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ABSTRACT

Analysis of Neuroimaging data has experienced great strides over the last few decades.

Two key aspects of Neuroimaging data are its high-dimensionality and complex spatio-

temporal autocorrelation. Classical approaches are somewhat limited in dealing with these

two issues, as a result, Bayesian approaches are being utilized more frequently due to their

flexibility. Despite their flexibility, there are several challenges for Bayesian approaches

with respect to the required computation. First, the need for an efficient posterior com-

putation method is paramount. Second, even in conjugate models, statistical accuracy

in Bayesian computation may be hard to achieve. Since accuracy is of primary concern

when studying the human brain, a careful and innovative exploration of Bayesian models

and computation is necessary.

In this dissertation, we address some of these issues by looking at various Bayesian

computational algorithms in terms of both accuracy and speed in the context of Neu-

roimaging data. The algorithms we study are the Hamiltonian Monte Carlo (HMC),

Variational Bayes (VB), and integrated nested Laplace approximation (INLA) algorithms.

HMC is a MCMC method that’s particularly powerful for sampling in high-dimensional

space with highly correlated parameters. It’s robust and accurate, yet not as fast as some

approximate Bayesian methods, for example, Variational Bayes (VB). However, since

there is no theoretical guarantee that the resulting posterior derived from VB is accurate,

its performance has to be analyzed on a case-by-case basis. INLA is another extremely

fast method based on numerical integration with Laplace approximations but, like VB,

there are no generally applicable theoretical guarantees of accuracy.
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In Chapter II we focus on a particular spatial point process model, namely the log

Gaussian Cox Process (LGCP), and consider applications to ecological and neuroimag-

ing data. Inference for the LGCP is challenging due to its non-conjugacy and doubly

stochastic property. We develop HMC and VB algorithms for the LGCP model and make

comparisons with INLA. In Chapter III, we turn our focus to the general linear model with

autoregressive errors (GLM-AR) which is widely used in analyzing fMRI single subject

data. We derive an HMC algorithm and compare it with the VB algorithm and the mass

univariate approach using the Statistical Parametric Mapping (SPM) software program. In

Chapter IV, we extend the original GLM-AR model to a new model where the order of

the AR coefficients can varying spatially across the brain and call it GLM with spatially

varying autoregressive orders (SVARO). Using simulations and real data we compare our

SVARO model with GLM-AR model implemented under both our MCMC sampler and

the SPM VB algorithm.

Our results shed light on several important issues. While HMC almost always yields

the most accurate results, the performance of VB is strongly model specific. INLA is a

fast alternative to MCMC methods but we observe some limitations when examining its

accuracy in certain settings. Furthermore, our new SVARO model performs better than

the GLM-AR model in a number of ways. Not surprisingly, more accurate algorithms

generally require more computational time. By systematically evaluating the pros and

cons of each method, we believe our work to be practically useful for those researchers

considering the use of these methods.
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CHAPTER I

Introduction

We live in a 3D world. Our brain helps us to store and analyze the instantaneous events

that happen all round us. Yet the power of an individual brain is limited. Spatial statistics,

as a tool, can help us make use of these huge amounts of data and information. Through

spatial or spatiotemporal models, we can analyze not only the events worldwide, but also

in particular, our brain themselves, namely with neuroimaging. Thus, spatial modeling is

a fascinating field and has attracted generations of statisticians for exploration.

One of the biggest characteristics of spatial data is its high-dimensionality in nature.

For example, current technologies in neuroimaging, in particular functional magnetic res-

onance imaging (fMRI), allow us to acquire images at units of millimeters in space and

seconds in time. This leads to over 50, 000 voxels, or voxel elements, for one single subject

at a single time point. Each fMRI study lasting for several hundred seconds resulting in

thousands of time series of length in the several hundreds. Typically, these data will have

both spatial and temporal correlation. This high-dimensional problem is challenging from

both a statistical and computational standpoint. Classical statistical approaches rely on

models with strict assumptions that are not flexible enough to deal with the complex cor-

relation found in these images. As a result, researchers have turned to Bayesian methods.

Bayesian methods are quite flexible and allow modelling of the spatiotemporal correla-
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tion found in these images. Nevertheless, traditionally, Bayesian methods tend to be very

computationally intense. Thus the focus of this dissertation is on Bayesian computational

methods for spatial and spatiotemporal models with applications to point processes and

neuroimaging.

The remainder of this introduction is organized as follows: in Section 1.1, we introduce

spatial point process models. Then in Section 1.2, we cover the topic of neuroimaging,

with focus on magnetic resonance imaging (MRI) and fMRI. A brief review of existing

Bayesian computational approaches are given in Section 1.3. Finally in Section 1.4, we

provide an outline of this dissertation.

1.1 Spatial point processes

There are basically three types of spatial data (Banerjee et al., 2014). 1) Point reference

data, where the spatial domain is assumed fixed; 2) areal data, where the spatial domain is

fixed and partitioned into separate areal units, and 3) point pattern data, where the location

itself is random. An example of point pattern data is trees in a rain forest, where each point

represents the location of a particular tree. And we want to study the spatial clustering of

these trees, in which case the location of the trees are considered random and of primary

interest. Due to the randomness of the location of points, special models have to be de-

veloped to analyze point pattern data, and these are typically referred to as spatial point

process models. Spatial point processes refer to a random pattern of countable points, say

S, in a d dimensional Euclidean spaceRd (Møller and Waagepetersen, 2003).

There are various types of spatial point processes. Among them, and perhaps the most

fundamental, is the spatial Poisson point process. A point process is called a homogeneous

Poisson point process on a spatial domain S with constant intensity λ if 1) for any B ⊆ S,

N(B) is Poisson distributed with mean µ(B) =
∫
S
λ(s)ds. and ii) conditional on N(B),
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the points are i.i.d distributed with density λ(·)/µ(B) (Møller and Waagepetersen, 2003).

The Poisson point process has many wide applications. For example, Wang et al. (2016)

used it to model traffic conditions, where he assumes the arrival of cars has a homogeneous

intensity. Kolmogorov also used it to study the formulation of crystals in metals (Chiu

et al., 2013).

However, in many applications, the point pattern is such that the intensity function is

not constant. This naturally brings up the question as whether one can model this inho-

mogeneity in the point pattern. Given that the non-constant intensity, λ(s), is a known

function, the process is called an inhomogeneous Poisson point process. When the inten-

sity function is not known, we assume that the intensity function itself is a random field,

or random spatial process. Perhaps the most widely used model is the Cox process (Cox

and Isham, 1980). A Cox process is a “doubly stochastic” process in which not only the

spatial point pattern is random, but the underlying intensity is random as well. Taking this

one step further, if we assume the log of the intensity is a Gaussian Random Field (GRF,

i.e. the generalization of Gaussian Process to multi-dimensional space), this leads to a log-

Gaussian Cox process (LGCP) (Møller et al., 1998). Due to its mathematical convenience

and many other appealing properties of the Gaussian process, log-Gaussian Cox processes

have received a lot of attention in applications, ranging from ecology, disease mapping,

brain imaging and finance (Basu and Dassios, 2002).

Despite its popularity, the intensity of a LGCP model is not easy to estimate in either

the classical or Bayesian setting. This is due to two reasons: it is doubly stochastic, and

the non-conjugacy resulting from a combination of a Poisson process and a Gaussian pro-

cess. Although this hierarchical structure of a LGCP and the nonparametric nature of a

GRF has given Bayesian methodology a natural advantage over classical statistical meth-

ods, it is still full of challenges. MCMC based samplers are typically too time consuming,
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while deterministic based Bayesian approximations have not been fully explored and sys-

tematically verified in terms of accuracy for this model. Although one paper (Taylor and

Diggle, 2013) has recently compared two Bayesian algorithms, there is still a need for a

more broad comparison of the most up-to-date computational approaches. This need is

the motivation for Chapter II, where we develop a Hamiltonian Monte Carlo (HMC) algo-

rithm (Neal, 2011) and a variational Bayes (VB) algorithm (MacKay, 1997) for the LGCP

and compare the statistical and computational efficiency of these two algorithms with the

integrated nested Laplacian algorithm (INLA) (Rue et al., 2009).

1.2 Neuroimaging

Neuroimaging is a relatively young discipline that arose in the 20th century (Filler,

2010). Modern neuroimaging platforms include positron emission tomography (PET),

magnetoencephalography (MEG), electroencephalogram (EEG), MRI, and fMRI, to name

a few. In this dissertation, I only use data from MRI and fMRI.

MRI images internal structures of the body. In particular it is excellent at differentiat-

ing between structures that contain mostly fat or mostly water, that is, soft tissues. MRI

relies on the complex physical property of atoms called nuclear magnetic moments and

are outside the scope of this dissertation. We refer the interested reader to (Lazar, 2008).

On the other hand, task-based fMRI measures functional activity of the brain. It does

so by measuring the blood oxygen level dependent (BOLD) signal. (Ogawa et al., 1990).

The BOLD signal is a surrogate for neuronal activity. The interested reader is referred to

(Lindquist et al., 2008).

Having acquired fMRI data, the neuroscientist is often interested in a statistical analysis

of the data. Given task-based fMRI data, a primary goal is to determine which voxels

and/or regions of the brain are activated during the task. Determination of brain activation
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is traditionally obtained by statistical inference using the general linear model (Friston

et al., 1994)

Y = XW + E(1.1)

Here Y is the response image, X is the task-related design matrix, W is the vec-

tor regression coefficients. In the Bayesian context, W is often assumed to arise from a

sparse random field prior to account for spatial correlation (Penny et al., 2005). The last

term, E, is the vector of errors, and it is typical to assume these follow a multivariate

normal distribution with a diagonal covariance matrix and common variance σ2. How-

ever, with different sources of temporal noise and autocorrelation among successive time

points, this ideal assumption is never achieved. Many researchers have proposed different

ways to solve this issue. Friston et al. (1995) and Worsley and Friston (1995) proposed

to pre-smooth the data, also known as “coloring”, and correct for the autocorrelation by

adjusting the degrees of freedom in the error term. Bullmore et al. (1996) proposed to

de-correlated the data, namely “prewhitening”, by using an autoregressive (AR) model as

estimates of the error term. In the Bayesian framework, Penny et al. (2003, 2005) put

an AR(p) prior on the error term, and later extend it to be AR process where the regres-

sion coefficients are allowed to vary spatially (Penny et al., 2007). The resulting model

is therefore termed as “GLM-AR” model. Based on a comparison of model evidence for

different orders, they claimed that a low order AR process (1-3) suffices as the optimal

order is 1 in most of the voxels (Penny et al., 2003). This modelling assumption for the

error term remained unchanged in various forms of later work (Woolrich et al., 2004b;

Makni et al., 2006; Bezener et al., 2016). However, no one has investigated whether such

an assumption is reasonable based on model accuracy and statistical efficiency. In fact,

as we illustrate in Chapter IV, this assumption may not be optimal. Thus, we relax this

assumption and extend the homogeneous low order AR assumption to an heterogeneous
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high order AR process, allowing the AR order to vary spatial by adopting an underlying

Ising prior. We call this model the general linear model with spatially-varying autoregres-

sive orders (GLM-SVARO). A more detailed review of temporal modelling, as well as our

extension is discussed in Chapter IV.

1.3 Bayesian computation

As one can see in Section 1.1 and 1.2, the excessive size of data, together with complex

spatiotemporal correlation has put a great demand for highly efficient Bayesian computa-

tional algorithms. A brief review of today’s Bayesian paradigm suggests that we can split

these algorithms into two parts: fully Bayesian methods based on simulated Markov chain

Monte Carlo samples, and approximate Bayesian methods that approximate the posterior

distribution deterministically.

Fully Bayesian methods rely mainly on MCMC algorithms to sample from the poste-

rior distribution of the model parameters. Gibbs sampling is probably the most widely

used, assuming that the posterior can be sampled from all of its full conditional distribu-

tions. When the underlying distribution is not easy to sample from, Metropolis Hastings

(MH), or MH within Gibss are natural choices since they are universally applicable. Neal

(2003) proposed slice sampling. By introducing an auxiliary variable and sampling from a

“slice” of the distribution, it not only avoids sampling directly from a potentially complex

distribution, but also results in more efficient draws than random walk MH. Based on this

Murray et al. (2010) proposed the elliptical slice sampling method where the step size of

the proposal of a MH ((Bernardo et al., 1998)) is sampled using the slice sampler.

Since the above methods do not rely on evaluating the gradient of the log posterior,

we refer to them as gradient-free samplers. There is another class of MCMC samplers

that rely on evaluating the gradient of the log posterior to build more efficient proposals.
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The Metropolis adjusted Langevin algorithm (MALA) (Roberts and Rosenthal, 1998) is

a representative one. The proposal of MALA is drawn from Langevin dynamics, which

makes use of the gradient of the log posterior distribution. The result is a more efficient

sampler than common MH algorithms. More broadly, MALA is a special case of the

Hybrid (or Hamiltonian) Monte Carlo sampler (HMC) (Neal, 2011). In HMC, the proposal

of the move is taken by solving the Hamiltonian equations using numerical procedures.

Thus, the movement is in direction of the gradient of the log posterior, thus avoiding the

much of the random walk behavior by common MH algorithms.

Different from MCMC based methods, approximate Bayesian methods are relatively

fast, and typically require fewer iterations. This gain in computational speed comes at a

price: lack of statistical efficiency and lack of theoretical convergence guarantees. Varia-

tional Bayes (VB) (Jordan et al., 1999; Neal and Hinton, 1998) is such a method. In VB,

the marginal likelihood is approximated using a family of distributions that is often more

easy to handle. Then the Kullback-Leibler (KL) divergence between the true and approx-

imate distribution is minimized using a series of optimization techniques. Most often, a

mean field approximation (Bishop, 2006) assumption will be used to simplify the distribu-

tion for tractable inference. Another similar approach, named “Expectation Propagation”

(EP) (Minka, 2001), tries to minimize the pseudo-distance between the approximate dis-

tribution and the true distribution.

More recently, Rue et al. (2009) proposed the integrated nested Laplace approximation

(INLA) for latent Gaussian models. INLA is based on the numerical integration of Laplace

approximations made to the latent field as well as to its hyper-parameters. It is based on

sparse Gaussian Markov random fields and focuses on the marginal posterior distributions

of the parameters instead of the joint posterior distribution.

Since fully Bayesian methods and approximate Bayesian methods both have their ad-
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vantages as well as limitations, it is of importance to compare their performance with

respect to large spatiotemporal data set such as those obtained via neuroimaging. This is a

key focus of this dissertation.

1.4 Dissertation outline

The outline of this dissertation is as follows. In Chapter II, we develop a fast HMC

algorithm and a mean-field approximation VB algorithm for estimating LGCPs and com-

pare these two algorithms with two INLA algorithms. Motivated by these results, we turn

our attention to fMRI data and derive a HMC algorithm for the widely used GLM-AR

model(Penny et al., 2007) in Chapter III. The results are compared with those from VB

and the mass univariate approach of the Statistical Parametric Mapping software (SPM,

Ashburner et al. (2014)). In Chapter IV, we extend the original GLM-AR model to a new

GLM-SVARO model. In the GLM-AR model, each time-series in the fMRI data are as-

sumed to follow an autoregressive model of low order (1-3) and the same order is assumed

across all time-series. In our extension of this model (GLM-SVARO), we relax both of

these assumptions. The results are compared with the GLM-AR model using both VB

(via an SPM software add-on) as well as MCMC to sample from the posterior distribution.

Finally in the last chapter, we make conclusions and also discuss future directions worth

exploring.
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CHAPTER II

Bayesian Computation for Log-Gaussian Cox Processes: A
Comparative Analysis of Methods

2.1 Introduction

Spatial point process models for point pattern data have many applications including

those involving ecology, geology, seismology, and neuroimaging. The theory of point

processes has its roots with the work of Poisson in the 19th century, while more mod-

ern treatments with a statistical focus include Daley and Vere-Jones (1988), Møller et al.

(1998) and Illian et al. (2008). Among models for a spatial point process, the homoge-

neous Poisson process is the most fundamental but its use is limited in many applications

due to its simplistic nature. A related but more flexible process is the Log-Gaussian Cox

Process (LGCP), a process that is obtained by assuming a hierarchical structure, where at

the first level the process is assumed Poisson conditional on the intensity function, and at

the second level the log of the intensity function is assumed to be drawn from a Gaussian

process. The flexibility of the model arises from the Gaussian process prior specified over

the log-intensity function. Given this hierarchical structure with a Gaussian process at the

second level, fitting this model to observed spatial point pattern data is a computational

challenge (Murray et al., 2012).

A number of approaches have been developed to estimate the LGCP model in both the

classical and Bayesian frameworks. In Diggle (1985) the authors propose an adaption of
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Rosenblatt’s kernel method (Rosenblatt et al., 1956) for the purpose of non-parametric es-

timation and then derive an expression for the mean squared error based on a stationarity

assumption. A Bayesian framework is considered in Møller et al. (1998) where the authors

propose the use of the Metropolis-Adjusted Langevin Algorithm (MALA) (Besag, 1994)

for Monte Carlo sampling of the posterior distribution. These authors also introduce a

discretization of the spatial domain in order to attain computational tractability. Adams

et al. (2009) proposes an exact estimation method to deal with a modification of such a

point process which they term the sigmoidal Gaussian Cox process. To avoid discretiza-

tion of the spatial domain, Gonçalves and Gamerman (2015) proposed a Markov chain

Monte Carlo algorithm that samples from the joint posterior distribution of the LGCP

model. A particular choice of the dominating measure is used to obtain the likelihood

function without discretization and this is shown to be crucial to devise a valid MCMC

algorithm. Although avoiding the error from discretization, the authors describe potential

identifiability problems that require careful choice of prior distributions. In addition the

computational complexity of the proposed MCMC algorithm could limit the application

of this approach when considering very large data sets.

With regards to MCMC algorithms for Bayesian approaches, MALA is a special case

of the potentially more efficient Hamiltonian Monte Carlo (HMC) (Neal, 1995) algorithm

that uses the notion of Hamiltonian dynamics to construct proposals for the Metropolis-

Hastings algorithm and has been adopted recently for an increasing number of applications

(Neal, 2011). Extending further, the Riemann Manifold Hamiltonian Monte Carlo algo-

rithm proposed by Girolami and Calderhead (2011) is a generalization of both MALA and

HMC that can lead to more efficient posterior sampling in some cases. One drawback

of Riemann Manifold HMC is that it requires the inversion of a potentially large matrix

(the expected Fisher information matrix plus the negative Hessian of the log prior) at each
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iteration and this is not computationally feasible for very high-dimensional problems such

as those typically involving the LGCP model.

An advantage associated with the use of MCMC algorithms for Bayesian computation

is the underlying theory which guarantees simulation consistent estimation of various im-

portant characteristics of the posterior distribution. Thus the practitioner is assured of an

accurate Monte Carlo representation of the posterior distribution given a sufficient amount

of sampling effort. A drawback is that MCMC can be computationally intense, and this

has motivated several alternative deterministic approaches for approximate Bayesian in-

ference.

One such approach is Variational Bayes (VB) (MacKay, 1997), where the approxima-

tion to the posterior distribution is assumed to lie within some convenient family of dis-

tributions and then an optimization is carried out to minimize the Kullback-Leibler diver-

gence measuring the discrepancy between the true posterior and the approximation. Often

the family of distributions within which the approximation is assumed to lie is based on the

notion of a mean field approximation, which corresponds to assuming posterior indepen-

dence between certain model parameters. The idea in this case is to replace stochastic pos-

terior dependence between parameters with deterministic dependence between the poste-

rior moments in a manner that minimizes Kullback-Leibler divergence. Variational Bayes

approximations have been applied successfully to the analysis of hidden Markov mod-

els in MacKay (1997) and to other mixture models Humphreys and Titterington (2000).

Zammit-Mangion et al. (2012) used Variational Bayes for models of spatiotemporal sys-

tems represented by linear stochastic differential equations and demonstrated quick and

efficient approximate inference both for continuous observations and point process data.

Mean field Variational Bayes is well suited for dealing with models within the conju-

gate exponential family where closed form solutions for the iterative steps of the optimiza-
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tion algorithm are available. In general such closed form solutions may not be available

and additional approximations are then required. This is the case with the LGCP model.

Mean field Variational Bayes approximations for non-conjugate models can be obtained

by incorporating further approximations based on the delta method or the Laplace method

Wang and Blei (2013). These approximations are successfully applied to a correlated topic

model and a Bayesian logistic regression model in Wang and Blei (2013), and to robust

Bayesian models in Wang and Blei (2015). For the LGCP model, tractable variational ap-

proximations can be obtained following this approach, where a mean field approximation

with further approximations based on the Laplace method are used to handle the non-

conjugate structure of the model. The variational approach considered in this paper can be

thought of as an application of the techniques in Wang and Blei (2013) to the case of the

LGCP model.

In Nguyen and Bonilla (2014) the authors approximate the posterior distribution of

models incorporating a latent Gaussian process (which includes the LGCP model) us-

ing a mixture of Gaussian distributions, and derive a fixed-form variational approach for

implementing this approximation. However, the proposed approach appears limited to

one-dimensional point processes and is not applied to spatial point processes which is the

focus of our work. Lloyd et al. (2014) proposed a variational Bayes approach for fitting a

Cox process assuming that the intensity function is the square of a Gaussian process. Un-

fortunately, this variational approach cannot be applied for estimation of the LGCP model,

where the intensity is assumed to be the exponential of a Gaussian process, as the update

steps for computing the proposed variational approximation to the posterior then become

intractable.

Variational Bayes approximations can work well in some settings and the correspond-

ing approximations can be computed relatively fast. A drawback is that there is no underly-
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ing theory guaranteeing the accuracy of the approximation or characterizing its error, thus

these approximations need to be evaluated on a case-by-case basis, and they may or may

not achieve reasonable accuracy depending on the utility of the practitioner. One contribu-

tion of this paper is the derivation of a mean field VB approximation which incorporates

the Laplace method for the LGCP model. As far as we are aware such approximations

have not been considered previously for this model. Another contribution of this paper is

to compare this VB approximation with HMC in terms of both statistical and computa-

tional efficiency.

An alternative approach for approximate Bayesian inference that has gained tremen-

dous popularity in the statistical literature is the integrated nested Laplace approximation

(INLA) (Rue et al., 2009). INLA is less generally applicable than MCMC or VB as it

assumes the model has a latent Gaussian structure with only a moderate number of hyper-

parameters. For spatial modeling the approach makes use of the Gaussian Markov Ran-

dom field (Rue and Held, 2005) and corresponding approximations which are known to

be computationally efficient. The basis of INLA is the use of the Laplace approximation

and numerical integration with latent Gaussian models to derive approximate posterior

marginal distributions. INLA does not produce an approximation to the joint posterior

which is a drawback of the approach in settings where the joint posterior (as opposed to

the marginals) is of interest.

For spatial models incorporating a Gaussian Random field (GRF) with a Matérn corre-

lation structure, Lindgren et al. (2011) develop an approximate approach based on stochas-

tic partial differential equations (SPDE) and these approximations have been combined for

use with INLA. The essence of the approach is to specify a SPDE that has as its solution

the GRF and then the SPDE representation is used in conjunction with basis represen-

tations to approximate the process over the vertices of a 2-dimensional mesh covering
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the spatial domain. The value of the process at any location is then obtained based on

interpolation of the values at the mesh vertices. In recent work, Simpson et al. (2012)

evaluated this approximation applied to the LGCP model with spatially varying covariates

and demonstrated adequate performance for the settings and data considered there.

A comparison between INLA and MALA for models incorporating GMRF approxima-

tions is considered in Taylor and Diggle (2013). In our work, we compare for the LGCP

model Bayesian computation based on HMC, VB with a Laplace approximation, INLA,

and INLA with the SPDE approximation. The comparisons we make are with respect

to computational time, properties of estimators, posterior variability, and goodness fitness

checking based on posterior predictive methods. Our objective is to provide practical guid-

ance for users of the LGCP model. In addition to these comparisons, there are two novel

aspects to the work presented here. First, we develop a mean field variational Bayes ap-

proximation that incorporates the Laplace method to deal with the non-conjugacy of the

LGCP model. To the best of our knowledge this is the first time such an approximation has

been developed for approximate Bayesian inference with the LGCP model. Second, we

apply HMC for fully Bayesian inference and a novel aspect of our implementation is that

HMC is used to update the decay (correlation parameter) associated with the latent Gaus-

sian process. A result is that the sampling algorithm mixes very well and to our knowledge

the development of the HMC algorithm in this context is the first of its kind.

The remainder of the paper proceeds as follows. Section 2 discusses various approaches

for conducting Bayesian inference for the LGCP model. Section 3 presents a comparison

of approaches through simulation studies, while Section 4 makes comparisons using two

real point pattern data sets, the first arising from an ecological application and the second

arising from a neuroimaging study. The paper concludes with a discussion in Section 5.
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2.2 Bayesian inference for log-Gaussian Cox processes

2.2.1 Model specification

Consider an inhomogeneous Poisson process Z(s) with intensity function λ(s), s ∈

S ⊆ R2. Without loss of generality we shall assume that S is the unit square. The density

of a Poisson process does not exist with respect to Lebesgue measure, but the Radon-

Nikodym derivative does exist with respect to a unit-rate Poisson process (Møller et al.,

1998). We will call this derivative the density of the Poisson process. Given a set of

K points {sk} = {s1, ..., sK} ⊂ S, where both the number K and the locations sk are

random, the density is given by

(2.1) π[{sk} | λ(s)] = exp

{∫
S

[1− λ(s)] ds

} K∏
k=1

λ(sk).

where λ(s) is the intensity function. If we further assume that the log of the intensity

function arises from a Gaussian random field (GRF) Y(s) so that λ(s) = exp(Y(s)),

then this hierarchical process is called a log-Gaussian Cox process (LGCP) (Møller et al.,

1998). The LGCP, assumed to be stationary and isotropic, is uniquely determined by the

mean function µ(s) and the covariance function Cov(s, s′) = σ2r(||s−s′||) of the Gaussian

process Y(s), where σ2 is the marginal variance and r(||s − s′||) denotes correlation as a

function of the Euclidean distance ||s−s′||. Two commonly used correlation functions are

the power exponential function (Møller and Waagepetersen, 2003)

rp(||s− s′||) = exp(−ρ||s− s′||δ)

where ρ > 0 is the decay parameter, δ ∈ (0, 2] is the power exponential term (which

we will take as a known constant throughout this manuscript); and the Matérn correlation

function (Matérn, 1960)

rm(||s− s′||) =
(
Γ(ν)2ν−1

)−1
(||s− s′||/φ)νKν(||s− s′||/φ)
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where φ > 0 is the range parameter, ν > 0 is the shape parameter, and Kν is the modified

Bessel function of the second kind.

To fit the model in a tractable way a common approach is to divide the spatial domain

into an n × n uniform grid of equally spaced cells (Møller et al., 1998) and to make the

simplifying assumption that the log-intensity is constant over each grid cell so that the

log-intensity Y(s) within a given cell, say the ith cell, is constant and characterized by its

value at the corresponding centroid, ci, of cell i, i ∈ {1...n2}. The unique log-intensity

values then comprise a vector Y = (Y(c1),Y(c2), ...,Y(cn2))T. To simplify notation we

let Yi = Y(ci) and yi is a realized value of Yi. From the defining property of a GRF, Y

follows a multivariate normal distribution Y ∼ N(µ1n2 , σ2C), where C is the n2 × n2

correlation matrix with elements r(||ci − cj||). Let θ be the set of parameters determining

the mean and covariance of the GRF (e.g. θ = (µ, σ2, ρ) for the power correlation and

θ = (µ, σ2, φ) for the Matérn), and let A denote the area of each cell in the uniform grid.

Under this discretization, the log density (see Equation (2.1)) is

log π({sk} | θ, y) = constant +
∑
i

[yini − A exp(yi)]

where ni is the number of points in {sk} occurring in the ith grid cell. The log posterior

can then be expressed as

log π(θ, y | {sk}) = constant +
∑
i

[yini − A exp(yi)]

−0.5(y − µ1n2)Tσ−2C−1(y − µ1n2)

−0.5n2 log(σ2)− 0.5 log(|C|) + log π(θ)(2.2)

where π(θ) is the prior density of the parameter vector θ. The computational problem for

Bayesian inference is the calculation of π(θ, y | {sk}) and its associated marginals or

properties of these distributions. This computation is nontrivial because the calculation of

the normalizing constant is nontrivial, particularly when the dimension of the parameter

16



space is high. We now discuss three approaches for approximating the posterior distribu-

tion and/or its marginals.

2.2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) has its origins with the work of Alder and Wain-

wright (1959) and Duane et al. (1987) and was first introduced into the statistical literature

by Neal (1995). It is a Metropolis-Hastings algorithm that can be used for sampling a

high-dimensional target distribution more efficiently than an algorithm based on random-

walk proposals, especially when the parameters are highly correlated. The algorithm uses

the notion of the (separable) Hamiltonian H(q,p) from physics that is defined as the sum

of potential energy U(q) and kinetic energy K(p), where q and p are random vectors

that refer to position and momentum. The connection to Bayesian computation lies with

relating U(q) to the posterior distribution and hence q to the model parameters, and with

introducing auxiliary Gaussian random variables to represent momentum p, a vector hav-

ing the same length as q. The evolution of this system is then described by the Hamilton

equations from statistical mechanics:

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

(2.3)

which, if an analytic solution exists, produces a draw from the posterior distribution. In

practice this system is solved using numerical integration techniques (Neal, 2011) and the

resulting approximate solution is accepted or rejected using a Metropolis-Hastings step.

To carry out the computations required for the LGCP model we use a combination of re-

parametrization of the random field and numerical techniques based on the 2D Fast Fourier

transform (FFT) as in Møller et al. (1998). Note that although Girolami and Calderhead

(2011) has applied RM-HMC to LGCP model, their computation is slow due to inverting
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the fisher information matrix and a Cholesky factorization of the correlation matrix. While

here we can greatly speedup matrix multiplications involving the correlation matrix C (we

note here that we use the power exponential correlation function) by using FFT. A second

reason to use the re-parametrization is that we avoid inversion on the correlation matrix at

each iteration, which in our simulations and data analyses below is a 4096× 4096 matrix.

Although this size of a matrix can be inverted on a computer, it is computationally expen-

sive. Furthermore, this FFT trick can handle much larger matrices that would be too large

to invert on most computers. To use this trick we require the matrix to be block-circulant

as there is a direct relationship between the eigenvalue-eigenvector decomposition of a

block-circulant matrix and the 2D discrete Fourier transform. However, the correlation

matrix has a block-Toeplitz structure. A block-Toeplitz matrix can always be extended to

a block-circulant matrix (Wood and Chan, 1994). To do so, we extend the original n × n

grid to an m×m grid and wrap it on a torus, where m = 2g and g is an integer such that

m ≥ 2(n− 1). The metric of this toroidal space is then defined by the minimum distance

between two points. It is easy to show that the new correlation matrix E (of which C is

a submatrix), whose elements are based on the metric defined on the torus, is a block-

circulant matrix (Møller et al., 1998). In extending the space we must also expand the

vector of latent variables Y in a corresponding manner, and we refer to this new vector as

Yext (of which Y is a subvector). Also, we set the number of points in cell i, mi, still to

be ni if i is on the original grid and equal to 0 otherwise.

The block-circulant extended correlation matrix can be decomposed as E = FΛFH ,

where F is the matrix of eigenvectors, Λ is the diagonal matrix containing the correspond-

ing eigenvalues of E, and H denotes the complex conjugate transpose. Given a random

vector v of length m2 the product Ev can be obtained by calculating FHv, ΛFHv and

then FΛFHv in order. Note that the first and last calculations amount to a discrete inverse
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Fourier transform and a discrete Fourier transform (DFT), respectively. The middle cal-

culation is simply element-wise multiplication of Λ and the vector FHv (Rue and Held,

2005). As a result, the complexity of the required matrix operations can be reduced to

O(m2 log(m2)) using the FFT.

After extension of the grid we re-parametrize the latent variables Yext as Yext =

µ1m2+σE
1
2γ where 1m2 denotes them2-dimensional vector of ones. And γ = (γ1, ..., γm2)T

with γi
iid∼ N(0, 1), i = 1, ...,m2. The gradients, used in the HMC algorithm, for all the

parameters are straightforward to derive except for ρ, we give the expression for ρ here

and refer the readers to Appendix A for more details.

(2.4)
∂ log π(ρ | ·)

∂ρ
= −σ

2

[
m− A exp

(
µ1m2 + σE

1
2γ
)]T

E−
1
2 E∗γ,

where π(| ·) denotes the full conditional given the data and other parameters, m, E∗ are

defined in the appendix. And as E
1
2 , E−

1
2 , E∗ are all block-circulant matrices, FFT can be

used.

With the stochastic representation as in Equation 2.3 the HMC algorithm is based on

setting U(q) = − log [π({sk} | θ, γ)π(θ, γ)] where q = (γT, θT)T, and the kinetic en-

ergy term is K(p) = pTM−1p/2, where M is a symmetric, positive-definite ’mass ma-

trix’ and auxiliary momentum variables p (a vector of length m2 + 3). In our work we

set M to be a diagonal matrix with distinct diagonal components mγ , mµ, mσ−2 and mρ

corresponding to γ and θ.

Each iteration of the HMC algorithm involves a block update of γ and θ based on the

Hamiltonian Monte Carlo scheme. Each such update requires L + 1 evaluations of the

gradient vector ∇θ,γ log π(θ,γ | {sk}) for some L ≥ 1. If L = 1, the HMC algorithm

reduces to MALA, which typically mixes faster than the random walk Metropolis-Hastings

algorithm (Roberts et al., 2001) but not as fast as the more general HMC algorithm. Letting
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γ∗, θ∗ be the current value in the Markov chain for γ, θ, the HMC update, based on a step

size ε > 0, proceeds as follows:

Algorithm 1 HMC algorithm

1. Simulate latent vector p∗ ∼ Nm2+3(0,M). Set(
γ(0), θ0)

)
= (γ∗, θ∗)

p(0) = p∗ +
ε

2
∇θ∗,γ∗ [log {π (γ∗, θ∗ | {sk})π (θ∗, γ∗)}] .

2. For l=1,...,L,(
γ(l), θ(l)

)T
=

(
γ(l−1), θ(l−1)

)T
+ εM−1p(l−1)

p(l) = p(l−1) + εl∇θ(l),γ(l)

[
log
{
π
(
γ(l), θ(l) | {sk}

)
π
(
θ(l), γ(l)

)}]
where εl = ε for l < L and εL = ε/2.

3. Accept
(
γ(L), θ(L)

)
as the new state for (γ, θ) with probability

α = min
(

1, exp
{
−H

(
q(L),p(L)

)
+H (q∗,p∗)

})
else remain in the current state γ∗, θ∗ with probability 1− α.

Repeat steps 1–3 for a sufficiently long time.

At each iteration, the number of steps in the numerical integration, L, is drawn from a

Poisson distribution with mean 100, while the step size, ε, is initially chosen to be 0.005

and adjusted adaptively during burning so that the acceptance rate is approximately 0.65

(Beskos et al., 2013). Trace plots of the parameters are examined and based on these we

adjust the values of M to improve the mixing.

2.2.3 Mean field Variational Bayes with Laplace Approximation

As an alternative to HMC (or MCMC) sampling of the posterior distribution, a deter-

ministic approximation can be employed. Mean field variational Bayes (MFVB) is one

such approximation that has been applied successfully to a number of problems, including

spatial models for high-dimensional problems requiring fast computations (Nathoo et al.,
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2014). For the MFVB algorithm, we return to the parametrization of the model in Equation

(2.2). Let q(y, θ) be an arbitrary density function having the same support as the posterior

density π(θ, y | {sk}). Letting log π({sk}) denote the marginal likelihood of the model,

we can express its logarithm as

log π({sk}) =

∫
q(y, θ) log

{
π({sk}, y, θ)

q(y, θ)

}
+

∫
q(y, θ) log

{
q(y, θ)

π(θ, y | {sk})

}
≥

∫
q(y, θ) log

{
π({sk}, θ, y)

q(y, θ)

}
≡ F (q)

such that the functional F (q) is a lower bound for log π({sk}) for any q. The approxima-

tion is obtained by restricting q to a manageable class of density functions, and maximizing

F over that class. We develop the approximation under the assumption that the GRF has

a power exponential correlation function, and for now, we will assume that ρ is known, so

that C is assumed known in what follows.

We assume that the approximating density q can be factorized

(2.5) q(y, θ) =

[
n2∏
i=1

q(yi)

]
q(µ)q(σ2).

Under this assumption, a coordinate ascent algorithm is applied to maximize F which

leads to a sequence of coordinate-wise updates taking the form

q(yi) ∝ exp{E−q(yi)[log π({sk} | y)π(y | θ)]} i = 1, ..., n2

q(µ) ∝ exp{E−q(µ)[log π(y | θ)π(µ)]}

q(σ2) ∝ exp{E−q(σ2)[log π(y | θ)π(σ2)]}

where E−q(x)[·] denotes the expectation taken with respect to the set of random variables

{y, θ}\x under the variational approximation q−x, and the updates steps are iterated to the

convergence of F . We describe the derivation of the update steps below. In what follows,

E[·] will denote the expectation of its argument under the variational approximation q.
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If conditionally conjugate Gaussian and inverse-gamma priors are chosen for π(µ) and

π(σ2) respectively, µ ∼ N(µµ, σ
2
µ), σ2 ∼ G−1(α, β) the distributions q(µ) and q(σ2)

comprising the update steps will also be Gaussian and inverse-gamma. To derive the

update step for µ we have

E−q(µ) log π(y | θ)π(µ) = c− 1

2

[
(µy − µ1)TE(σ−2)(C−1)(µy − µ1)

]
− 1

2
(µ− µµ)2/σ2

µ

= c− 1

2

[
(E(σ−2)1T (C−1)1 + 1/σ2

µ)µ2 − 2E(σ−2)µy
T (C−1)1µ+ µµ/σ

2
µ

]
(2.6)

where µy = E[y] and c denotes a constant not depending on µ. As (2.6) is a quadratic

function of µ it follows that q(µ) is the density of a normal distribution N(µ∗µ, σ
∗2
µ ) where

after some algebra we have

µ∗µ = (E(σ−2)µy
T (C−1)1 + µµ/σ

2
µ)(σ∗2µ )−1, σ∗2µ = (E(σ−2)1T (C−1)1 + 1/σ2

µ)−1.

To derive the update step for σ2 we have

E−q(σ2) log π(y | θ)π(σ2) = c− n2

2
log σ2 − 1

2
σ−2Eµ[(µy − µ1)TC−1

(µy − µ1) + Tr(C−1Σy)]− (α + 1) log σ2 − β/σ2

where Σy is the covariance matrix of y under q(y) and c denotes a constant not depending

on σ2. Simplifying this expression yields

E−q(σ2) log π(y | θ)π(σ2) = c− (α + 1 +
n2

2
) log σ2 − (β +

1

2
[(µy − µ∗µ1)T (C−1)

(µy − µ∗µ1) + σ∗2µ 1T (C−1)1 + Tr(C−1Σy)])/σ2

and thus q(σ2) is the density of an Inverse-Gamma distribution G−1(α + n2

2
, β∗) where

β∗ = β + 1
2

[
(µy − µ∗µ1)T (C−1)(µy − µ∗µ1) + σ∗2µ 1T (C−1)1 + Tr(C−1Σy)

]
.

As the Gaussian prior for yi is not conditionally conjugate for the LGCP model, the

variational Bayes update for q(yi) is not a standard distribution and is therefore not easy
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to compute without some further approximation. We derive an update step for q(yi) by

applying the Laplace method (Wang and Blei, 2013) within the variational Bayes update.

We have

E−q(yi) log π({sk} | y)π(y | θ) = c+ (yini − eyiA)

−1

2

[
(ỹ − E(µ)1)TE(σ−2)(C−1)(ỹ − E(µ)1) + Var(µ)E(σ−2)Tr((C−1)11T )

]
= c+ (yini − eyiA)− 1

2

[
(ỹ − E(µ)1)TE(σ−2)(C−1)(ỹ − E(µ)1)

]
(2.7)

where ỹ denotes (E(y1), ...,E(yi−1), yi,E(yi+1), ...,E(yn2))T . Taking the derivative with

respect to yi yields,

f(yi) = ∂E−q(yi) log π({sk} | y)π(y | θ)/∂yi

= ni − Aeyi − E(σ−2)
[
(C−1)(ỹ − E(µ)1)

]
i

= ni − Aeyi − E(σ−2)
∑
j

(C−1)ij(ỹ − E(µ)1)j

= −Aeyi − E(σ−2)(C−1)iiyi + ni(2.8)

+E(σ−2)(C−1)iiE(µ)−E(σ−2)
∑
j 6=i

(C−1)ij(ỹ − E(µ)1)j

Given (2.8) we find ŷi such that f(ŷi) = 0. We use Newton’s method to obtain a nu-

merical solution where the starting value for Newton’s method is obtained by omitting

the linear term in equation (2.8) and solving the resulting simplified equation exactly.

We then take the second derivative with respect to yi, H(yi) = ∂f(yi)/∂yi = −Aeyi −

E(σ−2)(C−1)ii and given this and the solution ŷi, the Laplace method yields a normal dis-

tribution N(ŷi,−H(ŷi)
−1) for q(yi) which approximates the VB update. The variational-

Laplace approximation to the posterior of the latent field y is then y ∼ N(µy,Σy) where

µy = (ŷ1, ..., ŷn2)T and Σy is a diagonal matrix with the ith element being −H(ŷi)
−1.

Given the update steps derived above, the approximate posterior distribution under the

variational-Laplace approximation takes the form (2.5) where the component densities are
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standard distributions

y ∼ N(µ(q)
y ,Σ(q)

y )

µ ∼ N(µ(q)
µ , σ2(q)

µ )

σ2 ∼ G−1(α(q), β(q)).

The parameters determining these distributions are called the ’variational parameters’.

These parameters are obtained through the sequence of update steps derived above which

are used to determine equations expressing each variational parameter in terms of the

remaining variational parameters; beginning with initial values for these parameters the

equations are iterated to convergence of F .

With respect to the parameter ρ of the power exponential correlation function, we have

found that its inclusion as an unknown parameter into the variational approach leads to

convergence problems in a number of trial examples. To deal with this problem, we es-

timate this parameter prior to running the VB algorithm using the method of minimum

contrast (Diggle and Gratton, 1984), i.e., to use non-linear least squares estimation to fit a

non-parametric estimated covariance function. The mean field VB algorithm incorporating

the Laplace method for the LGCP model is presented in detail in Algorithm 2.

2.2.4 INLA

The integrated nested Laplace approximation (INLA) is another approach for construct-

ing a deterministic approximation to the posterior distribution that can be applied to the

fairly broad class of latent Gaussian models. The details underlying the approach have

been described in a number of recent papers including the seminal work of Rue et al.

(2009). We provide here only a brief overview of aspects that are relevant for use with the

LGCP model.

For spatial models, INLA makes extensive use of the Gaussian Markov random field
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Algorithm 2 Mean Field VB Algorithm with Laplace Method

1. Initialize the priors µµ, σ2
µ, α, β.

2. Initialize µ(q)
y , Σ

(q)
y , µ

(q)
µ , σ

2(q)
µ , β(q) and E(σ−2) = (α+ n2/2)/(β(q))

3. Obtain ρ using the minimum contrast method, compute C−1 where ckl = exp(−ρ||ck − cl||δ).

4. For i = 1, ..., n2, compute µ(q)
yi such that

−A exp(µ(q)
yi )− E(σ−2)

(
C−1

)
ii
µ(q)
yi + ni

+µ(q)
µ E(σ−2)

(
C−1

)
ii
−E(σ−2)

∑
j 6=i

(
C−1

)
ij

[µ(q)
y − µ(q)

µ 1]j = 0

where [·]j denotes the jth element of a vector.
Compute H(µ

(q)
yi ) = −A exp(µ

(q)
yi )− E(σ−2)

(
C−1

)
ii

.

Obtain µ(q)
y and Σ

(q)
y where µ(q)

y = (µ
(q)
y1 , ..., µ

(q)
yn2 )T and Σ

(q)
y is a diagonal matrix with diagonal

elements −H(µ
(q)
yi )−1.

5. Compute µ(q)
µ = (E(σ−2)µ

(q)
y

T
C−11 + µµ/σ

2
µ)(E(σ−2)1TC−11 + 1/σ2

µ)−1. Compute σ2(q)
µ =

(E(σ−2)1TC−11 + 1/σ2
µ)−1.

6. Compute β(q) = β+0.5[(µ
(q)
y −µ(q)

µ 1)TC−1(µ
(q)
y −µ(q)

µ 1)+σ
2(q)
µ 1TC−11+Tr(C−1Σ

(q)
y )]. Obtain

E(σ−2) = (α+ n2/2)/(β(q))

7. Compute the lower bound

F (q) =
∑
i

(µ(q)
yi ni −A exp(µ(q)

yi − 0.5H(µ(q)
yi )−1))− 0.5E log(|C|)

−0.5[(µ(q)
µ − µµ)2 + σ2(q)

µ ]/σ2
µ

+
∑
i

0.5 log
(
−H(µ(q)

yi )−1
)

+ 0.5 log σ2(q)
µ

Repeat 4–7 until the increase in F (q) is negligible.
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(GMRF) which is a Gaussian distribution having a sparse precision matrix. Algorithms for

fitting models incorporating a GMRF can be made efficient through the use of numerical

methods for sparse matrices. In the case of the LGCP model the latent GRF which is a

spatially continuous process is approximated by a GMRF on a discrete lattice so that these

numerical methods can be applied. We consider this approximation for the case where

the GRF is a Matérn field with ν known, so that θ = (µ, σ2, φ) and the log intensity is

characterized by Y as before. An approximation π̃(θ | {sk}) to the marginal posterior

distribution π(θ | {sk}) is first obtained using the Laplace method. An approximation

π̃(yi | θ, {sk}) to the density of the full conditional distribution of each component of the

latent field is then obtained using one of the three methods: a Gaussian approximation, the

Laplace approximation, or a simplified Laplace approximation. The latter option is based

on a series expansion of the Laplace approximation which has a lower computational cost.

The marginal posterior distributions for the log intensity values of the LGCP model are

then approximated through numerical integration over a discrete grid for θ

π̃(yi | {sk}) =
∑
k

π̃(yi | θk, {sk})π̃(θk, {sk})∆k

where {∆k} are a set of area weights associated with the grid.

Recently, Lindgren et al. (2011) develop an approximation to certain GRFs with Matérn

correlation functions by specifying stochastic partial differential equations (SPDEs) that

have certain Matérn processes as their solution. This SPDE representation provides an

explicit link to GMRFs through a basis function representation of the solution where the

corresponding weights comprise a GMRF with dependencies determined by a triangular

mesh covering the spatial domain. This approximation can also be embedded within INLA

and is implemented within the R-INLA package (obtained at www.r-inla.org) which allows

for different mesh sizes. Increasing the size of the mesh will increase the accuracy of this

approximation but will also increase the required time for computation.
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We note, and express, here that the INLA package only allows for a Matérn correlation

structure, whereas for the HMC and VB algorithms we use the power exponential family

for computational purposes (e.g. it allows for easy calculation of the gradients).

2.3 Simulation Studies

Here the methods described in the previous section are compared using simulation

studies. The discretized spatial domain is taken to be a 64 × 64 grid on the unit square,

so that the simulated data are based on 4096 spatial locations. Each study is based on

1000 data sets simulated under the discretized LGCP model where we compare a total of

six approaches: HMC incorporating FFT methods on the extended grid, VB incorporating

the Laplace method, INLA with a simplified Laplace approximation (INLA I), INLA with

a full Laplace approximation (INLA II), INLA with the SPDE model based on a mesh

size of 436 (INLA III), and INLA with the SPDE model based on a mesh size of 4075

(INLA IV). The first mesh size was chosen purposely small and the second mesh size was

chosen to be approximately the same as the number of cells in the discretized grid. In what

follows, INLA I and INLA II are also referred to as INLA with the lattice method, INLA

III and INLA IV are also referred to as INLA with SPDE.

Our HMC and VB algorithms were derived under the assumption of a power exponen-

tial correlation for the GRF; whereas, we use the implementation of INLA in the standard

R-INLA package that assumes a Matérn correlation. When simulating data we assume the

GRF has a Matérn correlation and we apply all six approaches to the resulting data. Thus,

INLA is based on a correctly specified covariance function and therefore has an advantage

over HMC and VB which have the correlation function mis-specified. We will also assume

that the parameter ν (in the Matérn model) is fixed and known, so that using INLA we only

estimate the decay parameter φ in the Matérn model. As we cannot directly compare ρ and
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φ we are not able to compare directly the properties of the corresponding estimators. As

an alternative we make comparisons with respect to the distance at which the correlation

function drops to 0.5, denoted as d0.5 and defined by the equations

(2.9) rp(d0.5) = rm(d0.5) = 0.5

where rp(·) and rm(·) denote the power exponential and Matérn correlation functions re-

spectively.

2.3.1 Simulation One

We first simulate data sets from the LGCP model where the Matérn field has µ = 5,

σ2 = 3.5, φ = 0.02, and ν = 1. Based on these parameters we simulate the GRF once

and, based on this realization of the latent field, we simulate 1000 independent replicates

of the data. Along with estimation of the log intensity values we also estimate µ, σ2, d0.5

and E(N), where E(N) is the expected total number of points of the process within the

spatial domain. The estimators are evaluated with respect to bias, variance and MSE. For

the HMC and VB algorithms we match the shape of the power correlation function with

that of the Matérn correlation function based on nonlinear least squares to estimate, and

fix, the value for δ in the power exponential model, and we obtain a value of δ = 1.312.

In terms of priors, HMC assumes a flat prior π(µ) ∝ 1, σ2 ∝ I(0,∞) and ρ ∝ I(0,∞).

With VB we are constrained to use conditionally conjugate priors and set µ ∼ N(0, 625),

σ2 ∼ G−1(1, 1), while ρ is estimated by the method of minimum contrast and assumed

known in the VB algorithm. For INLA with the lattice method, we assign diffuse priors

σ−1 ∼ G(0.001, 0.001) and dI ∼ G(0.001, 0.001) where dI =
√

8νφ, and for INLA

with SPDE we use the default joint-normal prior. Additional discussion of the priors and

related numerical issues associated with INLA SPDE are mentioned in Section 5. INLA

III has a mesh size of 436 (based on a length 0.1 for the inner mesh and 0.5 for outer mesh)
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and INLA IV has a mesh size of 4075 (based on a length 0.03 for the inner mesh and 0.5

for outer mesh). We acknowledge that the use of different priors for the HMC, VB, and

INLA methods is not ideal as the differences we observe in the simulation results may, to

some extent, be driven by differences in the priors. However, as the priors are taken to be

fairly diffuse in all cases we do not expect the differences in the priors to play a significant

role. As a practical matter the form of the prior may sometimes be driven by the choice

of computational algorithm used for Bayesian computation. Indeed, convergence issues

may also impact the prior used in some circumstances. While not ideal from a theoretical

perspective these issues are unavoidable from a practical standpoint. For example, the use

of VB typically calls for conditionally conjugate priors while for INLA we are constrained

to use certain forms for the priors that are built into the R-INLA package. As the different

computational algorithms are often implemented with different priors we feel that these

comparisons offer useful practical guidance for users despite these differences.

Figure 2.1 shows the true value of the discretized latent field Y in comparison to the

average marginal posterior mean obtained from each of the methods under consideration.

The average marginal posterior mean is the average of the estimates obtained from each

of the 1000 simulation replicates. In this case we see that HMC, VB, INLA I and INLA II

all produce similar average reconstructions of y; whereas, the results from INLA III and

INLA IV appear more over-smoothed, with the degree of over-smoothing decreasing as

the mesh size increases.

Taking HMC as the baseline, a plot of the log-relative mean squared error (MSE) asso-

ciated with the posterior mean estimator of Y for VB and INLA is shown in Figure 2.2.

Points above (below) the black line indicate larger (smaller) MSE relative to that obtained

from HMC. Both VB and INLA I-IV tend to produce estimators that have a higher MSE

than the corresponding estimator obtained from HMC when the value of the log-intensity
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Figure 2.1: Average marginal posterior mean of the log-intensity over 1000 samples from the first simulation
study. Upper left panel is the true GRF.

approaches either tail of the distribution of log-intensity values. Conversely, the methods

appear to outperform HMC for values of the log-intensity around the median of this distri-

bution. These differences appear to be more variable for INLA III and INLA IV compared

with VB, INLA I and INLA II.

Table 2.1 displays the bias, variance, and MSE for the posterior mean estimators of

µ, σ−2, d0.5 and E(N). In this and all subsequent tables we display, for HMC, the actual
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Figure 2.2: Log-relative MSE of estimated latent GRF from VB and INLA I–IV to that from HMC for the
first simulation study. Each point represents the log-relative MSE of the discretized GRF. Points located
above, on and below the horizontal line denotes bigger, equal and smaller MSE than that from HMC.

values of bias, variance and MSE, whereas for VB and INLA the values are relative to

those obtained from HMC. For estimation of these parameters we see that VB and INLA

generally have larger bias and MSE compared with HMC. Both INLA I and INLA II

outperform VB slightly, while INLA III and INLA IV lag behind the alternatives rather

significantly. By construction, INLA I and INLA II will provide identical estimates for σ−2

and d0.5 and this is reflected in the table. For the estimation of E(N), HMC outperforms

VB with respect to bias, variance, and MSE, while these measures are not reported for

INLA as we only obtain marginal posterior distributions of the log-intensity values in this

case and thus cannot estimate E(N).

While Table 2.1 displays the variance of the posterior mean estimators, we display

in Table 2.2 the average (over simulation replicates) marginal posterior variance. The
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Parm Measure Relative Measure
HMC VB INLA I INLA II INLA III INLA IV

µ = 5 Bias 0.046 12.681 5.469 8.471 25.805 15.435
Var 0.010 0.476 0.903 0.663 8.453 0.632
MSE 0.012 29.441 6.143 13.507 127.227 43.558

σ−2 = 0.286 Bias -0.010 6.984 -3.727 -3.727 -72.906 -14.545
Var 3.20E-04 0.454 1.338 1.338 36.531 4.810
MSE 4.08E-04 11.436 4.191 4.191 1236.295 51.801

d0.5 = 0.025 Bias 3.30E-05 -122.467 122.245 122.245 1704.511 1115.598
Var 2.20E-06 0.465 1.244 1.244 1199.323 4.574
MSE 2.20E-06 7.895 8.588 8.588 2626.682 616.258

E(N) = 910.29 Bias -1.337 -252.070 - - - -
Var 918.282 1.420 - - - -
MSE 920.069 124.820 - - - -

Table 2.1: Summary of the statistical properties for the hyper-parameters from the first simulation study.
The values shown in table from VB and INLA I-IV are relative to that from HMC.

associated large sample theory guarantees that the posterior variance as obtained from

HMC is simulation consistent. As such the posterior variance for VB and INLA are again

listed relative to that obtained from HMC in order to determine the extent to which these

approaches under-estimate or over-estimate posterior variability. For VB we see that the

marginal posterior variance is under-estimated which is in line with expectations from

the literature (Nathoo et al., 2013, 2014). INLA I and II provide measures of variability

that are closer to that of HMC, while INLA III and IV tend to over-estimate the marginal

posterior variance, with this over-estimation being substantial when the smaller mesh size

is used. With respect to average computational time, HMC requires 679 seconds based on

1500 total iterations with the first 500 thrown away as burn-in; VB requires 453 seconds to

run to convergence (about 300 iterations); INLA I runs for 46 seconds, INLA II requires

196 seconds, INLA III requires 10 seconds, and INLA IV requires 154 seconds. The

algorithms are run on an iMac with a 3.2 GHz Intel Core i5 processor and 16GB memory.

Average Marginal Var Relative Ave. Marg. Var
Parm HMC VB INLA I INLA II INLA III INLA IV
µ 0.028 0.511 0.868 0.333 85.232 2.287
σ−2 0.001 0.029 1.576 1.576 6.780 17.061
d0.5 4.80E-06 0.022 1.667 1.667 87549.788 7.161

Table 2.2: Marginal variance estimates of the parameters for the first simulation study. VB and INLA I-IV
are relative to HMC
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2.3.2 Simulation Two

In order to make comparisons in a setting where there is a slower decay for the spatial

correlation and smoother realizations of the random field our second study is based on set-

ting φ = 0.05 and ν = 3 with all other settings remaining unchanged. Figure 2.3 presents

the average posterior mean log-intensity over 1000 simulation replicates. Comparing the

images the overall best reconstruction seems to arise from both VB and HMC, followed

by INLA I, INLA II, and INLA IV all of which capture the general features of the true

latent field, while INLA III seems subject to over-smoothing as before. Figure 2.4 dis-

plays the log-relative MSE of the five methods in comparison with HMC as in Figure 2.2.

Interestingly, INLA IV seems to have the best performance in terms of MSE here, which

taken together with Figure 2.3 suggests that the estimators from INLA IV may have lower

variance while still achieving adequate bias.

With respect to the hyper-parameters, Table 2.3 displays the bias, variance, and MSE of

the posterior mean estimators for µ, σ−2, d0.5 and E(N). INLA III and INLA IV have the

smallest MSE for µ, but have large MSE for d0.5. As before HMC attains the lowest MSE

for estimation of σ−2 and d0.5. In terms of E(N), HMC outperforms VB with respect to

bias, variance and MSE. Table 2.4 shows the average marginal posterior variance for the

hyper-parameters. INLA I and II generally under-estimate the marginal posterior variance.

VB shows significant under-estimation of the marginal variance for σ−2 and d0.5, and over-

estimation of the posterior variance for µ. As with the previous study, INLA III and INLA

IV over-estimate the marginal posterior variance for all three hyper-parameters. In terms

of average timing, HMC requires 521 seconds for a total of 2000 iterations with the first

1000 iterations discarded as burn-in; VB requires 467 seconds and typically required a

greater number of iterations to converge (about 1000) compared to simulation one; INLA

I takes 134 seconds, INLA II takes 357 seconds, INLA III takes 11 seconds, INLA IV
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Figure 2.3: Average marginal posterior mean of the log-intensity over 1000 samples from the second simu-
lation study. Upper left panel is the true GRF.

takes 227 seconds.

2.4 Application

We next compare the computational algorithms through an application to two data sets

where the LGCP model is applied in both cases. In addition to comparing the methods

with respect to posterior summaries of the parameters of interest, we also make compar-
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Figure 2.4: Log-relative MSE of estimated latent GRF from VB and INLA I–IV to that from HMC for the
second simulation study. Each point represents the log-relative MSE of the discretized GRF. Points located
above, on and below the horizontal line denotes bigger, equal and smaller MSE than that from HMC.

Parm Measure Relative Measure
HMC VB INLA I INLA II INLA III INLA IV

µ = 5 Bias -0.458 2.752 -1.513 -1.488 0.047 0.458
Var 0.029 1.169 4.682 4.617 0.932 1.232
MSE 0.239 6.797 2.579 2.507 0.115 0.334

σ−2 = 0.286 Bias -0.017 15.316 3.355 3.355 2.038 4.477
Var 1.20E-03 0.003 3.75 3.75 1.131 0.849
MSE 0.001 48.492 5.301 5.301 1.755 4.817

d0.5 = 0.13 Bias -1.00E-02 4.364 6.893 6.893 -43.224 -31.924
Var 7.90E-05 0.191 1.236 1.236 24.439 17.627
MSE 1.80E-04 10.868 27.431 27.431 1068.207 584.571

E(N) = 494.12 Bias 0.077 1201.419 - - - -
Var 496.455 1.199 - - - -
MSE 496.461 18.527 - - - -

Table 2.3: Summary of the statistical properties for the hyper-parameters from the second simulation study.
The values shown in table from VB and INLA I-IV are relative to that from HMC.

isons with respect to goodness-of-fit checking using the posterior predictive distribution

(Gelman et al., 1996) which has been applied for checking hierarchical spatial models in a

number of applications including disease ecology and neuroimaging (Nathoo, 2010; Kang

et al., 2011, e. g.)). The posterior predictive checks are based on the L function (Illian
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Average Marginal Var Relative Ave. Marg. Var
Parm HMC VB INLA I INLA II INLA III INLA IV
µ 0.255 6.084 0.301 0.299 5.952 4.531
σ−2 0.006 3.36E-05 0.650 0.650 23.322 20.661
d0.5 3.10E-04 0.001 0.164 0.164 12.023 5.935

Table 2.4: Marginal variance estimates of the parameters from the second simulation study. VB and INLA
I-IV are relative to HMC

et al., 2009) where we simulate, based on the model, posterior predictive replicates of the

discrepancy measure ∆(r) = L(r, {sk}obs,y, θ)− L(r, {sk}rep,y, θ) where r denotes the

distance, {sk}obs denotes the observed data, y and θ are drawn from the posterior dis-

tribution, and {sk}rep denotes replicate data that is drawn from the posterior predictive

distribution. For a given distance range r, if the value ∆(r) = 0 is observed to lie as an

extreme value in either tail of the posterior predictive distribution we may question the fit

of the model as characterized by the L function at that distance. As INLA does not provide

the joint posterior distribution we are unable to simulate predictive realizations and thus

we make the predictive comparisons only between HMC and VB.

All priors are the same as in the simulation studies unless otherwise indicated. We also

compare VB and the INLA methods with HMC as HMC is simulation consistent.

2.4.1 Bramble Canes data

The data record the (x, y) locations of 823 bramble canes in a field of 9 m2, rescaled to

a unit square. The data are depicted in Figure 2.5(a) and were recorded and analyzed by

Hutchings (1979) and further analyzed by Diggle (Diggle et al., 1983).

To determine the value of δ in the power-exponential correlation function and the value

of ν in the Matérn correlation function, we use the method of minimum contrast which

estimates the values as δ̂ = 0.51, ν̂ = 0.02. As the R-INLA package only offers three

possible values ν = 1, 2, 3, we select ν = 1 as it is the closest of the three choices to

the estimate obtained from the minimum contrast method. Figure 2.6 depicts the posterior
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Figure 2.5: (a) shows the Bramble canes locations; (b) shows the MS lesion locations. Both are represented
by black dots, rescaled to the unit square

mean of the log-intensity as obtained by each of the six methods. HMC, INLA I and

INLA II result in estimated images that appear fairly consistent; results obtained from VB

are also consistent with HMC but less so than INLA I and II, while both INLA III and

INLA IV appear to over-smooth the estimated latent field relative to the other methods.

Posterior summaries of the hyper-parameters µ, σ−2 and d0.5 are presented in Table 2.5.

Here we see that VB is under-estimating the posterior variance for all hyper-parameters

while the point estimates for µ, σ−2 are larger than those obtained from HMC, but within

somewhat reasonable bounds. The point estimates obtained from INLA with the lattice

method are closer to those obtained from HMC than those obtained from INLA with

SPDE. In Figure 2.7 we compare the marginal posterior variance of each element of the

latent field as obtained from all of the methods to the posterior variance obtained from

HMC. In this case all of the methods under-estimate the posterior variance and this under-

estimation is most severe for INLA with SPDE.

Figure 2.8 compares the 95% posterior predictive intervals for ∆(r) as obtained from

both HMC and VB. Comparing the figures indicates that the posterior predictive variability
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Figure 2.6: Posterior mean of the latent GRF for the bramble canes data set, estimated from HMC, VB and
INLA I–IV.

Parm Measure Relative Measure
HMC VB INLA I INLA II INLA III INLA IV

µ Post. Mean 5.019 1.223 0.996 1.078 1.197 1.161
Post. Var 0.016 0.52 1.503 0.535 32.469 4.744

σ−2 Post. Mean 0.272 1.743 1.135 1.135 2.461 1.998
Post. Var 0.001 0.194 1.581 1.581 114.182 26.765

d0.5 Post. Mean 0.025 0.165 0.768 0.768 9.215 2.894
Post. Var 8.00E-05 9.98E-06 0.025 0.025 46.779 0.945

Table 2.5: Summary of parameter estimation for the bramble canes data set, VB and INLA I-IV are relative
to HMC.

is under-estimated for VB, primarily at the lower distance ranges r. The implication of

this data analysis is that posterior predictive checks for VB under similar settings would

be conservative. In terms of the data, the posterior predictive check as obtained from HMC

does not reveal a lack-of-fit with respect to the chosen discrepancy measure. With respect

to timing, HMC requires 597s for 1500 iterations and 500 burn-in iterations; VB actually

requires more time than HMC in this example and takes 1012s requiring 137 iterations to
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Figure 2.7: Scatter plot of the marginal posterior variance of the latent GRF from VB and INLA I-IV
compared with those from HMC. Bramble canes data set.

convergence. INLA I require 55s, INLA II 172s, INLA III 11s, and INLA IV takes 227s.
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Figure 2.8: 95% posterior predictive interval for HMC (a) and VB (b) for the bramble canes data set. The
bounds are denoted by solid lines while the mean and median are denoted by dashed lines. These are
obtained at 20 distinct distances.
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2.4.2 Multiple Sclerosis MRI Data

Our second application consists of a point pattern depicting the locations of Multiple

Sclerosis (MS) lesions obtained from taking a slab of sagittal slices (10mm thick) obtained

from magnetic resonance imaging from a cohort of MS patient and converting the spatial

domain to the unit square. The point pattern consists of 1950 locations and is depicted

in Figure 2.5(b). Aside from the application this data set differs from the first in that

the observed level of aggregation is higher and the points are more unevenly distributed.

The method of minimum contrast is used to select values of δ̂ = 1.165 and ν̂ = 1 for the

covariance functions. The posterior mean of the log-intensity values are depicted in Figure

2.9. In this case all methods seem to capture the same general features of the image.
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Figure 2.9: Posterior mean of the latent GRF, estimated from HMC, VB and INLA I–IV. MS data set.

Table 2.6 presents posterior summaries of the hyper-parameters. The point estimates

for µ obtained from all approaches are fairly consistent while, relative to HMC, posterior
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variance is not well estimated by either VB or INLA I-IV. Relative to HMC the precision

σ−2 is not well estimated by any of the methods and similarly for the posterior variance

of this parameter. As d0.5 is estimated rather precisely by HMC, all of VB and INLA

I-III either severely under-estimate or over-estimate the posterior variability though this

is not the case for INLA IV. Figure 2.10 compares the marginal posterior variance for

each cell of the discretized latent field obtained from all of the methods with the posterior

variance obtained from HMC. Interestingly, in this case we find that VB over-estimates

the posterior variability while INLA I-III all under-estimate the posterior variability to

different degrees relative to HMC. The posterior variability arising from INLA IV gives

extremely large values (up to 10 times larger than those obtained from HMC) which likely

indicates a numerical problem, though we note again that INLA IV does give an adequate

representation of the posterior mean for this data set.

Parm Measure Relative Measure
HMC VB INLA I INLA II INLA III INLA IV

µ Post. Mean 5.098 0.959 1.074 1.072 1.193 0.814
Post. Var 0.301 2.638 0.081 0.084 0.197 32.731

σ−2 Post. Mean 0.468 0.282 0.1 0.1 1.729 0.192
Post. Var 0.005 0.002 31.83 31.83 1.19E-36 0.404

d0.5 Post. Mean 0.18 0.886 14.379 14.379 0.503 2.789
Post. Var 1.30E-04 2.41E-10 31653.155 31653.155 2.91E-37 0.959

Table 2.6: Summary of parameter estimation for the MS data set. VB and INLA I-IV are relative to HMC.

Turning to posterior predictive checks which are depicted in Figure 2.11 we see that

VB has much wider 95% posterior predictive intervals than HMC. Although neither algo-

rithm shows a lack of fit, using HMC, the model appears to fit the data better as the mean

and median are much closer to zero for all ranges of r and the 95% predictive intervals are

much tighter at each value of r. The greater posterior predictive variability arising from

VB may be in part a result of the posterior variance of µ being over-estimated by VB. In

terms of timing, HMC takes 1456s with 2000 iterations and 1000 burn-in. Again, VB actu-

ally requires more computation time 1608s with 2763 iterations required for convergence.
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Figure 2.10: Scatter plot of the marginal posterior variance of the latent GRF from VB and INLA I-IV
compared with those from HMC for the MS data set.

INLA I takes 47s, INLA II takes 166s, INLA III takes 57s, INLA IV takes 384s.
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Figure 2.11: 95% posterior predictive interval for HMC (a) and VB (b) for the MS data set. The bounds are
denoted by solid lines while the mean and median are denoted by dashed lines. These are obtained at 20
distinct distances.
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2.5 Discussion

We have compared HMC incorporating FFT matrix methods on an extended grid, VB

incorporating the Laplace method, and four versions of INLA for Bayesian computation

and estimation associated with the LGCP model. One would not expect to get back the

true latent field following inference via any of these methods, rather, the gold standard is

the posterior density of the field given the data. Of the methods considered, only HMC has

theoretical guarantees in terms of (simulation) consistency in attaining the gold standard

so the empirical comparisons considered here are of practical value. A number of settings

for both simulated and real data have been adopted for these comparisons. Overall, in

terms of point estimation of the latent field we do observe some differences in some set-

tings; however, generally, all of HMC, VB, INLA I, and INLA II perform reasonably well,

while INLA with SPDE has a tendency to over-smooth the field, though this tendency is

reduced as the size of the underlying mesh is increased. Thus if point estimation of the

log-intensity is the only objective we recommend the use of INLA I based on the required

computation time. If, in addition, inference on hyper-parameters is of importance then

it seems clear that HMC and the additional required computation time is necessary. As

expected from the literature VB has a tendency to under-estimate posterior variability al-

though on occasion it also seems to over-estimate posterior variability (see e.g. Daunizeau

et al. (2009) for discussion of the latter issue and how it may also arise with VB). We also

find that posterior predictive checking based on VB may not be representative of the true

posterior predictive distribution. While VB has been applied successfully in a wide range

of applications and is often the method of choice in machine learning the required compu-

tation time for the LGCP model and for the settings considered here suggest that it is not

as accurate as HMC and not as computationally efficient as INLA I. Of course, our imple-
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mentation of VB did not incorporate the FFT methods for matrix multiplication as this is

not straightforward to implement within the VB framework. We acknowledge that fixing

ρ in the VB algorithm based on the minimum contrast estimate is not ideal; however, this

was the only practical possibility given the convergence problems we see for VB when

ρ is treated as unknown. We suspect that the convergence problem is somehow related

to the mean-field approximation and its assumption of posterior independence between ρ

and the other model parameters, which likely conflicts with the data. Further examination

of this issue, perhaps more generally for mean field approximations is a potentially inter-

esting avenue for further work. To improve the variational approximation one approach

that may be worth considering is the use of fixed-form multivariate Gaussian variational

approximations which may have improved performance over mean field approximations.

To compare within the four flavors of INLA, the INLA with simplified Laplace method

and the full Laplace method are quite similar in terms of accuracy, for the settings con-

sidered here; whereas, we see genuine gains in computation with the use of the simplified

Laplace version of INLA. In addition to a tendency to exhibit over-smoothing, we have

also found that INLA with SPDE can be numerically unstable in some situations and an

inappropriate choice of step size in the Newton-Raphson algorithm can lead to conver-

gence problems. Thus the choice of mesh is an important consideration. We acknowledge

that the different priors and different covariance functions used with INLA relative to the

competing approaches does make the interpretation of the simulation results comparing

to VB and MCMC more difficult than had the same priors and covariance functions been

used in all cases; however, as a practical matter, practitioners will use the built-in priors

and the Matérn covariance function available in INLA, so we feel that these comparisons

are of direct interest and practical value.
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CHAPTER III

A Comparison of Variational Bayes and Hamiltonian Monte Carlo for
Bayesian fMRI Time Series Analysis with Spatial Priors

3.1 Introduction

It is well known that fMRI data exhibit both spatial and temporal autocorrelation. A

widely used approach for the analysis of such data is the general linear model with autore-

gressive errors and spatial smoothing priors for the regression coefficients (GLM-AR).

Models of this sort have been developed in the Bayesian framework (Penny et al. (2005);

Penny et al. (2007)) with approximate Bayesian inference based on mean field variational

Bayes (VB). The VB approximation is used to handle the very large parameter space across

voxels in the brain while maintaining computational tractability. While this approach often

leads to computational efficiency, there are potential concerns with its accuracy. Nathoo

et al. (2013) have discussed this issue and demonstrated examples with neuroimaging data

where the mean field variational Bayes approximation can severely underestimate poste-

rior variability and produce biased estimates of model hyper-parameters.

Simulation-based approaches for Bayesian computation such as importance sampling

and Markov chain Monte Carlo (MCMC) have an underlying large sample theory guaran-

teeing simulation-consistent approximation (Robert and Casella, 2013) of various aspects

of the posterior distribution, such as posterior moments and quantiles. Unfortunately, there

is currently no such theory guaranteeing or characterizing the accuracy for VB approxi-
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mations. As a result these approximations need to be checked on a case-by-case basis,

typically against the output from properly tuned MCMC algorithms. In some cases, the

quality of the VB approximation will be very good and in other cases the VB approxima-

tion can be quite poor. For a given model where the VB approximation is used, it is of

practical importance for users to have some general understanding of the quality of this

approximation, and if computational resources are available, to be able to check this for

certain test cases (e.g. using the fMRI data from a select few subjects in a study). The

contribution of this paper is to address this issue for the model developed by Penny et al.

(2007) and the corresponding variational Bayes implementation in the SPM software.

In making comparisons with MCMC techniques, it is important that the particular

MCMC algorithm being employed achieves adequate mixing and thus is able to traverse

the parameter space fairly rapidly. This is a particularly important issue when dealing

with spatial models for fMRI data as the number of parameters in the model and their

potentially high posterior correlations can result in poor performance of standard MCMC

algorithms such as the Gibbs sampler and the random walk Metropolis-Hastings algo-

rithm, as well as algorithms that combine Gibbs and random walk Metropolis-Hastings

moves. MCMC algorithms of this sort for spatio-temporal fMRI time series models have

been developed by Woolrich et al. (2004b) where Gibbs sampling and single-component

Metropolis-Hastings jumps are employed for posterior simulation. An alternative MCMC

algorithm that is better suited for large parameter spaces with high posterior correlations

is the HMC algorithm (Duane et al. (1987); Neal (1995)). For neuroimaging data and dy-

namic causal modeling, the HMC algorithm has been recently explored by Sengupta et al.

(2016) where it is found that HMC and Langevin Monte Carlo are far superior to the ran-

dom walk Metropolis algorithm when applied for the estimation of neural mass models.

As far as we are aware, the derivation of HMC and its comparison to the mean field VB
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approximation for the spatial model of Penny et al. (2007) currently implemented in the

SPM software has not been considered previously.

In Section 2 we review briefly the spatial fMRI model and the VB algorithm for ap-

proximating the posterior distribution. We then derive HMC and discuss the tuning of this

algorithm. In Section 3 we present two simulation studies as well as a comparison on the

face repetition fMRI dataset considered in Henson et al. (2002). Section 4 concludes with

a brief discussion.

3.2 Methods

We begin by briefly discussing the fMRI spatial model. We then describe the Varia-

tional Bayes (VB) and Hamiltonian Monte Carlo (HMC) algorithms that can be used to

fit this model. We put a greater emphasis on the HMC algorithm as the VB algorithm has

been discussed in Penny et al. (2005). The VB algorithm is implemented in the SPM12

software and for computations in this paper is run on MATLAB 2014a, on an iMac with

3.2 GHz and 16GB memory. The HMC algorithm code is written in C++, and imple-

mented on the same machine in the case of our analysis of the face repetition data. For the

simulation studies we run the HMC algorithm on a high-performance computing cluster

(a Linux cluster powered by 12 dual quad-core Intel Xeon SMP compute nodes running

at 2.33GHz per CPU). In all cases the HMC algorithm is run for 3000 iterations with first

2000 iterations discarded as burn-in, and the remaining 1000 iterations used to estimate

features of the posterior distribution.

3.2.1 The fMRI spatial model

We let T denote the length of each time series, N the number of voxels, K the number

of regressors in the linear model, and P the order of the temporal autoregressive process

used to model the temporal correlation at each voxel. Throughout this paper, a matrix is
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indicated with bold capital letters, while vectors are indicated with bold lower-case letters,

and scalars are denoted by lower-case letters. The linear model at the nth voxel, n=1,. . . ,N,

is specified as

(3.1) yP+1:T,n = Xwn + en

where yn = (y1n, ..., yTn)T denotes the time series of length T recorded at the nth voxel

with last (T − P ) components denoted as yP+1:T,n, and where we condition on the first

P components y1:P,n for simplicity. X = (x1, ...,xK) denotes the K columns of regres-

sors each having length T − P ; wn is the corresponding vector of regression coefficients

specific to voxel n. The regressors are typically stimulus indicators convolved with the

hemodynamic response function (HRF), xtk = (vk ∗h)(t), that is, the kth regressor at time

t, is the kth stimulus vk convolved with the HRF h(·) at time t. Details are described in

Lindquist et al. (2008). The autoregressive process for the model errors is specified as

(3.2) en = Ẽnan + zn

where Ẽn = (ẽP+1,n, ..., ẽTn)T is a (T − P ) × P lagged prediction matrix with tth

row ẽtn = (et−1,n, ..., et−P,n); an = (a1n, ..., apn)T is the corresponding vector of auto-

regressive coefficients for voxel n; zn = (zP+1,n, ..., zTn)T is the Gaussian noise for voxel

n, with ztn i.i.d with mean 0 and precision λn (t = P + 1, ...T ). The contribution to the

log-likelihood for voxel n, is then:

(3.3) ln = −λn
2

T∑
t=P+1

[(ytn − xtwn)− ẽtnan]2 +
T − P

2
log λn + const

where const denotes a constant that does not depend on the model parameters, and xt is

the tth row of X. We note that this formulation conditions on the data observed at the first

P time points, and this conditioning, while not strictly necessary, simplifies the treatment

of the model. As T is typically large compared with P , this conditioning may have little
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effect on the resulting inference (Penny et al. (2003)). The overall log-likelihood is then

obtained by summing ln across all voxels l =
∑N

n=1 ln.

Regarding priors for the model parameters, let W = (w1, ...,wN) denote the set of

regression coefficients across all of the voxels, so that W is K × N . The rows of W

are assumed a priori independent, but the model adopts a prior that incorporates spatial

dependence across voxels (across the columns of W within each row). Let wk be the kth

row of W, a vector of length N , and let π(W|α) denote the prior density which takes the

form

π(W|α) =
K∏
k=1

π(wT
k |αk)

wT
k | αk ∼ N(0, α−1k (STS)−1).(3.4)

where α = (α1, ..., αK)T are hyper-parameters. Here S is a spatial kernel and takes the

form of a non-singular Laplacian matrix (Pascual-Marqui et al. (1994)) with elements:

(3.5) sij =



deg, if i = j

−1, if i 6= j and i is adjacent to j

0, otherwise

where deg = 4 for a two dimensional model and deg = 6 for a three dimensional model.

By formulating the spatial kernel matrix in this way, smoothing is achieved and it is easy to

show that the precision matrix STS is a sparse matrix with 13 non-zero elements on each

row and each column for a two dimensional model, and 25 non-zero elements on each row

and each column for a three dimensional model. Similarly, a spatial prior is used for the

autoregressive coefficients A = (a1, ..., aN) across all voxels. Let ap denote the pth row
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of A, the prior for A is

π(A|β) =
P∏
p=1

π(aTp |βp)

aTp | βp ∼ N(0, β−1p (DTD)−1)(3.6)

where β = (β1, ..., βP )T are hyper-parameters; D is a spatial kernel matrix similar to S,

for simplicity we will assume that D = S.

For the hyper-parameters α = (α1, ..., αK)T , β = (β1, ..., βP )T , and precision pa-

rameters λ = (λ1, ..., λN)T , the model assumes that these parameters are conditionally

independent with each following a Gamma distribution a priori:

π(α | q1, q2) =
K∏
k=1

π(αk | q1, q2)(3.7)

αk | q1, q2 ∼ G(q1, q2)(3.8)

π(β | r1, r2) =
P∏
p=1

π(βp | r1, r2)(3.9)

βp | r1, r2 ∼ G(r1, r2)(3.10)

π(λ | u1, u2) =
N∏
n=1

π(λn | u1, u2)(3.11)

λn | u1, u2 ∼ G(u1, u2)(3.12)

where G(q1, q2) denotes the density of the Gamma distribution with mean q1q2 and vari-

ance q1q22 and q1, q2, r1, r2, u1, u2 are fixed known values. In what follows we assume that

q1 = r1 = u1 = 0.01 and q2 = r2 = u2 = 100.

Let θ = (w1, ...,wK , a1, ..., aP ,α
T ,βT ,λT )T denote the set of all parameters stacked

in row-major order, we have dim(θ) = R where R = (K + P + 1)N + K + P , and the
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log of the posterior density is

log p(θ | Y,X) =
N∑
n=1

{
−λn

2

T∑
t=P+1

[(ytn − xtwn)− ẽtnan]2
}

+
T − P

2

N∑
n=1

log λn +
K∑
k=1

[
−1

2
wk(αk(S

TS))wT
k +

1

2
log(|αk(STS)|)

]

+
P∑
p=1

[
−1

2
ap(βp(D

TD))aTp +
1

2
log |βp(DTD)|

]
+

K∑
k=1

[(q1 − 1) logαk − αk/q2]

+
P∑
p=1

[(r1 − 1) log βp − βp/r2] +
N∑
n=1

[(u1 − 1) log λn − λn/u2] + const(3.13)

where Y = (y1, ...,yN) is the fMRI response data. Bayesian inference for the various

components of θ requires computation of the corresponding appropriately normalized

posterior marginal distributions. Strategies for this Bayesian computation are described

in what follows.

3.2.2 Algorithm A: Variational Bayes

Variational Bayes is an optimization approach for constructing a deterministic approx-

imation to the posterior distribution. Let q(θ) be a density function having the same sup-

port as the posterior density p(θ | Y,X), and let log p(Y|X) denote the logarithm of the

marginal likelihood associated with the model and the response Y, which depends on the

known design X. We can express the logarithm of the marginal likelihood as

log p(Y|X) =

∫
q(θ) log

{
p(Y,θ|X)

q(θ)

}
dθ

+

∫
q(θ) log

{
q(θ)

p(θ | Y,X)

}
dθ

≥
∫
q(θ) log

{
p(Y,θ|X)

q(θ)

}
dθ ≡ F (q)

such that the functional F (q) is a lower bound for log p(Y|X) for any q. The approxima-

tion is obtained by restricting q to a manageable class of density functions, and maximizing

F over that class. In this case the class of density functions over which the optimization is
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carried out is characterized by densities that can be factored as follows:

(3.14) q(θ) =
N∏
n=1

q(wn)
N∏
n=1

q(an)
K∏
k=1

q(αk)
P∏
p=1

q(βp)
N∏
n=1

q(λn).

Let E−qi [·] denote the expectation under q for all parameters excluding the ith parameter.

A coordinate ascent algorithm is applied to locally maximize F based on update steps of

the form

(3.15) q(θi) ∝ exp E−qi [log p(Y,θ|X)]

which are iterated to convergence. Details can be found in Penny et al. (2003) and Jordan

et al. (1999). As mentioned in Section 1, the resulting approximate posterior distribution

can be a very good approximation or conversely a very poor approximation of the true

posterior density. While there are a number of factors that govern the quality of the ap-

proximation, as far as we are aware, there is currently no theory characterizing the error

associated with mean field VB. A simple approach is to compare the VB approximation

with an appropriately implemented MCMC algorithm which has an associated large sam-

ple theory.

3.2.3 Algorithm B: Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) has its origins with the work of Alder and Wain-

wright (1959) and Duane et al. (1987) and was popularized in the statistical literature

by Neal (1995). It is a Metropolis-Hastings algorithm that can be used to sample high-

dimensional target distributions far more efficiently than algorithms based on random walk

proposals, where the proposals for HMC are based on Hamiltonian dynamics. The algo-

rithm works by introducing a Hamiltonian H(θ, ξ) defined as the sum of potential energy

U(θ) and kinetic energy K(ξ), and the dynamics are written as follows:
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dθi
dt

=
∂H(θ, ξ)

∂ξi
=
∂K(ξ)

∂ξi
dξi
dt

= −∂H(ξ,θ)

∂θi
= −∂U(θ)

∂θi

The continuous variable t here denotes the time evolution of the dynamic system, i (i =

1, ..., R) denotes the ith index of the corresponding random vector. U(θ) = −p(θ | Y,X)

is the negative log probability density function of the distribution for θ that we wish to

sample from, and K(ξ) is defined as K(ξ) = ξTM−1ξ/2 where ξ is an auxiliary random

vector having the same dimension as θ. Here M is referred to as the ’mass matrix’ and is

typically assumed diagonal. In practice this system is solved using numerical integration

techniques (Neal, 2011), most commonly the leapfrog method. For fixed δ > 0 one step

of the method is comprised of the following updates:

ξ(t+ δ/2) = ξ(t)− δ/2∂U
∂θ

(θ(t))(3.16)

θ(t+ δ) = θ + δM−1ξ(t+ δ/2)(3.17)

ξ(t+ δ) = ξ(t+ δ/2)− (δ/2)
∂U

∂θ
(θ(t+ δ))(3.18)

The leapfrog method iterates through a total of L such steps, and the resulting approxi-

mate solution is used as a proposed value for the next state of the Markov chain in the

Metropolis-Hastings (MH) algorithm.

The algorithm requires repeated calculation of the unnormalized log-posterior density

and its gradient. A fast way to calculate the log-likelihood components is thus crucial.

Previous MCMC methods for models similar to the one considered here (e.g. Woolrich

et al. (2004b)) compute the log-likelihood by directly summing across voxels n and time

points t. As a more efficient alternative we propose a calculation of the log-likelihood

that can omit the summation across t. Let a∗n = (−1, aTn )T , so a∗pn = apn if p ≥ 1 and
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a∗pn = −1 if p = 0. The log-likelihood contribution for voxel n can be expressed as:

ln = −λn
2

a∗Tn Fa∗n +
T − P

2
log λn + const.(3.19)

where the specific form of F and its derivation is given in Appendix B. Under this formu-

lation, the sum across t can be pre-computed rather than computed at every iteration of the

algorithm. This changes the computational complexity of the likelihood evaluation from

O(TNKP ) to O(NK2P 2). Since K × P is typically smaller than T , this can make the

computation faster, in our experience 10 to 20 times faster for datasets of the size consid-

ered in Section 3. Based on this form of the log-likelihood the gradient of the log-posterior

density is derived as:

∇wkn log p(θ | Y,X) = λna
∗T
n Ga∗n − αk(STS)nw

T
k(3.20)

∇apn log p(θ | Y,X) = λnfpa
∗
n − βp(DTD)na

T
p(3.21)

∇αk log p(θ | Y,X) = −1

2
wk(S

TS)wT
k + (

N

2
+ q1 − 1)/αk −

1

q2
(3.22)

∇βp log p(θ | Y,X) = −1

2
ap(D

TD)aTp + (
N

2
+ r1 − 1)/βp −

1

r2
(3.23)

∇λn log p(θ | Y,X) = −1

2
a∗Tn Fa∗n +

(T − P )/2 + u1 − 1

λn
− 1

u2
(3.24)

where (STS)n and (DTD)n denotes the nth row of STS and DTD respectively. Specific

derivations including the form of G and fp are given in Appendix B.

There are a variety of block updating schemes that can be employed when updating

the parameters in the MCMC algorithm. For simplicity, we have tried various component-

wise updates and have found that component-wise updates lead to very poor mixing of the

sampling chain. On the other hand, updating the entire parameter vector θ as a single high-

dimensional block works well and produces adequate mixing when HMC is applied to

this model. Letting ∗ indicate the current state of the sampling chain, the HMC algorithm

proceeds as in Algorithm 1. Software written in C++ implementing the HMC algorithm is
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Algorithm 3 HMC for GLM-AR

1. Initialize the parameters θ, mass matrix M, and Leapfrog step size δ and step number L.

2. Update θ:

(a) Simulate latent vector ξ∗ ∼ N(0, I). Let θ(0) = θ∗, ξ(0) = ξ∗ + δ
2∇θ log p(θ∗ | Y)

(b) For l = 1, ..., L, let

θ(l) = θ(l−1) + δ/Mξ(l−1)

ξ(l) = ξ(l−1) + δ(l)∇ log p(θ(l) | Y,X)

where δ(l) = δ for l < L and δ(L) = δ/2

(c) Accept θ(L) as the new state for θ with probability

αa = min(1, e−H(θ(L))+H(θ∗))

where H(θ) = − log p(θ | Y,X) + ξTM−1ξ/2
Else remain in the current state θ∗ with probability 1− αa.

3. Repeat step 2 for the desired number of samples.

available at: http://www.math.uvic.ca/∼nathoo/publications.html.

Tuning the HMC algorithm requires appropriate choice of M = diag{m1, . . . ,mR},

δ, and L. We choose δ = 0.00002 as the initial value and adaptively adjust its value to

obtain an optimal acceptance rate of around 0.65 (Beskos et al., 2013) for a given value

of L. Larger values for L are useful in suppressing random walk behaviour of the chain,

and we use L = 250 in this work. Aside from examining the acceptance rate, mixing is

judged from the output based on looking at the traceplots of some parameters specific to

randomly chosen voxels, and we typically examine the traceplots of hyper-parameters as

these components of the chain often will mix slower than components corresponding to

parameters higher up in the model hierarchy. Mixing is also judged based on estimation

of the batch means Monte Carlo standard error (BMSE) (Fishman and Yarberry (1997)), a

measure that is easy to implement and is widely used in practice.

As different parameters tend to have different scales, setting mi can also be important,
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and this issue is discussed extensively in Neal (2011). In practice, we have found that for

problems having moderate dimension and complexity, setting all mi = 1 (i = 1, ..., R)

is sufficient (e.g, Simulation 3.1). As the model complexity and dimensionality increases,

we set the mi to be roughly proportional to the reciprocal of the posterior variance of

the ith parameter for i=1,...,R. This variance, of course, is unknown so it is estimated

based on a preliminary run of HMC with mi = 1 (i = 1, ..., R). This process is iterated

a few times until adequate mixing of the chain is observed based on its output and the

measures described above. We use this approach to tune the values of M in the application

considered in Section 3.3.

3.3 Results

We conduct two simulation studies to compare features of the posterior distributions

obtained from HMC and VB. This is followed by a real data analysis where we compare

the results obtained from HMC, VB, and the traditional mass univariate approach. The

simulation studies and application are based on the face-repetition dataset discussed in

Henson et al. (2002). A detailed description of this dataset can be found online at

http://www.fil.ion.ucl.ac.uk/spm/data/. The data are collected as part of an event-related

fMRI study in which greyscale images of faces were repeatedly presented to a subject for

500 ms replacing the baseline, an oval chequerboard, that was present throughout the inter

stimulus interval. Each of the faces were presented twice; some were familiar to the subject

while others were not. This setup leads to four experimental conditions U1, U2, F1, F2,

representing familiar or unfamiliar(F/U) faces observed for the first or second(1/2) time.

The fMRI signal is measured at T = 351 time points during the experiment. The design

matrix used in the analysis has (T − P ) rows and K columns. In our first simulation

study we set K = 5 corresponding to the four experimental conditions convolved with the
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canonical HRF, plus a constant term. The design matrix is depicted in Figure 3.1a. In the

second simulation study we consider a larger design matrix where each of the four study

conditions is convolved with the canonical HRF, its dispersion derivative and its temporal

derivative, respectively, resulting in K = 13 columns (the last column corresponding to

a constant term). The design matrix for the second simulation study is depicted in Figure

3.1b.

(a) (b)

Figure 3.1: Design matrix for simulation study one (a) and simulation study two (b). In panel (a), the first
four columns correspond to stimuli U1, U2, F1, F2 convolved with the canonical HRF respectively. In panel
(b), the 1st, 4th, 7th, and 10th columns are convolved with the canonical HRF, the 2nd, 5th, 8th, and 11th
columns are convolved with its temporal derivative, the 3rd, 6th, 9th, and 12th columns are convolved with its
dispersion derivative. The last blank column in both panels (a) and (b) represents the constant term.

We set the spatial domain to be a 2-dimensional lattice divided into a 53 × 63 grid,

and then a brain-shaped mask is applied to this lattice, resulting in N = 2087 voxels for

the domain that our simulation studies are carried out on. The true values of the parame-

ters W, A, and noise variables z1, ..., zN are simulated based on model assumptions and

fixed values of α, β, and λ discussed below. Given the parameter values, the data Y are

simulated from the model and 100 replicate datasets are simulated in each study.

To compare VB and HMC with respect to point estimation, we use the simulation repli-

cates and the known true values of the model parameters to estimate the average squared
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bias (ASBIAS) and the average mean squared error (AMSE) of estimators based on the

posterior mean, where the average is taken across voxels. To compare the two approaches

with respect to posterior variability we use the average marginal variance (AVAR). Let-

ting ŵknj denote the posterior mean estimate of wkn obtained from the jth (j = 1, ..., J)

simulation replicate, and σ2(ŵknj) denote the corresponding posterior variance, the three

measures above for wk (where k corresponds to the kth regressor) are computed as:

ASBIAS(wk) =
1

N

N∑
n=1

(
J∑
j=1

ŵknj/J − wkn)2(3.25)

AMSE(wk) =
1

NJ

N∑
n=1

J∑
j=1

(ŵknj − wkn)2(3.26)

AVAR(wk) =
1

NJ

N∑
n=1

J∑
j=1

σ2(ŵknj)(3.27)

These same measures are applied to the autoregressive coefficients ap. We also compute

the correlation of each estimated wk and ap vectors with the truth, and average these

correlations across simulation replicates. To compare VB and HMC with respect to the

spatial smoothness of the estimated images we use Moran’s I (Moran, 1950). Negative

values indicate negative spatial autocorrelation and positive values indicate positive spatial

autocorrelation, a zero value corresponds to no spatial dependence. We compute Moran’s

I for each image of estimated parameters and then average these values (AMoran) across

the J simulation replicates. For wk this measure takes the form

(3.28) AMoran =
1

J

J∑
j=1

N∑
n1

∑
n2
φn1n2

∑
n1

∑
n2
φn1n2(wkn1j − w̄kj)(wkn2j − w̄kj)∑

n1
(wkn1j − w̄kj)2

where w̄kj =
∑N

n=1wknj , φn1n2 is the weight for voxel pair (n1, n2) (n1 = 1, ..., N, n2 =

1, ...N), and here this is chosen as the reciprocal of the distance between the centroids of

n1 and n2.
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3.3.1 Simulation Study I

We assume in this case that the data generating mechanism corresponds to a first-order

autoregressive process. In simulating the true values of the regression coefficients and

autoregressive coefficients we assign equal values to the precision of the regression coef-

ficients, αk = 1 (k = 1, ...5) and we set β1 = 1000 which will result in auto-regressive

coefficients having much smaller values than the regression coefficients. For the precision

of the noise we simulate these values from a Gamma distribution λn
i.i.d∼ G(10, 10) (n =

1, ..., N).

Both VB and HMC are applied to the simulated datasets and images depicting the

average (over simulation replicates) posterior mean estimates obtained from both methods

and the true values are shown in Figure 3.2, where we show the images corresponding

to w1 and a1. Figures depicting comparisons for the full set of parameters are shown in

Figures 1-2 of the Supplementary Material. In this case the results obtained from HMC

and VB are very similar and both correspond well with the truth.

The summary statistics discussed above are computed and their values are listed in Ta-

ble 3.1. As the VB implementation in SPM does not provide the posterior variance of the

auto-regressive coefficients as part of its output, we leave these cells blank in the table

(including those for HMC since comparisons are of interest) . The statistics corresponding

to HMC in the table are the actual values while those for VB are expressed as the percent-

age of the corresponding values obtained from HMC. From the table, we can see that VB

tends to produce smaller squared bias than HMC, but the MSE is roughly equivalent. The

posterior variance statistics obtained from VB are also fairly close to those obtained from

HMC, with slightly larger values for the former. Thus the over-confidence problem some-

times associated with VB (Bishop, 2006), (Nathoo et al., 2013) does not seem to be an

issue in this case. Both algorithms are performing well in terms of point estimation as they
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Figure 3.2: Image of average (over simulation replicates) posterior mean estimate of w1 and a1 from HMC
and VB. The estimates are compared with true image in each row.

achieve a high level of correlation (around 0.99) with the true values. In terms of Moran’s

I, the images estimated using VB and HMC have approximately the same amount of spa-

tial autocorrelation in their posterior estimates, and both are similar to the true Moran’s I.

In summary, VB and HMC both perform adequately well in this study.

methods measure W1 W2 W3 W4 W5 A1
true Moran’s I 0.121 0.169 0.136 0.187 0.122 0.179

HMC ASBIAS 0.123 0.120 0.105 0.110 0.001 4.52E-04
AMSE 0.405 0.452 0.412 0.420 0.007 1.19E-03
AVAR 0.411 0.468 0.425 0.435 0.008

Correlation 0.997 0.999 0.998 0.998 1.000 0.995
Moran’s I 0.123 0.171 0.137 0.189 0.122 0.182

VB ASBIAS 67% 58% 65% 72% 77% 91%
AMSE 107% 104% 103% 105% 103% 104%
AVAR 112% 109% 108% 108% 105%

Correlation 100% 100% 100% 100% 100% 100%
Moran’s I 100% 100% 100% 100% 100% 102%

Table 3.1: Summary statistics for Simulation Study I. The results from VB are presented as a percentage of
those obtained HMC. The true value of Moran’s I is listed for each regressor in the first row as a reference.
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Comparing the two algorithms with respect to computation time on a standard iMac

with 3.2 GHz Intel Core i5. HMC (coded in C++) takes 23min for 3000 iterations while

VB takes 1min per simulated dataset.

3.3.2 Simulation Study II

In the second simulation study we aim to further compare the performance of the two

algorithms in a harder and more complex situation, by including more coefficients with

these coefficients having unequal variance in the sense described below. Specifically, we

extend the design matrix to include the canonical HRF, its temporal derivative, and its

dispersion derivative. By convolving these functions with the four stimuli we get 13 re-

gressors (with the last corresponding to the constant term). We also increase the order

of the auto-regressive process from P = 1 to P = 3. The precision parameters are set

as follows: α1 = α2 = α3 = 0.1, α4 = α5 = α6 = 0.5, α7 = α8 = α9 = 1.0,

α10 = α11 = α12 = 2.0, α13 = 1.0. β1 = 1000, β2 = 2000, β3 = 5000. The values for the

noise precision are again generated as λn
i.i.d∼ Gamma(10, 10) (n = 1, ..., N).

Figure 3.3 shows the image of the average (over simulation replicates) posterior mean

estimates from HMC and VB for w1 and a1. Similar Figures for the remaining parameters

are shown in the Supplementary Material, Figures 3-8. Both HMC and VB appear to

provide similar estimates which correspond well with the truth.

The summary statistics are computed as before and these are presented in Table 3.2.

Generally, the observations made in Simulation Study I seem to carry over in that VB

tends to produce smaller bias in point estimation but roughly equivalent MSE. Examining

the average marginal posterior variance again indicates that VB does not exhibit an over-

confidence problem in this case. The average correlation between the estimates and the

truth obtained from HMC and VB are nearly the same, as seen in Study I. The measures

of spatial correlation based on Moran’s I are also again roughly equivalent for the two
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Figure 3.3: Image of average (over simulation replicates) posterior mean estimate of w1 and a1 from HMC
and VB. The estimates are compared with true image in each row.

approaches.

In terms of timing, HMC takes 6.6 hours for 3000 iterations while VB takes 1 minute

for a single simulation replicate.

3.3.3 Real Application

In this section, we will compare the estimation results from HMC, VB and the classical

mass univariate approach (MUA) to examine possible differences in a real dataset obtained

from a single subject. The dataset we focus on is again the face-repetition dataset; however,

we now use the actual data and fit the model over the entire 3-dimensional brain volume

based on a 3-dimensional grid having dimensions 53×63×52 with a total of 56526 voxels.

Pre-processing steps are conducted in SPM12: All functional images are aligned to

the first image using a six-parameter rigid-body transformation. All the time series are
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methods measure W1 W2 W3 W4 W5 W6 W7 W8
true Moran’s I 0.111 0.137 0.151 0.144 0.125 0.128 0.121 0.109

HMC ASBIAS 0.054 1.097 0.711 0.115 0.973 0.840 0.108 0.860
AMSE 0.610 4.336 3.566 0.549 2.317 2.160 0.444 1.840
AVAR 0.617 4.181 3.466 0.561 2.244 2.112 0.459 1.807

Correlation 1.000 0.998 0.999 0.999 0.991 0.992 0.998 0.982
Moran’s I 0.111 0.139 0.152 0.145 0.128 0.132 0.123 0.112

VB ASBIAS 73% 61% 57% 63% 89% 90% 78% 102%
AMSE 102% 101% 100% 104% 98% 98% 102% 97%
AVAR 101% 114% 110% 106% 107% 105% 104% 100%

Correlation 100% 100% 100% 100% 100% 100% 100% 100%
Moran’s I 100% 100% 100% 100% 102% 102% 101% 106%

W9 W10 W11 W12 W13 A1 A2 A3
true Moran’s I 0.104 0.148 0.189 0.130 0.128 0.108 0.127 0.174

HMC ASBIAS 0.761 0.123 0.639 0.576 0.002 4.71E-04 3.72E-04 3.13E-04
AMSE 1.639 0.369 1.197 1.203 0.009 1.19E-03 8.95E-04 5.58E-04
AVAR 1.607 0.384 1.126 1.211 0.009

Correlation 0.980 0.996 0.977 0.983 1.000 0.992 0.988 0.975
Moran’s I 0.108 0.151 0.198 0.133 0.128 0.111 0.129 0.182

VB ASBIAS 116% 88% 103% 94% 99% 96% 123% 99%
AMSE 102% 103% 102% 96% 102% 105% 101% 98%
AVAR 97% 104% 109% 104% 100%

Correlation 100% 100% 100% 100% 100% 100% 100% 100%
Moran’s I 108% 101% 107% 104% 100% 102% 105% 105%

Table 3.2: Summary statistics for Simulation Study I. The results from VB are presented as a percentage of those obtained
HMC. The true value of Moran’s I is listed for each regressor in the first row as a reference.

interpolated to the acquisition time of the 12th slice. Images are also spatially normalized

to a standard EPI template using a non-linear warping method. For MUA, the data are

also pre-smoothed using a Gaussian kernel with FWHM of 8mm. We computed the global

mean g of all time series and scaled each time series by 100/g; to remove low frequency

drift each time series was also high pass filtered using a default cutoff of 128s. The design

matrix is the same as that considered in Simulation Study I, shown in Figure 3.1a. We fit

the model with an autoregressive order of P = 1 as in Penny et al. (2005).

Both HMC and VB are initialized with starting values obtained from applying ordinary

least squares regression (OLS) at each voxel. The hyper-parameters of the prior for the

two algorithms are the same as those used previously, which corresponds to the default in

the SPM software. For the mass matrix M in HMC, we use the tuning method described

in Section 2.3. The trace plots for select parameters are displayed in the Supplementary

Material, Figures 9-12, and these indicate adequate mixing of the sampling chain.
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We note that the SPM implementation of VB when applied to analyze data over the

whole brain volume uses a graph-partitioning algorithm (Harrison et al. (2008b)). This

works by dividing the whole brain into several disjoint regions and in each region the VB

estimation is carried out independently. For this particular dataset, the graph partitioning

algorithm divided the brain into 38 regions. Although this has the advantage of saving

computational time, we find that this produces some artifacts as indicated below.

To compare the three methods with respect to point estimation we compute the corre-

lation (across voxels) of the estimates, and these values are presented in Table 3.3 which

displays the correlation for each of the five regression coefficients w1 to w5 comparing VB

and MUA to HMC. We see that HMC and VB have estimation (posterior mean) results that

are highly correlated. The correlation between HMC and MUA for the intercept is only

0.66; we suspect that pre-smoothing of the data (MUA) might be causing this relatively

low value.

Correlation w1 w2 w3 w4 w5

(VB, HMC) 0.91 0.93 0.92 0.91 1.00
(MUA, HMC) 0.87 0.84 0.84 0.83 0.66

Table 3.3: Correlation (across voxels) in the estimated regression coefficients obtained from HMC and VB,
and HMC and MUA.

Images depicting the estimated coefficients are shown in Figures 3.4 and 3.5. Due to

space restrictions we only display the estimates of w1 and a1 on the 26th plane out of 52

planes along the z-axis. Additional figures displaying estimates for the other regression

coefficients are presented in the Supplementary Material, Figures 13-14. As seen in the

simulation studies, HMC and VB yield very similar posterior mean estimates in terms of

auto-regressive coefficients. In terms of regression coefficients the estimates from HMC

seem to be a bit smoother than those from VB, but still similar in general. Estimates from

MUA seem to exhibit a greater degree of spatial smoothing.
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Figure 3.4: Posterior mean estimates of w1 on the 26th plane out of 52 planes along the z-axis.
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Figure 3.5: Posterior mean estimates of a1 on the 26th plane out of 52 planes along the z-axis.

To compare VB and HMC with respect to the posterior marginal variance of the re-

gression coefficients, we take the log-ratio of the posterior marginal variance obtained

from VB over that obtained from HMC at each voxel, and examine these log-ratio values

across all voxels. Doing so we find that for a great proportion of voxels, VB is actually

over-estimating the posterior marginal variance relative to HMC. This is unexpected as

it is more often the case that VB tends to underestimate posterior variance. After closer

examination we suspect that this overestimation may be arising as a result of the graph-

partitioning algorithm used in the SPM implementation of VB. This is demonstrated in
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Figure 3.6 which depicts an image of the log-ratio marginal-variance values for a single

slice for w1 alongside the graph-partitioned regions, and also in the Supplementary Ma-

terial, Figure 15, which shows similar images for all of the regression coefficients. From

the figures we see that the locations where the posterior marginal variance obtained from

VB is higher than that obtained from HMC tend to align with the boundaries of the graph-

partitioned regions. We further note that HMC and VB tended to produce similar values

of the posterior marginal variance in our simulation studies, and that the graph partitioning

algorithm is not used in the 2-dimensional case. It appears that the graph partitioning leads

to the over-estimation of the posterior variance in this case, as there would be no spatial

smoothing across the boundaries of the graph-partitioned regions.
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Figure 3.6: Log-relative ratio of the marginal posterior variance of the regression coefficient obtained from
VB over that obtained from HMC. The yellow regions in the left image indicate locations where VB results in
greater posterior variance relative to HMC for w1, the right image shows the graph-partitioned regions. Both
are from the 26th plane out of 52 planes along the z-axis.

We next examine and make comparisons with respect to activations. We do this by first

defining a contrast vector c = (1, 1, 1, 1, 0)T/4. We multiply this vector by w, where w

denotes the vector of regression coefficients at a given voxel, to get a contrast (or effect
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size) cTw. We note that this contrast measures the effect of faces in the experiment at a

given voxel. The posterior distribution of the contrast is then shown across voxels using

a posterior probability map (PPM). This map is based on two thresholds, the first being

an effect size threshold γe and the other being a probability threshold γp. The value of

γe is set to be 1% greater than the global mean (across voxels) of cTw (Ashburner et al.

(2014)). The value of the probability threshold is set to be γp = 0.95. At each voxel we

then compute, using the posterior distribution,

(3.29) Pr(cTw > γe)

and we highlight those voxels where the posterior probability is greater than γp = 0.95.

The PPM’s obtained from HMC and VB are depicted in Figure 3.7.

Figure 3.7: PPM showing the activated voxels, with an effect size threshold of 1% greater than the global
mean and a probability threshold of 95%. The left map is obtained from HMC and right map is obtained from
VB. The activations are displayed as red dots on a 3-d surface from the posterior view.

The PPM’s obtained from the two approaches are generally similar, though with more

voxels indicated as activated by VB in this particular case. In terms of timing, HMC

takes 8.42 hours for 3000 iterations, VB takes 36 minutes, MUA takes 36 seconds with all

computations performed on a standard iMac with with 3.2 GHz Intel Core i5.
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3.4 Discussion

In this paper we have compared HMC and mean field VB for Bayesian inference in

the spatial GLM-AR model. Comparisons were made in two simulation studies with a

2-dimensional grid and an actual single subject fMRI dataset based on a 3-dimensional

grid. We found that for this particular model, under the settings considered, that HMC

and VB provide similar estimates of the posterior distribution, both in terms of point es-

timation and also somewhat surprisingly in terms of posterior variability. In Section 3.3

we found visible differences when comparing the classical and Bayesian approaches. The

classical approach does not assume spatial priors and the data are pre-smoothed so this

is not unexpected. Differences seen when comparing HMC to VB in Section 3.3 seem

largely due to the graph-partitioning algorithm used in the SPM implementation of VB,

where VB tends to over-estimate the posterior marginal variance along the edges of the

graph-partitioned regions. In terms of timing, HMC is considerably slower than VB as

expected. This is based on running the HMC algorithm for 3000 iterations with the final

1000 iterations used to estimate features of the posterior distribution. We have also run a

test case with a much larger Monte Carlo sample of 30000 iterations with the final 15000

iterations used to estimate features of the posterior distribution and have found the results

to be very similar to those obtained with the smaller Monte Carlo sample size. Overall,

for this particular model and for the settings considered here, our work justifies the use

of mean field VB and its implementation in SPM based on our comparisons with the re-

sults obtained from HMC. Our work also speaks more generally to the issue of variational

Bayes inference and the importance of checking the accuracy of variational Bayes approx-

imations as there is currently no theory that we are aware of guaranteeing the accuracy of

these approximations.
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CHAPTER IV

Bayesian Analysis of fMRI Time Series with Spatially-Varying
Autoregressive Orders

4.1 Introduction

In the analysis of functional magnetic resonance imaging (fMRI) data a key challenge

is dealing with spatial and temporal correlation. The temporal correlation can arise from

many sources, including scanner drift at very low frequencies, slow vascular/metabolic

oscillations that are typically of moderate to low frequency, and some other sources of

noise such as breathing and heartbeat. Simply ignoring these autocorrelations is dangerous

and may lead to increase false positive discoveries (Makni et al., 2006). To deal with

these issues, a variety of approaches have been proposed. One commonly used approach,

namely “prewhitening”, works by estimating the autocorrealtion in the errors and then

de-correlate the noise using the estimates. Representative includes the AR process by

Bullmore et al. (1996) and autoregressive-moving average (ARMA) model by Locascio

et al. (1997). Besides these stationary time series models, a non-stationary 1/f models

are also proposed (Zarahn et al., 1997; Bullmore et al., 2004). According to Friston et al.

(2000), prewhitening can produce an extraneous source of bias. Alternatively, a band-pass

filtering known as coloring can be applied to the data first, followed by the application

of some models to deal with the autocorrelation in the colored data. For a review and

discussion of these approaches the reader is referred to Woolrich et al. (2001). While
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high-pass filtering has proven to be beneficial in increasing the power of the statistical

analysis, the low-pass filtering involved in coloring is considered controversial in that it

tends to add autocorrelation into the data (Skudlarski et al., 1999; Della-Maggiore et al.,

2002).

While accurate temporal modeling is important for estimation of the fMRI signal in the

presence of noise, traditional approaches for data analysis do this while ignoring the spatial

correlation and apply the temporal model at each voxel independently. More specifically,

this mass univariate approach, considered to be the classical approach to the analysis of

fMRI data, includes a smoothing step involving a spatial Gaussian filter that is applied

to the data first (Friston et al., 1995), followed by model estimation at each voxel, and

then statical inference is based on random field theory (Worsley and Friston, 1995) which

is applied to adjust for multiplicity in the spatial domain. While this approach remains

the most common approach for analyzing fMRI data it has been criticised on a number

of grounds. For example, the Gaussian kernel that is used to smooth the data has to be

pre-specified and introduces artificial correlation into the data. In addition, this approach

does not directly account for spatial correlation in the model.

Partly as a result of these criticisms, Bayesian models with spatial structured priors

have been proposed which allow for the calculation of posterior probability maps (PPM)

for activation, where this inference is based on an explicit spatial modelling and does not

require smoothing the data with a Gaussian kernel nor does it require the use of random-

field theory-based adjustments for multiplicity. A variety of spatial-temporal Bayesian

models have been proposed. One model that is widely used and implemented in the SPM

software is the GLM-AR model (Penny et al., 2003, 2005, 2007), which assumes that the

data can be decomposed into two sources of variability. The first source is the product

of a design matrix for the fMRI experiment convolved with a haemodynamic response
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function (HRF) and experimental factors, and the second source represents temporally

correlated noise which can be modeled using a low-order AR structure. In addition, the

regression coefficients and the autoregressive coefficients vary across voxels and are as-

signed spatial smoothing priors. Gössl et al. (2001) has proposed a model where the data

are decomposed into three sources, a spatial stimulus, a deterministic trend and a white

noise process. However, this modelling approach may not account for some higher fre-

quency stochastic noise components. Woolrich et al. (2004b) assumed that the temporal

noise arises from both large scale and small scale variation, and built a space-time si-

multaneously auto-regressive model that accounts for both scales of variation. Methods

focusing on spatial variable selection have also been proposed (see, e.g., Bezener et al.

(2016), Lee et al. (2014),Musgrove et al. (2016)); while Kim et al. (2010) proposed a mix-

ture of experts model to represent spatial activation clusters. While these models have a

number of different characteristics which make the approaches unique, most of them com-

monly assume a homogeneous, low order AR or ARMA process for the temporal noise.

By homogeneous, we mean that the order of the AR or ARMA process is assumed con-

stant across all voxels of the brain. This assumption is also made in Penny et al. (2003);

however, as we demonstrate using a simple empirical example in the next section, this

homogeneous AR assumption may not be appropriate with real fMRI data.

Instead of formulating the model at each voxel and then adopting spatial smoothing

priors for parameters across voxels, another branch of research is based on vector autore-

gressive (VAR) processes, see Harrison et al. (2003). This approach allows for time-lagged

dependence across voxels and spatial-temporal interaction but fitting these models across a

large number of voxels is computationally intractable and low-rank approximations have to

be used. These models are also useful for studying effective brain connectivity, where one

time course is used to predict the other (Castruccio et al., 2016; Chang and Glover, 2010).
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Another line of work chooses to model the temporal noise as a 1/f long memory process,

and applies discrete wavelet transforms (DWT) towards fitting the model (see, e.g., Jeong

et al. (2013); Bullmore et al. (2004); Fadili and Bullmore (2002); Meyer (2003)). While

this approach seems promising, our focus in this paper will be with modeling the short

term memory using the classical AR process and spatial priors. The reason we choose to

work with the AR process is because of its mathematical amenability and simplicity, and

its wide use in different areas of science. A novel aspect of our work is that we allow the

data to determine the order of the AR process at each voxel using ideas from Bayesian

spatial variable selection.

Computation is an important issue when considering Bayesian spatial-temporal mod-

els for fMRI data. While the main focus of this paper lies with the development of a

new model, another aspect of this work is the comparison of fully Bayes and approxi-

mate Bayesian computation methods. Due to the computational burden associated with

fitting models to high-dimensional brain imaging data, approximate Bayesian methods

have received considerable attention in the neuroimaging literature. One such method is

the variational Bayes (VB) inference (Penny et al., 2003, 2007; Woolrich et al., 2004a).

As there are currently no theoretical results quantifying the accuracy of VB methods (in

contrast to MCMC which is justified by the large sample theory of stationary Markov

chains), the evaluation of VB has to be performed on a case-by-case basis. In some cases,

the performance of VB can be quite good and in other cases it can be quite poor. In this

paper, besides the implementation of our new model based on a suitably designed MCMC

sampler, we have implemented an MCMC algorithm to fit the original GLM-AR model

which we compare to our new model as well as to the VB implementation in SPM. Our

studies indicate that under a low signal-to-noise (SNR) ratio the accuracy of MCMC will

outperform VB according to several criteria. This finding can be considered an extension
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to our previous work in Chapter III.

4.1.1 Motivating example

Our motivating example comes from a single subject in a fMRI experiment examining a

face-repetition stimulus. The experiment involves the presentation of either famous faces

(F) or non-famous faces (N) with each type of face being presented two times. After

convolving each of them with three types of haemodynamic response functions (HRFs),

this leads to a design matrix having twelve columns plus one extra column for an intercept

term in the regression model. After performing the necessary pre-processing steps as

described in Penny et al. (2005), we fit a simple linear regression at each of the voxels.

After obtaining the residuals from each voxel-specific fit, we fit an AR process up to order

12 for each voxel using the “ar” function in R. We then selected the optimal AR orders

based on the AIC criteria, with the output figure shown in Figure 4.1.

The figure shows considerable variablity in the estimated AR order across voxels.

While most of the AR orders are smaller than 4, higher orders up to 12 do exist in some

of the voxels. Furthermore, these estimated AR orders tend to show some extent of spatial

clustering. If, as is often done, we simply model the data using a homogeneous low-order

AR process, then the voxels with higher order estimated AR orders would be incorrectly

modelled, and this inaccuracy in the modeling of temporal noise might in turn have an

impact on the inference on the covariates of interest, resulting in potentially false infer-

ences about brain activation. To address this issue, we propose a spatially varying au-

toregressive order (SVARO) model, where the AR orders at each voxel are assumed to be

heterogeneous across the brain. This is made possible by adopting a spike-and-slab prior

with a stochastic search variable selection scheme. The spatial clustering of AR orders

are incorporated by imposing an Ising prior (Ising, 1925) as the latent indicator for the

spike and slab indicator variables across voxels. We update the latent indicators using the
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Swendsen-Wang algorithm (Swendsen and Wang, 1987) alternating with Gibbs sampling

in our MCMC algorithm. To prevent the phase transition problem associated with the Ising

model, we derive theoretical bounds as in Li et al. (2015) and use these bounds to prevent

the problem. We compare our model with the GLM-AR model of Penny et al. (2007)

(implemented under two schemes: our self written MCMC sampler and the VB algorithm

available in the SPM software) in terms of bias, variance, MSE, sensitivity as well as the

log-pseudo marginal likelihood (Geisser and Eddy, 1979). We conduct these comparisons

using two simulation studies and also on the real motivating data set.

The rest of the paper is organized as follows: In Chapter 4.2 we discuss the model

formulation and the MCMC sampling method. Chapter 4.3 presents the simulation studies.

Chapter 4.4 presents an analysis of the face-repetition data set. Finally, in Chapter 4.5 we

provide a discussion and outline some possible directions for future work.

4.2 Methods

4.2.1 The model

We let P denote the maximum possible order of the AR process at each voxel while K

denotes the number of regression coefficients representing the mean in the model at each

voxel. Using similar notation as in Chapter III, for voxel n (n = 1, ...N), we let yn denote

the observed time series of length T . For simplicity, our model is specified conditional on

the first P observations at each voxel so that the likelihood function is constructed based

on the model of the remaining T − P observations in the time series. We let X denote the

(T−P )×K design matrix, wn denote theK-dimensional vector of regression coefficients

at voxel n, and en denotes the corresponding error term. Define the vector yn ≡ y1:T,n,

the entire time series observed at voxel n. The hierarchical model is specified in several
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Figure 4.1: Optimal maximum AR orders selected based on MLE. The 1st, 2nd and 3rd image denotes the
sagittal, coronal and axial view of the brain. The 4th figure is a histogram of the distribution of optimal orders
in each voxel. The upper bound is set to 12 (default threshold) when doing this experiment.

stages. The first stage is a general linear model:

yP+1:T,n = Xwn + en,(4.1)

where we emphasize again the implicit conditioning on y1:P,n (n = 1, ...N). Let Ẽn denote

the embedded error (or lagged prediction) matrix of dimension (T − P ) × P , with t, p

element (yP+1:T,n −Xwn)[t−p] where the notation [i] denotes the ith index of the vector.
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Further, zn ≡ zP+1:T,n denotes a vector of i.i.d mean-zero Gaussian random variables with

precision λn. The second stage is then an AR model at each voxel:

en = Ẽnan + zn(4.2)

where an is a vector of autoregressive coefficients for the time series at voxel n.

Letting const denote a constant term, the log-likelihood for voxel n, is

(4.3) ln = −λn
2

T∑
t=P+1

[(ytn − xtwn)− ẽtnan]2 +
T − P

2
log λn + const.

Summing this likelihood over n, we can get the overall likelihood:

(4.4) l =
N∑
n=1

{
−λn

2

T∑
t=P+1

[(ytn − xtwn)− ẽtnan]2 +
T − P

2
log λn + const.

}

4.2.2 Spatial modelling

At the next level of the model we specify a spatial smoothing prior for the regression

coefficients W = (w1, ...,wN). Following Penny et al. (2005), we assume that the prior

for W takes the form

π(W) =
K∏
k=1

π(wk)(4.5)

wk ∼ N(0, α−1k (STS)−1)(4.6)

where the model assumes independence in the coefficients associated with the different

columns of the design matrix while the multivariate normal distribution is assigned as

the prior for wk, the vector of coefficients corresponding to the kth column of the design

matrix, the different elements corresponding to different voxels.

Here S is known as a Laplacian matrix with diagonal term equal to the corresponding

number of first order neighbors of a given voxel and −1 on the off-diagonal in positions

corresponding to neighbors of a given voxel. This form for the prior accommodates spatial
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smoothing while also being sparse and convenient to work with computationally. In the

SPM12 software this prior is referred to as the “LORETA” prior. Ultimately, what is of

primary interest in studies of brain activation is a posterior probability of some function

of these regression coefficients, and this posterior probability is computed at each voxel

to produce posterior probability maps (PPM, see Penny et al. (2005)). αk is assigned a

conditionally conjugate hyper-prior

(4.7) αk
iid∼ Gamma(q1, q2) (k = 1, ...K).

4.2.3 Temporal modelling

The key difference between our model and the model of Penny et al. (2007) lies in

our modeling of the temporal noise. Rather than assuming AR orders are homogeneous

throughout all of the voxels (we refer the readers to Chapter III and Penny et al. (2007)

for model details), we allow for variability in the order of the AR processes across voxels.

In addition, we adopt a spatial prior for this variability under the assumption that the AR

orders of neighboring voxels will be similar. Specifically, for each voxel n and order p,

p = 1, . . . , P , we assign the latent indicator variable γpn to the pth AR coefficient apn,

such that given γpn (p = 1...P, n = 1...N), apn will be conditionally independent. γpn

will take value 1 if order p is present for voxel n and 0 otherwise. Conditional on γpn, apn

will either have a normal distribution or unit mass at 0. This is commonly referred to as

the spike-and-slab prior (George and McCulloch, 1993; Mitchell and Beauchamp, 1988),

though we note that our formulation is a spatial spike-and-slab prior.

π(a | γ) =
∏
n

∏
p

π(apn | γpn)(4.8)

π(apn | γpn) = γpnφ(apn; 0, τ 2p ) + (1− γpn)I0(apn)(4.9)

Here, φ(·; a, b) is the pdf of a normal distribution with mean a and variance b and I0(·)
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is the indicator function that it’s argument equals 0, and where γpn is the binary indicator.

τp is the precision of the slab and is again given a Gamma prior τp ∼ Gamma(r1, r2).

The advantage of introducing such a prior is three fold: First, the orders in the AR

process at each voxel that lack support from the data can be effectively removed from the

model as the corresponding AR coefficients can be shrunk exactly to 0. This allows us to

infer which orders are present in which voxels. Second, the number of voxels with high

AR orders is non-zero but expected to be small, which is an aspect of this prior that can

be controlled by tuning the hyper-parameters. Third, for some of the voxels there might

be vacancies in some of the middle orders while there are some non-zero coefficients for

higher orders. The proposed model is flexible enough to allow for this behaviour, since we

have a total of P independent Ising process, one for each possible order p ∈ {1, . . . , P}.

There are of course other model selection techniques that could have been considered.

For example a type of Bayesian lasso could have bee used as an alternative to the spike-

and-slab prior. Wang et al. (2007) has applied the lasso to the selection of AR processes,

and for Bayesian lasso we refer to Schmidt and Makalic (2013). A recent alternative prior

known as the ”non-local” prior for variable selection has been proposed by Johnson and

Rossell (2012) and has been demonstrated to have desirable consistency properties and

yield smaller prediction errors in large sample settings. A review of Bayesian priors that

can be employed for model selection is presented in O’Hara et al. (2009).

We assume that the indicator processes are independent across different orders, π(γ) =∏
p γp, where γp = (γp1, ..., γpN)T . The simplest variable selection model would assume

γpn follows a Bernouli distribution (George and McCulloch, 1993). Here, in order to

allow for the borrowing of information across neighbors as well as to model the spatial

clustering effect of AR orders, we choose to use the Ising model (Smith and Fahrmeir,
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2007) independently for each p = 1...P .

P (γp) ∝ exp

(
β0p
∑
n

γpn + β1p
∑
n1∼n2

I(γpn1 = γpn2)

)
,(4.10)

where β0p and β1p are two hyper-parameters controlling the sparsity and smoothness of

the binary latent field respectively. Typically, a higher value of β0p results in less sparsity

and a higher value of β1p indicates more smoothness. One issue with the Ising model that

requires some care is the choice of hyper-parameters. When these parameters take values

near what is known as the “phase transition” boundary, the mixing of an MCMC sampler

will suffer from critical slow down (Stanley et al., 1987). To avoid the phase transition

boundary, we adopt an analytical approach similar to Li et al. (2015) to quantify the value

for the bounds for β0p and β1p. Derivations are given in Subsection 4.2.5 and Appendix C.

4.2.4 MCMC updating scheme

As shown in Appendix C, most of the updates related to posterior sampling of our

model can be accomplished via Gibbs sampling. One exception is to update latent indi-

cator γ, and for these we use a Swendsen-Wang algorithm, alternating Swendson-Wang

updates with Gibbs updates (Johnson et al., 2013). This strategy has proven successful in

improving the mixing of the Markov chain sampler and results in faster block updates in

various studies (Higdon, 1998).

To implement a Swendsen-Wang update, we first find the full conditional density of γp

to be

(4.11) P (γp | ·) ∝ L(γp) exp
(
β0p
∑
n

γpn + β1p
∑
n1∼n2

I{γpn1 = γpn2}
)

where L(γp) denotes the likelihood term associated with γp. We next define what is

known as a “bond variable” (an auxiliary variable) φpn1n2 , for each first-order neighboring

pair n1 ∼ n2 ({n1, n2} ∈ N). Let φp = {φpn1n2 : n1 ∼ n2}, with

φpn1n2 | γp ∼ Unif(0, exp(β1pI{γpn1 = γpn2}))(4.12)
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where Unif(·) denotes uniform distribution, then we have

P (γp | φp, ·) ∝ L(γp) exp(β0p
∑
n

γpn)∏
n1∼n2

I{0 ≤ φpn1n2 ≤ exp(β1pI{γpn1 = γpn2})}(4.13)

From Equation 4.12 we know that

P (φpn1n2 > 1 | γ) =

∫ exp
(
β1pI{γpn1=γpn2}

)
1

dφpn1n2 > 0⇔ γpn1 = γpn2(4.14)

The meaning behind this is that, if φpn1n2 > 1, then γpn1 and γpn2 can be considered

as ”bonded” with probability 1 − exp(−β1p). Thus, φp will partition the voxels into Sp

different clusters, where all the latent indicators in a given cluster share the same value

(i.e. either 1 or 0). Let {n} denote the cluster containing voxel n, then the full conditional

of γp{n} takes the following form

P (γp{n} = 1 | ·) ∝ L(γp{n} = 1) exp

β0p ∑
n∈{n}

γpn

 ,(4.15)

and a draw from this distribution is easily made after normalization. Additional details are

provided in Appendix C.

To evaluate the performance of our model, we make comparisons with the standard

GLM-AR spatial model. One implementation of this model that we make comparisons to

is the Variational Bayes (VB) method in SPM12 software. Another implementation is our

self-written MCMC sampler for the same model. Although the accuracy of VB has been

verified in a setting with high signal-to-noise ratio (SNR) by Chapter III, we have noticed

here that under a low SNR, MCMC will outperform VB according to certain metrics. This

will be illustrated in the simulation studies and our motivating application. Thus, besides

the SVARO model we have developed here, we will name the VB version and MCMC

version of GLM-AR model as PVB and PMCMC respectively.
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4.2.5 Bound construction

The hyper-parameters in the Ising model play a vital role in posterior estimation. With-

out careful selection, we might face potential mixing problems associated with “phase-

transition” (Stanley et al., 1987). There are various approaches to sampling such hyper-

parameters, Johnson et al. (2013) estimated them using path sampling (Gelman and Meng,

1998), Shu et al. (2015) proposed a Monte Carlo EM algorithm to obtain a point estimate

of the hyper-parameters, but these procedures would be too time consuming for our model,

considering that we have over 10 independent Ising fields. Smith and Fahrmeir (2007) pro-

posed to update the hyper-parameters and binary indicators together, but this approach still

suffers from potential possibility of sampling over the phase transition boundary. Here, we

adopt a similar approach as in Li et al. (2015) and construct some theoretical bounds to

prevent the possible phase transition, the resulting hyperparameters values are then chosen

as fixed in that bound. This procedure turns out to work well in our analysis and studies.

To construct the bounds, we first write out the posterior conditional density w.r.t. γp,

P (γp | ·) ∝ exp
(
β0p
∑
n

γpn + β1p
∑
n1∝n2

I{γpn1 = γpn2}(4.16)

+
∑
n

∑
t

−λn
2

(etn −
∑
p

ẽtnpapn)2
)

In our model where multiple orders exists across space, it is natural to assume that: 1) For

high AR orders, we assume there are relatively few voxels; and 2) For low AR orders, the

posterior density when low AR orders exist is greater than that when low AR orders do

not exist, meaning P (γp | ·) is greater than P (0 | ·).

Let πp denote the candidate voxels selected for order p, then we know that the maximum

number of neighbors they can achieve is when all the candidate voxels form a cube. Let

Vp = (πpN)1/3 denote the length of an edge of this cube, then from Appendix C, we know
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that there are 3V 2
p (Vp − 1) neighboring pairs. Based on this it is easy to see that

β0p
∑
n

γpn + β1p
∑
n1∼n2

I(γpn1 = γpn2) = β0pV
3
p + 3β1pV

2
p (Vp − 1)(4.17)

According to 1), we know that for high AR orders (typically P > 8) β0p + 3β1p < 0.

According to 2), we know that for low AR orders (typically P < 4),

∑
n

∑
t

−λn
2

(etn −
∑
p0 6=p

ẽtnp0ap0n)2 ≤
∑
n

∑
t

−λn
2

(etn(4.18)

−
∑
p0

ẽtnp0ap0n)2 +
[
β0p
∑
n

γpn + β1pI(γpn1 = γpn2)
]

Reorganizing this by moving the first term on right-hand side to left produces:

∑
n

∑
t

−λn
2

[
(etn −

∑
p0 6=p

ẽtnp0ap0n)2 − (etn −
∑
p0

ẽtnp0ap0n)2

]
(4.19)

≤
[
β0p
∑
n

γpn + β1pI(γpn1 = γpn2)
]

The two terms in the bracket on the left side can be considered as one with and without

ẽtnpapn. Thus, it can be roughly considered as the residual sum of squares of a common

linear regression when apn is included in the model or not. Let R2
pn denote the coefficient

of determination for voxel n and order p, then we have

β0p
∑
n

γpn + β1p
∑
n1∼n2

(γpn1 = γpn2) ≥ −
1

2

∑
n

∑
t

R2
pn

1−R2
pn

(4.20)

Combined with Equation 4.17, we have

β0pV
3
p + 3β1pV

2
p (Vp − 1) ≥ −1

2
πpNT

R2
pn

1−R2
pn

(4.21)

For a 3-dimensional grid we assume N = 56526 as the number pf voxels. Among them,

a proportion of πp = 0.1 are selected for order p. So Vp = (πpN)1/3 = 17.8. We assume

that 5% of the variation can be explained as a result of order p, so R2
pn = 0.05. We then

have β0p + 2.83β1p ≥ −9.26.
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Note that the inequality above just gives a range values for the hyper-parameters, rather

than providing the values directly. In practice, the exact values of hyper-parameters are

largely determined by the researcher, which should be combined with one’s prior experi-

ence and an initial analysis of the data. We suggest obtaining such values based on some

exploratory ad-hoc approaches, e.g., a linear regression at each voxel followed by fitting

an AR process. Then the the estimated optimal orders can be used as a reference when

determining the hyper-parameters in the Ising model. This method has turned out to work

well empirically as demonstrated in Section 5.

4.2.6 Log pseudomarginal likelihood

To compare the model performance between SVARO and PMCMC, we use the log

pseudo marginal likelihood (LPML). This criteria for model selection is proposed by

Geisser and Eddy (1979) and enjoys wide application due to its ease of computation based

on MCMC sampling output.

To begin with, let M denote the model, and θ = {W,A,α, τ ,λ} denote the parame-

ters. The time series yn in each voxel nwill be conditionally independent of the time series

at other voxels given the model and parameters, p(Y | θ,M) =
∏N

n=1 pi(yn | θ,M). In

this spirit, the LPML is an approximation to the marginal likelihood under the simplifying

assumption

p(Y |M) ≈
N∏
n=1

pn(yn | y−n,M)(4.22)

where pn(yn | y−n,M) is the predictive distribution of yn under the model, which when

evaluated at the observed yn is referred to as nth conditional predictive ordinate (CPOn).

Then the LPML is defined as LPML =
∑N

n=1 log(CPOn). The CPOn can be estimated

from MCMC output by

CPO−1n ≈
1

L

L∑
l=1

1

pn(yn | θl,M)
(4.23)
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where l denotes the lth posterior draw from an MCMC sampler where the total number of

draws is L, excluding the burn-in. Interested readers may refer to Gelfand and Dey (1994)

for more details of this estimator.

4.2.7 Posterior probability maps

A primary emphasis on fMRI data analysis is inference for activation, so we provide

some basic background on contrast and posterior probability maps (PPM). A contrast for

a certain voxel n is the inner product of a contrast vector c with the regression coefficient

in that voxel wn. The contrast vector c is typically a weighted vector with elements con-

sisting of 1 and −1 representing an effect of interest. For example, to study the effect

of A versus B when these are the only two conditions would lead to a contrast vector of

c = (1,−1)T .

Having defined contrast, A PPM is a map that shows the posterior probability of acti-

vation for each voxel: P (cTwn > δe). Here δe is a pre-specified “activation threshold”,

for example, a value that corresponds to 1% of the global mean value. Thus, PPM looks at

the probability of the contrast cTwn being greater than activation threshold δe, given the

data.

To formally determine activation in the brain, one can look at a thresholded PPM. This

is obtained by exerting a second threshold, namely a “probability threshold” δp, onto the

original PPM. Thus, a voxel is “activated” if P (cTwn > δe) > δp. This δp reflects the

confidence of the inference and usually takes a value above 0.9 (e.g. 0.95 or 0.99). This

process discretizes the PPM into “non-activated” and ”activated” voxels and is commonly

used in summarizing a Bayesian analysis for brain activation.
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4.3 Simulations

4.3.1 Simulation design

In this simulation, we aim to compare our model (SVARO), with PMCMC, and PVB.

The simulation is based on a real single-subject face repetition dataset (Henson et al.,

2002). Complete information on the dataset can be found online at

http://www.fil.ion.ucl.ac.uk/spm/data/. In this experiment, famous faces and non-famous

faces are presented two times, resulting in four types of stimulus (F1,F2, U1, U2). These

stimuli are convolved with a haemodanymic response function (HRF) to be formally used

as regressors in the statistical model. In terms of voxels, we exert a 2D brain mask on the

z-axis into the brain consisting of 53× 63× 52 voxels, and this gave us 2087 voxels.

To simplify the computation we assume there are only two columns in the design

matrix (K = 2). The first column, or slope, is set to be the first stimulus (F1) con-

volved with the HRF, and the second column is the intercept (a vector of 1). The slope is

generated under a mean zero multivariate normal distribution w1 ∼ N(0, (10STS)−1/2),

while the intercept is generated under a mean 100 multivaraite normal distribution w2 ∼

N(100, (10STST )−1/2). The white noise will have a precision of λn = 0.1 (n = 1...N).

This corresponds to a low signal-to-noise (SNR) ratio, where the temporal noise will play

a greater role in the datay. In the following, we will carry out two simulations. The first

will be simulated under our model and the second will be generated under the standard

spatial GLM-AR model. In these two simulations, we aim to look at the estimation ac-

curacy of the slope (w1), intercept (w2), and autoregressive coefficients (ap p = 1...P ),

and also whether the difference in inference for these coefficients will lead to a possible

difference in the final inference on activation. All the simulations are replicated 100 times.
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4.3.2 Simulation I

Here we simulate under the SVARO model. We assume that the maximum order is

P = 8. The precisions are set as τp = 20 (p = 1...P ). For simplicity, we assume that

all AR orders are generated spatially according to the same hyper-parameter of the Ising

model, i.e., β0p = −0.2 and β1p = 0.3. The AR order in PMCMC and PVB are set to

P = 1 as is fairly standard practice.

Figures 4.2 shows the true AR orders, estimated maximum orders using SVARO, and

the difference of the two. The estimated maximum orders are obtained by averaging the

posterior mean of different orders in each voxel over their simulation replicates, and further

rounded to be 1 or 0 using a threshold of 0.5. The highest orders that have probability

greater than 0.5 are considered as the maximum order. We can see that most of the orders

match between the two figures indicating good performance. There are some negative

values in the difference map.
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Figure 4.2: Maximum orders of AR coefficients in each voxel. The left one denotes the true generated
maximum orders, ranging from 0 to 8. The middle one shows the posterior estimates of the maximum orders.
The right one denotes the difference between the two.

We next look at how the three methods compare in estimating the 1st AR coefficient.

As shown in Figure 4.3, SVARO shows little error compared with the truth, indicating

that our model has captured the autoregressive parameter quite well. In contrast, PMCMC
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and PVB exhibit more bias, indicating a lack of fit for the temporal noise. Note that we

are only displaying the SVARO estimates for the 1st order for simplicity, the other orders

exhibit the same trend, we refer interested readers to supplementary materials for details.
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Figure 4.3: The top left image (with scale −1 to 1) denotes the true AR coefficients for 1st order. The 2nd,
3rd, and 4th image are the corresponding difference between truth and posterior mean of SVARO, PMCMC
and PVB respectively. The color scale for the rest of the three images are truncated from −0.3 to 0.3 so that
the error in SVARO is more visible. The posterior means are all averaged over 100 replicates.

Table 4.1 summarizes the average MSE for various parameters. These summaries are

obtained by averaging the MSE of the corresponding parameters across all the voxels
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MSE LPML Timing
w1 w2 a1

SVARO 0.478 0.030 0.001 -1842902 108min
PMCMC 113% 135% 509% -1926620 11min

PVB 199% 138% 510% - 1min

Table 4.1: Table of MSE, LPML and Timing for the three models. MSE is calculated by averaging MSE in
each voxel and over simulation replicates. The MSE values for PMCMC and PVB are relative to those in
SVARO.

and over simulation replicates. It is clear that SVARO has the smallest MSE for all of

the parameters. In addition, PMCMC outperforms PVB in terms of slope, which is the

primary parameter that inference is based on. This finding is different than that found in

Chapter III because here we are using a low SNR, and this appears to be one setting where

MCMC outperforms VB for this particular model. Table 4.1 also gives the LPML and the

timing. SVARO has higher LPML than PMCMC, indicating a better model fit. Notice that

the VB implementation can not be used to obtain the LPML. In terms of timing, SVARO

takes 108min with 10,000 iterations following 10,000 burn-in iterations, PMCMC takes

11min with the same number of iterations, PVB is the fastest, and takes only 1min.

We next investigate how the differences observed for the individual parameters will

impact the overall inference of interest. A sensitivity plot is presented in Figure 4.4. This

figure is obtained by plotting the average sensitivity against a range of marginal posterior

probability threshold from 0.9 to 1. We choose this range because it covers those values

most often used in practice.

In terms of the underlying activation threshold, we use two thresholds: the true value

of the contrast that corresponds to top 10% and top 5% of all the voxels. Thus, corre-

sponding to a certain activation threshold and a certain probability threshold, the higher

sensitivity is, the better the model is in terms of capturing activation. Again, a notable dif-

ference is observed when comparing the three methods, with SVARO giving the uniformly

highest sensitivity across entire range of probability thresholds and PVB giving the lowest
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sensitivity. PMCMC is better than PVB but still under-performs relative to SVARO.
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Figure 4.4: Thresholded sensitivity curve for the three methods, with two effect size thresholds. The left
image has an effect size threshold corresponding to the top 10% of the values, while the right has an effect
size threshold corresponding to the top 5% of the values. The x-axis denotes the probability threshold values
and y-axis denotes the corresponding sensitivity.

To look at where the inferences might differ we plot the posterior probability maps

(PPM) in Figure 4.5. The figure depicts the locations of the true activations and the

posterior probability maps from SVARO. In addition, differences in the probability maps

comparing SVARO with PMCMC and PVB are also depicted. Again SVARO appears to

perform the best in producing the highest posterior probabilities for regions that are truly

activated. PMCMC is similar to SVARO but its probability on those activated regions are

slightly lower than those from SVARO, especially on the boundary. PVB under performs

compared with the other two approaches by providing greater posterior probability on

non-activated locations while providing smaller posterior probability on active locations.

4.3.3 Simulation II

Although the real data examined earlier suggest the existence of heterogeneous AR or-

ders we want to see the performance of SVARO under a homogeneous AR order assump-
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simulated activation
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Figure 4.5: Topleft depicts the true activation map (red dots denote activation). The remaining panels are
posterior probability maps (PPM) of activation obtained using SVARO, (SVARO-PMCMC) and (SVARO-PVB).
The latter two reflect the difference of the two alternative approaches relative to SVARO.

tion. To do this we simulate under the competing GLM-AR model. The AR coefficients

are simulated under the LORETA prior and the AR order is set to 1 for every voxel, with

prior precision τp = 400. We set the maximum order as P = 12 when applying SVARO.

Thus, PMCMC and PVB are working under the true model while SVARO is working un-

der a more general model one. Some comparisons are presented here while additional

comparisons are presented in the Supplementary Material.
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Table 4.2 shows the MSE summaries of the estimators. Under the competing model,

SVARO still gives good performance in slope and intercept. Its MSE are slightly higher

as expected. It is worth mentioning that PVB again under performs relative to PMCMC in

terms of slope.

MSE LPML Timing
w1 w2 a1

SVARO 0.502 0.031 0.003 -1817287.93 206min
PMCMC 99% 97% 54% -1875900.645 11min

PVB 167% 98% 49% - 1min

Table 4.2: Table of MSE, LPML and Timing for the three models. MSE is calculated by averaging MSE in
each voxel and over simulation replicates. The MSE values for PMCMC and PVB are relative to those in
SVARO.

Figure 4.6 presents the sensitivity curves. Despite the data being simulated under a

constant order AR assumption SVARO demonstrates similar sensitivity to that of PMCMC

in both figures. The sensitivity curve of VB is uniformly lower than the other two because

of the inaccurate estimation of slope parameter.
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Figure 4.6: Thresholded sensitivity curve for the three methods, with two effect size thresholds. The left
image has effect size threshold corresponding to the top 10% of the values, while the right has an effect size
threshold corresponding to the top 5% of the values. The x axis denotes the probability threshold values and
y axis denotes the corresponding sensitivity.
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4.4 Real application

We turn our focus back to the face repetition data set that originally motivated our

model development and look at the results from the three methods. In this analysis we

use a complete set of five regression coefficients (F1,F2,U1,U2,intercept). We assume an

AR order up to a maximum order of P = 12 when fitting the SVARO model, and an

AR(3) for PMCMC and PVB. One might think that the choice of an AR(3) for the latter

two approaches seems arbitrary, and this is exactly justification for the use of the SVARO

model where such an arbitrary assumption need not be made. We apply the models to data

for the whole brain in 3D with 56, 526 voxels.

The following pre-processing steps are applied to the data prior to fitting the Bayesian

models: all functional images are aligned to the first image using a six-parameter rigid-

body transformation. Then slice-timing correction is performed to set the standard acqui-

sition time as the 12th slice. Images are spatially normalized to a standard EPI image.

Global mean g is computed so that each time series was divided by 100/g to represent a

percentage of g. Finally, a high-pass filter with cut-off frequency of 1/128Hz is used to

remove low frequency signal that would likely arise through scanner drift.

Table 4.3 presents the distribution of optimal orders from SVARO across voxels. Not

surprisingly, the most frequent order is the 0 and 1st order, taking about 35% and 23%,

then the second order (about 12%). As order increases, its percentage generally decreases.

However, it is interesting to note that the distribution is not strictly monotone decreasing

with order, and that even as high an order as 8 is chosen for 10 percent of the total number

of voxels. The existence of these higher orders and the variability in the orders is in

correspondence with our exploratory analysis in the motivating example and indicates the

necessity of a model fitting with high AR order structure.
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Examining the marginal posterior estimates of parameters, since there are 5 covariates,

we look at a contrast corresponding to the effect of “fame” (famous face vs non-famous

face), cTf wn, where cf = (−1,−1, 1, 1, 0)T/2. The posterior mean and standard deviation

(SD) for fame, as well as the posterior mean for the 1st order autoregressive coefficient are

shown in Figure 4.7. While the posterior SD of SVARO and PMCMC are very close, the

posterior means show some differences between the two approaches. Also, the SD from

PVB shows apparent discretization. This is due to a graph-partitioning that is incorporated

in the algorithm for the sake of speeding up the computation. It is clear that the boundaries

of these graph-partitioned regions have substantially higher SD than the interior locations.

This finding is in accordance with Chapter III. The posterior mean of PVB also seems to

suffer effects from this partitioning algorithm, thought its effect is not as pronounced as

with the SD. Finally, in terms of the AR coefficients, PMCMC and PVB show a similar

pattern of difference in comparison with SVARO. This is a natural result of the model

assumption. Since PMCMC and PVB are both based on GLM-AR model. In terms of

formal model comparison, SVARO gives an LPML value of −46589281.02 and PMCMC

has a lower LPML of −48158447.77, from which appears that SVARO is the preferred

model according to this model selection criterion.

Finally, we look at the effect of fame using thresholded PPMs. The activation threshold

is set as 0.2% of the global mean value, and the probability threshold is set as 0.95. Figure

4.8 takes the middle slice from the sagittal, coronal and axial view. We can see that there is

a match in terms of a majority of activation regions inferred from SVARO and PMCMC. A

closer look reveals that PMCMC tends to make more scattered predictions across the back

part of the brain, which is likely to have more false positives than SVARO. The LPML

from the two models also supports this point. The number of activation regions from PVB

are far greater than the number from the other two, and are apparently more scattered.
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From the results of our our simulation studies, we suspect that these scattered activated

regions are due to false positives from the algorithm. Figure 4.9 indicates how activations

are distributed on the surface of the brain. The trend is the same as with Figure 4.8: while

PMCMC is a little more liberal than PSVARO, PVB is far more liberal than the other two.

In terms of timing, PVB took about 1h to finish, PMCMC took 1 day, while SVARO

took about a week of computation. To speed up SVARO, we suggest the use of parallel

programming, which could make the algorithm run faster.

orders 0 1 2 3 4 5
percentage 35.29% 23.36% 14.19% 7.13% 9.65% 4.83%

6 7 8 9 10 11 12
13.37% 11.89% 11.84% 7.82% 3.04% 4.39% 6.24%

Table 4.3: Percentage of optimal orders from order 0 up to order 12, for all the 56, 526 voxels.

4.5 Discussion

In this paper, we have developed a new Bayesian hierarchical model, GLM-SVARO,

that allows different AR orders across the brain, with the orders themselves displaying

a certain level of spatial clustering based on an Ising model. We have compared it with

a self-written MCMC sampler for the standard GLM-AR model and a VB algorithm for

the same model. The results are interesting, under a low SNR ratio, VB seems to suffer

from variance overestimation, leading to a much bigger MSE than the other two methods.

It is likely that as temporal noise increases, there is a more vital role played by the AR

correlation that increases the posterior correlation between different parameters and this

makes the mean field assumption of VB less accurate.

A further look at SVARO and PMCMC reveals that due to the flexibility of order as-

sumption, SVARO is better that PMCMC in terms of not only accuracy and sensitivity, but

also formal model selection using LPML. Through AR images and an exploratory analy-
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Figure 4.7: Posterior estimates from the middle (27/53) slice of the brain on sagittal view. From top row
to bottom are: posterior mean of fame, posterior standard deviation of fame, and posterior mean of a1,
respectively. From the left column to right are SVARO, SVARO−PMCMC and SVARO−PVB.

sis, we showed that a constant low-order AR assumption can be violated with real fMRI

data. It is very likely that this issue is not unique to the face repetition data set.

There is a computational price to be paid for gaining the flexibility we have proposed

in our model. Our model takes a longer time to run than PMCMC and PVB, mainly due to

the calculation of the multiple orders. Noticing that the binary indicators of orders can be

updated independently, we can in fact update these indicators using parallel programming
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Figure 4.8: Activation maps for effect of fame on the three middle slices. From left to right are sagittal, coronal
and transverse slice. Top row shows the activation from SVARO (red) and PMCMC (blue), with a joint region
indicated by purple dots. The bottom row shows the activation from SVARO (red) and PVB (green), with the
joint region denoted by brown dots.

techniques, thereby making the algorithm 10 to 20 times faster. This will be investigated

in future work.

Another applicable, and perhaps more simple and straightforward idea is to assume a

Potts model for the orders of AR coefficients. A Potts model, combined with a Dirichlet

process prior for parameters has been investigated for selecting covariates of interest in

brain imaging (Johnson et al., 2013). Here we can also apply it to the selection of au-

toregressive orders to yield a still flexible but more parsimonious model. Investigation of

hyper-parameter estimation in the Ising model and the use of alternative spatial models is

also of interest, as is increasing the scope of our comparison of methods to include wavelet
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Figure 4.9: Activation maps for effect of fame in a 3D view. The left column is the posterior view while right
column presents the anterior view. The top row shows the activation from SVARO (red) and PMCMC (blue),
with joint region indicated by purple dots. The bottom row shows the activation from SVARO (red) and PVB
(green), with joint region indicated with brown dots.

approaches that focus on long memory errors, or VAR models (Harrison et al., 2003).
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CHAPTER V

Conclusion and Future Work

In this dissertation, we developed, implemented, and compared a series of fully and

approximate Bayesian computational algorithms in the context of spatial point process

models and neuroimaging. We also proposed a novel Bayesian hierarchical model, GLM-

SVARO, based on evidence that the AR order varies spatially in some fMRI data sets.

In Chapter II, we derived an HMC algorithm for the LGCP model and combine it with

the FFT algorithm for fast computation of large covariance matrices. To be able to use

FFT we extend the grid so that the correlation matrix forms a circulant matrix (Møller

et al., 1998). We also adopt a re-parametrization of the latent field so as to make the

calculation of the gradient in HMC more mathematically convenient. We also developed

a VB algorithm with mean-field approximation. To deal with the non-conjugacy of the

latent field in the VB algorithm we used a Laplacian approximation, resulting in closed-

form updates. We estimated the decay parameter in the correlation function by the method

of minimum contrast to avoid convergence issues in the VB algorithm.

We also made use of the R INLA software package posted on the R-INLA web page.

Among the three options: Gaussian, Simplified Laplace, and full Laplace, we chose the

latter two for this project as they have better accuracy. We also tried two versions of INLA

combined with the SPDE approach: one with mesh size of 436 and the other with mesh
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size of 4075. We showed that the result are sensitive to the choice of mesh size and in

some cases numerical stability is a concern for such methods.

We found, not surprisingly, that HMC is the most reliable approach in terms of accu-

racy. This is especially true if one is also interested in the hyper-parameters of the latent

field. The accuracy of VB was not as good as its performance in other models (e.g. mix-

ture models as Blei et al. (2006)). This is due to several reasons. First, through the mean

field factorization spatial correlation is ignored. Second, with a combination of a Poisson-

type likelihood and a Gaussian density, the resulting density of the discretized LGCP tends

to depart from Gaussianity. This causes issues with the Laplacian approximation. Third,

estimation of the decay parameter using the method of minimum contrast potentially in-

troduces bias in the inference of the latent field.

Despite the accuracy loss compared to HMC, INLA was shown to be a promising al-

ternative when speed is the primary concern. Its ability to compute complex point process

models quickly is due to two reasons: 1) The Laplace approximation combined with nu-

merical integration; and 2) Its GMRF approximation to the full GRF. However, INLA only

models the full marginal distributions of the parameters. If interest is in the joint posterior,

then INLA is not appropriate. For example, posterior predictive checks require an estimate

of the joint posterior. Another known limitation is when the number of hyper-parameters

is greater than a handful where the INLA approximation may become suspect.

Several avenues of future work are possible. To preserve the correlation of the latent

field, a fixed-form VB algorithm is worth exploring. This would require one to solve some

optimization problems related to the approximate family of distributions. Some research

has already been done on this front. For example, Nguyen and Bonilla (2014) and Lloyd

et al. (2014). For a nice discussion on fixed-form VB we refer the reader to Opper and

Archambeau (2009). In order to avoid possible bias from the Laplacian approximation
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and minimum contrast estimates of the decay parameter in the LGCP intensity function,

Monte Carlo sampling can be adopted (Paisley et al., 2012). However, to obtain a small

Monte Carlo error computational efficiency may be sacrificed for greater accuracy. To

further speed up VB, and reduce storage, one can assume a sparse Gaussian field rather

than a full GRF, this is an interesting future research direction when dealing with 3D brain

imaging data sets with spatially varying covariates, as the full GRF assumption is usually

prohibitive for such large data sets. As for INLA, since the full joint posterior distribution

is estimated, combining INLA with a copula model may be a viable solution (Ferkingstad

et al., 2015).

In Chapter III, we developed an HMC algorithm for the GLM-AR model and compared

it with VB and the mass univariate approach. Our findings show that significant differences

exist between Bayesian methods and classical approaches. In the mass univariate approach

we not only pre-smooth the data but also account for the correlated multiple testing prob-

lem using random field theory; while in Bayesian approaches spatiotemporal correlation

directly incorporated into the model.

More interestingly, we found that under the 2d simulation studies where the SNR is

high, there is very good agreement between HMC and VB in terms of accuracy, vari-

ability, and spatial smoothness. This suggests that estimation under the VB algorithm is

accurate. For 3d data, SPM VB software uses a graph-partitioned algorithm to speed up

computation. However, we find that the use of such an algorithm results in larger variance

along the partition boundaries. Since variance is a key component of inference, it is worth

considering whether such an algorithm is necessary for the sake of speed.

Since the comparisons are under only one type of spatial prior for the signal, it would

be interesting in future work to compare other priors. For example, some GMRF prior

(Woolrich et al., 2004a) or a non-stationary diffusion based prior (Harrison et al., 2008a)—
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as the use of different priors can lead to different posterior results. Also, as Sidén et al.

(2017) points out, there are differences between 2d and 3d simulations. Hence, it would

be interesting to conduct full 3d simulations for further exploration.

In Chapter IV, we proposed a new GLM-SVARO model based on empirical evidence

that the face-repetition data set in Chapter III has spatially varying AR orders. Rather

than fixing the AR orders throughout the brain as in the GLM-AR model, we assume

that the orders vary spatially across the brain. Spatial clustering of the AR orders are

induced through an underlying Ising prior. With an Ising prior, a potentially troublesome

problem is the phase-transition. Therefore we developed theoretical boundaries to restrict

the range of the Ising prior hyper-parameters. We update the binary indicators of the Ising

prior using the Swendsen-Wang algorithm alternating with Gibbs sampling. We compared

GLM-SVARO with GLM-AR where GLM-AR is estimated via both an MCMC algorithm

and a VB algorithm.

When simulating data under the prior model, our model outperforms GLM-AR. With

GLM-SVARO we get smaller MSE, uniformly higher sensitivity in capturing simulated ac-

tivations, and higher LPML. When simulating under the competing GLM-AR, our model

has slightly higher MSE than GLM-AR using an MCMC algorithm, but lower MSE than

GLM-AR using Penny’s VB algorithm. This illustrates two things. First, under model

mis-specification, GLM-SVARO performs adequately well. Second, PVB tends to give

poorer performance as the SNR decreases. The uniformly higher LPML suggests that

GLM-SVARO is a better model than GLM-AR in terms of accuracy and posterior infer-

ence.

The greatest limitation of GLM-SVARO is computational time. Current version takes

about 10 hours on a slice of data and about one week for a whole brain analysis. There

are several ways to reduce this time. The most direct way is to use parallel programming.
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As different AR orders are assumed independent at each voxel, this parallel computing

is fairly feasible. Another possible alternative is to consider modeling the orders using a

Potts model. And instead of updating multiple independent Ising fields, one only needs to

update one state of the Potts model.

In conclusion, based on the work in this dissertation, we find that given the underlying

theory of MCMC, a fully Bayesian approach, via MCMC or HMC, is the most reliable

approach in terms of accuracy. Approximate Bayesian methods, when properly used, can

serve as powerful tools for fast computation. However, the user should be aware of their

limitations and proceed with caution. When and where these approximation methods are

likely to be “proper” and “powerful”, however, depend on the specific problem setting,

and thus one should proceed carefully.
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APPENDIX A

Derivations in Chapter II

A.1 Gradient derivation for ρ

For the circulant matrix E with base e = (e0, ..., em2−1), the ith eigenvalue is given by:

(A.1) λi =
m2−1∑
j=0

ej exp(ι2πji/m2)

where ι =
√
−1. For the power exponential family of correlations ej = exp(−ρdδj) where

dj is the distance from origin. So we have

(A.2) λi =
m2−1∑
j=0

exp(−ρdδj) exp(ι2πji/m2)

Thus, we have E = FΛFH where F is the matrix of eigenvectors, and Λ is a diagonal

matrix of eigenvalues with ith value to be λi.

To derive the partial derivative of log π(ρ | ·), we first derive the partial derivative of

E
1
2γ

∂

∂ρ
(E

1
2γ)i = (F

∂

∂ρ
Λ

1
2 FHγ)i(A.3)

So we need the partial derivative of each diagonal element of Λ1/2 w.r.t ρ.
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∂λ
1
2
i

∂ρ
=

∂

∂ρ

(m2−1∑
j=0

exp(−ρdδj) exp(ι2πji/m2)
) 1

2
(A.4)

= −1

2
λ
− 1

2
i

m2−1∑
j=0

dδjej exp(ι2πji/m2)(A.5)

The summand in the last line turns out to be the base of a matrix with base e∗ =

(dδ0e0, ..., d
δ
m2−1em2−1). Consider the circulant matrix D with base d = (dδj , ..., d

δ
m2−1).

Then it is easy to show that E∗ = D � E is a circulant matrix with base e∗ = d � e

where � represents element wise multiplication. And
∑m2−1

j=0 dδjej exp(ι2πji/m2) is the

ith eigenvalue of E∗. Call it ψi. Thus,

(A.6)
∂λ

1
2
i

∂ρ
= −1

2
λ
− 1

2
i ψi

Putting this all together we have

∂

∂ρ
(E

1
2γ)i =

∂

∂ρ
− 1

2
(FΛ−

1
2 ΨFHγ)i(A.7)

= −1

2
(FΛ−

1
2 FHFΨFHγ)i(A.8)

= −1

2
(E−

1
2 E∗γ)i(A.9)

Now we can derive the gradient for ρ:

∂

∂ρ
log π(ρ | ·) =

∂

∂ρ

{∑
i

[
yimi − A exp(yi)

]
+ log π(ρ)

}
(A.10)

=
∑
i

∂

∂ρ

{
µmi + σ(E

1
2γ)imi − A exp

[
µ+ σ(E

1
2γ)i

]}
+
π′(ρ)

π(ρ)
(A.11)

=
∑
i

{
σ
∂

∂ρ
(E

1
2γ)imi − A

∂

∂ρ
exp

[
µ+ σ(E

1
2γ)i

]}
(A.12)

= −1

2
σ
∑
i

{
mi −

Aσ

2
exp

[
µ+ σ(E

1
2γ)i

]}
(E−

1
2 E∗γ)i(A.13)

= −σ
2

[
m− A exp

(
µ1m2 + σE

1
2γ
)]T

E−
1
2 E∗γ(A.14)
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where m = (m1, ...,mm2) and we use the fact that π′(ρ) = 0 for flat prior of ρ.

Because E
1
2 E∗γ = FΛ−

1
2 FHFΨFHγ = FΛ−

1
2 ΨFHγ, we can use the DFT to compute

all the matrix operations in the equation above.
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APPENDIX B

Derivations in Chapter III

B.1 Re-expression of the log-likelihood

By elaborating the vector multiplication in Equation 3.3, we have

ln = −λn
2

T∑
t=P+1

[
ytn −

∑
k

xtkwkn −
P∑
p=1

(yt−p,n −
∑
k

xt−p,kwkn)apn

]2
(B.1)

+
T − P

2
log λn + const

Let a∗n = (−1, aTn )T , so a∗pn = apn if p ≥ 1 and a∗pn = −1 if p = 0, then equation (B.1)

can be written as
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ln = −λn
2

T∑
t=P+1

[
P∑
p=0

yt−p,na
∗
pn −

P∑
p=0

∑
k

xt−p,kwkna
∗
pn

]2
+
T − P

2
log λn + const

= −λn
2

T∑
t=P+1

( P∑
p1=0

P∑
p2=0

yt−p1,nyt−p2,na
∗
p1n
a∗p2n − 2

P∑
p1=0

P∑
p2=0

K∑
k=1

yt−p1,n

xt−p2,kwknap1nap2n +
P∑

p1=1

P∑
p2=1

K∑
k1=1

K∑
k2=1

xt−p1,k1xt−p2,k2wk1nwk2nap1nap2n

)
+
T − P

2
log λn + const

= −λn
2

( P∑
p1=0

P∑
p2=0

yyp1p2nap1nap2n − 2
P∑

p1=0

P∑
p2=0

K∑
k=1

yxp1np2kwknap1nap2n

+
P∑

p1=0

P∑
p2=0

K∑
k1=1

K∑
k2=1

xxp1k1p2k2wk1nwk2nap1nap2n

)
+
T − P

2
log λn + const

where

yyp1p2n =
T∑

t=P+1

yt−p1,nyt−p2,n,

yxp1np2k =
T∑

t=P+1

yt−p1,nxt−p2,k,

xxp1k1p2k2 =
T∑

t=P+1

xt−p1,k1xt−p2,k2 .

In this way, the sum across t can be pre-computed instead of computing at every iteration

in the algorithm.

Define F to be a P × P matrix with (p1, p2) entry

fp1p2 = yyp1p2n − 2
K∑
k=1

yxp1np2kwkn +
K∑

k1=1

K∑
k2=1

xxp1k1p2k2wk1nwk2n

Then the derivation above is just

ln = −λn
2

a∗Tn Fa∗n +
T − P

2
log λn + const.(B.2)

which is Equation (19).
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B.2 Derivation of the gradients

Based on the re-expression of the likelihood, the gradients are derived as follows:

∇wkn log p(θ | Y,X) = λn

( P∑
p1=0

P∑
p2=0

yxp1np2kap1nap2n −
P∑

p1=0

P∑
p2=0

K∑
k2=1

xxp1kp2k2wk2nap1nap2n

)
− αk(STS)nw

T
k

= λna
∗T
n Ga∗n − αk(STS)nw

T
k

where G is a P × P matrix with (p1, p2) entry gp1p2 = yxp1np2k −
∑K

k2=1 xxp1kp2k2wk2n.

∇apn log p(θ | Y,X) = λn

(
−

P∑
p2=0

yypp2nap2n +
P∑

p2=0

K∑
k=1

yxpnp2kwknap2n

+
P∑

p1=0

K∑
k=1

yxp1npkwknap1n −
P∑

p2=0

K∑
k1=1

K∑
k2=1

xxpk1p2k2wk1nwk2nap2n

)
− βp(DTD)na

T
p

= λnfpa
∗
n − βp(DTD)na

T
p

where fp is just the pth row of F.
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APPENDIX C

Derivations in Chapter IV

C.1 Log-likelihood

Let c denote the normalizing constant, the log-likelihood l can be expressed as:

l =
∑
n

∑
t

−λn
2

(etn −
∑
p

ẽntpapn)2 +
T − P

2

∑
n

log λn + c

=
∑
n

∑
t

−λn
2

[
(ytn −

∑
k

xtkwkn)−
∑
p

(yt−p,n −
∑
k

xt−p,kwkn)apn

]2
+

T − P
2

∑
n

log λn + c

=
∑
n

∑
t

−λn
2

[∑
p

(yt−p,n −
∑
k

xt−p,kwkn)a∗pn

]2
+
T − P

2

∑
n

log λn + c

where a∗pn = apn if p 6= 0 and a∗pn = −1 otherwise.

C.2 Priors

All priors are explicitly given in Chapter IV, here we add a supplement for an. In

practice, when we update an, the spike-and-slab prior are parametrized as follows:

apn | γpn = γpnN(0, τ−1p ) + (1− γpn)N(0, (ετp)
−1)

where ε is a very large constant so that the spike part has a extremely low variance that

approximates point mass at zero. This parametrization can help with the mixing than a
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pure spike which is an exact point mass at 0. The log-prior is therefore:

log π(apn | γpn) = −τp
2
a2pnδ(γpn) +

1

2
log τp +

1

2
log δ(γpn) + c

where δ(γpn) = ε if γpn = 0 and 1 otherwise.

C.3 Posterior distribution

We derive the posterior distribution for wn, an, γpn, αk, τp, λn.

C.3.1 For wn

Let ỹtn ≡ (yt,n, yt−1,n, ..., yt−P,n), x̃tk ≡ (xt,k, xt−1,k, ..., xt−P,k). Then putting xk

together, define X̃t ≡ (x̃T1 , ..., x̃
T
K)T . We have

log(wn|·) =
λn
2

∑
t

[
(ỹtn − X̃twn)Ta∗n

]2
−
∑
k

αk
2

wT
k (STS)wk + c

= −λn
2

∑
t

[
ỹtna

∗
n − (X̃ta

∗
n)Twn

]2
−
∑
k

αk
2

wT
k (STS)wk + c

= −1

2
wT
n

[
λn
∑
t

(X̃ta
∗
n)(X̃ta

∗
n)T + (STS)nnDiag(α)

]
wn

+
[
λn
∑
t

(ỹtna
∗
n)(X̃ta

∗
n)−α ◦

∑
n′ 6=n

(STS)nn′wn′

]T
wn + c

where Diag(v) denotes the diagnoal matrix with diagonal elements formed by vector

v, and ◦ denotes Hadamard product.

Thus

wn ∼ N(µn
W,Σn

W)

with

Σn
W =

[
λn
∑
t

(X̃ta
∗
n)(X̃ta

∗
n)T + (STS)nn′Diag(α)

]−1
µn

W =
[
λn
∑
t

(ỹtna
∗
n)(X̃T

t a∗n)−α ◦
∑
n′ 6=n

(STS)nn′wn′

]
ΣW
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C.3.2 For an

Denote ỹ∗tn ≡ (yt−1,n, ..., yt−P,n), x̃∗tk ≡ (xt−1,k, ..., xt−P,k), X̃∗t ≡ (x̃∗T1 , ..., x̃∗TK )T .

log p(an|·) = −λn
2

∑
t

[
− (ỹ∗tn − X̃∗twn)Tan + (ytn −Xtwn)

]2
−
∑
p

τp
2
δ(γpn)a2pn

= −1

2
aTn

[
λn
∑
t

(ỹ∗tn − X̃∗tnwn)(ỹ∗tn − X̃∗twn)T + Diag(τ ◦ δ(γn))
]
an

+ λn(ytn −Xtwn)(ỹ∗tn − X̃∗twn)Tan

Thus

an ∼ N(µn
A,Σ

n
A)

with

Σn
A =

[∑
t

(ỹ∗tn − X̃∗twn)(ỹ∗tn − X̃∗twn)T + Diag(τ ◦ δ(γn))
]−1

µn
A =

[
λn
∑
t

(ytn −Xtwn)(ỹ∗tn − X̃∗twn)T
]
Σn

A

C.3.3 For γn

p(γpn = 1 | ·) =
L(γpn = 1)p(γpn = 1 | γ−pn)

L(γpn = 1)p(γpn = 1 | γ−pn) + L(γpn = 0)p(γpn = 0 | γ−pn)

=
L(γpn = 1)/L(γpn = 0) exp

{
β0p + β1p

∑
n′∼n γpn′

}
L(γpn = 1)/L(γpn = 0) exp

{
β0p + β1p

∑
n′∼n γpn′

}
+ 1

where L(γpn) is the likelihood associated with γpn. So we have:

L(γpn = 1)

L(γpn = 0)
= exp

{
− τp

2
a2pn +

ετp
2
a2pn −

1

2
log ε

}
= exp

{(ε− 1)τp
2

a2pn −
1

2
log ε

}
Thus

γpn ∼ Ber(p(γpn = 1 | ·))
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C.3.4 Swendsen-Wang update of γp

1. For any pair of neighbors (n1, n2) that γpn1 = γpn2 , form bonds with probability

1− exp(−β1p).

2. Let {n} denote the set of voxels that belong to one common cluster. For each of the

cluster {n}, calculate:

p(γp{n} = 1 | ·) =
L(γp{n} = 1) exp

{
β0
∑

n∈{n} γpn

}
L(γp{n} = 1) exp

{
β0
∑

n∈{n} γpn

}
+ L(γp{n} = 0)

=
L(γp{n} = 1)/L(γp{n} = 0) exp

{
β0
∑

n∈{n} γpn

}
L(γp{n} = 1)/L(γp{n} = 0) exp

{
β0
∑

n∈{n} γpn

}
+ 1

=
exp

{
β0
∑

n∈{n} γpn + 1
2
(ε− 1)τp

∑
{n} a

2
p{n} −

∑
{n}

1
2

log ε
}

exp
{
β0
∑

n∈{n} γpn + 1
2
(ε− 1)τp

∑
{n} a

2
p{n} −

∑
{n}

1
2

log ε
}

+ 1

where L(γp{n} = 1) and L(γp{n} = 0) is the likelihood associated with γp{n}.

C.3.5 For αk

αk ∼ G
(N

2
+ q1 − 1,

[1

2
wT
k (STS)wk +

1

q2

]−1)
C.3.6 For τp

log p(τp|·) =
∑
n

[
−τp

2
a2pnδ(γpn) +

1

2
log τp

]
+ (u1 − 1) log τp − τp/u2

=

(
N

2
+ u1 − 1

)
log τp −

(
1

2

∑
n

a2pnδ(γpn) +
1

u2

)
τp

τp ∼ G

(
N

2
+ u1 − 1,

1

2

∑
n

a2pnδ(γpn) +
1

u2

)
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C.3.7 For λn

λn ∼ G
(T − P

2
+ r1 − 1,

(1

2

∑
t

[∑
p

(
yt−p,n −

∑
k

xt−p,kwkn

)
a∗pn

]2
+

1

r2

)−1)

C.4 Updating Scheme

The parameter are updated according to the following sequence:

1. Update wn for n = 1, ..., N

2. Update an for n = 1, ..., N .

3. Update γp for p = 1, ..., P

4. Update αk for k = 1, ..., K.

5. Update τp for p = 1, , , .P .

6. Update λn for n = 1, ..., N

7. Repeat step 1-6 for sufficiently long time.

C.5 Proof of neighboring pairs

Since the length of the cubic is Vp, and the neighbors are all 1st order neighbors. It is

easy to show that:

The number of voxels having 3 neighbors is 8

The number of voxels having 4 neighbors is 12(Vp − 2)

The number of voxels having 5 neighbors is 6(Vp − 2)2.

The number of voxels having 6 neighbors is (Vp − 2)3

Thus, the total number of neighbors are

1

2
[6(Vp − 2)3 + 30(Vp − 2)2 + 48(Vp − 2) + 24]

which is exactly 3V 2
p (Vp − 1).
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APPENDIX D

Supplementary figures for Chapter III

D.0.1 Simulation One
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Figure D.1: Image of average (over simulation replicates) posterior mean estimate of w1, w2, w3 from
HMC and VB for Simulation One. The estimates are compared with true image in each row.
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Figure D.2: Image of average (over simulation replicates) posterior mean estimate of w4, w5, a1 from HMC
and VB for Simulation One. The estimates are compared with true image in each row.
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D.0.2 Simulation Two
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Figure D.3: Image of average (over simulation replicates) posterior mean estimate of w1, w2, w3 from
HMC and VB for Simulation Two. The estimates are compared with true image in each row.
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Figure D.4: Image of average (over simulation replicates) posterior mean estimate of w4, w5, w6 from
HMC and VB for Simulation Two. The estimates are compared with true image in each row.
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Figure D.5: Image of average (over simulation replicates) posterior mean estimate of w7, w8, w9 from
HMC and VB for Simulation Two. The estimates are compared with true image in each row.
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Figure D.6: Image of average (over simulation replicates) posterior mean estimate of w10, w11, w12 from
HMC and VB for Simulation Two. The estimates are compared with true image in each row.

121



true  w13

−10

−5

0

5

10

15

VB  w13

−10

−5

0

5

10

15

HMC  w13

−10

−5

0

5

10

15

true  a1

−0.4

−0.2

0.0

0.2

0.4

VB  a1

−0.4

−0.2

0.0

0.2

0.4

HMC  a1

−0.4

−0.2

0.0

0.2

0.4

true  a2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

VB  a2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

HMC  a2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure D.7: Image of average (over simulation replicates) posterior mean estimate of w13, a1, a2 from HMC
and VB for Simulation Two. The estimates are compared with true image in each row.
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Figure D.8: Image of average (over simulation replicates) posterior mean estimate of a3 from HMC and VB
for Simulation Two. The estimates are compared with true image.
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D.0.3 Real applicatioin
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Figure D.9: Traceplot for the parameters from HMC. The chain runs for 3000 iterations, with first 2000 as
burn-in and thrown away. The three figures on top row (from left to right) are likelihood, acceptance ratio of
Metropolis-Hastings step, and leapfrog step size δ respectively. The rest shows the trace plots from α and
β.
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Figure D.10: Traceplot for the parameters from HMC. The chain runs for 3000 iterations, with first 2000 as
burn-in and thrown away. The top row represents the trace plots for λ1, λ2, λ3. The second and third row
shows trace plots from w11, w12, w13 and w21, w22, w23. We just show the trace plots from first three voxels
out of 56527 voxels due to a limited space.
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Figure D.11: Traceplot for the parameters (w3 to w5) from HMC. The chain runs for 3000 iterations, with
first 2000 as burn-in and thrown away.
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Figure D.12: Traceplot for the auto-regressive coefficient a1 from HMC. The chain runs for 3000 iterations,
with first 2000 as burn-in and thrown away.
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Figure D.13: Image of posterior mean estimate of w1 − w3 from HMC, VB and MUA. These are the
estimates from 26th slices on the z-axis. We only provide this slice due to a limited space. The result is
similar in other slices.
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Figure D.14: Image of posterior mean estimate of w4,w5,a1 from HMC, VB and MUA. These are the esti-
mates from 26th slices on the z-axis. Because MUA do not provide estimates of auto-regressive coefficients,
we omit it here.
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Figure D.15: Log-relative ratio of marginal posterior variance from VB over HMC. The first five image
corresponds to w1 to w5, the last one is the graph-partitioned regions by SPM VB. This is also the 26th

slice.
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APPENDIX E

Supplementary figures for Chapter IV

E.1 Simulation One
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Figure E.1: Scatter plot of posterior mean of the first 4 AR coefficients for SVARO versus the true AR
coefficients.
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Figure E.2: Scatter plot of posterior mean of the last 4 AR coefficients for SVARO versus the true AR
coefficients.
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E.2 Simulatin Two
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Figure E.3: The top left image (with scale −1 to 1) denotes the true AR coefficients for 1st order. The 2nd,
3rd, and 4th image are the corresponding difference between truth and posterior mean of SVARO, PMCMC
and PVB respectively. The color scale for the rest of the three images are truncated from −0.3 to 0.3 to
remain accordance with the previous simulation. The posterior means are all averaged over 100 replicates.
Because the true order is 1, so we omit the figures of other orders of AR coefficients for SVARO.
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Figure E.4: Topleft depicts the true activation map (red dots denote activation). The remaining panels are
posterior probability maps (PPM) of activation obtained using SVARO, (SVARO-PMCMC) and (SVARO-
PVB). The latter two reflect the difference of the two alternative approaches relative to SVARO.
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