grip measurements and reported in 

the literature. Butler et al. 1992 found tangent moduli of 283 ± 114 MPa and 286 ± 141 

MPa for the anteromedial and anterolateral bundles investigated in this study. It is now 

widely accepted that the ACL is comprised of an anteromedial bundle and a 

posterolateral bundle. The anteromedial and anterolateral bundles in the Butler et al. 

1992 study are likely a division of the anteromedial bundle now widely accepted [45]. In 

this study, tangent moduli were calculated from displacement data measured using an 

Instron LVDT (obtaining grip-to-grip displacement measurements). Other works by 

Butler et al. ([36,37]) are frequently used in the computational biomechanics community 

as a basis for the mechanical properties of the ACL in FE modeling 

[6,7,9,10,12,14,18,19]. However, without surface-level experimental properties for 

characterization, it is difficult to predict the tissue-level response numerically.  
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At least three levels of collagen and extracellular matrix exist in the ACL: the 

highest level consists of collagen fascicles, each separated by inter-fascicle matrix 

components, as is included in this model. The next hierarchical levels consist of fibrils 

(also present in this model) and subsequently fibers. Collections of fibers make up 

Figure 5.16: Transverse (left) and shear strains (right) in the inter-fascicle matrix components. It 
is evident that the inter-fascicle matrix components experience positive lateral strains in the 
bundle mid-substance while the neighboring fibril components manifest negative lateral strains. 
The inter-fascicle matrix also exhibit high in-plane shear during loading,this shear is not evident 
in the fibril components.  
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fibrils, and collections of fibrils make up fascicles, with matrix alternating between 

collagen components at all levels. It was computationally prohibitive to include the 

collagen fibers as well the matrix at the fibril and fiber levels (as well as difficult to 

ascertain these structures from the resolution of the digital images). However, within the 

current model (containing fascicle, fiber, and inter-fascicle matrix components), the 

inter-fascicle matrix exhibits both positive transverse strains and large in-plane shear 

strains. Figure 5.16 shows both the transverse (Figure 5.16, left) and in-plane shear 

(Figure 5.16, right) strains of the inter-fascicle matrix at peak loading. The fibril 

components directly adjacent to the inter-fascicle matrix components are also shown for 

comparison of the strain responses, each fibril is part of a larger fascicle (Figure 5.16, 

right shows the fibrils belonging to Fascicle ‘A’ and Fascicle ‘B’ as an illustration). It is 

evident from the manifested positive transverse strains in the inter-fascicle matrix 

(Figure 5.16, left) that this model captures the more compliant matrix response in the 

transverse direction. The large shear response is also evident in the matrix component 

only (Figure 5.16, right), and is not present in the fibril components. While the fibril 

components do not manifest positive lateral strains, they do demonstrate translation 

away from the bundle axial mid-line during loading. The overall lateral expansion is thus 

captured through both the outward translation of the fibrils as well as the expansion of 

the matrix components. 

 

The unexpected lateral strains can be further discussed by investigating the 

effect of ‘form-factor’ (the hourglass shape of the AM bundle away from the bones). For 

the computationally constructed bundle, the width dimension ranges from 5.5 mm at the 
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mid-substance to 7.6 ± 0.2 mm at the femoral and tibial entheses. This form-factor 

would theoretically allow a maximum transverse strain of 

38.1% at the mid-substance. This aligns well with 

transverse strains seen experimentally, where along a line 

in the mid-substance the transverse strain was measured 

to be 36 ± 1.6% using ImageJ (National Institutes of 

Health, Bethesda, MD). DIC provides more detail on the 

local response of the tissue, with experimental transverse 

strains ranging from 7.4% to 56% locally along the same 

line of the tissue, likely an indication of matrix shear.  It is 

possible the matrix shear contributes to the resulting 

transverse strains in the computational model, as 

transversely directed forces are needed to maintain the 

dimensions of materials undergoing shear loading. 

However, these transversely directed forces are on the 

order of the square of the shear strain, and would be 

close to 1% for the experimentally-seen shear strains on 

the order of 10%. Thus, the contribution of transversely directed strains arising from the 

matrix shear is likely to be small compared to the strains possible due to the hourglass 

form of the tissue in its aligned state.   

 

Notwithstanding the ability of this model to demonstrate the full-field strain and 

constitutive AM bundle responses under uniaxial loading, there are several limitations 

Figure 5.17: Profile view of 
an AM BLB specimen. The  
fascicles can be seen 
extending from femur to tibia, 
but the through-thickness 
profile of the femoral and 
tibial insertions is difficult to 
ascertain via surface images 
alone.  
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with this work. Regarding contact at the femoral and tibial insertions, an assumption 

was made on the amount of tissue contacting the femur and tibia. Portions of the femur 

and tibia were trimmed away (this can be seen in on the tibia in Figure 5.3, right). The 

outline shown in Figure 5.4 was selected to mimic the outer upper and lower edges of 

the bundle at the tibia and femur. It is possible that this choice of femoral insertion 

causes the region of lower strain seen in the axial strain contour (Figure 5.11, left). The 

femoral and tibial insertions of the AM bundle are complex, and the specimen has been 

oriented to optimize the alignment of the tissue along the axis of loading (Figure 5.1). 

As seen in the profile view of the AM bundle femoral insertion (Figure 5.17), while all 

the fascicles insert into the tissue, the insertion profile through the thickness of the 

bundle is not straightforward to determine from digital images of the surface alone. It 

was computationally prohibitive to include matrix between the smaller hierarchical 

structures in the simulations; in addition, the mechanical properties of the matrix at 

these length scales are unknown. Due to these constraints, it was hypothesized that the 

matrix was more compliant than the surrounding fascicles at the macroscale, and 

modelled as a very compliant matrix by allowing the fibrils on either side to deform 

independently.  That is, in this simulation, gaps were enabled to open up, by assuming 

that in order to capture the lateral expansion; a very compliant material is needed at the 

smaller length scales. While good agreement exists between the experimental and 

numerical contours in this model, these constraints are a limitation of the model. It is 

possible that the addition of springs between fibrils could be used as a matrix 

alternative; this would provide controllability of the level of compliance between fibrils. 

Another alternative method is to tune the compliance of the matrix stiffness—in essence 
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modifying the initial matrix Poisson’s ratio. Smaller Poisson’s ratios could allow lateral 

expansion without allowing independent fibril expansion. In addition, further insight on 

the through thickness and through width insertion profiles and fibril behavior response 

would be useful for FE models.  

 

5.5 Summary 

The properties of the individual bundles of the ACL in their native state have 

been afforded little attention in the literature, and those studies that discuss the AM and 

PL bundles often focus on graft mechanics. In addition, there is a paucity of full-field 

strain data reported on the ACL or its bundles. As previously demonstrated in Mallett et 

al. 2017, the AM bundle has a complex full-field strain response to tensile loading, and 

unexpected transverse and shear strain responses [40]. Through the inclusion of 

individual fascicles, fibrils, and matrix, as well as an enveloping matrix sheath, this work 

demonstrates a similar numerical response as the full-field experimental response, 

especially the large transverse and shear responses of the bundle in the mid-substance. 

The MacKintosh model utilized has advantages through the implementation of a 

microstructurally-based strain energy density function for the fibril constitutive model. 

The fibrils dominate the longitudinal response of the tissue, and the numerical response 

provides tangent moduli well in line with experimental data. Models that capture the 

actual response of soft tissue are crucial to the prediction of the ACL mechanical 

response within the biomechanics community, and this work serves as an aid in 

understanding the response of the ACL to diverse loading and injury situations.   
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

The ACL is the most commonly injured soft tissue in the knee, and there is a 

pressing need to understand its intrinsic mechanical properties to provide insight into 

tissue failure mechanisms. Chapter 1 provided an outline of the challenges facing ACL 

research, including the role of the ACL in various knee motions, ACL mechanics and 

comparisons with common replacement grafts, the use of animal models for ACL 

research, and ACL computational models. The ACL is an extremely complex soft tissue, 

and challenges have faced researchers in quantifying the mechanical properties of the 

ACL as a whole in well-understood loading states. In addition, there is a dearth of 

information on the full-field response of the ACL, leading to lack of understanding on its 

complete response, even in well-understood loading states. Chapter 2 of this work 

developed a method for patterning soft biological tissue to aid in applying DIC to testing 

of soft biological tissue. This pattern technique utilizes a biologically friendly, removable 

patterning medium that allows for tissue hydration without loss of pattern integrity, and 

the patterning method produces patterns with controlled density and individual speckle 

size. This pattern design and fabrication technique provides enhanced DIC patterns for 

correlation of soft tissue surface strains. 
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The experimental characterization was achieved by studying the two ACL 

bundles independently in a well-known loading state, and the ACL as a whole under 

physiologically relevant loading conditions. Chapters 3 and 4 quantified the material 

response of the individual and aligned AM and PL bundles using DIC. The tissue-level 

surface strains demonstrate that both bundles are stiffer than previously reported grip-

to-grip methods. In addition, the AM bundle is stiffer than the PL bundle manifesting 

tangent moduli of 1.04±0.24 GPa for DIC compared to 284.0±80.1 MPa for the PL 

bundle (at 3% nominal strain) (AM data from [1]). Both bundles demonstrated 

unexpected transverse behavior to longitudinal loading, with the AM bundle 

demonstrating up to 55% lateral strain and the PL demonstrating undulation, as 

individual fascicles moved into or out of the camera’s plane of view during loading. Few 

if any previous studies have discussed the full-field strain response of the AM and PL 

bundles of the ACL; this dissertation provides insight into the complexity of the ACL 

response.  Finally, computational finite element frameworks are valuable tools to 

investigate the response of soft biological tissue under diverse loading conditions, 

especially those difficult to achieve in a laboratory. However these models depend on 

accurate constitutive laws, and must be able to capture the full response of the material. 

The computational model of the AM bundle developed in Chapter 5 has the geometric 

complexity to capture the off-axis response of the bundle in uniaxial tension as well as 

the appropriate constitutive model to capture the longitudinal material response.  

 

While this dissertation addresses several gaps in the field regarding experimental 

characterization and computational modeling of the ACL, there are several remaining 
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questions of note for future work. The rest of this chapter is dedicated to discussing 

areas of study that would provide useful information to the biomechanics community. 

 

6.2 Relative strain for in vivo investigations 

The definition of a reference state for strain measurements is of importance in 

the performance and analysis of materials tests.  This is especially true for in vivo tests 

of biological specimens, where the orientation of the tissue under investigation as well 

as the presence of other biological structures and muscle forces all contribute to a 

complex strain state. A distinction should be made between tensile testing of bone-

ligament-bone (BLB) specimens and in in vivo experiments; for tensile loading the 

Figure 6.1: Medial, lateral, anterior and posterior views of the ovine knee as-received from a 
local butcher. The dashed line indicates the location of the knee joint. 
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location of zero strain is commonly determined to be the point at which the specimen 

registers load (often after the application of a minimal tare load) [2]. However, the 

complex in vivo state, especially the twist of the ACL in its native state, makes clear 

determination of a reference state difficult [2–4].  

 

Often, studies have sought to clearly indicate the choice of a relative strain state 

for ACL testing. [5–14]. This relative strain state can be defined as the change in length 

of the displacement transducer applied to the surface of the material [5]. An 

Figure 6.2: Dissection of knee to visualize ACL. a) Transection of the muscle groups on the 
posterior aspect of the femur. b) Removal of hip joint and transection of femoral anterior muscle 
groups. c) Removal of quadriceps connected to patellar tendon. d) Complete removal of anterior 
and posterior muscle groups at the femur. This is required for flexion of the knee joint (prior to 
this the knee is relatively rigid at 10° of flexion. 
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investigation was made into a method for determining the relative strain state of the in 

vivo ACL. Tests were conducted on as-received knees (Figure 6.1) that initially 

contained the hip, knee and ankle joints (dashed black line indicates the location of the 

knee). In the as-received state, knees had a flexion angle of 10°. Dissection was 

performed by first transecting the muscle groups on the posterior aspect of the femur, 

with care taken not to sever the connections close to the knee joint (Figure 6.2a). The 

muscle groups on the anterior aspect of the femur were then removed, with care again 

taken to preserve the muscles directly connected to the knee joint capsule (Figure 

6.2b). The quadriceps was then removed (Figure 6.2c). In one knee, it was observed 

that at this point of the dissection process, the knee manifested an inability to flex, and 

remained stiffly at 10°. It was necessary to completely sever both the anterior and 

posterior muscle groups from the femur, as shown in Figure 6.2d, in order to permit the 

knee to flex beyond 10°. After removal of these muscle groups, the knee was easily 

maneuverable.  In order to visualize the ACL, further dissection was required. The joint 

capsule was transected from the proximal aspect femoral head to the tibia. As seen in 

Figure 6.3 (left), the femoral condyles and patella are visible after transection of the 

Figure 6.3: Intact ACL rigidly fixed in the gravity-free plane. The distal portions of the AM and 
PL are visible near the tibial insertion. Right: After incising the AM with blade of rectangular 
geometry, a cavity develops, with dimensions 1.246 ± 0.034 mm x 0.048 ± 0.030 mm.  
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joint capsule. Further dissection was required to remove the fatty tissue present in the 

joint, and after this tissue removal the tibial footprint of the ACL can be visualized in 

Figure 6.3 (right). After all dissection, only the tibial portion of the ACL was visible, and 

of that, mostly the AM bundle, and all tests were performed on the visible portion of the 

tissue.  

 

Two tests were performed, one on a knee fixed in the gravity-free plane (held on 

a flat surface), and the other in a custom load frame designed for testing of intact whole 

knee specimens. Both knees were arranged at 30° of knee flexion. Both knees were 

incised with a blade of rectangular geometry and dimensions 2.11 ± 0.01 mm x 0.50 ± 

0.01 mm (gravity-free plane knee) and 2.58 ± 0.01 mm x 0.58 ± 0.01 mm (load frame 

knee). In the gravity-free plane knee, it was possible to incise both the AM and PL 

independently, and a cavity was seen to develop in the AM bundle, with dimensions 

1.246 ± 0.034 mm x 0.048 ± 0.030 mm (Figure 6.4, right). The PL bundle did not 

demonstrate any visible cavity after incision in the gravity-free plane knee. For the load-

frame knee, only the AM bundle was visible, and it was marked with a marker as far as 

Figure 6.4: Anterior view of the knee joint after transection of the joint capsule. The anterior 
aspect of the joint capsule, containing the patella (left) must be pulled back in order to visualize 
the ACL (right).  



 200 

was accessible. The AM bundle was incised with the rectangular blade; the PL was not 

incised, as it could not be seen. After incision of the AM bundle, the entire ligament was 

transected completely, as the distinction between the AM and PL could not be 

visualized. Figure 6.5 shows the tissue after incision and transection. After incising the 

AM bundle, no cavity was seen to develop, although some of the marker ink came off 

after removing the scalpel blade, indicating the location of the incision. After transection, 

no motion was seen in the tissue.   

 

Figure 6.5: Left: ACL rigidly fixed at 30° within a custom load frame. The distal portion of the 
AM is visible near the tibial insertion. After incising the AM with blade of rectangular geometry, 
no cavity was seen to develop, although some of the marker ink came off with the removal of 
the scalpel blade after incision. Right: After transection, no visible movement of the ACL was 
detected. 
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Several complications existed for this study, rendering conclusions difficult to 

ascertain. There was a need to remove the anterior portion of the knee capsule in order 

to visualize the ACL. Although the custom load-frame utilized for testing was capable of 

applying muscle forces and body weights for human knee studies, it was not possible to 

arrange the knee at 30° of knee flexion with the application of those muscle forces and 

body weights. Initially, it was attempted to apply the quadriceps force at an alternate 

location at the tibia through a split nylon strap. However, during the dissection process, 

the strap prevented access to the anterior portion of the capsule had to be removed in 

order to continue dissection. It was not possible to apply the quadriceps muscle forces 

or body weight and maintain access to the anterior portion of the joint capsule. In 

addition, without the muscle forces and body weight, the knee was able to move during 

dissection. It was observed that after removal of the medial meniscus, the femur and 

tibia were impinging on each other. Further removal of the bones (i.e. to visualize the 

entire length of the ACL) would likely detrimentally allow changes in the orientation of 

the ACL. The lack of muscle forces and body weight and possible unavoidable motion 

of the knee joint during dissection renders the results for the load frame knee 

inconclusive.  

 

This experimental investigation points to the challenges facing researchers in 

biomechanically testing the ACL, especially in visualizing such an embedded structure 

while maintaining simulated muscle forces and body weights. However, in vivo tests of 

living patients offer a solution in the determination of the existence of a reference 

location of the ACL. Howe et al. 1990 [4] investigated the determination of a zero ACL 
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strain state in vivo while preserving the ligament, other joint structures and muscle 

activity. In this study, several clinically relevant motions, including anterior and posterior 

tibial translation, were prescribed for 5 patients (aged 18-40). A displacement 

transducer was implanted on the intact ACL in vivo, and a force plate was attached to 

the tibia to measure the loads generated during motion. With this method, the authors 

were able to identify a reference length at which the ACL became initially load-bearing. 

Below this reference length the ACL was palpably and visually slack, and above this 

reference length the tissue was taut or load-bearing. This study develops a 

methodology to provide a reference length 

for in vivo strain calculations. Future 

studies should endeavor to clearly indicate 

the state of loading and the distinctions 

between loading states tested under 

laboratory conditions and those that occur 

in vivo. 

 

6.3 Computational reorientation of 
ACL bundles 

There is a gap in the biomechanics 

community between mechanical tests and 

clinically relevant tests. Mechanical tests 

are required to obtain material properties 

and as foundations for computational 
Figure 6.6: Matrix and fascicle components of 
PL FE bundle. 
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models. However, the direct 

applicability of mechanically motivated 

experiments is difficult to determine, 

with load and displacement data from 

whole knee tests more amenable to 

many physiologically-relevant 

situations. In this work, tests in well-

understood loading states were 

performed on both the AM and PL 

bundles, and these tests have given 

insight into the material properties 

needed for experimental 

characterization and computational 

modeling. ATT tests have also been 

performed in this work, providing insight into the full-field strain response of the ACL in a 

complex loading state familiar to clinicians. A next step is to tie the information in these 

two states together, by computationally twisting the AM bundle discussed in Chapter 5 

to the configuration it would have in the native knee. This would require a FE model of 

the PL bundle that is able to capture the complexity of the tissue response. Figure 6.6 

shows the components of a representative PL bundle. This bundle has been sectioned 

in the same manner as the AM FE model discussed in Chapter 5, with matrix separated 

fascicles. The full PL BLB assembly is shown in Figure 6.7. These components were 

made from front and profile digital images of the PL bundle. However, the PL 

Figure 6.7: FE assembly of PL BLB specimen. 
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demonstrates a large variation in it surface profile (as seen in Figure 4.1) with fibrils 

appearing and disappearing from view along the bundle’s length. It is difficult to identify 

the 3D positions of individual fibrils from images of the surface only. However, through-

volume visualizations and measurements of the aligned bundle are an option that can 

offer the insight to create FE soft-tissue models with the necessary complexity to 

capture experimental behavior. The reorientation of the FE bundles in a whole knee 

model would require knowledge of the rotations and translations undergone by the 

bundles of the ACL in order to align them for tensile testing. This is not simple to 

achieve, as both bundles exhibit twist and extend from the posterolateral aspect of the 

femur to the anteromedial aspect of the femur, requiring translations of the bones to 

achieve alignment.  

 

In the process of this dissertation, the author mentored an undergraduate who 

designed and built an apparatus to hold the knee in its anatomic state for baseline 

measurements, and then methodically translate and rotate the femur and tibia to 

achieve alignment of the AM and PL bundles. Preliminary analysis of the results has 

shown that, in addition to translation of the femur and tibia to align both bundle 

insertions, the PL requires an untwist of the femur in external rotation of 81 ± 23° (n=5). 

This twist is about its own longitudinal axis. The AM bundle also requires translations to 

align its femoral and tibial insertion. However, an added complexity for the AM is that it 

twists around the PL, and requires an external rotation (86 ± 8°, n=4) of the femur, as 

well as flexion of the tibia and rotations of the femur and tibia in their respective coronal 

planes to remove the twist and align the bundle. This information is critical for 



 205 

computationally twisting and aligning the AM bundle in its native state. Once this 

transformation is performed in a computational model, the experimentally characterized 

AM bundle can be used as a tool to simulate a variety of loading conditions, especially 

those prohibitive due to cost and/or time in a laboratory setting. As a final validation, the 

ATT experimental data performed in this work will be useful to validate the twisted 

bundle and provide insight to clinicians on the strain response and failure mechanisms 

of the ACL. 
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Appendix A: Supplementary Information 
 
A volumetric analysis was performed on bundles from the experimental study 

described in Chapter 3 and Chapter 4. Eleven bundles (6 AM, 5 PL) were selected for 

the volume analysis, and ten image pairs of the front and profile images were selected 

for analysis of the bundle volume change during loading. Digital images of the front and 

profile views of the bundles were acquired with Fastcam SA1.1 cameras (resolution 

0.049 ± 0.003 mm, n=11, Photron USA, Inc., San Diego, CA) and a Grasshopper Gras-

50SM-C camera (resolution 0.034 ± 0.004 mm, n=11, Point Grey Research Inc., 

Richmond, BC, Canada). 

 

Figure A.1: AM and PL measured length during loading (to ~12% grip-to-grip nominal strain). 
The length dimension is aligned with the direction of loading. 
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Within ImageJ (National Institutes of Health, Bethesda, MD), the same region of 

the tissue visible in both front and profile views was selected for measurement of the 

length, width, and thickness. The length is the dimension along the direction of loading, 

the width is the dimension transverse to the direction of loading (and in the plane of 

view of the Fastcam cameras). The thickness is transverse to the direction of loading, 

Figure A.2: AM and PL measured width during loading (to ~12% grip-to-grip nominal strain). 
The width dimension is transverse to the direction of loading. 

Figure A.3: AM and PL measured thickness during loading (to ~12% grip-to-grip nominal 
strain). The thickness dimension is transverse to the direction of loading. 
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and into the page from the Fastcam camera’s point of view and in the page from the 

perspective of the Grasshopper camera (see Figure 3.2 b, c and d for representative 

front and profile views). 10 image pairs were selected at evenly spaced points during 

the loading time, and the length, width and thickness of the bundles measured in these 

image pairs. Each length, width and thickness measurement was made three times to 

account for operator error. The length and width were measured from the front image, 

and the thickness from the profile image.  

 

Figures A.1, A.2 and A.3 show the dimensional data of the AM and PL bundles 

during loading. Both bundles demonstrate and increase in length, however the AM width 

markedly increases, while the PL does not demonstrate a consistent pattern of 

expansion or contraction in the width dimension. The AM data demonstrate a reduction 

in thickness for the majority of the bundles, while the PL demonstrates an increase in 

thickness for most bundles. 

Figure A.4: Volume of AM and PL bundles during loading 
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The volume for the AM was calculated by multiplying the measured tissue length 

by the assumed cross-sectional area (CSA) of the mid-substance (as discussed in 

Chapter 3). The AM was assumed to have a rectangular cross-section with rounded 

semi-circular edges, and the PL CSA was assumed to be rectangular. The bundle 

volume during loading is shown in Figure A.4, and volumetric change shown in Figure 

A.5.  The AM demonstrated a slight reduction in volume, demonstrating a peak 

volumetric change of 0.99 ± 0.06 mm3/mm3. This indicates that while the bundles see 

large lateral expansion, the overall bundle volume does not expand. A reduction in 

volume is not expected for materials with positive Poisson’s ratios undergoing uniaxial 

tension. However, the measured amount of volumetric decrease lies within the 

uncertainty of the experimental measurement, thus it is not possible to ascertain for 

certain if the bundle is manifesting a decrease in volume. 

 

The PL demonstrates marked increase in volume and volumetric change for all 

bundles, with a mean peak volumetric change of 1.28 ± 0.00 mm3/mm3. One reason for 

Figure A.5: Volumetric change of AM and PL bundles. 
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this marked increase could be due to the assumption of a rectangular cross-section for 

the PL bundle. The PL demonstrates a significant variation in its surface throughout the 

bundle, making determination of its cross-sectional area profile difficult. It is possible 

that this lack of initial fibril alignment contributes to the manifested volume expansion. It 

is also possible that the lateral expansion of individual fibrils (see Figure 4.1) away from 

each other contributes to this volume expansion. Table A.1 summarizes the peak 

dimension measurements, and volume and volumetric change calculations for the AM 

and PL bundles investigated. 

 

Table A.1: Peak AM and PL dimension measurements, volume, and volumetric change. 

Bundle 

Average 
Peak 

Length 
(mm) 

Average 
Peak 
Width 
(mm) 

Average 
Peak 

Thickness 
(mm) 

Average 
Peak 

Volume 
(mm3) 

Average 
Peak 

Volumetric 
Change 

(mm3/mm3) 

Average 
Peak Axial 

Strain 
(mm/mm) 

AM 
(n=6) 

1.20 ± 
0.69 

7.02 ± 
2.41 

0.86 ± 0.37 30.45 ± 1.25 0.99 ± 0.06 0.07 ± 0.00 

PL 
(n=5) 

1.19 ± 
0.67 

5.63 ± 
1.75 

4.98 ± 
1.673 

32.55 ± 0.06 1.28 ± 0.00 0.02 ± 0.00 
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Table A.2: Dissertation Project Repository 

Project Location Project Filename Project Description 

Google 
Drive\Mallett_Kaitlyn_Re
pository\Stencil_Genera
tion_Patterning_Project 

Stencil_Generation_Patterning_Project 
Data files of measurements of individual,  
paired and pattern speckle files (digital images from 
Olympus microscope) as discussed in Chapter 2 

Google 
Drive\Mallett_Kaitlyn_Re
pository\AM_PL_Experi
mental_Data 

AM_PL_Experimental_Data 

Experimental data (digital images, MTS  
load/displacement .txt files) and analysis files (Matlab .m 
(codes) and .fig files (figures), Excel .xlsx spreadsheets 
for the data discused in Chapters 3 and 4 

Google 
Drive\Mallett_Kaitlyn_Re
pository\FE_Bundle_Si
mulation_Project 

FE_Bundle_Simulation_Project 
Geometry files for the AM and PL bundles.  
ABAQUS CAE and JNL files of final simulations for AM 
bundle in uniaxial tension discussed in Chapter 5 

Google 
Drive\Mallett_Kaitlyn_Re
pository\Relative_Strain
_Images 

Relative_Strain_Images 
Raw images from relative strain test (with So Young 
Baek) in May 2017. Video files of AM and PL 'nick' with 
well-defined blade. 

Google 
Drive\Mallett_Kaitlyn_Re
pository\Shock_Tube_A
ssembly_Project 

Shock_Tube_Assembly_Project 

Autodesk Inventor files (.iam, .ipt) of shock 
 tube assembly (with Kip Schimmoeller, Keith Brodek, 
Fabian Venegas, Antonia Crews). Final assembly files 
and updated parts order list. 

Google 
Drive\Mallett_Kaitlyn_Re
pository\Bundle_Untwist
_Project 

Bundle_Untwist_Project 

All images from January 2017 experiments  
(with Rebecca Pavlock). Also included are bundle untwist 
calculations and Rebecca's 
experimental reports, tables and presentations. 

Google 
Drive\Mallett_Kaitlyn_Re
pository\Volumetric_AM
_PL_Data 

Volumetric_AM_PL_Data 

Excel spreadsheet of all ImageJ measurements 
 (length, width, thickness) of AM and PL bundles 
undergoing loading (from AM_PL_Experimental_Data 
tests). Matlab .fig files of final dimension, stretch, volume, 
and volumetric change data) 

 


