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ABSTRACT 

Automation and robotics in construction (ARC) has the potential to assist in the 

performance of several mundane, repetitive, or dangerous construction tasks autonomously or 

under the supervision of human workers, and perform effective site and resource monitoring to 

stimulate productivity growth and facilitate safety management. When using ARC technologies, 

three-dimensional (3D) reconstruction is a primary requirement for perceiving and modeling the 

environment to generate 3D workplace models for various applications. Previous work in ARC 

has predominantly utilized 3D data captured from high-fidelity and expensive laser scanners for 

data collection and processing while paying little attention of 3D reconstruction and modeling 

using low-precision vision sensors, particularly for indoor ARC applications.   

This dissertation explores 3D reconstruction and modeling for ARC applications using 

low-precision vision sensors for both outdoor and indoor applications. First, to handle occlusion 

for cluttered environments, a joint point cloud completion and surface relation inference 

framework using red-green-blue and depth (RGB-D) sensors (e.g., Microsoft® Kinect) is 

proposed to obtain complete 3D models and the surface relations. Then, to explore the 

integration of prior domain knowledge, a user-guided dimensional analysis method using RGB-

D sensors is designed to interactively obtain dimensional information for indoor building 

environments. In order to allow deployed ARC systems to be aware of or monitor humans in the 

environment, a real-time human tracking method using a single RGB-D sensor is designed to 

track specific individuals under various illumination conditions in work environments. Finally, 
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this research also investigates the utilization of aerially collected video images for modeling 

ongoing excavations and automated geotechnical hazards detection and monitoring.  

The efficacy of the researched methods has been evaluated and validated through several 

experiments. Specifically, the joint point cloud completion and surface relation inference method 

is demonstrated to be able to recover all surface connectivity relations, double the point cloud 

size by adding points of which more than 87% are correct, and thus create high-quality complete 

3D models of the work environment. The user-guided dimensional analysis method can provide 

legitimate user guidance for obtaining dimensions of interest. The average relative errors for the 

example scenes are less than 7% while the absolute errors less than 36mm. The designed human 

worker tracking method can successfully track a specific individual in real-time with high 

detection accuracy. The excavation slope stability monitoring framework allows convenient data 

collection and efficient data processing for real-time job site monitoring. The designed 

geotechnical hazard detection and mapping methods enable automated identification of 

landslides using only aerial video images collected using drones. 
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Chapter 1  

Introduction 

1.1 Background 

As the second largest construction market worldwide, the value of the United States (U.S.) 

construction industry was 4% of the Gross Domestic Product (GDP) in 2015, which also was the 

average value from 2007 to 2015 (Statista 2017). According to various research studies, it is 

found that there is a decline in construction productivity in the U.S. (Teicholz 2014). Even 

though Sveikauskas et al. (2016) claimed that in fact there exists a productivity growth by 

exploring more comprehensive measurements of labor productivity, the productivity growth rate 

is still low. For example, during 2002-2014 the average rate of the productivity growth in 

highway construction was 3.2% as reported in that research. The controversy over the 

construction productivity reflects the fact that the productivity growth remains stagnant or grows 

very slowly compared to non-farm industries whose productivity has increased by over 200 

percent in the last 40 years (from the 1960s to 2000s) (Ennova 2014).  

As it is widely agreed that integration of automation technologies contributed to the growth 

of productivity in the U.S. manufacturing industry (Brynjolfsson and Hitt 1996; Siegel 1997), it 

has been generally expected that automation technologies can similarly boost productivity in the 

construction industry (Zhai et al. 2009). Apart from the low productivity, the construction 

industry faces many safety problems during to co-existence of large machines and humans, harsh 
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work environment, heavy laboring tasks and so on. For example, one in five worker deaths in the 

calendar year 2015 were in construction (OSHA 2017). Employing automation techniques and 

robots in construction has the potential to make workers safer and reduce hazards, while also 

increasing productivity and benefitting the whole construction industry (Bernold 1987; Son et al. 

2010).  

As the development of research on computer vision, machine learning and robotics has 

occurred during the last two decades, the construction community has been gradually utilizing 

new automation technologies and robotic platforms. For example, computer vision techniques 

are widely employed to monitor conditions of infrastructure for existing civil infrastructure, e.g. 

bridge inspection (Adhikari et al. 2014; Zhu et al. 2010), tunnels inspection (Victores et al. 2011; 

Yu et al. 2007) and road defect detection (Jahanshahi et al. 2012; Koch et al. 2015), and to 

evaluate safety of workers so as to improve productivity and reduce potential hazards (Han and 

Lee 2013).  Computer vision techniques can also be utilized for automated productivity 

analysis(Gong and Caldas 2010; Gong and Caldas 2011), automated performance monitoring 

(Golparvar-Fard et al. 2011; Yang et al. 2015), progress monitoring(Braun et al. 2015), materials 

and resources tracking (Park et al. 2012; Su and Liu 2012; Turkan and Bosch 2013), and so forth. 

An important characteristic of the construction industry is the strong necessity for 

accurate construction site modeling or civil infrastructure surveying so as to obtain three-

dimensional (3D) models, dimension measurements, and so forth. To meet this requirement, 

building information models (BIMs) (Azhar 2011) which contain rich 3D geometric models are 

employed in construction at different project phases, e.g. design, construction, and maintenance.  

In the design phase, BIMs allow to integrate multiple disciplines including design and 

documentation and thus facilitate communications between different entities and better decision 
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(Yan and Damian 2008). During the construction phase, BIMs of the actual construction tasks as 

well as working sites can evaluate the project progress (Han and Golparvar-Fard 2015; Kim et al. 

2013) as well as the safety of construction workers (Chi et al. 2012). Last but not least, 

researchers have also been exploring the applications of robotics in the construction industry to 

improve productivity and automation. For example, a bricklaying robot SAM100 (Construction 

Robotics 2017) has been developed and commercialized for onsite masonry construction. With 

the rapid development of robotics technologies, it is expected that robots integrated with various 

automation techniques will be widely used in the construction industry (Khemlani 2017).  

In order to perform designated tasks, a robot needs to be able to capture the current 

environment, identify the present objects, and complete designed tasks (e.g., picking up a 

concrete slab, laying bricks, and so forth). In addition, for construction robotics, the robot should 

be capable of obtaining 3D models and dimension measurements of the construction site for 

many construction applications other than general robotics tasks (e.g., navigating in a cluttered 

environment). For example, for a mobile robot to lay bricks on a wall, it has to capture the 3D 

models of the current masonry work and place the next brick in the correct position and 

orientation. Otherwise, the walls might not meet the construction specifications. In addition, if a 

robot is designed to obtain 3D models for an excavation project for progress monitoring and 

safety analysis, it requires 3D perception to capture the uneven surface of the construction site 

and obtain sufficient data for creating the 3D models. Therefore, 3D data can significantly 

enhance the ability of construction robots to perform construction tasks automatically.  

The characteristics of the construction industry challenge the use of robotics and also 3D 

data in construction projects. Firstly, the construction environment is usually cluttered with 

various construction materials, equipment, and human workers, which poses great challenges for 
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3D modeling, and general object detection and recognition. Secondly, the surrounding 

environment and the construction work vary according to the progress and the schedule of the 

project. The 3D data capturing and analysis should be performed frequently so as to be applied in 

real construction projects. Thirdly, precise 3D models or measurements of principal objects are 

crucial for many construction tasks. Therefore, for the 3D data and models, the accuracy should 

be carefully explored so as to meet the requirements of real construction projects.  

Currently, the most common method to utilize 3D data in construction is to utilize a 

terrestrial laser scanner, which is able to obtain data with very high accuracy (e.g., the 3D 

position accuracy of Leica ScanStation P30/P40 is 3mm at 50m and 6mm at 100m (Leica 

Geosystem 2017)). However, such a laser scanner is very expensive, and the data collection as 

well as the data processing and modeling are also time-consuming. In addition, it is often 

impossible for a robot to carry such laser scanners to collect data. To meet the need for fast data 

acquisition and robotic platform, low-precision sensors, e.g. RGB-D sensors, stereo cameras, and 

normal RGB cameras, offer significant promise for construction applications. Even though low-

precision sensors might not be able to capture data with a high accuracy comparable to a 

terrestrial laser scanner, it still can obtain data and models that meet the requirements of some 

automation and robotics applications in construction.  

In addition, low-precision sensors allow the potential of being integrated into robotic 

platforms. Thus, with the robotic platform, they enable fast and comprehensive data acquisition 

which can to some extent mitigate problems caused by the cluttered environment. However, 

most previous research on automation in construction (including robotics) relies on accurate 3D 

data source from expensive equipment (terrestrial laser scanners) and rarely utilizes affordable 

sensors for 3D reconstruction and modeling. Even though there exist some methods utilizing 
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close range photogrammetry with RGB cameras to perform 3D reconstruction and modeling 

(Golparvar-Fard et al. 2011; Nassar et al. 2011), these studies focus more on 3D modeling for 

outdoor construction sites while neglecting indoor environments which need to be modeled for 

facility management as well as many robotics applications.  

In summary, automation and robotics technologies are expected to improve productivity 

and safety for the construction industry, and 3D data and geometric modeling can play a 

significant role for construction automation and robotics. In order to enable and facilitate the 

usage of robotics in construction, 3D perception from low-precision sensors is crucial as it can 

capture the data fast while achieving acceptable accuracy for several construction tasks. In 

addition, there is a need to explore 3D perception and modeling from low-precision sensors for 

construction applications and projects in both indoor and outdoor environments, due to their 

potential benefit in the facility management phases of constructed facilities. 

1.2 Literature Review  

Due to the limitation of existing robotic platforms and unique characteristics of 

construction work (for example, the construction site is usually cluttered, unstructured, and has 

both static and moving human workers and equipment), robots specifically designed for the 

construction industry are not so prevalent although some construction robotic systems are 

developed (Construction Robotics 2017). However, as aforementioned, many researchers have 

been exploring to adopt newly developed automation techniques to improve automation for 

construction as well as promote utilization of robots in construction. Thus, this section will 

review the construction automation research which is also relevant to robotics as well as previous 

work on construction robotics. This section also investigates previous research on 3D modeling 
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and reconstruction in construction so as to discuss the challenges of utilizing 3D data from low-

precision sensors in construction automation and robotics. 

1.2.1 Construction Automation and Robotics 

Starting from the 1970s, construction robots have been developed for prefabrication of 

modular homes, tasks in construction sites, maintenance and inspection (Bock 2007). Depending 

on the functions, Ruggiero et al. (2016) categorized construction robotics into several classes 

(e.g., demolition robots, bricklaying robots, exoskeletons, and forklift robots), and discussed 

their advantages and limitations. To promote efficient construction robotics in the industry, 

construction robots should not be constrained or designed for only one task or a few tasks. 

Otherwise, the high cost and low rate of return on investment might hinder usages of these 

robots.  

Thus, this chapter utilizes the categories proposed by Son et al. (2010) to review related 

papers on construction automation and robotics technology. By generally following the key 

phases of construction projects, these categories are: (1) planning and design, (2) construction 

robotics (during the actual direct construction work), (3) intelligent job-site management, (4) 

operation and maintenance, and (5) others, which either combines some of the previous 

categories or belong to none of the four (Son et al. 2010). Instead of generally reviewing all the 

literature on these categories as done in previous work (Bock 2007; Son et al. 2010; Yamazaki 

2004), this section will focus on reviewing and discussing previous work related to 3D data and 

reconstruction for the first four categories while ignoring the last one. 
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1.2.1.1 The Planning and Design Phase 

The planning and design phase mainly involves the architects and engineers capturing the 

facility design in 2D blueprints and 3D models (BIMs), and interacting with contractors and 

other stakeholders to improve the designs and create plans for the construction phases. Therefore, 

the automation techniques for this phase aim at improving the design processes (e.g., parametric 

design) and facilitating communication between different entities, and thus concentrate on 

developing software products to improve productivity and communication. In this context, BIMs 

which can represent detailed 3D models and related properties allow designers to create 

appropriate models, present accurate and realistic visualization for contractors and users, and aid 

the contractors to create or update schedules quickly (Bryde et al. 2013; Jung and Joo 2011).  

1.2.1.2 Construction Robotics 

In the categories above, construction robotics refers to the robots that are designed to 

perform tasks directly related to construction projects (e.g., laying bricks, and performing 

excavation). Even though in the late 1990s several bricklaying robots were developed (Balaguer 

et al. 1996; Heintze et al. 1996; Pritschow et al. 1996), few of them were commercialized due to 

the high cost of the robotics system, sophistication of the robot control system, and necessity of 

special parts (e.g., bricks and blocks) (Balaguer 2000). With the development of computer 

science technology and also easy access to affordable and powerful sensors, research about 

automation and robotics in construction began to progress rapidly in the last two decades. New 

robotic platforms are able to incorporate various sensors and thus obtain useful data which 

improve the functionality, automation, and feasibility of the robotic systems.  

A semi-automated mason robot, SAM100 (Construction Robotics 2017) has been 

developed and commercialized for onsite bricklaying tasks. The SAM100 places bricks 
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according to previously laid bricks and the laser is utilized to line up the bricks for precise 

placement and to ensure the quality of the walls. This robot can collaborate with the mason and 

increase masons’ productivity by 3 to 5 times with consistent production and lower installation 

cost. However, this robot is not fully automated and needs to be monitored by humans, and the 

bricks have to be restocked by human workers. Feng et al. (2015) attached fiducial markers to 

bricks and commanded a robotic arm to pick up bricks automatically using cameras. The 

experimental results demonstrated the system can correctly identify the bricks if they are in the 

view of the camera and build user-designed shapes. They also explored the utilization of an 

RGB-D camera to capture 3D data and thus create 3D models of the construction site. However, 

this work mainly utilized the camera to capture images and localize bricks and did not fully 

integrate the 3D data in the bricklaying tasks.  

In terms of excavation robots, similar to bricklaying robots, several robotic systems 

(Bernold 1993; Bradley and Seward 1998; Lever and Wang 1995; Salcudean et al. 1998) were 

developed in 1990s based on the conventional industrial robots equipped with a bucket and have 

less sensors integration and thus a low level of automation (Ha et al. 2002). Komatsu developed 

the world’s first intelligent machine control excavator PC210LCi-10 (Komatsu 2015). The 

system is equipped with stroke sensing hydraulic cylinders, an IMU sensor, and GNSS antennas, 

and can semi-automatically perform the excavation tasks. However, the system does not have 

any perception sensors for capturing the environment. Apart from performing the basic 

excavation operation, a robotic excavator with a high level of automation should be able to 

perceive and model the current environment including the terrain, and then make decisions 

accordingly to complete the tasks. Therefore, 3D data and (real-time) modeling is necessary for 

modeling the work environment (Chae et al. 2011; Kim 2013) for robotic excavators.  
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Chae et al. (2012) presented a new method for real-time earth surveying using 3D laser 

scanners installed on a mobile platform. To automatically register different scans, several sphere 

targets were placed at arbitrary points on the site so as to calculate the transformation matrix 

between two scans. The system can obtain 3D models for an 80x80m earthwork site in about 130 

minutes. Yoo and Kim (2016) developed a 3D local terrain modeling system using a 2D laser 

scanner to model the terrain for an intelligent excavator robot. They attempted to find the 

optimum location for installing the sensors to minimize blind spots and obtain front earthwork 

terrain models. Experimental results for an actual earthwork site show that the system can 

achieve excellent accuracy even with vibration from the excavator.  

1.2.1.3 Intelligent Job-site Management 

 As aforementioned, safety and productivity are two primary issues in construction. 

Construction robotics and automation thus aim to reduce risks related to construction workers’ 

life and health, and to improve productivity for construction activities. For construction safety 

management, various approaches have been developed and investigated by adopting mobile 

devices, 3D sensors, cameras or other sensors to capture data of construction workers’ behavior 

patterns in work and data of construction work environment (Yang et al. 2015). These 

applications take advantage of perceptual sensors to acquire data at high frequency, and thus are 

able to generate information about safety issues quickly, which allows safety management to be 

made in time and efficiently. Depending on the construction characteristics, these methods aim 

to capture data on the construction site to detect and track construction entities (e.g., construction 

materials, working machines, and human workers) for safety management and progress 

monitoring. As this dissertation is related to 3D geometric modeling, previous work using 3D 
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point clouds is discussed. For the methods using 2D computer vision methods, the reader is 

referred to relevant work described in (Seo et al. 2015; Yang et al. 2015). 

As noted earlier, terrestrial laser scanners can provide accurate 3D point clouds for a 

large area and thus are utilized to capture data for accurate modeling and tracking. Turkan et al. 

(2013) utilized terrestrial laser scanners to track secondary and temporary concrete construction 

objects (e.g., formwork, scaffolding and shoring). After obtaining multiple scans of the 

construction site, they registered the scans with the 3D building model using a robust iterative 

closest point (ICP) method using the point-to-plane framework (Rusinkiewicz and Levoy 2001). 

Then the secondary and temporary objects were recognized using a surface based recognition 

metric (Bosché 2010). Wang and Cho (2015) designed a smart scanning system to rapidly 

identify target objects and update the target’s point clouds to aid the heavy equipment operation 

in rapidly perceiving 3D working environment at dynamic construction sites. A smart scanning 

method was developed to only capture data for a specified target object’s point cloud data while 

the object model was reconstructed using the concave hull modeling. Han et al. (2015) presented 

a new appearance-based material classification method to monitor operation-level construction 

progress using 4D BIM and site photos. The images were utilized to reconstruct 3D models of 

the build, and object detection and recognition using a supervised classification framework. The 

method achieved detection accuracy of 92.4% on four real-world construction sites while 

obtained 3D BIMs at different time stages for progress monitoring. 

Instead of expensive terrestrial laser scanners, 3D data obtained from low-precision 

vision sensors (e.g., RGB-D sensors, and stereo vision cameras) can also be utilized to detect, 

model and track construction entities on the construction site. Teizer et al. (2007) presented a 

real-time 3D modeling method to rapidly detect, model, and track static and moving obstacles by 
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utilizing a Flash LADAR. They utilized the 3D data to create and update an occupancy grid 

which is employed to detect and track objects. Park et al. (2012) employed stereo cameras to 

obtain 3D data for tracking construction resources using an on-site camera system. Each camera 

of the stereo camera system was utilized to perform 2D tracking using images while triangulation 

was conducted to obtain 3D coordinates of the entities. The method was proved to be able to 

effectively track a steel plate, a van, and a worker. Han and Lee (2013) utilized a motion capture 

and a 3D camcorder to extract 3D human skeleton in order to identify critical unsafe behaviors 

and actions for certain construction tasks. 

1.2.1.4 Operation and Maintenance 

Once the construction activities are completed, the condition of civil infrastructure and 

constructed facilities has to be monitored regularly to make sure that it is functioning well. 

Therefore, many researchers have focused on detecting and analyzing defects for civil 

infrastructure monitoring by collecting a series of images to detect and model defects.  

Yu et al. (2007) utilized image processing techniques to detect cracks in a tunnel from a 

Charge-Coupled Device (CCD) camera installed on a mobile robot. Medina et al. (2010) 

presented an automated inspection system for road cracks. They detected and classified cracks by 

combining traditional image features and Gabor filters. Abdel-Qader et al. (2003) compared four 

image-based crack detection methods using concrete bridge images. These methods detected 

cracks by finding edges in images. (Barazzetti and Scaioni 2009) presented a method of 

processing a sequence of images to detect cracks and compute the width across the longitudinal 

profile in pixels. 

Apart from detecting cracks, the dimensions of cracks are also of significance. To get the 

spatial dimensions of cracks, 3D sensing systems (e.g., stereo cameras, and laser scanners), are 
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utilized to get 3D point clouds of the scene. Adhikari et al. (2014a) used an image-based method 

to obtain crack length and width and change detection for bridge inspection. Tung et al. (2002) 

developed a mobile imaging system for bridge crack inspection. Two CCD cameras were 

installed on the platform and they compared the two images from the cameras to detect the crack 

and its position. Hampel and Maas (2009) utilized cascaded image analysis for dynamic crack 

detection from stereo images. By detecting the discontinuities in dense surface deformation 

vector fields, their method is able to identify cracks and obtain the dimension information.  

Jahanshahi et al. (2013) developed another image-based crack detection and qualification 

method. Firstly, they collected a set of images with overlapping features and then performed 

Structure from Motion (SFM) analysis to get 3D point clouds of the scene. Finally, by utilizing 

segmentation, feature extraction, and classification, the cracks and their dimensions were 

detected from the point clouds. This method was tested on concrete cracks. Jahanshahi et al. 

(2012) used an RGB-D sensor to get 3D point clouds of pavements and automatically detect and 

measure the cracks. Torok et al. (2013) used a robotic platform to gather a set of images and then 

performed 3D reconstruction. They proposed a new automated method for detecting cracks from 

3D meshes which are independent of the data sources (from images or laser scanner data). 

1.2.2 3D Reconstruction and Geometric Modeling 

Regarding 3D geometric modeling for construction automation and robotics, the primary 

research topics are related to reconstructing 3D models for existing buildings (i.e., as-built BIMs), 

buildings under reconstruction, construction sites, and so forth. Since as-built BIMs can be 

utilized for various applications and generating as-built BIMs requires 3D geometric modeling 

including estimating the model topological relations, this section will mainly discuss previous 

work related to as-built BIMs for buildings or infrastructure (especially, pipe models).  
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To obtain accurate as-built BIMs and extract dimensional information from built 

environments, high-end 3D laser scanners (time-of-flight, phase-shift) are widely utilized for 

their high accuracy and the capability of obtaining data for large scale scenes (Pătrăucean et al. 

2015). Budroni and Boehm (2010) used a plane sweep algorithm and a priori knowledge to 

segment point clouds into floors, ceilings, and walls, and created a 3D interior model by 

intersecting these elements. Since this method utilized the Manhattan-world assumption to obtain 

rectangular primitives for objects, it failed to handle complicated geometric primitives or 

complicated structures. Nüchter and Hertzberg (2008) used semantic labeling to find coarse 

scene features (e.g., walls, floors) of indoor scenes from point clouds obtained by a 3D laser 

scanner. They employed common-sense knowledge about buildings to label planar surfaces as 

wall, floor, ceiling, and door. Díaz-Vilariño et al. (2015) combined laser scan data and high-

resolution images to detect interior doors and walls and automatically obtained optimized 3D 

interior models.  

Instead of primarily utilizing planes from point clouds, Dimitrov and Golparvar-Fard 

(2014) presented a new method to segment point clouds into non-uniform B-spline surfaces for 

as-built modeling. Brilakis et al. (2010) explored a framework for automated generation of 

parametric building information models (BIMs) of constructed infrastructure from hybrid video 

and laser scanning data. They developed several automated processes for generating BIMs from 

point clouds, for example, automated generation of colored point clouds from video and laser 

scanner data, and automated identification of most frequently occurring objects. A drawback of 

these approaches that use high-end 3D laser scanners is that they need professional setup and 

operation (e.g., attaching markers in the environment for registering point clouds). Moreover, the 

post-processing methods used to extract 3D models from point clouds are time-consuming and 
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labor intensive since such sensors typically obtain millions of points to represent surfaces as 

point clouds. 

Since 3D facility models are significant for maintenance, operation, and construction 

management, pipeline extraction from point clouds is also a major research topic as piping may 

comprise 50% of the value of the facility (Ahmed et al. 2014). Rabbani and Van Den Heuvel 

(2005) employed a sequential low dimensional Hough transform instead of the 5D Hough 

transform for automatic detection of cylinders in point clouds. They first estimated the 

orientation of a cylinder using a 2D Hough transform and computed cylinder position and radius 

by a 3D Hough transform. Avoiding the Hough transform in the 5D space, this method can 

reduce the space and time complexity. Ahmed et al. (2014) presented practical and cost-effective 

approach using the Hough transform and domain constraints to automatically identify and model 

3D pipes from laser-scan-acquired point clouds. They also performed detailed error-modeling to 

filter out the systematic errors in order to localize the pipe cross sections. By degrading the 5D 

Hough space to a systematic repetitive 2D Hough space, this method greatly reduces 

computation complexity. Son et al. (2015) proposed a fully automated as-built 3D pipeline 

extract method from laser-scanned data using curvature. They utilized a normal based region 

growing method to find candidate segments and extracted curvature features to decide whether 

the segments are pipelines. The method can successfully separate pipelines from other objects 

while achieving 100% precision and recall over a data set captured from a chemical plant.  

1.2.3 Research Gaps for 3D Reconstruction and Modeling in ARC 

According to the review of previous literature on construction automation and robotics, 

and 3D reconstruction and geometric modeling, in order to improve automation and promote the 

use of robotics in civil engineering with affordable sensors, the current state of knowledge and 
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research needs to be further explored and investigated in the following directions: (1) utilization 

of low-precision sensors to collect 3D point clouds to perform 3D reconstruction and modeling 

for as-built BIM modeling and facility management in indoor environments, (2) occlusion 

handling to obtain complete 3D models, (3) integration of domain knowledge and sensor 

properties for specific civil engineering applications, (4) low-precision sensors for terrain 

modeling. 

1.2.3.1 3D Reconstruction and Modeling from Low-precision Sensors in Indoor 

Environments 

Due to the application accuracy requirements, most of the 3D as-built BIM modeling in 

the previous literature in civil engineering adopts the data from laser scanner (specifically 

terrestrial laser scanner) which can provide accurate measurements. First, the sensor is expensive 

and must be operated by experts with professional training. In order to collect data using 

terrestrial laser scanner, the scanner has to be moved to multiple locations to capture the whole 

scene while attaching salient markers in the environment for further registration of multiple 

scans. In addition, the scanner will acquire billions of points, which lead to high space and time 

complexity. Moreover, although terrestrial laser scanner can work in indoor environments, due to 

the high occlusion, the scanner has to be moved to a large number of positions which increases 

the cost and time for data acquisition as well as the number of point measurements.  

Point clouds obtained from a set of images have been proven to be efficient and 

sufficiently accurate for some construction applications. Based on a set of unorganized or 

sequential images, the structure from motion (SFM) method is usually adopted to reconstruct 3D 

points by estimating the camera poses and the 3D coordinates of features extracted from images. 

Thus, this method requires that there exists overlapping distinguishable features points among 
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images. It will fail to reconstruct the 3D points when there are a lot of repetitive patterns or 

featureless objects (e.g., walls and floors).  

In summary, 3D point clouds obtained from laser scanner and camera are mainly utilized 

to create exterior models for as-built buildings. There lacks an investigation of 3D point cloud 

acquisition as well as 3D as-built modeling using low-precision vision sensors in indoor 

environments for construction automation and robotics, as well as for facility management.  

1.2.3.2 Occlusion Handling to Obtain Complete 3D Models 

When using time of flight or optical sensors to capture data, many objects will block the 

view of sensors or the objects, and thus, sensors usually cannot obtain all the points of objects. 

For example, when an RGB camera is utilized to capture images for a typical classroom at a high 

position, the chairs will create obstruct the view on some areas on the floor and thus lead to 

incomplete data. For many perceptual sensors (optical, thermal, time of flight), occlusion is 

inevitable especially in indoor environments or construction sites which are abundant with 

various objects. The incomplete point clouds present many challenges for 3D modeling and 

further analyses (e.g., object detection and scene understanding).  

Regarding occlusion handling, many previous projects (Díaz-Vilariño et al. 2015; 

Quintana et al. 2016; Xiong et al. 2013) on reconstructing as-built BIMs for indoor environments 

aim to detect openings (doors or windows) on the walls. Xiong et al. (2013) utilized the ray-

tracking method to detect free space and occluded points by projecting the plane points into a 2D 

space. Then the edges estimated from the depth images are utilized to detect openings (e.g., 

doors and windows) so as to obtain as-built models for the interior of the buildings. Díaz-

Vilariño et al. (2015) utilized color images to perform the ray-casting to find visible image 

sources so as to generate orthoimages. The openings (closed doors) are extracted by detecting 
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rectangles in the 2D space by the generalized Hough Transform. Since these methods are 

designed to create building models, the openings in the walls, especially doors are the main focus 

for occlusion handling. The methods for handling the other type of occlusion as well as occlusion 

for non-planar objects are not discussed.  

1.2.3.3 Integration of Domain Knowledge for Construction Applications 

To promote automation techniques and robots in construction, the domain knowledge 

about the characteristics of construction should be taken into consideration so as to efficiently 

complete tasks. First, one of the key features for construction applications is the unstructured, 

cluttered and dynamic environment. For example, a construction site usually has various 

materials, static or moving construction machines, moving construction workers, and so on. As-

built indoor environments are abundant with various furniture, interior decorations, occupancies, 

and so forth. These features require any automation techniques to handle occlusion caused by the 

clutter, and collect data frequently and cost-effectively to cope with the dynamic change. 

Moreover, before completely automated construction robots, it is unavoidable that construction 

robots will co-exist with human workers in the environment, interact with humans to ask for 

instructions or decision-making, or collaborate with human workers to complete certain tasks. 

Therefore, the robots should be able to be aware of and even detect and track human beings in 

the cluttered and unstructured environment. 

Another key feature in construction is the need for obtaining dimension information for 

task execution, maintenance, and safety issues. In construction, there often exists a discrepancy 

between designed and built models due to the uncertainty in real construction tasks or neglected 

issues in the design phase. For example, when a robot is installing windows within window 

frames, it has to capture the dimensions of the frames in order to place the windows correctly 
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instead of exclusively following the design. Therefore, the dimensions of certain objects are 

crucial for many construction applications, which calls for automation techniques or robotic 

systems that are capable of obtaining these dimensions efficiently and quickly. 

1.2.3.4 Low-Precision Sensors for Terrain Modeling 

3D terrain models are important for many construction and civil applications. For 

example, to monitor the excavation progress and safety, it is necessary to obtain 3D terrain 

models of the excavation project to provide quantitate evaluation of the progress. Traditionally, 

the terrestrial laser scanners or high precision RGB cameras are utilized to obtain precise point 

clouds for 3D reconstruction and modeling. However, the cost of data collection and processing 

for the collected data is usually high. To allow fast data acquisition and processing, low-

precision sensors (normal RGB cameras in this application specifically) can be utilized to obtain 

point cloud with a certain level of accuracy (e.g., ~1cm) which can meet requirements for civil 

applications that require less accuracy. In addition, the data collection and processing for using 

the terrestrial laser scanners or high precision RGB cameras requires experts with professional 

training. It is beneficial to explore and design frameworks that are easy-to-use to reduce the cost 

of data collection and processing. 

1.3 Research Objectives 

The overall research objective of this dissertation is to explore and investigate utilization 

of low-precision vision sensors in 3D reconstruction and modeling for construction automation 

and robotics. In this dissertation, low-precision vision sensors denote computer vision sensors 

that can be utilized to obtain 3D point cloud of the environments. Specifically, for applications in 

indoor environments (especially facility management and maintenance), this dissertation utilizes 
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RGB-D sensors while normal RGB cameras for outdoor environments. The specific objectives of 

this research are as follows: 

• Design point cloud completion methods to address occlusion problems for 

cluttered indoor environments so as to create complete as-built BIMs. 

• Investigate the integration of a priori knowledge of construction scenes and sensor 

properties to enhance data acquisition or dimension retrieval of building 

components.  

• Explore efficient algorithms to detect and track humans using low-precision 

vision sensors in cluttered environments with various illuminations to enable 

robotic systems to recognize surrounding people.  

• Investigate the utilization of drone-mounted sensors for geometric modeling of 

outdoor construction environments or terrains.  

1.4 Research Methodology 

The steps and results below outline the research methodology of this dissertation. 

• Design point cloud completion methods by incorporating the surface geometric 

properties and sensor characteristics to overcome the occlusion problems for 

indoor environments using RGB-D sensors, and to obtain topological relations of 

surfaces so as to obtain 3D complete as-built BIMs. This method will process the 

surfaces according to their planarity and size in order to gradually complete point 

clouds and estimate surface relations with high confidence. By utilizing octree 

representation, it is able to compute visibility information of voxels and process 

data for a large scale. 
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• Develop a user-guided dimensional analysis system using RGB-D sensors in 

indoor environments by utilizing a priori knowledge and the sensor properties to 

allow for real-time, efficient, and interactive dimension estimation. This system 

utilizes three indoor scenarios (i.e., hallways, doors, stairs) as examples to 

investigate the integration of prior knowledge of the scenes and the sensor 

characteristics to allow for real-time dimension estimation. 

• Design and implement algorithms to efficiently track a specific human using a 

single RGB-D sensor in cluttered indoor environment with various illuminations. 

Based on RGB-D data, this method investigates the utilization of color and 3D 

features in order to develop real-time human tracking methods using a single 

RGB-D sensor.  

• Design and implement a system to utilize drones to collect videos for 3D 

geometric modeling and interactive analysis to evaluate the slope stability for 

safety evaluation. 

• Investigate the detection of landslides from RGB images for automatic landslide 

detection and mapping using drones. This method explores the utilization of a 

supervised classification framework to extract landslide from RGB images in 

order to provide potential landslide areas for automatic landslide data collection 

and mapping using drones. 

1.5 Dissertation Outline 

This dissertation is the result of compiling manuscripts that are related to 3D 

reconstruction and modeling using low-precision vision sensors for construction automation and 
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robotics. Since each chapter from Chapter 2 to 6 is written as a self-contained paper, there exists 

some overlapping in the background introduction and literature review in multiple chapters for 

the sake of completeness. There are two major parts in this dissertation: Chapters 2, 3 and 4, 

present the 3D reconstruction and modeling methods in indoor environments for facility 

management and maintenance; Chapters 5 and 6 describe the usage of drones and 3D 

reconstruction and modeling for terrain surface modeling and mapping. 

Chapter 2 presents a join point cloud completion and surface connectivity relation 

estimation method for as-built BIM modeling in indoor environments. The surface geometric 

properties and visibility information of the 3D space which is computed using sensor 

characteristics and observations are utilized to add missing point and infer surface relations so as 

to reconstruct complete 3D models as well as the surface relations. Chapter 3 designs a user-

guided dimensional analysis system using RGB-D sensors in indoor environments for indoor 

facility management and robotics applications. The sensor properties as well as prior knowledge 

about the scenes (i.e., objects whose dimensions are of interest) are combined to generate user 

guidance of how to move the sensor to obtain the dimension information.  

As the robots will be gradually employed in construction or other industries, it is 

inevitable that robots and humans will coexist in the environment and thus the robots should 

have the capability of being aware of humans, share the space or materials with humans, and 

collaborate with human coworkers. Chapter 4 describes the human tracking method using RGBD 

sensors using an online learning strategy. The tracking method integrates the 3D features, RGB 

features, and an online learning method into the Kalman filter so as to track a specific person 

using an RGB-D sensor.  
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Chapter 5 develops a readily-deployable slope stability monitoring framework using 

drones for excavation projects. The framework allows easy operation of the drones and simple 

data collection as well as data processing for generating the 3D terrain model and the slope map 

quickly with little supervision. Chapter 6 explores the detection of landslides from RGB satellite 

images in order to provide input for an autonomous landslide monitoring system using drones. 

Chapter 7 summarizes the major findings and contributions of from this research, and discusses 

further work directions. 
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Chapter 2  

Point Cloud Completion and Surface Connectivity Relation 

Inference 

2.1 Introduction 

Building information models (BIMs) contain rich geometric properties and spatial 

relations of various building entities (Tang et al. 2010) and can play an important role in 

different project stages, including design, construction, and maintenance phases (Azhar 2011; 

Hardin and McCool 2015). Once buildings or infrastructure are constructed, as-built BIMs that 

represents the current state of buildings are necessary due to the discrepancy between designed 

models and real constructed facilities or a lack of as-designed BIMs (Pătrăucean et al. 2015). 

Depending on the existence of designed or previous BIMs, as-built BIMs can be generated by 

updating the as-planned (Golparvar-Fard et al. 2011) or creating new BIMs from scratch (Volk et 

al. 2014). Three-dimensional (3D) point clouds collected by various sensors, e.g., laser scanners 

(Giel and Issa 2012; Hajian and Becerik-Gerber 2010), cameras (Bhatla et al. 2012; Klein et al. 

2012), and depth cameras(Arnaud et al. 2016; Zhu and Donia 2013), are widely used to detect 

geometric shapes and their spatial relations between building elements in order to create as-built 

BIMs.  

When using the sensors to obtain 3D point clouds, due to object occlusions or sensor 

limitations, observed point clouds usually cover only some parts of scenes and miss some other 
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parts. These point clouds will be referred to as incomplete point clouds in this chapter. For 

example, when using the 3D sensors (e.g., laser scanners, and depth sensors) to obtain a point 

cloud of a typical classroom, any fixed furniture such as anchored tables or chairs may block 

each other or the building elements (e.g., walls and floors) such that the resulting point clouds do 

not contain the complete geometry of the building elements. Based on the incomplete point 

clouds, it is challenging to recover complete 3D object models or identify object labels. 

In order to mitigate this problem, this chapter presents a framework to jointly recover 

missing points and infer connectivity relations between surfaces for creating complete 3D 

models in indoor environments. Our framework exploits the fact that indoor environments are 

dominated by planar surfaces and that intersections of the planar surfaces provide a strong cue 

for completing missing data: if two planar surfaces are physically intersecting and connected, 

there is likely no gap between them and missing points between them can be filled. Thus the 

main process of our framework consists of extracting planar surfaces from the incomplete point 

cloud, estimating such connectivity relations between intersecting planar surfaces, and filling the 

missing points between the planar surfaces if the connectivity relations are found. For estimating 

the connectivity relations and filling the missing points, the framework uses the visibility 

information of points in 3D space, which is obtained by generating a truncated signed distance 

function (TSDF) octree (Steinbruecker et al. 2014) from the incomplete point cloud, such that we 

do not connect planar surfaces and fill missing points when there are free space measurements 

between them. To obtain more comprehensive connectivity relations and fill more missing 

points, our framework also includes additional processes such as (1) estimating connectivity 

relations between parallel planar surfaces located close to each other; (2) extracting nonplanar 
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surfaces and connecting each of them to a planar surface that supports it; and (3) filling missing 

points within individual planar surfaces. 

The rest of the chapter is organized as follows. Section 2.2 Previous Work reviews related 

work on completing point clouds and estimating spatial characteristics for 3D reconstruction and 

as-build BIM modeling. Section 2.3 Methodology introduces the proposed method in detail. The 

experimental results and discussion on real-world and synthetic datasets are presented in Section 

2.4 Experimental Results and Discussion. Section 2.5 Conclusions and Future Work draws 

conclusions of the chapter as well as discusses its limitations and future work.  

2.2 Previous Work 

Our work involves point cloud completion and spatial relation inference, each of which is 

discussed separately in this section.  

2.2.1 Point Cloud Completion 

To complete point clouds of surfaces, a common approach is to apply interpolation using 

geometric properties (e.g., symmetry and smoothness) of the surfaces. Janaszewski et al. (2010) 

filled holes by extracting the Euclidean skeleton and closing holes in the skeleton using a 

modified hole closing algorithm and thickness of objects. Kroemer (2012) utilized planar 

reflection symmetries to detect extruded shapes and then employed the parametric representation 

of the extruded shapes to complete the point cloud. Wang and Oliveira (2007) used moving least 

squares to interpolate both geometry and shading information to fill holes. Sharf et al. (2004) 

estimated the characteristics of the surfaces and filled holes by copying the best matching 

patches from valid regions. Carr et al. (2001) utilized radial basis functions to reconstruct smooth 

surfaces and complete holes by interpolation. When reconstructing 3D models with known 
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parametric representations, e.g., cylindrical objects (Ahmed et al. 2014; Son et al. 2015), 

identifying the exact parameters also helps complete missing point clouds. The parameters are 

used to infer unobserved points on its surface and thus obtain 3D complete models. Li et al. 

(2011) proposed a method to simultaneously fit primitives and recover their global mutual 

relations from noisy and incomplete point sets. By estimating the global relations and shape 

alignments, complete models are constructed. Chauve et al. (2010) presented a piecewise-planar 

3D reconstruction and completion method from point clouds with noise and outliers. They added 

ghost primitives composed of planar primitives to ensure the continuation of detected primitives 

and the prevalence of vertical structures. Xiong et al. (2013) utilized a ray-tracing method to 

detect occluded regions of the walls and filled them using a 3D inpainting algorithm. 

Another type of methods for completing point clouds is to reconstruct the models from 

partial point clouds by referring to existing 3D object model libraries. Kim et al. (2012) first 

acquired 3D models of common objects and their variability models and then recognized these 

objects from a single scan. Sung et al. (2015) collected examples of 3D shapes to build structural 

part-based priors and learned the distribution of positions and orientations of each part of the 

shapes. When processing incomplete point clouds, they estimated the parts and symmetries of 

the data and fused data source, symmetry, and database to reconstruct 3D complete models. Nan 

et al. (2012) trained a classifier on a set of shape features and performed the segmentation and 

classification simultaneously. The 3D completion models are obtained by a template deform-to-

fit reconstruction method. Song and Xiao (2014) created a collection of 3D Computer-Aided 

Design (CAD) models, rendered each model from different viewpoints to get synthetic depth 

maps, and then trained a support vector machine (SVM) classifier for each depth rendering. A 

3D detection window was employed to detect objects and reconstruct the 3D complete models. 
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Shao et al. (2012) developed an interactive approach to generate better segmentation results and 

then replaced the segments with objects from a 3D model database to obtain semantic models of 

indoor scenes. 

2.2.2 Spatial Relations Inference 

While 3D models only delineate geometric property of objects, BIMs also need spatial 

relations (or topological relations) of building components to facilitate complicated analysis and 

decision making, e.g., building object classification (Brilakis et al. 2010). Apart from merely 

representing simple spatial information (e.g., connection, adjacency, and intersection), spatial 

relations can also depict or be used to infer physical relations, which helps object detection and 

scene understanding. Existing BIMs can be directly employed to estimate spatial relations 

between 3D objects for spatial queries or analysis. Nguyen et al. (2005) proposed algorithms to 

automatically estimate topological information of building components from 3D CAD models. 

Based on the boundary representation of 3D objects, the following topological relations were 

computed: adjacency, separation, containment, intersection, and connectivity. Nepal et al. (2008) 

analyzed topological relations to derive construction features from a BIM model using the 

Industry Foundation Classes. Borrmann and Rank (2009) extracted directional relations (e.g., 

above, below, and north of) between 3D spatial objects for BIMs. Daum and Borrmann (2014) 

estimated topological relations for spatial queries based on a novel boundary representation of 

3D models for BIMs. These methods rely on an existing BIMs as well as specific representation 

of models to efficiently compute topological relations of building entities. 

Instead of using existing BIMs, spatial relations are also estimated when creating as-built 

BIMs. Silberman et al. (2012) presented a supervised framework to segment visible regions and 

infer their support relations by utilizing physical constraints and statistical priors on support. This 



 

 28 

method processed a single RGB-D image individually instead of processing registered point 

clouds. Shao et al. (2014) extrapolated the cuboids around objects to recover the geometric 

attributes and their spatial relations by making the cuboids physically stable. This method aimed 

to recover the support relations and thus provided cues for retrieving models from 3D model 

libraries. Zheng et al. (2013) estimated the geometric primitives by segmenting the point clouds 

and completing the volumetric space. The completion mainly utilized the occlusion information 

and the Manhattan assumption. After the completion and segmentation, they used Swendsen-

Wang Cut (Barbu and Zhu 2005) to optimize the stability of surfaces.  

Different from the aforementioned previous work, this chapter explores to complete the 

missing points and recover the spatial relations (especially connections between surfaces) 

simultaneously from a registered point cloud. Considering the noisy data, the proposed method 

couples the surface segmentation process with the point cloud completion and connectivity 

relation inference, so that the connectivity relations and surface completion are performed 

robustly. Different from the methods in (Shao et al. 2014; Silberman et al. 2012; Zheng et al. 

2013), the proposed method can handle larger scale indoor scenes. In addition, based on the 

assumption that planar surfaces are dominant structures in indoor environments, the modeling 

process in our method starts from major planar surfaces and then handles iteratively using small 

planar surfaces and nonplanar surfaces, which allows creating reliable and complete models. 

2.3 Methodology 

Figure 2-1 shows how the proposed method simultaneously completes a point cloud and 

recovers the connectivity relations of surfaces from multiple RGB-D frames. The input to the 

method is a series of organized point clouds (depth maps) registered with each other by a 
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simultaneous localization and mapping (SLAM) system. A truncated signed distance function 

(TSDF) octree is created to label the visibility of each octree voxel using the observed point 

clouds and sensor poses. From the octree point cloud, a normal-based region growing algorithm 

is first employed to extracted major planar surfaces. The system tries to create connections 

between the planar surfaces by filling the gap between surfaces if necessary. A connectivity 

graph 𝑮 is created using the planar surfaces where each node denotes a surface while an edge 

represents the connection between two surfaces. Then, the normal-based region growing 

algorithm is utilized to extract small planar surfaces and nonplanar surfaces from the remaining 

point cloud. These new detected surfaces are utilized to update 𝑮 by estimating the connections 

between them and the surfaces in 𝑮. Therefore, 𝑮 is updated by three different types of surface 

sets, i.e., major planar surfaces, small planar surfaces, and nonplanar surfaces, and the surface 

completion and connectivity inference methods depend on the surface type. The surface 

detection is iteratively performed until no surface is detected. Finally, the 3D complete models 

and the connectivity relations of surfaces are reconstructed.  

 

 

Figure 2-1: Point cloud completion and surface relation inference overview. 
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2.3.1 TSDF Octree Construction 

The registered organized point clouds are fused by using a truncated signed distance 

function (TSDF) octree (Curless and Levoy 1996; Newcombe et al. 2011; Steinbruecker et al. 

2014) to reduce the measurement noise and to obtain a single fused point cloud with fewer points 

compared to the raw point cloud. The TSDF octree representation can efficiently handle large-

scale scenes while incorporating uncertainty of observed points. The TSDF octree generation is 

performed using the depth frames and the sensor poses (positions and orientations) computed by 

a SLAM system which registers all frames to the same coordinate system.  

For each point in a frame of the organized point cloud, a ray from the sensor position to 

the point is cast to the TSDF volume. Then the TSDF values of certain octree voxels on the ray 

according to the depth measurement of the point are calculated for the first time or updated if 

they are computed using other points. The octree is incrementally expanded to cover all the 

measured points when the depth measurement falls into an uninitialized region. The octree 

generation iterates for all the points in all the frames. 

After processing all the frames, the TSDF value of an octree voxel reflects the distance 

between the voxel and its nearest surface point. The TSDF value is close to zero for a measured 

point, while the TSDF value is positive and negative for a point in front of and behind a 

measured point, respectively. The visibility of an octree voxel is then determined according to its 

TSDF value. The voxels with zero TSDF values are categorized as occupied voxels, which form 

the single fused point cloud 𝑷𝒐𝒄𝒕 . The voxels with positive and negative distance values 

respectively correspond to free space voxels (free space between the sensor and occupied voxels) 

and invisible voxels (occluded behind occupied voxels). In addition to these visibility labels, the 

voxels will be assigned a surface identification during the completion process. 
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2.3.2 Point Cloud Segmentation 

Instead of segmenting the point cloud into separate objects in advance for later processes 

as previous methods (Zheng et al. 2013), in this chapter, the segmentation is coupled with 

estimating the connectivity relations and completing the point cloud. Since the point clouds 

contain noises due to the measurement noises or registration errors of multiple frames, it is 

challenging to attain the optimal and general threshold for both planar and nonplanar 

segmentation (e.g., the distance for a point belonging to a surface). For example, when detecting 

planes for the noisy point clouds, the segmentation method tends to find multiple planar clusters 

for the plane containing large noises. Therefore, in this chapter, the point cloud segmentation 

contains two separate steps, (1) major planar surface segmentation, and (2) small planar surface 

and nonplanar surface detection. Since most indoor objects contain planes, the proposed method 

processes the major planar surfaces before handling small planar and nonplanar surfaces. After 

the connection estimation and completion for the major planar surfaces, the small planar surface 

and nonplanar surface detection is iteratively performed on the remaining point cloud and the 

detected surfaces are processed for point cloud completion and surface relation inference.  

A normal-based region growing algorithm (Xiao et al. 2014)is utilized to detect major 

planar surfaces. The normal vectors and curvatures of the points are estimated by performing 

principal component analysis of neighboring points. In order to find a planar cluster, the point 

with the smallest curvature is selected as the initial seed point from the points that are not 

classified to any cluster. Starting with this seed point 𝒑𝒔 whose normal vector is 𝒏𝒑𝒔, for each 

point in its neighborhood, 𝒑 ∈ ℕ𝒑𝒔 , if the difference between its normal vector and 𝒏𝒑𝒔 , is 

smaller than a threshold, 𝒑 is assigned to the cluster 𝑪𝒑𝒔 containing 𝒑𝒔 and used as a new seed 

point. This process is iteratively performed until no point is added to 𝑪𝒑𝒔 and all seed points are 
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explored. Then another qualified seed point, i.e., it has the smallest curvature among the 

remaining unassigned points while the curvature is smaller than the curvature threshold, is 

selected and the iterative growing process is performed again to find another cluster. The method 

stops until no qualified seed point is available or no cluster meeting the requirements (in this 

chapter, a cluster has to contain a minimum number of points) is found using the growing 

strategy. A small curvature threshold and a small normal vector discrepancy threshold are 

utilized to extract planes with high confidence. Based on these major planar surfaces, the 

connectivity graph 𝑮 is constructed.  

After the connectivity graph is created and updated by the detected major planar surfaces, 

for the remaining point cloud, the normal-based region growing algorithm is adopted to identify 

nonplanar surfaces and small planar surfaces by relaxing the thresholds for the curvature and the 

normal vector difference. Due to noise and irregular objects, some spurious clusters whose points 

scatter widely in 3D space may be obtained. To eliminate them, the point density of the cluster, 

i.e., the ratio of the number of points to the volume of its bounding box, is checked. The valid 

nonplanar surfaces and small planar surfaces are utilized to update the connectivity graph by 

finding connections between them and the planar surfaces in 𝑮. 

Since the algorithm of updating 𝑮 by a small planar surface is different from that using a 

nonplanar surface, this work utilizes the cluster point distribution to distinguish a nonplanar 

surface from a small planar surface. The principal component analysis (PCA) is performed on 

the cluster points and the eigenvalues 𝜆0, 𝜆1, 𝜆2 (𝜆0 ≤ 𝜆1 ≤ 𝜆2)  and eigenvectors of the 

covariance matrix of the points are computed. The value 𝑝 ← 1 − 𝜆0/𝜆1  can reflect whether 

these points are from a plane. For a perfect plane, 𝑝 is 1 because the points have zero variance 

along the normal vector (which is the same as the eigenvector corresponding to 𝜆0) of the plane, 
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and thus 𝜆0 is 0. For the points on a sphere, the three eigenvalues are identical and 𝑝 is 0. If 𝑝 is 

greater than a threshold (in this work, 0.9), the surface is viewed as a planar surface and used to 

update 𝑮 using the corresponding method. Otherwise, it is processed as a nonplanar surface to 

update 𝑮.  

2.3.3 Connectivity Graph Construction 

To represent connectivity relations between surfaces, an undirected graph 𝑮 = (𝑽, 𝑬) is 

constructed where the set of vertices 𝑽 denotes surfaces segmented from the point cloud, and the 

set of edges 𝑬 represents connections between vertices. If there exists a connection between two 

surfaces 𝒗𝒊 and 𝒗𝒋, an edge 𝒆𝒊𝒋 is added to 𝑮. Since the planar surfaces are the major components 

of objects in indoor environment, the chapter first utilizes the major planar surfaces to construct 

𝑮 by recovering the connections among them. Then, 𝑮 is updated using small planar surfaces 

and nonplanar surfaces by finding connections between them and the planar surfaces in 𝑮.  

2.3.3.1 Connection Inference and Point Completion for Planar Surfaces 

Algorithm 1 describes the method of updating 𝑮 based on the major planar surface set 𝑺. 

In indoor environments, large planar surfaces (measured by the number of points in the observed 

point cloud) usually dominate the main structures of a scene and play an important role in 

surface connections within the scene. Thus, Algorithm 2-1 handles planar surface according to 

their sizes so as to recover the connections between larger planar surfaces before processing 

small planar surfaces. The algorithm contains two sub-processes where the first one finds 

connections between 𝑺 and 𝑮 while the other seeks connections within 𝑺 and then adds them to 

𝑮. When building a connection between two surfaces, some points are added to the two surfaces 

and the completion can lead to changes of distances between surfaces, which improves the 
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possibility of building more connections. Since 𝑮 already contains surface connections of major 

planar surfaces and partially filled surfaces during the building connection process, connections 

between 𝑺 and 𝑮 have higher confidence than those within 𝑺. Therefore, Algorithm 2-1 first 

searches connections between 𝑺 and 𝑮 and then estimates connections within 𝑺.  

 

Algorithm 2-1: Update Connectivity Graph by the Major Planar Surface Set 

1 function UpdateGraphByMajorPlaneSet(𝑮, 𝑺𝑷) 

2     𝑺𝑷 ← SortPlanesBySize(𝑺𝑷) 

3     do  

4         for 𝒔 ∈ 𝑺𝑷 do 

5          𝑺𝒄𝒔 ← FindCandidateConnectedPlanes(𝒔, 𝑽) 

6              for 𝒔𝒄𝒔 ∈ 𝑺𝒄𝒔 do 

 7                     if ThereIsAConnection(𝒔, 𝒔𝒄𝒔) = true then  

8                         𝑺𝑷 ← 𝑺𝑷\{𝒔} 

9                         𝑽 ← 𝑽 ∪ {𝒔} 

10                        𝑬 ← 𝑬 ∪ {𝒆(𝒔, 𝒔𝑪𝑺)} 

11                    end if 

12             end for 

13         end for 

14         for 𝒔𝟏 ∈ 𝑺𝑷, 𝒔𝟐 ∈ 𝑺𝑷, 𝒔𝟏 ≠ 𝒔𝟐 do 

15             if ThereIsAConnection(𝒔𝟏, 𝒔𝟐) = true then  

16                 𝑺𝑷 ← 𝑺𝑷\{𝒔𝟏, 𝒔𝟐} 

17                 𝑽 ← {𝒔𝟏, 𝒔𝟐} ∪ 𝑽 

18                 𝑬 ← 𝑬 ∪ {𝒆(𝒔𝟏, 𝒔𝟐)} 

19             end if 

20         end for 

21     while IsChanged(𝑮) = true  

22     return 𝑮 

23 end function  
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As shown in Algorithm 2-1 Line 5, first, for each surface 𝒔 ∈ 𝑺, its candidate connected 

surfaces 𝑺𝒄𝒔 are searched from the vertices in 𝑽 by checking the spatial relations of surfaces. If 

the distance between two surfaces 𝒔 and 𝒔′ ∈ 𝑽 is smaller than a distance threshold (15𝑣𝑠 where 

𝑣𝑠 is the octree voxel size) and they intersect with each other, there might exist a connection 

between the two surfaces. Thus 𝒔′ is a candidate connected surface for 𝒔, i.e. 𝑺𝒄𝒔 ← 𝑺𝒄𝒔 ∪ {𝒔
′}. In 

this chapter, the distance between two different surfaces, 𝒔𝟏 and 𝒔𝟐 is computed as the distance 

between the closest pair of points (𝒑𝟏, 𝒑𝟐) while the two points are from different surfaces, i.e., 

𝒑𝟏 ∈ 𝒔𝟏, 𝒑𝟐 ∈ 𝒔𝟐. 

Once candidate connected planar surfaces 𝑺𝒄𝒔 are found, for each candidate surface 𝒔𝒄𝒔 ∈

𝑺𝒄𝒔 the algorithm will check whether there is a valid connection between 𝒔𝒄𝒔 and 𝒔 (Algorithm 2-

1 Line 7). The validity of a connection is related to the type of connections being estimated. This 

chapter estimates two connections for planar surfaces, i.e., the connection between two 

intersecting planar surfaces and the connection between parallel but not coplanar planar surfaces. 

The validity of the connections will be discussed later. If a valid connection is detected, the edge 

is constructed between the two surfaces and added to 𝑮 (Algorithm 2-1 Line 10). Meanwhile, the 

surface 𝒔  is moved from 𝑺  to 𝑮  (Algorithm 2-1 Lines 8-9). After trying to connect 𝑺  to 𝑮 ,  

Algorithm 2-1 detects connections within 𝑺 as shown in Lines 14-20. If a connection between 

two planar surfaces, 𝒔𝟏 and 𝒔𝟐, is found, 𝒔𝟏 and 𝒔𝟐 are added to 𝑽 while the edge between them 

is added to 𝑬.  

Algorithm 2-1 iteratively performs the two sub-processes until 𝑮 is not updated, i.e., no 

surface is added to 𝑮 and no more connection is detected. 

Algorithm 2-1 is designed for the major planar surface set detected at the first stage the 

segmentation method. For the remaining planar surfaces (usually having a small number of 
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points), this chapter only tries to build a connection between them and the surfaces in 𝑮, which is 

the same as Algorithm 2-1 Lines 4-13.  

2.3.3.1.1 Connection Inference for Intersecting Planar Surfaces 

The completion between two intersecting planar surfaces is performed by growing the 

two planar surfaces toward the intersection line as shown by Figure 2-2. The intersection line 𝒍𝒊𝒋 

(Figure 2-2 (a)) of two planar surfaces 𝑷𝒍𝒊 and 𝑷𝒍𝒋 is estimated using the plane equations. Then 

as shown in Figure 2-2 (b), for each plane, e.g., 𝑷𝒍𝒊 starting from a voxel 𝒗 on 𝒍𝒊𝒋, a segment 𝒍𝒗 

orthogonal with 𝒍𝒊𝒋 is drawn toward the centroid of the surface until it hits a point 𝒗𝑷𝒍𝒊 on that 

surface.  

If all voxels on the segment 𝒍𝒗 are unassigned to any surfaces or invisible, these voxels 

will be filled with points and added to the plane 𝑷𝒍𝒊 (Figure 2-2 (c)). Otherwise, no voxels on 𝒍𝒗 

will be added to the octree. Thus, if 𝒍𝒗 contains at least one free space voxel, none of these 

voxels are added since they have a high probability of being free space too. The process is 

iterated at all voxels on 𝒍𝒊𝒋. This completion process will fill the invisible or unassigned voxels 

around the intersection line of the two planar surfaces. This completion is temporarily performed 

first and finalized when the connection is valid. When the connection is valid, all the added 

points are maintained in the TSDF octree permanently.  

Whether the connection between two intersecting planar surfaces is valid depends on the 

quality of the intersection segment between them. The intersection segment 𝒔𝒆𝒈𝒊𝒋 is a segment 

on the intersection line 𝒍𝒊𝒋 between two surfaces and contains at least a certain number of points 

from both planar surfaces. If one of the planar surfaces have few points on 𝒍𝒊𝒋, there exists no 

intersection segment between the two planar surfaces. In order to compute the intersection 
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segment, a segment 𝒔𝒆𝒈𝒊 is estimated from the points that are in 𝑷𝒍𝒊 and also on 𝒍𝒊𝒋. Similarly, 

𝒔𝒆𝒈𝒋  is computed. Finally, the intersection segment 𝒔𝒆𝒈𝒊𝒋  is estimated as the intersection of 

𝒔𝒆𝒈𝒊 and 𝒔𝒆𝒈𝒋, i.e., 𝒔𝒆𝒈𝒊𝒋 ← 𝒔𝒆𝒈𝒊⋂𝒔𝒆𝒈𝒋.  

 

   
 

(a) Compute the 

intersection line 𝒍𝒊𝒋 
(b) Draw a segment 𝒍𝒗 

perpendicular to 𝒍𝒊𝒋 
(c) Fill the voxels on 𝒍𝒗  (d) Iterate all the 

points on 𝒍𝒊𝒋 

Figure 2-2: Completion between two intersecting planar surfaces. 

If there exists an intersection segment 𝒔𝒆𝒈𝒊𝒋 between two planar surfaces and 𝒔𝒆𝒈𝒊𝒋 is 

sufficiently long and contains a certain number of points, the connection between them is valid. 

In this chapter, if the segment length is greater than 5𝑣𝑠 and the ratio of the number of points it 

contains to its length is greater than 0.9/𝑣𝑠, the intersection segment is good and the connection 

becomes valid. If a valid connection is detected, the connection is constructed between the two 

surfaces and the added points will be permanently assigned to the surfaces as well as the octree. 

2.3.3.1.2 Connection inference for parallel planes 

Other than intersecting connections, there exist connectivity relations between two 

parallel planar surfaces in the real world, e.g. a book lying on the table, and a television hanging 

on the wall. To estimate this connectivity relation, the two planar surfaces and their parallel 

relation (In this chapter, we assume that for plane relations, coplanar planes have the same 
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parameters and parallel planes only share the same normal vector.) should be correctly identified. 

Instead of simply utilizing a distance threshold between two parallel planes, this chapter also 

integrates the uncertainty of the planar surface to determine the parallel relation. If two planar 

surfaces are identified as parallel and can be connected, a connection between them is created 

and added to the graph 𝑮.  

In this chapter, to decide whether two parallel planar surfaces, 𝑷𝟏 and 𝑷𝟐 are connected 

to each other, their normal vectors should be parallel, i.e., the minimum angle between them is 

smaller than an angle threshold (10 degrees), and the distance between the planar surfaces is 

smaller than a threshold (2.5𝑣𝑠). Then, all the points of the two planar surfaces are projected to a 

plane parallel to the planar surfaces and two corresponding 2D convex hulls, 𝒄𝒉𝟏 and 𝒄𝒉𝟐 for the 

projected points are computed. The overlapping value is computed as the ratio of the points of 

the smaller planar surface (for example, 𝑷𝟏) falling within 𝒄𝒉𝟐. If the ratio is smaller than a 

threshold (20% in this chapter), there is no connection between 𝑷𝟏 and 𝑷𝟐, and they are just 

parallel to each other. Otherwise, the distance 𝑑(𝒄𝟏, 𝑷𝟐) from the centroid of the smaller surface 

𝑷𝟏  to 𝑷𝟐  is computed. If the distance is greater than max (0.25(𝑡ℎ𝑖𝑐𝑘𝐶𝐵𝐷1 +

𝑡ℎ𝑖𝑐𝑘𝐶𝐵𝐷2), 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑝)(in this chapter, 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑝 = 3𝑣𝑠) where 𝑡ℎ𝑖𝑐𝑘𝐶𝐵𝐷1 and 𝑡ℎ𝑖𝑐𝑘𝐶𝐵𝐷2 represent 

the thickness of the cuboids of 𝑷𝟏 and 𝑷𝟐 (which will be explained in Section Completion within 

Individual Planar Surfaces), there is a connection between 𝑷𝟏 and 𝑷𝟐. If the overlapping value is 

greater than the threshold and 𝑑(𝒄𝟏, 𝑷𝟐) is smaller than the threshold, 𝑷𝟏 and 𝑷𝟐 are viewed as 

coplanar planes and will be merged into one planar surface. 
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2.3.3.2 Connection Inference and Point Completion for Nonplanar Surfaces 

After the major planar surfaces are processed, nonplanar surfaces are utilized to update 

the connectivity graph 𝑮. By assuming that a nonplanar surface is supported by a planar surface, 

this chapter aims to connect a nonplanar surface to at most one planar surface and build a 

connection between them. The candidate connected planar surfaces for a nonplanar surface are 

determined according to the distances between surfaces.  

To find the best candidate, the method computes the weights for the candidate planar 

surfaces based on the gravity direction, the surface size, and the distances between surfaces. The 

gravity direction is employed to obtain physically reasonable connections. This chapter assumes 

that when capturing the first frame, the sensor is held almost horizontally and all the other frames 

are registered to the first frame. Therefore, the gravity direction is set using this prior knowledge 

according to the sensor coordinate system. Meanwhile, the surface size is utilized to ensure that 

the connection creation prefers large planar surfaces than small planar surfaces. The distance 

between surfaces is also considered to favor closer surfaces. Let 𝜔𝑵𝑷𝒊(𝑷𝒋) denote the weight of a 

planar surface 𝑷𝒋 with respect to a nonplanar surface 𝑵𝑷𝒊. Then,  

𝜔𝑵𝑷𝑖(𝑷𝒋) = 𝑎1 ∙ 𝑓(𝒈, 𝒏𝑷𝒊) + 𝑎2 ∙ ℎ(|𝑷𝒋|) + 𝑎3 ∙ 𝑔(𝑑(𝑵𝑷𝒊, 𝑷𝒋), 𝑑𝑇0, 𝑑𝑇1)       (2.1)  

where 𝑎1, 𝑎2, 𝑎3  are weight coefficients. The first term 𝑓(𝒈, 𝒏𝑷𝒊) = 1 − ∠(𝒈,𝒏𝑷𝒊)/𝜋  is a 

function of the gravity 𝒈 and the normal vector of 𝑷𝒋, 𝒏𝑷𝒊 where ∠(𝒈, 𝒏𝑷𝒊) is the minimum angle 

between 𝒈 and 𝒏𝑷𝒊. The second term ℎ(|𝑷𝒋|) is a function of the planar surface size and favors 

large surfaces than small surfaces. In this chapter, if |𝑷𝒋| > 𝑇𝑠 , ℎ(|𝑷𝒋|) = 0.7 . Otherwise, 

ℎ(|𝑷𝒋|) = 0.3. As the octree is utilized, 𝑇𝑠  can represent the number of voxels of an object 

model. In this chapter, 𝑇𝑠 is set as the number of voxels of a square planar surface with a side 
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length of 50𝑣𝑠, i.e. 𝑇𝑠 ← 2,500. The third term 𝑔(𝑑(𝑵𝑷𝒊, 𝑷𝒋), 𝑑𝑇0, 𝑑𝑇1) is defined as 

𝑔(𝑑(𝑵𝑷𝒊, 𝑷𝒋), 𝑑𝑇0, 𝑑𝑇1) =

{
 
 

 
 1 − 0.5

𝑑(𝑵𝑷𝒊,𝑷𝒋)

𝑑𝑇0
                 𝑑(𝑵𝑷𝒊, 𝑷𝒋) ≤ 𝑑𝑇0             

0.5 − 0.5
𝑑(𝑵𝑷𝒊,𝑷𝒋)−𝑑𝑇0

𝑑𝑇1−𝑑𝑇0
    𝑑𝑇0 ≤ 𝑑(𝑵𝑷𝒊, 𝑷𝒋) ≤ 𝑑𝑇1

−∞                                      𝑑(𝑵𝑷𝒊, 𝑷𝒋) > 𝑑𝑇1             

   (2.2)  

It is a function of the distance between 𝑷𝒋 and 𝑵𝑷𝒊, and 𝑑𝑇0, 𝑑𝑇1 are utilized to categorize the 

distance into three different ranges (in this chapter, 𝑑𝑇0 ← 15𝑣𝑠 , 𝑑𝑇1 ← 20𝑣𝑠 ). When the 

distance between the surfaces are too large (greater than 𝑑𝑇1), the weight is negative infinite and 

a connection between them will not be created.  

The candidate planar surfaces are sorted by the weights. Starting from the planar surface 

with the largest weight, this chapter tries to construct a connection between the planar surface 

and the nonplanar surface by filling voxels that are not free space. For each point 𝐩 on the 

nonplanar surface, its projection point on the planar surface 𝐩𝐩𝐫𝐨𝐣 is computed. If none of the 

voxels between 𝐩 and 𝐩𝐩𝐫𝐨𝐣 are free space, these voxels are temporarily labeled as the nonplanar 

surface. If new points can be added between the two surfaces, there exists a valid connection 

between the two surfaces and the new points will be permanently added to the octree as well as 

the nonplanar surface. 

2.3.4 Completion within Individual Planar Surfaces 

To generate compact models, the planar surfaces are also completed using their 

parameters and the visibility information apart from completion when creating the connections 

between planar surfaces. Since the nonplanar surfaces in this chapter are represented by a cluster 

of points without any parametric representation, it is difficult to define complete models for them 

and thus they are only filled when finding the connections.  
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To facilitate the completion of individual planar surfaces, this chapter estimates a cuboid 

for each planar surface while considering the measurement error. Algorithm 2-2 shows the 

pseudocode of estimating the cuboid from the point cloud 𝑷 assigned to the planar surface. 

Firstly, in Line 2 all the points on that planar surface are rotated to a plane parallel to 𝑋𝑍 

according to the normal vector of the planar surface. After this process, points of the rotated 

point cloud 𝑷′ have nearly the same 𝑌 values. Then in Line 4, the minimum enclosing rectangle 

𝑟𝑒𝑐𝑡 of the 2D point sets containing 𝑋 and 𝑍 of 𝑷′ is estimated by ignoring 𝑌 values of these 

points. In Line 5, the mean 𝜇𝑦 and standard deviation 𝜎𝑦 of 𝑌 of 𝑷′ are calculated. In Lines 6-11, 

the eight corners of the cuboid are computed based on 𝑟𝑒𝑐𝑡, 𝜇𝑦, and 𝜎𝑦 while the thickness of the 

estimated cuboid is 3𝜎𝑦. Line 12 rotates the cuboid corners back as Line 2 transforms all points 

to a plane parallel to 𝑋𝑍. 

 

Algorithm 2-2: Estimate a cuboid for a planar surface 

1 function EstimateCuboid (𝑷) 

2 𝑷′ ← RotateToXZ(𝑷) 

3     𝑷𝑿𝒁 ← {𝑷′. 𝑥, 𝑷′. 𝑧} 

4     𝑟𝑒𝑐𝑡 ← FindMinimumEnclosingRectangle(𝑷𝑿𝒁) 

5 (𝜇𝑦, 𝜎𝑦) ← ComputeMeanAndSTD(𝑷′. 𝑦) 

6     for 𝑖 ← [1,4] do 

7        𝑐𝑢𝑏𝑜𝑖𝑑[𝑖] ←Point(𝑟𝑒𝑐𝑡[𝑖]. 𝑥, 𝜇𝑦 − 1.5𝜎𝑦 , 𝑟𝑒𝑐𝑡[𝑖]. 𝑧) 

8     end for 

9     for 𝑖 ← [1,4] do 

10         𝑐𝑢𝑏𝑜𝑖𝑑[𝑖 + 4] ←Point(𝑟𝑒𝑐𝑡[𝑖]. 𝑥, 𝜇𝑦 + 1.5𝜎𝑦, 𝑟𝑒𝑐𝑡[𝑖]. 𝑧) 

11     end for 

12     𝑐𝑢𝑏𝑜𝑖𝑑 ←RotateBack(𝑐𝑢𝑏𝑜𝑖𝑑) 

13     return 𝑐𝑢𝑏𝑜𝑖𝑑 

14 end function 
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The thickness of the cuboid of a planar surface reflects the uncertainty of this plane. For a 

planar surface close to the sensor, the thickness of its cuboid is usually smaller compared to the 

plane far away from the sensor. By taking into consideration the thickness of cuboids, the cuboid 

representation helps to distinguish coplanar and parallel relations between planar surfaces, and 

thus benefits the inference of the connectivity relations between parallel planes. 

Another advantage of the cuboid representation is that combined with the visibility of 

voxels, the cuboid can be used to complete planar surfaces to get a complete planar surface 

model. After updating the connectivity graph and completing intersecting planar surfaces, the 

cuboid is utilized to add points to the planar surfaces. 

The connected component analysis is performed to further complete a planar surface. 

Based on the voxels that are not labeled as free space within the cuboid of the planar surface, the 

Euclidean clustering method is performed to detect connected clusters of voxels. If the distance 

between a cluster and the planar surface is smaller than a threshold (in this chapter 2.5𝑣𝑠), the 

voxels of this cluster will be added to the planar surface. In addition, to avoid noise in computing 

the visibility information, all the free space voxels within the cuboid are also clustered using the 

Euclidean clustering method. The small connected components are assigned to the current planar 

surface while the others are not filled so as to maintain large free space of planar surfaces. 

2.4 Experimental Results and Discussion 

2.4.1 Experimental Setup 

To evaluate the proposed method on real-world scenarios, we collected datasets of three 

different indoor scenes: (i) a cubic office desk, (Iii et al.) a typical officer corner with printers, 

and (Iii et al.) a table. The datasets were collected using an ASUS Xtion PRO while the point-
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plane SLAM algorithm (Taguchi et al. 2013) was employed to obtain the registered point clouds 

and the sensor poses. The octree voxel size 𝑣𝑠 was set as 0.02m. 

In addition, to quantitatively evaluate the completion correctness and the model quality, 

the ICL-NUIM living room dataset (Handa et al. 2014) is utilized as it has ground truth mesh 

models. The ICL-NUIM dataset is a synthetic RGB-D dataset designed for evaluation of visual 

odometry and SLAM methods and contains the ground truth poses of the sensors. These sensor 

poses are used to register all the frames and build the TSDF octree. The octree voxel size 𝑣𝑠 was 

set as 0.01m. 

Regarding the thresholds in the point cloud segmentation, when processing the real-world 

datasets, to detect the major planar surfaces, the neighboring search radius is 5𝑣𝑠 , the angle 

threshold for the normal difference is 6𝑜, the curvature threshold is 2, and the minimum cluster 

size is 300. For the ICL-NUIM datasets, the thresholds for detecting the major planar surfaces 

are 5𝑣𝑠, 3
𝑜, 1 and 300, respectively. When detecting small planar and nonplanar surfaces, the 

thresholds are 3𝑣𝑠, 10
𝑜, 10 and 150, respectively for all the datasets. 

2.4.2 Results on Real-World Datasets 

The accuracy of the connectivity relations between detected surfaces is evaluated using 

the real-world datasets. The ground truth connectivity relations of detected surfaces are manually 

identified and compared to those estimated by the proposed method. As the connectivity 

relations rely on the surface detection results, the connections related to undetected surfaces 

(small or irregular surfaces) are not considered.  
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(a) Scene I (b) Scene II (c) Scene III 

Figure 2-3: Results on the real-world datasets. 

 

Table 2-1: Evaluation of detected connections of the real-world datasets. 

 Scene I Scene II Scene III 

 
Plane Final Plane Final Plane Final 

|𝑽| 9 20 21 63 10 36 

|𝑬| 15 21 24 65 6 27 

|𝑬𝒆𝒓𝒓| 2 3 3 7 1 6 

|𝑬𝒆𝒓𝒓|/|𝑬| 13% 14% 13% 11% 17% 22% 

|𝑬𝒎𝒊𝒔𝒔| 0 0 0 0 0 0 
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Figure 2-3 displays the results of processing the real-world datasets, including the 

original point cloud of the TSDF octree, the results after processing major planar surfaces, and 

the final results after processing small planar and nonplanar surfaces. The first row of Figure 2-3 

shows the original point cloud in the octree 𝑷𝒐𝒄𝒕. The second row displays the results after 

processing the major planar surfaces 𝑴𝑷, where each surface is rendered using a random color 

and the red segments represent the connections. The last row shows the results after processing 

the small planar and nonplanar surfaces 𝑴𝑭. The black rectangles in Figure 2-3 (a) show the 

false connections due to over-filling of intersecting planar surfaces while the red rectangles in 

Figure 2-3 (c) include the false connections from wrong detected surfaces. The white rectangles 

in Figure 2-3 (a) cover example areas where the nonplanar surfaces and the connections are 

correctly identified. 

Table 2-1 shows the connectivity evaluation results of the three real-world datasets. |𝑽| is 

the number of surfaces in 𝑽 while |𝑬| represents the number of the detected connections among 

surfaces. |𝑬𝒎𝒊𝒔𝒔| denotes the number of undetected connections while |𝑬𝒆𝒓𝒓| is the number of 

false detected connections. For each scene, the results after processing the major planar surfaces 

(the Plane column in Table 2-1), 𝑴𝑷 are also evaluated as well as the final results 𝑴𝑭 which are 

generated by processing small planar and nonplanar surfaces based on 𝑴𝑷. As shown in Table 2-

1, the number of false detected connections |𝑬𝒆𝒓𝒓| for 𝑴𝑭 is low, equal or less than seven for all 

the three scenes. The ratios of false detected connections, |𝑬𝒆𝒓𝒓|/|𝑬| are equal or less than 22%, 

which demonstrates that at least 78% of the detected surface connections are correct. 

The false connections of 𝑴𝑭 are caused by overfilling of intersecting planar surfaces and 

from wrong detected surfaces. The overfilling of intersecting planar surfaces denotes the case 

that when two intersecting planar surfaces are not connected in the real-world, the proposed 
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method creates a connection between them by adding points between them. It occurs when a 

valid connection can be created due to a lack of visibility information of the voxels between 

them. For example, the desktop box in Scene I is not connected to any of the walls. However, the 

proposed method fills the gap between the desktop box and the walls and thus create connections 

between them as shown in the black rectangles in the bottom image of Figure 2-3 (a).  

False detected planar surfaces are mainly caused by registration errors of multiple depth 

frames and the uncertainty of sensor measurements. This is the reason why |𝑬𝒆𝒓𝒓| increases after 

processing small planar and nonplanar surfaces, i.e., as shown in Table 1, the Final columns 

have larger |𝑬𝒆𝒓𝒓| compared to the Plane columns. For example, for the wall in Scene III in 

Figure 2-3 (c), the nonplanar surface segmentation method detects multiple clusters around the 

wall as shown in the red rectangles of the bottom image of Figure 2-3 (c) and these clusters 

create false connections in the final results. Even though processing small planar and nonplanar 

surfaces leads to the increasing of errors in estimating connections, it can still identify some 

correct small planar or nonplanar surfaces and find the correct connections. As shown in Figure 

2-3 (a), within the white rectangles, a lamp (in green) and a cup (in magenta) are correctly added 

to the model with correct connectivity relations. 

The number of undetected connections |𝑬𝒎𝒊𝒔𝒔|  is zero, which demonstrates that the 

proposed method is able to recover all the connections of surfaces in 𝑽. According to our method, 

there exist three types of connections, (1) the connection between intersecting planar surfaces, (2) 

the connection between two parallel planar surfaces, and (3) the connection between a nonplanar 

surface and a planar surface. Based on the criteria for connecting surfaces, missing connections 

might occur when (1) many points between two actually connected surfaces (two planar surfaces, 

or a nonplanar surface and a planar surface) are not observed and their distance is too larger to be 
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considered for creating connections, and (2) a nonplanar surface is connected to more than one 

planar surface while our method only detects a single connection to a planar surface.   

 

   

(a) Point cloud in the octree 𝑷𝒐𝒄𝒕  (b) Results after processing the 

major planar surfaces 

(c) Final results after adding small 

planar and nonplanar surfaces 

   

   

   

(d) Close-up views of some areas of the three point clouds from left to right. 

Figure 2-4: Results of kt0. 
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2.4.3 Results on ICL-NUIM Datasets  

We utilize the ICL-NUIM living room dataset which contains four scenes, kt0, kt1, kt2, 

and kt3, to evaluate (1) the overall accuracy of the final models by comparing the final model 

point cloud with the ground truth point cloud, and (2) the completion results by counting the 

number of correctly filled points. As the four scenes have some overlapping areas, Figure 2-4 

shows the modeling and connectivity inference results of kt0 which contains the major part of 

the living room dataset. Figure 2-4 (a) displays the original point cloud of the octree 𝑃𝑜𝑐𝑡 while 

(b) and (c) respectively show the results after processing the major planar surfaces and adding 

nonplanar surfaces. In Figure 2-4 (b) and (c), each surface is rendered by a random color while 

the red segment denotes that there is a connection between two surfaces. Figure 2-4 (d) shows 

the close-up view of some areas of the three point clouds in the above row. The white rectangles 

show example areas that nonplanar surfaces from a lamp and a plant pot are added to the final 

model after processing small planar and nonplanar surfaces. 

By comparing Figure 2-4 (b) and (c) and using the close-up views in (d), i.e. the second 

and third rows of (d), it can be found that the results after processing small planar and nonplanar 

surfaces successfully add many small planar or nonplanar surfaces to the results, e.g., the plant 

pot and lamp in the white rectangles. 

The comparison between the final model point cloud 𝑷𝒎 and the ground truth model 𝑷𝒈𝒕 

is performed by estimating the distance between a point pair that one is from 𝑷𝒎 and the other in 

𝑷𝒈𝒕. For each point 𝒑𝒎 ∈ 𝑷𝒎, its nearest point in 𝑷𝒈𝒕 is searched and denoted as 𝒑𝒈𝒎 . The 

Euclidean distance between 𝒑𝒎 and 𝒑𝒈𝒎, ‖𝒑𝒎 − 𝒑𝒈𝒎‖2
 is calculated and referred to as the error 

of 𝒑𝒎. Then the mean, median, standard deviation, and maximum values of the distances for all 

the four scenes, i.e., kt0, kt1, kt2, and kt3, are computed and displayed in Table 2-2. In addition, 
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using the same method, the original point cloud of the octree 𝑷𝒐𝒄𝒕 is evaluated and the results are 

presented in Table 2-2. To mitigate the distance differences due to the voxelization in creating 

the octree, both 𝑷𝒐𝒄𝒕 and 𝑷𝒎 are aligned to 𝑷𝒈𝒕 using the Iterative Closest Point (ICP) (Besl and 

McKay 1992) algorithm.  

 

Table 2-2: Evaluation the quality of 𝑷𝒐𝒄𝒕 and 𝑷𝒎 with respect to the 𝑷𝒈𝒕. 

Point Cloud Error (m) kt0 kt1 kt2 kt3 

𝑷𝒐𝒄𝒕 

Mean 0.006 0.006 0.006 0.007 

Median 0.005 0.006 0.007 0.006 

Std. 0.003 0.003 0.003 0.003 

Max. 0.019 0.021 0.021 0.023 

𝑷𝒎 

Mean 0.008 0.016 0.012 0.011 

Median 0.007 0.011 0.008 0.007 

Std. 0.007 0.024 0.022 0.02 

Max. 0.188 0.351 0.352 0.351 

 

The lower mean values (less than or equal to 0.16m) in Table 2-2 demonstrate that the 

proposed method is able to reconstruct high-quality models. The fact that all the median values 

of 𝑷𝒎 are lower than the mean values indicates half of the point errors are lower than the mean 

values. As shown in Table 2-2, the maximum errors of 𝑷𝒎 (the row Max.) are larger than those 

of 𝑷𝒐𝒄𝒕, especially for the last three scenes. The main discrepancy for the last three scenes mainly 

occurs around a French window area. As shown in Figure 2-5, many points (for example the 

points within the middle rectangle, Rectangle (2) in Figure 2-5 (b)) are filled within the window 

frame. This is mainly because those filled voxels are not labeled as free space since there are no 

points behind the window glasses. However, Figure 2-5 (d) also indicates that the errors of points 

on the walls are small (blue indicates small point errors while red denotes large errors.), which 
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demonstrates that the proposed method is capable of recovering reliable points if the visibility 

information is correctly estimated. 

 

 
 

(a) Original point cloud of the window area. (b) Final models of the window area. 

  

(c) Ground truth for that area. (d) Errors of that area. 

Figure 2-5: Errors around the French window area in kt2. 

 

The final model point errors can be categorized into three types, (1) errors of using planar 

surfaces to approximate nonplanar surfaces, (2) errors of over-filling of planar surfaces, and (3) 

errors of over-growing of planar surfaces, which correspond to the areas covered by the three 

rectangles in Figure 2-5 (b). Figure 2-5 (a) shows the original point cloud of the French window 
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are in the octree and (b) displays the models of that area where each surface is rendered by a 

random color. Figure 2-5 (c) displays the ground truth points while (d) depicts the errors of the 

models in (b) by rendering the errors from cool colors to warm colors, i.e. the dark red denotes 

large errors while the blue represents small errors. The three rectangles in Figure 2-5 (b) from 

left to right cover the areas of errors due to (1) processing nonplanar surfaces as planar surfaces, 

(2) over-filling of planar surfaces, and (3) over-growing of intersecting planar surfaces.  

The errors of using planar surfaces to approximate nonplanar surfaces occur when the 

segmentation method detects planar surfaces from non-planar objects. For example, the 

segmentation method detects several planar surfaces, in particular for the area in the left 

rectangle, Rectangle (1) in Figure 2-5 (b), for the accordion folding doors before the French 

windows. During the processing of the planar surfaces, many wrong points are added in finding 

the connections and filling of the planar surfaces and thus cause large point errors. 

The over-filling error is due to the missing of free space information for the voxels within 

a planar surface. For the French window as shown in Figure 2-5, only a small number of the 

points (mainly the lower parts of the window) within the window area are identified as free space 

by the points on the ground behind the window. The visibility information of other points (e.g., 

the points within the middle rectangle, Rectangle (2) in Figure 2-5 (b)) is unknown due to the 

visibility information computation strategy. Therefore, as shown in Figure 2-5 (b), those points 

are added to the point cloud during the planar surface filling process and lead to large (actually 

the largest) point errors.  

The over-growing of planar surfaces occurs when the voxels between two intersecting 

planar surfaces are not labeled as free space due to a lack of information. When the distance 

between the intersecting planar surfaces is smaller than a distance threshold (15𝑣𝑠), the proposed 
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method will add points between them and create a connection between them. In this dataset, 

there exist many intersecting planar surfaces due to the accordion folding doors before the 

French window. The segmentation method detects some planar surfaces and connects them by 

adding points behind the accordion folding doors. The large point errors within the right 

rectangle, Rectangle (3) in Figure 2-5 (d) are mainly caused by over-growing of planar surfaces. 

Table 2-3: Evaluation of completion results. 

 kt0 kt1 kt2 kt3 

|𝑷𝒎|/|𝑷𝒐𝒄𝒕| 2.74 3.20 2.60 2.39 

𝑛𝑐𝑜𝑟𝑟/𝑛𝑎𝑑𝑑 98% 87% 90% 93% 

 

The number of correct points in 𝑷𝒎 with respect to 𝑷𝒈𝒕 is also estimated using the point 

error. A point 𝒑𝒎 ∈ 𝑷𝒎 is correct if ‖𝒑𝒎 − 𝒑𝒈𝒎‖2
≤ 2.5𝑣𝑠 . By excluding 𝑷𝒐𝒄𝒕 from 𝑷𝒎 , we 

obtain the number of added points 𝑛𝑎𝑑𝑑  and the number of correctly added points 𝑛𝑐𝑜𝑟𝑟 in 𝑷𝒎. 

That is, 𝑛𝑎𝑑𝑑 = |𝑷𝒎| − |𝑷𝒐𝒄𝒕| and 𝑛𝑐𝑜𝑟𝑟  is the difference between the size of correct added 

points in 𝑷𝒎 and the size of 𝑷𝒐𝒄𝒕. The ratio of 𝑛𝑐𝑜𝑟𝑟 to 𝑛𝑎𝑑𝑑  is also shown in Table 2-3. The 

ratios of correctly added points show that more than 87% of the added points from this proposed 

method are correct. In addition, Table 2-3 displays the ratio of the final model point cloud size 

|𝑷𝒎| to the original point cloud size |𝑷𝒐𝒄𝒕|. The results demonstrate that although the proposed 

method does not perform completion for isolated planar surfaces, it is able to at least double the 

point cloud size.  

2.4.4 Computational Analysis 

Regarding the computational time on the experimental datasets, the processing time of 

the proposed method ranges from several minutes to about half an hour on a standard desktop 
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personal computer (PCL) as shown in Table 2-4 where |𝑷𝒐𝒄𝒕| represents the number of points of 

the octree, |𝑽| is the number of surfaces in the connectivity graph 𝑮 , and |𝑬| denotes the number 

of surfaces in 𝑮. Table 2-4 shows that the computational time is positively related to the number 

of frames. The larger the number of frames is, the more computational time the system takes. 

The computational time is also related to the scale of the scene, which can be reflected by the 

size of the original point cloud |𝑷𝒐𝒄𝒕|. A large-scale scene usually contains more points and 

surfaces and thus requires more computational expense in filling the surfaces and estimating the 

connections.  

Table 2-4: Computational time of all the datasets.  

 # of frames |𝑷𝒐𝒄𝒕| |𝑽|/|𝑬| Time (minutes) 

Scene I 60 54,567 20/21 0.78 

Scene II 44 169,631 63/65 0.84 

Scene III 70 188,967 36/27 1.42 

kt0 1,509 660,577 68/64 34.73 

kt1 966 832,596 117/158 29.23 

kt2 881 1,046,417 127/176 31.66 

kt3 1,241 742,691 93/104 32.77 

 

In the proposed method, there are two main processes that affect the computational time: 

(i) creating the TSDF octree, and (Iii et al.) updating the connectivity graph using the major 

planar surfaces. When constructing the TSDF octree, the system loads each depth frame and 

utilizes each observed point of the frame to update the TSDF tree. Therefore, the number of 

frames greatly affects the computational time. Moreover, the graph updating using the major 

planar surfaces involves surface parameter updating (e.g., computing plane equations and 

estimating the cuboid) and traversing a large number of voxels in order to decide their labels. 
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Thus a large number of planar surfaces in the scene generally leads to more computational time 

compared to a scene containing a small number of planar surfaces.  

2.5 Conclusions and Future Work 

This chapter presented a framework that integrates point cloud completion and surface 

connectivity relation inference into a joint process to obtain complete 3D models and surface 

connections. The framework utilizes geometric properties of surfaces and the visibility of octree 

voxels to estimate the connections of surfaces and recover missing points between the surfaces. 

The method first processes the major planar surfaces to estimate their connectivity relations and 

fill the missing points. Then small planar surfaces and nonplanar surfaces are utilized to find 

more connections between them and the major planar surfaces by adding points if necessary. 

Furthermore, individual planar surfaces are further filled using the connected component analysis 

within the surface cuboid to obtain complete surface models. Experimental results demonstrated 

that the proposed method is able to recover all connectivity relations between surfaces, double 

the point cloud size by adding points of which more than 87% are correct, and obtain high-

quality 3D models.  

The proposed method handles nonplanar surfaces using a basic strategy, i.e. growing 

their points toward planar surfaces if possible. It does not incorporate the geometric properties of 

the nonplanar surfaces. In addition, the connectivity relations between nonplanar surfaces are not 

estimated in this chapter. Future work will explore to segment more primitives other than planes 

(e.g., cylinder, sphere, etc.) using non-uniform B-Spline surface fitting methods (Dimitrov et al. 

2016) and infer connectivity relations between nonplanar surfaces as well.  
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Chapter 3  

User-Guided Dimensional Analysis of Indoor Building 

Environments 

3.1 Introduction 

Three-dimensional (3D) geometry and, in particular, dimensional information about the 

built environment is required in a wide range of civil infrastructure applications (Bosch 2010). 

During the construction phase, dimensional information must be monitored on site so that the 

work can meet the requirements of the design and specifications. During the maintenance phase, 

dimensional information is necessary to check whether the built environment remains consistent 

with existing building codes and to quantify any developed flaws (e.g. deformations). In 

addition, in the context of construction automation, dimensional information is useful for any 

robot performing tasks in the construction or built environment. For example, a door installing 

robot must consider the actual size of the door frame on a construction site instead of the 

designed size due to potential tolerance discrepancies. Given such dimensional information, the 

robot is able to install a door correctly and ensure that it can fit the panel in a frame accurately. 

In addition, the dimensions of any openings are significant for an autonomous robot while 

moving in indoor environments. For example, when passing through a door, a robot has to detect 

the dimension of the opening space so that it can make an informed choice about whether to 

directly go through this door or to find another way. 
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Traditionally, dimensional information in the built environment is manually obtained by 

tape measurements, which is labor intensive and has limited accuracy. With the rapid 

development of sensors for capturing 3D point clouds, geometric models of the civil 

infrastructure can be obtained rapidly and accurately, thereby making the automatic retrieval of 

infrastructure dimensions a possibility. In order to obtain accurate dimensions of civil 

infrastructure, laser scanners are widely used to capture high-accuracy 3D point clouds to build 

3D models that contain detailed dimensional information (Bennett 2009; Huber et al. 2010; 

Xiong et al. 2013). However, Tang et al. (2010) pointed out that this process is usually time-

consuming and not fully automated.  

Instead of using 3D laser scanners, RGB cameras (Bae et al. 2014; Brilakis et al. 2011; 

Golparvar-Fard et al. 2011) can be used to capture a series of images that are then processed 

using structure from motion (SFM) to generate 3D point clouds. This method is able to obtain 

point clouds for large-scale scenes and has a shorter data acquisition time compared to methods 

that use laser scanners. Another commonly used method to obtain colored 3D point clouds is to 

employ stereo cameras that are composed of two RGB cameras (Fathi and Brilakis 2011) or to 

utilize RGB-D cameras consisting of an RGB camera and a depth camera (Chen et al. 2015; Zhu 

and Donia 2013). One of the benefits of utilizing stereo or RGB-D cameras is that these cameras 

enable obtaining point clouds from single frames and thus performing data analysis in real time. 

Moreover, colored 3D point clouds provide the opportunity to extract semantic information 

compared to point clouds generated from laser scanners (Golparvar-Fard et al. 2011). Therefore, 

stereo or RGB-D cameras are well suited for geometry and dimension interpretation from 3D 

point clouds in contexts where human users or robots need to interact with the built environment 

in real time. 
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In this chapter, we propose a user-guided dimensional analysis approach that is able to 

compute dimensions in indoor built environments using a color and depth (RGB-D) sensor. The 

method performs dimensional analysis on a single frame obtained from an RGB-D sensor to 

achieve high computational efficiency and to avoid error accumulations in multi-frame 

registration. Due to the limited field of view and measurement range of the sensor, a single frame 

cannot guarantee that all dimensional information of interest can be computed. Therefore, a 

knowledge-based user guidance system is developed to guide a user (or a robot) to move the 

sensor to a better position so that complete data suitable for dimensional analysis is collected. 

After a complete frame data is collected, the geometric analysis is performed to obtain the 

necessary dimensional information.  

The remainder of the chapter is organized as follows. Section 3.2 Previous Work reviews 

related work and outlines its limitations. Section 3.3 The dimensional Analysis System describes 

the designed method in detail. Section 3.4 User Guidance describes the conducted experiments 

and the obtained results. Finally, Section 3.5 Conclusions and Future Work draws conclusions 

and discusses future work. 

3.2 Previous Work 

In the context of getting dimensional information from built environments, several 

research studies have focused on creating 3D models by using high-end 3D laser scanners (2D 

rotational laser scanners or terrestrial laser scanners), which can provide accurate and rich 3D 

point clouds of a large environment. Budroni and Boehm (2010) used a plane sweep algorithm 

and a priori knowledge to segment point clouds into floors, ceilings, and walls, and created a 3D 

interior model by intersecting these elements. Since this method utilized the Manhattan-world 

assumption to obtain rectangular primitives for objects, it failed to handle complicated geometric 
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primitives or complicated structures. Nüchter and Hertzberg (2008) used semantic labeling to 

find coarse scene features (e.g., walls, floors) of indoor scenes from point clouds obtained by a 

3D laser scanner. They employed common-sense knowledge about buildings to label planar 

surfaces as wall, floor, ceiling, and door. Díaz-Vilariño et al. (2015) combined laser scan data 

and high-resolution images to detect interior doors and walls and automatically obtained 

optimized 3D interior models. Instead of primarily utilizing planes from point clouds, Dimitrov 

and Golparvar-Fard (2014) presented a new method to segment point clouds into non-uniform B-

spline surfaces for as-built modeling.  

In addition, several researchers have also used high-accuracy laser scanners to obtain 3D 

models of dynamic construction environments and equipment. Wang and Cho (2015) designed a 

smart scanning system to rapidly identify target objects and update the target’s point clouds. 

They then used concave hull surface modeling algorithms to get a 3D surface model. Cho and 

Gai (2014) used laser scanners to obtain 3D point clouds of the environment and identified 3D 

target models by comparing them to a model database. The field results of these two chapters 

demonstrated that the method could improve productivity and safety in heavy construction 

equipment operations. Brilakis et al. (2010) explored a framework for automated generation of 

parametric building information models (BIMs) of constructed infrastructure from hybrid video 

and laser scanning data. They developed several automated processes for generating BIMs from 

point clouds, for example, automated generation of colored point clouds from video and laser 

scanner data, and automated identification of most frequently occurring objects.  

A drawback of these approaches that use high-end 3D laser scanners is that they need 

professional setup and operation (e.g., attaching markers in the environment for registering point 

clouds). Moreover, the post-processing methods used to extract 3D models from point clouds are 
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time-consuming and labor intensive since such sensors typically obtain millions of points to 

represent surfaces as point clouds. 

Instead of using high-accuracy laser scanners, simultaneous localization and mapping 

(SLAM) techniques have been widely used for registering multiple 3D frames and obtaining 3D 

models of large-scale environments with affordable sensors (e.g. low-cost RGB-D sensors, 

cameras). Newcombe et al. (2011) presented KinectFusion, which employed an iterative closest 

point (ICP) algorithm to register a current depth map to a global model reconstructed by fusing 

all previous depth maps. Taguchi et al. (2013) proposed the point-plane SLAM system that uses 

both points and planes as primitives to achieve faster correspondence search and registration of 

data frames, and to generate 3D models composed of planar surfaces. Cabral and Furukawa 

(2014) proposed a method for reconstructing a piecewise planar and compact floor plan from 

multiple 2D images, which provides an improved visualization experience albeit with fewer 

geometric details. Although the 3D models generated by these methods enable dimensional 

analysis in large-scale environments, the accuracy is limited due to drift error accumulations in 

multi-frame registration.  

Unlike previous work, the method described in this chapter aims to obtain dimensional 

information of indoor scenes from a single frame of an affordable RGB-D sensor. The proposed 

single-frame approach avoids the error accumulation problems inherent in multi-frame 

registration. In order to overcome the limitations of a single frame, such as the limited field of 

view and measurement range, this chapter describes a user guidance system that provides 

directional feedback for the user to obtain complete data suitable for dimensional analysis. 

The most relevant prior work to our method is Kim et al. (2012) which presented a hand-

held system for real-time interactive acquisition of residential floor plans. The system described 
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in that chapter integrates an RGB-D sensor, a micro-projector, and a button interface to help the 

user capture important architectural elements in indoor environments. Instead of obtaining the 

floor plan of a building using a SLAM technique as in Kim et al. (2012), the method in this 

chapter focuses on obtaining dimensional information of specific objects in indoor environments 

from a single frame. Moreover, the designed user guidance system guides the user in observing 

essential components for specified scenes. 

The proposed user guidance system was inspired by Richardson et al. (2013) and Bae et 

al. (2010). Richardson et al. (2013) presented a user-assisted camera calibration method that 

suggests the position of calibration targets in the captured images to obtain reliable, stable, and 

accurate camera calibration results. Bae et al. (2010) proposed the computational rephotography 

system that, given a reference image, guides the user to capture an image from the same 

viewpoint. In order to obtain accurate dimensional information from a single frame of an RGB-D 

sensor, the proposed user guidance system evaluates the completeness of the current frame and 

then instructs the user to move the sensor to get improved results for the application. Using basic 

guidance, the proposed system can lead a non-expert user through the steps necessary to obtain 

complete data and thus accurate dimensional measurements. 

3.3 The Dimensional Analysis System 

In this chapter, the focus of the dimensional analysis is on civil infrastructure with planar 

surfaces in indoor environments using an RGB-D sensor. The proposed framework is shown in 

Figure 3-1. Firstly, one frame of 3D point clouds (for example Figure 3-1 (a)) is acquired by an 

RGB-D sensor. Then, the preprocessing is conducted on the point clouds to extract planar 

surfaces and compute topological relationships of these planes (Figure 3-1 (b)). Based on the 

planes and their topological relations, the geometric analysis is performed to compute the initial 
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dimensions of the scene (Figure 3-1 (c)). Combining the scene type and the initial dimensional 

measurements, the user guidance system evaluates the completeness of the current frame and 

dimensional measurements. If the data frame does not contain all components for computing the 

dimensions, the user guidance system provides instructions for moving the sensor to get a 

complete frame and thus accurate dimension measurements. Therefore, a new frame data (Figure 

3-1 (d)) is captured by the sensor. The same processes, i.e. preprocessing (Figure 3-1 (e)) and 

geometric analysis (Figure 3-1 (f)), are performed to acquire new dimensions, which have a 

higher quality and are used as the final dimension estimation results. 
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Figure 3-1: Overview of the user-guided dimensional analysis system. 
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3.3.1 Data Preprocessing  

In this chapter, it is assumed that the object of interest is composed of, supported by, or 

surrounded by planar surfaces. Since the proposed method is intended for dimensional analysis 

of indoor scenes, this assumption is reasonable as the common objects in indoor scenes have 

planar surfaces. Based on this assumption, the geometric analysis is performed to obtain 

dimensional information of specific infrastructure elements.  

In order to extract planar surfaces efficiently, the fast plane extraction algorithm for 

organized point clouds proposed by Feng et al. (2014) is employed. This algorithm first segments 

the point clouds into groups and uses them as nodes to create a graph. Then, an agglomerative 

hierarchical clustering is performed on this graph to merge nodes on the same plane. Finally, the 

planes are refined by pixel-wise region growing.  

This chapter focuses on estimating dimensions by utilizing plane topological 

relationships, which enables us to obtain robust and accurate measurements. Therefore, once all 

the planes are extracted from the point clouds, the topological relationships among these planes 

are estimated based on the plane parameters. Four types of plane topological relations of interest 

are defined as follows: 

• Parallel: if the normal vectors of two planes are parallel to each other, the two planes 

are parallel planes. 

• Coplanar: if two planes have the same geometric parameters, they are coplanar planes. 

Coplanar planes are also parallel planes. 

• Intersecting: if two planes are not parallel to each other, they are intersecting planes. 

• Perpendicular: if the normal vectors of two planes are perpendicular (orthogonal to 

each other), the two planes are perpendicular. 
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It should be noted that due to the uncertainty in sensor measurements, these relationships 

are approximately ascertained. For example, if the angle of the normal vectors between two 

planes is less than a specified α degrees, they are considered as parallel planes (α is empirically 

set as five to avoid classifying non-parallel planes as parallel due to large α or failure in detecting 

the parallel plane relationship). 

3.3.2 Geometric Analysis 

If all the measurements from the sensor were perfect, the dimensional information could 

be directly computed based on the geometric representations of the infrastructure. However, the 

sensor measurements have uncertainty inevitably and thus the geometric representations 

estimated from the point clouds are not perfect. In order to get robust and accurate dimensional 

information, least squares methods are utilized to mitigate measurements uncertainty. In this 

chapter, based on the scene types and experimental scenarios, the distance between two parallel 

planes and the distance between boundary points of coplanar planes are of interest. In addition, 

these two distances are also of interest in general for indoor environments which contain many 

regular planar surfaces. Methods for these two distance computations are proposed to obtain 

robust estimation. 

3.3.2.1 Distance between Parallel Planes 

After extracting the planes, the plane parameters are estimated from the points by least 

squares. Given the set of points 𝒑𝑖
𝑘 = [𝑥𝑖

𝑘, 𝑦𝑖
𝑘, 𝑧𝑖

𝑘], 𝑘 = 1,… , 𝐾  assigned to Plane 𝑖 , whose 

parameters are represented by 𝑷 = [𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖]
𝑇 , the plane equation 𝑎𝑖𝑥𝑖

𝑘 + 𝑏𝑖𝑦𝑖
𝑘 + 𝑐𝑖𝑧𝑖

𝑘 +

𝑑𝑖 = 0 needs to be satisfied for all the 𝐾 points. Thus, a homogeneous system can be constructed 

as follows 
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 𝑨𝑷 = 0  

 

where the matrix 𝑨 can be constructed by stacking the row vectors [𝑥𝑖
𝑘 , 𝑦𝑖

𝑘, 𝑧𝑖
𝑘, 1]. In order to get 

the least squares estimation, one possible solution is to perform singular value decomposition 

(SVD) (Mandel 1982) on the matrix 𝑨 and then the plane parameters 𝑷 can be extracted from the 

results of SVD. By the SVD theory a 𝑚×𝑛 real matrix 𝑨 can be decomposed as 𝑨 = 𝑼𝚺𝑽𝑇 

where 𝑼 is a 𝑚×𝑚 unitary matrix (i.e. 𝑼𝑼𝑇 = 𝑰), 𝜮 is a 𝑚×𝑛 diagonal matrix with non-negative 

values, and 𝑽 is a 𝑛×𝑛 unitary matrix. In order to find a least-squares solution, by imposing the 

constraints ‖𝑷‖ = 1, the solution aims to minimize ‖𝑨𝑷‖. As the rank of 𝑨 is 𝑛 (𝑚 > 𝑛 for our 

data), the solution of Equation (3.1) is the last column of 𝑽. 

Since it is assumed that there exist parallel plane sets, the plane parameter estimation 

results can be made more accurate by using this prior information. Suppose Plane 𝑖 and Plane 𝑗 

are parallel to each other and the sets of points assigned to these planes are given as 𝒑𝑖
𝑘, 𝑘 =

1, … , 𝐾 and 𝒑𝑗
𝑙 , 𝑙 = 1,… , 𝐿. To enforce the parallel constraint, Plane 𝑖 and Plane 𝑗 share the same 

normal vector and the equations are defined as 

 

  𝑎𝑥𝑖
𝑘 + 𝑏𝑦𝑖

𝑘 + 𝑏𝑧𝑖
𝑘 + 𝑑𝑖 = 0

𝑎𝑥𝑗
𝑙 + 𝑏𝑦𝑗

𝑙 + 𝑐𝑧𝑗
𝑙 + 𝑑𝑗 = 0

 (3.1) 

 

Then a homogenous system similar to Equation (1) can be constructed with 𝑷 =

[𝑎, 𝑏, 𝑐, 𝑑𝑖, 𝑑𝑗]
𝑇

 and the matrix 𝑨  constructed by stacking [𝑥𝑖
𝑘, 𝑦𝑖

𝑘, 𝑧𝑖
𝑘, 1,0]  and [𝑥𝑗

𝑙 , 𝑦𝑗
𝑙, 𝑧𝑗

𝑙 , 0,1] . 
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Therefore, by using SVD the plane parameters of parallel planes are computed using all the 

points on the planes.  

Once the plane parameters are obtained, the distance 𝑑𝑖𝑗 between the parallel planes is 

calculated directly based on the plane parameters as 

 

 
𝑑𝑖𝑗 =

|𝑑𝑖 − 𝑑𝑗|

√𝑎2 + 𝑏2 + 𝑐2
 (3.2) 

 

 
 

(a) Coplanar plane points (b) Boundary points of coplanar plane points 

  

(c) Coplanar plane boundary points (d) Line fitting and distance computation 

Figure 3-2: Estimation of the distance between two coplanar planes. 
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3.3.2.2 Distance between Boundary Points of Coplanar Planes 

The coplanar planes boundary points refer to boundary points that are located between 

the two coplanar planes. For example, when measuring the width of the door while the door 

height is too high to be observed, the points on the wall near the door will be captured as two 

coplanar planes. To obtain the width of the door, the door frame points are extracted and used as 

the coplanar planes boundary points. In this context, the door width is the distance between 

boundary points of two coplanar planes as shown in Figure 3-2 (a).  

In order to automatically find door frames, firstly the topological relationships between 

extracted 3D planar surfaces are estimated based on the plane fitting results. After detecting the 

coplanar planes, all the coplanar planes are rotated based on the plane parameters to make sure 

that the normal of the plane is parallel to the new Y axis and all Y values of the rotated points are 

almost the same. Then the boundary points (Figure 3-2 (b)) of the two planar surface, 𝐶𝑃1 and 

𝐶𝑃2, are separately extracted by using the 2D alpha shape algorithm (Bernardini and Bajaj 1997). 

The 2D alpha shape algorithm moves a circle at a radius of 𝛼 in the space while the circle must 

only contain points on its boundary and no points are allowed inside of the circle. Those points 

that allow the circles are the boundary points extracted by the 2D alpha shape algorithm. Based 

on the boundary points of each surface, the coplanar planes boundary points 𝐵𝑃1 and 𝐵𝑃2 

(Figure 3-2 (c)), are obtained by utilizing a nearest points searching method. Finally, as shown in 

Figure 3-2 (d) a pair of parallel lines 𝑙1 and 𝑙2 are fitted from 𝐵𝑃1  and 𝐵𝑃2 using the similar 

method in the previous section. The two 2D lines are defined as  

 

 𝑎𝑥1
𝑖 + 𝑏𝑧1

𝑖 + 𝑐1 = 0

𝑎𝑥2
𝑗
+ 𝑏𝑧2

𝑗
+ 𝑐2 = 0

 (3.3) 
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where [𝑎, 𝑏, 𝑐1] and [𝑎, 𝑏, 𝑐2] are respectively the geometric parameters of the two 2D lines of 

𝐵𝑃1 and 𝐵𝑃2 , and (𝑥1
𝑖 , 𝑧1

𝑖)  is the 𝑖 -th point of 𝐵𝑃1  while (𝑥2
𝑗
, 𝑧2
𝑗
)  is the 𝑗 -th point of 𝐵𝑃2 . 

Therefore, a homogeneous system described by Equation 1 can be obtained where 𝑷 =

[𝑎, 𝑏, 𝑐1, 𝑐2]  and 𝑨  is constructed by stacking [𝑥1
𝑖 , 𝑧1

𝑖 , 1,0]  and [𝑥2
𝑗
, 𝑧2
𝑗
, 0,1] . Based on the 

geometric parameters of the two 2D lines, the distance 𝑑12 between the two lines is computed as 

the following 

 

 
𝑑12 =

|𝑐1 − 𝑐2|

√𝑎2 + 𝑏2
 (3.4) 

 

In this chapter 𝑑12 is viewed as the distance between the two coplanar boundary points. 

In order to automatically extract the coplanar planes boundary points, a nearest point 

searching method as shown in Algorithm 3-1 is proposed. The boundary points of the two 

planes, 𝐶𝑃1 and 𝐶𝑃2, are separately extracted and used as input for that algorithm. For the first 

plane, for each point in 𝐶𝑃1 , the nearest point in the second plane boundary points 𝐶𝑃2  is 

searched (Algorithm 3-1 Lines 7-11). After iterating all the points on the first plane, the points in 

𝐶𝑃2 that have been searched as the nearest points, 𝐵𝑃2, belong to the coplanar boundary points 

from the second plane (Algorithm 3-1 Lines 12-16). By repeating the process for the second 

plane, the coplanar planes boundary points on the first plane, 𝐵𝑃1, can be also found.  

This method utilizes the nearest neighbor search strategy to approximately find the 

coplanar planes boundary points. Since it employs the boundary points of each plane and the 

nearest neighbor search, it tends to prefer the point that is located closer to the other plane and 

thus to find a subset of the true coplanar planes boundary points. However, these points are 

sufficient for computing the distance between two coplanar planes as they are extracted from the 
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boundary points of the two planes. In addition, this method utilizes the boundary points of the 

two coplanar planes, which reduces the computation time.  

 

Algorithm 3-1: Extract Coplanar Planes Boundary Point 

1 function EXTRACTBOUNDARY(𝐶𝑃1, 𝐶𝑃2) 

2     𝐵𝑃2 =  EXTRACTEACHBOUNDARY (𝐶𝑃1, 𝐶𝑃2) 

3     𝐵𝑃1 =  EXTRACTEACHBOUNDARY (𝐶𝑃2, 𝐶𝑃1) 

4       return (𝐵𝑃1, 𝐵𝑃2); 

  

5 function EXTRACTEACHBOUNDARY(𝐶𝑃1, 𝐶𝑃2) 

6     is_searched[ 1:size(𝐶𝑃2)] = false; 

7     for each  𝑝𝑡 ∈ 𝐶𝑃1 do 

8         // Search the nearest point to 𝑝𝑡 in 𝐶𝑃2 

9          𝑘 = search_nearest_point(𝐶𝑃2, 𝑝𝑡);   

10          is_searched[𝑘] = true; 

11     end for 

12     for each 𝑖=1:size(𝐶𝑃2) do 

13          if is_searched[𝑖] = true then 

14             𝐵𝑃.add(𝐶𝑃2 [𝑖] ); 

15          end if 

16     end for 

17     return 𝐵𝑃 
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3.4 User Guidance 

The goal of the user guidance system is to generate instructions for moving the sensor to 

poses where the sensor can capture complete frames that contain all necessary elements of the 

scene and yield accurate and robust measurements. In this chapter, a complete frame denotes a 

single frame that includes all necessary components of the infrastructure features of interest. For 

example, a complete frame for a typical hallway contains the ground floor, the ceiling, and the 

two walls. The user guidance utilizes the prior knowledge of the scene, i.e. the scene type (box 

shape, opening structure, or parallel structure), the gravity direction, the shape template (which 

contains the topological relations between planar surfaces of the scene), etc., to identify whether 

a complete frame is captured by visualizing and checking the topological relations of planar 

surfaces.  

Before using the sensor to collect data, it is assumed that the scene type is chosen by the 

user and there exists corresponding geometric and topological information of planar components. 

For a single frame, the system tries to identify the components of a scene and recover a 

hypothesis shape which is used for generating the user guidance for moving the sensor 

(Algorithm 3-2 Line 3). The system checks the completeness of the current frame by comparing 

the shape template and the hypothesis shape (Algorithm 3-2 Line 4). In order to generate 

quantitative guidance for the user, the user guidance system utilizes some of the sensor poses that 

are able to observe complete frames as baseline sensor poses. When an incomplete frame is 

obtained, by comparing the current sensor pose with the baseline sensor poses (Algorithm 3-2 

Line 6), the user guidance proposes quantitative movement suggestions of the sensor to the user. 

The generated guidance describes the sensor movement suggestions in terms of translation and 

rotation of the sensors with respect to the default sensor coordinate system. In the text, for the 
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sake of illustration, simple cases of user guidance are used and the user guidance is described in 

words that are more user-friendly for human users. The user guidance generation stops if a 

complete frame is observed. The detailed user guidance system will be described for three 

general cases - box shape, opening structure, and parallel structure. 

 

Algorithm 3-2: Generate user guidance for a single frame 

1 function GENERATEUSERGUIDANCE(𝑓𝑟𝑎𝑚𝑒,𝑔𝑟𝑎𝑣𝑖𝑡𝑦, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑒𝑛𝑠𝑜𝑟𝑃𝑜𝑠𝑒𝑠) 

2     𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 =  GetSceneTemplate(𝑠𝑐𝑒𝑛𝑒𝑇𝑦𝑝𝑒) 

3     𝑠ℎ𝑎𝑝𝑒 = GeneateHypothesisShape (𝑓𝑟𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑔𝑟𝑎𝑣𝑖𝑡𝑦) 

4     𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = Compare(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑠ℎ𝑎𝑝𝑙𝑒) 

5 if 𝑖𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 == false do 

6        𝑢𝑠𝑒𝑟𝐺𝑢𝑖𝑑𝑎𝑛𝑐𝑒 = ComputeGuidance(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑒𝑛𝑠𝑜𝑟𝑃𝑜𝑠𝑒𝑠) 

7     end if 

8 return 𝑢𝑠𝑒𝑟𝐺𝑢𝑖𝑑𝑎𝑛𝑐𝑒 

 

3.4.1 Box Shape 

A box shape is defined as the shape that contains two sets of two parallel planes while the 

two sets are perpendicular to each other. As shown in Figure 3-3 (a), Plane 𝐴 and 𝐶 are parallel 

to each other, so are Plane 𝐵 and 𝐷. Moreover, Plane 𝐴 is perpendicular to Plane 𝐷. The solid 

lines in Figure 3-3 (a) denote the intersection lines between two intersection planar surfaces. A 

typical example of a box shape is a hallway in indoor scenes and this chapter uses a hallway as 

an example to illustrate the method. To get the dimension of this structure (the width and height 

of the hallway), the points from all the four planes (𝐴, 𝐵, 𝐶, and 𝐷) should be observed by the 

sensor. Therefore, the sensor at the baseline poses should be in the center of the hallway and 

almost horizontal with its view direction parallel to Plane  𝐴 . When the sensor acquires an 

incomplete frame which does not contain data from all the four planes, the user guidance will 
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identify the incompletion of the frame and provide user guidance for moving the sensor to 

capture sufficient points from all the four planar surfaces.  

 

 

Since a typical hallway (composed of two walls, a ceiling, and a ground floor) is usually 

2~3 meters high, an RGB-D sensor like Kinect is able to capture points from at least three planes 

of that hallway. When the sensor is too high away or too close to the ground floor, the ceiling or 

the ground floor cannot be observed by the sensor. If one planar surface is not obtained in the 

data, the geometric analysis is performed based on the partial data. Based on the prior 

information (i.e. the scene type, the related shape template and baseline sensor poses) and the 

captured data, the hypothesized shape is reconstructed to evaluate the completeness of this frame 

so as to guide the user.  

Figure 3-3 shows an example of the user guidance for a box shape. Figure 3-3 (a) 

displays a priori knowledge about the box shape template, where gray shapes denote planar 

surfaces. This shape template also contains geometric and topological information of all the four 

  

 

 

(a) The box shape 

template.  

(b) One frame data and 

the measurement.  

(c) The shape and the user 

guidance. 

(d) A better frame data 

and the measurement. 

Figure 3-3: Box shape user guidance. 
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planes. As shown in Figure 3-3 (b), Plane 𝐷 (i.e., the ground floor) is not detected in the data 

because it is too close to the sensor (closer than the minimum measurement distance of the 

sensor). Based on the observed planes and the shape template, the user guidance system 

generates a hypothesis box shape from that frame. Since the ceiling and the two walls are 

measured in the data, the intersection lines between the three planar surfaces can be derived, as 

denoted by the two solid lines (in fact horizontal) in Figure 3-3 (c). By vertically extending the 

end points (which are computed according to the line equation and the measured point clouds) of 

the two solid lines, the two vertical dotted lines are hypothesized and the other end points of the 

dotted lines are found based on their equations and the point clouds. The last two dotted lines are 

created by extending the end points while keeping it parallel to the two horizontal solid lines. 

Hence, the box shape (the red lines in Figure 3-3 (b)) is constructed for this frame and an abstract 

template (Figure 3-3 (c)) is also created. However, the height is not accurate since it is computed 

by hypothesizing the vertical dotted lines and their end points. By comparing the shape in Figure 

3-3 (c) and the shape template in Figure 3-3 (a), the system identifies the fact that Plane 𝐷 is not 

observed and then the user guidance system compares the current sensor pose with baseline 

sensor poses of the box shape and generates guidance for the user to move the sensor higher to 

obtain the accurate height. 

Since the system detects that there are no points from Plane 𝐷, the system instructs the 

user to move the sensor higher in order to get points from Plane 𝐷, the floor. By following the 

guidance, the sensor is moved higher and then a new and better frame is obtained as shown in 

Figure 3-3 (d). In this frame, all the four planes can be extracted from the point clouds and a box 

shape similar to the template can be constructed without using any hypothesis. Thus, both the 

height and the width of the hallway can be computed by geometric analysis.  
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It should be noted that by assuming the sensor is held almost horizontally, even though 

only one plane is observed, the user guidance system is still able to generate user guidance for 

moving the sensor to find complete frames. For example, if Plane 𝐴 is observed, based on the 

sensor pose assumption, the user guidance system will identify that at least a wall is captured and 

provide guidance for moving or rotating the sensor right or left to capture more data. Similarly, if 

two planes are captured by the sensor, the user guidance system works well too. 

3.4.2 Opening Structure 

An opening structure is defined as an opening in a planar surface, i.e., a rectangular hole 

within a planar surface. In this chapter, a door frame that is indented in a wall is used as an 

example of an opening structure. Since most doors in this chapter are located in the hallways, it 

is difficult to obtain both its width and height as the sensors cannot move as far from the door as 

possible when it is facing the door. Therefore, this chapter currently focuses on estimating the 

width of a door. As shown in Fig. 4 (a), Plane 𝐴 and Plane 𝐵 are vertical walls and they are on 

the same plane (their topological relation is coplanar). In order to get accurate width of the 

opening, the two planes 𝐴 and 𝐵 are necessary to provide constraints to reconstruct the shape of 

the opening. Thus, the user guidance is implemented to ensure that the two planes are observed 

by the sensor at an optimal pose, where the sensor at the baseline poses is almost horizontal and 

its view direction is orthogonal to Plane 𝐴 and 𝐵, and moreover, it is close to the center of the 

opening. 

Figure 3-4 displays an example of the user guidance for an opening shape. The opening 

shape template is shown in Figure 3-4 (a), where gray shapes denote planar surfaces and solid 

lines are components of the shape. For example, if Plane 𝐵  is not captured in the data, a 

candidate wall is identified as follows: first the centroids of Plane 𝐴 and Plane 𝐶 are projected 
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onto a line that passes the sensor position and is perpendicular to both Plane 𝐴 and 𝐶; since the 

projected point of the wall should be closer to the sensor compared to that of a door, Plane 𝐴 is 

detected as a candidate wall. By assuming the door width, the system can still reconstruct an 

estimated shape as shown in Figure 3-4 (b). Here the vertical solid line is estimated by fitting a 

line using the boundary points between the two parallel surfaces, while the vertical dashed line is 

hypothesized from the door width assumption. By comparing Figure 3-4 (c) and (a), the user 

guidance system identifies that another wall, i.e., Plane 𝐵 , is missing in the current frame. 

Therefore, using the baseline poses, the system instructs the user to move the sensor right so that 

the data of Plane 𝐵 can be observed by the sensor. In this way, a new frame with better quality 

data that contains Plane 𝐴 and 𝐵 is obtained (Figure 3-4 (d)). Thus, the door width is computed 

using the method for estimating the distance between boundary points of coplanar planes.  

 

It should be noted that for the simplicity of illustration, in Figure 3-4 only translation 

related user guidance is discussed. In fact, by comparing with the baseline poses, the user 

guidance also produces sensor movement guidance in terms of orientation. For example, using 

the incomplete frame in Figure 3-4 (b) as an example, the normal vector 𝒏𝐶 of the candidate door 

 

 

 

 

(a) The opening 

shape template. 

(b) One frame data and 

the measurement. 

(c) The shape and the user 

guidance. 

(d) A better frame data 

and the measurement. 

Figure 3-4: Opening shape user guidance. 
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plane, i.e. Plane 𝐶 , is on the right of the view direction 𝒗𝑐𝑎𝑚 if 𝒏𝐶 and 𝒗𝑐𝑎𝑚 are both pointing to 

the door. To make and 𝒏𝐶 and 𝒗𝑐𝑎𝑚 point to the same direction, the sensor should be rotated 

right in order to approach the baseline poses for observing complete frames.  

3.4.3 Parallel Structure 

A parallel structure is composed of multiple parallel planes. In this chapter, the stair is 

used for an example of parallel structures. The critical dimensions of a parallel structure are the 

distances between parallel planes. For stairs, interesting dimensions are defined as follows 

(Figure 3-5): the width is defined as the distance between two consecutive vertical planes and the 

height is defined as the distance between two consecutive horizontal planes.  

 

width

height

Tread

 

 

(a) The definition of stair width and height in a 

side view of a stair. 

(b) The definition of stair width and height in a 

typical stair. 

Figure 3-5: Stair dimensions. 

There are two reasons for using parallel planes in the dimension definition. Firstly, for 

most applications in robotics and civil engineering, the dimensions defined in this way are 

sufficient even though stairs usually contain some protruding parts, for example, stair nosing (the 
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protruding part of a tread), and bump to avoid slipperiness on the tread. Secondly, from a 

practical perspective, it is complicated to fit a perfect rectangle for point clouds since the sensors 

usually fail to obtain all points of edges. Moreover, the methods utilizing least squares estimation 

to fit a rectangle to point clouds are inclined to obtain a smaller rectangle compared to the 

ground truth. Therefore, we use the distance between two parallel planes to define the 

dimensions of interest and this definition also provides hints for the subsequent user guidance.  

In order to obtain the width and height of the stairs, two sets of parallel planar surfaces 

must be presented in the point clouds. Since the width and height of a stair are close to each 

other, the sensor is able to get sufficient points from both horizontal and vertical planes if its 

view direction is around 45 degrees with respect to both the horizontal and vertical planes of 

stairs. Based on this principle, the user guidance system estimates its orientation with respect to 

the stairs and then provides corresponding instructions for moving the sensor to get more vertical 

and horizontal planes.  

 

 
 

  

(a) The stair template. (b) One frame data  (c) The shape  (d) A better frame data  

Figure 3-6: Parallel structure user guidance. 

Figure 3-6 shows an example of the user guidance system for the stair. The template of 

the stair is shown in Figure 3-6 (a). In Figure 3-6 (b) several vertical planar surfaces and a 
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horizontal planar surface are observed in that frame. In this case, only the width of the stair is 

able to be computed from the vertical surfaces by the geometric analysis. Based on the 

assumption of the shape template (Fig. 6 (a)) and the frame data, the height of the stair can be 

approximately computed by estimating the height of several vertical planar surfaces. Thus, as 

shown in Figure 3-6 (c), an instantiation of the shape template based on the data is derived from 

the frame data while the width has a good accuracy and the height has a poor accuracy. Based on 

Figure 3-6 (c) and the relative position and orientation of the sensor with respect to the stairs, the 

user guidance system provides guidance for moving the sensor to a better position with a better 

orientation. In this case, the sensor should be rotated toward the ground in order to obtain more 

points from the horizontal planes (Figure 3-6 (d)). 

3.5 Experiments and Results 

3.5.1 Experimental Setup and Sensor Calibration 

In the conducted experiments, a Kinect for Xbox 360 sensor is used as the RGB-D sensor 

to obtain 3D point clouds of indoor scenes. This sensor can capture images with a resolution of 

640x480 and work at a frame rate of 30 fps. The suggested operation range of this sensor is 0.8 

to 5.0 meters and the depth resolution decreases quadratically with increasing distance from the 

sensor (approximately 7cm at the range of 5m) (Khoshelham and Elberink 2012). 

The RGB-D camera has an infrared (IR) camera and a color (RGB) camera. With the 

assistance of an IR laser emitter, the IR camera is able to get a depth image of the environment. 

Meanwhile, the RGB camera is able to capture a color image. By using the intrinsic parameters 

of the two cameras and the relative transformation between the two cameras, the colored 3D 

point clouds can be computed from the color image and the depth image. When the Kinect 
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sensor is factory-assembled, the IR sensor and the RGB camera are fixed relative to each other 

and thus there exist default parameters for the two cameras, including the intrinsic parameters 

and their transformation matrix. However, due to imperfections in the manufacturing process, 

these default parameters cannot be expected to be exact for all Kinect sensors. Therefore, it is 

necessary to calibrate the Kinect sensor if it is used for applications that require high and 

repeatable accuracy. The sensor calibration in this chapter aims to obtain intrinsic and extrinsic 

parameters of the Kinect sensor and thus obtain accurate 3D colored point clouds from the 

sensor. By viewing the Kinect as a stereo system, a stereo camera calibration method is utilized 

to calibrate the Kinect and obtain its intrinsic parameters, and the extrinsic parameters between 

its IR camera and RGB camera. 

The sensor is calibrated before gathering data. During the calibration, the IR emitter is 

covered by an opaque object and thus the IR sensor can obtain intensity instead of depth. To 

enable the IR sensor to capture a bright image, a lamp is used to provide more illumination for 

the calibration markers. In addition, to enable higher marker detection results, a fiducial marker 

system based on AprilTags (Olson 2011) is used instead of traditional checkboard for calibration. 

Based on multiple pairs of images by the IR sensor and the RGB sensor, the calibration obtains 

the parameters of the stereo system.  

To fully utilize the knowledge of the measured indoor environment, during the 

experiments the sensor should be held almost horizontally to the extent possible by the user, 

which ensures that the gravity direction is consistent with the assumption used in recognizing 

components of scenes. The sensor can be tilted a little bit as a tolerance (±15𝑜 within the desired 

gravity direction) is added to check the gravity direction. Within this context, for a hallway, the 

floor is almost horizontal while the wall is almost vertical in the point clouds. This assumption is 
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reasonable in terms of the potential applications. For a robotic platform, it is easy to mount the 

sensor in this position. For a user holding the device, the sensor can be easily adjusted to meet 

this assumption. 

Regarding the user guidance, the scene type, i.e. box shape, opening structure, or parallel 

structure, is selected by the user. The user guidance utilizes the shape template of the scene and 

geometric analysis to identify these planar components and the completeness of the frame. If the 

frame is incomplete, the system will generate user guidance and prompt it in the command 

window for the user. The correctness of the generated user guidance is highly dependent on the 

geometric analysis results, especially the components detection results for the specific scene 

type. For example, when observing the door, if one frame only contains the partial data from a 

cuboid recycle bin and the wall, the system will identify the wall as a candidate door while 

viewing the recycle bin as a candidate wall. In this context, the user guidance provided by the 

sensor will not be able to help find the correct door. In summary, for the current implementation, 

if the observed scene matches the designated shape template and the components identification is 

correct, the system can generate correct user guidance. 

3.5.2 Average Geometric Measurement Accuracy 

To evaluate the geometric measurement accuracy, multiple complete frames are acquired 

by moving the sensor to different positions in order to obtain data at different viewpoints. The 

average values over all the measurements from those complete frames are used to demonstrate 

the accuracy and performance of the sensor in estimating the dimensions. The ground truth of the 

dimensional information is obtained using a tape measure by a carpenter having ten years of 

construction experience. The error of this system is calculated by subtracting the average value 

from the ground truth. 
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In terms of a hallway structure, the method is tested on ten hallways in four different 

buildings. The overall accuracy of the widths and the heights of the hallways is shown in Table 

3-1. The mean absolute error of the width measurement is 22mm while that of the height is 

36mm. Considering the accuracy of the Kinect sensor, it can be concluded that this method is 

able to obtain accurate hallway width and height. The standard deviations of the absolute errors 

of the width and height measurements are 15mm and 24mm respectively. As shown in Table 3-1, 

the width measurement usually has a lower error and relative error compared to the height and 

moreover, the standard deviation of the width measurement is smaller than that of the height 

measurement. The reason is that the width of a hallway is usually less than its height and Kinect 

tends to obtain low-quality data from the ceiling or the floor because the uncertainty of the 

sensor goes up as the distance increases.  

Table 3-1: Absolute errors and relative errors of hallway dimensions. 

ID 
Error (mm) Relative Error 

Width Height Width Height 

Hallway 1 32 15 1.79% 0.59% 

Hallway 2 33 55 1.81% 2.26% 

Hallway 3 23 77 0.94% 2.65% 

Hallway 4 48 27 1.96% 1.10% 

Hallway 5 24 41 0.99% 1.67% 

Hallway 6 4 15 0.16% 0.57% 

Hallway 7 1 3 0.05% 0.11% 

Hallway 8 32 50 1.33% 1.82% 

Hallway 9 17 68 1.12% 1.98% 

Hallway 10 4 12 0.20% 0.49% 

Avg. 22 36 1.04% 1.32% 

Std. 15 24 0.67% 0.82% 
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Table 3-2: Absolute errors and relative errors of door width. 

ID Error (mm) Relative Error 

Door 1 9 0.98% 

Door 2 39 4.25% 

Door 3 4 0.38% 

Door 4 5 0.55% 

Door 5 19 2.08% 

Door 6 11 1.20% 

Door 7 41 4.50% 

Door 8 20 2.19% 

Door 9 5 0.55% 

Door 10 2 0.22% 

Avg. 16 1.69% 

Std. 14 1.49% 

 

Table 3-3: Absolute errors and relative errors of stair dimensions.  

ID 
Error (mm) Relative Error 

Width Height Width Height 

Stair 1 4 11 1.43% 5.97% 

Stair 2 6 24 2.12% 13.03% 

Stair 3 2 10 0.68% 6.18% 

Stair 4 15 28 5.91% 14.30% 

Stair 5 0 5 0 2.72% 

Stair 6 1 14 0.36% 7.41% 

Stair 7 5 4 1.62% 2.25% 

Stair 8 2 11 0.65% 6.42% 

Stair 9 10 4 3.48% 2.22% 

Stair 10 29 1 11.30% 0.55% 

Avg. 7 11 2.76% 6.13% 

Std. 8 8 1.62% 4.30% 
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For door frames, the method is tested on ten door frames in different buildings. The 

overall accuracy of the width of doors is shown in Table 3-2. The mean absolute error of the 

door width measurements is 16mm, which shows that the method measures door width with high 

accuracy. The standard deviation of the absolute errors is 14mm, which reflects the stability of 

this method in measuring door width.  

For stairs, the method is tested on ten stairs in different buildings. The mean absolute 

errors of the width and the height of these ten stairs are 4mm and 15mm respectively while the 

standard deviations are 4mm and 9mm as shown in Table 3-3. Compared to the accuracy of 

Kinect, these errors demonstrate that using parallel planes to compute dimensions is able to get 

an accurate and stable estimation. In addition, compared to the dimension measurements of 

hallways and doors, the stair dimension measurements have a lower mean absolute error and 

standard deviation. This is partly due to the fact that the stair width and height estimated from a 

single frame are usually computed using multiple planes while the width and height of a hallway 

and the width of a door are estimated using two planes from a single frame.  

Even though the mean absolute errors of the stair height and width are lower than those 

of hallway and door dimensions, both the relative errors of the stair width and height (2.67% ad 

6.13%) are larger than those of the hallway and door dimension. This is mainly because the 

absolute values of the stair height (~180mm) and width (~300mm) are smaller compared to door 

width (~1,000mm), hallway width (~2,000mm), and hallway height (~2,500mm).  

The developed methods are implemented in C++. The Point Cloud Library (PCL 2016) is 

utilized for capturing 3D point clouds from the Kinect sensor. The Computation Geometry 

Algorithms Library (CGAL 2016) is used for geometry computation. For the three cases, 

hallway, door, stairs, the average frame processing time are 0.03s, 0.8s, and 0.07s respectively. 
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The experiments were conducted on a desktop with Intel Core i7-4790K CPU of 4.00GHz and 

RAM of 16GB. The implementation does not employ any multi-threading or GPU techniques. 

The door frame takes longer time because many geometric operations (e.g. boundary extraction) 

are performed in data analysis. However, using multiple threading techniques, the processing 

time can be improved and thus the system will be feasible for real-time applications.  

3.5.3 Relations between Sensor Poses and Dimension Measurements 

To obtain complete frames of a scene, sensor poses (orientations and positions) have 

many options. This section will evaluate relations between sensor poses and the accuracy of 

dimension measurements for the three scenes. As aforementioned, the user guidance system 

generates instructions about moving the sensor’s position and orientation. The hallway which has 

larger dimensions compared with the other two is used to evaluate the effect of sensor positions 

on the dimension measurement errors while the stairs to evaluate the effect of sensor orientations 

on the dimension measurement errors.  

In terms of the hallway case, as the height of a hallway is usually larger than the width, 

we primarily evaluated the errors of height measurements corresponding to positions of the 

sensor by only varying the height of the sensor. We held the sensor horizontally, and vertically 

moved the sensor from a position close to the ground floor to a position close to the ceiling. 

Thus, the sensor poses in this way are assumed to have only variations in height. To obtain the 

relations between the sensor position and the error of the height measurement, the absolute 

distance difference 𝑑∗ between the distance from the sensor to the ground floor and that from the 

sensor to the ceiling is computed. If the sensor is near the center of the hallway, the absolute 

difference 𝑑∗  is near zero. On the contrary, if the sensor is close to the ground floor or the 

ceiling, 𝑑∗ is larger and approaches the height of the hallway. For this hallway whose height is 
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2.91 meters, when the absolute difference 𝑑∗ is larger than 2.6 meters, the sensor cannot observe 

any complete frames.  

As shown in Figure 3-7, the average absolute error of height measurement increases as 

the absolute distance difference 𝑑∗. This is partly due to the fact that when the sensor is far away 

from the hallway center, it captures many lower quality points that are far away from the sensor. 

For example, when the sensor is close to the ground and far from the ceilings, the ceiling points 

will have larger uncertainty compared to the ground points. These points with large uncertainty 

might lead to large errors in dimension measurements. In addition, as shown in Figure 3-7 when 

the absolute distance difference 𝑑∗  is less than 2 meters, the absolute error of height 

measurement has less variance compared to that within 2 and 2.5 meters. Thus, it is concluded 

that when the sensor is close to the center of a hallway it tends to provide robust and accurate 

hallway height estimation. However, it should be noted that if the sensor is located away from 

the center of a hallway, it does not necessarily indicate that higher accuracy dimensional 

measurements cannot be obtained. For example, when the absolute distance difference 𝑑∗  is 

within 2 and 2.5 meters some of the absolute errors of height measurement are pretty accurate 

(less than 10mm). This is because the dimension measurements are computed using least squares 

estimation which mitigates large uncertainty of some points. Therefore, even though some points 

have higher uncertainty (which is still centimeter level), they do not dominate the least squares 

estimation results, i.e. dimension measurements in this chapter. This is also indicated in Figure 

3-7 by the fact that the average height measurement errors of different ranges are within 20mm.  
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Figure 3-7: Absolute error of hallway height with respect to absolute distance difference 𝑑∗. 

 

Figure 3-8: Error of dimensions with respect to sensor orientations for stairs. 
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For stairs, we collected data by only varying the view direction of the sensor to evaluate 

whether the sensor’s orientation can improve the accuracy of dimensional measurements. We 

manually held the sensor horizontally and then rotated the sensor to change its view direction. 

From this dataset, the complete frames are extracted and their errors against the sensor 

orientation are shown in Figure 3-8. To obtain complete frames, the sensor’s orientation with 

respect to the horizontal surfaces of the stairs should be greater than 18o and less than 73o. The 

results show that the errors are within 20mm and the dimension measurements have similar 

errors given that the error of Kinect point measurement is also on the order of centimeters. In 

addition, Figure 3-8 demonstrates that the sensor orientation does not significantly affect errors 

of dimension measurements. This is also due to the sensor uncertainty and the dimension 

estimation method. 

3.6 Conclusions and Future Work 

In this chapter, a user-guided dimensional analysis method for indoor building 

environments is introduced. The system uses a single frame from an RGB-D sensor to obtain the 

dimensions of an indoor scene by extracting planes and performing the geometric analysis. To 

overcome the disadvantage of the single frame data, a user guidance strategy is employed to 

provide guidance for better sensor poses in order to acquire complete data frames. Experimental 

results show that this method can obtain accurate dimensions of hallways, doors, and stairs with 

centimeters error. The user guidance system is able to provide useful guidance for moving the 

sensor to obtain complete frames. The experimental results also demonstrate that due to the 

uncertainty magnitude of the sensor and the dimension estimation method, when complete 

frames are captured the sensor poses have little effect on dimension measurements accuracy. 

Since the current user-guidance system only guides the user to obtain complete frames, future 
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work will explore how to systematically investigate the relations between various sensor poses 

and the dimension measurement accuracy in order to generate guidance for better frames in 

terms of high accuracy dimension measurements.  

Due to the sensor, i.e. RGB-D cameras, used in the experiments, this research has two 

main limitations. Firstly, the RGB-D sensors do not function well in outdoor environments 

because the ambient IR affects the functionality of the IR sensor. Secondly, the RGB-D cameras 

have limited precision which is not sufficient for some construction tasks that require high 

precision especially during the construction phase (e.g., door installation). To overcome these 

two limitations, different sensors can be utilized to replace RGB-D cameras. For example, a 

stereo camera system can be used to get 3D point cloud in both indoor and outdoor 

environments. For those applications requiring high accuracy, more accurate sensors (e.g., laser 

scanners) can be adopted to acquire 3D point clouds. When different sensors are used, if the 

scene is the same, some minor changes need to be made according to the property of sensors. 

Future work will investigate using stereo camera systems for measuring dimensions of civil 

infrastructure elements in both indoor and outdoor environments. Another limitation of this 

chapter is that it can be only applied to infrastructure elements composed of planar surfaces. 

Future work will explore the design of corresponding geometric analysis and user guidance 

system for scenes containing non-planar surfaces. 
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Chapter 4  

Human Detection and Tracking from a Single RGB-D Sensor 

4.1 Introduction  

Human detection and tracking allow a robot to be aware of a specific individual for 

performing various tasks, e.g., tour guiding, elderly care, surveillance and so forth (Bodor and 

Jackson 2003; Nez et al. 2016). The capability of identifying and tracking a certain human also 

allows a robot to interact or collaborate with that human in dynamic environments, and enables 

further applications (e.g., human following) (Chung et al. 2012; Dang and Suh 2011; Morioka et 

al. 2004). Various instances of previous research work have primarily explored the use of RGB 

or gray cameras to detect and track a certain person or multiple people by using visual 

appearances (Ghidary et al. 2000; Zarka et al. 2008; Zhou and Hoang 2005). However, the 

efficacy of these methods is affected by the illumination conditions, complicated background, 

and occlusion. Moreover, an RGB camera cannot obtain 3D information of the moving humans 

which can provide many significant features for human detection and tracking. Therefore, 3D 

sensors (e.g., stereo cameras, laser range finders, and RGB-D sensors) have been employed to 

obtain 3D data for human detection and tracking (Ali et al. 2013; Chung et al. 2012; Gritti et al. 

2014).  

Among the 3D sensors, the RGB-D sensors that can acquire organized color point clouds 

in indoor environments at frame rates of up to 30Hz have been proven to be useful for human 
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detection and tracking. As the RGB-D cameras have a limited field of view and sensing ranges, 

most of the human detection and tracking methods using RGB-D cameras integrate data captured 

from other sensors (e.g., laser range finders) (Susperregi et al. 2013), or utilize multiple RGB-D 

cameras to capture additional data (Nez et al. 2016). The methods using only a single RGB-D 

sensor highly rely on the existence of the ground plane which might not be realistic when a few 

number of points from the ground are observed due to occlusion or the sensor is too close or too 

far from the ground (Liu et al. 2015; Munaro and Menegatti 2014). In this chapter, a novel 

human tracking method is proposed to detect and track a specific individual from a single RGB-

D sensor using online learning methods. 

The rest of this chapter is organized as follows. Section 4.2 Previous Work reviews 

previous work on human detection and tracking using RGB-D sensors. Section 4.3 Methodology 

explains the proposed human tracking method in detail. Section 4.4 Experimental Results and 

Discussion shows the experimental results on the real-world datasets and discusses the 

performance of the proposed method. Section 4.5 Conclusions and Future Work draws the 

conclusion of this chapter and discusses the limitations and future work. 

4.2 Previous Work 

Human detection and tracking has been extensively investigated using various sensors, 

e.g., RGB cameras, thermal cameras, stereo cameras, RGB-D sensors, laser range finders, and so 

on. As this work mainly utilized RGB and 3D features from RGB-D images, this section first 

briefly discusses common methods for using images and 3D data to detect and track humans, and 

then reviews previous literature that utilized RGB-D sensors for human detection and tracking.  

Regarding utilizing RGB or gray images in human detection and tracking, most of the 

methods extracted features from images and employed classifiers to detect or recognize parts of 
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the body, such as face (Suzuki et al. 2009), head (Xu et al. 2015), entire body (Dalal and Triggs 

2005), and so forth. For a laser range finder (i.e., a 2D laser scanner), the common approach is to 

detect human legs from the point cloud (Chung et al. 2012). In terms of using the stereo cameras 

or RGB-D cameras which are able to obtain both RGB images and 3D point clouds, there exist 

three types of approaches: (1) 2D approach that mainly detects humans from RGB or depth 

images using image processing methods (Vo et al. 2014), (2) 3D approach that mainly detects 

humans from the 3D point clouds (Liu et al. 2015), (3) integration of the 2D and 3D approach 

(Munaro and Menegatti 2014). This section only reviews methods that utilized 3D data while 

ignoring the first category.  

Munaro and Menegatti (2014) proposed a fast multi-people detection and tracking 

method using an RGB-D sensor. They downsampled the point cloud, extracted the ground plane, 

performed clustering in 3D space vertically, and detected multiple people by a Histogram of 

Gradients (HOG) people detector (Dalal and Triggs 2005) from the corresponding parts in the 

RGB image. The tracker utilized the online classifier based on Adaboost using the color 

histogram. The method can track multiple people with state-of-art accuracy and beyond state-of-

the-art speed. However, this approach highly relies on the detection of the ground plane which 

might not be visible due to occlusion or the sensor positions.  

Carraro et al. (2016) developed a cost-efficient human detection and tracking method 

using Kinect v2 with an embedded system, the NVidia Jetson TK1. Taking advantage of the 

embedded system, the method can generate a point cloud at 22 Hz and detect people at 14 Hz. 

Liu et al. (2015) utilized a novel point ensemble image (PEI) representation after the ground 

plane was detected. Based on this representation, a head crown detector was used to identify 

people candidates, and the histograms and the height statistics were utilized to detect people. The 
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method achieved high detection rates (more than 95%) while having a frame rate of 30~50 Hz. 

This approach faces the same problem of using the ground plane assumption.  

Liu et al. (2016) proposed the new idea of spatial region of interest plan view maps for 

identifying human candidates after the ground plane was removed. A particle filter was adopted 

to track the motion models of multiple people. The method achieved high multiple object 

tracking (MOT) accuracies on two indoor datasets. However, it was not evaluated on public 

datasets, and the computational efficiency was not discussed. The methods that utilized HOG 

descriptors might fail when people squat down or are blocked by other objects (Liu et al. 2016).  

Apart from a single RGB-D sensor, sensor fusions with other types of sensors (e.g., 

thermal cameras) or multiple RGB-D sensors can contribute data from different perspectives or 

containing different attributes for people detection and tracking. Susperregi et al. (2013) 

integrated an RGB-D sensor, a laser range finder and a thermal sensor on a mobile robotic 

platform to perform human detection and tracking. They proposed three independent detection 

methods based on the data captured by the three sensors and fused them into the particle filter 

system. A vest detection method was implemented from the RGB-D images; a leg detection 

method was designed using the laser range finder data; and the thermal detection identified 

possible human regions. This system can detect and track the target human with a safety vest 

robustly and accurately. However, this method requires the human to wear a safety vest in order 

to perform the vest detection in the RGB-D data.   

Munaro et al. (2016) extended their previous work and developed an open source multi-

camera calibration and people tracking method using RGB-D camera networks. The methods for 

human detection and tracking utilized the approach in (Munaro and Menegatti 2014) while 

allowing fusion of multiple RGB-D sensors. Luber et al. (2011) integrated two detectors, a novel 
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multi-cue person detector from RGB-D data and an on-line detector, into a multi-hypothesis 

tracker to perform people tracking without a ground plane assumption. The people detector was 

trained by extracting features (similar to HOG) from both the depth and RGB images while the 

tracker fused the online Boosting method into a Kalman filter based multi-hypothesis tracking 

framework. This system installed three RGB-D sensors to capture RGB-D data at 1.2m height. 

They tested it on a real-world dataset and obtained an improvement of tracking performance. 

However, the system was not compared with the other methods or evaluated on available public 

datasets. In addition, the facts that the frame rate was not reported and three RGB-D sensors 

were required make it inappropriate for robotics applications.  

In this chapter, a novel human detection and tracking framework is designed to utilize 3D 

clustering for detection and feed 3D point cloud and 2D image features for updating an online 

classifier. The clustering is performed in 3D space using a normal-based region growing method 

while the classifier utilizes both 3D and 2D features. The online classifier in this work is the 

online support vector machines (SVM) which is based on the kernerlized structure output SVM 

(Hare et al. 2016) that supports usages of multiple kernerls. 

4.3 Methodology 

This work presents a human tracking framework from a single RGB-D sensor using 

online learning methods. Figure 4-1 shows the technical overview. The system starts with an 

RGB-D image and the bounding box of the object (the yellow box Last result in Figure 4-1) 

which is initialized by the user. In subsequent loops, the Last result will be updated by the 

previously detected results. To avoid confusion and clutter, the setting or update of the Last 

result is not shown in the figure. Then at one frame, the first 3D sampling method (referred to as 

the candidate sampling) is conducted to find the candidate human clusters in the point cloud. The 
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online learning method evaluates these candidates and tries to recognize the target human. If the 

target is found, another 3D sampling process (referred to as the universal sampling) is utilized to 

obtain various point clusters including both positive samples (candidate human clusters) and 

negative samples (non-human clusters, or clusters of other humans). Based on these samples, the 

online classifier is updated. With a new RGB-D frame, the same processes will be iterated. 

 

 

Figure 4-1: Technical overview of the human detection and tracking framework. 

 

4.3.1 Term Explanations 

The following terminology is utilized with specific meanings in this chapter: 

• RGB-D sensor: An RGB-D sensor is composed of an RGB camera and a depth 

camera, and can obtain an RGB image and a depth image. Then, using the camera 

parameters, the RGB image and the depth image can generate an organized color 

point cloud that is also called an RGB-D image. 

• 2D image: A 2D image refers to an image that contains only intensity information 

(color or gray) without any 3D information. When using the RGB-D sensors, a 
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2D RGB image is captured by the RGB camera while a 2D gray image can be 

obtained from the RGB image.  

• RGB-D image: An RGB-D image 𝑰𝒑 is an organized colored point cloud where 

every point can be found by a 2D index and contains color information (𝑟, 𝑔, 𝑏) 

and 3D coordinates (𝑥, 𝑦, 𝑧) with respect to the sensor. As 𝑰𝒑 is created using a 

color image 𝑰𝒄 and a depth image, 𝑰𝒑 is associated with a specific 𝑰𝒄 . 

• Sample: A sample is referred to as a point cluster which might be the target 

human cluster, and is represented by a 2D bounding box (rectangle) 𝑹 and a 3D 

bounding box (cuboid) 𝑪 where 𝑹 denotes the 2D bounding box of the target 

human in 𝑰𝒄  while 𝑪  is the 3D bounding box of the target in 𝑰𝒑 . Using the 

transformation matrix between the RGB camera and the depth camera, 𝑹 can be 

computed from 𝑪. However, some of points within 𝑹 might not belong to 𝑪. 

Therefore, a sample can be uniquely represented by 𝑪 or (𝑹, 𝑪). 

• Positive sample: A positive sample mainly contains points from the target human 

and is viewed as the target human by the classifier.  

• Cuboid: A cuboid is the 3D bounding box of a point cluster whose edges are 

parallel to the corresponding three axes in the coordinate system. A cuboid is 

represented by a 6×1  vector, [𝑐𝑥, 𝑐𝑦, 𝑐𝑧 , 𝑙𝑥, 𝑙𝑦, 𝑙𝑧]  while 𝒄𝒄 = (𝑐𝑥, 𝑐𝑦, 𝑐𝑧)  is the 

centroid of the cuboid and 𝒄𝒅 = (𝑙𝑥 , 𝑙𝑦, 𝑙𝑧) are the dimensions of the bounding 

boxes along the three axes. 
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4.3.2 3D Sampling 

For an input RGB-D image, given the previous object location, the sampling methods are 

performed to detect multiple point clusters one of which may contain the target object. 

Depending on the usages of the samples, the sampling method is categorized into candidate 

sampling and universal sampling where the former mainly aims to include the samples 

containing the object being tracked while the latter finds some negative samples to update the 

classifier. To utilize the 3D data, this work develops different approaches for the two sampling 

methods in order to effectively identify the object and update the classifiers. 

4.3.2.1 Candidate Sampling 

To effectively find the object candidates, the candidate sampling is composed of a two-

stage cluster detection method. For many cases of human detection and tracking in RGB-D 

images, the target human is isolated in the environment and not connected to any other objects. 

Therefore, the first stage of the candidate sampling is to find isolated clusters based on the 

previous location of the target human. When the target is connected to other objects, the first 

stage fails while the second stage randomly obtain multiple samples using the previous location.  

The first stage of candidate sampling utilizes the normal-based region growing method to 

cope with the variance of human sizes in the data. Due to the limited field of views of the sensor, 

occlusions of other objects and the poses of the person, the human object might not be fully 

captured by the sensor, and thus its dimensions vary in the RGB-D images. Therefore, instead of 

using the dimensional information from the previous tracking result, the candidate sampling 

method performs an efficient normal-based region growing algorithm around the center of the 

previous location. Based on the 2D rectangle of the previous location, the method dilates the 

rectangle in order to incorporate more points for consideration. Then, for all the points within the 
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2D rectangle, the normal-based region growing clustering is employed to detect connected 

components.  

By taking advantages of the organized point cloud, the normal-based region growing 

clustering method searches neighbors using 2D indices instead of utilizing 3D neighbor finding 

methods (e.g., k-d tree (Bentley 1975)), which greatly saves time of constructing the searching 

structures and searching for neighbors. In addition, searching neighbors using 2D indices allows 

easy integration of downsampling which can greatly reduce the number of points being 

processed and thus improve time efficacy. For a point 𝒑𝟎 = {𝑥0, 𝑦0, 𝑧0} whose 2D index is (𝑟, 𝑐), 

its four neighbors in 2D space are the points corresponding to the indices (𝑟, 𝑐 − 𝑠), (𝑟 − 𝑠, 𝑐), 

(𝑟, 𝑐 + 𝑠), (𝑟 + 𝑠, 𝑐) while 𝑠 is the down-sampling stride. If 𝑠 ← 1, all the points are utilized and 

no downsampling is performed. If 𝑠 ← 2, a quarter of the points are utilized since the points are 

downsampled in both dimensions using 𝑠. The neighbor points are also validated by comparing 

their distance to 𝑝0to a distance threshold 𝑟 (the neighboring searching radius). Even though this 

neighbor searching strategy cannot find all the neighboring points of 𝑝0 within 𝑟, it is still able to 

effectively obtain the correct clusters for the region growing method. 

When the tracked human is connected to other objects (e.g., other humans, furniture), the 

first stage detects clusters that contain both the target and the other objects, which affects the 

target detection. Therefore, to address this issue, the candidate sampler utilizes the previous 

target location to generate random samples. Based on the previous center of the cuboid, a certain 

number of cuboids (in this work, 50) are generated by fixing the cuboid size while randomly 

generating the cuboid center within a radius around the previous cuboid center. Since a randomly 

generated cuboid might not reflect the true bounding box of the contained points, for each cuboid 

sample, all the points inside this cuboid are utilized to update the cuboid parameters.  
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Once the samples are obtained, this approach removes some impossible samples by 

comparing the cuboids of the sample to the last cuboid of the target human. If the dimension 

changes of a sample with respect to the last target cuboid are larger than a threshold, it is 

unlikely that the sample contains the target human and thus is removed from the candidate 

samples. If the distance between a sample’s centroid and the centroid of the last cuboid is larger 

than a distance threshold, the sample is eliminated too. 

4.3.2.2 Universal Sampling  

The universal sampling mainly serves to find negative samples around the current cuboid 

𝑪𝒄𝒖𝒓𝒓 of the detected human while some of the positive samples might be found too. All the 

samples including the 𝑪𝒄𝒖𝒓𝒓 are utilized to update the classifiers. Compared to finding connected 

components in the candidate sampling process, the universal sampling maintains all the points 

within that area. To make the sampling method efficient, the sampling is performed based on the 

current rectangle 𝑹𝒄𝒖𝒓𝒓  to obtain multiple rectangles in the 2D space.  By fixing the size, 

multiple rectangles around the center of 𝑹𝒄𝒖𝒓𝒓 are obtained. Then, the corresponding cuboids are 

computed using points with the rectangles. These samples are finally employed to update the 

classifiers. 

4.3.3 Feature Representations 

The histogram features (Hare et al. 2016) from the 2D image 𝑰𝒄 are utilized in this work. 

To efficiently compute the color histogram, a spatial pyramid of four levels is constructed for the 

whole image. At each level 𝐿, the image is divided into 𝐿×𝐿 small patches each of which yields 

a histogram. The final histogram is a combination of the histograms of all the levels. When there 
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are multiple samples with overlapping areas, this implementation can reduce redundant 

computation.  

3D features for a sample 𝒔 = {𝑹, 𝑪} are also investigated in this work. In order to achieve 

real-time performance, features that involve high computational cost are not considered. The 

statistic and geometric features of the point cluster are utilized in this work. The covariance 

matrix of the points within 𝑪 is computed. The eigenvectors and eigenvalues are calculated and 

utilized in the feature representation. In addition, the point density of this cuboid is included in 

the feature representation.  

4.4 Experiments and Discussion 

4.4.1 Experimental Setup 

To evaluate the tracking performance, six RGB-D videos which contain people moving 

in various illumination conditions are selected from the Princeton Tracking Benchmark datasets 

(Song and Xiao 2013) that are designed for evaluation of RGB-D tracking methods. To 

quantitatively evaluate our method, the six videos are manually labeled using the 2D images. The 

2D object tracking method (Hare et al. 2016), Struck, and the human detection method using the 

ground plane assumption (Munaro and Menegatti 2014) which is referred to as PCL-Human, are 

tested on the videos for comparison.  

The implementation in Point Cloud Library (PCL 2016) of the PCL-Human method is 

adopted by using the recommended parameters while the Struck implementation provided by the 

authors is utilized using default settings except that all the features proposed in that paper to 

allow better accuracy by sacrificing the time efficacy. In addition, to explore different normal 

computation methods which affect the computational efficiency, the proposed methods have two 
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different implementations, RGBD-N1 and RGBD-N2 by just varying the normal computation 

methods. The first one RGBD-N1 used a fixed number of points (in this work, 30) to compute 

normals while the second one utilized the fast integral normal computation for organized point 

clouds (PCL 2016) . 

Regarding significant parameters in the proposed method, to reduce the size of the point 

cloud, the sampling stride is 3, which means that only 1/9 of the points are utilized in the 

clustering process for the candidate sampling. The normal vector difference threshold is 60𝑜. All 

the parameters setting are shared for all the six videos.  

In addition, the intrinsic camera parameters for the depth camera are provided to compute 

the 3D point cloud while the extrinsic parameters (i.e., the rotation and transformation relations) 

between the RGB camera and depth camera are not provided. As the extrinsic parameters are 

necessary to convert 3D cuboids to 2D bounding boxes (i.e., rectangles), the factory parameters 

for the extrinsic parameters are utilized.  

4.4.2 Detection and Tracking Performance Evaluation  

As the proposed method relies on 3D clustering, the 2D bounding boxes are computed 

from the cuboids of the 3D clusters, which applies to the results of PCL-Human. Since 3D 

cuboid ground truth labels are difficult to be obtained, the evaluation is based on the 2D 

rectangles. The evaluation criterion utilized in (Everingham et al. 2010; Song and Xiao 2013) is 

employed. Given a ground truth rectangle 𝑹𝒈𝒊 and a detected rectangle 𝑹𝒅𝒊, the ratio of overlap 

𝑟𝑖 is computed as: 

𝑟𝑖 =

{
 

 
𝑎𝑟𝑒𝑎(𝑹𝒈𝒊 ∩ 𝑹𝒅𝒊)

𝑎𝑟𝑒𝑎(𝑹𝒈𝒊 ∪ 𝑹𝒅𝒊)
             𝑹𝒈𝒊 ≠ ∅,𝑹𝒅𝒊 ≠ ∅

               1                            𝑹𝒈𝒊 = ∅,𝑹𝒅𝒊 = ∅

−1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.1) 
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where 𝑹𝒈𝒊 = ∅  denotes that the target is not visible in the image, 𝑹𝒅𝒊 = ∅  means that no 

detection result is generated. If 𝑟𝑖 is greater than a minimum overlapping area threshold 𝑟𝑡, the 

human in this frame is correctly identified. Thus the successful rate 𝑅 of a tracker is computed as 

𝑅 =
1

𝑁
∑ 𝑢𝑖
𝑁
𝑖=1  where 𝑢𝑖 = 1  if 𝑟𝑖 > 𝑟_𝑡 , otherwise 𝑢𝑖 = 0 . The successful rates of the four 

methods, i.e., Struck, PCL-Human, RGBD-N1, and RGBD-N2, for all the six videos are shown 

in Figure 4-2. As PCL-Human tries to detect all humans and thus usually generates more than 

one rectangle, among detected rectangles by PCL-Human, the one that has the largest the ratio of 

overlap 𝑟𝑖 is selected as the final result for computing the successful rate.  

As shown in Figure 4-2, except for the fifth video, the RGBD-N1 method has higher or 

comparable successful rates compared to other methods. Several example images from the last 

three videos are shown in Figure 4-3 where the green rectangles are the ground truth and the red 

ones denote the detection results. 
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(a) Video 1 (b) Video 2 

  

(c) Video 3 (d) Video 4 

  

(e) Video 5 (f) Video 6 

Figure 4-2: Successful rates vs. the overlap ratio threshold. 
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Figure 4-3: Example results (in red) of RGBD-N1 on the last three videos.  

 

First, by comparing the proposed methods, RGBD-N1 and RGBD-N2, it is found that 

RGBD-N1 (the green lines) outperforms than RGBD-N2 (the black lines) over all the videos as 

shown in Figure 4-2. This fact demonstrates that the normal computation method is important for 

the proposed method in order to predict the correct rectangles. In fact, RGBD-N2 usually 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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generates smaller rectangles around the target humans compared to RGBD-N1. The normals 

computed in RGBD-N2 create more differences of normals around the target and lead to several 

clusters after the region growing clustering, which makes the final rectangles smaller compared 

to the ground truth rectangle.  

Second, comparing RGBD-N1 (green lines) against Struck (red lines) in Figure 4-2, it is 

found that other than the first and fifth videos, RGBD-N1 achieves higher successful rates than 

Struck. It should be noted that due to the error of the sensor extrinsic parameters and the fact the 

clustering ignores isolated points, the rectangles predicted by our method are usually smaller 

than the actual ones due to missing points from the header or the legs as shown in Figure 4-3 (a, 

b).  

On the other hand, Struck predicts the rectangles with the same size even though the 

object is moving toward or away from the sensor. Therefore, when the human sizes change in the 

videos, our method is able to capture this variety compared to Struck. However, for the fifth 

video, the proposed method predicts rectangles that contain some points from the ground while 

ignoring some points from the head. In addition, in this video this person moves from one side to 

another and disappears, and our method fails to detect the human as shown in Figure 4-3 (f). As 

the distance between the sensor and the person increases, fewer points are observed due to the 

observation range limitation of the RGB-D sensor, and thus the clustering method fails to detect 

the target human cluster. 

By comparing RGBD-N1 (green lines) against PCL-Human (blue lines) in Figure 4-2, it 

is observed that RGBD-N1 obtains higher successful rates. One of the reasons is that PCL-

Human only performs detection without tracking and it does not utilize any previous results. 

Another reason is that it requires the ground plane to find the human candidate clusters. For the 
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last video, as the sensor poses vary and some frames have few points from the ground, the 

ground plane models are not updated correctly, which leads to many false alarms in the results. 

4.4.3 Time Performance  

As Struck performs 2D tracking, we only compare the time efficiency between the 

proposed method and PCL-Human. The average frame rates are 0.7, 3.8 and 8.3 fps, for PCL-

Human, RGBD-N1, and RGB-D-N2, respectively overall for all the videos. The PCL-Human 

method is not coupled with a tracker and thus searches candidates over the 3D space in the RGB-

D data, which costs more time to perform detection compared to tracking methods that utilize a 

local searching strategy. The normal computation method of RGB-D-N2 takes advantages of the 

organized point cloud and thus computes normals faster than the normal computation method in 

RGBD-N1, which contributes to the frame rates difference between them. This fact indicates the 

direction for improving the computational efficiency of the proposed method. Since this 

approach only utilizes a fraction of the points in the RGB-D data, the normals for the other points 

are not involved. Therefore, the following strategy can be used to reduce unnecessary normal 

computation: if the normal of a point is needed, it will be computed and saved for further usages.  

In addition, the clustering process in the proposed method consumes some time for 

iterating all the points and comparing the distances and normals. By setting a larger sampling 

step, it will save time for clustering. However, since this sampling is performed in 2D space and 

thus causes uneven sampling in 3D space, a larger sampling step will affect the clustering results 

especially for clusters located far from the sensor. One solution to overcome this issue is to 

adjust the sampling step according to the distance of the cluster to the sensor. For clusters closer 

to the sensors, the sampling step 𝑠 can be set as a larger number while 𝑠 should be smaller when 

the cluster is far from the sensor. 
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4.5 Conclusions and Future Work 

This chapter presents a real-time human detection and tracking method using a single 

RGB-D sensor. Two 3D sampling methods are utilized to detect candidate human clusters and 

obtain negative samples for training the online classifier. The online classifier detects the human 

being tracked from the candidate human clusters, and utilizes both the positive and negative 

samples to update its parameters. The method is tested on six RGB-D videos collected in real-

world settings under different illuminations. The experimental results demonstrated that the 

proposed method achieves high success rates compared to a 2D tracker and a 3D human 

detection method. The proposed method can achieve an average frame rate of 3.8 fps, which is 

appropriate for real-time applications.  

However, the current method does not estimate the moving models of the target person 

and sometimes fails to identify the correct person when the human appears after being blocked. 

Future work will explore the use of a Kalman filter to predict the human movements in order to 

provide hints for possible human locations that can also facilitate the candidate sampling. In 

addition, the current method can only track a single person. Future work will investigate multi-

people detection and tracking. 
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Chapter 5  

Excavation Slope Stability Monitoring Using 3D Reconstruction and 

Modeling from Aerial Images  

5.1 Introduction 

Due to its fast data acquisition and operational mobility, Unmanned Aerial Vehicles 

(UAVs), i.e., drones are seeing applicability in many civil infrastructure applications such as 

seismic risk assessment, surveying and mapping, and construction monitoring (Liu et al. 2014). 

Drones can be used to collect images frequently and fast for visual inspection and damage 

detection on existing civil structures by using computer vision methods (Morgenthal and 

Hallermann 2016). In addition, based on videos collected by drones and by adopting the structure 

from motion (SFM) system (Hartley and Zisserman 2003), three-dimensional (3D) point clouds 

of the environment can be reconstructed for metric applications of the data. The ability to 

facilitate rapid 3D modeling makes the application of drones very promising in construction 

processes such as excavation, which involve continuous and dramatic changes in the geometry of 

the work environment. Excavation involves the movement of large amounts of earth, resulting in 

continuously evolving changes to the ground surface geometry. Ongoing excavation operations 

present several safety issues for site personnel, and are primarily related to the stability of the 

excavated slopes and their cave-in potential.  
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Many research projects have explored the utilization of drones to obtain 3D models for 

earthwork (Nassar et al. 2011; Siebert and Teizer 2014). Due to their special applications, the 

proposed systems either rely on high-resolution cameras (Siebert and Teizer 2014) to acquire 

accurate 3D models, or multiple sensor fusion, and assume professional knowledge on surveying 

and mapping in data collection to obtain geo-referenced data. Different from previous methods, 

this chapter aims to present a readily deployable framework for monitoring excavation slopes 

using drones. The only data needed from the drone is video imagery captured by color cameras 

without any other sensor data. In addition, the drone can be controlled by a person without 

professional knowledge in surveying and mapping. In order to monitor the excavation slope 

safety, based on the collected videos, this chapter presents a comprehensive data processing 

scheme that contains constructing 3D point clouds from the video images, obtaining terrain 

models, and slope analysis. 

The remaining sections of this chapter are organized as follows: Section 5.2 reviews 

related work on utilizing drones (especially when creating 3D models from drone collected 

videos) in civil engineering applications. Section 5.3 presents the technical approach including 

obtaining the comprehensive point cloud from videos, extracting ground points, generating 

terrain model, and performing slope analysis. Section 5.4 introduces the experimental details and 

results for a real excavation project. The last section draws conclusions about this research 

project, and identifies a future research agenda. 

5.2 Related Work 

Before drones were used for collecting data for 3D reconstruction, airborne or terrestrial 

laser scanners (Tang et al. 2010; Xiao et al. 2015) have been widely used for 3D building model 

generation. Laser scanner based data collection requires professional operators to obtain the data 
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and process the raw data for 3D reconstruction. In addition, the data collection is limited by the 

accessibility of view positions or orientations. In contrast, equipped with high-resolution 

cameras, drones allow faster data collection at various positions and orientations. In terms of the 

direct data used for domain related analysis, the applications of drones in civil engineering 

mainly can be categorized into two areas: (1) image based applications, (2) point cloud based 

applications. The first one directly utilizes images collected by drones to perform image analysis 

methods for specified projects (e.g. site monitoring (Zollmann et al. 2014), bridge inspection 

(Metni and Hamel 2007)). The second one analyzes the 3D point cloud data generated from the 

video images for projects involving model changing, e.g. earthwork planning (Siebert and Teizer 

2014), as-built BIM generation (Wefelscheid et al. 2011). As this research belongs to the second 

category, this section focuses on related work for point cloud (generated from images) 

applications in civil engineering. 

Xie et al. (2012) mounted four cameras on a drone and collected images in order to create 

3D building models for urban areas. By performing self-calibration among the four cameras and 

utilizing triangulation for four images, the 3D building models are reconstructed from the 

triangulation results and images. This method is tested on a university campus and was shown to 

obtain high accuracy for large scale mapping. Wefelscheid et al. (2011) presented a processing 

chain of using images collected by a drone to created 3D as-built building models. By matching 

features from images and detecting the loop closure of drone trajectories, a 3D point cloud is 

obtained by performing dense reconstruction (Furukawa and Ponce 2010). The experimental 

performance and results on two benchmark datasets and a real-world dataset show that the 

proposed method is able to obtain high-quality models and the precision is comparable to that 

derived from Light Detection And Range (LiDAR) systems. To obtain accurate as-built BIM, 
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these systems usually require high-resolution cameras. Golparvar-Fard et al. (2011) proposed a 

system to monitor changes of 3D building elements from unordered photo collections. They first 

reconstructed as-built BIM using 3D point cloud from unordered photo collections. Then the as-

build model is registered with as-planned BIM model. A machine learning algorithm is utilized 

to automatically detect and track changes of 3D building elements. The system is tested on three 

image collections for two building construction projects and demonstrates its feasibility for 

generating 4D as-built models and for detecting progress for building elements. This method 

needs the as-planned model to register against the as-build model. In addition, in order to adopt 

the machine learning algorithm, a large dataset is required to avoid overfitting. Moreover, in 

order to make the trained classifiers more general, more comprehensive datasets are necessary. 

Zollmann et al. (2014) utilized 3D reconstruction from images collected by drones to develop a 

mobile augmented reality (AR) system for construction management and documentation. The 3D 

point cloud is reconstructed and registered to the absolute coordinate system while incorporating 

2.5-D as-planned data geo-referenced camera images. For visualizing data in AR, 3D models and 

video images are registered by a multi-sensor fusion system using Real-Time Kinematic (RTK) 

Global Positioning System (GPS), a vision-based panorama-tracker (Schall et al. 2009) and an 

inertial measurement unit (Batista et al.). This system allows for automated data collection by 

utilizing multiple sensors. To design the drone trajectory and utilize those sensors, it usually 

requires the operator to receive professional training.  

Other than creating 3D models for existing or under-construction buildings, drones are 

also utilized to collect data and create 3D models for other construction projects, especially 

earthwork (e.g. landfill, excavation). Nassar et al. (2011) employ surface reconstruction 

techniques to model and quantify earthwork. The Autodesk software toolkits, Project Photofly 
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and Photo Scene Editor, are utilized to obtain 3D models from a set of high-resolution images (5 

million to 10 million pixels). The software also allows topographic modeling and calculation of 

quantities. The authors tested these techniques on 23 excavation sites and found the appropriate 

ranges (e.g., pit excavations less than 2000 square meters and depths up to 5 meters) for using 

the techniques in earthwork applications. This method is based on very high-resolution camera 

and utilization of software kits. Siebert and Teizer (2014) developed a novel program for 

photogrammetric flight planning and its execution for obtaining 3D point clouds from images 

collected by drones. By performing the flight planning with geo-referenced coordinates, the 

drone is able to automatically collect videos with the GPS model onboard. Based on the geo-

coordinated photos, a 3D point cloud, orthophoto, and a digital elevation model are obtained. 

Experimental results on a test bed environment and a landfill project demonstrate the successful 

applicability of drones and photogrammetric surveying for earthmoving projects. As this method 

aims to design flight planning and perform photogrammetric survey, the system needs GPS to 

have geo-referenced coordinates for the 3D models. Kim et al. (2015) utilized two types of 

drones to explore the generation of a 3D model of mesh image of excavation work. They 

compared several different models of UAV systems and selected two among them for getting 

data for the excavation work by setting the specified target performance. By utilizing the two 

drones on an excavation project, this method processed the data using the SFM system to 

generate 3D point clouds. As they focused on exploring different types of drones for excavation 

projects, no further data processing (e.g., 3D modeling) was conductedd based on the 3D point 

clouds reconstructed by SFM.  

Different from previous work on utilizing drones for earth moving projects, this chapter 

explores a deployable framework for monitoring excavation slopes using drones. The data 
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collection only requires controlling the drones to collect videos without using any other sensors 

(GPS or IMU). In addition, the framework also includes 3D terrain model reconstruction from 

video images and interactive slope analysis.  

 

 

 

Figure 5-1: Overview of the excavation slope stability monitoring system.  

 

5.3 Technical Approach 

5.3.1 System Overview 

As shown in Figure 5-1, the proposed excavation slope stability monitoring system 

workflow starts from collecting videos by flying a drone equipped with a camera. Using the 

video images, the SFM method is performed to generate a dense 3D point cloud of the 

excavation site. Then the ground points are separated from the non-ground points by computing 
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the elevation changes of points and clustering smooth surfaces. Based on the ground points, a 

digital surface elevation model (Demir et al. 2015) for the terrain is created for visualization of 

the terrain surface and supports further slope analysis (Figure 5-1 (f)).  

5.3.2 Point Cloud Reconstruction 

In order to obtain comprehensive and practical point clouds from videos taken by a 

drone, the Structure from Motion (SFM) method is firstly applied to create a raw point cloud 

from video images. Then by utilizing known measurements in the real world, the raw point cloud 

is scaled. Finally, the coordinate system of the point cloud is aligned to a generally used world 

coordinate system for better data interpretation and analysis.  

5.3.2.1 Structure from Motion 

The Structure from Motion (SFM) system is able to create 3D point clouds from a 

sequence of images. SFM aims to recover the 3D point positions (structure) and camera poses 

(motions) by optimization methods (e.g. bundle adjustment). SFM matches feature points, e.g. 

the scale-invariant feature transform feature (SIFT) (Lowe 2004), the speed up robust feature 

(SURF) (Bay and Tuytelaars 2006), in the images to build relations between sensor poses. When 

sufficient feature points matching and images are available, the camera poses including the 

camera parameters and 3D structure are iteratively estimated. For large scale scene 

reconstruction, the incremental SFM (Wu 2013) is applied to process a large number of images 

for a large area. 

One of the key points in reconstruction of high-quality point clouds is to ensure that the 

captured environment contains sufficient distinct feature points and the images observe the 

objects of interest at different positions and orientations while having sufficient overlapping 
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areas. When capturing videos for excavation projects, the natural environment is able to provide 

sufficient feature points. In addition, a drone can fly above the environment and thus acquire 

images at different positions and view angles. Thus the videos captured by a drone are 

particularly suitable for reconstructing high-quality point clouds for excavation projects.  

Due to the scale ambiguity, SFM is not able to obtain point clouds with absolute scale 

metrics. Thus, the unit of the point cloud constructed from SFM is unknown. To enable further 

analysis, the point cloud has to be scaled. A common way is to take some measurements in the 

real world, identify the corresponding measurements in the point cloud and then scale the point 

cloud to make it consistent with the measurements.  

5.3.2.2 Point Cloud Alignment 

Due to the initialization of the optimization method, SFM cannot estimate a unique 

coordinate frame of the point cloud from monocular visual images (Szeliski 2010). The 

coordinate system orientations, i.e., the directions of the three axes, in the reconstructed point 

clouds from SFM are usually not consistent with those of the real world. For example, a flat 

terrain is horizontal and usually lies in the XY plane. To align the point cloud to a commonly 

used coordinate system, one option is to manually identify the three axes in the point cloud and 

rotate the point cloud correspondingly. Given that the terrain is the main component of a point 

cloud for excavation data, this chapter utilizes the Manhattan world assumption (Coughlan and 

Yuille 2003) to automatically align the coordinate system orientations.  

According to the Manhattan world assumption, there exist three main axes in man-made 

environments. Based on this theory, the normal vectors of points in these environments can be 

clustered into three classes whose centers are the three main axes. For flat terrain, most of the 

normal vectors of terrain points should be parallel and point toward the sky (assuming that the 
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normal vectors are aligned.) This direction is usually used as the Z-axis for terrain modeling. The 

other two axes fall in the flat terrain. Even though the flat terrain assumption is not true for an 

arbitrary excavation project, considering the large scale of captured points and some man-made 

objects (e.g. buildings), the Manhattan world assumption can be used in this scenario. 

This chapter utilizes the method proposed in (Yaguchi et al. 2013) to compute the three 

main axes for a point cloud. The normal vectors ℕ = {𝑛1, 𝑛2, … , 𝑛𝑁} (𝑁 is the number of points, 

the length of a normal vector 𝑛𝑖 is one) of all the points are first calculated by fitting a plane 

using its neighboring points. Then by utilizing the geodesic dome model (a uniform density 

sphere distribution) 𝕄, the histogram of the normal vectors ℕ is created. The bin values in the 

histogram are the sampled unit vectors in the geodesic dome model. Each normal vector 𝑣 ∈ ℕ is 

assigned to the bin from searching the closest point in 𝕄 by viewing all normal vectors as 3D 

points. Based on the histogram, the first main axis 𝑎1  is determined by as the unit vector 

associated with the highest bin. The second one 𝑎2 is searched by finding the largest bin from 

vectors within the plane perpendicular to 𝑎1 to make sure that 𝑎1 ⊥ 𝑎2. Finally, the last main axis 

𝑎3 is computed as it is orthogonal to both 𝑎1 and 𝑎2.  

Given the three main axes, the point cloud is then rotated to make the coordinate system 

orientations parallel to the three axes.  

5.3.3 Terrain Modeling 

Apart from terrain points, a point cloud also contains several non-terrain points, such as 

construction equipment (e.g., excavators), construction workers, and buildings. In order to 

prepare clean data for analysis, the terrain points should be extracted to create terrain models. 

This research utilized the progressive morphological filter (Zhang et al. 2003) to separate 

terrain points from non-terrain points. This method firstly rasterizes the point clouds into a raster 
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grid, which greatly reduces the size of the point cloud and improves the computational time. 

Then for a certain window size, the slope for each point with respect to the lowest point is 

computed. If the slope is greater than a threshold (which is also updated by the slope and the 

window size), the point is classified as a non-terrain point. By increasing the window size, the 

method iteratively identifies the non-terrain points in the grid. This method is able to effectively 

extract terrain points in both urban and rural areas.  

However, this approach is designed for extracting ground points for large-scale airborne 

LiDAR point clouds which rarely capture points from vertical objects (e.g., building walls). For a 

small-scale point cloud with large terrain slope variation, this filtering algorithm fails to 

completely remove all non-ground points even it is able to remove some non-ground points and 

almost all points from vertical walls. To remove the remaining non-ground points, a normal-

based region growing algorithm is utilized to cluster the point clouds.  

The normal-based region algorithm firstly computes the normal vectors and curvature of 

points using their neighborhood points. Firstly, a stack of seed points 𝑆 is initialized by selecting 

the point with the largest curvature value. For each point 𝑝 ∈ 𝑆, for every point 𝑞 within its 

neighborhood 𝑁𝑝 , if the difference between their normal vectors is smaller than a threshold, 

these two points are assigned to the same cluster. Then, 𝑞 is used as a future seed point and 

pushed into the stack 𝑆. Once all the seed points in 𝑆 are visited, a cluster is found and 𝑆 is 

cleared as empty. Then a new seed point is selected from the remaining points and added to 𝑆. 

The same iteration is performed for 𝑆 until all points of 𝑆 are visited. The algorithm is iteratively 

performed until all the points are assigned to a cluster.  

By utilizing the normal vector and Euclidean distance (searching points in the 

neighborhood) in the clustering, the normal-based region growing algorithm is able to detect 
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compact and smooth clusters. Since the ground surface is smooth and usually contains the 

majority of the points, the largest cluster of the clustering results from the algorithm is identified 

as the ground points cluster.  

The terrain model is typically represented by the Digital Elevation Model (Demir et al.) 

which is a continuous surface depicting the elevation of terrain points. Based on the terrain 

points, the DEM is constructed by interpolation.  

5.3.4 Slope Stability Analysis 

After aligning the point cloud and extracting the terrain points, ArcGIS is utilized to 

create DEMs and their slope maps by performing the inverse distance weighting interpolation 

method. The slope functionality in ArcGIS computes the rate of elevation changes between a cell 

point and its neighbors. By depicting the slope information for all cells (points) in the grid, the 

slope map presents a visualization of slopes for the whole DEM.  

In order to estimate the slope stability, the excavation pit and the spoil pile in the 

excavation project are of interest. Since the slope map computes the rate of elevation changes in 

a certain time window, it cannot be utilized for slope stability analysis for an excavation project 

in terms of recognizing possible slope failures. In this project, since the two main slope values 

are necessary, the corresponding surfaces (the trench surface, the ground surface, and the spoil 

pile surface) of interest are manually identified. The points for the three main surfaces are 

manually selected from the ground points and their plane parameters are computed using least 

square estimation. Based on the plane parameters, the slope values are calculated. 
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5.4 Experiments and Applications  

5.4.1 Data Collection and Processing 

The videos are collected by a DJI Inspire 1 drone equipped with a camera that can 

provide 4K resolution videos at up to 25 frames per second and capture 12 megapixel photos. 

The drone is manually controlled by a construction site personnel and each video lasts for less 

than 10 minutes. To scale the point cloud, the measurements are obtained by measuring the 

distances of several distinguishable objects (e.g., the dimensions of a small building structure 

adjacent to the excavation site) in the environment. After sampling images from the videos, the 

SFM system, VisualSFM (Wu 2007; Wu 2011) is carried out to obtain raw dense point clouds. 

VisualSFM calculates the SIFT feature points using Graphical Processing Units (GPU) and 

enables parallel computing when estimating the 3D positions and sensor poses. The basic 

VisualSFM system only reconstructs a sparse 3D point cloud. In order to reconstruct rich and 

dense point clouds, the dense reconstruction method proposed by Furukawa and Ponce 

(Furukawa and Ponce 2010) is performed. In the last step, the dense point cloud is scaled using 

tape measurements.  

There are totally five videos collected for this excavation project including (1) before 

excavation, (2) phase 1: pre-excavation to determine the locations of buried utilities, (3) phase 2: 

in excavation, (4) phase 3: in excavation, (5) phase 4: the beginning of backfilling. 
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Figure 5-2: Slope Maps from Last Four Videos.  

 

5.4.2 Slope Stability Analysis 

Figure 5-2 displays the four slope maps of the excavation site starting from the pre-

excavation phase while the left and right rectangles in each image cover the areas for the 

excavation pit and the spoil pile, respectively. These four images depict the slope changes in the 

excavation project, especially for the spoil pile (within the right rectangle of the images). In 

Figure 5-2 (a,b,c), increasing red color points appearing within an area indicate that the slopes in 

that area are increasing. By comparing Figure 5-2 (c) and (d), the red color points become less, 

and the slopes turn into smaller values during the backfilling.  

In order to quantitatively evaluate the slope stability, the surfaces of interest, i.e., the 

trench and the spoil pile are identified manually in the ground points using CloudCompare 

(http://www.danielgm.net/cc/). For the trench, the surface containing the most points is selected 

along with the closest ground surface. Then a plane is fitted to each surface using least square 

estimation. The slope is computed as the angle between the two normal vectors of the surfaces. 
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The same selection rules apply to the spoil pile. Theoretically, the normal vector of the ground 

surface should be parallel to Z-axis, i.e. (0,0,1). However, the ground surface in the real world is 

not flat especially on an excavation construction site. Moreover, whether the slope value is safe 

is directly related to the ground surface close to the slope area.  

 

Table 5-1: The slope values (in degrees) for the last three videos. 

 

Table 5-1 shows the slope values for the trench and the spoil pile for the last three videos 

(Figure 2(a) phase 1 does not involve much excavation). Based on the Michigan Occupational 

Safety and Health Administration (MIOSHA) standards (MIOSHA Regulatory Services Section 

2017) and the type of soil, the maximum allowable slope of the excavation side is 35o. As shown 

in Table 2, all the slope values computed in the evaluated datasets successfully meet the 

MIOSHA safety requirement. This is also consistent with the field construction workers as they 

paid spatial attention to maintain the slope values according to the requirements. 

5.4.3 Data Processing Time 

As noted previously, this research aims to simplify the data collection and processing 

steps for excavation slope stability monitoring and thus enables fast data acquisition and 

processing for rapid analysis and decision-making in construction safety and productivity 

monitoring. In terms of slope stability quantitative analysis, the system is composed of three 

main steps: (1) video collection by a drone, (2) data processing to obtain ground points, (3) 

quantitative slope computation. The data collection takes about 15-20 minutes including 

 Pit Spoil Pile 

Phase 2 19.5 31.0 

Phase 3 30.2 34.4 

Phase 4 3.9 26.5 
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operating the drone to collect videos and tape measurements. The data processing from videos to 

3D terrain model consumes less than three hours while the slope computation only takes a few 

minutes. The most time-consuming processing is 3D dense point cloud reconstruction from the 

videos, which is almost 85% of all the data processing time. The data processing was conducted 

on a personal desktop with Intel○R  CoreTM i7-4790K @ 4.00 GHz equipped with the NVIDIA 

GeForce GTX 970 graphic card. Therefore, the total system from collecting data to slope 

stability analysis takes less than three hours.  

5.5 Conclusions and Future Work 

This chapter presents a readily-deployable slope stability monitoring system using drones 

for excavation projects. The drones for collecting the data of the construction site can be 

operated by users without professional knowledge of surveying or mapping. The data processing 

pipeline is able to generate the 3D terrain model and the slope map in less than three hours with 

little supervision. In addition, the slope stability analysis for the excavation pit and the spoil pile 

can be obtained from the ground points interactively. Experimental results show that the 

proposed framework is able to collect data with drones quickly and obtain 3D model and slope 

stability analysis in time for monitoring the excavation project. The current data processing 

pipeline generates slope stability analysis with user interaction. Future work will try to 

automatically identify surfaces of interest and allow automated slope analysis and other safety 

related computation (e.g., whether the distance between the spoil pile and the trench is smaller 

than a threshold). 
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Chapter 6  

Object-Based Landslide Detection from RGB Images Toward 

Automatic Landslide Detection and Mapping 

The ultimate goal of the research program proposed in this chapter is to create a new 

autonomous data collection and decision support system for post-event reconnaissance of 

geotechnical engineering systems using unmanned autonomous aerial vehicles (UAAVs). Thus, 

an automated data collection system which allows the UAAVs to collect data with different 

density will be designed. For example, for geotechnical hazards, the UAAVs are supposed to 

collect more data at closer distances and different view directions compared to other areas. To 

enable this functionality, the system should be capable of detecting candidate geotechnical 

hazards in real time or before the actual flight. Given the easy accessibility of satellite images, 

we explored to detect geotechnical hazards merely from RGB images. As the RGB satellite 

images are similar to images collected by UAAVs, it is feasible that the proposed geotechnical 

hazard detection method using RGB satellite images can be applied to images collected by 

UAAVs. In addition, by using appropriate techniques (e.g., powerful workstation collected to 

drone by a wireless network) to enable real-time computation, the real-time collection can by 

implemented. Therefore, this chapter explored to utilize a supervised classification framework to 

train classifiers for detecting specified geotechnical hazards, specifically landslides, from RGB 

satellites images.  
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6.1 Introduction 

Landslides are global geological hazards that can lead to large losses of industrial, 

agricultural, and forestry productivity, reduced real estate values, and loss of human and animal 

productivity (Kjekstad and Highland 2009). Specifically, in the United States (U.S.), landslides 

cost $3.5 billion per year in damage repair, cause between 25 and 50 deaths annually (USGS 

2005). Localizing and Mapping the landslides in a timely and effective manner can benefit 

hazard assessment and management. Remote sensing techniques that can capture images using 

various sensors (e.g., optical sensors, and infrared sensors) non-invasively and frequently using 

different platforms (e.g., airplanes, and satellites), have been proven to be time and cost effective 

for landslide detection and mapping (Mantovani et al. 1996; Metternicht et al. 2005; Wasowski 

and Bovenga 2015).  

When using satellite images to detect landslides, most of the previous research projects 

rely on integrating multiple data sources, e.g., multispectral images, digital elevation models 

(DEMs), Light Detection and Range (LIDAR) data, and interferometric synthetic aperture radar 

(InSAR) images, or performing change detection using data collected before and after hazards 

(Guzzetti et al. 2012; Lu et al. 2011; Nichol and Wong 2005; Roering et al. 2009; Zhao et al. 

2012). For the first type of methods, multiple data sources can capture different characteristics of 

landslides and other objects (e.g., DEMs can reflect elevation variations for landslides), and thus 

facilitate to distinguish landslides from other objects in the data. However, these methods require 

that data from multiple sensors are available, which might lead to high costs to acquire data and 

more labor cost to interpret the data.  

Based on comparing the data before and after landslides, the second type of methods is 

able to generate accurate landslide mapping by finding the changes in the data. Therefore, the 
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data before landslides should be present while the data after landslides should be captured in 

time using remote sensing techniques. In addition, more data sources lead to more computational 

time and cost for processing the data.  

Compared to previous work, this research explores how to utilize object-based methods 

to efficiently detect landslides from only RGB satellite images after landslides occur without any 

other data sources or satellite images before landslides to identify potential landslide areas. One 

of the motivations of this research is to quickly identify potential landslide locations to allow 

other platforms, e.g., airborne photogrammetry, and unmanned aerial vehicles (UAVs), to collect 

more data for detailed landslide identification and mapping.  

UAVs are able to capture data rapidly at closer ranges compared to satellite platforms, 

and have been utilized to collect landslide images using RGB cameras (Fernández et al. 2015; 

Lucieer et al. 2013; Niethammer et al. 2010; Turner et al. 2015). UAVs are able to capture data 

(mainly RGB images) at close range with various view directions and to fly to areas where 

humans cannot reach due to harsh environments, or where other platforms (airplanes or satellites) 

fail to obtain data because of occlusion or limitation view angles. However, due to the battery 

limitation, UAVs cannot capture data on a large scale compared to airborne and space-based 

platforms, and thus need landslide candidate areas so as to allow efficient and potentially 

automatic data capture. Moreover, using only RGB satellite images can reduce computational 

time for further analysis of other data sources by providing candidate landslide mapping.  

The rest of the chapter is organized as follows. Section 6.2 reviews related work on 

landslide detection mainly utilizing remote sensing techniques. Section 6.3 explains the object-

based landslide detection from RGB satellite images while Section 6.4 presents the experimental 
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results and related discussion on images after landslides. Section 6.5 draws conclusions about 

this chapter and discusses future work. 

6.2 Related work 

As this work is focused on landslide detection instead of landslide mapping, e.g., detailed 

landslide mapping using LIDAR data (Jaboyedoff et al. 2010; McKean and Roering 2004), this 

section reviews related literature on landslide detection from space-borne or airborne remote 

sensing images.  

With the existence of satellite images available after landslides, the most reliable method 

is visual interpretation by experts (Brardinoni et al. 2003), which is very time and labor 

consuming. Thus, image processing techniques and supervised or unsupervised machine learning 

methods are explored to automatically detect landslides from images. As different sensors can 

capture different characteristics of landslides (for example, optical sensors are able to obtain 

color and texture information while LIDAR can capture three-dimensional points of the surfaces), 

the methods for landslide detection are highly related to the data sources. Thus, this section first 

briefly reviews landslide detection methods using synthetic aperture radar (SAR) imagery, and 

then discusses the methods mainly from optical images obtained by both space-borne and 

airborne platforms.  

As surface movements can also reflect the slope stability, repeat-pass synthetic aperture 

radar interferometry (InSAR) on space-borne platforms enables effective landslide detection by 

providing surface displacement observations at various spatial and temporal scales (Rosen et al. 

2000; Rott and Nagler 2006). Rott and Nagler (2006) explored how to utilize differential InSAR 

methods to detect and map landslide motion by means of single interferometric pairs. Using the 

SAR images, the DEMs and the surface motion maps are generated and combined to create maps 
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for landslide motion. Their case study proved that the satellite-based InSAR was able to provide 

accurate surface displacements for identifying very slow slope deformation and thus can be used 

for landslide mapping.  

Similarly, Colesanti and Wasowski (2006) also utilized the innovative Permanent 

Scatterers (PS) technique for satellite InSAR to estimate very slow ground surface displacements 

in order to detect landslides. They also discussed the advantages (e.g., cost-effective for wide-

area applications) and disadvantages (e.g., a limited range of detectable displacement velocities) 

of InSAR methods for landslide detection and mapping. Herrera et al. (2013) combined multi-

sensor and multi-temporal SAR data (e.g., ALOS PALSAR, ERS & Envisat, and TerraSAR-X) 

to monitor the capacity of very slow landslides. They estimated the line of sight (LOS) 

displacement velocity (Vlos) from those SAR images using an advanced differential 

interferometric processing technique (Arnaud et al. 2003). Then, based on the Vlos data, a three-

step procedure was carried out to generate the landslide damage map. Experimental results 

showed that the combination of these multi-sensor data allowed them to distinguish different 

landslide displacement directions, measure different velocity patterns, and separate the slower 

and faster landslides.  

By obtaining color and texture information of landslides, optical images can also be 

employed to automatically detect landslides. The basic pipeline is to extract various features 

from the images for each pixel or a group of pixels, and then utilize supervised or unsupervised 

machine learning methods to separate landslides from other objects based on the features. 

Barlow et al. (2003) employed Landsat Enhanced Thematic Mapper Plus (ETM+) images and 

DEM data to perform object-based segmentation (segmenting the images into clusters of pixels 

which are referred to as objects in this context) and extracted features for the objects. Then, they 
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utilized a user-specified hierarchical classification structure to remove non-landslide objects so 

as to identify landslides. The accuracy of this method depends on the classification structure and 

might not work for different data sources or images collected under different illumination 

conditions.  

Stumpf and Kerle (2011) employed object-based image segmentation on a variety of 

sample datasets (i.e., Quickbird, IKONOS, GEoeye-1, and so forth), feature selection, and object 

classification to identify landslides. By integrating the error balancing method, their proposed 

method achieved accuracies between 73% and 87% for the affected areas. Cheng et al. (2013) 

performed scene classicization based on the bag-of-visual-words (BoVW) representation with an 

unsupervised probabilistic latent semantic analysis model to differentiate landslides and non-

landslides. Experimental results showed that this method was robust and obtained good 

performance. Rau et al. (2014) utilized satellite images, airborne digital images and DEMs to 

perform multi-resolution image segmentation, and then extracted features (e.g., slope gradients, 

and vegetation indices) for a hierarchical semantic classification network to detect landslides. 

The experimental results show that the method can achieve accuracy up to 90.3% while requiring 

less training samples.  

In addition, when datasets before and after hazards exist, change detection methods can 

be used directly or indirectly (assisting the above methods) to extract landslides. Park and Chi 

(2010) proposed a supervised change detection analysis method by performing multi-temporal 

object-based segmentation on IKNONOS and QuickBird images to detect landslide-prone areas. 

After performing the object segmentation on the images, the thresholding was utilized to extract 

forest areas, and the change detection was performed to generate landslide maps. In order to 

perform change detection, the images before and after landslides should be available.  
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Different from the previous work that requires multiple sources of data (e.g., images 

captured by different sensors), this work focuses on object-based landslide detection using only 

RGB satellite images so as to rapidly obtain landslide candidate areas. The most relevant prior 

work to our research is (Stumpf and Kerle 2011). However, apart from using only RGB image 

data sources, our work also explores multi-scale image segmentation using a superpixel 

segmentation method instead of the multi-resolution segmentation method (Baatz 2000) in 

eCognition®. In addition, to deal with imbalanced data, the over-sampling method is utilized 

instead of under-sampling.  

 

Figure 6-1: Technical overview of the landslide detection method. 

6.3 Object-based landslide detection 

6.3.1 Technical Overview 

Figure 6-1 shows the overview of the object-based landslide detection method using RGB 

satellite images. First, the multiple scale image segmentation method is performed on the RGB 
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images to over segment the image into a large number of groups of pixels. Then various 

computer vision features (i.e., color, texture and shape features) are computed for each group of 

pixels. In the training stage, given the labeled data sets, sampling is performed to handle the 

imbalanced training dataset to make all classes have the same number of samples. Using the 

sampled datasets, the optimal classifiers for all the multi-scale segmentation results are learned. 

In the predicting stage, based on the multi-scale segmentation results and calculated superpixel 

features, the classifiers assign labels to each superpixel as well as each pixel for all the scales. 

The final labels for the image are obtained by performing majority voting over the classification 

results for all the scales. 

6.3.2 Multi-scale Superpixel Segmentation 

For the object based image analysis, the method of obtaining small image patches is 

significant as it should avoid clustering pixels from different classes into one object while aim to 

group pixels from the same class into one object. Therefore, an image patch usually contains 

pixels from one class and thus image patches from the same class have similar features so as to 

be categorized to the same class. Different from performing the region growing method to obtain 

image patches, the superpixel segmentation method is employed to extract superpixels (Ren and 

Malik 2003) which are a perceptually meaningful region of pixels (Veksler et al. 2010). The 

simple linear iterative clustering (SLIC) algorithm (Achanta et al. 2012) which is memory 

efficient and adheres to image boundaries is utilized to segment an image into small image 

patches, i.e., superpixels.  

The SLIC method generates superpixels by performing clustering in a five dimensional 

(5D) space which contains 𝐿, 𝑎, 𝑏 of the CIELAB color space and 𝑥, 𝑦 of the pixel coordinates in 

the image. To compute the distance between two points in the 5D space, instead of using 
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Euclidean distances, a new distance computation method is utilized to integrate the Euclidean 

distances using the 𝐿, 𝑎, 𝑏 components and the Euclidean distances using 𝑥, 𝑦 while taking the 

compactness of a superpixel into consideration. Using this distance computation strategy, the 

improved k-means clustering is performed to group pixels into superpixels. To reduce the 

computational cost, the improved k-means only computes the distance between a pixel and some 

specific clusters that are at a certain range instead of all the clusters. 

The SLIC method can enable the user to set the approximate number of labels in the 

output image, which allows multi-scale superpixel segmentation of the images. The multi-scale 

image segmentation method clusters pixels at different levels of detail and thus obtains different 

feature representations for objects. At different scales, the superpixels around a pixel usually 

have different sizes, which affects the corresponding features computation. For example, when 

the superpixel is small, a tree superpixel might be classified as landslide or ground as a small 

number of pixels within this superpixel cannot present distinctive features for trees. In this 

context, a large superpixel that groups more neighboring pixels can yield features that are more 

similar to tree features. Therefore, the multi-scale superpixel segmentation framework allows 

better classification of objects. 

6.3.3 Feature Extraction 

Considering the characteristics of landslides, this research computes the three categories 

of features from RGB images for detecting landslides: (1) color, (2) texture, (3) shape. The 

detailed feature representations and their computation for each category are discussed as follows. 
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6.3.3.1 Color Features 

Color mean and covariance matrix: For a superpixel 𝒔𝒑 , the color mean 𝒎𝒄  and 

covariance matrix 𝑪𝒄 are computed by treating each pixel as a vector containing R, G, and B 

values as follows: 

𝒎𝒄 =
1

|𝒔𝒑|
∑ 𝑰(𝒑)

𝒑∈𝒔𝒑

 

𝑪𝒄 =
1

|𝒔𝒑|
∑(𝑰(𝒑) −𝒎𝒄)(𝑰(𝒑) −𝒎𝑐)

𝑇

𝒑∈𝒔𝒑

  

where 𝒔𝒑 is a superpixel, |𝒔𝒑| denotes the number of pixels in 𝒔𝒑, 𝒑 is one of the pixels in 𝒔𝒑, 𝑰 

is an RGB image, 𝑰(𝒑) is the a 3×1 vector containing the R, G, B channels of 𝑰 at 𝒑. The color 

covariance matrix of a superpixel is able to capture the relations between the three color channels 

of all the pixels with the superpixel. In addition, since the covariance matrix is obtained by 

subtracting the mean color, it is invariant to light conditions to some extent.  

Color histogram: As the RGB satellite image contains three color channels, a histogram 

of the pixel intensity is computed for each channel for the pixels within a superpixel 𝒔𝒑. The 

color histogram of 𝒔𝒑 is obtained by concatenating the three histograms into a vector. The color 

histogram summarizes the color distribution within the superpixel, and can help to distinguish 

objects with different colors, especially to separate trees from grounds or landslides.  

Color coherence vector: A color coherence vector (CCV) records the number of 

coherent and incoherent pixels at each discretized level where a pixel is coherent if it belongs to 

a contiguous region (Pass et al. 1996). For example, for a gray image, the color space is 

discretized into 𝑁 (for example, 𝑁 = 2) while the initial intensity space ranges from 1 to 256. 

Then, the discretized image only contains 1 if the initial color intensity is less than 127 and 2 
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otherwise. Based on the new image, the connected component analysis is performed to detect 

clusters with the same intensity. If a component contains more than 𝜏 pixels, all of its pixels are 

classified as coherent. Otherwise, all the pixels are labeled as incoherent.  

For the discretized image, the number of coherent and incoherent pixels is computed, 

which yields a 𝑁×2 vector. In order to compute the CCV feature for an RGB image, for a gray 

image containing each channel of the RGB image, the CCV feature is calculated. The three CCV 

feature vectors are concatenated into one vector which corresponds to the CCV feature for the 

RGB image. To compute the CCV feature for a superpixel 𝒔𝒑, the bounding box of 𝒔𝒑 is utilized 

to extract a local patch from the RGB image, which is utilized to calculate the CCV feature. 

According to the computation strategy, the incoherent pixels represent isolated pixels within the 

image patch. Therefore, the CCV feature is able to provide finer distinction than the color 

histogram. 

Green-red vegetation index: The Green-Red Vegetation Index (GRVI) (Motohka et al. 

2010) is traditionally computed using near-infrared images to distinguish green vegetation from 

other objects (e.g., ground). In this project, based on RGB images, the adopted GRVI value (Rau 

et al. 2012) for each pixel is calculated as follows: 

𝐺𝑅𝑉𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑
 

For a superpixel, its GRVI value is computed as an average of all GRVI values of its pixels.  

6.3.3.2 Texture Features 

Grey-level co-occurrence matrix: The Grey-Level Co-occurrence Matrix (GLCM) 

(Haralick et al. 1973) is able to capture the probability of different combinations of pixel density 

in an image and allows to extract second order of statistical texture features (Albregtsen and 
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others 2008). This matrix and its derived features have been used in many classification and 

segmentation applications (Arzandeh and Wang 2002; Blaschke et al. 2014; Stumpf and Kerle 

2011). An element 𝑃𝛿(𝑖, 𝑗) in GLCM represents the probability density of two neighboring pixels 

separated by distance 𝛿 = (𝑑𝑥, 𝑑𝑦) and having gray level 𝑖  and 𝑗 . Based on the selection of 

distance 𝛿  computation, different co-occurrence matrices can be computed for an image. For 

example, when 𝛿 = (0, 𝑑), (−𝑑, 𝑑), (𝑑, 0), (𝑑, 𝑑)  which correspond to the four directions 

(0o, 45o, 90o, 135o) in a two dimensional (2D) grid, four co-occurrence matrices are computed 

for an image. Based on the GLCM, the following statistical parameters, energy, contrast, entropy, 

correlation and means and variances of all the parameters are calculated.  

Histogram of oriented gradients: The histogram of oriented gradients (HOG) feature 

represents the edge and gradients within a local window by obtaining the histogram of its 

gradients orientation (Dalal and Triggs 2005). It divides the image window into regular small 

regions and computes the histogram of gradient directions or edge orientations for each small 

region. The combination of the histograms for all the regions is the HOG feature of the image 

window. Since it is computed on local cells, the HOG feature is invariant to geometric and 

photometric transformations. 

6.3.3.3 Shape Features 

To compute shape features for each superpixel 𝒔𝒑, the minimum enclosing rectangle 𝑹 

and the minimum enclosing circle 𝑪 for all the pixels of the superpixel are computed. The first 

shape feature is computed as the ratio of the rectangle width to the rectangle height (assuming 

that the width is smaller than the height), i.e., 𝑤𝑖𝑑𝑡ℎ(𝑹)/ℎ𝑒𝑖𝑔ℎ𝑡(𝑹). This value reaches 1 if the 

rectangle is a square and if the rectangle is narrow and long, it approaches 0. The second shape 

feature is defined as the ratio of the rectangle area to the circle area, 𝑎𝑟𝑒𝑎(𝑹)/𝑎𝑟𝑒𝑎(𝑪). If the 
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pixels in the superpixel form a circle, this feature is 1. For a long and narrow rectangle, it will 

decrease. The third shape feature is the ratio of the rectangle width to the circle radius, 

𝑤𝑖𝑑ℎ𝑡(𝑹)/𝑟𝑎𝑑𝑖𝑢𝑠(𝑪) while the fourth one is the density of 𝑹, |𝒔𝒑|/𝑎𝑟𝑒𝑎(𝑹).  

The last shape feature is computed using principal component analysis (PCA) results. For 

all the pixels within 𝒔𝒑, PCA computes the covariance matrix of all the pixel locations and 

estimates its eigenvalues and eigenvectors of the covariance matrix. Then the last feature is 

calculated as 𝜆0/𝜆1(𝜆0 < 𝜆1).  

6.3.4 Supervised Classification Methods 

In this research, two popular classification methods, support vector machine (SVM) and 

random forest are explored to train a classifier for identifying landslides.  

6.3.4.1 Support Vector Machine 

A support vector machine (SVM) is a supervised discriminative classifier which 

separates different classes using hyperplanes. For a linearly separable two-class dataset, the SVM 

classifier finds the hyperplane to separate the two categories and utilizes the points that define 

the margins between two classes to represent the model. An SVM model contains significant 

point samples (i.e., support vectors) to represent the gaps between classes. By integrating the 

kernel trick, SVM allows non-linear classification by projecting the points into higher 

dimensional space.  

6.3.4.2 Random Forest 

A random forest classifier is a large collection of decision trees where each tree is trained 

using a random vector sample independently (Breiman 2001). By sampling at random with 
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replacement, a new training set is obtained from the original training set. Then a decision tree is 

trained on this new training set using random feature selection. At each node of the forest, a 

binary split is conducted for that node depending on the best split based on the selected input 

variables. When classifying, each decision generates a vote, and the classification results are 

obtained by using the majority vote. The random forest classifier can handle large databases and 

balance errors in class population for unbalanced datasets.  

6.3.5 Sampling for Imbalanced Data 

For a large satellite image, the landslide areas are limited in the image and have a small 

number of pixels compared to other objects (e.g., trees). This causes a serious imbalance in the 

training dataset which has lots of samples from non-landslide objects. Such imbalanced data can 

affect the classifier to generate more labels towards non-landslide objects while still achieving 

high classification accuracy. In order to deal with imbalanced data, sampling methods ranging 

from under-sampling to over-sampling are commonly utilized (Hoens and Chawla 2013).  

Some prior research suggests utilizing the under-sampling strategy to sample data from 

the majority class (Stumpf and Kerle 2011). However, under-sampling removes some of the 

training samples from classes with more samples, which might make the classifier fail to learn 

optimal parameters to identify data belonging to these categories. Considering the characteristics 

of the current data (i.e., the landslide class has fewer samples compared to other classes, and the 

appearance models of the landslide and ground are very similar.), the classifier needs to 

distinguish landslides from the ground. As under-sampling only utilizes some of the data from 

the ground class, the classifiers might not be optimized to separate landslides and ground. To 

estimate the optimal classifiers for this classification task, this work explores both over-sampling 

and under-sampling on the training dataset to decide the best sampling method.  



 

 136 

The under-sampling method, NearMiss-3 (Zhang and Mani 2003) is employed to under-

sample the majority classes (tree and ground in this work). This approach under-samples the data 

to make sure that the neighborhood of every position sample contains some negative samples, 

which can lead to high accuracy but low recall. The random-over sampling method is utilized to 

randomly select samples from the minority classes (mainly, the landslides in this work) with 

replacement. Thus, many landslide features are duplicated in the final training datasets. These 

two sampling methods generate different samples which are employed to train and test the 

classifiers so as to evaluate the influence of sampling on the classification performance.  

6.4 Experiments  

6.4.1 Study Area and Dataset 

The experimental satellite images were collected by DigitalGlobe Worldview-2 on May 8 

2015 in Barpak, Nepal after the April 25, 2015 Mw 7.8 Gorkha earthquake. The image resolution 

is 0.5m, and the landslide labels are obtained manually by visual interpretation. The areas of 

labeled landslides range from hundreds of pixels to millions of image pixels. Figure 6-2 shows 

two sample areas of satellite images and landslide labels within the white polygons. The area 

covered by the satellite images is a mountainous region mainly containing ground, trees and 

some rural residential areas, and lies within the longititudes from 84𝑜36′E to 84𝑜51′E, and the 

latitudes from 28𝑜1′N to 28𝑜21′N. The supervised classification task aims to recognize three 

types of objects from the images, i.e., landslides, trees, grounds. The latter two classes are also 

manually labeled from an area of the satellite images for training. 
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(a) Sample area 1. (b) Sample area 2. 

Figure 6-2: Sample data and manually labeled landslides. 

 

6.4.2 Experimental Setup 

As the size of most of the original satellite images, (13,684x13,684 pixels) is too large for 

processing, each image is split into 16x16 sub-images with a size of 1,200x1,200 pixels. There 

exists overlapping between neighboring sub-images in order to generate accurate and continuous 

labels in the boundaries of the sub-images. For each sub-image, the SLIC superpixel 

segmentation in the scikit-image library (van der Walt et al. 2014) is performed at five scales by 

setting the approximate number of superpixels per image as follows: 400, 600, 800, 1,000, 1,200. 

All the features are computed based on the multi-scale superpixel segmentation results. To 

generate the training data, from one satellite image, some trees and ground regions are manually 

labeled as well as the landslides, which create ground truth labels for some pixels. Then, the 

ground truth label of a superpixel is determined by the max voting strategy. To avoid overfitting, 
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the ground truth superpixels are randomly split into a training and testing set (in this work, 67% 

of the ground truth data are used for training, while the remaining for testing).  

In order to find the optimal parameters for the classifiers and avoid overfitting, the 

parameter estimation using grid search with cross-validation (GridSearchCV) toolkit in scikit-

learn (Pedregosa et al. 2011) is employed. For each parameter combination, the GridSearchCV 

toolkit performs a 3-fold cross-validation (the data is divided into three consecutive folds and 

each fold is used once as a validation set while the other two are for training.) to evaluate the 

classifier in terms of precision and recall on the dataset. For the SVM classifier, the linear and 

radial basis function (RB) kernels are both explored with various parameter combinations. After 

the cross-validation, the best parameters for the classifiers are determined and employed to train 

the classifier on the training datasets. The GridSearchCV method is conducted for both the 

classifiers for each scale to estimate the best parameter settings. 

6.4.3 Performance on the Test Data 

As shown in Figure 6-3, the two classifiers SVM and Random Forest (RF) trained using 

the under-sampled, the original without any sampling method, and the over-sampled training 

datasets, are evaluated by the testing dataset in terms of the confusion matrix, respectively. A 

confusion matrix shows the number or ratio of correct and incorrect predictions for each class, 

which reflects the performance of the classifier on the dataset. The imbalanced original test 

dataset have more samples for trees and grounds. The under-sampling method removes a certain 

amount of samples from the trees and grounds and makes all the classes have the same number 

of samples while the over-sampling method adds samples for the minority classes (landslide and 

tree). The classifiers are trained using the three different training datasets and evaluated using the 

same imbalanced test datasets.  
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By comparing the two rows in Figure 6-3, it can be found that the SVM classifier 

achieves better classification results on the test dataset than the Random Forest (RF) classifier for 

all the three training datasets. The RF classifier is unable to distinguish between landslides and 

grounds well, and thus achieves lower accuracy on them compared to SVM.  

The difference between the three columns for the first row in Figure 6-3 demonstrates 

that the over-sampling method yields better classification results compared to the under-

sampling method or just using the original training dataset without any sampling. As 

aforementioned, the over-sampling keeps all training samples for the majority classes (tree and 

ground) while randomly duplicating samples from the minority class (landslide), which enables 

the classifier to increase the capability to identify the majority classes better, specifically ground, 

and thus distinguish it better from landslides. 

Table 6-1 shows the classifier performance in terms of F1 scores where 𝐹1 = 2
𝑃∗𝑅

𝑃+𝑅
 while 

𝑃 is the precision and 𝑅 is the recall. As shown in Table 6-1, the classifiers trained on the over-

sampled training datasets outperform those trained on the original and under-sampled datasets, 

especially for the landslides. By adding more landslide samples, over-sampling the training 

dataset also allows the classifier to gain more information on the landslides. As shown in Table 

6-1, the SVM classifier constructed on the over-sampled training dataset surpasses the others, 

which is consistent with Figure 6-3. 

 

 



 

 140 

 
  

(a) SVM on under-sampled test data. (b) SVM on original test data. (c) SVM on over-sampled test 

data. 

 
  

(d) RF on under-sampled test data. (e) RF on original test data. (f) RF on over-sampled test 

data. 

Figure 6-3: Confusion matrices for the test dataset at Scale 5 for SVM and Random Forest. 

 

Table 6-1: F1 scores of the classifiers on the test dataset. 

 SVM Random Forest (RF) 

 under origin over under origin over 

Landslide 0.82 0.92 0.93 0.82 0.81 0.92 

Tree 0.95 0.99 1.00 0.99 0.99 0.99 

Ground 0.92 0.93 0.94 0.84 0.84 0.85 

Average 0.90 0.95 0.96 0.89 0.88 0.92 
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The confusion matrices in Figure 6-3 also reflect the classification performance for each 

class. As shown in Figure 6-3, the confusion matrix, the tree is at 99% correctly classified for all 

the six classifiers. Compared to the other two classes, landslide and ground, trees have distinct 

features in terms of color and texture. For example, within a tree superpixel, the green channel 

dominates over the other channels and thus the color features are quite different from those of 

superpixels belonging to either landslide or ground. Regarding the texture, a tree superpixel is 

more texturally isotropic compared to landslide or ground. Therefore, the classifiers can easily 

identify trees from the other two classes while making fewer mistakes of labeling the other two 

classes as trees. 

Figure 6-3 also demonstrates that the classifier tends to confuse between ground and 

landslide. As the satellite image resolution is 0.5m per pixel, the landslide and the ground (e.g., 

roads) have a very similar visual appearance. Due to the characteristics of landslides (e.g., rough 

surface in a local area), the elevation distribution of the local area is an ideal feature if the 

elevation data (e.g. DEM) are available. If more accurate images are captured, detailed textural 

features of landslides can also enable the classifiers to learn more discriminative and useful 

features for the two classes. However, the confusion matrices on the test dataset demonstrate that 

the classifiers trained only using RGB images can still correctly identify at least 89% of the 

landslides.  

In summary, the confusion matrices on the test dataset indicate that (1) trees are usually 

correctly recognized, and (2) the landslide and ground might need to exchange label in some 

cases. Moreover, based on these results, the methods of improving the landslide detection 

accuracy can utilize neighboring superpixel features or labels, and improve the identification of 

ground as there exists an abundance of samples from the ground class. 
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6.4.4 Classification Performance on the Whole Dataset 

Since the primary objective of this chapter is to detect potential landslide areas, the 

accuracy of the landslide detection results is evaluated while the tree and ground accuracies are 

not discussed. As this research aims to detect correct landslide candidate areas, this work 

evaluates the landslide classification accuracy by computing how many landslides are correctly 

identified. The connected component analysis is utilized to calculate the number of landslides in 

the ground truth labels and the predicted labels. If a ground truth cluster contains at least one 

pixel that is predicted as the landslide by the proposed method, the cluster in the predicted labels 

containing that pixel is viewed as a correct landslide. 

The recall accuracies evaluated in terms of how many landslides are correctly identified 

are 90.7% and 90.1% (from totally 2,081 landslides) by the SVM classifiers and the RF 

classifiers respectively. The high recall accuracy demonstrates that based on the RGB images, 

the proposed landslide detection method is able to identify most of the landslides. Moreover, the 

results also indicate that the RF classifiers achieve almost the same accuracy as the SVM 

classifier on the whole dataset even though its accuracy on the testing datasets is smaller than the 

SVM classifiers.  

However, the proposed method generates many false alarms due to the fact that the 

method wrongly classifies many ground pixels into landslide. As indicated in Section 4.3, the 

classifiers tend to make mistakes about the ground and landslide labels. There are two main 

reasons for this phenomenon: (1) the visual appearance features of the landslide and ground are 

very similar sometimes; (2) the proposed method will fail to detect small, or long and narrow 

landslides. 
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For the study area, as the landslides usually happen near forest areas and cause 

movements of a mass of earth or rock, the landslide areas have similar visual appearance 

compared to some of the bare ground in mountaineous regions of the vicinity. Figure 6-4 shows 

an example of similar visual appearance of landslides and ground. The red rectangle in Figure 

6-4 covers the area for a landslide while the green one includes an area of a section of regular 

ground. Regarding the color features utilized in this work, their color representations are very 

similar to each other as they have a similar color appearance by comparing the close-up look 

images in the middle column in Figure 6-4.  

Even though the shape features are dependent on the multi-scale segmentation results, 

according to the shape feature computation (fitting the bounding rectangle and circle), it can be 

inferred that their shape features are similar too. By carefully scrutinizing the two patches, the 

contextures of the landslide seem to be different as the landslide area has more elevation changes 

which lead to more edges. However, due to the limited resolution and a lack of elevation data, 

these differences computed from RGB images are not sufficient to allow the classifiers to 

distinguish them. Therefore, the ground is labeled as landslide in the final results as shown in the 

right image in Figure 6-4.  
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Figure 6-4: Example of similar visual appearance of landslide and ground. 

 

Since the multi-scale superpixel segmentation is performed to compute superpixels with 

different levels of details, a small landslide will have more neighboring pixels at a large scale 

where a superpixel usually contains more pixels than that on a small scale. As some of the 

neighboring pixels do not belong to landslide, they will affect the features computation in the 

superpixel and thus cause wrong labels in the predicting stage. Regarding the long and narrow 

landslide, since the SLIC algorithm tends to find regular superpixels, the method tends to detect 

several small superpixels for the long and narrow landslide, which will lead to problems for the 

small landslides as aforementioned above. Thus, some of the long and narrow landslides are 

neglected by the proposed method. 
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6.5 Conclusion 

This chapter presents an object-based landslide detection method using only RGB 

satellite images using supervised classifiers. The multi-scale superpixel segmentation method is 

performed on the RGB images to find superpixels which are perceptually meaningful groups of 

pixels. The various visual features (i.e., color, contexture, and shape) are computed for each 

superpixel. In the training stage, the over-sampling method is utilized to handle the imbalanced 

data while the SVM classifiers and the RF classifiers are employed for comparison. The 

experimental results on the datasets demonstrate the proposed method can correctly identify 90% 

of the landslides and the two classifiers have similar performance on the datasets.  

However, due to the limitation of features provided from RGB images, the proposed 

method finds many false alarms in regular ground regions. Moreover, the inherent features of the 

segmentation method lead to failures on the small, and the long and narrow landslides. Future 

work will explore the utilization of prior knowledge or other data sources to eliminate false 

alarms using this method. In addition, the proposed method will be tested on RGB images 

collected by airborne platforms or drones to allow for automatic landslide data collection. 
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Chapter 7  

Conclusions 

7.1 Summary of Research Methods 

This dissertation primarily aimed to address issues and challenges in 3D reconstruction 

and modeling using low-precision vision sensors for both outdoor and indoor construction 

automation and robotics applications. Since occlusion, which is especially critical in indoor 

environments, can cause several problems for 3D reconstruction, modeling, and further analysis 

(e.g., object recognition, scene understanding), a joint point cloud completion and surface 

relation inference method is proposed to recover the missing points and infer the surface 

relations by integrating the visibility information and the surface geometric properties. This 

research also designed a user-guided dimensional analysis system to utilize prior knowledge of 

the scenes and the sensors in order to interactively obtain complete frames for estimating the 

dimensions of interest.  

For facilitating worker-robot interaction, a human tracking framework from a single 

RGB-D sensor is proposed to combine an online learning method and various features to 

effectively detect and track a specific individual under various illumination conditions. This 

research also investigated the usage of drones for monitoring earthwork safety by proposing a 

comprehensive data processing scheme that involves constructing 3D point clouds from the 

video images, obtaining terrain models, and slope analysis. In addition, to allow a drone to 
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automatically map geotechnical hazards, this dissertation presented an efficient method of 

detecting landslides from only RGB images in order to identify potential hazard areas. 

7.2 Research Contributions 

This research contributes to construction automation and robotics literature by 

investigating 3D reconstruction and modeling using low-precision vision sensors. The researched 

methods can be readily integrated into robotic platforms for construction projects that need 3D 

as-built models, important dimensional information, frequent site monitoring and facility 

management. The research for detecting geotechnical hazards can facilitate further work on 

developing automated landslide detection and mapping by drones.  

The specific research contributions and tangible outcomes of this dissertation that were 

described in the preceding chapters are summarized as follows: 

• A general-purpose point cloud completion system that is able to correctly recover 

missing point clouds and generate 3D complete models for handling occlusion in 

indoor environments. 

• A user-guided dimensional analysis system that can obtain complete frames to 

compute dimensions by providing correct guidance for facility management as 

well as investigation for integration of domain knowledge. 

• A general-purpose human tracking framework that can detect and track a specific 

individual in real-time in various illumination conditions. 

• An effective excavation slope stability monitoring system using 3D reconstruction 

and modeling from images collected by drones. 
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• An efficient object-based landslide detection method from RGB images which 

enables automatic landslide detection and mapping using drones. 

7.3 Future Research Directions 

This research focused on investigating 3D reconstruction and modeling using low-

precision vision sensors in construction automation and robotics to provide 3D models. There 

exist certain limitations for the research methods that have been mentioned in the preceding 

chapters. These limitations provide the following directions for future research: (1) point cloud 

completion for complicated scenes, (2) user-guidance systems for complex scenes, (3) multiple 

human tracking using sensor fusion. In addition, for intelligent automation or robotic systems, it 

is significant to have the capability of scene understanding using 3D data. 

7.3.1 Point Cloud Completion for Complicated Scenes 

The point cloud completion method proposed in this dissertation utilizes the geometric 

properties of planar surfaces to find missing points between them and within individual planar 

surfaces, while the nonplanar surfaces are processed using a naive strategy. This method can be 

applied for various indoor applications (e.g., reconstructing as-built BIMs). However, for many 

civil engineering environments (e.g., utility tunnels with pipes, outdoor construction sites), there 

exist some nonplanar surfaces which are of significance for the applications. Therefore, it is 

necessary to design point cloud completion algorithms for certain nonplanar surfaces (e.g., 

cylinders and spheres) by utilizing the geometric characteristics of these nonplanar surfaces. 
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7.3.2 User-Guidance Systems for Complex Scenes  

The user-guidance system in this dissertation was tested on three scenes that are 

composed of planar surfaces. As discussed in the previous subsection, for some environment 

applications involving nonplanar surfaces, the dimensions of objects that contain nonplanar 

surfaces are of interest as well. Therefore, there is a need to develop a specified user-guidance 

system for these dimensions by defining the dimensions of interest and designing the complete 

template for the scenes. In addition, the current user-guidance system utilizes low-cost RGB-D 

sensors which have a limited precision which is inappropriate for some civil engineering 

applications that require higher precision. More accurate sensors (e.g., laser scanners) can be 

integrated into the user-guidance framework by incorporating the sensor features into the design 

of the user-guidance generation. 

7.3.3 Multiple Human Tracking Using Sensor Fusion 

The current human tracking system utilizes only a single RGB-D sensor to detect and 

track one specific individual. However, there might be multiple people surrounding the robots 

and it is necessary to detect and track all the persons for some applications. In addition, a single 

RGB-D sensor has a limited field of view and observation range, which affects the applicability 

of this system. By integrating multiple sensors (e.g., laser scanners, RGB cameras), a robot can 

capture the surrounding environments with a large field of view and provide data for efficient 

multiple human detection and tracking.  

7.3.4 Scene Understanding Using 3D Data 

The results of this research are primarily 3D models and related information (i.e., surface 

connections) or direct uses of the 3D models (e.g., obtaining dimensions, computing slopes) 
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from low-precision vision sensors. However, it is also important for a robot to interpret and 

understand the environments intelligently (e.g., recognizing objects in the environment, and 

identifying their activities and interactions). The unstructured, cluttered, and dynamic 

environments in construction present challenges for developing appropriate scene understanding 

methods. By incorporating 3D data and models, automation and robotic systems can obtain 

comprehensive representations of the environment and effectively interpret the environment 

using multiple features computed from 3D data. Thus, future work will explore the design of 

scene understanding methods for ARC using 3D data.  
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APPENDICES 

APPENDIX A Introduction to RGB-D Sensors  

An RGB-D camera (e.g., Microsoft® Kinect XBox 360, AUSU Xtion PRO LIVE) is 

equipped with an infrared IR emitter, a color (RGB) camera and an IR depth sensor as shown in 

Figure 8-1. With the assistance of the IR emitter, the IR depth sensor is able to capture a depth 

image where each pixel contains the depth from the point to the sensor. Therefore, the IR depth 

sensor is also referred to as a depth camera. Meanwhile, the RGB camera can obtain a color 

image where each pixel contains a color represented by the red, green, and blue components. By 

using the intrinsic parameters of the depth camera, the 3D point cloud can be derived from the 

depth image. With the relative transformation between the depth and RGB cameras, each valid 

point of the 3D point cloud can be associated with a color from the RGB image.  

 

Figure 8-1: An example of RGB-D sensor 
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The 3D colored point cloud obtained by RGB-D sensors is also called an organized point 

cloud because each point is associated with a unique 2D index. It can be viewed as an image 

where each pixel contains a 6×1 vector [𝑥, 𝑦, 𝑧, 𝑅, 𝐺, 𝐵] where (𝑥, 𝑦, 𝑧) is the coordinates of the 

point in the coordinate frame of the RGB-D sensor and (𝑅, 𝐺, 𝐵)  is the color of the point. 

Therefore, the 3D color point cloud captured by RGB-D sensors is also referred to as an RGB-D 

image. 

If the intrinsic parameters, i.e., the camera matrix that defines the mapping of a pinhole 

camera from 3D points in the world to 2D points in an image, of the depth camera are known, 

the 3D point cloud can be reconstructed from a depth image. Assume that camera matrix of the 

depth camera is 𝑲𝒅 ,  

 

𝑲𝒅 = [

𝑓𝑥𝑑   0   𝑐𝑥𝑑
0
0

𝑓𝑦𝑑  𝑐𝑦𝑑
0 1

] (8.1) 

 

where the focal lengths are 𝑓𝑥𝑑 and 𝑓𝑦𝑑 , and the principal point coordinates are 𝑐𝑥𝑑, 𝑐𝑦𝑑. Using 

the pinhole camera geometry model, a point in the 3D world 𝒑 = (𝑥, 𝑦, 𝑧) is projected on to a 

point 𝒑′ = (𝑢, 𝑣) within the image where 𝑢, 𝑣 are the image coordinates. Thus, 𝒑 and 𝒑′ satisfie 

𝒑 = 𝑲𝒅 ∙ 𝒑′, that is,  

{
𝑢 =

𝑓𝑥𝑑𝑥

𝑧
+ 𝑐𝑥𝑑

𝑣 =
𝑓𝑦𝑑𝑦

𝑧
+ 𝑐𝑦𝑑

 (8.2) 
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Therefore, when the depth 𝑧 is known, the 3D points can be retrieved from the depth 

image as follows, 

{
 

 𝑥 =
𝑢 − 𝑐𝑥𝑑
𝑓𝑥𝑑

𝑧

𝑦 =
𝑣 − 𝑐𝑦𝑑
𝑓𝑦𝑑

𝑧
 (8.3) 

Note that 𝑧 denotes the depth from the point to the sensor. Thus, (𝑥, 𝑦, 𝑧) are the coordinates of  

𝒑 with respect to the coordinate system of the RGB-D sensor. 

To get colored 3D point clouds, each 3D point should be assigned RGB values captured 

by the RGB camera. For this stereo camera system, this can be realized by utilizing the 

transformation (rotation and translation) between the RGB camera and the depth camera. 

Consider that the rotation and translation from the depth sensor to the RGB camera are 𝑹 and 𝑻, 

respectively, where 𝑹 is a 3x3 rotation matrix and 𝑻 is a 3x1 translation vector. Then, each 3D 

point can be projected on to the RGB image using the following procedure: 

(1) Translate the point by 𝑇 

𝒒 = 𝑹𝒑 + 𝑻 (8.4) 

 

(2) Project the point on to the RGB image by using Equation (8.3) where 𝑓𝑥𝑐  and 𝑓𝑦𝑐 are the 

focal lengths of the RGB camera, and 𝑐𝑥𝑐 and 𝑐𝑦𝑐 are the principal points. 

 

{
 
 

 
 𝑢𝑐 =

𝑓𝑥𝑐𝒒𝑥
′

𝒒𝑧
′
+ 𝑐𝑥𝑐

𝑣𝑐 =
𝑓𝑦𝑐𝒒𝑦

′

𝒒𝑧
′
+ 𝑐𝑦𝑐

 (8.5) 
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Once the corresponding image coordinates of this point on the RGB image are obtained, RGB 

values can be associated with this point. Thus, the 3D colored point cloud is computed using a 

depth image and a color image. 

When an RGB-D sensor is factory-assembled, the IR depth sensor and the RGB camera 

are fixed and thus there exist default parameters for the two cameras, including the intrinsic 

parameters of both cameras and their relative transformation relations. However, due to 

imperfections in the manufacturing process, these default parameters cannot be expected to be 

exact for all RGB-D sensors. Therefore, it is necessary to calibrate the RGB-D sensor if it is used 

for applications that require high and repeatable accuracy.  

The sensor calibration aims to obtain the intrinsic and extrinsic (the transformation 

between the depth and RGB cameras) parameters of an RGB-D sensor in order to obtain accurate 

3D colored point clouds from the sensor. By viewing the RGB-D sensor as a stereo camera 

system, the stereo camera calibration method can be utilized to calibrate the RGB-D sensor and 

obtain its intrinsic parameters and extrinsic parameters.  
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APPENDIX B 3D Reconstruction Using Structure from Motion 

1. Introduction to Structure from Motion 

As indicated by Equation (8.2), if only the image location of a point is known, (𝑢, 𝑣), it is 

impossible to compute its 3D coordinates (𝑥, 𝑦, 𝑧). Therefore, a single RGB camera is unable to 

obtain 3D information from the image. A stereo camera system can utilize the triangulation to 

compute 3D coordinates for a point if it is observed by both cameras, and the intrinsic and 

extrinsic parameters of the stereo camera system are known. However, if a single camera is 

utilized to capture a series of images for an object, it is possible to reconstruct the 3D structures 

of the object by estimating the camera motions. The method of obtaining 3D information from 

multiple view images is called structure from motion (SFM). 

If some images 𝑰𝑺 observe the same point 𝒑 = (𝑥, 𝑦, 𝑧) and its image coordinates in the 

images are known, 𝒑𝒊
′ = (𝑢𝑖 , 𝑣𝑖) ∈ 𝑰𝒊, 𝑰𝒊 ∈ 𝑰𝑺 , the following equations can be obtained:  

{
 

 𝑥𝑖 =
𝑢𝑖 − 𝑐𝑥
𝑓𝑥

𝑧𝑖

𝑦𝑖 =
𝑣𝑖 − 𝑐𝑦

𝑓𝑦
𝑧𝑖

 ,    𝑰𝒊 ∈ 𝑰𝑺 (8.6) 

 

where 𝑓𝑥 , 𝑓𝑦, 𝑐𝑥, 𝑐𝑦  are the instrinsic parameters of the camera as in Equation (8.1), and 𝒑𝒊 =

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) denotes the 3D coordinates of 𝒑 with respect to the camera center. Meanwhile, the 

realtions between 𝒑𝒊, 𝑰𝒊 ∈ 𝑰𝑺 can also lead to equations related to the camera poses in the world. 

For example, for 𝑰𝒊 ∈ 𝑰𝑺, 𝑰𝒋 ∈ 𝑰𝑺 , 𝒑𝒊 = 𝑹𝒋
𝒊𝒑𝒋 + 𝑻𝒋

𝒊  where 𝑹𝒋
𝒊  and 𝑻𝒋

𝒊  represent the roation and 

translation of the two camera coordiates from the j-th postion to the i-th postion, respectivly. 

Base on a sufficient number of the aforementioned equations, the point locations (3D structures) 

and the transformations between cameras (camera motions) can be estimated.  
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 However, it is impossible to recover the absolute scale of point clouds reconstructed from 

SFM. If we scale the entire scene by 𝑘, and scale the camera matrices by the factor of 1/𝑘, all 

the equations remain the same. One common approach to obtain the absolute scale is to take 

some measurements in the real world and use them to scale the reconstructed 3D point clouds 

from SFM.  

2. Challenges for SFM in Indoor Environments 

As aforementioned, identifying the point pairs from multiple images is crucial for SFM to 

create correct and sufficient equations. A commonly used approach is to extract various 

distinctive points (e.g., corners points) using feature representations, e.g., Harr, SIFT, and SURF, 

and then search point pairs by comparing the feature representations. Among these feature 

representations, the SIFT feature descriptor is one of the most popular because it is invariant to 

uniform scaling, orientation, illumination changes, and partially to affine distortion (Lowe 1999). 

It has been proven to be efficient in 3D reconstruction and modeling for many outdoor 

applications as mentioned in Chapter 1 and Chapter 6.  

However, as the indoor environment contains many featureless objects or repetitive 

patterns, it is challenging to obtain correct point pairs. By using the SIFT features as an example, 

Figure 8-2 (b) shows the some of SIFT feature points of a hallway in a campus building. To 

perform SFM, it is necessary to find correct point pair from images so as to estimate the camera 

motions for 3D reconstruction. Therefore, the feature points detected should be unique or 

distinctive. However, as shown in Figure 8-2 (b), some of the feature points are not unique or 

distinctive. For example, many features points are detected on the floors due to the reflections of 

the light. By comparing the left and right images in Figure 8-2 (b), it can be found that the 

reflections move on the floor and thus the corresponding features are not reliable. 
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(a) Original images. 

 

(b) SIFT features points (the centers of the circles). 

 

(c) Point matching by using the SIFT features. 

Figure 8-2: An example of feature point matching issues in indoor environments. 
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Based on these feature points, it is difficult to find a sufficient number of correct point 

pairs to perform SFM and moreover, many wrong point pairs will generate unreliable 3D 

reconstruction results. As shown in Figure 8-2 (c), the features points on trash cans (at the left 

corner of the left image) should not be matched to any points as the corresponding points are not 

observed in the right image. In addition, as discussed above, the features points on the ground 

floor are not reliable and thus the related point pairs are not reliable for SFM. As shown in 

Figure 8-2 (c), many point pairs do not contain the same points in the world, and therefore SFM 

is unable to reconstruct the correct 3D point clouds based on these point pairs.  

It should be noted that if we capture images for a room that contain different objects, 

correct point pairs are likely to be found for performing SFM to obtain 3D sparse point clouds 

for that room. For example, Furukawa et al. (2009) presented a fully automated system for 

architectural scene reconstruction and visualization for challenging textureless scenes (e.g. 

indoor scenes).  
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