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Abstract 

 

Advances in genotyping and sequencing technologies have greatly 

revolutionized the analytic methods in genetics research. Due to the dramatically 

decreasing per-genotype cost, millions of variants have been detected and 

genotyped from population-scale data. The findings provide a new insight into the 

human genome, and are continuously shaping our understanding of the genetic 

basis for disease. In this dissertation, I focus on three topics related to 

discovering disease-related variants in genetics studies in the aspects of method 

development and dataset analysis. 

 

In chapter 2, I develop a likelihood-based method, LIME, to detect and genotype 

mobile element insertions (MEIs), a specific type of large insertions, from 

sequencing data. The method generates genotype likelihoods for each MEI using 

simulation that mimics the distribution of reads in regions with and without MEIs 

From both simulated and real sequence data, our method shows better 

sensitivity than existing methods, especially in low-coverage data. 

 

In chapter 3, I present genome-wide association studies and a whole-genome 

sequencing effort of discovering potentially novel loci for colorectal cancer. Using 

an imputation-based meta-analysis strategy, I replicate many previous findings
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and provide a list of novel variants and genes for colorectal cancer. In 

collaboration with Fred Hutch Cancer Research Center, we additionally 

sequenced ~3,000 individuals and generated a variant call set. By incorporating 

gene annotation, sequence function prediction and online gene expression 

database, I highlight potentially functional loci for colorectal cancer in the known 

region 12q12 and the novel region 6q21.31. Although it is difficult to obtain new 

significant variants in the absence of extremely large dataset, our analysis 

provides some practical examples to incorporate functional genomics data into 

association analysis and to prioritize potentially functional candidates under 

limited sample size. Additionally, from the variant calling of whole-genome 

sequencing samples, we identified over 50 million variants, half of them being 

novel to the dbSNP database. 

 

In chapter 4, I describe a major update to the meta-analysis software 

RAREMETAL that brings in software engineering improvements and several 

useful new methods for rare variant analysis. The engineering improvements 

make RAREMETAL more computationally efficient. The new methods in addition 

preserve the ability to meta-analysis in unbalanced studies, multi-allelic sites and 

generalized linear mixed models. 
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CHAPTER I 

Introduction 

 

Advances and challenges in modern genetics studies 

In the past decades, advances in genotyping and sequencing technologies have 

greatly revolutionized the methodology in genetics research. Due to the 

dramatically decreasing cost of genotyping, millions of variants have been 

detected and genotyped from population-scale data. Detection of common 

variants and SNPs has been successful during the past several years. The 

findings provide a new insight into the human genome, and are continuously 

shaping our understanding of the genetic basis for disease. However, detecting 

rare and complex variants, such as structural variants, is still difficult, and the 

detection accuracy is insufficient for applying in clinics1. 

 

Accurate detection of genomic variants is the first step in discovering the 

mechanism of diseases. As known from population genetics theory, most 

mutations and polymorphisms are functionally neutral, with little to no effect on 

phenotypes2. With thousands and even millions of novel variants discovered in a 

genetics study, genome-wide association studies (GWAS) have rapidly become 

a standard method for detecting disease-related variants and genes3. During the 
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 past decades, much work has been done to appropriately model the statistical 

association between variants and phenotypes, but for more complicated 

situations, current methods still need to be improved to avoid potential power 

loss. 

 

Genomic variant detection 

In recent years, the rapid development of High-throughput sequencing (HTS) 

provides a new way of detecting genomic variants besides the genotyping array. 

HTS approaches require chopping genomic DNA into shorter size fragments 

(sequencing reads) and sequential detection of the nucleotide composition of 

each fragment thorough sequencing machines. Due to the huge size of the 

human genome and relatively short length of sequencing reads, de novo 

assembly requires massive amounts of computational resources and is in fact 

not possible in practice1. Therefore, to identify the genomic location of reads, a 

common approach is to map them back to reference genome sequences 

 

By comparing sequences between reads and the reference genome, variants are 

discovered from sequencing data. Since sequencing-based studies do not 

require pre-requisite information, it greatly facilitates discovery of rare and novel 

variants. The 1000 Genome Project has discovered over 88 million variants, with 

over half of them novel, while over 70% of them are rare variants with allele 

frequency less than 0.5%11. In this dataset, the heterozygous genotype accuracy 
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is estimated around 99.4% for Single Nucleotide Polymorphisms (SNPs) and 

99.0% for small insertion and deletions (indels). 

 

With an accurate read aligner and appropriate modeling, most SNPs and indels 

will be reliably discovered by sequence composition of the reads and the 

reference genome{GenomesProjectConsortium:2015gk}. However, Structural 

Variants (SVs), including large-size insertions and deletions, still have much 

lower detection accuracy in sequencing data than SNPs and indels12,13. These 

SVs are mostly longer than the lengths of currently used sequencing reads, and 

as a result, the alternative alleles cannot be reliably reconstructed, which in turn 

leads to loss of detection accuracy as well. Among these SVs, Mobile Element 

Insertions (MEIs) is an important category, with a few reports about its 

association with specific diseases{WoodsSamuels:1989ug}{Stewart:2011bt}. 

Because of shared sequences each family MEIs are easier to detect than novel 

insertions. Therefore, one chapter of this dissertation will focus on improving 

detection accuracy of MEIs from sequencing data.  

 

Imputation and the reference panel 

Large-scale sequencing studies provide a valuable resource of variants, and 

enable researchers to generate reference panels from the variant database. In 

genetics, imputation refers to the statistical inference of unobserved genotypes, 

achieved by utilizing information from known variants and their haplotypes 14. 
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With a well-established reference panel, genotypes of uncovered sites in 

microarray data may be accurately imputed15,16. 

 

Thus imputation provides another efficient and economical method to study rare 

and novel variants under a limited budget. A proportion of samples from a study 

cohort could be sequenced to build an enriched reference panel with rare 

mutations together with the currently existing reference panel. Then, a larger 

study cohort, usually microarray data, could be imputed to this combined 

reference panel. In this way, those variant sites that are not directly genotyped 

will be imputed. Application of this scheme in 1000 Genome studies, and later 

the Haplotype Reference Consortium (HRC) based studies have greatly enlarged 

the power of detecting novel and rare disease-related variants17,18. 

 

Association and causality 

Today, with the greatly reduced cost of genotyping and development of large-

scale variant detection methods, association studies, which compare the 

frequency of alleles in a particular variant between affected and unaffected 

individuals, have become more powerful than traditional linkage analysis19. With 

millions of variants available, a genome-wide association approach surveys most 

of the genome for causal variants, representing an unbiased yet fairly 

comprehensive option that can be attempted even in the absence of convincing 

evidence regarding the function or location of the causal genes20. 
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However, SNPs identified by GWAS are expected to tag genomic regions 

containing correlated SNPs with the trait. It remains an open question of how to 

identify true causal SNPs from these tagged genomic. Fine-mapping efforts 

incorporating functional genomics data to narrow down the range of potentially 

causal SNPs will be cost-effective for laboratory evaluation, especially for LD 

extensive regions with multiple independent SNPs. Additionally, when sample 

size is not enough for rare SNPs GWAS signals to reach genome-wide 

significant threshold, functional genomics data will be helpful to identify true 

causal SNPs from false positives. 

 

Meta-analysis and existing problems 

Recently, meta-analysis, which naturally incorporates cross-study heterogeneity, 

has been successful in many large-size and collaborated GWAS studies21. Meta-

analysis is performed by combining summary statistics across studies and thus 

avoids the data privacy issues in some situations on sharing raw genotypes. 

 

Powerful meta-analysis methods have been proposed, and in ideal situation, they 

may obtain equal power as the joint analysis22,23. However, the underlying 

assumptions of these methods are violated in more real-life situations. For 

example, the basic meta-analysis method suffers substantial power loss when 

the case and control ratio is unbalanced. Current bi-allelic models cannot 

appropriately deal with multi-allelic sites, and results in false-negative 
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associations in such variants. Thus, more work needs to be done to improve 

meta-analysis methods to accommodate different types of data. 

 

Outline of this thesis 

In this dissertation, I focus on three topics related to discovering disease-

associated variants in genetics studies in the aspects of both method 

development and dataset analysis. First, I describe a novel method for detecting 

Mobile Element Insertions (MEIs), a special type of complex variants, from 

sequencing data. Second, I present a genome-wide association analysis of 

colorectal cancer using imputed and/or sequenced data. Third, I present method 

improvements on more complex situations, and covariance matrices storage 

optimizations to the meta-analysis software, RAREMETAL, making it more 

powerful for complicated situations. 

 

In chapter 2, I describe a likelihood-based method, LIME, to detect MEIs from 

sequencing data. The method naturally accommodates cross-sample 

heterogeneity, and generates genotype likelihood to measure the probability of 

each MEI event. From evaluation on both simulated data and deeply-sequenced 

samples 1000 Genome Phase 3, our method shows better performance than 

existing methods, especially in low-coverage data. By applying LIME to 493 

samples from the Sardinia Whole Genome Sequencing Project, I identified 6,537 

MEIs, in which 20 were predicted of having high impact on nearby gene 

expression levels.  



	 7 

 

In chapter 3, I present a genome-wide association analysis of colorectal cancer 

in 26,903 samples imputed on HRC reference panel. Using a meta-analysis 

strategy, we replicated many previous findings and provide a list of novel 

associated variants and genes for colorectal cancer. By incorporating gene 

annotation, sequence function prediction and online gene expression database, 

we highlight potentially functional loci for colorectal cancer. Our results indicate 

that even with a well-established reference panel and superior imputation quality, 

a larger sample size is necessary to discover rare disease-related variants. 

 

Additionally, in chapter 3, as part of the collaboration effort within the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO), we conducted a 

variant calling on 3,061 whole-genome sequenced individuals, aiming to 

generate a consensus call set of variants that are potentially more correlated with 

colorectal cancer. We generated a dataset of 48.7 million variants with superior 

quality, and nearly half of them have never been reported before. 

 

 

In chapter 4, I describe a major update to the meta-analysis software 

RAREMETAL that brings in software engineering improvements and several 

useful new methods for rare variant analysis. The engineering improvements 

make RAREMETAL more computationally efficient. The new methods, 

developed by Dr Dajiang Liu and Dr Jingjing Yang, in addition preserve the ability 
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to meta-analysis in unbalanced studies, multi-allelic sites and generalized linear 

mixed models. With these improvements, RAREMETAL becomes more powerful 

in analyzing real datasets. 

 

I chapter 5, I summarize my work and propose potential future directions in 

genetics studies. 
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CHAPTER II 

LIME: a likelihood-based Mobile Element Insertion 

detector for sequencing data1 

 

Introduction 

Mobile elements are DNA sequences that can insert themselves along the 

genome1. It is estimated over 40% of the human genome consists of mobile 

elements or mobile element derived sequences2. Only a few of the mobile 

elements in the genome are still mobilized; the remaining elements are slowly 

“decaying” through mutation1,3,4. 

  

Based on their consensus sequences, mobile elements are classified into 

multiple families. Among them, ALU, LINE1 and SINE/VNTR/ALU (SVA) are the 

most actively transcribed ones in the human genome1. A human genome is 

estimated to harbor ~1,500 non-reference mobile element insertions (MEIs), 

including ~1200 ALUs, ~200 LINEs, and ~100 SVAs5. These MEIs can disrupt 

																																																								
     The work presented in Chapter 2 will be submitted as Chen S, Othman M, Abecasis G. “LIME: 
a likelihood-based Mobile Element detector from sequencing data”. 
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normal gene function or even generate new genes. Some have been shown to 

cause diseases such as hemophilia A6, Crohn’s disease7, and cancer8,9. 

 

Next generation sequencing has greatly facilitated the study of MEIs at both 

individual and population levels. With appropriate bioinformatics approaches, 

MEIs could be detected out of the great amount of sequencing reads. The most 

common method for detecting MEIs is to identify reads that are partially aligned 

to known mobile element sequences, and then identify regions of the genome 

where clusters of these reads (or their mate pairs) align10. Unfortunately, this 

method suffers substantial power loss when samples are sequenced at low 

coverage and does not easily accommodate heterogeneity in sequence data 

between samples11. 

 

Here, we present our likelihood-based MEI detector (LIME). LIME compares the 

distribution of mapped reads between regions with and without an MEI, and 

generates genotype likelihoods that naturally accommodate heterogeneity 

between samples in coverage, read mapping rates, and insert sizes. LIME does 

not use fixed thresholds when examining reads supporting each event; thus 

detection power in low coverage samples is greatly improved. By applying LIME 

to a subset of Sardina Whole Genome Sequencing Project12, we generated a call 

set of MEIs and made predictions for their potential functions. 
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Method 

Basic scheme 

Consider an experiment where short paired-end reads are sequenced and 

mapped to a reference genome. After mapping, most read pairs map close 

together with an expected orientation and distance. However, for regions with an 

MEI, read pair arrangements might deviate from this pattern. For example, some 

read pairs may have one end partially or entirely mapped to a mobile element 

sequence elsewhere in the genome, which may result in abnormal insert size or 

strand orientation between the two ends. To systematically summarize read pair 

distributions in each region, we classify mapped read pairs into 18 categories 

based on insert sizes, orientation and mapping to consensus mobile element 

sequences (Table 1.1). In an ideal situation, for the genomic regions with no MEI 

or other genomic variation, all reads will be properly mapped with a normal insert 

size or strand orientation. For regions with MEIs, there will be an excessive 

number of other types of reads (Table 1.2). 

 

Construct known genotypes to model read type distribution 

Our LIME method tries to fully interpret the distribution of the 18 read-types in 

each region. This distribution is specific to each sample because it depends on 

characteristics of library preparation such as read length and insert size. LIME 

uses simulation to construct a sample specific model for the distribution of read 

types in regions with and without MEIs. These distributions are then used to 

calculate the genotype likelihood for each potential MEI. 
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To model the distribution of read-types in regions with an MEI, we construct a 

modified reference genome sequence where several reference ALUs, L1s and 

SVAs are spliced out (sections below will discuss selection criteria). Relative to 

this modified reference sequences, samples are expected to be homozygous for 

these MEIs, one in each spliced region. For each sample, we remap reads to this 

modified reference and summarize the distribution of the 18 read types in each of 

the spliced regions. 

 

Next, we bin the modified reference genome into 600-bp windows (typically, we 

recommend setting this window size to be at least double the average insert 

size). We label each window i in this modified genome that overlaps an artificially 

constructed MEI, as Gi = 1/1; we label remaining windows Gi = 0/0. Reads within 

each window are classified into the 18 read types. Then, for each constructed 

window i, we define the total number of reads as ni and the number of reads 

belonging to type r as nir. Then, this window i specific frequency of read type r is 

!!" = !!"
!!

. 

 

Sliding window analysis in real sample 

In original mapping results, we slide a fixed size window along the genome, with 

window size the same as described in sections before. In each window, reads 

are classified into the 18 read types, too. For each window j, we define the total 

number of reads as cj and the number of reads of type r as cjr. We calculate 
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genotype likelihoods for each window j based on total R reads within it -- first by 

comparing the read distribution of window j to artificially constructed windows 

with homozygous MEIs, then to windows with reference genotypes, and finally to 

a composite of the two. For each underlying genotype, we iterate through all Ni 

constructed windows i in the modified genome, and define: 

! !!|!! = 0/0 = 1
!!

!!"
!!"

!!!!!/!
 

! !!|!! = 1/1 = 1
!!

!!"
!!"

!!!!!/!
 

Specifically, to construct windows that contain heterozygous MEIs (which we 

term as Gi = 0/1), we match constructed windows i0 with Gi = 0/0 and windows i1 

with Gi = 1/1 based on sequence mappability and GC content. Read counts in 

the two windows are proportionally adjusted so that total read counts of the two 

windows are the same.  Then we define window specific frequency of read type r 

in constructed heterozygotes window i as: 

!!! = 0.5!!!! + 0.5!!!! 

Therefore, genotype likelihood for heterozygotes is defined as: 

! !!|!! = 0/1 = 1
!!

!!"
!!"

!!!!!/!
 

For the specific window j in the originally mapped data, the prior probability of 

genotype Gj, ! !! , is derived using Expectation-Maximization algorithm with or 

without assuming Hardy-Weinberg Equilibrium13. Posterior probability of 

genotype !! is calculated under a Bayesian framework14: 
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! !!|!"#$!,!,…,! = ! !! ! !"#$!,!,…,!|!!
! !! ! !"#$!,!,…,!|!!!!

 

 

The genotype of window j is finalized with the highest posterior probability. 

Note that genotype likelihood of those constructed homozygous MEI windows in 

the modified reference genome can be calculated under the same scheme, 

which is used as an estimate of MEI detection power in each sample. 

 

When remapping reads to the mobile element consensus sequence, LIME 

additionally generates site-level features of each MEI, such as length, depth and 

number of supporting reads. MEI length is estimated as the distance between 3’ 

and 5’ mapped positions in their corresponding mobile element consensus 

sequence. In our preliminary analysis, we found that non-MEI genomic variants 

might also be identified as non-reference genotypes, since their read type 

distribution is somewhat different from regions with reference genotypes. In order 

to filter out such false positives, we applied the following empirical rules that are 

adapted from other methods15,16: 1. Estimated MEI length should be longer than 

100 base pairs. 2. MEI supporting read counts on either side of the window 

should be no more than 4 times of the other side. 

 

Generate simulated dataset to evaluate LIME performance 

We generated a simulated sequence by randomly inserting 2,000 ALU and 2,000 

L1 consensus sequences into GRCh37 chromosome 17. L1 sequences are 

randomly truncated from 3-prime ends. Pair-ended Illumina Hi-seq 2000 reads 
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were generated against this simulated sequence using illumine read simulator 

ART17. These simulated reads were mapped back to the original hs37d5 

reference sequence using mapper BWA MEM18. BamUtil19 was applied to 

mapping results to mark PCR duplicates and recalibrate mapping quality. LIME 

and three published MEI detection methods, RetroSeq15, Tangram20 and 

Mobster16, were applied to this dataset, with details in Supplementary Text. 

 

With the detection results from the four methods, MEI detection power for each of 

them is measured as the number of detected MEIs that are within 600 base pair 

range of simulated MEIs, divided by the total number of simulated MEIs. The 

false discovery rate is measured as the number of detected MEIs that are not 

within this range of simulated MEIs, divided by the total number of detected MEIs 

by this method. 

 

Results 

Performance on simulated data 

In the simulated dataset with read lengths of 100 base pairs, LIME, along with 

RetroSeq, showed better detection power over the other two methods (Figure 

2.1). LIME and RetroSeq had similar performance in detecting ALUs, with 60% 

power in detecting homozygotes in 2x coverage. ALU detection powers of these 

two methods were saturated at the coverage of 5x in homozygotes, which is 

equivalent to 10x in heterozygotes. Tangram ALU detection power was saturated 

at a higher coverage of 15x. In low-coverage data, LIME also has improved 
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detection power for L1s. In 2x data, LIME had higher power of 30% in 

heterozygotes and 50% in homozygotes, compared to RetroSeq’s 20% in 

heterozygotes and 41% in homozygotes. Results from 75 bp simulated data 

shows similar pattern for the four methods (Figure S2.2). On the other hand, 

LIME had less than 1% false discovery rate in all simulated data (Figure S2.1, 

S2.3).  

 

Breakpoint detecting accuracy is an important measurement of variant calling 

method performance as well20,21. In 20x-simulated data, we calculated the 

distance between estimated and true MEI breakpoints across all four methods 

(Figure 2.2). For LIME, Tangram and Mobster, most distances were smaller than 

20 bp in simulated dataset, indicating their good performance in refining MEI 

breakpoints. 

 

Analysis on 1000G deep-sequenced trio samples 

The 1000G Phase 3 deep-sequenced European trio samples (NA12878, 

NA12891, NA12892) have been widely used to measure performance of 

genomic variants detecting methods22. We applied LIME and Mobster to these 

three samples using their default settings. RetroSeq and Tangram detecting 

results of this dataset were downloaded from the RetroSeq Wiki page15. 

 

Overall, the four methods had similar numbers of detected MEIs in each 

individual, with RetroSeq had fewer number of detected MEIs than the other 



	 20 

three methods (Table S2.1). To estimate the percentage of covered PCR 

validated events as a rough estimate of detection power, we downloaded the list 

of these samples’ PCR validated MEIs 22 from 1000 Genome ftp and lifted over 

their chromosome positions accordingly. We show that LIME (99.1%) and 

Mobster (99.4%) have the highest percentage of covered validated MEIs (Table 

2.3). 

 

At the same time, we used the parent-child inconsistent rate of MEIs to roughly 

evaluate the false discovery rate of our method (Table 2.4). LIME has the lowest 

overall discordance rate (7.0%) across all four methods, compared to RetroSeq 

(7.3%), Mobster (9.6%) and Tangram (11.6%). At the same time, LIME’s L1 

discordance rate (9.5%) is greatly improved over RetroSeq (11.4%), Mobster 

(23.3%) and Tangram (11.4%). 

 

Experimental validation 

We applied LIME to 20 samples from the Age-related Macular Degeneration 

(AMD) Whole Genome Sequencing Project. All samples consist of 100 bp pair-

ended reads, with sequencing coverage ranges from 2x to 7x. Basically, 3,634 

ALUs, 417 L1s and 31 SVAs were identified from the dataset. 11 ALU sites were 

randomly picked and PCR-validated in all 20 samples. 220 PCR reactions were 

performed in total. The false positive rate, estimated as the number of false 

positive sites across all 20 samples divided by the total number of discovered 
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MEIs, is 5.4%. The detection power, measured as the number of discovered true 

positive sites divided by the total number of true positive sites, is 87.7%.  

 

Additionally, for 8 homozygous MEIs, we compared their LIME estimated lengths 

to their Sanger-sequencing measured true lengths. In 7 out of 8 the MEIs, the 

difference between the true and the estimated MEI length was smaller than 20 

base pairs. Only one MEI was estimated as 154 bp but was actually 303 bp in 

Sanger sequencing results. 

 

Analysis on Sardinia dataset 

We applied LIME to 493 low-coverage sequenced samples in Sardinia Whole 

Genome Sequencing Project12. All samples were pair-ended sequenced with 100 

bp read length on each end, with a median coverage of 4.6 (Table 2.5). In this 

dataset, LIME found 6,215 ALUs and 322 L1s. In average, we detected 757 

ALUs and 69 L1s from each individual. Our MEI call set showed similar allele 

frequency spectrum as previously reported SNP call set12 (Figure 2.3). Both call 

sets have an excessive number of low-frequency variants. 

 

We annotated these MEIs and predicted their functions using SnpEff23. Three 

MEIs were annotated as “high impact”, indicating their potentially disruptive 

impact on the coding genes. Seventeen MEIs were annotated as “moderate 

impact”, showing they’re probably non-disruptive variant that might change 

protein effectiveness. Around one thousand variants were annotated as “low 
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impact”, meaning most of them are likely harmless. Others are either intergenic 

or located in non-coding genes. This indicates potential functionality of some 

MEIs, which may be further revealed in additional analysis. 

 

Discussion 

We developed a likelihood-based method to detect MEIs from whole-genome 

sequencing data. Based on simulation using real reads from each sample, our 

likelihood incorporates sample-specific features and provides a quantitative way 

of measuring how likely an MEI event is true. On simulated datasets and 1000G 

deep-sequenced samples, LIME shows better performance to other methods, 

especially in low-coverage data. 

 

Our modeling of MEI likelihood may be further implemented incorporating other 

features such as mapping scores. With the current classification methods, reads 

within same category contributes equally to an MEI’s likelihood, no matter how 

high their mapping score to the MEI consensus sequence are. A more detailed 

classification of reads incorporating mapping scores may be a future direction to 

improve LIME, and will be especially useful in situations where longer reads have 

various lengths of split-mapped ends. 

 

Under current short-gun sequencing technology, MEI calling accuracy is still 

much lower than short variants. Factors such as data quality, batch effect and 

sequencing depth may greatly affect MEI detector performance. In population-
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scale data, external haplotype information could be help to improve genotyping. 

Using high-quality SNPs and prior information of recombination rate, low-quality 

genotypes could be corrected by their nearby markers. With our LIME approach, 

MEIs could be combined with SNPs for further refinement, thus improved MEI 

detection quality in another aspect. 
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Figures 

 

Figure 2.1 MEI detection power in simulated data across four methods (100 

bp pair-ended reads) 

The red line shows the power of LIME, while the other three colored lines show 

power of three most widely used methods. Power is calculated as the number of 

detected MEIs divided by the number of simulated MEIs in the modified 

reference genome sequences. 
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Figure 2.2 Breakpoint detection accuracy of four methods in simulated data 

The breakpoint detection accuracy was estimated as the base pair distance 

between true breakpoint and the estimated breakpoint simulated data with 

homozygous ALUs and 100 bp pair-ended reads under 20x coverage. LIME 

shows good breakpoint detection accuracy as well as Tangram and Mobster, 

with most of distances between the true and the estimated breakpoints smaller 

than 20 base pair. 
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Figure 2.3 Log-scale allele frequency spectrums of SNPs and MEIs in 

samples from Sardinia Whole-genome Sequencing Project (493 samples) 

Overall, frequency spectrums of MEIs and SNPs (provided by Sidore et al12) are 

very similar except for limited sensitivity of MEI singletons due to low coverage. 
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Tables 

 

Table 2.1 The 18 pre-defined read pair types in LIME 

Read pair types were defined based on the following criteria:  

1. We set the distance threshold as the sample’s insert size plus 3 times of the 

standard deviation of the insert sizes of the sample. Of the mapped distance 

between two ends of the read pair is smaller than the distance threshold, and 

have the correct orientation, it is named “properly mapped”; otherwise if the 

distance is smaller than the distance threshold, it is named “discordantly 

mapped”. 

2. For properly mapped read pairs, if one end is split-mapped and the clip is 

longer than the defined minimum clip length: if the clip is at the 5’ end of the read, 

it is named as “left clip”, otherwise it is “right clip”. If the clip is mapped to an MEI 

consensus sequence, it is marked as “Mapped to MEI”, otherwise marked as 

“Not mapped to MEI”. 

3. Similarly, for read pairs with one end not mapped, the “Mapped to MEI” 

condition is decided by the mapping state to the MEI consensus sequence for the 

unmapped end. 

4. For discordantly mapped read pairs, the end mapped to the examined 

genomic region is named “Anchor”. Similarly, the “Mapped to MEI” condition is 

decided by the other end’s mapping state to the MEI consensus sequence. 
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Properly mapped 

Properly mapped with clip length < minimum clip length 

Properly 

mapped with 

clip >= 

minimum clip 

length 

Read mapped to 

plus strand 

Left clip 
Mapped to MEI 

Not mapped to MEI 

Right clip 
Mapped to MEI 

Not mapped to MEI 

Read mapped to 

minus strand 

Left clip 
Mapped to MEI 

Not mapped to MEI 

Right clip 
Mapped to MEI 

Not mapped to MEI 

Discordantly 

mapped read 

pairs 

Anchor mapped to plus strand 
Mapped to MEI 

Not mapped to MEI 

Anchor mapped to minus strand 
Mapped to MEI 

Not mapped to MEI 

Read pairs 

with one end 

not mapped 

Anchor mapped to plus strand 
Mapped to MEI 

Not mapped to MEI 

Anchor mapped to minus strand 
Mapped to MEI 

Not mapped to MEI 
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Table 2.2 Average proportions of read pair types in windows of 

homozygous MEIs in NA12878 of 1000 Genome Project Phase 3 

For each identified MEI from deep-sequenced individual NA12878, we classified 

and counted read pair types within a 600 bp window (centered at each MEI 

breakpoint). An excess of clipped and discordantly mapped reads was observed 

in these windows. Note that “mapped to MEI” reads were majorly used to detect 

MEIs from most software. 

 

Read pair type 

Average 

proportions of 

pairs in window 

Properly mapped 0.430 

Properly mapped with clip length < minimum clip length 0.018 

Properly mapped with clip >= minimum 

clip length 

Mapped to MEI 0.043 

Not mapped to 

MEI 
0.000065 

Discordantly mapped read pairs and 

Read pairs with one end not mapped 

Mapped to MEI 0.336 

Not mapped to 

MEI 
0.173 
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Table 2.3 Number and percentage of covered PCR-validated MEIs in 1000 

Genome Phase 3 deep sequenced trio samples (NA12878, NA12891, 

NA12892) 

LIME and the other three methods were applied to the three 80x samples. LIME 

and Mobster has better coverage of PCR-validated MEIs, which implies higher 

detection powers of these two methods. 

 

 
# Total Covered 

(%Covered) 

# ALU Covered 

(%Covered) 

# L1 Covered 

(%Covered) 

Lime 460 (98.1%) 441 (99.1%) 20 (83.3%) 

RetroSeq 451 (96.2%) 435 (97.8%) 18 (75.0%) 

Tangram 455 (97.0%) 436 (98.0%) 20 (83.3%) 

Mobster 464 (98.5%) 441 (99.1%) 21 (87.5%) 
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 Table 2.4 Parent-child inconsistency of MEIs in 1000 Genome Phase 3 

deep sequenced trio samples (NA12878, NA12891, NA12892) 

The count of parent-child inconsistent MEIs is calculated as the number of MEIs 

in the offspring (NA12878) but not existing in any of the parents (NA12891 and 

NA12892). LIME has the lowest overall inconsistent rate, and the lowest 

inconsistent rate in L1. 

 

Caller 
# Inconsistent ALUs 

(%Inconsistency) 

# Inconsistent L1s 

(%Inconsistency) 

# Inconsistent 

MEIs Total 

(%Inconsistency) 

Lime 95 (6.9%) 13 (9.5%) 107 (7.0%) 

RetroSeq 51 (4.7%) 41 (23.5%) 92 (7.3%) 

Tangram 155 (11.6%) 26 (11.4%) 181 (11.6%) 

Mobster 94 (7.8%) 66 (23.3%) 151 (9.6%) 
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Table 2.5 Summary of sequencing characteristics in Sardinia Whole 

Genome Sequencing samples (n = 493) 

Overall the Sardinia samples were sequenced in low-coverage, with an average 

coverage of 4.6x. The samples have consistent insert size but vary in mapping 

read and the proportion of properly mapped reads, which implies batch effect and 

increased error rate in part of the samples. 

 

 Mean Median Minimum Maximum 

Depth (x) 4.9 4.6 4.0 9.8 

Mapping rate 97.4% 97.6% 94.3% 99.5% 

Properly 

mapped read 
94.3% 94.1% 86.6% 98.6% 

Insert size (bp) 294 290 251 349 
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Supplementary Text 

 

Optimizations on LIME internal simulation 

When constructing known genotypes to mimic read type distribution, it is 

computationally expensive to remap all reads back to the modified reference 

genome. For efficiency, we only remap pair-end reads around each spliced 

region. This is substantially faster and results in similar accuracy as remapping 

all reads. 

 

Secondly, considering there are less than 2,000 MEIs per individual genome, it is 

not cost-effective to analyze all windows across the genome. In our simulation 

results (discussed below), we found that, even when the coverage is as low as 2, 

all MEIs had at least one read pair with abnormal insert size and one end 

discordantly mapped to a mobile element sequence elsewhere in the genome. 

Therefore, instead of analyzing all windows along the genome, LIME only 

analyzes regions with at least one such read pair. 

 

Thirdly, to measure impact of the number of constructed windows on genotyping 

accuracy, we used a simulation approach to generate 2000 ALUs on 

chromosome 17 under coverage of 2 and 5. (The simulation method will be 

discussed in section 3.1.) We tested LIME detection power with different number 

of constructed homozygous MEI windows and calculated the percentage of 

identified MEIs using 10,100,300 and 800 constructed homozygous MEI 
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windows. When using only 10 reference windows, 47% and 50% detection power 

was lost in 2x and 5x data, respectively. Using the same dataset, we then tested 

MEI detection power using 10,100,1000,5000, and all constructed reference 

genotype windows on chromosome 20. When using 10 reference windows, 37% 

and 3% detection power was lost in 2x and 5x data, respectively. These results 

indicate that an insufficient number of constructed windows will lower detection 

power. Therefore, to maintain detection power and minimize computational cost 

at the same time, we set 300 and 5000 as the default number of constructed 

windows with homozygous MEI and reference genotype in LIME, respectively. 

 

Commands for evaluation of LIME, RetroSeq, Tangram and Mobster 

Command for LIME: 

LIME –SampleList <chr20-sample.list> -OutVcf <refstat> -SiteVcf <empty file> --

statOnly 

LIME –SampleList <sample.list> -OutVcf <output> -rSingle <refstat> -Chr 17 

 

Command for RetroSeq: 

retroseq.pl -discover -bam <bam> -output candidates.tab -q 10 -len 30 -refTEs 

ref_types.tab -eref probes.tab –align 

retroseq.pl -call -bam <bam> -input candidates.tab -ref hs37d5.fa -output 

<output> -reads 1 -q 10 -region 17 –hets 
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Tangram only works on MOSAIK mapped results, so tangram_bam needs to be 

used first to convert bwa mapped bams to MOSAIK mapped ones: 

tangram_scan -in bam-list.txt -dir scan_out -mf 0 

 

Tangram is applied using following command: 

 

tangram_detect -lb scan_out/lib_table.dat -ht scan_out/hist.dat -in bam-list.txt -rg 

17 -ref hs37d5.indexed.ref -out <out> -gt -bp -mcs 1 -mq 10 -smq 10 -rpf 1 -srf 1 

 

Mobster throws an exception when processing reads that are marked as PCR 

duplicates or supplementary mapping. Therefore, we remove those reads from 

simulated data and apply Mobster using the following command: 

 

java –jar Mobster.jar –properties <properties> –in <bam> -out <out> -sn 

<sample> 

 

Here, in mobster property, we set minimum required supporting reads to one 

instead of default five to increase detection power in low-coverage data. 

 

PCR protocols 

DNA concentration was around 50 ng/ul. PCR primers were designed used NCBI 

Primer-Blast for the regions of interest spanning various chromosomal regions. 
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We used NEB 2x master mixes of OneTaq high fidelity hot start enzyme either 

with standard buffer or GC buffer based on the sequence of interest. Primers 

stocks were made to 100 uM and working dilutions were used at 10 uM.  

Strip tubes were centrifuges briefly and place in PCR machines PE 9700 with the 

following run program: 

1 cycle at 94 °C, 2 minutes 

10 cycles at: 94 °C, 20 seconds; 58 °C, 30 seconds; 68 °C, 45 seconds 

Followed 25 cycles at: 94 °C, 20 seconds; 60 °C, 30 seconds; 68 °C, 45 

seconds 

1 cycle at 68 °C, 10 minutes 

Hold at 4 °C 

After PCR amplification, 1 ul of each was run on the Agilent Bioanalyzer 2200 

TapeStation machine with the relevant ladders. Samples were submitted to the 

University of Michigan Sequencing Core for Sanger Sequencing using the 

forward and the reverse primers. Run files were analyzed using the GCC demo 

software Sequencer version 5.1. 
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Supplementary Figures and Tables 

 

Supplementary Figure 2.1 MEI false discovery rate (FDR) in simulated data 

(100 bp pair-ended reads) 

We estimated the false discovery rate as the number of detected MEIs not 

overlapped with simulated MEIs divided by the number of detected total MEIs. 

LIME has very low FDR across all coverage. 
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Supplementary Figure 2.2 MEI detection power in simulated dataset (75 bp 

pair-ended reads) 

For all 4 methods, deeper coverage results in high MEI detection power. In lower 

coverage situations, LIME and RetroSeq have better detection power. Detection 

power of the 4 methods saturated at a certain coverage. These trends are similar 

to the 100 bp situations shown in Figure 2-1. 
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Supplementary Figure 2.3 MEI false discovery rate (FDR) in simulated 

dataset (75 bp pair-ended reads) 

LIME has low FDR across all coverage, similar to Supplementary Figure 2-1. 
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Supplementary Table 2.1 Numbers of detected MEIs in 1000 Genome Phase 

3 deep sequenced samples (ALUs, L1s and SVAs) 

Overall the four methods have similar number of detected MEIs in each sample. 

RetroSeq is most conservative while the other three methods have more similar 

number of detected MEIs. 

 

 

 

 

 

 

 

 

  

Caller NA12878 NA12891 NA12892 

Lime 1549 1665 1588 

RetroSeq 1222 1139 1153 

Tangram 1511 1359 1369 

Mobster 1568 1424 1392 
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CHAPTER III 

Discovery of novel variants associated 

with colorectal cancer3 

 

Introduction 

Colorectal cancer is the fourth most common type of cancer. With an estimate of 

135,430 new cases in 2017, consisting of 8% all new cancer cases in the United 

States1. In recent years, under the framework of genome-wide association 

studies (GWAS) researchers have discovered many common variants and genes 

statistically associated with colorectal cancer2-11. For example, the mutation of 

rs16892766 at 8q23.3 leads to overexpression of cell growth factor EIF3H, which 

greatly increases the risk of colorectal cancer7,12,13. The mutation of rs4939827 at 

gene SMAD7 has functional impact on the Wnt signaling pathway and is highly 

associated with colorectal cancer risk4. These findings provided new insights into 

																																																								
									Part of this work in Chapter 3 will be submitted as: 
        Chen S, Huyghe J, Qu F, Lin Y, Peters U, Abecasis G. “Discovery of novel risk variants for 
colorectal cancer from an imputation-based study”. 
        The WGS work in Chapter 3 has been included in the publication as: 
        McCarthy S, Das S, …, Chen S, …, Durbin R, Abecasis G. “A reference panel of 64,976 
haplotypes for genotype imputation”, Nat Genet, 2016 
        Rashkin S, Jun G, Chen S, Abecasis G, “Optimal sequencing strategies for identifying 
disease-associated sigletons”, Plos Genetics, 2016 
        The HRC imputed dataset in Chapter 3 has been included and submitted as: 
        Bien S, Auer P, …, Chen S, …, Hsu L. “Enrichment of colorectal cancer associations in 
functional regions: insight for using epigenmocs data in the analysis of the whole genome 
sequence-imputed GWAS data”. Plos Genetics, 2016 
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specific genes and regulatory regions, and revealed the importance of previously 

ignored pathways. 

 

Even with these achievements, there still remain some unsolved questions. The 

heritability of colorectal cancer varies from 7.4% to 35%14-16, indicating the 

contribution of unknown variants. Recent progress in genotyping technology and 

statistical methods has made larger-scale imputation-based studies possible, but 

few studies have applied these kinds of methods to colorectal cancer. 

 

Here, we conducted a genome-wide association analysis in 22 million Haplotype 

Consortium Reference Panel (HRC)17 imputed SNPs from 26,903 individuals 

across 14 studies. Compared to the 1000 Genome Phase 3 reference Panel, the 

newly released HRC panel has an unprecedented density and a higher rare 

variant imputation quality17. We identified six candidate regions and one gene 

potentially associated with colorectal cancer. By integrating functional annotation, 

sequence function prediction, tissue-specific expression quantitative trait loci 

(eQTL) data and meta-analysis, we highlighted several SNPs in known risk 

regions as potentially functional candidates. 

 

Additionally, as part of the collaboration effort within the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO), we conducted a 

variant calling on 3,061 whole-genome sequenced individuals, aiming to 

generate a consensus call set of variants that are potentially more correlated with 



	 46 

colorectal cancer. We generated a dataset of 48.7 million variants with superior 

quality, and half of them are novel to dbSNP18 build 145. 

 

Materials and Methods 

Data processing and imputation 

Our dataset consists of 12,186 controls and 14,717 cases, coming from 6 

genotyping platforms and 14 studies. Detailed information about the studies and 

genotyping methods can be found in Table S3.1. All individuals were identified as 

Europeans (Figure S3.1) 19,20. Samples from the same genotyping platform was 

merged and imputed onto Haplotype Reference Consortium (HRC) reference 

panel on Michigan Imputation Server21. 

 

Statistical analysis 

For phenotypes, individuals with or without colorectal caner were coded as 0 or 

1, respectively. Adjusted covariates included age, sex, study, batch information 

(if applicable) and first three genotype PCs estimated by PLINK22. Covariates 

were first regressed out from the phenotypes. We used the expected number of 

alternative alleles (dosage) for unbiased estimates23. Single-variant analysis was 

performed under a linear mixed model framework of binary score test 

extensions24 using EPACTS25 (Figure S3.3). Meta-analysis was performed by 

summarizing p values and Z-scores in METAL26 (Figure S3.2, S3.4). 
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For the gene-based test, we conducted a burden test with equal weight27 using 

Raremetal28,29 (Figure S3.5). We used LocusZoom30 to demonstrate potentially 

significant loci. 

 

For single-variant meta-analysis, we used p value < 5x10-8 as the genome-wide 

significance threshold. As mentioned by previous studies, at p value < 5x10-7 

there still exist possible associated variants in European populations31-36. 

Therefore, we also reported variants with p value smaller than 5x10-7 as potential 

candidates. For the gene-based test, as we tested 18,677 genes, 2.7x10-6 was 

used as the genome-wide significance threshold at the significance level of P < 

0.05 after multiple corrections. 

 

Functional annotation 

Using EPACTS, we annotated all variants (both genotyped and imputed) into six 

categories: synonymous, nonsynonymous, exon, intron, stop gain and stop loss. 

To search for causal SNPs, we built and optimized an fGWAS37 model 

incorporating genomic annotations and meta-analysis summary statistics. The 

final model, which has likelihood maximized, includes three annotations: exon, 

synonymous and stop gain. Previous fGWAS studies have suggested using 

posterior probability of association (PPA) greater than 0.9 as the threshold for 

causal SNPs. However, in other previous studies, PPA>0.2 was also widely 

used38,39. Thus, we highlighted SNPs and regions with PPA>0.2 as potentially 

causal candidates. 
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Sequence functionality prediction 

We used a Support Vector Machine (SVM) classifier, deltaSVM40, to predict 

functions of each SNP based on its reference and alternative alleles, together 

with its 11 base-pair flanking sequences on both sides. We used ENCODE 

tissue-specific DNaseI peak information on the UCSC Genome Browser41-43 to 

generate training sets for the classifier. Peak were centered and normalized to a 

uniformed length of 500 base pairs. Sorted by p values in ascending order, we 

selected the first 100,000 peaks as the positive training set. To construct 

negative training sets, we binned the rest of the genome into 500 base-pair 

windows, and randomly sampled sequences by their matching GC content and 

fraction of repeats against those in the positive training set. 

 

Test eQTLs 

First we selected variants with meta-analysis p value less than 10-5 and absolute 

value of deltaSVM score higher than 1. The deltaSVM score was predicted using 

the model from HCT-116 (a colorectal cancer cell line)44. Second, for these 

variants, we obtained their rsID, the nearest gene Ensemble ID and histone 

modification information from the UCSC Genome Browser and HaploReg version 

4.145. On GTEx eQTL website46, we used their rsID, Ensemble ID to test eQTLs 

in tissue “Colon Sigmoid.” Box plots and p values were automatically generated 

by the webpage. 
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Whole genome sequencing and variant calling 

Samples were collected through multiple studies from the Genetics and 

Epidemiology of Colorectal Cancer Consortium. 1187 samples were genotyped 

with different Illumina genotyping arrays as well. At the University of Washington 

Sequencing Center, sequencing reads were generated, were aligned to the 

human reference genome (GRCh37 assembly47) using BWA48 (v0.6.2 for Year 1 

and 2, v0.7.10 for Year 3). After the alignment, samples were delivered to the 

University of Michigan for variant calling. 

 

On Year 3, to minimize batch effect coming from different versions of aligners, 

we performed a re-alignment for all samples. All BAM files were first converted 

back to FASTQ using BamToFastQ49, then re-mapped to the human reference 

genome (GRCh37 assembly with decoy sequences as available from the 1000 

Genomes Project) using BWA-MEM50 v0.7.12. After this re-alignment, base 

qualities were recalibrated and duplicated reads were flagged with BamUtil51. We 

reviewed the summary metrics generated using QPLOT52 for each sample. We 

used LASER53 for sample ancestry inference, and verifyBamID54 for estimating 

contamination level. Population outliers and contaminated samples were 

identified but still included in variant calling. 

 

Every year, variant call was performed together with all the samples that were 

delivered before. In total, three rounds of variant calls were performed during 

2013 to 2016. On Year 1 and Year 2, we used GotCloud55 pipeline to detect 
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SNPs and Indels. In brief, GotCloud automatically separate the analysis into 

many small jobs that are distributed on a high-performance computing (HPC) 

cluster. This pipeline includes annotating variants with various calling features, 

and both hard filters and a support-vector machine (SVM) classifier filter based 

on these features. Additionally, on Year 2, we used GenomSTRiP56 to detect 

large deletions. We made a customized script to distribute GenomeSTRiP jobs 

on our HPC cluster. In Year 3, we used VT57 to detect SNPs and Indels, and 

used an customized GotCloud-like pipeline for job distribution and variant filter. 

Finally, using the list of high-quality sites, we performed LD refinement for 

detected genotypes using the haplotype-aware calling algorithm in BEAGLE58. 

The final list of variants was annotated with SNPeff59. 

 

Results 

Genome-wide association analysis 

In our large-scale meta-analysis, we successfully replicated many previous 

findings, especially in European populations (Table S3.2). After excluding regions 

with known risk SNPs, two signals remained at the level of p < 5x10-8, and four 

clusters of signals remained at the level of p < 5x10-7 (Table 3.1). 

 

At the level of p < 5x10-8, we detected a novel signal at 7p12.1 (rs115561508, 

MAF=0.1, P=3.6x10-9) in an intergenic region, 120 Kb downstream of the stop 

codon of gene POM121L12. This gene has been reported as mutated in a rare 

cancer, Muscinous neoplasms of the appendix (MNA)60. We also detected a 
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novel signal at 9q21.12 (rs138140376, MAF=0.003, P=1.9x10-9), which is a multi-

allelic SNP; the other alternative allele was not significant in meta-analysis 

(MAF=0.0003, P=0.55). Rs138140376 is intronic to gene TRPM3, and 178 Kb 

downstream of gene KLF9. The relationship between these two genes and 

colorectal cancer has been reported in some experimental studies61-64, but until 

now no GWAS studies have identified this relationship. Both rs115561508 and 

rs138140376 do not have nearby genome-wide significant SNPs, with the 

secondary lowest p value in their regions at the 10-6 level (Figure S3.6A,B). 

 

At the level of p<5x10-7, the two regions, 2p24.2 (rs78115417, MAF=0.007, 

P=4.1x10-7) and 5q35.1 (rs555044933, MAF=0.004, P=1.7x10-7) both had a rare 

significant SNP at the intergenic region. There is little LD information in these two 

regions (Figure S3.6C,D). However, in the other two regions, 1p21.3 and 

6p21.31, we observed strong clusters of signals (Figure 3.2). In 1p21.3 

(rs841684, MAF=0.47, P=1.5x10-7), there were 7 SNPs (rs841684, rs841689, 

rs1098724, rs1098725, rs2798940, rs866365, rs841708, rs1772895) from a 

strong LD block with p values smaller than 5x10-7 (Figure 3.1A). In 6q21.31 

(rs12529688, MAF=0.085, P=2.5x10-7), the lead SNP rs12529688 was in 

complete linkage with other three significant SNPs (rs16877540, rs76489311, 

rs146718198) (Figure 3.1B). Rs12529688 is intronic to the promoter region of 

FKBP5, which has altered expression level in many different tumors65. 

Additionally, one experimental study has shown that FKBP5 suppresses the 

proliferation of colorectal adenocarcinoma66. 
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In the gene-based test, we tested 18,677 genes using coding variants only. With 

a Bonferroni corrected genome-wide significant threshold at p = 2.7x10-6, we 

identified one gene with p value above the threshold and two genes with p values 

near the threshold (Figure S3.5). Among them, POU5F1B (P = 2.3x10-12) and 

SH2B3 (P = 4.5x10-6) have been reported as associated with colorectal cancer in 

many previous studies2,3,5,7,9,13. HAO1 (P = 5.0x10-6) contains 10 coding SNPs, 

and none of these SNPs reached a genome-wide significant threshold in single-

variant meta-analysis (Table S3.3, Figure S3.7). A Korean GWAS study showed 

the correlation between HAO1 and childhood leukemia67, but no previous studies 

have shown this gene’s correlation with colorectal cancer. An East Asian GWAS 

study68 identified a known risk SNP, rs2423729, which is 51 Kb away from the 

HAO1 transcription start site, as associated with colorectal cancer.  However, in 

our meta-analysis, it was not significant (P = 0.01). 

 

Functional annotation 

We constructed an optimized fGWAS model that integrated three genomic 

annotations: exon, synonymous and stop gain (Table S3.4A). We estimated PPA 

for each genome block and each SNP to measure how likely a SNP is to be 

causal and how likely a genome block is to contain a causal SNP for colorectal 

cancer, respectively. Thirteen regions and 10 SNPs within them reached the 

threshold of causality of PPA > 0.2 (Table S3.5). 
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Regions at 1p22.1-1p21.3 (PPA=0.36), 6p21.31 (PPA=0.36), 7p12.1 (PPA=0.74) 

and 9q21.12(PPA=0.84) contained our newly identified significant signals. In our 

meta-analysis, the region at 4q22.2 (PPA=0.20) did not have genome-wide 

significant signals, with is consistent with the lack of reports about colorectal 

cancer-associated variants in this region. The other 8 regions all contained at 

least one previously identified risk SNP. 

 

Among the 10 SNPs with PPA>0.2, rs115561508 (PPA=0.73) and rs138140376 

(PPA=0.83) are our newly identified genome-wide significant signals. Others are 

previously identified SNPs or within the same LD block of the known risk SNPs. 

Additionally, rs841684 at region 1p22.1-1p21.3, with PPA of 0.16, is near the 

significant threshold of causal SNPs. It is worth notice that in region 15q13.3, we 

prioritized two SNPs in GREM1 gene body with significant PPA: rs1406389 

(PPA=0.28, meta-analysis p=2.0x10-10) and rs2293581 (PPA=0.23, meta-

analysis p=2.5x10-10). In previous studies, both SNPs were previously identified 

as causal variants in this region69,70, and therefore a nice positive control for our 

approach. 

 

Sequence function prediction and expression analysis 

As we constructed fGWAS models with three tissues, GWAS signals were more 

enriched in DNaseI peaks from HCT-116 (a colorectal cancer cell line) from 

ENCODE database than from the control cell line GM12878 (Table S3.4B). We 

applied the deltaSVM model constructed from HCT-116 DNAseI peaks to our 
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imputed dataset, and generated DNaseI sensitivity prediction scores for each 

variant. Most scores were around zero, with a few variants having extreme 

scores, indicating their potential functionality (Figure S3.8). 

 

To prioritize potential functional candidates, we combined the information from 

genome-wide meta-analysis and DNaseI sensitivity prediction. We extracted 22 

SNPs with both low meta-analysis p values and predicted higher DNaseI 

sensitivity. In Colon Sigmoid tissue, half of the 22 SNPs have the allele-specific 

expression data of nearby genes in the GTEx database. After testing allelic-

specific expression of these 11 SNPs, we obtained 4 signals (rs72894784, 

rs34645899, rs62072496, rs1741635) with expression p value smaller than 0.05 

(Table S3.6, Figure S3.9 A-D). 

 

Among the 4 signals, the first one, rs72894784, is in the same LD block as the 

genome-wide significant signal rs146718198 (meta-analysis p=2.7x10-7), and in 

this block we found 4 SNPs with p value at 10-7 level. The second signal, 

rs34645899, (meta-analysis p=7.0x10-5, eQTL p=2.6x10-6) was still significant 

even after multiple-testing correction. The SNP is intronic to ATF1, a gene 

reported as associated with carcinoma and melanoma9. A known risk SNP, 

rs11169552, is 46Kb upstream of rs34645899, but does not show strong 

correlation with ATF1 allelic-specific expression (eQTL p=0.076). This may be an 

interesting finding because the region has extensive LD and it is still unclear 

which gene is the effector gene. The third signal, rs62072496, is 4 Kb upstream 
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of LLGL1, a gene crucial in Drosophila neurogenesis71. There are no significant 

meta-analysis signals or known risk SNP in this region. The fourth signal, 

rs1741635, is 17KB downstream of known risk SNP rs2427038 and rs4925386. 

All these three SNPs are in the coding region of the colorectal cancer associated 

gene, LAMA572. However, the two known SNP did not show a significant 

correlation with the LAMA5 expression level. 

 

Variant calling from the whole-genome sequenced samples 

We generated whole-genome shotgun sequencing data for 3,061 unrelated 

individuals. 10 of them are African Americans (all from Year 1) and the rest are 

Europeans. The average fold coverage of the genome is 6.6, 4.7, 35.2 from Year 

1 to Year 3 (Figure 3.2A). Insert sizes are relatively consistent across samples 

(Figure 3.2B,C). We performed quality control, re-alignment, variant calling and 

LD refinement that efficiently handled this large dataset (see Methods for details). 

 

In Year 3 call set, we identified 46.1 million SNPs and 2.6 million Indels from the 

3,061 individuals (Table 3.2A). The average Transitions/Transversions (Ts/Tv) 

ratio of the detected SNPs is 2.37. In each individual, we identified an average of 

3.4 million SNPs and 0.22 million Indels (Table 3.2B). Additionally, we observed 

an average of 10.3 thousand singletons and 47.7 thousand rare variants of 

frequency <0.5% in Year 3 deep samples, which is much higher than the 

numbers in Year 1 and Year 2 low-coverage samples, with an average of 4.6 

thousand singletons and 39.3 thousand rare variants per sample (Figure S3.10). 



	 56 

For quality accessment, we compared genotypes from sequencing and microchip 

across 7,767 sites in 1,857 individuals. The average error rate is 0.30%.  

 

In the 48.7 million variants discovered, 47.1% SNPs and 49.4% Indels are in 

protein coding regions. 0.25% Indels are predicted to cause coding frameshift. 

Compared to other sequencing studies, 58.2% of our identified SNPs exist in 

dbSNP build 145. At the same time, 46.4% of our identified SNPs and 40.6% 

Indels overlap with 1000 Genome Phase 3 findings73. 

 

Discussion 

In this large-scale meta-analysis on HRC imputed data, we identified six regions 

and one gene that were significantly associated with colorectal cancer. In region 

7p12.1 and 9q21.12, there were two SNPs with p values lower than the genome-

wide significant threshold of 5x10-8. In 2p24.2 and 5q35.1, there were two rare 

SNPS with p values lower than the 5x10-7. In these four regions, there is little LD 

information and no other significant signals. In 1p21.3 and 6q21.31, there were 

two clusters of signals with p values lower than 5x10-7, and these signals 

included directly genotyped SNPs. These findings make these two regions better 

candidates than the other four regions. 

 

Without replication analysis, it is hard to tell if these signals are true. In addition, 

unless the sample size is extremely large, it is very difficult for rare variants to 

reach the genome-wide significant threshold. Thus, with the current available 
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data, we performed extra analysis to prioritize potentially functional variants, 

aiming to obtain more information from the current dataset. We observed 

substantial enrichment of significant p values in exon regions. We predicted 

several potentially causal SNPs in both novel regions and known regions. By 

combining meta-analysis, sequence function prediction and eQTL data, we 

highlighted four potentially functional variants as affecting nearby gene 

expression levels. It is worth notice that in known risk regions, some of these 

highlighted functional SNPs are not previously known risk SNPs, but are other 

SNPs that are in the same LD block. 

 

From 3,061 whole-genome sequenced individuals, we generated a dataset of 

48.7 million variants. From this mixture of high and low-coverage data, e 

obtained an excessive number of rare variants from higher coverage samples. 

About half of the variants are novel to dbSNP, which means the dataset is very 

likely to contain undiscovered risk loci for colorectal cancer. 

 

In conclusion, our association analysis results indicate that a larger variant set 

with higher marker density not only provides more potential for identifying novel 

variants, but also gives us a new understanding of variant functions in previously 

identified risk regions. To reliably discover novel risk variants, especially rare 

variants, an even larger sample size is necessary. Our whole-genome 

sequencing variant dataset has been contributed to the HRC project as well, and 

will be further used for more analysis for colorectal cancer. 
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Figures and Tables 

 

Figure 3.1 LocusZoom on the two regions with cluster of SNPs of P < 5×10-7 

  

(A) The region at 1p21.3. Lead SNP rs841684 with P = 1.5x10-7. In total, 

there are 8 SNPs with P = 1.5x10-7, all in the same LD block. Extensive 

LD is observed in this region. This cluster is downstream of F3 coding 

region. 
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(B) The region at 6p21.31. Lead SNP rs12529688 with P = 2.5x10-7. There 

are 4 SNPs with P = 1.5x10-7, all in the same LD block, with multiple 

genes clustered in this block. Three out of the four SNPs are upstream 

of FKBP5, and one is intronic to the promoter region of FKBP5. 
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Figure 3.2 Sequencing characteristics of GECCO WGS samples 

We show distributions of (A) mean depth (B) medium insert size (C) standard deviation of insert size. Overall the 

distributions of sequencing characteristics are consistent, with no obvious outliers. Year 3 samples are deeply sequenced, 

with more consistent insert size than the low-coverage sequenced samples from Year 1 and Year 2. 

         A             B           C 
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Table 3.1 Newly identified SNPs associated with colorectal cancer with P values less than 5×10-7 

 

         Region SNP Positiona Alleleb MAF P value 
Imputation 

R2 
Genec Annotationc 

       SNP with P < 5x10-8 

7p12.1 rs115561508 53226189 C/T 0.10 3.60E-09 0.43 
POM12L1

2 
Intergenic 

9q21.12 rs138140376 73207739 C/T 3.00E-03 1.90E-09 0.61 TRPM3 Intron 

      SNP with P < 5x10-7 

1p21.3 

rs841684 95057293 T/C 

0.47 

1.48E-07 

0.95 F3 Intergenic 

rs841689 95059247 G/A 2.00E-07 

rs1098724 95064512 T/C 1.58E-07 

rs1098725 95064950 A/G 1.58E-07 

rs2798940 95065092 C/T 2.04E-07 

rs866365 95065110 G/C 2.12E-07 
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rs841708 95065633 T/G 1.49E-07 

rs1772895 95068347 A/G 4.32E-07 

2p24.2 rs78115417 190304106 C/T 7.20E-03 4.10E-07 0.53 WDR75 Intergenic 

5q35.1 rs555044933 170813604 A/C 3.60E-03 1.70E-07 0.47 
MIR3912, 

NPM1 
Intergenic 

6p21.31 

rs16877540 35506731 A/C 

0.085 

4.70E-07 

0.99 FKBP5 

Intergenic 

rs76489311 35507418 G/A 4.32E-07 
Intergenic 

rs146718198 35511735 G/A 2.74E-07 

rs12529688 35512925 C/T 2.50E-07 Intron 

 

aPosition is based on assembly GRCh37 

 bAllele is annotated as reference allele / alternative allele 

 cAnnotated with UCSC Genome Brows
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Table 3.2 Summary of Year 3 variant calls 

(A) Summary of variant sites detected from 3,061 individuals across all years. 

dbSNP Ts/Tv was calculated from the variants found in dbSNP, while the novel 

Ts/Tv was calculated from the variants not found in dbSNP. 

#SNP 
Overlap with 

dbSNP b145 

dbSNP 

Ts/Tv 

Novel 

Ts/Tv 

Overlap with 

1000G Phase 3 

46.1 M 58.2% 2.37 1.72 46.4% 

#Indel 
Overlap with 

dbSNP b145 

Insertion/ 

Deletion 
Frameshift 

Overlap with 

1000G Phase 3 

2.64 M 57.0% 0.37 0.25% 40.6% 

 

(B) Average numbers of variants across all 3,061 individuals. 

Type #Variantsa #Singleton #Doubleton #HETb #ALTc 

SNP 3.43 M 4,708 3,130 2.11 M 1.33 M 

Indel 216 K 198 107 139 K 77 K 

a Average number of variants in one individual 

b Average number of variants with heterozygous genotype in one individual 

c Average number of variants with homozygous alternative genotype in one 

individual  
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Supplementary Figures 

 

Supplementary Figure 3.1 Ancestry inference of the 26,903 individuals 

Dark spots represent the tested individuals while the other colors represent the 

reference population from Human Genome Diversity Project (HGDP) reference 

panel. Most individuals are estimated as Europeans, with only a few outliers at 

the cluster of Middle East and Central Asia, but not far from the European 

clusters. 
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Supplementary Figure 3.2 QQ plot of meta-analysis p values across all 22 

million imputed variants 

The meta-analysis has a well-controlled inflation rate. The significant signals 

mostly come from the known risk loci associated with colorectal cancer (shown in 

Supplementary Table 3-1) 
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Supplementary Figure 3.3 QQ plot for single variant association analysis 

on each genotyping platform 

(A) AffyMetrix (n=1,124) (B) Initial (n=5,924) 

(C) CCFR USC (n=2,151) (D) OmniExpress (n=5.986) 

(E) CytoSNP (n=10,908) (F) CCFR Subset3 (n=811) 

We observed strong association signals in larger dataset (B) (D) and (E), 

especially in common variants. Due to the limitation of sample size, p values of 

rare variants are deflated, especially in smaller studies (A) (C) and (E) 

 

  A    B    C 
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Supplementary Figure 3.4 Manhattan plot of single-variant meta-analysis 

22 million variants from were tested. We observed strong cluster of signals at 

known risk regions, such as the 8q24, 15q13 and 18q21. 
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Supplementary Figure 3.5 Manhattan plot of the gene-based test 

18,677 genes were tested with Burden test assuming equal weights. We 

observed strong signals as known gene POU5F18 and SH2B3, and a novel gene 

HAO1 
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Supplementary Figure 3.6 LocusZoom plots on the rest four regions with P 

< 5 × 10-7 

There lacks other significant signals in these four regions except for the lead 

SNP. No LD block was observed in these regions. 

 

(A) The region at 7p12.1. The lead SNP is rs115561508 with P = 3.6x10-9 and 

MAF = 0.10. The lead SNP is in the intergenic region downstream of 

POM121L12. 
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(B) The region at 9q21.12. The lead SNP is rs138140376 with P = 1.9x10-9 

and MAF = 0.03%. The lead SNP, located at the coding region of TRPM3, 

is a multi-allelic SNP. Its other allele is not significant in meta-analysis, 

and is more rare in MAF. 
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(C) The region at 2p24.2. The lead SNP is rs78115417 with P = 4.1x10-7 and 

MAF = 0.7%. The lead SNP is intergenic and upstream of WDR75. 
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(D) The region at 5q35.1. The lead SNP is rs55504933 with P = 1.7x10-7 

and MAF = 0.4%, at intergenic region. This region contains multiple 

genes. 
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Supplementary Figure 3.7 LocusZoom plot of HAO1 

The gene HAO1, with P = 5.0 × 10-6 includes 10 coding SNPs in gene-based 

test. None of the SNPs showed evidence of significance in meta-analysis. The 

significant P value of the gene is due to the concordant effect direction and 

relatively small P values from all 10 variants. 

 

 

  



	 74 

 

Supplementary Figure 3.8 Distribution of HCT-116 deltaSVM scores 

With a model built from ENCODE colon cancer cell line HCT-116 DNaseI 

sensitivity peak data, we generated deltaSVM scores for 3,000 SNPs from the 

GECCO HRC imputed dataset. SNPs were selected based on LD pruning from 

meta-analysis P values. 
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Supplementary Figure 3.9 eQTL expression of the nearby genes of the 4 

variants with P < 0.05 at Colon Sigmoid 

(A) rs72894784 tested on TEAD3. Meta-analysis P = 1.0 × 10-5, eQTL P = 3.3 

× 10-2. Heterozygotes have lower expression level, while data is 

insufficient to decide expression level of homozygotes. 

(B) rs34645899 tested on ATF1. Meta-analysis P = 8.7 × 10-5, eQTL P = 3.3 × 

10-2. Significant expression level differences were observed across the 

three genotypes, with the alternative allele positively associated with 

expression level. 

(C) rs62072496 tested on LLGL1. Meta-analysis P = 7.2 × 10-5, eQTL P = 1.1 

× 10-2. Substantial lower expression was observed in heterozygotes 

compared with the reference genotype. 

(D) rs1741635 tested on LAMA5. Meta-analysis P = 2.4 × 10-6, eQTL P = 4.5 

× 10-2. Homozygous alternative genotypes have substantial lower 

expression level than heterozygotes, but data is insufficient for the 

reference genotype. 
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      A          B  

 

    C         D 
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Supplementary Figure 3.10 Singleton and rare variant counts per individual 

(A) Singletons of SNPs and Indels per individual. Year 3 (deeply sequenced) 

has more singletons discovered than Year 1 and Year2 (low-coverage 

sequenced). Population outliers were excluded. 

 

  



	 78 

 

(B) Rare variant (MAF < 0.5%) counts per individual. Year 3 (deeply 

sequenced) has more rare variants discovered. African Americans in Year 1 

have high counts of rare variants. A few samples have been truncated during 

BWA MEM remapping, and as a result, show extremely low counts of rare 

variants. 
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Supplementary Tables 

 

Supplementary Table 3.1 Study information 

 

Study Abbreviation Design Country #Cases #Controls 
Mean 

Age 
%Female 

Genotyping 

platform 

Colon Cancer 

Family Registry 

USC 

CCFR 

subset3 
Case-control 

United States, 

Canada, 

Australia 

398 413 52 54 
Human1Md

uo 

CCFR USC Sib-pair 1171 980 54 50 Unknown 

Assessment of 

Risk in 

Colorectal 

Tumors In 

Canada 

ARCTIC Case-control Canada 769 665 65 52 Affy Chips 

Diet, Activity and DALS1 Case-control United States 410 464 65 45 CytoSNP 
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Darmkrebs: 

Chancen der 

Verhütung 

durch 

Screening 

DACHS Case-control Germany 2376 2206 69 40 

Colorectal 

Cancer 

Studies 2&3 

Hawaiian 

Colo2&3 
Case-control United States 87 125 65 45 

VITamins And 

Lifestyle 
VITAL Cohort United States 285 288 67 48 

Postmenopau

sal Hormone 

study 

PMH Case-control United States 280 122 65 100 

Association 

STudy 

Evaluating 

RISK for 

sporadic 

ASTERISK Case-control France 948 947 65 41 
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colorectal 

cancer 

Multiethnic 

Cohort Study 
MEC Cohort United States 328 346 63 46 

Nurses' Health 

Study 
NHS Cohort United States 553 955 60 100 

OminiExpr

ess 

Nurses' Health 

Study, 

Adenoma Set 

NHS Ad Cohort United States 513 578 57 100 

Physicians' 

Health Study 
PHS Cohort United States 382 389 58 0 

Health 

Professionals 

Follow-up 

Study 

HPFS Cohort United States 403 402 65 0 

Health 

Professionals' 

Follow-up 

HPFS Ad Cohort United States 313 345 61 0 
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Study, 

Adenoma Set 

Women's 

Health 

Initiative 

WHI Cohort United States 1476 2538 67 100 

Initial 

Prostate, 

Lung, 

Colorectal, 

and Ovarian 

Cancer 

Screening 

Trial 

PLCO Cohort United States 1019 2391 64 31 

Diet, Activity 

and Lifestyle 

Study 

DALS2 Case-control United States 706 710 65 45 
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Supplementary Table 3.2 Meta-analysis results on previously identified CRC risk loci 

Position/Gene SNP Positiona Alleleb MAF P value R2c Population 

1q25.3/LAMC1 rs10911251 183081194 A/C 0.43 5.5E-06 0.92 European 

1q41 
rs6691170 222045446 T/G 0.03 3.6E-01 0.91 European 

rs6687758 222164948 G/A 0.20 2.4E-02 1.00  

2q32.2 rs11903757 192587204 C/T 0.16 2.6E-03 0.85 East Asian 

3p14.1/LRIG1 rs812481 66442435 G/C 0.48 5.1E-04 0.99 
Asian, 

European 

3p22.1/CTNNB1 rs35360328 40924962 A/T 0.15 1.4E-06 0.94 European 

3q26.2/TERC rs10936599 169492101 C/T 0.24 5.2E-01 0.99 European 

6p21 rs1321311 36622900 A/C 0.25 1.9E-01 1.00 
African 

American 

6q26.27/SLC22A3 rs7758229 160840252 T/G 0.32 4.5E-01 1.00 Asian 

8q23.3/EIF3H rs16892766 117630683 C/A 0.08 5.6E-11 0.99 European 

8q24/MYC rs10505477 128407443 A/G 0.49 7.9E-12 0.97 European 
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rs6983267 128413305 G/T 0.48 2.8E-12 0.98  

rs7014346 128424792 A/G 0.38 1.1E-11 1.00  

9p24 rs719725 6365683 A/C 0.38 8.4E-05 0.99 European 

10p14 rs10795668 8701219 G/A 0.31 4.4E-02 1.00 European 

10q22.3/ZMIZ1-

AS1 
rs704017 80819132 G/A 0.42 8.7E-05 0.92 

East Asian, 

European 

10q24.2/SLC25A2

8/ENTPD7/COX1

5/CUTC 

rs11190164 101351704 G/A 0.26 2.8E-04 0.97 European 

10q25.2/VTI1A/T

CF7L2 

rs12241008 114280702 C/T 0.09 4.2E-03 0.95 

East Asian, 

African 

American 

rs11196172 114726843 A/G 0.14 8.2E-02 0.95 East Asian 

11q12.2/MYRF/F

EN1/FADS1/FAD

S2 

rs174537 61552680 G/T 0.32 1.4E-04 0.95  

rs4246215 61564299 G/T 0.34 5.4E-04 0.95  

rs174550 61571478 T/C 0.32 8.6E-05 0.97  
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rs1535 61597972 A/G 0.33 9.3E-05 0.99  

11q13.4/POLD3 rs3824999 74345550 G/T 0.48 1.6E-05 1.00 
Asian, 

European 

11q23 rs3802842 111171709 G/T 0.29 1.7E-07 0.97 

East Asian, 

West Asian, 

European 

12p13.32 

rs10774214 4368352 T/C 0.38 9.1E-03 0.96 East Asian 

rs3217810 4388271 T/C 0.13 3.8E-09 0.79  

rs3217901 4405389 G/A 0.42 2.4E-06 0.90  

rs10849432 6385727 T/C 0.11 2.5E-02 0.97  

12q13.13 

rs7136702 50880216 T/C 0.35 1.5E-03 0.87 European 

rs11169552 51155663 C/T 0.26 1.3E-02 1.00  

rs3184504 111884608 C/T 0.49 1.1E-06 0.99  

rs59336 115116352 T/A 0.49 3.4E-06 0.96  

rs73208120 117747590 G/T 0.09 1.3E-05 0.94  

14q22.2/BMP4 rs4444235 54410919 C/T 0.48 4.4E-05 0.99 European, 
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East Asian 

rs1957636 54560018 T/C 0.40 1.4E-02 1.00  

15q13/CRAC1/H

MPS/GREM1 

rs16969681 32993111 T/C 0.19 1.9E-02 0.98 European 

rs4779584 32994756 T/C 0.20 4.5E-09 0.97  

rs11632715 33004247 A/G 0.48 3.3E-03 0.99  

16q22.1/CDH1 rs9929218 68820946 G/A 0.29 5.9E-03 1.00 European 

17p13.3 rs12603526 800593 C/T 0.02 1.4E-02 0.86 East Asian 

18q21/SMAD7 rs4939827 46453463 T/C 0.47 8.1E-11 0.98 European 

19q13.1/RHPN2 rs10411210 33532300 C/T 0.10 2.4E-02 0.99 

African 

American, 

Asian 

19q13.2/TGFB1 
rs1800469 41860296 G/A 0.31 1.4E-01 0.99 East Asian 

rs2241714 41869392 C/T 0.32 1.5E-01 0.97  

20p12.3/BMP2 
rs961253 6404281 A/C 0.36 1.1E-05 0.99 

East Asian, 

European 

rs4813802 6699595 G/T 0.35 1.0E-05 0.94  
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aPosition is based on assembly GRCh37 

bAnnotated as reference allele / alternative allele 

cImputation R-square from Minimac3 

20q13.3 rs6066825 47340117 A/G 0.36 1.0E-02 0.98 European 

20q13.33/LAMA5 rs4925386 60921044 C/T 0.30 4.6E-03 1.00 European 
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Supplementary Table 3.3 SNPs included in the Burden test of HAO1 

Ten coding SNPs were included in the Burden test of gene HAO1. None of them 

is genome-wide significant, but over half of them have low p values in single-

variant test. 

	

SNP Position Allele MAF 
Single-variant p 

value 

rs34249643 7864284 T/C 0.024 2.0E-03 

rs138358725 7866188 C/A 8.0E-04 0.72 

rs573481520 7866189 G/A 0.033 2.3E-03 

rs201216901 7866210 C/T 0.033 2.3E-03 

rs150881591 7866376 T/C 4.0E-03 0.66 

rs139675589 7875820 G/A 4.0E-03 0.34 

rs146825169 7886834 A/G 2.4E-03 6.0E-03 

rs142998832 7886869 C/T 2.0E-03 0.80 

rs201859601 7915210 C/A 0.030 0.044 

rs147089441 7915212 T/C 0.030 0.044 
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Supplementary Table 3.4 Parameter estimates from fGWAS model 

 

(A) Ridge parameter estimates from fGWAS model. 

fGWAS model was first built with six annotations separately: exon, intron, 

nonsynonymous, synonymous, stop gain, stop loss. Then annotations were 

added and dropped under a cross-validation model, until the model likelihood 

was maximized. Penalty was adjusted to maximize an ridge likelihood. The final 

model included three annotations: exon, synonymous and stop gain, with exon 

showing the highest enrichment, implying its stronger effect. 

 

Parameter Enrichment 

Penalty 0.10 

Exon 1.44 

Synonymous -0.52 

Stop Gain -0.011 
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(B) Tissue-specific enrichment in DNaseI sensitive regions, estimated by 

fitting fGWAS models using peak information from each cell line separately. 

For HCT-116 and CACO-2, we only used consensus peaks between the two 

replicates. From the fGWAS models, the colon cancer cell line HCT-116 has 

higher enrichment than the control cell line GM12878. No significant 

enrichment was observed in another colon cancer cell line CACO-2, possibly 

because of the low data quality and inconsistency of peaks between its two 

replicates 

 

Cell line # Peaks Enrichment (95%CI) 

GM12878 (Duke) 121127 3.1E-12 (6.3E-21~67) 

HCT-116 93332 0.54 (2.1E-09~99) 

CACO-2 55623 3.1E-11 (6.4E-20~213) 
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Supplementary Table 3.5 SNPs and genome blocks with causality predicted by fGWAS 

PPA > 0.2 was used as the threshold for screening potentially causal genome blocks. If the chunk doesn’t have such 

SNPs with PPA > 0.2, we show the SNP with highest PPA in this chunk. 

Region Chunk Chunk PPA SNP SNP PPA SNP P value 

1p22.1-1p21.3 94644828-95289080 0.36 rs841684 0.16 1.5E-07 

4q22.2 94491587-95040993 0.20 rs2618731 0.01 1.1E-06 

6p21.31 35219926-35785860 0.36 rs11545925 0.04 9.6E-07 

7p12.1 53086094-53536962 0.74 rs115561508 0.73 3.6E-09 

8q23.3-8q24.11 117072454-117720230 1.00 
rs16892766 0.65 5.6E-11 

rs16888589 0.28 1.3E-12 

8q24.11 117720250-118306941 0.32 rs139444083 0.13 6.7E-08 

8q24.21 127948781-128453248 1.00 rs12682374 0.37 1.2E-12 

8q24.21 130622915-131195299 0.76 rs62525036 0.02 1.2E-07 

9q21.12 72785759-73425880 0.84 rs138140376 0.83 1.9E-09 
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15q13.3 32378406-33312613 1.00 
rs1406389 0.28 2.0E-10 

rs2293581 0.23 2.5E-10 

18q21.1 46285923-46858626 1.00 

rs4939567 0.21 5.5E-12 

rs2337113 0.30 3.9E-12 

rs11874392 0.28 4.1E-12 
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Supplementary Table 3.6 eQTL test on predicted DNaseI sensitive sites 

11 SNPs were tested in Colon Sigmoid at GTEx Portal Website. Nearest genes were decided through HaploReg 

v4.1. Four sites have eQTL P < 0.05. 

 

Region SNP Position MAF P value 
Scor

e 

eQTL  

P value  
Nearest gene 

3p22.2 rs11129737 36890461 0.26 8.97E-05 2.18 0.37 TRANK1 

6p21.31 
rs72894784 35462305 

0.08 
9.99E-06 2.45 0.033 TEAD3 

rs146718198 35511735 2.74E-07 -2.32 0.59 FKBP5 

8q24.11 rs117982378 117707559 0.04 1.45E-05 -2.24 0.34 EIF3H 

8q24.21 
rs62524989 130817869 0.20 1.23E-06 2.64 0.73 GSDMC 

rs62525041 130830724 0.18 2.09E-07 3.32 0.31 RP11-473O4.5 

12p13.2 rs145997566 12785302 0.03 9.28E-05 -2.22 0.32 CREBL2 

12q13.12 rs34645899 51201749 0.40 8.68E-05 2.30 2.6E-06 ATF1 

17p11.2 rs62072496 18124743 0.20 7.18E-05 -2.19 0.011 LLGL1 
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17q22 rs7226124 55030689 0.18 5.44E-05 2.21 0.37 COIL 

20q13.33 rs1741635 60938197 0.21 2.35E-06 2.17 0.045 LAMA5 
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CHAPTER IV 

Improvements for the meta-analysis software 

RAREMETAL4 

 

Introduction 

Advances in array genotyping and next-generation sequencing technology have 

greatly reduced the cost of variant detection, and as a result, generated 

unprecedented amounts of genomic variants from population-scale studies. To 

search for causal variants, the genome-wide association approach that surveys 

the whole genome without pre-requisite knowledge has been the major trend1-3. 

 

Recently, meta-analysis in GWAS analysis has been successfully applied in 

many large-scale human genetics studies2-5. Meta-analysis is the statistical 

procedure for combining data from multiple studies6. In ideal situations, the 

performance of modern meta-analysis methods provides equivalent power to that 

																																																								
        This work in Chapter 4 will be submitted as: 
       Chen S, …, Abecasis G. “RAREMETAL2: a more efficient and flexible tool for meta-analysis”. 
       Yang J, Chen S, Abecasis G. “Improved score statistics for meta-analysis in gene-level     
association studies”. 
       Part of this work in Chapter 4 has been submitted as: 
       Zhan X*, Chen S*, Jiang Y, Liu M, …, Vrieze S, Abecasis G, Liu D. “Meta-analysis of 
Sequence-based association studies in the presence of multi-allelic sites”. (* equal contribution)	
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of joint-analyses that require sharing of individual level data (and which are often 

much more cumbersome to execute)7. 

 

Discovery of these association signals has been enabled by rapid improvements 

in meta-analysis methods and tools5,7-10. Among these tools, RAREMETAL10 is 

one of the most widely used ones, with over hundreds of downloads and several 

successful applications to large consortium studies. However, during the real 

practice, we found that in a few non-ideal situations, the underlying assumptions 

of the standard meta-analysis method may be violated, resulting in biased 

approximation. Below are three common scenarios with violation of meta-

analysis assumptions in real datasets: 

 

1. In standard meta-analysis, one assumption is that within-study phenotypic 

mean and variances are equal to those in joint studies7,11. Yet this assumption is 

not true for some situations, for example, in meta-analysis that combines 

traditional case-control. Studies (with case-control ratio typically close to 1) with 

biobank and population-based studies (with case-control ratio typically much 

larger).  Although weighing summary statistics from each study by their effective 

sample size may provide some adjustment and reduce the power loss, this 

weighing strategy will fail for gene-based tests, because the within-study score 

statistics are related to sample size. 
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2. Compared to the traditional linear mixed models (LMMs), general linear mixed 

model (GLMMs) provides more calibrated results in some situations12,13 and has 

been used more often in recent years. A violation of the meta-analysis 

assumption occurs when combining score statistics generated from those old 

LMM models and those from the newly developed GLMM models. A few studies 

have indicated the systematic bias in the meta-analysis method of summing 

within-study score statistics from these two models, but little research has been 

conducted to address this challenge14. 

 

3. The standard method for generating summary statistics suffers substantial 

power loss in sites with more than one alternative allele (typically named as 

multi-allelic sites). Exome Aggregation Consortium (ExAC) shows that 8% of the 

variants in the human exome are multi-allelic15. However, most analysis method 

can only model effects of one reference and one alternative allele. As a result, 

these multi-allelic SNPs are usually analyzed as separated sites, with the 

reference allele and one alternative allele on each site. As the multi-allelic 

information is ignored, this approach may lead to substantial power loss in both 

single-variant meta-analysis and gene-based test, especially for datasets with 

some individuals having heterozygous genotypes of two different alternative 

alleles. 

 

Here, we implemented several new methods into RAREMETAL to better address 

these challenges: First, we implemented a new method that, rather than simply 
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summing summary statistics across studies, also accounts for variation in 

phenotypic means across studies, also accounts for variation in phenotypic 

means across studies. Second, we implemented a new method that transforms 

LMM generated summary statististics to be numerically equivalent to those from 

GLMMs. This method can additionally help to analyze family-based datasets 

where GLMM parameters are difficult to estimate. Third, we re-designed 

RAREMETAL’s data structure, making it accommodate multi-allelic sites 

correctly. At the same time, we implemented a new method that jointly analyzes 

the effects of multiple alleles rather than the traditional method that analyze 

multiple alleles separately. 

 

Additionally, as the genetics studies datasets becomes larger and larger, there is 

a growing need of optimizations on the speed and disk space usage of the 

software. To match this need, we also improved RAREMETAL, and its 

companion package RAREMETALWORKER (which is used to generate 

summary statistics as RAREMETAL’s input) in the software engineering level. 

With the improvements, the new version taking 7 times less disk space to store 

covariance matrix files, and uses 30% less time to run meta-analysis. 

 

Methods 

Score statistics for individual studies 

Consider a meta-analysis with K studies and N samples in total. Each study has 

nk samples genotyped in mk variants. Let Yk denote the nk×1 phenotype vector; 
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Gk denote the nk×mk genotype matrix (centered and normalized); Xk denote the 

nk×(qk + 1) augmented covariate matrix with first column set to 1 and the others 

encoding qk covariates. 

 

In some practical uses, covariates may need to be regressed out before fitting 

the model. To do this, we first fit covariates against the phenotypes under a linear 

model: 

!! = !!!! + !! 

Then we denote 

!! = !! − !!!! 

When covariates need to be regressed out, Yk is to be replaced by the residual, 

!!. 

 

For a specific SNP i, we denote its score statistics in study k as (Ui,k, Vi,k). We 

denote the meta-analysis score statistics as (Ui,meta, Vi,meta). Using the standard 

meta-analysis method, thse meta-analysis score statistics were calculated as: 

!!,!"#$ = !!,!
!

!!!
 

!!,!"#$ = !!,!
!

!!!
 

 

Improved score statistics for unbalanced studies 
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Consider the situation with unbalanced studies. An exact meta-analysis score 

statistics can be derived as: 

!!,!"#$ = !!,! − 2!!!! !! − !!,!
!

!!!
 

 

!!,!"#$ = !! !!,!
!!!

− 4!! !!!!′− !!,!!!,!′
!

!!!
 

Here !! represents the deviation between phenotype mean in study k and the 

overall phenotype mean. fi,k represents minor allele frequency (MAF) of this site i 

in study k, and fi represents its overall MAF. !!! is the residual variance of 

phenotypes in study k, and the joint residual variance is estimated as: 

!! = 1
! − 1 !! − 1 !!! + !!!!!

!

!!!
 

 

Combine score statistics from LMMs and GLMMs 

For association analysis in study k, we assume the underlying model is a 

generalized linear model: 

!"#$% !" !! = 1 = !!,!!!"##,! + !!!! + !!"##,! + !!"##,! 

 However, a standard linear mixed model is use for association analysis: 

!! = !!,!!!"",! + !!!! + !!"",! + !!"",! 

Where the coefficient can be estimated from the score statistics: 

!!"",! = !!"",!!! !!"",! 
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Through Taylor expansion and approximation on variance components for rare 

variants, we can estimate !!"##,! simply from !!"",!: 

!!"##,! =
!!"",!
!!

 

Where 

!! =
!!!!!

1+ !!!!! ! !" !!  

!!~! 0, !"# !!"",! + !"# !!"",!  

With this estimated correction term Ck, the score statistics from the LMM can be 

transformed to those from GLMMs: 

!!"##,! = !!!!"",! 

!!"##,! = !!!!!"",! 

Using a standard meta-analysis method, these transformed score statistics can 

be summed with score statistics from other studies analyzed using GLMMs. 

 

Jointly modeling allele effects of multi-allelic sites 

Traditionally, for a variant with L alternative alleles, the reference allele is coded 

as 0, while the alternative alleles are consequently coded as 1 to L. Here, 

instead, for an individual j in study k at site i, we encode the genotype as a L-

length vector Gi,j,k=(Gi,j,k,1,Gi,j,k,2,…,Gi,j,k,L), where the lth entry is the number of the 

lth alternative alleles. 

 

Naturally, a linear mixed model to analyze the association between site i and the 

phenotype is 
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!! = !!,!,!!!,!,!
!

!!!
+ !!!! + !!"",! + !!"",! 

And score statistics can be derived as: 

!!,!,! = !!,!,!,! !!,! − !!!!,!
!!

!!!
 

Having the phenotype variance denoted as !!!, we have the variance-covariance 

matrix for multi-allelic sites represented as: 

!!,!~!,! = !!! !!,!! !!,! − !!,!! !! !!!!! !!!!!!!,!  

Testing of lth allele can be controlled on the effect of the remaining L-1 alternative 

alleles, using a method similar to conditional meta-analysis. We can then derive 

the score statistics for testing the effect of allele l as: 

!!,!,!|!! = !!,!,!,! !!,! − !!,!
!!

!!!
 

!!,! = !!,!,!,!
!

!!!!,!!!!
!!,!,! 

Similarly, !!,!,!|!! can be estimated as the covariance between the score statistics 

of the lth allele and the remaining L-1 alternative alleles. To test the effect of the 

lth allele, a standard meta-analysis can be performed by summarizing !!,!,!|!!, 

!!,!,!|!!. 

 

In gene-based tests, !!,!|!! can be used together with other score statistics from 

bi-allelic sites. In addition, to calculate covariance between a multi-allelic site i 

and a bi-allelic site i’, we have: 
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!"# !!,!,!|!! ,!!!,! = !"# !!,! ,!!!,! − !!,!,!|!!!!,!,!!~!,!,!!!! !"# !!,! ,!!!,!  

Here !!!,! is calculated under the traditional bi-allelic model. 

 

Optimization on covariance matrix files 

The original RAREMETALWORKER stored a covariance matrix as a gzipped text 

file, one variant per line, using the format of chromosome, position, variant in the 

same LD block, and variant covariance in the same LD block. In the field of 

variant names and variant covariance, values were comma separated. With such 

method, the disk usage is scaled as O(n2), becoming extremely huge for large 

datasets.  

 

To reduce the disk space usage, we changed the storing method for covariance 

matrix files in the new version. First, for a specific variant, we search for its 

nearby variants by tracing back the hash table of loaded variants, instead of 

directly recording nearby variants as a field in the file. Second, for a covariance 

with an extremely small value comparing to covariance from other nearby 

variants, it would be approximated to zero. Third, we only store index and 

covariance of variants with non-zero covariance. 

 

It is worth noting that with this approximation a covariance matrix may not be 

positive semi-definite, or even become a zero matrix. To make downstream 

analysis possible, we add an identity matrix to the covariance matrix so that the 

following analysis can be normally performed. 
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Simulation studies 

To test the performance of our new method in unbalanced studies, we simulated 

20,000 haplotypes of 5 KB length for 5 European populations using COSI16. Then 

we sampled genotypes of 339 variants in 100,000 individuals. We simulated 

dichotomous phenotypes according to the standard logistic regression model 

with half randomly selected causal variants in a randomly selected region of 100 

variants. We set the intercept term subject to 1% disease prevalence and the log 

odds ratio as !
!! !!!!

 , where C is a given constant. Here we simulated 

phenotypes with the constant C as zero. For balanced studies, each study had 

300 cases and 300 controls. For unbalanced studies, the number of cases for the 

five studies were (60, 180, 300, 420, 540), and the numbers of controls for the 

five studies were (540, 420, 300, 180, 60). Two covariates (C1, C2) were 

simulated for each study. C1 was a binary covariate subjected to a Bernoulli 

distribution of P = 0.5; C2 was a continuous covariates subjected to N(0,1). 

Covariate coefficients were taken as 0.1 in the logistic model. 

 

To test performance of our new method in combining LMMs and GLMMs, we 

simulated another dataset of 1000 variants based on the standard logistic 

regression model: 

! = !"#$%&''( !!"
1+ !!"  

Each element of the genetic effect vector ! followed a normal distribution: 
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!!~!!! 0 + 1− !! ! 0, !!!  

Here we set !!! is as 0.033, and set half of the variants as causal variants 

(!!=0.5). 

 

To simulate multi-allelic sites, we randomly sampled from the 219,680 multi-

allelic sites in ExAC15 project. With the MAFs from these sampled sites, we 

simulated 1000 samples, with genotypes sampled from a multinomial distribution. 

Similar to previous datasets, we simulated genetic effect of each allele from the 

distribution of ! 0, !!! . 

 

Results 

Optimized methods in unbalanced studies 

We simulated a test dataset of both balanced and unbalanced studies, with 3,000 

individuals and 339 variants. We tested the original and the new versions of 

RAREMETAL on this dataset. Joint analysis was also performed as the golden 

standard for evaluation.  

 

In the meta-analysis of balanced studies, the original and the new version show 

similar performance as the joint analysis. As we expected, in this situation, with 

the correction term for between-study phenotypic variation of zero, the new 

method shrinks to the original method. In the meta-analysis of balanced and 

unbalanced studies, the new method shows similar performance as the joint 

analysis, while the original method suffers substantial power loss (Figure 4.1). 
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Combining statistics from LMMs and GLMMs 

We generated summary statistics using LMM on 4 simulated studies, and meta-

analyzed the summary statistics using the new version of RAREMETAL, the 

method proposed by Pirinen et al14, and the original version. Joint analysis was 

performed on these simulated studies using GLMM as a golden standard. The 

new version achieves a equivalent association analysis power as the joint 

analysis (Table 4.1). The original method shows substantial power loss, 

compared to the joint analysis. Association detection power of Pirinen et al’s 

method is higher than the original method but lower than our new method. These 

results indicate a correction of summary statistics in such scenario is necessary. 

 

Jointly modeling allele effects of multi-allelic sites 

Sampled from the real data in ExAC Project, we simulated a multi-allelic dataset 

to test the performance of our new method and the traditional method that 

analyzes each allele separately. In different levels of genetic effects, our new 

method shows higher power than the standard method (Table 4.2). For example, 

at the genetic effect of 0.25, the power from the traditional method is 0.62, 11% 

lower than the power from our new method of 0.66. 

 

Software engineering improvements 
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We performed single-variant meta-analysis for 69,362 markers across 11,998 

unrelated individuals (European ancestry) in 20 studies using RAREMETAL. The 

new version takes 11.5 seconds while the original version takes 17.2 seconds. 

 

To test performance of optimizing covariance matrix files, we randomly sampled 

the Haplotype Reference Consortium (HRC)17 Panel imputed variants from the 

GECCO18 “Omni chip” (detailed description of the dataset is in Chapter 3). For a 

10 Mb randomly sampled region from chromosome 9 with 145,017 variants, we 

generated covariance matrix files using the original version and new the version 

of RAREMETALWORKER. The file size of the original and the new version are 

4.9 GB and 0.73 GB, respectively. Using the two covariance matrix files and 100 

randomly generated variant groups, we performed burden test19 respectively. 

The resulting p values from the two covariance matrix files were highly 

concordant (Figure 4.2). 

 

Discussion 

In this chapter, we have described a major update to our software RAREMETAL 

that brings in software enginering improvements and several useful new methods 

for rare variant analysis. Using simulated datasets, we show the new update in 

addition preserve the software’s ability to meta-analysis in unbalanced studies, 

multi-allelic sites and GLMMs. 
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Our new method for unbalanced studies, which incorporates cross-sample 

phenotypic variation into calculating score statistics, greatly rescued the power 

loss of the standard method. For now, the method only applies to unrelated 

samples. It remains as a future direction of adjusting this method to datasets with 

family structures. 

 

Our new method of combining score statistics generated by LMMs and GLMMs 

has better power than the standard method that naively combines score statistics 

from these different models altogether. From our simulation, we show that this 

method provides a feasible way of analyzing datasets with dichotomous traits, 

especially for family-based data where GLMM model parameter is difficult to 

estimate. Alternatively, the dataset can be fit with LMMs first, and later in meta-

analysis RAREMETAL can transform these summary statistics to those from 

GLMMs. 

 

Our new method for multi-allelic sites jointly model effects of multiple alleles, 

rather than the traditional method that analyzes multi-allelic sites separately. 

From the simulated dataset, we observed substantial power loss for the 

traditional method, which may indicate an under-estimation of the phenotyp-

genotype association of multi-allelic sites in previous studies. Considering the 

huge amount of multi-allelic variants in large and deeply sequenced datasets, it 

will be very promising to apply our new version of RAREMETAL to these real 

datasets to re-evaluate the effects of multi-allelic sites. 



	 118 

 

Additionally, we made software engineering improvements to RAREMETAL and 

its companion package RAREMETALWORKER, making meta-analysis and 

summary statistics storage more efficient. The reduced covariance matrix file 

size will enables us to do gene-based test in a subset of non-coding regions. 

However, to perform gene-based tests genome-widely, the optimized covariance 

matrix file is still a huge disk space cost. Considering the increasing number of 

variants in sequencing studies and imputation reference panel, a further 

reduction of covariance matrix file size is necessary. Possible solutions include 

binary coding and customized compression, but more experiments need to be 

conducted to evaluate their compression rate and real time cost. Nevertheless, 

our current improvement in RAREMETALWORKER is a promising step towards 

this direction. 

 

In conclusion, we updated our meta-analysis software RAREMETAL with 

software engineering improvements and several new methods. With these 

improvements, we believe RAREMETAL will be even more useful for meta-

analysis in future genetics studies. 
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Figures and Tables 

 

Figure 4.1 P values from the standard and the optimized method for 

unbalanced studies in simulated dataset 

Meta-analysis power the standard and the optimized method is compared 

against the joint analysis, which is used as golden standard for evaluating 

association detection power.  

(A) In balanced studies, the three methods are equivalent. Data points of the 

standard and the optimized method perfectly overlap. 

(B) In unbalanced studies, the standard method suffers substantial power loss 

while the optimized method is unaffected (still showing similar power as 

the joint analysis). 

A      B 
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Figure 4.2 Burden test p values from the standard and the optimized 

covariance matrix 

We sampled a 10 Mb genomic region and simulated genes for Burden test. The 

two methods showed almost the same P values for Burden tests, indicating the 

reduction on covariance matrix file size does not affect the performance of 

association test. 
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Table 4.0-1 Power of VT test for LMM analyzed studies   

Four methods were compared. The original method naively combines summary 

statistics from LMMs together. Our new method and Pirinen et al’s method scale 

LMM-derived summary statistics before combining. The joint analysis analyzes 

the pooled samples under GLMM. The power was evaluated under significance 

threshold α = 2.5 × 10-6
 in 1 million replicates. The optimal method has similar 

power as the joint analysis, while the standard method suffers substantial power 

loss. 

 

Fraction of 

causal variants 
Heritability 

Power 

Optimal 
Pirinen et 

al 
Standard 

Joint 

analysis 

0.5 

0.3 0.35 0.32 0.28 0.35 

0.5 0.35 0.33 0.28 0.35 

0.7 0.36 0.31 0.28 0.36 

0 0.5 2.4×10-6 2.8×10-6 2.6×10-6 2.6×10-6 
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Table 4.0-2 Power from the standard bi-allelic analysis and the new multi-

allelic analysis method on multi-allelic sites 

Genotypes were simulated based on MAF of multi-allelic sites in 7 sub-

populations from the ExAC project from a multinomial distribution. Alternative 

allele effects were simulated from a normal distribution with the variance equal to 

the given genetic effect. The total sample size is 10,000. Association power was 

evaluated under significance threshold α = 5 × 10-8
 in 1 million replicates. The 

new multi-allelic method shows better power than the standard method under 

different levels of genetic effects. 

 

Genetic effect 

Association power 

Standard bi-allelic 

method 

New multi-allelic 

method 

0 4.9 × 10-8 4.8 × 10-8 

0.1 0.32 0.37 

0.25 0.46 0.51 

0.5 0.62 0.66 
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CHAPTER V 

Summary and Discussion 

 

Summary 

Advances in genotyping technology have led to the discovery of an 

unprecedented amount of variants, while association analysis has become the 

major approach to finding disease-related genes and loci out of these millions or 

even billions of variants. The findings from these revolutionized technology and 

methodology have been evolving our understanding of human genetics 

disorders. In this dissertation, I have contributed to discovering disease-related 

variants and genes, both in terms of method development and in terms of real 

data analysis. 

 

In chapter 2, I described a likelihood-based method, LIME, to detect MEIs (a 

specific type of novel insertion) from sequencing data. The method naturally 

accommodates cross-sample heterogeneity, and generates genotype likelihood 

to measure the probability of each MEI event. Tested by both simulated data and 

real data, LIME shows better performance than existing methods, especially in 

low-coverage data. In addition, by applying LIME to samples from the Sardinia 
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Whole Genome Sequencing Project, we generated a MEI dataset with functional 

impact prediction on each MEI. We believe LIME will help to generate better-

quality MEI dataset from other sequencing studies as well. 

 

In chapter 3, I presented a genome-wide association analysis on colorectal 

cancer in 26,903 individuals imputed onto the Haplotype Reference Consortium 

(HRC) reference panel. We identified 6 regions of potential associations with 

colorectal cancer. We replicated many previous findings on common and high 

penetrant variants related to colorectal cancer as well, showing the reliability of 

our method. By incorporating functional annotation, sequence function prediction 

and online eQTL data, we highlighted additional loci for potential causality and 

impact on nearby gene expression. Although it is difficult to obtain new significant 

variants in absence of extremely large dataset, our analysis provides new 

insights into association analysis under limited sample size. 

 

In chapter 4, I developed several improvements to the meta-analysis software, 

Raremetal. We implemented a new meta-analysis method that incorporates 

cross-study phenotypic variation, and thus solves the problem of substantial 

power loss in unbalanced studies. We improved the method of meta-analyzing 

statistics from LMMs and GLMMs. This improvement also allows single studies to 

be analyzed with LMMs, since the score statistics can be later transformed as 

equivalent to those from GLMMs. We improved the coding scheme and analysis 

method of multi-allelic variants. With the new method, we got better power for 
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multi-allelic variants than the previous method. Finally, we optimized the storage 

of covariance matrix files from the software, making the file size much smaller 

than previous versions. With these improvements, the software Raremetal now 

more precisely captures the association between variants and diseases in 

complicated situations, and become more flexible and efficient on real datasets. 

 

Future Directions 

There still remain many questions in sequencing and association analysis, which 

could be statistically and computationally challenging. In the future, solutions or 

improvements in the following areas will lead to new genetic discoveries. 

 

First, software LIME can be improved to incorporate the information from longer 

reads. In the future, read length of the short read approach may continue to 

increase, and it will become crucial to incorporate the information conveyed by 

those longer reads. One approach will be to incorporate the re-mapping score 

from MEI consensus sequence into likelihood calculation, replacing the current 

approach that only uses a binary standard. On the other hand, long read 

approaches, such as PacBio, and short read approaches may be combined to 

generate better calling of MEIs. To incorporate the information from both 

approaches, we need to have a better estimation of sequencing error rates from 

long read approaches, and then improve the likelihood calculation method so that 

information from both approaches will be incorporated. 
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Second, software LIME can be applied to more datasets to perform association 

tests for detected MEIs. Although a few studies have more or less implied the 

association between MEIs and certain diseases, there is very little research 

focused on MEIs’ disease causality on a genome-wide scale. Since LIME 

generates genotype likelihood for each MEI, we can apply LIME to large datasets 

and perform LD-aware refinement the detected MEIs together with SNPs and 

Indels in order to improve MEI detection quality. With the combined variant 

dataset, we could perform association tests and obtain a comprehensive view of 

different variants’ roles in disease causality. At the same time, special 

considerations are required for such analysis. Variant calling is always 

computationally intensive. In variant calling stage, we need to optimize the 

pipeline for both the short variant calling and MEI calling. In the phasing stage, 

we need a systematic review of the scale of likelihood between different types of 

variants; otherwise the phasing will be driven by those variants with extreme 

scale of genotype likelihood. In association analysis, since the larger variants 

may have higher impact on gene functions, we may need an optimized weighing 

scheme for short variants and MEIs. 

 

Third, a replication analysis for the imputed GECCO data should be performed. 

Replication analysis is always the golden standard to test if an association signal 

is true. Moreover, with increased sample size, we may obtain significant signals 

for those associated rare variants, which previously were insignificant simply 

because of the limitation of sample sizes. Additionally, with more collaboration 
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between consortiums, we could incorporate samples from other studies as 

additional controls; as a result, this approach will increase the effective sample 

size as well as the association detection power. 

 

Conclusion 

New technology always brings up new challenges. With the increasing size of 

genetics data, appropriate analysis methods and efficient statistical tools will be 

in great need. In this dissertation, I have proposed improved methods for 

analyzing genetics data, and performed an analysis on a real dataset to discover 

associated variants for colorectal cancer. I believe these newly developed 

methods and approaches will facilitate analysis of genetics data, and provides 

insight to future genetics researches. 

 

 


