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ABSTRACT

We study acoustic waveguides with varying cross sections and slowly bending axes.

In particular, we consider waveguides with rough walls and cross sectional width that

varies slowly. Roughness means fast and small fluctuations that occur on the scale

of the wavelength. The roughness in the walls is unknown in applications and so we

model it as a random process to study the propagation of uncertainty in the walls to

uncertainty in the wavefield. The slow variations occur on a scale much larger than

the wavelength and cause jumps in the number of propagating modes supported by

the guide. Here we present a mathematical analysis from first principles of waves in

waveguides with an arbitrary but finite number of turning points.

We use our analysis to quantify randomization of the wavefield and transport

of power in the guide. This is accomplished by obtaining a statistical description

of coupled complex waveguide mode amplitudes in terms of the statistics of the

fluctuations in the walls. Randomization is captured by decay of the means of the

mode amplitudes with distance from the source. Transport of power is studied

through differential equations for the second moments of the mode amplitudes. We

show using these equations that the random fluctuations in the wall may increase or

decrease net transmitted power depending upon the source excitation.

xi



CHAPTER I

Introduction

A waveguide is a structure that directs the propagation of waves along a single

direction. The waveguide effect may be due to reflecting boundaries as in [4] or

variable wavespeed along an axis transverse to the direction of propagation as in [34].

Waveguides of both varieties appear across a diverse set of applications including

underwater acoustics [51], electromagnetics [17, 46], optics [47, 37], and quantum

waveguides [23]. The classic problem where the waveguide has reflecting straight

walls and known wavespeed which varies only in the cross section of the waveguide

is well-known. However, most applications do not fit this classical setting. Many

waveguides have features such as varying wavespeed, varying cross section, and bends

in the axis of the waveguide. We give in this dissertation a mathematical treatment

of sound wave propagation in a waveguide with varying cross section, bends, and

rough walls.

1.1 Review of Previous Work

We will refer to the classical setting where the waveguide has straight walls and

is filled with a homogeneous medium as an ideal waveguide. One may solve the

wave equation in an ideal waveguide by using separation of variables. This allows

one to represent the wave field inside the waveguide as a superposition of uncoupled

1
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waveguide modes. These modes are either propagating or evanescent, have constant

amplitude, and do not interact with one another.

If one allows for variation in the wavespeed due to filling the waveguide with

a heterogeneous material, or variations in the geometry of the waveguide then the

waveguide modes become coupled. There is a significant literature on solving such

problems using numerical methods. These methods include multimodal techniques

which rely on integrating Riccati equations for admittance or impedance matrices

[42, 5, 24, 25, 41]. There are also finite difference methods as in [33] and numerous

other approaches in the applied literature [15, 9, 18, 38, 16, 32, 8]. However, in

the case where the mode coupling is induced by small fluctuations in wavespeed or

roughness in the walls of the waveguide one can more precisely analyze the effects of

the coupling using asymptotic methods.

Small-scale fluctuations in wavespeed or roughness in the walls of the waveguide

are often unknowable in applications and introduce uncertainty. It then seems nat-

ural to model these features using randomness. One can describe the fluctuations in

the wave speed or roughness in the walls using a random process. This allows for

quantifying the cumulative scattering effects through determining how uncertainty in

the model of the waveguide transfers to uncertainty in the wave field. This amounts

to a statistical description of the pressure field in terms of the statistics of the driving

random process in the model. Results of this sort were obtained for waveguides filled

with random media both for sound [34, 20, 27, 28, 29] and electromagnetic waves

[37, 3]. Further, waveguides with rough walls were studied in [4, 30, 10]. These

types of results can then be used to inform imaging methods in the waveguide as in

[12, 10, 14, 1].

If the walls of the waveguide slowly vary, then as is seen in [2, 50] one can use a
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modal decomposition and asymptotic methods to approximate the wavefield in the

waveguide. Here propagating and evanescent mode amplitudes vary along the axis

of the waveguide due to the influence of the variable geometry but are approximately

independent of one another. In this setting, one must also account for turning points

where the number of propagating modes supported by the waveguide jumps. This

jump corresponds to a mode transitioning from propagating to evanescent and vice-

versa as studied in [6]. Further, energy conservation implies that propagating modes

will be reflected at turning points.

Combining the asymptotic methods used to study slowly varying waveguides with

those used to study waveguides with rough walls is nontrivial due to the influence

of the random fluctuations in the vicinity of the turning point. Recently, the case of

weak random fluctuations in walls that affect only the turning modes was studied in

[11]. Here we will consider the case of stronger random fluctuations which couple all

of the waveguide modes.

1.2 Our Problem

We study time-harmonic sound waves in a 2-D waveguide which is slowly bending

and has variations in its cross section. More precisely, we deal with a scalar Helmholtz

equation at fixed frequency. The waveguide exhibits two types of variations in cross

section. There are slow variations where slow means on a scale much larger than the

wavelength. Additionally, there are fast fluctuations where fast means occurring on

a scale comparable to the wavelength. The fast fluctuations correspond to roughness

in the walls and are modeled as random as in [4, 30, 10]. Our goal is to quantify

randomization of the wavefield and transport of power in the waveguide.
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1.3 Outline

We address some preliminary material related to waveguides in chapter II. We

begin with a review of wave propagation in an ideal waveguide and provide comments

on the analysis of a waveguide with slowly varying cross section and bends. This

chapter introduces the mode decomposition that we then generalize to the waveguide

that we study when the modes become coupled.

We formulate our problem in chapter III and show how we can state it in an

asymptotic framework. This involves the decomposition of the wavefield into for-

ward/backward propagating modes and evanescent modes. The coefficients in the

mode decomposition are random fields which satisfy a coupled system of equations

driven by the random fluctuations of the boundary. We then use a technical con-

struction to solve for the evanescent modes in terms of the propagating modes. This

gives us a finite dimensional system for the propagating mode amplitudes and the

tool for analyzing this system in an asymptotic setting is a diffusion limit theorem.

We then use our characterization of the limit mode amplitudes in chapter III to

study the transport and reflection of power in the waveguide in chapter IV. We can

use the infinitesimal generators of the limit mode amplitudes and the Kolmogorov

backward equation to compute moments of the limit mode amplitudes. These mo-

ments allow us to quantify the effects of cumulative scattering at the random walls.

We use these results to examine the power transmitted through the waveguide to the

left of the source as well as the power going to the right of the source which is due

both to the source excitation and reflection at turning points. We then demonstrate

quantitatively how interactions with the random walls affect the net power trans-

mitted through the waveguide with a few numerical illustrations at the end of the
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chapter.

In the remainder of this dissertation we address the mathematical tools that en-

abled our analysis in chapters III and IV. In chapter V we state and provide a proof

of the diffusion limit theorem used in chapter III. The theorem is an extension of

similar results found in [43, 26]. The proof of the theorem follows the format of the

perturbed test function method described in [35, 26]. Chapter VI gives the analy-

sis of the evanescent modes needed to close the system for the propagating modes

in chapter III. Finally, we include as appendices material from stochastic analysis

and the detailed computation of the infinitesimal generator used to calculate the

moments of the mode amplitudes.



CHAPTER II

Preliminaries

Here we summarize the basic facts about wave propagation in waveguides. These

form the foundation for our study of wave propagation in random waveguides with

turning points in chapters III and IV.

2.1 The Ideal Waveguide

We begin with a review of sound wave propagation in a two-dimensional waveguide

with straight walls and filled with a homogeneous medium. We refer to such a guide

as an ideal waveguide. This is a classical problem whose solution can be found

in many places but our presentation follows that of [14] as this setup is the most

convenient later on.

2.1.1 Setup

We consider a two-dimensional acoustic waveguide with sound-soft boundary,

filled with a homogeneous medium, and straight walls as illustrated in Figure 2.1.

The acoustic pressure field in the guide p(t, r, z) satisfies(
∂2
r + ∂2

z −
1

c2
∂2
t

)
p(t, r, z) = f(t)δ(r − r?)δ(z), z ∈ R, r ∈

(
−D

2
,
D

2

)
, (2.1)

where the right-hand side models a point source at (r, z) = (r?, 0) emitting pulse f(t).

The parameter c is the wavespeed which is constant since we assume the guide to

6
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z

r

Figure 2.1: Illustration of an ideal waveguide

An ideal waveguide with horizontal axis z and vertical axis r. The source of waves is at z = 0.

be filled with a homogeneous medium. The waveguide effect is due to the sound-soft

boundaries, modeled mathematically using Dirichlet boundary conditions

p(t,−D
2
, z) = p(t,

D

2
, z) = 0, t, z ∈ R. (2.2)

Prior to the source excitation the medium is quiet

p(t, r, z) = 0, t� 0. (2.3)

We consider time-harmonic waves p(t, r, z) = e−iωtp̂(ω, r, z) where p̂(ω, r, z) satis-

fies the Helmholtz equation(
∂2
r + ∂2

z + k2
)
p̂(ω, r, z) = f̂(ω)δ(r − r?)δ(z), (2.4)

with Dirichlet conditions

p̂(ω,±D
2
, z) = 0, (2.5)

and radiation conditions for |z| → ∞. The parameter k is given by k = ω/c and is

called the wavenumber. This equation may be solved by separation of variables and

decomposing p̂ into 1-D wavefields called modes.

2.1.2 Mode Decomposition

We decompose p̂(ω, r, z) into modes using Dirichlet eigenfunctions yj of the dif-

ferential operator ∂2
r + k2 with eigenvalues λj(ω). Each yj solves

(∂2
r + k2)yj(r) = λj(ω)yj(r), r ∈

(
−D

2
,
D

2

)
, (2.6)

yj

(
−D

2

)
= yj

(
D

2

)
= 0. (2.7)
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Explicitly, the yj and λj are given by

yj(r) =

√
2

D
sin

(
πj

D

(
r +

D

2

))
, (2.8)

λj(ω) = k2 −
(
πj

D

)2

. (2.9)

Since (2.6)–(2.7) is a regular Sturm-Liouville problem, these eigenfunctions form a

complete orthonormal set in the function space L2
(
−D

2
, D

2

)
. Thus, we have the

decomposition

p̂(ω, r, z) =
∞∑
j=1

uj(ω, z)yj(r). (2.10)

where the modes are 1-D waves uj(ω, z)e
−iωt with

uj(ω, z) := 〈p̂, yj〉 (ω, z), (2.11)

and 〈·, ·〉 is the L2
(
−D

2
, D

2

)
inner product given by

〈f, g〉 :=

∫ D
2

−D
2

drf(r)g(r). (2.12)

The sign of the eigenvalues λj determines whether the corresponding j-th mode

is propagating or evanescent. The λj(ω) will be positive when j < kD/π. Thus, we

can define the number of propagating modes N(ω) by

N(ω) :=

⌊
kD

π

⌋
. (2.13)

We assume in what follows that none of the λj(ω) = 0 so that there are no standing

waves.

2.1.3 Analysis of the Propagating and Evanescent Modes

From the decomposition (2.10), we obtain the 1-D Helmholtz equations

[
∂2
z + β2

j (ω)
]
uj(ω, z) = 0, z ∈ R \ {0} (2.14)
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where β2
j (ω) := λj(ω), and j ≤ N . We rewrite these equations in first order system

form as

∂z

uj(ω, z)
vj(ω, z)

 = i

 0 1

β2
j (ω) 0


uj(ω, z)
vj(ω, z)

 (2.15)

where vj(ω, z) = −i∂zuj. We require this system to satisfy radiation conditions as

|z| → ∞ and jump conditions at z = 0

lim
z→0+

uj(ω, z)
vj(ω, z)

− lim
z→0−

uj(ω, z)
vj(ω, z)

 =

 0

1
i
f̂(ω)yj(r?)

 (2.16)

The solution of (2.15) can be written explicitly using the propagator matrices

Mj(ω, z) :=

 1√
βj(ω)

eiβj(ω)z − 1√
βj(ω)

e−iβj(ω)z

√
βj(ω)eiβj(ω)z

√
βj(ω)e−iβj(ω)z

 (2.17)

satisfying

∂zMj(ω, z) = i

 0 1

β2
j (ω) 0

Mj(ω, z). (2.18)

The solution is uj(ω, z)
vj(ω, z)

 = Mj(ω, z)

aj(ω)

bj(ω)

 . (2.19)

where aj, bj are mode amplitudes. Using the radiation conditions, which say that

the wave is outgoing from the source we get

uj(ω, z) = 1(0,∞)(z)
aj(ω)√
βj(ω)

eiβj(ω)z − 1(−∞,0)(z)
bj(ω)√
βj(ω)

e−iβj(ω)z. (2.20)

The mode amplitudes are obtained from (2.16) and (2.20) as

aj(ω) = −bj(ω) =
1

2i
√
βj(ω)

f̂(ω)yj(r?). (2.21)

For j > N , the modes are evanescent and solve

[
∂2
z − β2

j (ω)
]
uj(ω, z) = 0, z ∈ R \ {0} (2.22)
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D

z

x?

∂Ω+

∂Ω−

n

τ

Figure 2.2: Illustration of a slowly varying waveguide

The guide has slowly varying width D and bending axis parametrized by the arc length z. The boundary
∂Ω is the union of the curves ∂Ω− (the bottom boundary) and ∂Ω+ (the top boundary). The unit tangent
to the axis of the waveguide is denoted by τ and the unit normal n points toward the upper boundary.
The source of waves is at x?.

where β2
j (ω) := −λj(ω). We require the uj to satisfy decay conditions lim

|z|→∞
uj(ω, z) =

0 as well as source conditions similar to (2.16). The evanescent waves both to the

left and right of the source are given by

uj(ω, z) =
ej(ω)√
βj(ω)

e−βj(ω)|z|, z ∈ R (2.23)

where

ej(ω) = − 1

2
√
βj(ω)

f̂(ω)yj(r?). (2.24)

Altogether, we have a full characterization of the time-harmonic wave field in the

ideal waveguide. In particular, we may write

p̂(ω, r, z) =
N∑
j=1

[
1(0,∞)(z)

aj(ω)√
βj(ω)

eiβj(ω)z − 1(−∞,0)(z)
bj(ω)√
βj(ω)

e−iβj(ω)z
]
yj(r)

+
∑
j>N

ej(ω)√
βj(ω)

e−βj(ω)|z|yj(r). (2.25)

Thus, the time-harmonic pressure field in the ideal waveguide is a superposition of

constant amplitude 1-D waves that do not interact with one another.

2.2 Waveguides with Slowly Varying Geometry

One can extend the analysis in the previous sections to waveguides with slowly

varying geometry (see Figure 2.2) as was done in [2, 50]. This case serves as a bridge
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between the problem in the ideal guide and the problem studied in this dissertation.

We omit a detailed analysis as it can be recovered from the our analysis of a slowly

varying guide with rough walls in the following chapter.

The wave equation will be the same as in (2.1) except that now the boundary

changes along the axis of the guide. Also, since the waveguide may bend we work in

curvilinear coordinates. The Sturm-Liouville operator in the radial direction remains

the same and we have a local mode decomposition at each point along the axis of

the guide. The slowly varying geometry means that changes in cross section or

bending occur over distances that are very large with respect to the wavelength.

This introduces a small parameter, the ratio of the wavelength to the length scale of

the variations, that allows us to solve the problem using asymptotic methods. Here

the mode amplitudes and eigenfunctions in the local mode decomposition will vary

along the axis of the guide but the waveguide modes remain uncoupled [50]. When

comparing to the ideal waveguide, the most notable difference in this setting is that

the number of propagating modes in such a guide may change. These changes occur

at turning points which were studied in [6].



CHAPTER III

Propagation in Random Waveguides with Turning Points

In this chapter we give the mathematical model for time-harmonic waves in a

random waveguide with variable cross-section and bending axis. We begin in section

3.1 with the setup, and describe the scaling in section 3.2 in terms of a small, dimen-

sionless parameter ε. We use this scaling in section 3.3 to write the wave problem in

a form that can be analyzed in the asymptotic limit ε→ 0.

To analyze the solution of the perturbed wave equation obtained in section 3.3 we

begin section 3.4 with the mode decomposition of the wavefield. These modes repre-

sent propagating and evanescent waves which are coupled by perturbation operators,

as explained in section 3.5. We are interested in the propagating modes, which are

left and right going waves with random amplitudes satisfying a stochastic system of

equations derived in section 3.6. It is this system that we analyze in the asymptotic

limit to quantify the cumulative scattering effects in the waveguide.

The limit is taken in each sector of the waveguide, bounded by two consecutive

turning points, as explained in section 3.7. We introduce in section 3.8 a simplifi-

cation, known as the forward scattering approximation, which applies to sufficiently

smooth random fluctuations ν. Finally, the limit of the mode amplitudes under this

approximation is described in section 3.9.

12
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D

z

∂Ω−

∂Ω+

x?
n

τ

Figure 3.1: Illustration of a random waveguide with turning points

The guide has slowly varying width D and bending axis parametrized by the arc length z. The boundary
∂Ω is the union of the curves ∂Ω− (the bottom boundary) and ∂Ω+ (the top boundary). The top boundary
is perturbed by small random fluctuations. The unit tangent to the axis of the waveguide is denoted by τ
and the unit normal n points toward the upper boundary. The source of waves is at x?.

3.1 Setup

We consider a two-dimensional acoustic waveguide with sound-soft boundary. The

waveguide occupies the semi-infinite domain Ω, bounded above and below by two

curves ∂Ω+ and ∂Ω−, as shown in Figure 3.1. The top boundary ∂Ω+ is perturbed by

small random fluctuations about the curve ∂Ω+
0 shown in the figure with the dotted

line. The axis of the waveguide is at half the distance D between ∂Ω+
0 and ∂Ω−. It

is a smooth curve parametrized by the arc length z ∈ R, that bends slowly, meaning

that its tangent τ (z/L) and curvature κ(z/L) vary on a scale L which is large with

respect to the waveguide width D(z/L). The width function D has bounded first

two derivatives, and to avoid complications in the analysis of scattering of the waves

at the random boundary, we also assume that it is monotonically increasing.

Because of the changing geometry, it is convenient to use orthogonal curvilinear

coordinates with axes along τ (z/L) and n(z/L), where n is the unit vector orthog-

onal to τ , pointing toward the upper boundary. We assume any x ∈ Ω, written

henceforth as x = (r, z), can be written uniquely as

x = x‖(z) + rn
( z
L

)
, (3.1)
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where x‖(z) is along the waveguide axis at arc length z, satisfying

∂zx‖(z) = τ
( z
L

)
, (3.2)

and r is the coordinate in the normal direction. This holds provided that the bends

in the axis of the guide are mild. The domain Ω is the set

Ω := {(r, z) : z ∈ R, r ∈ (r−(z), r+(z))}, (3.3)

where

r−(z) := −D(z/L)

2
, (3.4)

is at the bottom boundary ∂Ω− and

r+(z) :=
D(z/L)

2

[
1 + 1(−ZM ,ZM )(z)σν

(z
`

)]
, (3.5)

is at the randomly perturbed top boundary ∂Ω+. The perturbation is modeled

by the random process ν and it extends over the interval (−ZM , ZM), the support

of the indicator function 1(−ZM ,ZM )(z), where ZM > L is a long scale needed to

impose outgoing boundary conditions on the waves. This truncation is practically

motivated by the relationship between distance over which the wave is influenced

by the fluctuations and the duration of the observation time of the wave, using

hyperbolicity of the wave equation in the time domain. The single-frequency wave

that we analyze is the Fourier transform of the time-dependent wavefield. We let the

boundaries of the waveguide be straight and parallel for |z| > ZM .

The random process ν is stationary with zero mean

E
[
ν(ζ)

]
= 0. (3.6)

Its auto-correlation function is given by

R(ζ) := E
[
ν(0)ν(ζ)

]
. (3.7)
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We assume that ν is mixing, with rapidly decaying mixing rate, as defined for example

in [43, section 2], and it is bounded, with bounded first two derivatives, almost

surely. This implies in particular that R is integrable and has at least four bounded

derivatives. We normalize ν by

R(0) = 1, (3.8)

so that σ in (3.5) is the standard deviation of the fluctuations of ∂Ω+, and ` quantifies

their correlation length.

The waves are generated by a point source at x? = (r?, z? = 0) ∈ Ω, which emits

a complex signal f(ω) at frequency ω. We take the origin of z at the source, so that

z? = 0. The waveguide is filled with a homogeneous medium with wave speed c, and

the wavefield p(ω,x) satisfies the Helmholtz equation (we refer here to the principle

of limit amplitude, see [21, 39, 40] and references therein)

∆p(ω,x) + k2p(ω,x) = f(ω)δ(x− x?), x = (r, z) ∈ Ω, (3.9)

where k = ω/c is the wavenumber.

We then make a change of variables to (r, z)-coordinates. The vectors in our

coordinate frame are related through the Frenet-Serret formulas

∂zx‖(z) = τ
( z
L

)
,

∂zτ
( z
L

)
=

1

L
κ
( z
L

)
n
( z
L

)
,

∂zn
( z
L

)
= − 1

L
κ
( z
L

)
τ
( z
L

)
,

and from (3.1) we obtain that the vectors ∂rx = n
(
z
L

)
and ∂zx =

[
1− r

L
κ
(
z
L

)]
τ
(
z
L

)
are orthogonal. Their norm defines the Lamé coefficients hr := |∂rx| = 1 and

hz := |∂zx| =
∣∣∣1− r

L
κ
(
z
L

)∣∣∣, which in turn define the Laplacian operator in curvilin-

ear coordinates [48] ∆ = 1
hrhz

[
∂r

(
hz
hr
∂r

)
+ ∂x

(
hr
hz
∂z

)]
. We can also express the delta

function on the right-hand side of (3.9) as δ(x− x?) = 1
hrhz

δ(z)δ(r − r?).
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Thus, in curvilinear coordinates (3.9) takes the form∂2
r −

1
L
κ
(
z
L

)
∂r

1− r
L
κ
(
z
L

) +
∂2
z[

1− r
L
κ
(
z
L

)]2 +
r
L2κ

′( z
L

)
∂z[

1− r
L
κ
(
z
L

)]3 + k2

 p(ω, r, z)

=
∣∣∣1− r?

L
κ(0)

∣∣∣−1

f(ω)δ(z)δ(r − r?), (3.10)

where κ′ is the derivative of the curvature κ. The sound-soft boundary ∂Ω+ ∪ ∂Ω−

is modeled by the homogeneous Dirichlet boundary conditions

p(ω, r+(z), z) = p(ω, r−(z), z) = 0, (3.11)

and at points x = (r, z) with |z| > ZM we have radiation conditions that state that

p(ω, r, z) is outgoing and bounded.

3.2 Scaling

There are four length scales in the problem: The wavelength λ = 2π/k, the width

of the waveguide D, the scale L of the slow variations of the waveguide, and the

correlation length ` of the random fluctuations of the boundary ∂Ω+. They satisfy

L� D ∼ λ ∼ `, (3.12)

where ∼ denotes “of the same order as”1, and we model the separation of scales

using the dimensionless parameter

ε :=
`

L
, 0 < ε� 1. (3.13)

Our analysis of the wavefield p(ω, r, z) is in the asymptotic limit ε→ 0.

As shown in section 3.5, the ratio of D and λ/2 defines N(z) := b2D(z/L)/λc,

the number of propagating components of the wave, called modes, where b c denotes

the integer part. The assumption D ∼ λ in (3.12) means that

Nmin ≤ N(z) ≤ Nmax, (3.14)
1To be precise, we write a ∼ b if there exists positive constants c and C such that cb ≤ a ≤ Cb.
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for all z, where Nmin and Nmax are natural numbers, independent of ε.

The scales λ and ` are of the same order in (3.12) so that the waves interact

efficiently with the random fluctuations of the boundary. This interaction, called

cumulative scattering, randomizes the wavefield as it propagates in the waveguide.

The distance from the source at which the randomization occurs depends on the

standard deviation σ of the fluctuations. We scale σ as

σ =
√
εσ̃, σ̃ = O(1), (3.15)

so that we observe the randomization at distances z ∼ L.

The scaled variables are defined as follows: The arc length z is scaled by L,

z̃ :=
z

L
, (3.16)

and the similar lengths D, r and λ are scaled by `, to obtain

D̃(z̃) :=
D(z/L)

`
, r̃ :=

r

`
, k̃ := k`. (3.17)

We also introduce the scaled bound Z̃M := ZM/L of the support of the random

fluctuations, which is a large number, independent of ε.

3.3 Asymptotic model

Let us multiply equation (3.10) by L2[1 − rκ/L]2 and use the scaling relations

(3.15)-(3.17). Dropping the tilde to simplify notation, because all variables are scaled

henceforth, we obtain[
∂2
z +

(1− εrκ(z))2

ε2
(∂2
r + k2)− κ(z)(1− εrκ(z))

ε
∂r +

εrκ′(z)

(1− εrκ(z))
∂z

]
p(ω, r, z)

=
f(ω)[1− εr?κ(0)]

ε
δ(r − r?)δ(z), (3.18)

with homogeneous Dirichlet boundary conditions (3.11) at

r−(z) = −D(z)

2
, r+(z) =

D(z)

2

[
1 + 1(−ZM ,ZM )(z)

√
εσν

(z
ε

)]
, (3.19)
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and appropriate radiation conditions for |z| > ZM . These equations define the

asymptotic model for the wavefield, and we wish to analyze it in the limit ε→ 0.

The boundary has ε-dependent fluctuations, so to ensure that the boundary con-

ditions are satisfied at all orders of ε, we change variables to

r = ρ+
[2ρ+D(z)]

4

√
εσν

(z
ε

)
, (3.20)

for |z| < ZM , and denote the transformed wavefield by

pε(ω, ρ, z) := p
(
ω, ρ+

(2ρ+D(z))

4

√
εσν

(z
ε

)
, z
)
. (3.21)

Note that with this change of variables when ρ = −D(z)/2 we have r = r−(z), and

when ρ = D(z)/2 we have r = r+(z). At |z| > ZM there are no fluctuations so the

transformation is the identity r = ρ. We use the same notation pε for the wave field

at all z ∈ R, and analyze it separately in the regions with the random fluctuations

and without. The results are connected by continuity at z = ±ZM .

In the region |z| < ZM , (3.20) and the chain rule give

∂rp =
∂ρp

ε(ω, ρ, z)

1 +
√
ε

2
σν
(
z
ε

) , ∂2
rp =

∂2
ρp

ε(ω, ρ, z)[
1 +

√
ε

2
σν
(
z
ε

)]2 ,
and

∂zp =
{
∂z −

[
[2ρ+D(z)] σ√

ε
ν ′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2 +
√
εσν

(
z
ε

)] ∂ρ

}
pε(ω, ρ, z),

∂2
zp =

{
∂z −

[
[2ρ+D(z)] σ√

ε
ν ′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2 +
√
εσν

(
z
ε

)] ∂ρ

}2

pε(ω, ρ, z).



19

Substituting in (3.18) we get

∂2
zp

ε(ω, ρ, z) +

[
[2ρ+D(z)] σ√

ε
ν ′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]2
4
[
2 +
√
εσν

(
z
ε

)]2 ∂2
ρp

ε(ω, z)

−
[
[2ρ+D(z)] σ√

ε
ν ′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)][
2 +
√
εσν

(
z
ε

)] ∂2
ρzp

ε(ω, z)

+

{
[2ρ+D(z)]σ

2

ε
ν ′ 2
(
z
ε

)
+D′(z)σ2ν ′

(
z
ε

)
ν
(
z
ε

)}
[
2 +
√
εσν

(
z
ε

)]2 ∂ρp
ε(ω, ρ, z)

−
[2ρ+D(z)] σ

ε3/2
ν ′′
(
z
ε

)
+ 2D′(z) σ√

ε
ν ′
(
z
ε

)
+D′′(z)

√
εσν

(
z
ε

)
2
[
2 +
√
εσν

(
z
ε

)] ∂ρp
ε(ω, ρ, z)

+

{
1− εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}2

ε2

{ ∂2
ρp

ε(ω, ρ, z)[
1 +

√
ε

2
σν
(
z
ε

)]2 + k2pε(ω, ρ, z)
}

−
κ(z)

{
1− εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}
ε[1 +

√
ε

2
σν
(
z
ε

)
]

∂ρp
ε(ω, ρ, z)

+
εκ′(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]{
1− εκ(z)

[
ρ+ [2ρ+D(z)]

4

√
εσν

(
z
ε

)]}{∂zpε(ω, ρ, z)

−
[
[2ρ+D(z)] σ√

ε
ν ′
(
z
ε

)
+D′(z)

√
εσν

(
z
ε

)]
2
[
2 +
√
εσν

(
z
ε

)] ∂ρp
ε(ω, ρ, z)

}

=
f(ω)

{
1− ε

[
ρ? + [2ρ+D(0)]

4

√
εσν(0)

]}
ε
[
1 +

√
ε

2
σν(0)

] δ(ρ− ρ?)δ(z).

By assumption ν, ν ′ and ν ′′ are bounded almost surely. Moreover, κ′ and D′, D′′

are bounded uniformly in R. Thus, we can expand the coefficients of the differential
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operator in powers of ε and obtain after multiplying through by ε,

1

ε

[
(ε∂z)

2 + ∂2
ρ + k2

]
pε(ω, ρ, z)− 2ρκ(z)

[
1 +O(

√
ε)
](
∂2
ρ + k2)

− κ(z)
[
1 +O(

√
ε)
]
∂ρp

ε(ω, ρ, z)− εκ′(z)
[
1 +O(

√
ε)
]
(ε∂z)p

ε(ω, ρ, z)

− [2ρ+D(z)]

2

[ σ√
ε
ν ′
(z
ε

)
− σ2

2
ν ′
(z
ε

)
ν
(z
ε

)
+O(

√
ε)
]
ε∂2

ρzp
ε(ω, ρ, z)

−
{ σ√

ε
ν
(z
ε

)
− 3σ2

4
ν2
(z
ε

)
− [2ρ+D(z)]2σ2

16
ν ′

2
(z
ε

)
+O(

√
ε)
}
∂2
ρp

ε(ω, ρ, z)

−
[
2ρ+D(z)

]
4

{ σ√
ε
ν ′′
(z
ε

)
− σ2

2
ν ′′
(z
ε

)
ν
(z
ε

)
− σ2ν ′

2
(z
ε

)
+O(

√
ε)
}
∂ρp

ε(ω, ρ, z)

= f(ω)
[
1 +O(

√
ε)
]
δ(ρ− ρ?)δ(z), (3.22)

for |z| < ZM , where for brevity we display only the terms in the expansions up to

O(
√
ε).

We may express the wave equation (3.22) more compactly using an asymptotic

series of differential operators which includes the full expansions of the coefficients

∞∑
j=0

εj/2−1Lεj pε(ω, ρ, z) = f̂(ω)
[
1 +O(

√
ε)
]
δ(ρ− ρ?)δ(z), (3.23)

for |ρ| < D(z)/2 and |z| < ZM , with the leading term in the expansion of the operator

Lε0 :=
(
ε∂z
)2

+ ∂2
ρ + k2. (3.24)

This is the Helmholtz operator in a perfect waveguide, with straight and parallel

boundaries. The random fluctuations appear in the first perturbation operator,

Lε1 := −σ
{
ν
(z
ε

)
∂2
ρ +

[2ρ+D(z)]

4

[
ν ′′
(z
ε

)
∂ρ + 2ν ′

(z
ε

)
ε∂2

ρz

]}
. (3.25)

The second perturbation operator has a deterministic part, due to the curvature of

the axis of the waveguide, and a random part, quadratic in the random fluctuations,

Lε2 :=− κ(z)
[
2ρ
(
∂2
ρ + k2) + ∂ρ

]
+
σ2

4

{
3ν2
(z
ε

)
+

[
2ρ+D(z)

]2
4

ν ′
2
(z
ε

)}
∂2
ρ

+
[2ρ+D(z)]σ2

4

{
ν
(z
ε

)
ν ′
(z
ε

)
ε∂2

ρz +
[
ν ′

2
(z
ε

)
+

1

2
ν ′′
(z
ε

)
ν
(z
ε

)]
∂ρ

}
. (3.26)
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The remaining operators in the asymptotic series in (3.23) depend on higher powers

of the fluctuations ν, but play no role in the limit ε→ 0.

In the region |z| > ZM , there are no variations of the waveguide and so the

operator in the left hand side of (3.23) reduces to Lε0 in this region.

In all, the change of variables (3.20) makes the boundary conditions independent

of ε,

pε
(
ω,±D(z)

2
, z
)

= 0, (3.27)

and maps the random fluctuations to the differential operator in the wave equation.

3.4 Mode decomposition

The second two terms in (3.24) are the Sturm-Liouville operator ∂2
ρ + k2 acting

on functions that vanish at ρ = ±D(z)/2, for any given z. Its eigenvalues λj are real

and distinct

λj(z) = k2 − µ2
j(z), µj(z) :=

πj

D(z)
, j = 1, 2, . . . (3.28)

and the eigenfunctions

yj(ρ, z) =

√
2

D(z)
sin

[
(2ρ+D(z))

2
µj(z)

]
, (3.29)

form an orthonormal L2 basis in [−D(z)/2, D(z)/2]. We use this basis to decompose

the solution of (3.24) in one dimensional waves pεj(ω, z) called modes, for each z,

pε(ω, ρ, z) =
∞∑
j=1

pεj(ω, z)yj(ρ, z). (3.30)

Substituting (3.30) in (3.23), taking the inner product with yj(ρ, z) and using the
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identities (3.137)-(3.142) we obtain the following system of equations for the modes

1

ε

[(
ε∂z)

2 + k2 − µ2
j(z)

]
pεj(ω, z) +

σ√
ε

[
µ2
j(z)ν

(z
ε

)
+

1

4
ν ′′
(z
ε

)
+

1

2
ν ′
(z
ε

)
ε∂z

]
pεj(ω, z)

− σ2

4

{
3µ2

j(z)ν2
(z
ε

)
+
[(πj)2

3
+

1

2

]
ν ′

2
(z
ε

)
+

1

2
ν
(z
ε

)
ν ′′
(z
ε

)]
pεj(ω, z)

− σ2

4
ν
(z
ε

)
ν ′
(z
ε

)
ε∂zp

ε
j(ω, z) ≈ Cε

j (ω, z) + f(ω)yj(ρ?, 0)δ(z), (3.31)

at |z| < ZM , where the approximation is because we neglect the O(
√
ε) terms that

vanish in the limit ε→ 0. The coupling term is

Cε
j (ω, z) :=

∞∑
q=1,q 6=j

{2jq(−1)j+q

(q2 − j2)

[ σ√
ε
ν ′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν ′
(z
ε

)]
ε∂zp

ε
q(ω, z)

+
D′(z)

D(z)

2jq[1 + (−1)j+q]

(q2 − j2)
ε∂zp

ε
q(ω, z)

+
jq(−1)j+q

(q2 − j2)

[ σ√
ε
ν ′′
(z
ε

)
− σ2

2
ν
(z
ε

)
ν ′′
(z
ε

)]
pεq(ω, z)

+
jq(j2 + q2)(−1)j+q

(q2 − j2)2
σ2ν ′

2
(z
ε

)
pεq(ω, z)

+
κ(z)

D(z)

2jq[1− (−1)j+q]
[
j2 + 3q2 − 4

(kD(z)
π

)2]
(q2 − j2)2

pεq(ω, z)
}
, (3.32)

where we obtained from (3.143)-(3.147) that

〈(
2ρ+D

)
yj, ∂ρyq

〉
=

4jq(−1)j+q

q2 − j2
,

〈yj, ∂zyq〉 =
D′(z)

D(z)

jq[1 + (−1)j+q]

j2 − q2
,

µ2
q(z) 〈(2ρ+D)2yj, yq〉

16
−
〈(

2ρ+D
)
yj, ∂ρyq

〉
4

=
jq(j2 + q2)(−1)j+q

(q2 − j2)2
,

(
k2 − µ2

q(z)
)
〈(2ρ+D)yj, yq〉+ 〈yj, ∂ρyq〉 =

2jq[1− (−1)j+q]

D(z)(q2 − j2)2

×
[
j2 + 3q2 − 4

(kD(z)

π

)2]
.

We now use integrating factors to simplify equations (3.31). Specifically, we define

uεj(ω, z) := pεj(ω, z) exp
[σ√ε

4
ν
(z
ε

)
− σ2ε

16
ν2
(z
ε

)]
= pεj(ω, z)[1 +O(

√
ε)], (3.33)
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and obtain after substituting in (3.31) that these modes satisfy a coupled system of

one dimensional wave equations

1

ε

[
(ε∂z)

2 + k2 − µ2
j(z)

]
uεj(ω, z) +

σ√
ε
µ2
j(z)ν

(z
ε

)
uεj(ω, z) + σ2gεj (ω, z)u

ε
j(ω, z)

≈ Cεj (ω, z) + f(ω)yj(ρ?, 0)δ(z). (3.34)

The coefficient gεj in the left-hand side is

gεj (ω, z) := −3

4
µ2
j(z)ν2

(z
ε

)
−
[(πj)2

12
+

1

16

]
ν ′

2
(z
ε

)
, (3.35)

and

Cεj (ω, z) =
∞∑

q=1,q 6=j

[σΓjq√
ε
ν ′′
(z
ε

)
+ σ2γjq

(z
ε

)
+ γojq(z)

]
uεq(ω, z)

+
∞∑

q=1,q 6=j

[σΘjq√
ε
ν ′
(z
ε

)
+ σ2θjq

(z
ε

)
+ θojq(z)

]
ε∂zu

ε
q(ω, z), (3.36)

models the coupling between the modes. The leading coupling coefficients are the

constants

Γjq :=
jq(−1)j+q

(q2 − j2)
, Θjq :=

2jq(−1)j+q

(q2 − j2)
. (3.37)

The second order coefficients, due to the random fluctuations, are

γjq

(z
ε

)
:=

jq(−1)j+q

2(q2 − j2)

[(3j2 + q2)

(q2 − j2)
ν ′

2
(z
ε

)
− ν
(z
ε

)
ν ′′
(z
ε

)]
, (3.38)

θjq

(z
ε

)
:= −jq(−1)j+q

(q2 − j2)
ν
(z
ε

)
ν ′
(z
ε

)
, (3.39)

and those due to the slow changes in the waveguide are

γojq(z) :=
κ(z)

D(z)

2jq[1− (−1)j+q]
[
j2 + 3q2 − 4

(kD(z)
π

)2]
(q2 − j2)2

, (3.40)

θojq(z) :=
D′(z)

D(z)

2jq[1 + (−1)j+q]

(q2 − j2)
. (3.41)
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In the region |z| > ZM , where the waveguide has straight and parallel boundaries,

the wave equation simplifies to

1

ε

[
(ε∂z)

2 + k2 − µ2
j(z)

]
uεj(ω, z) = 0. (3.42)

Depending on the index j, its solution is either an outgoing propagating wave or a

decaying evanescent wave. This wave is connected to the solution of (3.34) by the

continuity of uεj and ∂zu
ε
j at z = ±ZM .

3.5 Random mode amplitudes

Equations (3.34) are perturbations of the wave equation with operator (ε∂z)
2+k2−

µ2
j(z), where the perturbation term models the coupling of the modes. This coupling

is similar to that in waveguides with randomly perturbed parallel boundaries, studied

in [4, 14], but the slow variation of the waveguide introduces two differences: The

first is the presence of the extra terms γojq(z) and θojq(z) in (3.36), given by (3.40)-

(3.41), which turn out to play no role in the limit ε → 0. The second difference is

important, as it gives a z dependent number

N(z) =

⌊
kD(z)

π

⌋
(3.43)

of mode indices j = 1, . . . , N(z) for which k2−µ2
j(z) > 0. These modes are oscillatory

functions in z, and represent left and right going waves. For indices j > N(z) the

modes are decaying evanescent waves.

3.5.1 Turning points

The function (3.43) that defines the number of propagating modes is piecewise

constant. Starting from the origin, where we denote the number of propagating

modes by N (0) := N(0), the function (3.43) increases by 1 at arc lengths z
(t)
+ > 0, for
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t = 1, . . . , t+M , and decreases by 1 at z
(t)
− < 0, for t = 1, . . . , t−M . The jump locations

z
(t)
± , ordered as

−ZM < . . . < z
(2)
− < z

(1)
− < 0 < z

(1)
+ < z

(2)
+ < . . . < ZM ,

are the zeroes of the eigenvalues (3.28), and are called turning points [36, 6]. We

assume henceforth that the monotonically increasing D(z) satisfies

D′
(
z

(t)
±
)
> 0, ∀ t ≥ 1, (3.44)

so that the turning points are simple and isolated. Consistent with our scaling, they

are spaced at order one scaled distances.

Between any two consecutive turning points z
(t−1)
± and z

(t)
± , where we set by con-

vention z
(0)
± = 0, the number of propagating modes equals the constant

N
(t−1)
± := N (0) ± (t− 1). (3.45)

This number is bounded above and below as in (3.14), with Nmin = N(−ZM) and

Nmax = N(ZM), so the bounds t+M and t−M on the indices t are

t−M = N (0) −Nmin + 1 and t+M = Nmax −N (0) + 1. (3.46)

Beginning from the source location z = 0, which we assume is not a turning point,

z
(t)
− is defined as the unique, negative arc-length satisfying

k =
πN

(t−1)
−

D
(
z

(t)
−
) , t = 1, . . . , t−M , (3.47)

where the uniqueness is due to the monotonicity of D(z). Similarly, the jump location

z
(t)
+ is defined as the unique, positive arc length satisfying

k =
π
(
N

(t−1)
+ + 1

)
D
(
z

(t)
+

) , t = 1, . . . , t+M . (3.48)
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The analysis of the modes is similar on the left and right of the source, so we

focus attention in this section on a sector z ∈
(
z

(t)
− , z

(t−1)
−

)
of the waveguide, for some

1 ≤ t ≤ t−M , and simplify the notation for the number (3.45) of propagating modes

N := N
(t−1)
− . (3.49)

These modes are a superposition of right and left going waves, with random ampli-

tudes that model cumulative scattering in the waveguide, as we explain in the next

section.

3.5.2 The left and right going waves

We decompose the propagating modes in left and right going waves, using a flow

of smooth and invertible matrices Mε
j(ω, z),aεj(ω, z)

bεj(ω, z)

 := Mε,−1
j (ω, z)

uεj(ω, z)
vεj (ω, z)

 , (3.50)

where Mε,−1
j denotes the inverse of Mε

j and

vεj (ω, z) := −iε∂zuεj(ω, z), j = 1, . . . ,N . (3.51)

We obtain from (3.34) that

∂z

aεj(ω, z)
bεj(ω, z)

 = Mε,−1
j (ω, z)

 i

ε

 0 1

k2(ω)− µ2
j(z) 0

Mε
j(ω, z)− ∂zMε

j(ω, z)

+

[
iσ√
ε
µ2
j(z)ν

(z
ε

)
+ iσ2gεj (ω, z)

]0 0

1 0

Mε
j(ω, z)


aεj(ω, z)
bεj(ω, z)


− i Cεj (ω, z)M

ε,−1
j (ω, z)

0

1

 , (3.52)

and the decomposition is achieved by a flow Mε
j(ω, z) that removes to leading order

the large deterministic term in (3.52), the first line in the right hand side.
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The matrix Mε
j(ω, z) has the structure

Mε
j(ω, z) =

M ε
j,11(ω, z) −M ε

j,11(ω, z)

M ε
j,21(ω, z) M ε

j,21(ω, z)

 , (3.53)

where the bar denotes complex conjugate, so that the decomposition (3.50) conserves

energy. The expression of the components in (3.53) depends on the mode index, more

precisely on the mode wavenumber denoted by

βj(ω, z) :=
√
k2 − µ2

j(z). (3.54)

Note that βj is bounded away from zero for all j = 1, . . . ,N − 1, and it approaches

zero as z ↘ z
(t)
− , for j = N . This last mode is a turning wave which transitions

from a propagating wave at z ∈ (z
(t)
− , z

(t−1)
− ) to an evanescent wave at z < z

(t)
− , as

described in section 3.5.3. Here we give the decomposition of the modes indexed by

j ≤ N − 1.

The entries of (3.53) are defined by

M ε
j,11(ω, z) :=

1√
βj(ω, z)

exp
[ i
ε

∫ z

0

dz′βj(ω, z
′)
]
,

M ε
j,21(ω, z) := βj(ω, z)M

ε
j,11(ω, z), (3.55)

for j = 1, . . . ,N − 1. This definition looks the same as in perfect waveguides with

straight and parallel boundary, except that the mode wavenumber βj varies with z.

We obtain from (3.53)-(3.55) that the determinant of Mε
j(ω, z) is constant

det Mε
j(ω, z) = 2, ∀ z ∈

(
z

(t)
− , z

(t−1)
−

)
, (3.56)

so the matrix is invertible, and the decomposition (3.50) can be rewritten as

uεj(ω, z) =
1√

βj(ω, z)

[
aεj(ω, z)e

i
ε

∫ z
0 dz

′βj(ω,z′) − bεj(ω, z)e−
i
ε

∫ z
0 dz

′βj(ω,z′)
]
, (3.57)
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and

ε∂zu
ε
j(ω, z) = i

√
βj(ω, z)

[
aεj(ω, z)e

i
ε

∫ z
0 dz

′βj(ω,z′) + bεj(ω, z)e
− i
ε

∫ z
0 dz

′βj(ω,z′)
]
. (3.58)

The equations (3.57)-(3.58) are precisely what one would obtain using the method

of variation of parameters for the perturbed wave equation satisfied by the j-th mode

subject to the appropriate source and radiation conditions, which are given in detail

in a later section. They decompose the mode in a right going wave with amplitude

aεj and a left going wave with amplitude bεj . In perfect waveguides these amplitudes

would be constant, meaning physically that the waves are independent. In our case

the amplitudes are random fields, satisfying the system of stochastic differential

equations

∂z

aεj(ω, z)
bεj(ω, z)

 = Hε
j(ω, z)

aεj(ω, z)
bεj(ω, z)

− i

2
Cεj (ω, z)

M ε
j,11(ω, z)

M ε
j,11(ω, z)

 , (3.59)

obtained by substituting (3.53) and (3.55) in (3.52). Here Hε
j(ω, z) is the matrix-

valued random process

Hε
j(ω, z) :=

Hε(aa)
j (ω, z) H

ε(ab)
j (ω, z)

H
ε(ba)
j (ω, z) H

ε(bb)
j (ω, z)

 , (3.60)

with entries satisfying the relations

H
ε(ba)
j (ω, z) = H

ε(ab)
j (ω, z), H

ε(bb)
j (ω, z) = H

ε(aa)
j (ω, z), (3.61)

and taking the values

H
ε(aa)
j (ω, z) ≈ i

2βj(ω, z)

[ σ√
ε
µ2
j(z)ν

(z
ε

)
+ σ2gεj (ω, z)

]
, (3.62)

and

H
ε(ab)
j (ω, z) ≈

[
H
ε(aa)
j (ω, z)− ∂zβj(ω, z)

2βj(ω, z)

]
exp

[
− 2i

ε

∫ z

0

dz′βj(ω, z
′)
]
. (3.63)
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As before, the approximation means up to negligible terms in the limit ε→ 0.

Equations (3.59) show that the amplitudes of the j-th mode are coupled to each

other by the process Hε
j , and to the other modes by Cεj , defined by the series (3.36).

The first terms in this series involve the propagating waves uεq(ω, z), for q 6= j,

decomposed as in (3.57)-(3.58). We describe in the next two sections the turning

and the evanescent waves.

3.5.3 The turning waves

The mode indexed by j = N transitions at z = z
(t)
− from propagating to evanes-

cent. This transition is captured by the matrix Mε
N (ω, z), which has the same struc-

ture as in (3.53), but its entries are defined in terms of Airy functions [19, chapter

9]. This is because near the simple turning point z
(t)
− , equation (3.34) for j = N is

a perturbation of Airy’s equation. We refer to [6, 47] for classic studies of turning

waves in waveguides, and to [11] for an analysis of their interaction with the random

boundary. The setup in [11] is the same as here, with the exception that we consider

a larger standard deviation of the random fluctuations, to observe mode coupling in

the waveguide.

We use the same Mε
N (ω, z) as in [11], with entries

M ε
N ,11(ω, z) := ε−1/6

√
πQN (ω, z) exp

[
− i

φN
(
ω, 0
)

ε
+
iπ

4

]
×
[
Ai
(
− ηεN (ω, z)

)
− iBi

(
− ηεN (ω, z)

)]
, (3.64)

and

M ε
N ,21(ω, z) := −iε∂zM ε

N ,11(ω, z), (3.65)

for z ∈
(
z

(t)
− − δ, z

(t−1)
−

)
, where δ is a small, positive number, independent of ε. We

go slightly beyond the turning point to capture the transition of the wave to an
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evanescent one. The phase in definition (3.64) is given by the function

φN (ω, z) :=

∫ z

z
(t)
−

dz′
√
|k2 − µ2

N (z′)|, (3.66)

evaluated at the source location z = 0, and the amplitude factor

QN (ω, z) :=

∣∣3φN (ω, z)/2
∣∣1/6∣∣k2 − µ2

N (z)
∣∣1/4 , (3.67)

is shown in [11, Section 3.1.1] to be bounded, and at least twice continuously differ-

entiable. The Airy functions Ai and Bi are evaluated at

ηεN (ω, z) := sign
(
z − z(t)

−

)[3|φN (ω, z)|
2ε

]2/3

, (3.68)

where |ηε(ω, z)| is of order one in the vicinity
∣∣z − z

(t)
−
∣∣ ≤ O

(
ε2/3
)

of the turning

point, and it is much larger than one in the rest of the domain
(
z

(t)
− − δ, z

(t−1)
−

)
.

We summarize here a few facts about Mε
N (ω, z) from [11] and refer to section

3.10.2 in an appendix included at the end of this chapter for details. We have from

[11, Lemma 3.1] that the matrix Mε
N (ω, z) is invertible, with constant determinant

det Mε
N (ω, z) = 2, ∀ z ∈

(
z

(t)
− − δ, z

(t−1)
−

)
, (3.69)

so the decomposition (3.50) is well defined. Moreover, [11, Lemma 3.2] shows that

at z − z(t)
− � ε2/3 the expressions (3.64)-(3.65) become like (3.55),

M ε
N ,11(ω, z) =

1√
βN (ω, z)

exp
[ i
ε

∫ z

0

dz′βN (ω, z′)
]

+O(ε),

M ε
N ,21(ω, z) = βN (ω, z)M ε

N ,11(ω, z) +O(ε), (3.70)

so the turning wave behaves just like any other propagating wave until it reaches the

vicinity of the turning point from the right. On the left side of the turning point, at

z
(t)
− − z � ε2/3, the entries of Mε

N (ω, z) grow exponentially, as given in [11, Lemma
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3.3]. The wave is evanescent in this region, and must be decaying in order to have

energy conservation. This is ensured by the radiation condition

aεN
(
ω, z

(t)
− − δ

)
= i exp

[2i

ε
φN
(
ω, 0
)]
bεN
(
ω, z

(t)
− − δ

)
, (3.71)

which sets to zero the coefficients of the growing Airy function Bi and its derivative

Bi′ in the expression of uεN and ∂zu
ε
N at the end z

(t)
− − δ of the domain. We refer to

[11, Section 3.1] for more details, and for the proof that the result does not depend

on the particular choice of δ which is small, but bounded away from 0 in the limit

ε→ 0.

The evolution equation of the turning mode amplitudes is of the same form as in

(3.59), with the following entries of the matrix (3.60)-(3.61) indexed by j = N ,

H
ε(aa)
N (ω, z) ≈

i
∣∣M ε
N ,11(ω, z)

∣∣2
2

[ σ√
ε
µ2
j(z)ν

(z
ε

)
+ σ2gεj (ω, z)

]
, (3.72)

and

H
ε(ab)
N (ω, z) ≈ −

i
[
M ε
N ,11(ω, z)

]2
2

[ σ√
ε
µ2
j(z)ν

(z
ε

)
+ σ2gεj (ω, z)

]
. (3.73)

These expressions reduce to those in (3.62)-(3.63) at z − z(t)
− � ε2/3, with the extra

term involving ∂zβN in (3.63) coming from an O(ε) correction of the amplitudes,

induced by the residual in (3.70).

3.5.4 Coupling with the evanescent waves

The modes indexed by j > N in equations (3.34) are evanescent waves, with

wavenumber

βj(ω, z) :=
√
µ2
j(z)− k2. (3.74)

In order to close our system for the propagating modes we will show that these waves

can be expressed in terms of the propagating ones.
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Let us begin by rewriting equation (3.34) in first order system form, for the

unknown vector with components uεj(ω, z) and

vεj (ω, z) :=
ε

βj(ω, z)
∂zu

ε
j(ω, z), (3.75)

where j > N and z ∈
(
z

(t)
− , z

(t−1)
−

)
. The mode wavenumber βj is defined in (3.74),

and the system is∂z − βj(ω, z)

ε

0 1

1 0

+
[ σµ2

j(z)
√
εβj(ω, z)

ν
(z
ε

)
+
σ2gεj (ω, z)

βj(ω, z)

]0 0

1 0



uεj(ω, z)
vεj (ω, z)


=
Cεj (ω, z)
βj(ω, z)

0

1

 . (3.76)

The matrix

0 1

1 0

 in the leading term has the eigenvalues ±1, and the orthonormal

eigenfunctions 1√
2

 1

±1

. Expanding the solution in the basis of these eigenfunctions

uεj(ω, z)
vεj (ω, z)

 =
α+
j (ω, z)
√

2

1

1

+
α−j (ω, z)
√

2

 1

−1

 , (3.77)

and substituting in (3.76) gives the following equations for the coefficients[
∂z ∓

βj(ω, z)

ε

]
α±j (ω, z) = ±

Cεj (ω, z)√
2βj(ω, z)

∓
[
α+
j (ω, z) + α−j (ω, z)

]
2βj(ω, z)

×
[ σ√

ε
µ2
j(z)ν

(z
ε

)
+ σ2gεj (ω, z)

]
. (3.78)

These are complemented with the boundary conditions

α+
j

(
ω, z

(t−1)
−

)
=
√

2c
(t)+
j , α−j

(
ω, z

(t)
−
)

= 0, (3.79)

with constant c
(t)
j to be determined later, indexed by t to remind us that we work in

the sector z ∈
(
z

(t)
− , z

(t−1)
−

)
. In (3.79) we set to zero the component α−j at the farther

end z
(t)
− from the source, to suppress the growing part of the solution.
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We obtain after integration of (3.78) that

α+
j (ω, z) =

√
2c

(t)
j exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω, ζ)
]
−
∫ z

(t−1)
−

z

dζ
exp

[
− 1

ε

∫ ζ
z
ds βj(ω, s)

]
√

2βj(ω, ζ)

×

{
Cεj (ω, ζ)−

[
α+
j (ω, ζ) + α−j (ω, ζ)

]
√

2

[ σ√
ε
µ2
j(ζ)ν

(ζ
ε

)
+ σ2gεj (ω, ζ)

]}
, (3.80)

and

α−j (ω, z) = −
∫ z

z
(t)
−

dζ
exp

[
− 1

ε

∫ z
ζ
ds βj(ω, s)

]
√

2βj(ω, ζ)

{
Cεj (ω, ζ)−

[
α+
j (ω, ζ) + α−j (ω, ζ)

]
√

2

×
[ σ√

ε
µ2
j(ζ)ν

(ζ
ε

)
+ σ2gεj (ω, ζ)

]}
. (3.81)

All the exponential terms in these equations are decaying in z, so we can change the

variable of integration as ζ = z+ εξ, and note that only ξ = O(1) contributes to the

result. Equation (3.80) becomes

α+
j (ω, z) ≈

√
2c

(t)
j exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω, ζ)
]
− ε√

2βj(ω, z)

∫ ∞
0

dξ e−ξβj(ω,z)

×
{
Cεj (ω, z + εξ)− uεj(ω, z + εξ)

[ σ√
ε
µ2
j(z)ν

(z
ε

+ ξ
)

+ σ2gεj (ω, z + εξ)
]}

, (3.82)

where we used (3.77) in the integrand, and the approximation means that we neglect

terms that vanish in the limit ε→ 0. Similarly, equation (3.81) becomes

α−j (ω, z) ≈ − ε√
2βj(ω, z)

∫ 0

−∞
dξ eξβj(ω,z)

{
Cεj (ω, z + εξ)− uεj(ω, z + εξ)

×
[ σ√

ε
µ2
j(z)ν

(z
ε

+ ξ
)

+ σ2gεj (ω, z + εξ)
]}

. (3.83)

The expression of uεj follows from these equations and (3.77),

uεj(ω, z) ≈ c
(t)
j (ω) exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω, ζ)
]
− ε

2βj(ω, z)

∫ ∞
−∞

dξ e−|ξ|βj(ω,z)

×
{
Cεj (ω, z + εξ)− uεj(ω, z + εξ)

[ σ√
ε
µ2
j(z)ν

(z
ε

+ ξ
)

+ σ2gεj (ω, z + εξ)
]}

. (3.84)
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The derivative ε∂zu
ε
j is obtained from (3.75), (3.77), (3.82)-(3.83) and integration by

parts

ε∂zu
ε
j(ω, z) ≈ βj(ω, z)c

(t)
j (ω) exp

[1

ε

∫ z

z
(t−1)
−

dζ βj(ω, ζ)
]
− ε

2βj(ω, z)

∫ ∞
−∞

dξ e−|ξ|βj(ω,z)

× ε∂z

{
Cεj (ω, z + εξ)− uεj(ω, z + εξ)

[ σ√
ε
µ2
j(z)ν

(z
ε

+ ξ
)

+ σ2gεj (ω, z + εξ)
]}

. (3.85)

Now let us recall the expression (3.36) of Cεj (ω, z), which models the coupling with

the other modes, and write it as the sum of two terms:

Cεj (ω, z) =: Cε(p)j (ω, z) + Cε(e)j (ω, z). (3.86)

The first term is the coupling with the propagating modes, and is given by restricting

the sum in (3.36) to q ≤ N . The second term is the remaining series, with terms

indexed by q > N , and q 6= j. Each term in this series involves uεq(ω, z) and

ε∂zu
ε
q(ω, z) that have expressions like (3.84)-(3.85). Stringing all the unknowns in

the infinite-dimensional vector U :=
(
UN+1,UN+2, . . . ,

)
where Uj := (uεj , ε∂zu

ε
j),

for j > N , we can write equations (3.84)-(3.85) in compact form as

(
I−
√
εK
)
U(ω, z) = F (ω, z), (3.87)

with right hand side given by the concatenation of

Fj(ω, z) :=

 1

βj(ω, z)

 c
(t)
j (ω) exp

[
− 1

ε

∫ z
(t−1)
−

z

dζ βj(ω, ζ)
]

− ε

2βj(ω, z)

∫ ∞
−∞

dξe−|ξ|βj(ω,z)

 1

ε∂z

 Cε(p)j (ω, z + εξ), (3.88)

for j ≥ N . In the left hand side of (3.87) we have the perturbation of the identity I

by the integral operator K, whose kernel follows easily from the (uεq)q>N dependent

terms in the integrand in (3.84)-(3.85), including those in Cε(e)j . This integral operator
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is similar to that analyzed in [4, Lemma 3.1], and we show in chapter VI it is bounded

independent of ε sufficiently small with respect to an appropriate norm. This means

that we can solve (3.87) using Neumann series and obtain

U(ω, z) = F (ω, z) +O(
√
ε). (3.89)

The first term in (3.88) matters only in the O(ε) vicinity of z
(t−1)
− , over which the

mode coupling is negligible. The constant c
(t)
j is determined by continuity conditions

at z
(t−1)
− as follows: If t = 1, so that z

(t−1)
− = 0, c

(1)
j is determined by the source

excitation, and it equals the coefficient of the j-th evanescent mode in the perfect

waveguide with width D(0). If t > 1, then c
(t)
j is determined by continuity of the

wavefield at the turning point z
(t−1)
− .

Assuming that z
(t−1)
− − z � ε, so we can neglect the first term in (3.88), we have uεj(ω, z)

ε∂zu
ε
j(ω, z)

 ≈ − ε

2βj(ω, z)

∫ ∞
−∞

dξe−|ξ|βj(ω,z)

 1

ε∂z

 Cε(p)j (ω, z + εξ), (3.90)

with

εCε(p)j (ω, z + εξ) ≈σ
√
ε
N∑
q=1

[
Γjqν

′′
(z
ε

+ ξ
)

+ Θjqν
′
(z
ε

+ ξ
)
ε∂z

]
uεq(ω, z + εξ), (3.91)

obtained from (3.36). Here the modes uεq and their derivative ε∂zu
ε
q(ω, z) are given

in (3.57)-(3.58), and the constant coefficients Γjq and Θjq are defined in (3.37).

Substituting in (3.91) and then (3.90), and using that the derivatives of the mode

amplitudes given in (3.59) are at most O(ε−1/2), we obtain

uεj(ω, z) ≈−
σ
√
ε

2βj(ω, z)

N∑
q=1

∫ ∞
−∞
dξ

[
γ

(e)
jq

(
ω,
z

ε
+ ξ
) aεq(ω, z)√

βq(ω, z)
e

1
ε

∫ z
0 dz

′βq(ω,z′)+iξβq(ω,z)

−γ(e)
jq

(
ω,
z

ε
+ ξ
) bεq(ω, z)√

βq(ω, z)
e−

1
ε

∫ z
0 dz

′βq(ω,z′)−iξβq(ω,z)

]
e−|ξ|βj(ω,z). (3.92)
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Here we introduced the notation

γ
(e)
jq

(
ω,
z

ε
+ ξ
)

:= Γjqν
′′
(z
ε

+ ξ
)

+ iβq(ω, z)Θjqν
′
(z
ε

+ ξ)
)
, (3.93)

with coefficients Γjq and Θjq defined in (3.37), and recall that the bar denotes complex

conjugate.

The derivative in the integrand in (3.90) is

ε∂z

[
εCε(p)j (ω, z + εξ)

]
= σ
√
ε

N∑
q=1

[
Γjqν

′′′
(z
ε

+ ξ
)

+
(
Γjq + Θjq

)
ν ′′
(z
ε

+ ξ
)
ε∂z

− β2
q (ω, z)Θjqν

′
(z
ε

+ ξ
)]
uεq(ω, z + εξ), (3.94)

where we used equation (3.34) for (ε∂z)
2uεq. Substituting (3.57)-(3.58) in (3.94) and

then in (3.90), we obtain

ε∂zu
ε
j(ω, z) ≈−

σ
√
ε

2βj(ω, z)

N∑
q=1

∫ ∞
−∞
dξ

[
θ

(e)
jq

(
ω,
z

ε
+ ξ
) aεq(ω, z)√

βq(ω, z)
e

1
ε

∫ z
0 dz

′βq(ω,z′)+iξβq(ω,z)

−θ(e)
jq

(
ω,
z

ε
+ ξ
) bεq(ω, z)√

βq(ω, z)
e−

1
ε

∫ z
0 dz

′βq(ω,z′)−iξβq(ω,z)

]
e−|ξ|βj(ω,z), (3.95)

with notation

θ
(e)
jq

(
ω,
z

ε
+ ξ
)

:= Γjqν
′′′
(z
ε

+ ξ
)
− β2

q (ω, z)Θjqν
′
(z
ε

+ ξ
)

+iβq(ω, z)(Γjq + Θjq)ν
′′
(z
ε

+ ξ)
)
. (3.96)

3.6 Closed system for the propagating modes

The propagating mode amplitudes satisfy the system of equations (3.59), with

coupling modeled by the series (3.36). Substituting the expressions (3.92) and (3.95)

of the evanescent waves in (3.36), we obtain a closed system of equations for the

propagating modes, as we now explain.
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3.6.1 Propagation between turning points

We begin with z ∈
(
z

(t)
− , z

(t−1)
−

)
satisfying z − z(t)

− � ε2/3 and z
(t−1)
− − z � ε. In

this region the turning wave indexed by j = N behaves like all the other propagating

modes, and the evanescent modes have the expression (3.92) and (3.95). The system

of equations for the right- and left-going amplitudes is

∂z

aε(ω, z)
bε(ω, z)

 = Υε(ω, z)

aε(ω, z)
bε(ω, z)

 , (3.97)

where aε and bε are the complex column vectors in CN with entries aεj and bεj , for

1 ≤ j ≤ N . The complex matrix Υε(ω, z) depends on the random fluctuations ν

and the slow changes of the waveguide, and has the block structure

Υε(ω, z) :=

Υε(aa)(ω, z) Υε(ab)(ω, z)

Υε(ba)(ω, z) Υε(bb)(ω, z)

 , (3.98)

with N ×N blocks satisfying the relations

Υε(ba)(ω, z) = Υε(ab)(ω, z), Υε(bb)(ω, z) = Υε(aa)(ω, z). (3.99)

Their entries are defined as follows: Off the diagonal, we have

Υ
ε(aa)
jq (ω, z) := −ie

i
ε

∫ z
0 dz

′
(
βq(ω,z′)−βj(ω,z′)

)
2
√
βj(ω, z)βq(ω, z)

{
σ√
ε

[
Γjqν

′′
(z
ε

)
+ iβq(ω, z)Θjqν

′
(z
ε

)]
+σ2

[
γ̃jq

(
ω,
z

ε

)
+ iβqθ̃jq

(
ω,
z

ε

)]
+ γojq(z) + iβq(ω, z)θ

o
jq(z)

}
, j 6= q, (3.100)

and

Υ
ε(ab)
jq (ω, z) := Υ

ε(aa)
jq (ω, z)e−

2i
ε

∫ z
0 dz

′ βj(ω,z′), j 6= q, (3.101)

and on the diagonal we have

Υ
ε(aa)
jj (ω, z) := H

ε(aa)
j (ω, z) +

iσ2

2βj(ω, z)
ηj

(
ω,
z

ε

)
, (3.102)
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and

Υ
ε(ab)
jj (ω, z) :=

[
Υ
ε(aa)
jj (ω, z)− ∂zβj(ω, z)

2βj(ω, z)

]
e−

2i
ε

∫ z
0 dz

′ βj(ω,z′). (3.103)

The coefficients in these definitions are given in (3.62), and (3.37)-(3.41), except for

ηj, γ̃jq and θ̃jq, which include the interaction with the evanescent modes. These are

defined by

γ̃jq

(
ω,
z

ε

)
:= γjq

(z
ε

)
−
∑
l>N

Γjl
2βl(ω, z)

ν ′′
(z
ε

)∫ ∞
−∞
dξ γ

(e)
lq

(
ω,
z

ε
+ ξ
)
e−|ξ|βl(ω,z)+iξβq(ω,z),

and

θ̃jq

(
ω,
z

ε

)
:= θjq

(z
ε

)
−
∑
l>N

Θjl

2βl(ω, z)
ν ′
(z
ε

)∫ ∞
−∞
dξ θ

(e)
lq

(
ω,
z

ε
+ ξ
)
e−|ξ|βl(ω,z)+iξβq(ω,z),

and

ηj

(
ω,
z

ε

)
:=
∑
l>N

1

2βl(ω, z)

∫ ∞
−∞
dξ e−|ξ|βl(ω,z)+iξβj(ω,z)

×
[
Γjlν

′′
(z
ε

)
γ

(e)
lj

(
ω,
z

ε
+ ξ
)

+ Θjlν
′
(z
ε

)
θ

(e)
lj

(
ω,
z

ε
+ ξ
)]
,

with γjq and θjq given in (3.38)-(3.39) and γ
(e)
lq , θ

(e)
lq given in (3.93) and (3.96). Note

that the coefficients Γjl/βl and Θjl/βl decay as 1/l2 for l� 1, and the integrals in ξ

are bounded, so the series defining γ̃jq, θ̃jq and ηj are absolutely convergent.

3.6.2 Vicinity of turning points

Let us consider a vicinity |z − z
(t)
− | = O(εs) of the turning point z

(t)
− , for some

s > 0, and change for a moment variables to z = z
(t)
− + εsζ, so that ζ = O(1). In the

new variable, we observe that the coupling terms in the evolution equations (3.59) for

the turning wave indexed by j = N , modeled by the series (3.36), are proportional

to

εs/2√
ε1−s

ν̃
( ζ

ε1−s

)
+O(εs), ν̃ := ν ′′ or ν ′. (3.104)
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In the limit ε → 0, described in detail in sections 3.7-3.9, all these terms tend to

zero. Thus, the turning wave does not interact with the other modes near the turning

point.

We also obtain that the right-hand side of equation (3.59) for 1 ≤ j ≤ N − 1

tends to zero as ε→ 0, so the propagating mode amplitudes remain constant as they

traverse the vicinity of the turning point z
(t)
− . A similar argument shows that the

propagating mode amplitudes remain constant as they traverse the vicinity of the

turning point z
(t−1)
− at the other end of the interval.

It remains to describe the turning mode that undergoes a transition near z
(t)
− . To

do so, we return to the original coordinate z, but stay in the vicinity of z
(t)
− . We

obtain from (3.59) with j = N , after neglecting the coupling terms, that

∂z

aεN (ω, z)

bεN (ω, z)

 ≈ Hε
N (ω, z)

aεN (ω, z)

bεN (ω, z)

 , (3.105)

where the matrix Hε
N is defined by (3.60) and (3.72)-(3.73). These equations give

∂z

[∣∣aεN (ω, z)
∣∣2 − ∣∣bεN (ω, z)

∣∣2] ≈ 0, (3.106)

and using the radiation condition (3.71), we conclude that near the turning point we

have energy conservation ∣∣aεN (ω, z)
∣∣2 ≈ ∣∣bεN (ω, z)

∣∣2. (3.107)

We note that all the energy conservation relations are approximate at a finite ε, due

to the interaction with the evanescent modes. However, we will see in section 3.9

that there is no energy loss in the limit ε→ 0. Due to the energy conservation, the

impinging left going wave with amplitude bε is reflected back at the turning point to

give the right going wave with amplitude aε, determined by the reflection coefficient

Rε
N (ω, z) :=

aεN (ω, z)

bεN (ω, z)
≈ i exp

[2i
ε
φN (ω, 0) + iϑεN (ω, z)

]
. (3.108)
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This is a complex number with modulus
∣∣Rε
N (ω, z)

∣∣ ≈ 1, because there is no loss of

power in the limit ε→ 0, and with random phase ϑεN (ω, z).

The phase ϑεN is described in detail in [11, Lemmas 4.1 and 4.2], for the purpose

of characterizing the reflection of a broad-band pulse at the turning point. The

standard deviation of the random boundary fluctuations considered in [11] is smaller

than what we have in (3.15), by a factor of | ln ε|1/2, so that as ε → 0 there is no

mode coupling at any z, small or order one. Here we have mode coupling away from

the turning points, due to the stronger random boundary fluctuations, and we are

interested in the transport of energy by single frequency modes in the waveguide.

The mode powers are not affected by the phase, so the details of ϑεN (ω, z) are not

important in the context of this dissertation.

3.6.3 Source excitation and matching conditions

The evolution equations of the left and right going mode amplitudes, described

above, are complemented by matching conditions at the turning points, by radiation

conditions at |z| > ZM , and by initial conditions at z = 0, where the source lies.

Starting from the source location z = 0, which is not a turning point, we have the

jump conditions,

aεj(ω, 0+)− aεj(ω, 0−) =
f̂(ω)yj(ρ?, 0)

2i
√
βj(ω, 0)

,

bεj(ω, 0+)− bεj(ω, 0−) =
f̂(ω)yj(ρ?, 0)

2i
√
βj(ω, 0)

, 1 ≤ j ≤ N (0), (3.109)

where we recall that N (0) is the number of propagating modes at z = 0 and we denote

a(0+) = limz↘0 a(z) and a(0−) = limz↗0 a(z).

On the left of the source, at turning points z
(t)
− , for 1 ≤ t ≤ t−M , we have the
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continuity relations

aεj(ω, z
(t)
− +) = aεj(ω, z

(t)
− −), bεj(ω, z

(t)
− +) = bεj(ω, z

(t)
− −), (3.110)

for 1 ≤ j ≤ N
(t−1)
− − 1, where we recall definition (3.45) of N

(t−1)
− . We also have the

reflection of the turning mode, modeled by the equation

aε
N

(t−1)
−

(ω, z
(t)
− +) = Rε

N
(t−1)
−

(ω, z
(t)
− )bε

N
(t−1)
−

(ω, z
(t)
− +), (3.111)

where Rε

N
(t−1)
−

is the complex reflection coefficient defined as in (3.108).

At z < −ZM , where the waveguide has straight and parallel boundaries and

supports Nmin propagating modes, the wave is outgoing (propagating to the left), so

we have the conditions

aj(z) = aj(−ZM+) = 0, bj(z) = bj(−ZM+), z < −ZM , (3.112)

for j = 1, . . . , Nmin.

Similarly, on the right of the source, at turning points z
(t)
+ , for 1 ≤ t ≤ t+M , we

have the continuity relations

aεj(ω, z
(t)
+ +) = aεj(ω, z

(t)
+ −), bεj(ω, z

(t)
+ +) = bεj(ω, z

(t)
+ −), (3.113)

for 1 ≤ j ≤ N
(t−1)
+ , where we recall definition (3.45) of N

(t−1)
+ . The number of

propagating modes increases by one at z
(t)
+ , to equal N

(t)
+ , and the amplitude of the

turning wave, indexed by j = N
(t)
+ , starts from zero there

aε
N

(t)
+

(ω, z
(t)
+ ) = bε

N
(t)
+

(ω, z
(t)
+ +) = 0. (3.114)

At z > ZM , where the waveguide has straight and parallel boundaries and sup-

ports Nmax propagating modes, the wave is outgoing (propagating to the right), so

we have the conditions

aj(z) = aj(ZM−), bj(z) = bj(ZM−) = 0, z > ZM , (3.115)

for j = 1, . . . , Nmax.
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3.7 The propagator matrix

The discussion below applies to any sector of the waveguide, so let us consider

as in section 3.5.2 the sector z ∈
(
z

(t)
− , z

(t−1)
−

)
, supporting N = N

(t−1)
− propagating

modes.

The mode amplitudes satisfy the system of equations (3.97), with 2N × 2N ran-

dom propagator matrix Pε(ω, z; z
(t−1)
− ). This solves the equation

∂zP
ε(ω, z; z

(t−1)
− ) = Υε(ω, z)Pε(ω, z; z

(t−1)
− ), (3.116)

backward in z, starting from

Pε(ω, z
(t−1)
− ; z

(t−1)
− ) = I, (3.117)

where I is the 2N × 2N identity matrix and Υε(ω, z) is defined in (3.98)-(3.103).

The propagator defines the solution of (3.97),aε(ω, z)
bε(ω, z)

 = Pε(ω, z; z
(t−1)
− )

aε(ω, z(t−1)
− )

bε(ω, z
(t−1)
− )

 , (3.118)

and due to the symmetry relations (3.99) of the blocks of Υε, we note thatbε(ω, z)
aε(ω, z)

 = Pε(ω, z; z
(t−1)
− )

bε(ω, z(t−1)
− )

aε(ω, z
(t−1)
− )

 (3.119)

is also a solution. Writing explicitly these equations, and using the uniqueness of

solution of (3.97), we conclude that the propagator has the block form

Pε(ω, z; z
(t−1)
− ) =

Pε(bb)(ω, z; z
(t−1)
− ) Pε(ba)(ω, z; z

(t−1)
− )

Pε(ba)(ω, z; z
(t−1)
− ) Pε(bb)(ω, z; z

(t−1)
− )

 . (3.120)

The blocks are N×N complex matrices, where Pε(bb) describes the coupling between

the components of bε, the vector of left-going mode amplitudes, and Pε(ba) describes
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the coupling between the components of bε and of aε, the vector of right-going mode

amplitudes.

The limit of Pε(ω, z; z
(t−1)
− ) as ε → 0 can be obtained and identified as a multi-

dimensional diffusion process, meaning that the entries of the limit matrix satisfy

a system of linear stochastic equations. This follows from the application of an

extension of the diffusion approximation theorem proved in [43] and presented in

[26, Chapter 6]. This extension is stated in Theorem V.1 and is proved in section V

for a general system of equations with real-valued unknown vector Xε. In our case

Xε is obtained by concatenating the moduli and arguments of the entries in Pε(bb)

and Pε(ba).

3.8 The forward scattering approximation

When we use Theorem V.1, we obtain that the limit entries of Pε(bb) are coupled

to the limit entries of Pε(ba) through coefficients that are proportional to the power

spectral density2 R̂ of the random fluctuations ν, evaluated at the sum of the mode

wavenumbers,

R̂
(
βj(ω, z) + βl(ω, z)

)
= 2

∫ ∞
0

dζR(ζ) cos[(βj(ω, z) + βl(ω, z))ζ] , (3.121)

for j, l = 1, . . . ,N . This can be traced back to the phase factors

1

ε

∫ z

0

dz′
[
βj(ω, z

′) + βl(ω, z
′)
]

in the matrix Υε(ba)(ω, z) defined in (3.101). The limit entries of Pε(bb)(z) are coupled

to each other through R̂
(
βj(ω, z)−βl(ω, z)

)
, because the phase factors in Υε(bb)(ω, z)

defined in (3.99)-(3.100) are

1

ε

∫ z

0

dz′
[
βj(ω, z

′)− βl(ω, z′)
]
,

2The power spectral density is the Fourier transform of the auto-correlation function R defined in (3.7). It is a
non-negative and even function that decays rapidly when R and therefore ν are smooth in z.
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for j, l = 1, . . . ,N .

To simplify the analysis of the cumulative scattering effects in the limit ε → 0,

we assume that the power spectral density R̂ peaks at zero and decays rapidly away

from it3, so that

R̂
(
βj(ω, z) + βl(ω, z)

)
≈ 0 , ∀ j, l = 1, . . . ,N . (3.122)

With this assumption we can neglect the coupling between the blocks Pε(bb)(ω, z)

and Pε(ba)(ω, z) of the propagator. Since Pε(ba) starts from zero at z = z
(t−1)
− , we

obtain

Pε(ω, z; z
(t−1)
− ) ≈

Pε(bb)(ω, z; z
(t−1)
− ) 0

0 Pε(bb)(ω, z; z
(t−1)
− )

 , (3.123)

and equation (3.118) gives

bε(ω, z) ≈ Pε(bb)(ω, z; z
(t−1)
− )bε(ω, z

(t−1)
− ) , z < z

(t−1)
− . (3.124)

This is the forward scattering approximation. It describes the left going amplitudes

bε(ω, z) of the waves, propagating forward from the source, independent of the right-

going amplitudes aε(ω, z) of the waves, propagating backward, toward the source.

Note that since βj decrease monotonically with j, the smallest argument of the

power spectral density in (3.122) is at j = l = N . The wavenumber βN (z) is of order

k/
√
N away from the turning point z

(t)
− , but tends to zero as z ↘ z

(t)
− . The left- and

right-going amplitudes of the turning mode are coupled near z
(t)
− , as described by the

reflection coefficient (3.108). We assume that this coupling holds only at z−z(t)
− < δ,

where δ is a small and positive number, independent of ε. Over the small distance δ

there is negligible interaction between the turning mode and the others, as explained

3An example is the Fourier transform of the Gaussian auto-correlation function used in the numerical simulations
in section IV.
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Figure 3.2: Plots of the matrices with entries βj + βl and |βj − βl|
The matrix with entries βj+βl is on the left and |βj−βl| is on the right, both are plotted v.s. j, l = 1, . . . ,N ,
for the case of N = 40 propagating modes. The scaled wavenumber is k = 2π and the waveguide width is
D = 20.25. Note that the entries in the left plot are larger than 2βN = 1.97, whereas the entries near the
diagonal in the right plot are small.

in section 3.6.2. In the remaining interval z ∈ (z
(t)
− + δ, z

(t−1)
− ) we have

R
(
2βN (ω, z)

)
. R̂

(
2βN (ω, z

(t)
− + δ)

)
≈ 0, (3.125)

so we can use the forward scattering approximation.

Note that there is mode coupling in this approximation, but only between the

forward-going mode amplitudes. This is due to the fact that |βj(ω, z) − βl(ω, z)| is

small at least for nearby indices j, l, as illustrated in Figure 3.2. The power spectral

density evaluated at such differences is not negligible, and the net coupling effect is

described in the next section.

3.9 The coupled mode diffusion process

The ε → 0 limit of the forward-going mode amplitudes is stated in the next

theorem. We derive it using Theorem V.1 for the vector Xε ∈ R2N obtained by

concatenating the moduli and arguments of bεj , with j = 1, . . . ,N . The differential

equations for Xε follow from the system

∂zb
ε(ω, z) ≈ Υε(bb)(ω, z)bε(ω, z) , z < z

(t−1)
− , (3.126)
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with given bε(ω, z
(t−1)
− ). As explained in the previous section, the approximation in

(3.126) means that there is an error that vanishes in the limit ε→ 0.

Theorem III.1. The complex mode amplitudes {bεj(ω, z)}Nj=1 converge in distribution

as ε→ 0 to an inhomogeneous diffusion Markov process {bj(ω, z)}Nj=1 with generator

−LNz given below.4

Let us write the limit process as

bj(ω, z) = P
1/2
j (ω, z)eiψj(ω,z), j = 1, . . . ,N ,

in terms of the power Pj := |bj|2 and the phase ψj := arg bj. Then, we can express

the infinitesimal generator of the limit diffusion as the sum of two operators

LNz = LNP,z + LNψ,z. (3.127)

The first is a partial differential operator in the powers

LNP,z :=
N∑

j,l=1
j 6=l

G
(c)
jl (ω, z)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+ (Pl − Pj)

∂

∂Pj

]
, (3.128)

with symmetric matrix G(c)(ω, z) :=
(
G

(c)
jl (ω, z)

)N
j,l=1

of coefficients that are non-

negative off the diagonal

G
(c)
jl (ω, z) :=

σ2µ2
j(z)µ2

l (z)

4βj(ω, z)βl(ω, z)
R̂[βj(ω, z)− βl(ω, z)] , j 6= l , (3.129)

and sum to zero in the rows

G
(c)
jj (ω, z) := −

N∑
l=1
l 6=j

G
(c)
jl (ω, z) . (3.130)

4The minus sign in front of the generator is because we solve the Kolmogorov equation for the moments of the

limit process backward in z, starting from z
(t−1)
− .
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The second partial differential operator in (3.127) is with respect to the phases

LNψ,z :=
1

8

N∑
j,l=1
j 6=l

G
(c)
jl (ω, z)

[
Pj
Pl

∂2

∂ψ2
l

+
Pl
Pj

∂2

∂ψ2
j

+ 2
∂2

∂ψj∂ψl

]
+

1

2

N∑
j,l=1

G
(0)
jl (ω, z)

∂2

∂ψj∂ψl

+
1

2

N∑
j,l=1
j 6=l

G
(s)
jl (ω, z)

∂

∂ψj
+
N∑
j=1

κNj (ω, z)
∂

∂ψj
, (3.131)

with coefficients

G
(0)
jl (ω, z) :=

σ2µ2
j(z)µ2

l (z)

4βj(ω, z)βl(ω, z)
R̂(0) , j, l = 1, . . . ,N , (3.132)

and

G
(s)
jl (ω, z) :=

σ2µ2
j(z)µ2

l (z)

2βj(ω, z)βl(ω, z)

∫ ∞
0

dζR(ζ) sin [(βj(ω, z)− βl(ω, z))ζ] , (3.133)

for j, l = 1, . . . ,N and j 6= l. The coefficient κNj in the last term of (3.131) is

κNj (ω, z) :=
σ2

2βj(ω, z)

{(π2j2

12
+

1

16

)
R′′(0)−

3µ2
j(z)

4
R(0)

}
−
N∑
l=1
j 6=l

µ2
j(z)µ2

l (z)

4βj(ω, z)βl(ω, z)[βj(ω, z)− βl(ω, z)]

[
R(0) +

R′′(0)

[βj(ω, z) + βl(ω, z)]2

]

+
∑
l>N

σ2µ2
j(z)µ2

l (z)

2βjβl[β2
j (ω, z) + β2

l (ω, z)]
2

{
− βl(ω, z)R′′(0) +

∫ ∞
0

dζR′′(ζ)e−βl(ω,z)ζ

×
[
[β2
l (ω, z)− β2

j (ω, z)] cos(βj(ω, z)ζ)− 2βj(ω, z)βl(ω, z) sin(βj(ω, z)ζ)
]}
. (3.134)

Note that the coefficients of the partial derivatives with respect to the mode powers

Pj are independent of the phases ψj. This implies that {|bεj(ω, z)|2}Nj=1 converge

in distribution in the limit ε → 0 to the inhomogeneous diffusion Markov process

{Pj(ω, z)}Nj=1 with infinitesimal generator −LNP,z defined in (3.128). The total power

of the propagating modes satisfies

LNP,z
[ N∑
j=1

Pj(ω, z)
]

=
N∑

j,l=1
j 6=l

G
(c)
jl (ω, z)

[
Pl(ω, z)− Pj(ω, z)

]
= 0, (3.135)
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where we used (3.130) and the symmetry of matrix G(c)(ω, z). This implies that the

total power is conserved

N∑
j=1

Pj(ω, z) = constant, z ∈
(
z

(t)
− , z

(t−1)
−

)
. (3.136)

The evanescent waves do not contribute to the expression of the infinitesimal

generator LNP,z, so they do not exchange energy with the propagating modes in the

limit ε→ 0. However, they appear in the last coefficient (3.134) of the operator LNψ,z,

so they affect the phases of the mode amplitudes.

The limit Markov process {bj(ω, z)}Nj=1 is inhomogeneous due to the slow varia-

tions of the waveguide which make the coefficients of the operators (3.128) and (3.131)

z dependent. The slow variations also change the number of propagating modes at

the turning points, and this leads to partial reflection of power, as described in the

next chapter.

3.10 Appendix

Here we collect some integral identities and facts about the matrix Mε
N (ω, z) that

were used earlier in this chapter. The integral identities are for the eigenfunctions

(3.29) and were used in the derivation of (3.31). The facts about Mε
N (ω, z) were

used in our discussion of the turning waves in 3.5.3.

3.10.1 A Few Useful Identities

The first identity is just the statement that the eigenfunctions are orthonormal∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)yq(ρ, z) = δjq, (3.137)

where δjq is the Kronecker delta symbol. The second identity∫ D(z)/2

−D(z)/2

dρ ρy2
j (ρ, z) = 0, (3.138)
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is because the integrand is odd. The third identity follows from the fundamental

theorem of calculus,∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂ρyj(ρ, z) =
1

2

∫ D(z)/2

−D(z)/2

dρ ∂ρy
2
j (ρ, z) = 0, (3.139)

because the eigenfunctions vanish at ρ = ±D(z)/2. The fourth identity is∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]yj(ρ, z)∂ρyj(ρ, z) =

∫ D(z)/2

−D(z)/2

dρ ρ∂ρy
2
j (ρ, z)

=

∫ D(z)/2

−D(z)/2

dρ
{
∂ρ
[
ρy2

j (ρ, z)
]
− y2

j (ρ, z)
}

= −1, (3.140)

where we used integration by parts. The fifth identity is∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂zyj(ρ, z) = 0. (3.141)

To derive it, we take the z derivative in (3.137), for q = j, and obtain that

0 =∂z

∫ D(z)/2

−D(z)/2

dρ y2
j (ρ, z) = 2

∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂zyj(ρ, z)

+
D′(z)

2

[
y2
j (D(z)/2, z)− y2

j (−D(z)/2, z)
]

= 2

∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂zyj(ρ, z).

We also have from (3.137), (3.138), and definition (3.29) that∫ D(z)/2

−D(z)/2

dρ[2ρ+D(z)]2y2
j (ρ, z) = D2(z) +

8

D(z)

∫ D(z)/2

−D(z)/2

dρ ρ2 sin2

[(
ρ

D(z)
+

1

2

)
πj

]
= D2(z)

[
4

3
− 2

(πj)2

]
. (3.142)

For j 6= q we have from definition (3.29) of the eigenfunctions that∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]yj(ρ, z)∂ρyq(ρ, z) = 2πq

∫ D(z)/2

−D(z)/2

dρ

D(z)

[ 2ρ

D(z)
+ 1
]

× sin

[(
ρ

D(z)
+

1

2

)
πj

]
cos

[(
ρ

D(z)
+

1

2

)
πq

]
= −4jq(−1)j+q

j2 − q2
. (3.143)

Similarly, we obtain after taking the derivative with respect to z of yq(ρ, z) and

substituting in the integral below that∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂zyq(ρ, z) =
D′(z)

D(z)

jq
[
(−1)j+q + 1

]
j2 − q2

. (3.144)
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We also calculate using the expression (3.29) that∫ D(z)/2

−D(z)/2

dρ [2ρ+D(z)]2yj(ρ, z)yq(ρ, z) =
32D2(z)

π2

jq(−1)j+q

(j2 − q2)
, (3.145)

and ∫ D(z)/2

−D(z)/2

dρ yj(ρ, z)∂ρyq(ρ, z) =
2jq[1− (−1)j+q]

D(z)(j2 − q2)
, (3.146)

and ∫ D(z)/2

−D(z)/2

dρ (2ρ+D(z))yj(ρ, z)yq(ρ, z) = −8D(z)jq[1− (−1)j+q]

π2(j2 − q2)2
. (3.147)

3.10.2 Properties of Mε
N (ω, z)

We restate some lemmas from [11] for ease of reference. They are formulated here

to fit directly their application in section 3.5.3.

Lemma III.2. Let Mε
N (ω, z) be as defined in (3.64) and (3.65). Then

det Mε
N (ω, z) = 2 (3.148)

for all z ∈
(
z

(t)
− − δ, z

(t−1)
−

)
, where δ is a small, positive number, independent of ε.

Proof. We will compute the determinant of Mε
N (ω, z) directly, though one could also

obtain the result through an application of Abel’s theorem. We have that

det Mε
N (ω, z) = 2 Re

[
M ε
N ,11(ω, z)M ε

N ,21(ω, z)
]
.

Using the definitions (3.64) and (3.65) of the entries of Mε
N (ω, z) we have

M ε
N ,11(ω, z)M ε

N ,21(ω, z) =− iπ
[
Ai
(
− ηεN (ω, z)

)
− iBi

(
− ηεN (ω, z)

)]
×
[
Ai′
(
− ηεN (ω, z)

)
+ iBi′

(
− ηεN (ω, z)

)]
+ iπε2/3QN (ω, z)Q′N (ω, z)

×
[
Ai2
(
− ηεN (ω, z)

)
+ Bi2

(
− ηεN (ω, z)

)]
.
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Taking the real part we obtain

Re
[
M ε
N ,11(ω, z)M ε

N ,21(ω, z)
]

= π
[
Ai
(
− ηεN (ω, z)

)
Bi′
(
− ηεN (ω, z)

)
− Ai′

(
− ηεN (ω, z)

)
Bi
(
− ηεN (ω, z)

)]
where the bracketed terms are the Wronskian of the Airy functions. This is constant

and equal to 1/π and thus the desired result is achieved.

Lemma III.3. For z − z(t)
− � ε2/3, we have that the entries of Mε

N (ω, z) are given

by

M ε
N ,11(ω, z) =

1√
βN (ω, z)

exp
[ i
ε

∫ z

0

dz′βN (ω, z′)
]

+O(ε),

M ε
N ,21(ω, z) = βN (ω, z)M ε

N ,11(ω, z) +O(ε). (3.149)

Proof. For z − z(t)
− � ε2/3, the functions φN (ω, z) and ηεN (ω, z) satisfy φN (ω, z) =

O(1) and ηεN (ω, z) = O(ε−2/3) � 1. Asymptotic expansions for the Airy functions

at large, negative arguments as given in [19, chapter 9] yield

Ai
(
− ηεN (ω, z)

)
=

1
√
π
(
ηεN (ω, z)

)1/4

{
sin

[
2

3

(
ηεN (ω, z)

)3/2
+
π

4

]
+O

((
ηεN (ω, z)

)−3/2
)}

, (3.150)

Ai′
(
− ηεN (ω, z)

)
= −

(
ηεN (ω, z)

)1/4

√
π

{
cos

[
2

3

(
ηεN (ω, z)

)3/2
+
π

4

]
+O

((
ηεN (ω, z)

)−3/2
)}

, (3.151)
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and

Bi
(
− ηεN (ω, z)

)
=

1
√
π
(
ηεN (ω, z)

)1/4

{
cos

[
2

3

(
ηεN (ω, z)

)3/2
+
π

4

]
+O

((
ηεN (ω, z)

)−3/2
)}

, (3.152)

Bi′
(
− ηεN (ω, z)

)
=

(
ηεN (ω, z)

)1/4

√
π

{
sin

[
2

3

(
ηεN (ω, z)

)3/2
+
π

4

]
+O

((
ηεN (ω, z)

)−3/2
)}

. (3.153)

We also have (
ηεN (ω, z)

)1/4
= ε−1/6

[
k2 − µ2

N (z)
]1/4

QN (ω, z) (3.154)

and

2

3

(
ηεN (ω, z)

)3/2
= ε−1φN (ω, z). (3.155)

The result follows from the definition of the entries of Mε
N (ω, z) in (3.64) and (3.65)

and the expressions above.

Lemma III.4. For z
(t)
− − z � ε2/3, the entries of Mε

N (ω, z) are given by

M ε
N ,11(ω, z) ≈

[
µ2
N (z)− k2

]−1/4
exp

[1

ε

∫ z
(t)
−

z

dz′
√
µ2
N (z′)− k2 − i

φN
(
ω, 0
)

ε
− iπ

4

]
,

M ε
N ,21(ω, z) ≈

[
µ2
N (z)− k2

]−1/4
exp

[1

ε

∫ z
(t)
−

z

dz′
√
µ2
N (z′)− k2 − i

φN
(
ω, 0
)

ε
+
iπ

4

]
,

with relative error of order ε.

Proof. For z
(t)
− −z � ε2/3, the function ηεN (ω, z) is negative and satisfies |ηεN (ω, z)| =

O(ε−2/3)� 1. Asymptotic expansions for the Airy functions at large, positive argu-

ments as in [19, chapter 9] yield

Ai
(
|ηεN (ω, z)|

)
=

e−
2
3

∣∣ηεN (ω,z)

∣∣3/2
2
√
π
∣∣ηεN (ω, z)

∣∣1/4 [1 +O
(∣∣ηεN (ω, z)

∣∣−3/2
)]
, (3.156)

Ai′
(
|ηεN (ω, z)|

)
= −

∣∣ηεN (ω, z)
∣∣1/4

2
√
π

e−
2
3

∣∣ηεN (ω,z)

∣∣3/2 [
1 +O

(∣∣ηεN (ω, z)
∣∣−3/2

)]
, (3.157)
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and

Bi
(
|ηεN (ω, z)|

)
=

e
2
3

∣∣ηεN (ω,z)

∣∣3/2
√
π
∣∣ηεN (ω, z)

∣∣1/4 [1 +O
(∣∣ηεN (ω, z)

∣∣−3/2
)]
, (3.158)

Bi′
(
|ηεN (ω, z)|

)
=

∣∣ηεN (ω, z)
∣∣1/4

√
π

e
2
3

∣∣ηεN (ω,z)

∣∣3/2 [
1 +O

(∣∣ηεN (ω, z)
∣∣−3/2

)]
. (3.159)

We also have ∣∣ηεN (ω, z)
∣∣1/4 = ε−1/6

[
µ2
N (z)− k2

]1/4
QN (ω, z) (3.160)

and

2

3

∣∣ηεN (ω, z)
∣∣3/2 = ε−1

∣∣φN (ω, z)
∣∣. (3.161)

The result follows from the definition of the entries of Mε
N (ω, z) in (3.64) and (3.65)

and the expressions above.



CHAPTER IV

Transport and Reflection of Power

We now use the infinitesimal generator (3.127) to quantify the cumulative scat-

tering effects in the waveguide. We begin in section 4.1 with the modes transmitted

through the left part of the waveguide. The right-going modes are discussed in 4.4.

They are defined by the direct excitation from the source and the reflection at the

turning points. We end with some numerical illustrations in section 4.7.

4.1 The left-going waves

The wave propagation from the source at z = 0 to the end z = −ZM of the

support of variations of the waveguide can be described in the limit ε→ 0 as follows:

The left-going mode amplitudes start with the values

bj(ω, 0−) = bj,0(ω) = −f(ω)yj(ρ?, 0)

2i
√
βj(ω, 0)

, j = 1, . . . , N (0), (4.1)

obtained from equation (3.109) and the observation that at z > 0, where the opening

D(z) increases, the waves are right going.

In the sector
(
z

(1)
− , 0

)
the amplitudes {bj(ω, z)}N

(0)

j=1 evolve according to the diffu-

sion Markovian dynamics with generator −LN(0)

z , starting from {bj,o(ω)}N(0)

j=1 . The

first N (0) − 1 left-going modes pass through the turning point

bj(ω, z
(1)
− −) = bj(ω, z

(1)
− +), j = 1, . . . , N (0) − 1, (4.2)

54
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but the last mode is reflected back.

In the sector
(
z

(2)
− , z

(1)
−
)

there are N
(1)
− = N (0) − 1 left going modes, with ampli-

tudes evolving according to the diffusion Markovian dynamics with generator −LN
(1)
−

z ,

starting from the values (4.2) at z = z
(1)
− −. At the next turning point z

(2)
− , only the

first N
(1)
− − 1 modes pass through

bj(ω, z
(2)
− −) = bj(ω, z

(2)
− +), j = 1, . . . , N

(1)
− − 1, (4.3)

and the last mode is reflected back.

We continue this way until we reach z = −ZM , with amplitudes {bj(ω,−ZM)}Nmin
j=1

obtained from the diffusion Markovian dynamics with generator −LNmin
z over the

interval (−ZM , z
(t−M )
− ), starting with the values {bj(ω, z

(t−M )
− −)}Nmin

j=1 determined as

explained above, from the previous waveguide sectors.

The waveguide has no variations at z < −ZM , so the left-going mode amplitudes

remain equal to their values at −ZM , as stated in equation (3.112). The emerging

wave is obtained from (3.30) and (3.57),

pε(ω, ρ, z) ≈ −
Nmin∑
j=1

yj(ρ,−ZM)bj(ω,−ZM)√
βj(ω,−ZM)

exp
[
− i

ε

∫ −ZM
0

dz′βj(ω, z
′)

− i
ε
βj(ω,−ZM)(z + ZM)

]
, for z < −ZM . (4.4)

4.2 The mean transmitted wave field

With the infinitesimal generator (3.127) and Kolmogorov’s equation we can cal-

culate the mean mode amplitudes

〈
bj(ω, z)

〉
:= E

[
bj(ω, z)

]
. (4.5)

We first recall the Kolmogorov backward equation (A.4). If we consider the diffusion

process (Z(−z),b(−z)) where Z(z) := z this will be a homogeneous process with
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generator L := −∂Z +LN(0)

z which must have a corresponding solution to (A.4). We

can use this equation to obtain equations for the mean mode amplitudes by choosing

test functions f(Z, b) := bj for each 1 ≤ j ≤ N (0). We note equations satisfied by

higher order moments of the mode amplitudes bj can be obtained similarly as one

only needs to make a different choice of test function. The backward equation with

our current choice of test function is given by

∂z
〈
bj(ω, z)

〉
= −L

〈
bj(ω, z)

〉
. (4.6)

Then by exchanging the order of expectation and the generator we can simplify the

right-hand side

−L
〈
bj(ω, z)

〉
= −E[Lbj(ω, z)]

= −E[(−∂Z + LN(0)

z )bj(ω, z)]

= E[−LN(0)

z bj(ω, z)]

= −
[
G

(c)
jj (ω, z)−G(0)

jj (ω, z)

+ iG
(s)
jj (ω, z) + 2iκN

(0)

j (ω, z)
]E[bj(ω, z)]

2
. (4.7)

In the first sector (z
(1)
− , 0), the mean mode amplitudes then satisfy the evolution

equations

∂z
〈
bj(ω, z)

〉
= −

[
G

(c)
jj (ω, z)−G(0)

jj (ω, z)+iG
(s)
jj (ω, z)+2iκN

(0)

j (ω, z)
]〈bj(ω, z)〉

2
, (4.8)

solved backward in z, for z ∈
(
z

(1)
− , 0

)
, starting from the values

〈
bj(ω, 0−)

〉
= bj,0(ω), j = 1, . . . , N (0). (4.9)

The coefficients in (4.8) are defined by (3.130), (3.132), (3.134) and

G
(s)
jj (ω, z) := −

N(0)∑
l=1
l 6=j

G
(s)
lj (ω, z), (4.10)
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with G
(s)
lj (ω, z) given in (3.133). Because −G(c)

jj (ω, z)+G
(0)
jj (ω, z) > 0 (by the Wiener-

Khintchine theorem), we conclude from (4.18) that the mean mode amplitudes decay

with |z|, and therefore

∣∣∣〈bj(ω, z(1)
− )
〉∣∣∣ < ∣∣bj,0(ω)

∣∣, 1 ≤ j ≤ N (0). (4.11)

This decay models the randomization of the left-going modes, and occurs on a j

dependent length scale, as illustrated in section 4.7. Similar to the case of waveguides

with random perturbations of straight boundaries [4, Section 5], the modes with

larger index j randomize faster. Intuitively, this is because these modes propagate

slowly along z, at group velocity 1/∂ωβj(ω, z) that is small with respect to the wave

speed, and bounce more often at the random boundary.

A similar calculation applies to the other sectors
(
z

(t)
− , z

(t−1)
−

)
of the waveguide,

indexed by t = 1, . . . t−M . The only difference is that the starting values of the mode

amplitudes are random, so we use conditional expectations

〈
bj(ω, z)

〉
:= E

[
E
[
bj(ω, z)

∣∣F
z
(t−1)
−

]]
, z < z

(t−1)
− , (4.12)

where F
z
(t−1)
−

denotes the σ-algebra (information) generated by the Markov limit

process {bq(ω, z)}
N

(t−1)
−

q=1 at z = z
(t−1)
− . We obtain that

〈
bj(ω, z)

〉
satisfies an equation

like (4.8), with redefined coefficients for the N
(t−1)
− number of propagating modes,

and starting value
〈
bj(ω, z

(t−1)
− )

〉
calculated in the previous waveguide sector.

Proceeding this way we reach z = −ZM . The mean transmitted wave is the

expectation of (4.4), with
〈
bj(ω,−ZM)

〉
obtained by solving equations (4.8) for all

the sectors of the waveguide. The scattering effects at the random boundary add up

in each sector, and the mean mode amplitudes decay, as explained above,

∣∣〈bj(ω,−ZM)
〉∣∣ < ∣∣∣〈bj(ω,−z(t−M )

−
〉∣∣∣ < . . . <

∣∣bj,0(ω)
∣∣, 1 ≤ j ≤ Nmin. (4.13)
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4.3 The transmitted power

Using the infinitesimal generator (3.128) of the Markov process {Pj(ω, z)}, the

ε→ 0 limit of the left-going mode powers, we now calculate the mean and standard

deviation of the transmitted power at z < 0.

We proceed as in the previous section, one sector of the waveguide at a time,

starting from the source. In the first sector z ∈
(
z

(1)
− , 0

)
, the mean powers

〈
Pj(ω, z)

〉
:= E [Pj(ω, z)] , j = 1, . . . , N (0), (4.14)

evolve from the initial values
〈
Pj(ω, 0−)

〉
= |bj,0(ω)|2 according to equation

∂z


〈
P1(ω, z)

〉
...〈

PN(0)(ω, z)
〉

 = −G(c)(ω, z)


〈
P1(ω, z)

〉
...〈

PN(0)(ω, z)
〉

 , (4.15)

with matrix G(c)(ω, z) defined in (3.129)-(3.130), for N = N (0).

In the next sectors (z
(t)
− , z

(t−1)
− ) we use conditional expectations

〈
Pj(ω, z)

〉
:= E

[
E
[
Pj(ω, z)

∣∣F
z
(t−1)
−

]]
, z < z

(t−1)
− , (4.16)

and obtain that the mean powers satisfy an equation like (4.15), with N
(t−1)
− un-

knowns and N
(t−1)
− ×N (t−1)

− matrix G(c)(ω, z). These equations are solved backward

in z, starting from the values
〈
Pj(ω, z

(t−1)
− )

〉
computed in the previous sectors. Pro-

ceeding this way, we reach z = −ZM , and obtain
〈
Pj(ω,−ZM)

〉
, for j = 1, . . . , Nmin.

Note that unlike the expectations (4.5), the mean powers are coupled by the

matrix G(c)(ω, z). This coupling models the exchange of power between the left-going

modes, induced by cumulative scattering at the random boundary of the waveguide.

The exchange depends on the mode index, as illustrated in section 4.7. Specifically,

the higher indexed modes transfer power more quickly than the others.
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How much power is exchanged depends on the length of the sectors
(
z

(t)
− , z

(t−1)
−

)
of the waveguide. In short sectors, the exchange is mostly among the higher indexed

modes. The longer the sectors, the more modes participate in the exchange and the

power may become evenly distributed among the modes, independent of the starting

value at z
(t−1)
− . This equipartition of energy has been explained in waveguides with

straight walls in [26, Section 20.3], for a matrix G(c) with non-zero off diagonal

entries. By the Perron-Frobenius theorem, and due to energy conservation, such a

matrix has a simple eigenvalue equal to zero, and the other eigenvalues are negative.

It is straightforward to see from equation (4.15) that the solution converges at large

|z| to a vector in the nullspace of G(c). Equation (3.130) gives that this space

is spanned by the vector of all ones, so the power becomes evenly distributed at

distances that exceed the equipartition distance. This length scale is defined by the

inverse of the absolute value of the largest, non-zero eigenvalue of G(c).

By the energy conservation (3.136), the transmitted power in the first sector of

the waveguide is

Ptrans(ω, z) :=
N(0)∑
j=1

Pj(ω, z) =
N(0)∑
j=1

|bj,0(ω)|2, z ∈ (z
(1)
− , 0), (4.17)

where the right hand side is the deterministic, total left going power emitted by the

source. At the turning point z
(1)
− the N (0)-th mode is reflected back. The transmitted

power to the next sector of the waveguide, carried by the remaining N
(1)
− = N (0)− 1

modes, is random and given by

Ptrans(ω, z) =

N
(1)
−∑
j=1

Pj(ω, z) =

N
(1)
−∑
j=1

Pj(ω, z
(1)
− ), z ∈ (z

(2)
− , z

(1)
− ). (4.18)

This repeats for the other sectors, and beyond z = −ZM we have

Ptrans(ω, z) =

Nmin∑
j=1

Pj(ω,−ZM), z ≤ −ZM . (4.19)
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In summary, the transmitted power is a piecewise constant function with jumps

at the turning points, and random values determined by the sum of the mode powers

entering each sector of the waveguide. Its mean is obtained by taking expectations

in (4.17)-(4.19), and using the mean mode powers calculated as explained above.

The random fluctuations of Ptrans(ω, z) about the mean are quantified by its stan-

dard deviation

StD [Ptrans(ω, z)] =
{N

(t−1)
−∑
j,l=1

[〈
Pjl(ω, z)

〉
−
〈
Pj(ω, z)

〉〈
Pl(ω, z)

〉]}1/2

(4.20)

for z ∈ (z
(t)
− , z

(t−1)
− ) and 1 ≤ t ≤ t−M . To calculate it we need the second moments

〈
Pjl(ω, z)

〉
:= E [Pj(ω, z)Pl(ω, z)] . (4.21)

Again, these are obtained in one sector of the waveguide at a time, starting from the

source, where

〈
Pjl(ω, 0)

〉
= |bj,0(ω)|2|bl,0(ω)|2, j, l = 1, . . . , N (0). (4.22)

The evolution equations of the moments (4.21) at z ∈
(
z

(t)
− , z

(t−1)
−

)
are

∂z
〈
Pjj(ω, z)

〉
= 2G

(c)
jj (ω, z)

〈
Pjj(ω, z)

〉
− 4

N
(t−1)
−∑
l=1

G
(c)
jl (ω, z)

〈
Plj(ω, z)

〉
, (4.23)

and

∂z
〈
Pjq(ω, z)

〉
= 2G

(c)
jq (ω, z)

〈
Pjq(ω, z)

〉
−

N
(t−1)
−∑
l=1

[
G

(c)
jl (ω, z)

〈
Plq(ω, z)

〉
+G

(c)
lq (ω, z)

〈
Pjl(ω, z)

〉]
, (4.24)

for j, q = 1, . . . , N
(t−1)
− and j 6= q. These equations are solved backward in z, with

the starting values
〈
Pjq(ω, z(t−1)

− )
〉

calculated from the previous sector.
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4.4 The right-going waves

Even though we consider the forward scattering approximation in each sector of

the waveguide, there are both left- and right-going modes at z < 0, due to reflection

at the turning points. At z > 0 we also have the right-going waves emitted from the

source. The analysis of the reflected mode amplitudes is more complicated, because

they quantify cumulative scattering in the waveguide sectors traversed both ways:

to the left by the incoming wave and to the right by the reflected wave.

In each sector
(
z

(t)
− , z

(t−1)
−

)
we obtain from (3.123) that the right-going mode am-

plitudes satisfy

aε(ω, z) ≈ Pε(bb)(ω, z; z
(t−1)
− )aε(ω, z

(t−1)
− ), t = 1, . . . , t−M . (4.25)

This looks similar to equation (3.124) that describes the evolution of the left-going

waves, but we have different boundary conditions, as we now explain.

Starting from the leftmost turning point z
(t−M )
− , and denoting N = N

(t−M−1)
− , we

obtain from (3.111) the initial condition

aεj
(
ω, z

(t−M )
−
)

= Rε
N
(
ω, z

(t−M )
−
)
bεN
(
ω, z

(t−M )
−
)
δjN , j = 1, . . . ,N , (4.26)

for the vector aε(ω, z) ∈ CN , where δjN is the Kronecker delta symbol and Rε
N is

reflection coefficient defined in (3.108). The amplitudes of the right-going modes

impinging on the next turning point are obtained from (4.25)

aε(ω, z
(t−M−1)
− −) ≈

[
Pε(bb)(ω, z

(t−M )
− ; z

(t−M−1)
− )

]T
aε(ω, z

(t−M )
− ), (4.27)

using that the propagator Pε(bb) is approximately unitary. This follows from the

energy conservation relation (3.136), which holds in the limit ε→ 0, independent of

the initial conditions.
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On the right of the turning point z
(t−M−1)
− there is an extra right-going mode.

Renaming N = N
(t−M−2)
− , we obtain the following initial condition for the vector

aε(ω, z): Its first N − 1 components are given in (4.27), and the last component is

aεN
(
ω, z

(t−M−1)
−

)
= Rε

N
(
ω, z

(t−M−1)
−

)
bεN
(
ω, z

(t−M−1)
−

)
. (4.28)

These amplitudes and the N ×N propagator Pε(bb)(ω, z; z
(t−M−2)
− ) determine the am-

plitudes of the right-going modes impinging on the turning point z
(t−M−2)
− and so

on.

Proceeding this way we obtain the amplitudes {aεj(ω, 0−)}N(0)

j=1 on the left of the

source. The amplitudes at z = 0+ are given by these and the source conditions

(3.109). The analysis of forward propagation at z > 0 is similar to that in section

4.1, with the exception that at the turning points z
(t)
+ , for 1 ≤ t ≤ t+M , there is

no reflection. We add instead a new mode with zero initial condition, as stated in

(3.114).

4.5 The net reflected power

The calculation of the statistical moments of the right-going mode amplitudes in

the limit ε→ 0 requires the infinitesimal generator of the limit propagator Pε(bb), in

each sector of the waveguide. This operator can be obtained using Theorem V.1, but

the calculation is complex. Here we quantify only the net reflected power at each

turning point, without asking how this power gets distributed among the modes as

they propagate toward the right. This is an easier task as the net reflected power

can be completely characterized in terms of the initial power to the left of the source

and the power transmitted through the left part of the waveguide, whose statistics

we have previously computed.
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The net reflected power is determined by the transmitted power in the left part

of the waveguide, using energy conservation. Specifically, starting from the leftmost

turning point, the net reflected power is

Prefl(ω, z) = P
N

(t−
M
−1)

−

(ω, z
(t−M )
− +), z ∈

(
z

(t−M )
− , z

(t−M−1)
−

)
, (4.29)

where the right hand side is the power of the left-going turning mode, analyzed in

section 4.1. Here we used the conservation relation

lim
ε→0

N
(t−
M
−1)

−∑
j=1

|aεj(ω, z)|2 = constant, for z ∈
(
z

(t−M )
− , z

(t−M−1)
−

)
,

derived the same way as (3.136), equation (4.26) and limε→0 |Rε
N | = 1.

At the next turning point z
(t−M−1)
− we add a new mode amplitude, and the net

reflected power increases to

Prefl(ω, z) = P
N

(t−
M
−1)

−

(ω, z
(t−M )
− +) + P

N
(t−
M
−2)

−

(ω, z
(t−M−1)
− +), (4.30)

for z ∈
(
z

(t−M−1)
− , z

(t−M−2)
−

)
, and so on. Proceeding this way we obtain that the net

reflected power is a piecewise constant function at z < 0, with jumps at the turning

points z
(t)
− indexed by 1 ≤ t ≤ t−M . At the source location this equals

Prefl(ω, 0) =

t−M∑
t=1

P
N

(t−1)
−

(ω, z
(t)
− +), (4.31)

and its mean and standard deviation are determined by those of the turning wave

powers, calculated in section 4.1. By comparing with (4.17-4.19) we obtain the global

conservation of energy relation

Prefl(ω, 0) + Ptrans(ω,−ZM) =
N(0)∑
j=1

|bj,0(ω)|2. (4.32)

Therefore the first two moments of the net transmitted and reflected powers are
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related through:

〈Prefl(ω, 0)〉 =
N(0)∑
j=1

|bj,0(ω)|2 − 〈Ptrans(ω,−ZM)〉 , (4.33)

StD [Prefl(ω, 0)] = StD [Ptrans(ω,−ZM)] . (4.34)

4.6 The net power transmitted to the right

There is no mode reflection at z > 0, and the net transmitted power to the right

is

Ptrans,right(ω, z) = lim
ε→0

N(0)∑
j=1

|aεj(ω, 0+)|2, z > 0, (4.35)

where the equality means having the same statistical distribution, and

aεj(ω, 0+) = aεj(ω, 0−) + aj,o(ω), aj,o(ω) =
f̂(ω)yj(ρ?, 0)

2i
√
βj(ω, 0)

. (4.36)

The calculation of the statistical moments of (4.35) is as complicated as the calcula-

tion of the moments of the limit right-going mode amplitudes. Specifically, it requires

the infinitesimal generator of the ε → 0 limit of the propagator Pε(bb), in particu-

lar, we need to characterize the phases of the reflection coefficients Rε

N
(t−1)
−

(
ω, z

(t)
−
)
,

t = 1, . . . , t−M . By extrapolating the results given in [11] (in which the standard devi-

ation of the fluctuations of the boundary was smaller), we expect that these phases

are independent and uniformly distributed over [0, 2π]. We could then expect that

the mean power transmitted to the right is

〈Ptrans,right(ω, z)〉 = 〈Prefl(ω, 0)〉+
N(0)∑
j=1

|aj,o(ω)|2

=
N(0)∑
j=1

|aj,o(ω)|2 +
N(0)∑
j=1

|bj,0(ω)|2 − 〈Ptrans(ω,−ZM)〉 , (4.37)

for any z > 0.
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4.7 Numerical illustration

In this section we illustrate with some plots the exchange of power among the

propagating modes in the left part z < 0 of the waveguide, due to a point source at

x? = (D(0)/7, 0). For comparison, we also consider other initial conditions, where

the excitation at z = 0 is for a single mode at a time.

We take a waveguide with a straight axis that has a single turning point, at arc

length z
(1)
− = −L = −1000λ, where λ is the wavelength. The waveguide opening

D(z/L) increases linearly in z in the interval [−L, 0], from the value 20λ to 20.49λ,

and transitions as a cubic polynomial to the constant 19.999λ at z < −L− 0.2λ and

20.491λ at z > 0.2λ. Thus, there are N (0) = 40 propagating modes at z > −L and

N
(1)
− = 39 modes at z < −L. The top and bottom boundaries of the waveguide are

straight and parallel at z ∈ (−∞,−L− 0.2λ) ∪ (0.2λ,∞).

The auto-correlation function R of the process ν(ζ) is a Gaussian with standard

deviation 1. The correlation length of the fluctuations is ` = 3λ, so ε = `/L = 0.003,

and the standard deviation σ of the fluctuations equals
√
ε.

We can describe approximately what to expect in terms of the randomization of

the mode amplitudes and the exchange of power among the modes by looking at

the following length scales calculated in a waveguide with constant opening equal to

D(0):

1. The mode-dependent scattering mean free path

Lj,smf :=
2

G
(0)
jj (ω, 0)−G(c)

jj (ω, 0)
, j = 1, . . . , 40, (4.38)

which is the scale of decay of the mean mode amplitudes, as seen from (4.8).
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Figure 4.1: Plot of the characteristic length scales

These three length scales quantify net scattering in a waveguide with constant opening D(0). The solid
blue line is for the scattering mean free path (4.38). The dashed red line is for the transport mean free path
(4.39). The yellow dashed line is for the equipartition distance. The abscissa is the mode index j = 1, . . . , 40
and the ordinate is in units of λ.

2. The mode-dependent transport mean free paths,

Lj,tmf := − 2

G
(c)
jj (ω, 0)

, j = 1, . . . , 40, (4.39)

defined in terms of the diffusion coefficient −G(c)
jj of the mode power infinitesimal

generator (3.128). The modes exchange power with their neighbors as they propagate

at distances of order (4.39).

3. The equipartition distance Leq, which is defined as the inverse of the absolute

value of the largest, non-zero eigenvalue of matrix G(c)(ω, 0). At distances of order

Leq, we expect that the power gets evenly distributed among the modes, independent

of the excitation at z = 0.

We display these scales in Figure 4.1 and observe that at the distance L = 1000λ

between the source and the turning point, we have

L ≥ Lj,smf , Lj,tmf , j = 5, . . . , 40.

Thus, these modes should be randomized and moreover, they should share their

power with the other modes. Because L < Leq, we expect that at least the first five
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Figure 4.2: Display of |
〈
bj(ω, z)

〉
| and

〈
Pj(ω, z)

〉
v.s. the mode index j

The absolute value of the mean mode amplitudes |
〈
bj(ω, z)

〉
| (left) and the mean mode powers

〈
Pj(ω, z)

〉
v.s. the mode index j at three different distances from the source: The blue circles correspond to the initial
values at z = 0, due to a point source at location (D(0)/7, 0). The red crosses are for |z| = 100λ and the
yellow squares are for |z| = L = 1000λ. The abscissa is the mode index j = 1, . . . , 40.

modes have not shared all their power with the other modes.

These expectations are confirmed by the results displayed in Figure 4.2, where we

show the absolute values |
〈
bj(ω, z)

〉
| of the mean mode amplitudes (left plot) and the

mean mode powers
〈
Pj(ω, z)

〉
(right plot) at three distances from the point source.

The dashed blue line is for z = 0, so it corresponds to the initial values (4.1) of the

mode amplitudes, which oscillate in j due to the factor

yj(ρ?, 0) =

√
2

D(0)
sin
[( ρ?
D(0)

+
1

2

)
πj
]
, j = 1, . . . , N (0), ρ? =

D(0)

7
.

As we increase the distance |z| from the source, the left plot in Figure 4.2 illustrates

the decay of the mean mode amplitudes. We note that at |z| = 100λ, the modes

indexed by j > 15 have negligible mean, and at the turning point |z| = L = 1000λ,

the modes indexed by j > 5 have negligible mean. This is as expected from Figure

4.1, because because Lj,smf < 100λ for j > 15 and Lj,smf < 1000λ for j > 5. The

right plot in Figure 4.2 illustrates the effect of exchange of power among the modes.

The scattering mean free path and the transport mean free path are almost the same

in this simulation, as shown in Figure 4.1, and we note that at the turning point
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Figure 4.3: Display of mode power statistics for a point source

The mean net power of the transmitted modes is in dashed blue line, the standard deviation of this power
in dashed red line, and the mean power of the turning mode, indexed by j = 40. The abscissa is the arc
length in units of λ (in logarithmic scale).

|z| = L = 1000λ the modes indexed by j > 5 have almost the same power.

In Figure 4.3 we display the mean and standard deviation of the net power∑39
j=1 Pj(ω, z) of the modes that are transmitted through the turning point, and

the mean power of the turning mode, as functions of z. At |z| = L = 1000λ, these

determine the transmitter power (4.18) beyond the turning point, and the reflected

power (4.31). Note that in this case cumulative scattering at the random boundary

is beneficial for power transmission through the waveguide. In the absence of the

random fluctuations there would be no power exchange between the modes, and the

transmitted power would equal
∑39

j=1 Pj(ω, 0). As seen in Figure 4.2, the turning

mode has the largest mode amplitude initially, and all its power would be reflected

back. The cumulative scattering at the random boundary leads to rapid exchange

of the power of the turning mode, as shown in the right plot of Figure 4.2, and

much less power is reflected. The standard deviation of the net power of the first 39

modes, shown with the red dashed line in Figure 4.3, is smaller than its mean. Thus,∑39
j=1 Pj(ω, z) ≈

∑39
j=1

〈
Pj(ω, z)

〉
, with less than 10% relative error (i.e., random
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Figure 4.4: Display of mode power statistics for single mode excitations

The mean net power of the transmitted modes is in dashed blue line, of the standard deviation of this
power in dashed red line, and the mean power of the turning mode, indexed by j = 40. The abscissa is the
arc length in units of λ (in logarithmic scale). Only one mode was excited initially, the 39-th one in the left
plot and the 40-th one in the right plot.

fluctuations).

The last illustration, in Figure 4.4, shows the mean and standard deviation of∑39
j=1 Pj(ω, z), and the mean power

〈
P40(ω, z)

〉
of the turning mode, as functions

of z, for initial excitations of a single mode. In the left plot the 39-th mode is

excited, and in the right plot the 40-th mode is excited. In the absence of the

random fluctuations, these initial conditions would determine the transmitted power

at the turning point. Specifically, in the first case the power would stay in the 39-th

mode and would propagate through, whereas in the second case the power of the

40-th mode would be totally reflected. The cumulative scattering in the random

waveguide distributes the power among the modes, and we note in the left plot of

Figure 4.4 that slightly less power is transmitted, due to the power transfer to the

turning mode, whereas in the right plot, most of the power is transmitted, due to

the transfer of power from the turning mode to the other modes.
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4.8 Universal transmission properties for strong scattering

In case of strong scattering, the mean transmitted power through the left part of

the waveguide becomes universal and equal to P0Nmin/N
(0), where P0 :=

∑N(0)

j=1 |bj,0(ω)|2

is the power transmitted to the left by the source. More exactly, if scattering is so

strong that equipartition is reached in each section between two turning points, in

the sense that z
(t−1)
− − z(t)

− > Lteq for all t = 1, . . . , t−M (where Lteq is the equipartition

distance in the section (z
(t)
− , z

(t−1)
− )), then the fraction of mean power transmitted

through the t-th turning point z
(t)
− is 1− 1/N

(t−1)
− , because the N

(t−1)
− -th mode car-

rying a fraction 1/N
(t−1)
− of the mean power is reflected. By denoting

〈
P(t−1)

trans

〉
the

net transmitted power in the t-th section (z
(t)
− , z

(t−1)
− ), we get the recursive relation

〈
P(t)

trans

〉
=
〈
P(t−1)

trans

〉
(N

(t−1)
− − 1)/N

(t−1)
− , t = 1, . . . , t−M , (4.40)

which gives that the mean transmitted power at −ZM is P0Nmin/N
(0).



CHAPTER V

Diffusion Approximation Theorem

In this chapter we state and prove the diffusion approximation theorem used to

obtain the asymptotic limit of the mode amplitudes in sections 3.7 - 3.9. Similar

results were proven in [43, 7] and summarized in [26, chapter 6]. The proof relies

upon the perturbed test function method of [44].

5.1 Statement of the Theorem

We state the theorem for a general system of random differential equations

dXε(z)

dz
=

1√
ε
F
(
Xε(z), qε(z),θε(z), z

)
, z > 0, Xε(0) = x0, (5.1)

with unknown vector Xε ∈ Rd, and right hand side defined by a function of the form

F
(
X, q,θ, z

)
:=

p∑
j=1

F (j)
(
X, q, θj, z

)
, for θ :=

(
θj
)p
j=1
∈ Rp. (5.2)

The second argument of F is defined by qε(z) := q(z/ε), where q(z) is a sta-

tionary and ergodic Markov process taking values in a space E, with generator Q

and stationary distribution πq. We assume that Q satisfies the Fredholm alternative,

which holds true for many different classes of Markov processes [26, section 6.3.3].

Note that the Markovian assumption on the driving process q is convenient for the

proof, but the statement of the diffusion approximation theorem V.1 generalizes to

a process q that is not Markovian, but φ-mixing with φ ∈ L1/2 [35, Sec. 4.6.2].

71
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The third argument of F is the vector valued function θε(z) taking values in Rp,

with components satisfying the equation

dθεj
dz

=
1

ε
βj(z), j = 1, . . . , p,

where βj(z) is a R-valued smooth function, bounded as C ≤ βj(z) ≤ 1/C for some

constant C > 0.

We assume that the components F (j) in (5.2) satisfy the following conditions, for

all j = 1, . . . , p:

1. The mappings (x, z) ∈ Rd×R 7→ F (j)(x, q, θj, z) ∈ Rd are smooth for all q ∈ E

and θj ∈ R.

2. The mappings q ∈ E 7→ F (j)(x, q, θj, z) are centered with respect to the sta-

tionary distribution πq,

E[F (j)(x, q(0), θ, z)] =

∫
E

F (j)(x, q, θj, z)πq(dq) = 0,

for any x ∈ Rd, θj ∈ R and z ∈ R.

3. The mappings θj ∈ R 7→ F (j)(x, q, θj, z) are periodic with period 1 for all x ∈ Rd

and q ∈ E.

Theorem V.1. Let Xε(z) be the solution of (5.1), with right-hand side F defined in

terms of the functions F (j)as in (5.2), and F (j) satisfying the three properties above.

In the limit ε → 0, the continuous processes (Xε(z))z≥0 converge in distribution to
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the Markov diffusion process (X(z))z≥0 with the inhomogeneous generator

Lzf(x) =
d∑

m=1

hm(x, z)∂xmf(x) +
d∑

m,n=1

am,n(x, z)∂2
xmxnf(x), (5.3)

hm(x, z) :=
d∑

n=1

〈 ∫ ∞
0

E [Fn(x, q(0), ·, z)∂xnFm(x, q(ζ), ·+ β(z)ζ, z)] dζ
〉
β(z)

, (5.4)

am,n(x, z) :=
〈 ∫ ∞

0

E [Fn(x, q(0), ·, z)Fm(x, q(ζ), ·+ β(z)ζ, z)] dζ
〉
β(z)

, (5.5)

where
〈
.
〉
β

is the mean value for almost periodic functions,

〈
H(·)

〉
β

:= lim
S→∞

1

S

∫ S

0

H(θ + βs)ds.

Note that the mean values for the terms involved in (5.4-5.5) exist and are inde-

pendent of θ, since the functions

Gn,m(s) :=

∫ ∞
0

E [Fn(x, q(0),θ + βs, z)Fm(x, q(ζ),θ + βs+ βζ, z)] dζ,

G̃n,m(s) :=

∫ ∞
0

E [Fn(x, q(0),θ + βs, z)∂xnFm(x, q(ζ),θ + βs+ βζ, z)] dζ,

are periodic or almost periodic in s, for any fixed x and q.

5.2 The Proof

Proof. Let us define the projection on the torus S ' R/Z:

θ ∈ R 7→ θ̇ := θ mod 1 ∈ S,

and observe that if a function f : R → R is periodic with period 1, then f(θ) =

f(θ̇). We also define θ̇ε(z) := θε(z) mod 1, and Z(z) := z. The joint process

(Xε(z), qε(z), θ̇ε(z), Z(z))z≥0 is a Markov process with values in Rd × E × Sp × R

and infinitesimal generator

Lε =
1

ε

(
Q+ β(Z) · ∇θ̇

)
+

1√
ε
F (X, q, θ̇, Z) · ∇X + ∂Z . (5.6)
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One can show by the perturbed test function method [26, Section 6.3.2] (see

also the appendix at the end of this chapter) and Lemma V.3 that the continuous

processes (Xε(z), Z(z))z≥0 converge in distribution to the Markov diffusion process

(X(z), Z(z))z≥0 with the homogeneous generator:

Lf(x, Z) = ∂Zf(x, Z) (5.7)

+
〈 ∫ ∞

0

E [F (x, q(0), ·, Z) · ∇x (F (x, q(ζ), ·+ β(Z)ζ, Z) · ∇xf(x, Z))] dζ
〉
β(z)

.

Since (Z(z))z≥0 is deterministic, we conclude that (X(z))z≥0 is a Markov process

and its inhomogeneous generator is

Lzf(x) =
〈 ∫ ∞

0

E [F (x, q(0), ·, z) · ∇x (F (x, q(ζ), ·+ β(z)ζ, z) · ∇xf(x))] dζ
〉
β(z)

(5.8)

or equivalently (5.3).

Lemma V.2. We have the following two statements:

1. Let β ∈ R\{0}. Let g(q, θ) be a bounded function, periodic in θ ∈ R with period

1, such that

E[g(q(0), θ)] = 0 for all θ ∈ R .

The Poisson equation (
Q+ β∂θ̇

)
f = g

has a unique solution f , periodic in θ, up to an additive constant. The solution with

mean zero is

f(q, θ̇) = −
∫ ∞

0

E[g(q(ζ), θ̇ + βζ)|q(0) = q]dζ . (5.9)
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2. Let β ∈ R2 with non-zero entries. Let g(q,θ) be a bounded function, periodic

in θ ∈ R2 with period 1, such that

E[g(q(0),θ)] = 0 for all θ ∈ R2 .

The Poisson equation (
Q+ β · ∇θ̇

)
f = g

has a unique solution f , periodic in θ, up to an additive constant. The solution with

mean zero is

f(q, θ̇) = −
∫ ∞

0

E[g(q(ζ), θ̇ + βζ)|q(0) = q]dζ . (5.10)

Note that in the second item of Lemma V.2 it is important to assume that

E[g(q(0),θ)] = 0 for all θ ∈ R2, and not only that
∫
S2 E[g(q(0), θ̇)]dθ̇ = 0. The

latter weaker hypothesis ensures the desired result only when β1/β2 is irrational.

Proof. To prove statement 1. let β ∈ R be fixed. We denote by θβ(ζ) the solution

to
dθβ
dζ

= β and by θ̇β(ζ) := θβ(ζ) mod 1. The process (q(ζ), θ̇β(ζ))ζ≥0 is a Markov

process with values in E × S and with generator Q + β∂θ̇. It is a stationary pro-

cess with the stationary distribution πq ⊗ νS where νS is the uniform distribution

over the torus S. It is also an ergodic process with respect to the stationary distri-

bution πq ⊗ νS. Since g satisfies
∫
g(q, θ̇)πq(dq) = 0 for all θ̇, it a fortiori satisfies∫∫

g(q, θ̇)πq(dq)νS(dθ̇) = 0, and the result then follows from standard arguments [26,

section 6.5.2]:

f(q0, θ̇0) = −
∫ ∞

0

E
[
g(q(ζ), θ̇β(ζ))|q(0) = q0, θ̇β(0) = θ̇0

]
dζ ,

which gives (5.9).
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To prove statement 2. let β ∈ R2 be fixed. We denote by θβ(ζ) the solution to

dθβ
dζ

= β and by θ̇β(ζ) := θβ(ζ) mod 1. The process (q(ζ), θ̇β(ζ))ζ≥0 is a Markov

process with values in E × S2 and with generator Q+ β · ∇θ̇.

If the ratio β1/β2 of the entries of β2 of β is irrational, the process (q(ζ), θ̇β(ζ))ζ≥0

is stationary and ergodic, with the stationary distribution πq ⊗ νS2 , where νS2 is the

uniform distribution over the torus S2. Since g satisfies
∫
g(q, θ̇)πq(dq) = 0 for all

θ̇, it a fortiori satisfies
∫∫

g(q, θ̇)πq(dq)νS2(dθ̇) = 0, and the result then follows from

standard arguments [26, section 6.5.2]:

f(q0, θ̇0) = −
∫ ∞

0

E[g(q(ζ), θ̇β(ζ))|q(0) = q0, θ̇β(0) = θ̇0]dζ ,

which gives (5.10).

If the ratio β1/β2 of the entries of β is rational, that is to say, if there exist nonzero

integers n1, n2 such that n1β1 = n2β2, then (θ̇β(ζ))ζ≥0 is not ergodic over the torus

S2. However, for a given starting point θ̇0, it satisfies the ergodic theorem over the

compact manifold S1
θ̇0

:= {θ̇0 + βs mod 1, s ∈ R}, with the uniform distribution

over the manifold S1
θ̇0

. Since g satisfies
∫
g(q, θ̇)πq(dq) = 0 for all θ̇, it a fortiori

satisfies
∫∫

g(q, θ̇)πq(dq)νS1
θ̇0

(dθ̇) = 0. We can then define

f(q0, θ̇0) = −
∫ ∞

0

E[g(q(ζ), θ̇β(ζ))|q(0) = q0, θ̇β(0) = θ̇0]dζ ,

which gives (5.10).

We can now state the lemma used in the proof of Theorem III.1:

Lemma V.3. For all f ∈ C∞b (Rd × R,R), and all compact sets K of Rd × R, there
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exists a family f ε such that:

sup
(x,Z)∈K,q∈E,θ̇∈Sp

|f ε(x, q, θ̇, Z)− f(x, Z)| ε→0−→ 0, (5.11)

sup
(x,Z)∈K,q∈E,θ̇∈Sp

|Lεf ε(x, q, θ̇, Z)− Lf(x, Z)| ε→0−→ 0, (5.12)

where Lε is the generator (5.6) and L is the generator (5.7).

Proof. Let f ∈ C∞b (Rd × R,R), and define

f ε(x, q, θ̇, Z) := f(x, Z) +
√
εf1(x, q, θ̇, Z) + εf2(x, q, θ̇, Z) + εf ε3 (x, θ̇, Z), (5.13)

where f1, f2, and f ε3 will be specified later on. Applying Lε to f ε, we get

Lεf ε(x, q, θ̇, Z) =
1√
ε

((
Q+ β(Z) · ∇θ̇

)
f1 + F (x, q, θ̇, Z) · ∇xf(x, Z)

)
+
((
Q+ β(Z) · ∇θ̇

)
f2 + F (x, q, θ̇, Z) · ∇xf1(x, q, θ̇, Z)

)
+ β(Z) · ∇θ̇f

ε
3 (x, θ̇, Z) + ∂Zf(x, Z) +O(

√
ε). (5.14)

Now let us define the correction f1 as

f1(x, q, θ̇, Z) :=

p∑
j=1

f
(j)
1 (x, q, θ̇j, Z), (5.15)

where

f
(j)
1 (x, q, θ̇j, Z) = −

(
Q+ βj(Z)∂θ̇j

)−1
(
F (j)(x, q, θ̇j, Z) · ∇xf(x, Z)

)
.

These functions are well-defined and admit the representation

f
(j)
1 (x, q, θ̇j, Z) =

∫ ∞
0

E
[
F (j)(x, q(ζ), θ̇j + βj(Z)ζ, Z) · ∇xf(x, Z)|q(0) = q

]
dζ,

by Lemma V.2.

The second correction f2 is defined by

f2(x, q, θ̇, Z) :=

p∑
j,l=1

f
(jl)
2 (x, q, θ̇j, θ̇l, Z), (5.16)
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where

f
(jl)
2 (x, q, θ̇j, θ̇l, Z) = −

(
Q+ βj(Z)∂θ̇j + βl(Z)∂θ̇l

)−1

×
(
F (j)(x, q, θ̇j, Z) · ∇xf (l)

1 (x, q, θ̇l, Z)− E
[
F (j)(x, q(0), θ̇j, Z) · ∇xf (l)

1 (x, q(0), θ̇l, Z)
])
.

These functions are well defined by Lemma V.2 since the argument of the operator(
Q+ βj(Z)∂θ̇j + βl(Z)∂θ̇l

)−1
has mean zero for all θ.

Substituting (5.15) and (5.16) in (5.14) we obtain

Lεf ε(x, q, θ̇, Z) =

p∑
j,l=1

g
(jl)
3 (x, θ̇j, θ̇l, Z) + β(Z) · ∇θ̇f

ε
3 (x, θ̇, Z)

+∂Zf(x, Z) +O(
√
ε), (5.17)

with

g
(jl)
3 (x, θ̇j, θ̇l, Z) := E

[
F (j)(x, q(0), θ̇j, Z) · ∇xf (l)

1 (x, q(0), θ̇l, Z)
]
. (5.18)

We now define the third correction function

f ε3 (x, θ̇, Z) :=

p∑
j,l=1

f
(jl),ε
3 (x, θ̇j, θ̇l, Z), (5.19)

with terms

f
(jl),ε
3 (x, θ̇j, θ̇l, Z) :=

∫ ∞
0

e−
√
εs g̃

(jl)
3 (x, θ̇j + βj(Z)s, θ̇l + βl(Z)s, Z)ds,

defined by

g̃
(jl)
3 (x, θ̇j, θ̇l, Z) := g

(jl)
3 (x, θ̇j, θ̇l, Z)− G(jl)

3 (x, Z),

where

G(jl)
3 (x, Z) := lim

S→∞

1

S

∫ S

0

g
(jl)
3 (x, θ̇j + βj(Z)s, θ̇l + βl(Z)s, Z)ds. (5.20)
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These are are well defined because s 7→ g
(jl)
3 (x, θ̇j +βj(Z)s, θ̇l+βl(Z)s, Z) are almost

periodic mappings.

Note that
√
εf

(jl),ε
3 is uniformly bounded because g̃

(jl)
3 is bounded. This and

definitions (5.15), (5.16) of the corrections f1 and f2 used in equation (5.13) imply

that f ε satisfies (5.11). Note also that
√
εf

(jl),ε
3 goes to zero as ε → 0, because the

mapping s 7→ g̃
(jl)
3 (x, θ̇j + βj(Z)s, θ̇l + βl(Z)s, Z) is almost periodic and with mean

zero. Moreover, using the chain rule and integration by parts, we obtain

(
βj(Z)∂θ̇j + βl(Z)∂θ̇l

)
f

(jl),ε
3 (x, θ̇j, θ̇l, Z)

=

∫ ∞
0

e−
√
εs∂s
[
g̃

(jl)
3 (x, θ̇j + βj(Z)s, θ̇l + βl(Z)s, Z)

]
ds

= −g̃(jl)
3 (x, θ̇j, θ̇l, Z) +

√
εf

(jl),ε
3 (x, θ̇j, θ̇l, Z).

Gathering the results, equation (5.17) becomes

Lεf ε =

p∑
j,l=1

G(jl)
3 (x, Z) + ∂Zf(x, Z) +

√
εf ε3 (x, θ̇, Z) +O(

√
ε).

The result (5.12) follows from this equation and definitions (5.18), (5.20) and (5.15),

because
√
εf ε3 goes to zero as ε→ 0.

5.3 Appendix: The Perturbed Test Function Method

The perturbed test function method consists of two main steps as was stated in

[44, 7, 35, 26]. The first is showing tightness of the laws of the processes X̂ε(z) :=

(Xε(z), qε(z), θ̇ε(z), Z(z)). The second is to show that the martingale problem asso-

ciated with Lε yields the martingale problem associated with L in the limit ε → 0.

These two steps combined yield convergence in distribution. We outline these two

steps here and give references for where one can find more detailed accounts.
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With regard to proving tightness, a sufficient condition is that the family of pro-

cesses X̂ε(z) satisfy the Kolmogorov moment estimate

E[|X̂ε(z)− X̂ε(z′)|α] ≤ C|z − z′|1+γ (5.21)

for 0 ≤ z′ ≤ z ≤ Z, constant independent of ε, and α, γ > 0 [45]. Showing (5.21) re-

quires ε-independent estimates for moments of X̂ε(z). One can prove such estimates

by using that

Mfε(z) := f ε(X̂ε(z))− f ε(x̂0)−
∫ z

0

dsLεf ε(X̂ε(s)) (5.22)

is a martingale for all test functions f ε where X̂ε(0) = x̂0.

In particular, if we take f ε = x̂ +
√
εf1(x̂) where x̂ = (x, q, θ̇, Z) and f1 is as in

(5.15) we can write

X̂ε(z) = x̂0 −
√
ε(f1(X̂ε(z))− f1(x̂0)) +

∫ z

0

dsLεf ε(X̂ε(s)) +Mfε(z). (5.23)

Moments of X̂ε(z) can then be estimated by estimating the right hand side of (5.23)

using growth properties of the test functions which are inherited from F in (5.1),

Gronwall’s inequality, and Doob’s martingale inequality as was done in [26, Section

6.3.5]. It then remains to show (5.21). However, the test function f1 in the represen-

tation (5.23) for X̂ε(z) prevents us from obtaining such an estimate. Instead, one

can prove (5.21) for a process which is uniformly close to X̂ε(z) in probability and

this will suffice for tightness. Such a process can be obtained by omitting the terms

involving f1 in (5.23) and this process will be close to X̂ε(z) since their difference

−
√
ε(f1(X̂ε(z))− f1(x̂0)) will be small [26, Section 6.3.5].

The argument for showing that the martingale problem associated with Lε con-

verges to that of L is as in [26, Section 6.3.4]. We use that (5.22) to say that in

particular for f ε as in Lemma V.3 we have from the martingale property that

E[Mfε(z
′)−Mfε(z)|F̂z] = 0 (5.24)
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where F̂z := σ(X̂ε(s), s ≤ z). Further, by restricting to the σ-algebra generated by

((Xε(s), Z(s))) for s ≤ z and properties of conditional expectation we have

E[(Mfε(z
′)−Mfε(z))

n∏
j=1

hj(X
ε(zj), Z(zj))] = 0 (5.25)

for all bounded, continuous hj, 0 ≤ z1 ≤ . . . ≤ zn ≤ z ≤ z′. Then using Lemma

V.3 and ε-independent moment estimates obtained in the proof of tightness one can

write (5.25) as

E[(Mf (z
′)−Mf (z))

n∏
j=1

hj(X
ε(zj), Z(zj))] = O(ε) (5.26)

where f is as in Lemma V.3.

Expanding Mf we have

E[(f(Xε(z′), Z(z′))− f(Xε(z), Z(z))−
∫ z′

z

dsLf(Xε(s), Z(s)))

×
n∏
j=1

hj(X
ε(zj), Z(zj))] = 0. (5.27)

Then the limit (X(z), Z(z)) of any weakly convergent subsequence of (Xε(z), Z(z))

satisfies

E[(f(X(z′), Z(z′))− f(X(z), Z(z))−
∫ z′

z

dsLf(X(s), Z(s)))

×
n∏
j=1

hj(X(zj), Z(zj))] = 0. (5.28)

for all bounded, continuous hj, 0 ≤ z1 ≤ . . . ≤ zn ≤ z ≤ z′. This in turn implies that

E[f(X(z′), Z(z′))− f(X(z), Z(z))−
∫ z′

z

dsLf(X(s), Z(s))|Fz] = 0. (5.29)

where Fz := σ((X(s), Z(s)), s ≤ z). Thus,

f(X(z), Z(z))− f(X(0), Z(0))−
∫ z

0

dsLf(X(s), Z(s)), z ≥ 0 (5.30)
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is a martingale for any limit process (X(z), Z(z)) and test function f ∈ C∞b (Rd ×

R,R).

If the generator L given in (5.7) has diffusion coefficients which are at most

quadratically growing in x and drift coefficients are at most linearly growing in

x then the limit process (X(z), Z(z)) will be the unique diffusion process with gen-

erator L. Combining this with tightness yields the desired result (see [22, Section

4.8]).



CHAPTER VI

Boundedness of the Operator K

Here we prove that the integral operator K which appears in the analysis of

the evanescent modes in section 3.5.4 is bounded in an appropriate function space.

Boundedness of the operator K allows us to invert the the operator
(
I−
√
εK
)

using

a Neumann series which in turn gives us a way of expressing the evanescent modes

in terms of the propagating modes and a term which depends on the source. We

include this as a separate chapter so as not to interrupt the flow of chapter III with

a long technical aside.

6.1 Setup

In (3.87) the integral operator K is given component-wise by

[KU]j(ω, z) := − 1I(z)

2βj(ω, z)

∫ ∞
−∞

dξe−βj(ω,z)|ξ|

×


 1

ε∂z

√εCε(e)j (ω, z + εξ)− σµ2
j(z)ν

(z
ε

+ ξ
)
Uj

 , (6.1)
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where I := (z
(t)
− , z

(t−1)
− ) and

√
εCε(e)j (ω, z) = C(e)

j (ω, z) +O(
√
ε), (6.2)

ε3/2∂zCε(e)j (ω, z) = ε∂zC(e)
j (ω, z) +O(

√
ε), (6.3)

C(e)
j (ω, z) :=

∞∑
q>N
q 6=j

σΓjqν
′′
(z
ε

)
uεq(ω, z) + σΘjqν

′
(z
ε

)
ε∂zu

ε
q(ω, z) (6.4)

ε∂zC(e)
j (ω, z) :=

∑
q>N
q 6=j

σΓjq[ν
′′′
(z
ε

)
uεq(ω, z) + ν ′′

(z
ε

)
ε∂zu

ε
q(ω, z)]

+
∑
q>N
q 6=j

σΘjq[ν
′′
(z
ε

)
ε∂zu

ε
q(ω, z) + ν ′

(z
ε

)
ε2∂2

zu
ε
q(ω, z)]. (6.5)

In what follows, we will neglect the O(
√
ε) parts of (6.2) and (6.3) as they can be

shown to decay to 0 as ε → 0 using similar arguments to those we give in Section

6.3. We will also suppress the dependence on ω since it is assumed fixed.

It will be helpful to break up the first component of KUj(z), which we denote by

[KU]
(1)
j (z), into three terms. We have that

[KU]
(1)
j (z) = − 1I(z)

2βj(z)

∫ ∞
−∞

dξe−βj(z)|ξ|
[
C(e)
j (z + εξ)− σµ2

j(z)ν
(z
ε

+ ξ
)
uεj(z + εξ)

]
=: [KU]

(1,1)
j (z) + [KU]

(1,2)
j (z) + [KU]

(1,3)
j (z) (6.6)

where [KU]
(1,1)
j (z), [KU]

(1,2)
j (z) , and [KU]

(1,3)
j (z) are as given below. We have

[KU]
(1,1)
j (z) := −σ1I(z)

2βj(z)

∫ ∞
−∞

dξe−βj(z)|ξ|
∑
q>N
q 6=j

Γjqν
′′
(z + εξ

ε

)
uεq(z + εξ)

=
σ1I(z)

2βj(z)ε

∫ ∞
−∞

dse−βj(z)|s|/ε
∑
q>N
q 6=j

jq(−1)j+q

j2 − q2
ν ′′
(z + s

ε

)
uεq(z + s) (6.7)
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[KU]
(1,2)
j (z) := −σ1I(z)

2βj(z)

∫ ∞
−∞

dξe−βj(z)|ξ|
∑
q>N
q 6=j

Θjqν
′
(z + εξ

ε

)
ε∂zu

ε
q(z + εξ)

=
σ1I(z)

βj(z)ε

∫ ∞
−∞

dse−βj(z)|s|/ε
∑
q>N
q 6=j

jq(−1)j+q

j2 − q2
ν ′
(z + s

ε

)
ε∂zu

ε
q(z + s) (6.8)

[KU]
(1,3)
j (z) :=

σ1I(z)

2βj(z)

∫ ∞
−∞

dξe−|ξ|βj(z)µ2
j(z)ν

(z
ε

+ ξ
)
uεj(z + εξ)

=
σ1I(z)

2βj(z)ε

∫ ∞
−∞

dse−|s|βj(z)/ε
( πj

D(z)

)2

ν
(z + s

ε

)
uεj(z + s). (6.9)

We decompose similarly the second component of KUj(z), which we denote by

[KU]
(2)
j (z). We have that

[KU]
(2)
j (z) = − 1I(z)

2βj(z)

∫ ∞
−∞

dξe−|ξ|βj(z)
[
ε∂zC(e)

j (z + εξ)

− σµ2
j(z)ν

(z
ε

+ ξ
)
ε∂zu

ε
j(z + εξ)

]
= − σ1I(z)

2βj(z)ε

∫ ∞
−∞

dse−βj(z)|s|/ε

[∑
q>N
q 6=j

[
βj(z) sgn(s)

(
Γjqν

′′(z + s

ε

)
uεq(z + s)

+ Θjqν
′(z + s

ε

)
ε∂zu

ε
q(z + s)

)]
− µ2

j(z)ν
(z + s

ε

)
ε∂zu

ε
j(z + s)

]
(6.10)

=: [KU]
(2,1)
j (z) + [KU]

(2,2)
j (z) + [KU]

(2,3)
j (z) (6.11)

where we used integration by parts to obtain (6.10). The three terms in (6.11) are
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given by

[KU]
(2,1)
j (z) :=

σ1I(z)

2ε

∫ ∞
−∞

ds sgn(s)e−βj(z)|s|/ε

×
∑
q>N
q 6=j

jq(−1)j+q

j2 − q2
ν ′′
(z + s

ε

)
uεq(z + s) (6.12)

[KU]
(2,2)
j (z) :=

σ1I(z)

ε

∫ ∞
−∞

dse−βj(z)|s|/ε

×
∑
q>N
q 6=j

jq(−1)j+q

j2 − q2
ν ′
(z + s

ε

)
ε∂zu

ε
q(z + s) (6.13)

[KU]
(2,3)
j (z) :=

σ1I(z)

2βj(z)

∫ ∞
−∞

dξe−|ξ|βj(z)µ2
j(z)ν

(z
ε

+ ξ
)
ε∂zu

ε
j(z + εξ)

=
σ1I(z)

2βj(z)ε

∫ ∞
−∞

dse−|s|βj(z)/ε
( πj

D(z)

)2

ν
(z + s

ε

)
ε∂zu

ε
j(z + s). (6.14)

6.2 A Few Useful Estimates

As was the case in [4], we can estimate the operator K in terms of operators

for which there are well known estimates, such as convolutions and discrete Hilbert

transforms. Here we will define a few of these simpler operators and prove some

intermediate estimates on them. Many of these operators and estimates are either

analogous or identical to those that appeared in [4]. These will all be put together

in section 6.3 to show boundedness of K.

The discrete Hilbert transform of a sequence {an}n∈Z is given by

a ∗ 1

n
:=
∑
n6=j

an
j − n

. (6.15)

The discrete Hilbert transform is a bounded operator from `2(Z) to `2(Z) satisfying

the estimate ∥∥a ∗ 1

n

∥∥
`2
≤ π

∥∥a∥∥
`2

(6.16)

an elementary proof of which can be found in [31].
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The operator T : `2(Z)→ `2(Z) is defined by

[Ta]j :=
∑
q 6=±j

jq

j2 − q2
aq. (6.17)

As was noted in [4], this operator is essentially a sum of discrete Hilbert transforms

and we may write

[Ta]j =
1

2

[
(−qa−q) ∗

1

q
+ (qaq) ∗

1

q

]
j

+
1

4
(a−j − aj). (6.18)

Then we have using the estimate on the discrete Hilbert transform that

‖Ta‖`2 ≤
(1

2
+ π
)
‖ja‖`2 . (6.19)

The the convolution operator T̃ will be given component-wise by

[T̃a]j(z) :=
(
[|Ta|]j ∗ e−β̃j |·|/ε

)
(z)1{j>N} (6.20)

where β̃j := βj(z
(t−1)
− ). Then Young’s inequality for convolutions and

∥∥e−β̃j |·|/ε∥∥
L1(R)

=

2ε/β̃j implies

‖[T̃a]j‖L2(R) ≤
2ε

jC̃
‖[Ta]j‖L2(R) (6.21)

where we used that for j > N

β̃j ≥
jπ

D̃

√
1−

( kD̃

(N + 1)π

)2

=: jC̃ (6.22)

and D̃ := D(z
(t−1)
− ).

If we consider a slight variant on T̃ given by

[T a]j(z) :=

∫ ∞
−∞

ds[Ta]j(z + s)1I(z)e−βj(z)|s|/ε1{j>N} (6.23)

we can obtain a similar estimate on its L2(R) norm. In particular, we can use

1I(z)e−βj(z)|s|/ε ≤ e−β̃j |s|/ε (6.24)
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to obtain

‖[T a]j‖L2(R) ≤ ‖[T̃a]j‖L2(R). (6.25)

Now let

[K̃a]j(z) :=
1I(z)

ε

∫ ∞
−∞

dse−βj(z)|s|/ε

× (−1)j
∑
q>N
q 6=j

jq

j2 − q2
(−1)qν̃

(z + s

ε

)
aq(z + s). (6.26)

We can write this in terms of the intermediate operator T

[K̃a]j(z) =
1I(z)

ε
(−1)j[T (−1)qν̃(·/ε)aq1{q>N}]j(z). (6.27)

Then

‖[K̃a]j‖L2(R) ≤
2

jC̃
‖[T (−1)qν̃(·/ε)aq1{q>N}]j‖L2(R) (6.28)

and so

∑
j∈Z

j2‖[K̃a]j‖2
L2(R) ≤

4

C̃2

∑
j∈Z

‖[T (−1)qν̃(·/ε)aq1{q>N}]j‖2
L2(R)

=
4

C̃2

∫ ∞
−∞

dz
∑
j∈Z

∣∣[T (−1)qν̃(z/ε)aq(z)1{q>N}]j
∣∣2

≤ 4

C̃2

(1

2
+ π
)2
∫ ∞
−∞

dz
∑
j∈Z

∣∣ν̃(z/ε)jaj(z)1{j>N}
∣∣2

=
4

C̃2

(1

2
+ π
)2∑

j∈Z

j2‖ν̃(·/ε)aj1{j>N}‖2
L2(R)

≤ 4

C̃2

(1

2
+ π
)2

‖ν̃‖2
L∞(R)

∑
j∈Z

j2‖aj‖2
L2(R) (6.29)

6.3 Proof of Boundedness

We will show that K is bounded in the Banach space X := `2(L2(R;R2), w), that

is the space of square summable sequences of the L2(R) functions taking values in
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R2 with linear weights w := {j}j∈Z, equipped with the norm

‖V ‖X :=
(∑
j∈Z

j2(‖V (1)
j ‖2

L2(R) + ‖V (2)
j ‖2

L2(R))
)1/2

. (6.30)

Lemma VI.1. The operator given component-wise by

[KV]j(ω, z) = − 1I(z)

2βj(ω, z)

∫ ∞
−∞

dξe−βj(ω,z)|ξ|

×


 1

ε∂z

√εC(e)
j (ω, z + εξ)− σµ2

j(z)ν
(z
ε

+ ξ
)
Vj

 , (6.31)

is bounded in the space X.

Proof. We begin with a use of the triangle inequality

‖[KV]
(2)
j ‖L2(R) ≤ ‖[KV]

(2,1)
j ‖L2(R) + ‖[KV]

(2,2)
j ‖L2(R) + ‖[KV]

(2,3)
j ‖L2(R). (6.32)

We then square both sides and use an elementary inequality to obtain

‖[KV]
(2)
j ‖2

L2(R) ≤ 4
(
‖[KV]

(2,1)
j ‖2

L2(R) + ‖[KV]
(2,2)
j ‖2

L2(R) + ‖[KV]
(2,3)
j ‖2

L2(R)

)
. (6.33)

Multiplying by j2 and summing over j we obtain

∑
j∈Z

j2‖[KV]
(2)
j ‖2

L2(R) ≤ 4
(∑
j∈Z

j2‖[KV]
(2,1)
j ‖2

L2(R)

+
∑
j∈Z

j2‖[KV]
(2,2)
j ‖2

L2(R) +
∑
j∈Z

j2‖[KV]
(2,3)
j ‖2

L2(R)

)
. (6.34)

Repeating this argument also gets us

∑
j∈Z

j2‖[KV]
(1)
j ‖2

L2(R) ≤ 4
(∑
j∈Z

j2‖[KV]
(1,1)
j ‖2

L2(R)

+
∑
j∈Z

j2‖[KV]
(1,2)
j ‖2

L2(R) +
∑
j∈Z

j2‖[KV]
(1,3)
j ‖2

L2(R)

)
. (6.35)
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We then bound each term on the right-hand side of (6.34) separately. Using (6.29)

we have

∑
j∈Z

j2‖[KV]
(2,1)
j ‖2

L2(R) ≤
∑
j∈Z

j2‖σ1I(·)
2ε

(−1)j[T (−1)qν ′′(·/ε)V (1)
q 1{q>N}]j‖2

L2(R)

≤ C1

∑
j∈Z

j2‖V (1)
j ‖2

L2(R), (6.36)

where

C1 :=
σ2

C̃2

(1

2
+ π
)2

‖ν‖2
W 2,∞(R). (6.37)

Similarly, again using (6.29) for the second term

∑
j∈Z

j2‖[KV]
(2,2)
j ‖2

L2(R) ≤
∑
j∈Z

j2‖σ1I(·)
ε

(−1)j[T (−1)qν ′(·/ε)V (2)
q 1{q>N}]j(z)‖2

L2(R)

≤ C2

∑
j∈Z

j2‖V (2)
j ‖2

L2(R), (6.38)

where

C2 :=
4σ2

C̃2

(1

2
+ π
)2

‖ν‖2
W 1,∞(R). (6.39)

As for the last term, we use Young’s inequality to show

‖[KV]
(2,3)
j ‖L2(R) ≤

σπ2j2

2εβ̃jD̃2
‖e−β̃j |s|/ε ∗ |ν(·/ε)V (2)

j |‖L2(R)

≤ σπ2j2

2εβ̃jD̃2
‖e−β̃j |·|/ε‖L1(R)‖ν(·/ε)V (2)

j ‖L2(R)

≤ σπ2

C̃2D̃2
‖ν(·/ε)V (2)

j ‖L2(R)

≤ σπ2

C̃2D̃2
‖ν‖L∞(R)‖V (2)

j ‖L2(R). (6.40)

Then multiplying by j, squaring both sides, and summing over j yields

∑
j∈Z

j2‖[KV]
(2,3)
j ‖2

L2(R) ≤ C3

∑
j∈Z

j2‖V (2)
j ‖2

L2(R). (6.41)

where

C3 :=
σ2π4

C̃4D̃4
‖ν‖2

L∞(R). (6.42)
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We now return to (6.34) and use (6.36), (6.38), and (6.41) to obtain

∑
j∈Z

j2‖[KV]
(2)
j ‖2

L2(R) ≤ 4C1

∑
j∈Z

j2‖V (1)
j ‖2

L2(R) + 4(C2 + C3)
∑
j∈Z

j2‖V (2)
j ‖2

L2(R) (6.43)

We can reuse many of these estimates to bound the terms on the right-hand side

of (6.35). We note that

‖[KV]
(1,1)
j ‖L2(R) = ‖ σ1I(·)

2εβj(·)
(−1)j[T (−1)qν ′′(·/ε)V (1)

q 1{q>N}]j‖L2(R)

≤ 1

β̃j
‖σ1I(·)

2ε
(−1)j[T (−1)qν ′′(·/ε)V (1)

q 1{q>N}]j‖L2(R)

≤ ‖σ1I(·)
2ε

(−1)j[T (−1)qν ′′(·/ε)V (1)
q 1{q>N}]j‖L2(R) (6.44)

Then we have ∑
j∈Z

j2‖[KV]
(1,1)
j ‖2

L2(R) ≤ C1

∑
j∈Z

j2‖V (1)
j ‖2

L2(R), (6.45)

and nearly the same argument gets us that

∑
j∈Z

j2‖[KV]
(1,2)
j ‖2

L2(R) ≤ C2

∑
j∈Z

j2‖V (2)
j ‖2

L2(R). (6.46)

Finally, we can estimate [KV]
(1,3)
j in the same manner as [KV]

(2,3)
j to obtain

∑
j∈Z

j2‖[KV]
(1,3)
j ‖2

L2(R) ≤ C3

∑
j∈Z

j2‖V (1)
j ‖2

L2(R). (6.47)

Returning to (6.35) and using (6.45), (6.46), and (6.47) yields

∑
j∈Z

j2‖[KV]
(1)
j ‖2

L2(R) ≤ 4(C1 + C3)
∑
j∈Z

j2‖V (1)
j ‖2

L2(R) + 4C2

∑
j∈Z

j2‖V (2)
j ‖2

L2(R) (6.48)

We have using (6.43) and (6.48)

‖KV‖2
X =

∑
j∈Z

j2(‖[KV]
(1)
j ‖2

L2(R) + ‖[KV]
(2)
j ‖2

L2(R))

≤ 4(2C1 + C3)
∑
j∈Z

j2‖V (1)
j ‖2

L2(R) + 4(2C2 + C3)
∑
j∈Z

j2‖V (2)
j ‖2

L2(R)

≤ C2
∑
j∈Z

j2(‖V (1)
j ‖2

L2(R) + ‖V (2)
j ‖2

L2(R)) (6.49)
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where

C :=
√

max{4(2C1 + C3), 4(2C2 + C3)}. (6.50)

Thus, we have

‖KV‖X ≤ C‖V ‖X (6.51)



CHAPTER VII

Conclusion

We considered time-harmonic sound waves emitted by a point source in a two-

dimensional random waveguide with turning points. The waveguide has sound-soft

boundaries, a slowly bending axis and variable cross-section. The variation consists

of a slow and monotone change of the opening D of the waveguide, and small ampli-

tude random fluctuations of the boundary. The slow variations are on a long scale

with respect to the wavelength λ, whereas the random fluctuations are on a scale

comparable to λ. The wavelength λ is chosen smaller than D, so that the wavefield

is a superposition of multiple propagating modes, and infinitely many evanescent

modes. The turning points are the locations along the axis of the waveguide where

the number of propagating modes decreases by 1 in the direction of decrease of D,

or increases by 1 in the direction of increase of D. The change in the number of

propagating modes means that there are modes that transition from propagating to

evanescent. Due to energy conservation, the incoming such waves are turned back

i.e., they are reflected at the turning points.

We analyzed the transmitted and reflected propagating modes in the waveguide

and quantified their interaction with the random boundary. This interaction is called

cumulative scattering and it manifests as mode coupling which causes randomization
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of the wavefield and exchange of power between the modes. We analyzed these effects

from first principles, starting from the wave equation, using stochastic asymptotic

analysis. We focused attention on the transport of power in the waveguide and

showed that cumulative scattering may increase or decrease the transmitted power

depending on the source.

One could apply this work to the study of inverse problems in random waveguides.

In this application the goal is to determine the waveguide geometry and scatterers

from sensor array measurements. Techniques for this have already been developed

in [27, 13, 12, 1] for random waveguides with straight walls.
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APPENDIX A

Markov Diffusions and the Kolmogorov Backward Equation

Some of the content of chapters III - V requires a small amount of stochastic

analysis which we review in this section. The material as stated here is primarily

sourced from [26, Chapter 6]. More detailed accounts are given in [49, 22].

A.1 Infinitesimal Generators

The infinitesimal generator of a Markov diffusion process X(z) is a partial differ-

ential operator defined by

Lf(x) := lim
h→0

E[f(X(h)|X(0) = x]− f(x)

h
(A.1)

where f is an appropriate test function for which the limit on the right-hand side is

defined. The theorem in chapter V gives us an explicit expression for the infinitesimal

generator for the limit complex mode amplitude diffusion processes for the problem

in chapter III. The generator encodes statistical information about the process X

which one can access through the Kolmogorov backward equations described in the

next section.

A.2 Kolmogorov Backward Equation

Let X(z) be a Markov diffusion process in Rn with infinitesimal generator L

whose coefficients are smooth and let Z ∈ R be given. We have that u(z, x) :=
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E[f(X(Z))|X(z) = x] where f is a bounded smooth function will solve

∂zu(z, x) + Lu(z, x) = 0, z < Z, (A.2)

u(Z, x) = f(x). (A.3)

The equation above is the Kolmogorov backward equation so called because it is

solved backward in z from Z. The requirement that (A.3) hold is referred to as a

terminal condition.

In the case where X(z) is a homogeneous Markov diffusion process we can make

a change of variables z′ = Z − z and obtain an initial value problem

∂z′u(z′, x) = Lu(z′, x), z′ > 0, (A.4)

u(0, x) = f(x). (A.5)

We will use this version of the backward equation to obtain differential equations

for moments of the limit complex mode amplitude diffusion processes in section IV.

Though the process we consider in that case is not homogeneous we can instead

consider (z,X(z)) as a process with state space Rn+1, which will be homogeneous.
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APPENDIX B

Computation of the Infinitesimal Generator

Here we give a detailed computation of the infinitesimal generator of the limit com-

plex mode amplitude process b(ω, z) ∈ CN in the sector of the guide z ∈ (z
(t)
− , z

(t−1)
− ).

We split the generator computation into leading order and second order terms. We

then combine them and rewrite the generator in polar coordinates.

B.1 Real-Valued System for the Mode Amplitudes

Let Fj and Gj are the j-th components of the O(1/
√
ε) and O(1) terms of

Υε(bb)(ω, z)bε(ω, z), respectively. After applying the forward scattering approxima-

tion, we have that bεj(ω, z) satisfies

∂zb
ε
j(ω, z) =

1√
ε
Fj(b

ε(ω, z), νε(z),θε(z), z) +Gj(b
ε(ω, z), νε(z),θε(z), z), (B.1)

for z ∈ (z
(t)
− , z

(t−1)
− ), and j = 1, . . . ,N where

νε(z) := ν
(z
ε

)
, (B.2)

θεj(z) :=
1

ε

∫ z

0

dsβj(ω, s). (B.3)

To apply the theorem of chapter V we have to rewrite the system above in terms of

real-valued quantities.

We can rewrite the system above as

∂zb̃
ε =

1√
ε
F̃ (bε, νε,θε, z) + G̃ (bε, νε,θε, z) (B.4)
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where

b̃ε :=
[
bε,R,bε,I

]T
, F̃ :=

[
FR,FI

]T
, G̃ :=

[
GR,GI

]T
, (B.5)

and

bε,R := Re(bε), FR := Re(F), GR := Re(G), (B.6)

bε,I := Im(bε), FI := Im(F), GI := Im(G). (B.7)

We may now apply the theorem of chapter V to (B.4) to compute the infinitesimal

generator of b(ω, z). We will compute the generator in two parts splitting up the first

and second order terms which we will denote by L1, L2, respectively. We note that

in what follows if a sum is written without specifying the starting and final indices

one should assume it is from 1 to N .

B.2 First Order Terms

The first order terms of the generator are given by

L1 :=
∑
j,j′

lim
L→∞

1

L

∫ L

0

∫ ∞
0

dsdζE
[ 8∑
k=1

F
(k)
jj′

]
(B.8)

where

F
(1)
jj′ := FR

j (b, ν(0),θ + βs, z)FR
j′ (b, ν(ζ),θ + β(s+ ζ), z)]∂2

bRj ,b
R
j′

(B.9)

F
(2)
jj′ := FR

j (b, ν(0),θ + βs, z)F I
j′(b, ν(ζ),θ + β(s+ ζ), z)]∂2

bRj ,b
I
j′

(B.10)

F
(3)
jj′ := F I

j (b, ν(0),θ + βs, z)FR
j′ (b, ν(ζ),θ + β(s+ ζ), z)]∂2

bIj ,b
R
j′

(B.11)

F
(4)
jj′ := F I

j (b, ν(0),θ + βs, z)F I
j′(b, ν(ζ),θ + β(s+ ζ), z)]∂2

bIj ,b
I
j′

(B.12)

F
(5)
jj′ := FR

j (b, ν(0),θ + βs, z)∂bRj F
R
j′ (b, ν(ζ),θ + β(s+ ζ), z)∂bR

j′
(B.13)

F
(6)
jj′ := FR

j (b, ν(0),θ + βs, z)∂bRj F
I
j′(b, ν(ζ),θ + β(s+ ζ), z)∂bI

j′
(B.14)

F
(7)
jj′ := F I

j (b, ν(0),θ + βs, z)∂bIjF
R
j′ (b, ν(ζ),θ + β(s+ ζ), z)∂bR

j′
(B.15)

F
(8)
jj′ := F I

j (b, ν(0),θ + βs, z)∂bIjF
I
j′(b, ν(ζ),θ + β(s+ ζ), z)∂bI

j′
(B.16)
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Towards computing the F
(k)
jj′ we need

FR
j (b, ν, θ, z) =

σ

2βj
µ2
jνb

I
j +

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq cos(θjq) + CR,s

jq sin(θjq)
)

(B.17)

F I
j (b, ν, θ, z) = − σ

2βj
µ2
jνb

R
j +

∑
q 6=j

1

2
√
βjβq

(
CI,c
jq cos(θjq) + CI,s

jq sin(θjq)
)

(B.18)

where

CR,c
jq (ζ) := −CR

jq(ζ)bIq − CI
jq(ζ)bRq , (B.19)

CR,s
jq (ζ) := CR

jq(ζ)bRq − CI
jq(ζ)bIq , (B.20)

CI,c
jq (ζ) := CR

jq(ζ)bRq − CI
jq(ζ)bIq , (B.21)

CI,s
jq (ζ) := CR

jq(ζ)bIq + CI
jq(ζ)bRq , (B.22)

CR
jq(ζ) := σΓjqν

′′(ζ), (B.23)

CI
jq(ζ) := −σβqΘjqν

′(ζ), (B.24)

and

θjq(z) :=

∫ z

0

dsβq(ω, s)− βj(ω, s). (B.25)

We also define the following notation

θ
(1)
jq := θjq + (βq − βj)s (B.26)

θ
(2)
jq := θjq + (βq − βj)(s+ ζ) (B.27)

which will simply be used to keep our expressions from becoming too long.
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We begin with computing F
(1)
jj′ through F

(4)
jj′ . We have

F
(1)
jj′ =

[
σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

I
j′

+
σ

2βj
µ2
jν(0)bIj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CR,c
j′q′(ζ) cos(θ

(2)
j′q′) + CR,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

+
σ

2βj′
µ2
j′ν(ζ)bIj′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

4
√
βjβqβj′βq′

[
CR,c
jq (0)CR,c

j′q′(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′q′)

+ CR,s
jq (0)CR,s

j′q′(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′q′) + CR,s

jq (0)CR,c
j′q′(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′q′)

+CR,c
jq (0)CR,s

j′q′(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′q′)
] ]
∂2
bRj ,b

R
j′

(B.28)

F
(2)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′

+
σ

2βj
µ2
jν(0)bIj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CI,c
j′q′(ζ) cos(θ

(2)
j′q′) + CI,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

− σ

2βj′
µ2
j′ν(ζ)bRj′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

4
√
βjβqβj′βq′

[
CR,c
jq (0)CI,c

j′q′(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′q′)

+ CR,s
jq (0)CI,s

j′q′(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′q′) + CR,s

jq (0)CI,c
j′q′(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′q′)

+CR,c
jq (0)CI,s

j′q′(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′q′)
] ]
∂2
bRj ,b

I
j′

(B.29)
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F
(3)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′

− σ

2βj
µ2
jν(0)bRj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CR,c
j′q′(ζ) cos(θ

(2)
j′q′) + CR,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

+
σ

2βj′
µ2
j′ν(ζ)bIj′

∑
q 6=j

1

2
√
βjβq

(
CI,c
jq (0) cos(θ

(1)
jq ) + CI,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

4
√
βjβqβj′βq′

[
CI,c
jq (0)CR,c

j′q′(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′q′)

+ CI,s
jq (0)CR,s

j′q′(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′q′) + CI,s

jq (0)CR,c
j′q′(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′q′)

+CI,c
jq (0)CR,s

j′q′(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′q′)
] ]
∂2
bIj ,b

R
j′

(B.30)

F
(4)
jj′ =

[
σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bε,Rj bε,Rj′

− σ

2βj
µ2
jν(0)bRj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CI,c
j′q′(ζ) cos(θ

(2)
j′q′) + CI,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

− σ

2βj′
µ2
j′ν(ζ)bRj′

∑
q 6=j

1

2
√
βjβq

(
CI,c
jq (0) cos(θ

(1)
jq ) + CI,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

4
√
βjβqβj′βq′

[
CI,c
jq (0)CI,c

j′q′(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′q′)

+ CI,s
jq (0)CI,s

j′q′(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′q′) + CI,s

jq (0)CI,c
j′q′(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′q′)

+CI,c
jq (0)CI,s

j′q′(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′q′)
] ]
∂2
bIj ,b

I
j′

(B.31)
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To compute the terms F
(5)
jj′ through F

(8)
jj′ , we will need

∂bRj F
R
j′ (b, ν(ζ), θ + β(s+ ζ), z)

=
1

2
√
βjβ′j

[
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
]

(B.32)

∂bIjF
R
j′ (b, ν(ζ), θ + β(s+ ζ), z)

=
σ

2βj
µ2
jν(ζ)δjj′ +

1

2
√
βjβ′j

[
− CR

j′j(ζ) cos(θ
(2)
j′j )− C

I
j′j(ζ) sin(θ

(2)
j′j )
]

(B.33)

∂bRj F
I
j′(b, ν(ζ), θ + β(s+ ζ), z)

= − σ

2βj
µ2
jν(ζ)δjj′ +

1

2
√
βjβ′j

[
CR
j′j(ζ) cos(θ

(2)
j′j ) + CI

j′j(ζ) sin(θ
(2)
j′j )
]

(B.34)

∂bIjF
I
j′(b, ν(ζ), θ + β(s+ ζ), z)

=
1

2
√
βjβ′j

[
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
]

(B.35)

Then F
(5)
jj′ through F

(8)
jj′ are given by

F
(5)
jj′ =

[
σ

4
√
β3
jβj′

µ2
jν(0)bIj

(
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
)

+
∑
q 6=j

1

4
√
β2
jβqβj′

[
−CR,c

jq (0)CI
j′j(ζ) cos(θ

(1)
jq ) cos(θ

(2)
j′j )

+ CR,s
jq (0)CR

j′j(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′j )− C

R,s
jq (0)CI

j′j(ζ) sin(θ
(1)
jq ) cos(θ

(2)
j′j )

+CR,c
jq (0)CR

j′j(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′j )
] ]
∂bR

j′
(B.36)
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F
(6)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjδjj′

+
σ

4
√
β3
jβ
′
j

µ2
jν(0)bIj

(
CR
j′j(ζ) cos(θ

(2)
j′j ) + CI

j′j(ζ) sin(θ
(2)
j′j )
)

− σ

2βj
µ2
jν(ζ)δj,j′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑
q 6=j,

1

4
√
β2
jβqβj′

[
CR,c
jq (0)CR

j′j(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′j )

+ CR,s
jq (0)CI

j′j(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′j ) + CR,s

jq (0)CR
j′j(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′j )

+CR,c
jq (0)CI

j′j(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′j )
] ]
∂bI

j′
(B.37)

F
(7)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj δjj′

+
σ

4
√
β3
jβ
′
j

µ2
jν(0)bRj

(
CR
j′j(ζ) cos(θ

(2)
j′j ) + CI

j′j(ζ) sin(θ
(2)
j′j )
)

+
σ

2βj
µ2
jν(ζ)δj,j′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

−
∑
q 6=j,

1

4
√
β2
jβqβj′

[
CI,c
jq (0)CR

j′j(ζ) cos(θ
(1)
jq ) cos(θ

(2)
j′j )

+ CI,s
jq (0)CI

j′j(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′j ) + CI,s

jq (0)CR
j′j(ζ) sin(θ

(1)
jq ) cos(θ

(2)
j′j )

+CI,c
jq (0)CI

j′j(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′j )
] ]
∂bR

j′
(B.38)
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F
(8)
jj′ =

[
− σ

4
√
β3
jβj′

µ2
jν(0)bRj

(
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
)

+
∑
q 6=j

1

4
√
β2
jβqβj′

[
−CI,c

jq (0)CI
j′j(ζ) cos(θ

(1)
jq ) cos(θ

(2)
j′j )

+ CI,s
jq (0)CR

j′j(ζ) sin(θ
(1)
jq ) sin(θ

(2)
j′j )− C

I,s
jq (0)CI

j′j(ζ) sin(θ
(1)
jq ) cos(θ

(2)
j′j )

+CI,c
jq (0)CR

j′j(ζ) cos(θ
(1)
jq ) sin(θ

(2)
j′j )
] ]
∂bI

j′
(B.39)

We then apply the trigonometric identities

2 cos(α1) cos(α2) = cos(α1 − α2) + cos(α1 + α2) (B.40)

2 sin(α1) sin(α2) = cos(α1 − α2)− cos(α1 + α2) (B.41)

2 sin(α1) cos(α2) = sin(α1 + α2) + sin(α1 − α2) (B.42)

to put the F
(k)
jj′ into a form that we can average with respect to s. We define the

notation

θ
(−)
jqj′q′ := θ

(1)
jq − θ

(2)
j′q′ (B.43)

θ
(+)
jqj′q′ := θ

(1)
jq + θ

(2)
j′q′ (B.44)
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to again keep our expressions from becoming too long. We have

F
(1)
jj′ =

[
σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

I
j′

+
σ

2βj
µ2
jν(0)bIj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CR,c
j′q′(ζ) cos(θ

(2)
j′q′) + CR,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

+
σ

2βj′
µ2
j′ν(ζ)bIj′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

8
√
βjβqβj′βq′

[(
CR,c
jq (0)CR,c

j′q′(ζ) + CR,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(−)
jqj′q′)

+
(
CR,c
jq (0)CR,c

j′q′(ζ)− CR,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(+)
jqj′q′)

+
(
CR,s
jq (0)CR,c

j′q′(ζ) + CR,c
jq (0)CR,s

j′q′(ζ)
)

sin(θ
(+)
jqj′q′)

+
(
CR,s
jq (0)CR,c

j′q′(ζ)− CR,c
jq (0)CR,s

j′q′(ζ)
)

sin(θ
(−)
jqj′q′)

] ]
∂2
bRj ,b

R
j′

(B.45)

F
(2)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′

+
σ

2βj
µ2
jν(0)bIj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CI,c
j′q′(ζ) cos(θ

(2)
j′q′) + CI,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

− σ

2βj′
µ2
j′ν(ζ)bRj′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

8
√
βjβqβj′βq′

[(
CR,c
jq (0)CR,c

j′q′(ζ) + CR,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(−)
jqj′q′)

+
(
CR,c
jq (0)CI,c

j′q′(ζ)− CR,s
jq (0)CI,s

j′q′(ζ)
)

cos(θ
(+)
jqj′q′)

+
(
CR,s
jq (0)CI,c

j′q′(ζ) + CR,c
jq (0)CI,s

j′q′(ζ)
)

sin(θ
(+)
jqj′q′)

+
(
CR,s
jq (0)CI,c

j′q′(ζ)− CR,c
jq (0)CI,s

j′q′(ζ)
)

sin(θ
(−)
jqj′q′)

] ]
∂2
bRj ,b

I
j′

(B.46)



107

F
(3)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′

− σ

2βj
µ2
jν(0)bRj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CR,c
j′q′(ζ) cos(θ

(2)
j′q′) + CR,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

+
σ

2βj′
µ2
j′ν(ζ)bIj′

∑
q 6=j

1

2
√
βjβq

(
CI,c
jq (0) cos(θ

(1)
jq ) + CI,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

8
√
βjβqβj′βq′

[(
CR,c
jq (0)CR,c

j′q′(ζ) + CR,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(−)
jqj′q′)

+
(
CI,c
jq (0)CR,c

j′q′(ζ)− CI,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(+)
jqj′q′)

+
(
CI,s
jq (0)CR,c

j′q′(ζ) + CI,c
jq (0)CR,s

j′q′(ζ)
)

sin(θ
(+)
jqj′q′)

+
(
CI,s
jq (0)CR,c

j′q′(ζ)− CI,c
jq (0)CR,s

j′q′(ζ)
)

sin(θ
(−)
jqj′q′)

] ]
∂2
bIj ,b

R
j′

(B.47)

F
(4)
jj′ =

[
σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bε,Rj bε,Rj′

− σ

2βj
µ2
jν(0)bRj

∑
q′ 6=j′

1

2
√
βj′βq′

(
CI,c
j′q′(ζ) cos(θ

(2)
j′q′) + CI,s

j′q′(ζ) sin(θ
(2)
j′q′)
)

− σ

2βj′
µ2
j′ν(ζ)bRj′

∑
q 6=j

1

2
√
βjβq

(
CI,c
jq (0) cos(θ

(1)
jq ) + CI,s

jq (0) sin(θ
(1)
jq )
)

+
∑

q 6=j,q′ 6=j′

1

8
√
βjβqβj′βq′

[(
CR,c
jq (0)CR,c

j′q′(ζ) + CR,s
jq (0)CR,s

j′q′(ζ)
)

cos(θ
(−)
jqj′q′)

+
(
CI,c
jq (0)CI,c

j′q′(ζ)− CI,s
jq (0)CI,s

j′q′(ζ)
)

cos(θ
(+)
jqj′q′)

+
(
CI,s
jq (0)CI,c

j′q′(ζ) + CI,c
jq (0)CI,s

j′q′(ζ)
)

sin(θ
(+)
jqj′q′)

+
(
CI,s
jq (0)CI,c

j′q′(ζ)− CI,c
jq (0)CI,s

j′q′(ζ)
)

sin(θ
(−)
jqj′q′)

] ]
∂2
bIj ,b

I
j′

(B.48)
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F
(5)
jj′ =

[
σ

4
√
β3
jβj′

µ2
jν(0)bIj

(
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
)

+
∑
q 6=j

1

8
√
β2
jβqβj′

[(
−CR,c

jq (0)CI
j′j(ζ) + CR,s

jq (0)CR
j′j(ζ)

)
cos(θ

(−)
jqj′j)

+
(
−CR,c

jq (0)CI
j′j(ζ)− CR,s

jq (0)CR
j′j(ζ)

)
cos(θ

(+)
jqj′j)

+
(
−CR,s

jq (0)CI
j′j(ζ) + CR,c

jq (0)CR
j′j(ζ)

)
sin(θ

(+)
jqj′j)

+
(
−CR,s

jq (0)CI
j′j(ζ)− CR,c

jq (0)CR
j′j(ζ)

)
sin(θ

(−)
jqj′j)

] ]
∂bR

j′
(B.49)

F
(6)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjδjj′

+
σ

4
√
β3
jβ
′
j

µ2
jν(0)bIj

(
CR
j′j(ζ) cos(θ

(2)
j′j ) + CI

j′j(ζ) sin(θ
(2)
j′j )
)

− σ

2βj
µ2
jν(ζ)δj,j′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

+
∑
q 6=j,

1

8
√
β2
jβqβj′

[(
CR,c
jq (0)CR

j′j(ζ) + CR,s
jq (0)CI

j′j(ζ)
)

cos(θ
(−)
jqj′j)

+
(
CR,c
jq (0)CR

j′j(ζ)− CR,s
jq (0)CI

j′j(ζ)
)

cos(θ
(+)
jqj′j)

+
(
CR,s
jq (0)CR

j′j(ζ) + CR,c
jq (0)CI

j′j(ζ)
)

sin(θ
(+)
jqj′j)

+
(
CR,s
jq (0)CR

j′j(ζ)− CR,c
jq (0)CI

j′j(ζ)
)

sin(θ
(−)
jqj′j)

] ]
∂bI

j′
(B.50)
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F
(7)
jj′ =

[
− σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj δjj′

+
σ

4
√
β3
jβ
′
j

µ2
jν(0)bRj

(
CR
j′j(ζ) cos(θ

(2)
j′j ) + CI

j′j(ζ) sin(θ
(2)
j′j )
)

+
σ

2βj
µ2
jν(ζ)δj,j′

∑
q 6=j

1

2
√
βjβq

(
CR,c
jq (0) cos(θ

(1)
jq ) + CR,s

jq (0) sin(θ
(1)
jq )
)

−
∑
q 6=j,

1

8
√
β2
jβqβj′

[(
CI,c
jq (0)CR

j′j(ζ) + CI,s
jq (0)CI

j′j(ζ)
)

cos(θ
(−)
jqj′j)

+
(
CI,c
jq (0)CR

j′j(ζ)− CI,s
jq (0)CI

j′j(ζ)
)

cos(θ
(+)
jqj′j)

+
(
CI,s
jq (0)CR

j′j(ζ) + CI,c
jq (0)CI

j′j(ζ)
)

sin(θ
(+)
jqj′j)

+
(
CI,s
jq (0)CR

j′j(ζ)− CI,c
jq (0)CI

j′j(ζ)
)

sin(θ
(−)
jqj′j)

] ]
∂bR

j′
(B.51)

F
(8)
jj′ =

[
− σ

4
√
β3
jβj′

µ2
jν(0)bRj

(
− CI

j′j(ζ) cos(θ
(2)
j′j ) + CR

j′j(ζ) sin(θ
(2)
j′j )
)

+
∑
q 6=j

1

8
√
β2
jβqβj′

[(
−CI,c

jq (0)CI
j′j(ζ) + CI,s

jq (0)CR
j′j(ζ)

)
cos(θ

(−)
jqj′j)

+
(
−CI,c

jq (0)CI
j′j(ζ)− CI,s

jq (0)CR
j′j(ζ)

)
cos(θ

(+)
jqj′j)

+
(
−CI,s

jq (0)CI
j′j(ζ) + CI,c

jq (0)CR
j′j(ζ)

)
sin(θ

(+)
jqj′j)

+
(
−CI,s

jq (0)CI
j′j(ζ)− CI,c

jq (0)CR
j′j(ζ)

)
sin(θ

(−)
jqj′j)

] ]
∂bI

j′
(B.52)
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Then we average with respect to s.

∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(1)
jj′ =

∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

I
j′∂

2
bRj b

R
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CR,c
jq (0)CR,c

jq (ζ) + CR,s
jq (0)CR,s

jq (ζ)
)

cos((βj − βq)ζ)

+
(
CR,s
jq (0)CR,c

jq (ζ)− CR,c
jq (0)CR,s

jq (ζ)
)

sin((βj − βq)ζ)
]
∂2
bRj b

R
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CR,c
jq (0)CR,c

qj (ζ)− CR,s
jq (0)CR,s

qj (ζ)
)

cos((βj − βq)ζ)

+
(
CR,s
jq (0)CR,c

qj (ζ) + CR,c
jq (0)CR,s

qj (ζ)
)

sin((βj − βq)ζ)
]
∂2
bRj b

R
q

=
∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

I
j′∂

2
bRj b

R
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
)

sin((βj − βq)ζ)
] ((

bRq
)2

+
(
bIq
)2
)
∂2
bRj b

R
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

I
q − bRj bRq

)
∂2
bRj b

R
q

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

R
q + bRj b

I
q

)
∂2
bRj b

R
q

(B.53)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(2)
jj′ = −

∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

R
j′∂

2
bRj b

I
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CR,c
jq (0)CI,c

jq (ζ) + CR,s
jq (0)CI,s

jq (ζ)
)

cos((βj − βq)ζ)

+
(
CR,s
jq (0)CI,c

jq (ζ)− CR,c
jq (0)CI,s

jq (ζ)
)

sin((βj − βq)ζ)
]
∂2
bRj b

I
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CR,c
jq (0)CI,c

qj (ζ)− CR,s
jq (0)CI,s

qj (ζ)
)

cos((βj − βq)ζ)

+
(
CR,s
jq (0)CI,c

qj (ζ) + CR,c
jq (0)CI,s

qj (ζ)
)

sin((βj − βq)ζ)
]
∂2
bRj b

I
q

=
∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bIjb

R
j′∂

2
bRj b

I
j′

+
∑
j,q,q 6=j

1

8βjβq

[
−
(
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
)

cos((βj − βq)ζ)

+
(
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
)

sin((βj − βq)ζ)
] ((

bRq
)2

+
(
bIq
)2
)
∂2
bRj b

I
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

I
q − bRj bRq

)
∂2
bRj b

I
q

+
∑
j,q,q 6=j

1

8βjβq

[(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

R
q + bRj b

I
q

)
∂2
bRj b

I
q

(B.54)



112

∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(3)
jj′ = −

∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′∂

2
bIj b

R
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CI,c
jq (0)CR,c

jq (ζ) + CI,s
jq (0)CR,s

jq (ζ)
)

cos((βj − βq)ζ)

+
(
CI,s
jq (0)CR,c

jq (ζ)− CI,c
jq (0)CR,s

jq (ζ)
)

sin((βj − βq)ζ)
]
∂2
bIj b

R
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CI,c
jq (0)CR,c

qj (ζ)− CI,s
jq (0)CR,s

qj (ζ)
)

cos((βj − βq)ζ)

+
(
CI,s
jq (0)CR,c

qj (ζ) + CI,c
jq (0)CR,s

qj (ζ)
)

sin((βj − βq)ζ)
]
∂2
bIj b

R
q

=
∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

I
j′∂

2
bIj b

R
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
)

sin((βj − βq)ζ)
] ((

bRq
)2

+
(
bIq
)2
)
∂2
bIj b

R
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

I
q − bRj bRq

)
∂2
bIj b

R
q

+
∑
j,q,q 6=j

1

8βjβq

[(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

R
q + bRj b

I
q

)
∂2
bIj b

R
q

(B.55)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(4)
jj′ =

∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

R
j′∂

2
bIj b

I
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CI,c
jq (0)CI,c

jq (ζ) + CI,s
jq (0)CI,s

jq (ζ)
)

cos((βj − βq)ζ)

+
(
CI,s
jq (0)CI,c

jq (ζ)− CI,c
jq (0)CI,s

jq (ζ)
)

sin((βj − βq)ζ)
]
∂2
bIj b

I
j

+
∑
j,q,q 6=j

1

8βjβq

[(
CI,c
jq (0)CI,c

qj (ζ)− CI,s
jq (0)CI,s

qj (ζ)
)

cos((βj − βq)ζ)

+
(
CI,s
jq (0)CI,c

qj (ζ) + CI,c
jq (0)CI,s

qj (ζ)
)

sin((βj − βq)ζ)
]
∂2
bIj b

I
q

=
∑
j,j′

σ2

4βjβj′
µ2
jµ

2
j′ν(0)ν(ζ)bRj b

R
j′∂

2
bIj b

I
j′

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
)

sin((βj − βq)ζ)
] ((

bRq
)2

+
(
bIq
)2
)
∂2
bIj b

I
j

+
∑
j,q,q 6=j

1

8βjβq

[
−
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

I
q − bRj bRq

)
∂2
bIj b

I
q

+
∑
j,q,q 6=j

1

8βjβq

[
−
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

−
(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
] (
bIjb

R
q + bRj b

I
q

)
∂2
bIj b

I
q

(B.56)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(5)
jj′ = −

∑
j

σ

4β2
j

µ2
jν(0)bIjC

I
jj(ζ)∂bRj

+
∑
j,q,q 6=j

1

8βjβq

[(
−CR,c

jq (0)CI
qj(ζ)− CR,s

jq (0)CR
qj(ζ)

)
cos((βj − βq)ζ)

+
(
−CR,s

jq (0)CI
qj(ζ) + CR,c

jq (0)CR
qj(ζ)

)
sin((βj − βq)ζ)

]
∂bRq

= −
∑
j

σ

4β2
j

µ2
jν(0)CI

jj(ζ)bIj∂bRj

+
∑
j,q,q 6=j

1

8βjβq

[(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
−CR

jq(0)CI
qj(ζ)− CI

jq(0)CR
qj(ζ)

)
sin((βj − βq)ζ)

]
bRq ∂bRq

+
∑
j,q,q 6=j

1

8βjβq

[(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
]
bIq∂bRq (B.57)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(6)
jj′ = −

∑
j

σ2

4β2
j

µ4
jν(0)ν(ζ)bIj∂bIj

+
∑
j

σ

4β2
j

µ2
jν(0)bIjC

R
jj(ζ)∂bIj

+
∑

j,q,q 6=j,

1

8βjβq

[(
CR,c
jq (0)CR

qj(ζ)− CR,s
jq (0)CI

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CR,s
jq (0)CR

qj(ζ) + CR,c
jq (0)CI

qj(ζ)
)

sin((βj − βq)ζ)
]
∂bIq

= −
∑
j

σ2

4β2
j

µ4
jν(0)ν(ζ)bIj∂bIj

+
∑
j

σ

4β2
j

µ2
jν(0)CR

jj(ζ)bIj∂bIj

+
∑

j,q,q 6=j,

1

8βjβq

[(
−CI

jq(0)CR
qj(ζ)− CR

jq(0)CI
qj(ζ)

)
cos((βj − βq)ζ)

+
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

sin((βj − βq)ζ)
]
bRq ∂bIq

+
∑

j,q,q 6=j,

1

8βjβq

[(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
−CI

jq(0)CR
qj(ζ)− CR

jq(0)CI
qj(ζ)

)
sin((βj − βq)ζ)

]
bIq∂bIq (B.58)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(7)
jj′ = −

∑
j

σ2

4β2
j

µ4
jν(0)ν(ζ)bRj ∂bRj

+
∑
j

σ

4β2
j

µ2
jν(0)bRj C

R
jj(ζ)∂bRj

−
∑

j,q,q 6=j,

1

8βjβq

[(
CI,c
jq (0)CR

qj(ζ)− CI,s
jq (0)CI

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CI,s
jq (0)CR

qj(ζ) + CI,c
jq (0)CI

qj(ζ)
)

sin((βj − βq)ζ)
]
∂bRq

= −
∑
j

σ2

4β2
j

µ4
jν(0)ν(ζ)bRj ∂bRj

+
∑
j

σ

4β2
j

µ2
jν(0)CR

jj(ζ)bRj ∂bRj

−
∑

j,q,q 6=j,

1

8βjβq

[(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
]
bRq ∂bRq

−
∑

j,q,q 6=j,

1

8βjβq

[(
−CI

jq(0)CR
qj(ζ)− CR

jq(0)CI
qj(ζ)

)
cos((βj − βq)ζ)

+
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

sin((βj − βq)ζ)
]
bIq∂bRq (B.59)
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∑
j,j′

lim
L→∞

1

L

∫ L

0

dsF
(8)
jj′ =

∑
j

σ

4β2
j

µ2
jν(0)bRj C

I
jj(ζ)∂bIj

+
∑
j,q,q 6=j

1

8βjβq

[(
−CI,c

jq (0)CI
qj(ζ)− CI,s

jq (0)CR
qj(ζ)

)
cos((βj − βq)ζ)

+
(
−CI,s

jq (0)CI
qj(ζ) + CI,c

jq (0)CR
qj(ζ)

)
sin((βj − βq)ζ)

]
∂bIq

=
∑
j

σ

4β2
j

µ2
jν(0)CI

jj(ζ)bRj ∂bIj

+
∑
j,q,q 6=j

1

8βjβq

[(
−CR

jq(0)CI
qj(ζ)− CI

jq(0)CR
qj(ζ)

)
cos((βj − βq)ζ)

+
(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

sin((βj − βq)ζ)
]
bRq ∂bIq

+
∑
j,q,q 6=j

1

8βjβq

[(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
−CI

jq(0)CR
qj(ζ)− CR

jq(0)CI
qj(ζ)

)
sin((βj − βq)ζ)

]
bRq ∂bIq (B.60)

We can shorten our expression so far by rewriting it using complex derivatives.

Let

∂bj :=
1

2

[
∂bRj − i∂bIj

]
, (B.61)

∂b̄j :=
1

2

[
∂bRj + i∂bIj

]
. (B.62)
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In particular, we will make use of the following identities

4 Re
(
bjbq∂

2
bjbq

)
=
(
bRj b

R
q − bIjbIq

)
∂2
bRj b

R
q

+
(
bRj b

I
q + bIjb

R
q

)
∂2
bIj b

R
q

+
(
bIjb

R
q + bRj b

I
q

)
∂2
bRj b

I
q

+
(
bIjb

I
q − bRj bRq

)
∂2
bIj b

I
q
, (B.63)

4 Im
(
bjbq∂

2
bjbq

)
=
(
bRj b

I
q + bIjb

R
q

)
∂2
bRj b

R
q

+
(
bIjb

I
q − bRj bRq

)
∂2
bIj b

R
q

+
(
bIjb

I
q − bRj bRq

)
∂2
bRj b

I
q
−
(
bIjb

R
q + bRj b

I
q

)
∂2
bIj b

I
q
, (B.64)

4 Re
(
bq b̄q∂

2
bj b̄j

)
=
(
(bRq )2 + (bIq)

2
)
∂2
bRj b

R
j

+
(
(bRq )2 + (bIq)

2
)
∂2
bIj b

I
j
, (B.65)

2 Re
(
bj∂bj

)
= bRj ∂bRj + bIj∂bIj , (B.66)

2 Im
(
bj∂bj

)
= bIj∂bRj − b

R
j ∂bIj , (B.67)

2 Re
(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
= bIj′b

I
j∂

2
bRj b

R
j′
− bIj′bRj ∂2

bIj b
R
j′
− bRj′bIj∂2

bRj b
I
j′

+ bRj′b
R
j ∂

2
bIj b

I
j′

− bIj∂bIj δjj′ − b
R
j ∂bRj δjj′ . (B.68)

Using the complex derivative identities we have

∑
j,j′

lim
L→∞

1

L

∫ L

0

ds
8∑

k=1

F
(k)
jj′ =

∑
j,j′

σ2µ2
jµ

2
j′

2βjβj′
ν(0)ν(ζ) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

1

2βjβq

[(
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
)

sin((βj − βq)ζ)
]

Re
(
bq b̄q∂

2
bj b̄j

)
−
∑
j,q,q 6=j

1

2βjβq

[(
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
]

Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

1

2βjβq

[(
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
)

cos((βj − βq)ζ)

+
(
CI
jq(0)CI

qj(ζ)− CR
jq(0)CR

qj(ζ)
)

sin((βj − βq)ζ)
]

Im
(
bjbq∂

2
bjbq

+ bj∂bj

)
−
∑
j

σ

2β2
j

µ2
jν(0)CI

jj(ζ) Im
(
bj∂bj

)
+
∑
j

σ

2β2
j

µ2
jν(0)CR

jj(ζ) Re
(
bj∂bj

)
. (B.69)



119

We then take expectation. We will require the following identities

E
[
CR
jq(0)CR

qj(ζ)− CI
jq(0)CI

qj(ζ)
]

= σ2
(
ΓjqΓqjR(4)(ζ) + βjβqΘjqΘqjR′′(ζ)

)
(B.70)

E
[
CR
jq(0)CI

qj(ζ) + CI
jq(0)CR

qj(ζ)
]

= σ2
(
βqΘjqΓqjR(3)(ζ)− βjΓjqΘqjR(3)(ζ)

)
(B.71)

E
[
CR
jq(0)CR

jq(ζ) + CI
jq(0)CI

jq(ζ)
]

= σ2
(
Γ2
jqR(4)(ζ)− β2

qΘ
2
jqR′′(ζ)

)
(B.72)

E
[
CI
jq(0)CR

jq(ζ)− CR
jq(0)CI

jq(ζ)
]

= 2σ2βqΓjqΘjqR(3)(ζ) (B.73)

where R(ζ) := E[ν(0)ν(ζ)].

Applying these identities we have

∑
j,j′

lim
L→∞

1

L

∫ L

0

ds
8∑

k=1

E[F
(k)
jj′ ] =

∑
j,j′

σ2µ2
jµ

2
j′

2βjβj′
R(ζ) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2

2βjβq

[(
Γ2
jqR(4)(ζ)− β2

qΘ
2
jqR′′(ζ)

)
cos((βj − βq)ζ)

+
(
2βqΓjqΘjqR(3)(ζ)

)
sin((βj − βq)ζ)

]
Re
(
bq b̄q∂

2
bj b̄j

)
−
∑
j,q,q 6=j

σ2

2βjβq

[(
ΓjqΓqjR(4)(ζ) + βjβqΘjqΘqjR′′(ζ)

)
cos((βj − βq)ζ)

+
(
−βjΓjqΘqjR(3)(ζ) + βqΘjqΓqjR(3)(ζ)

)
sin((βj − βq)ζ)

]
Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

σ2

2βjβq

[(
−βjΓjqΘqjR(3)(ζ) + βqΘjqΓqjR(3)(ζ)

)
cos((βj − βq)ζ)

−
(
ΓjqΓqjR(4)(ζ) + βjβqΘjqΘqjR′′(ζ)

)
sin((βj − βq)ζ)

]
Im
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j

σ2

2βj
µ2
jΘjjR′(ζ) Im

(
bj∂bj

)
+
∑
j

σ2

2β2
j

µ2
jΓjjR′′(ζ) Re

(
bj∂bj

)
. (B.74)
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We can simplify using that Θjq = 2Γjq and obtain

∑
j,j′

lim
L→∞

1

L

∫ L

0

ds

8∑
k=1

E[F
(k)
jj′ ] =

∑
j,j′

σ2µ2
jµ

2
j′

2βjβj′
R(ζ) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[(
R(4)(ζ)− 4β2

qR′′(ζ)
)

cos((βj − βq)ζ)

+
(
4βqR(3)(ζ)

)
sin((βj − βq)ζ)

]
Re
(
bq b̄q∂

2
bj b̄j

)
−
∑
j,q,q 6=j

σ2ΓjqΓqj
2βjβq

[(
R(4)(ζ) + 4βjβqR′′(ζ)

)
cos((βj − βq)ζ)

+
(
−2βjR(3)(ζ) + 2βqR(3)(ζ)

)
sin((βj − βq)ζ)

]
Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

σ2ΓjqΓqj
2βjβq

[(
−2βjR(3)(ζ) + 2βqR(3)(ζ)

)
cos((βj − βq)ζ)

−
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
sin((βj − βq)ζ)

]
Im
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j

σ2

βj
µ2
jΓjjR′(ζ) Im

(
bj∂bj

)
+
∑
j

σ2

2β2
j

µ2
jΓjjR′′(ζ) Re

(
bj∂bj

)
. (B.75)

Further, we have Γqj = −Γjq and so we may write

∑
j,j′

lim
L→∞

1

L

∫ L

0

ds
8∑

k=1

E[F
(k)
jj′ ] =

∑
j,j′

σ2µ2
jµ

2
j′

2βjβj′
R(ζ) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[(
R(4)(ζ)− 4β2

qR′′(ζ)
)

cos((βj − βq)ζ)

+4βqR(3)(ζ) sin((βj − βq)ζ)
]

Re
(
bq b̄q∂

2
bj b̄j

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[(
R(4)(ζ) + 4βjβqR′′(ζ)

)
cos((βj − βq)ζ)

+2 (βq − βj)R(3)(ζ) sin((βj − βq)ζ)
]

Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[
2 (βj − βq)R(3)(ζ) cos((βj − βq)ζ)

+
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
sin((βj − βq)ζ)

]
Im
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j

σ2

βj
µ2
jΓjjR′(ζ) Im

(
bj∂bj

)
+
∑
j

σ2

2β2
j

µ2
jΓjjR′′(ζ) Re

(
bj∂bj

)
. (B.76)
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We can eliminate some terms by noting that

∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[
2 (βj − βq)R(3)(ζ) cos((βj − βq)ζ)

+
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
sin((βj − βq)ζ)

]
Im
(
bjbq∂

2
bjbq

)
= 0 (B.77)

after swapping indices and using that sine is odd. We are left with

∑
j,j′

lim
L→∞

1

L

∫ L

0

ds
8∑

k=1

E[F
(k)
jj′ ] =

∑
j,j′

σ2µ2
jµ

2
j′

2βjβj′
R(ζ) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[(
R(4)(ζ)− 4β2

qR′′(ζ)
)

cos((βj − βq)ζ)

+4βqR(3)(ζ) sin((βj − βq)ζ)
]

Re
(
bq b̄q∂

2
bj b̄j

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[(
R(4)(ζ) + 4βjβqR′′(ζ)

)
cos((βj − βq)ζ)

+2 (βq − βj)R(3)(ζ) sin((βj − βq)ζ)
]

Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[
2 (βj − βq)R(3)(ζ) cos((βj − βq)ζ)

+
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
sin((βj − βq)ζ)

]
Im
(
bj∂bj

)
+
∑
j

σ2

βj
µ2
jΓjjR′(ζ) Im

(
bj∂bj

)
+
∑
j

σ2

2β2
j

µ2
jΓjjR′′(ζ) Re

(
bj∂bj

)
. (B.78)

We now integrate with respect to ζ. We have∫ ∞
0

dζR(ζ) =
1

2
R̂(0) (B.79)∫ ∞

0

dζR′(ζ) = −R(0) (B.80)∫ ∞
0

dζR′′(ζ) = 0 (B.81)

We will need the following identities which follow from integration by parts for the
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remaining terms∫ ∞
0

dζR′(ζ) sin ((βj − βq)ζ) =
βq − βj

2
R̂ (βj − βq) (B.82)∫ ∞

0

dζR′′(ζ) cos ((βj − βq)ζ) = −(βq − βj)2

2
R̂ (βj − βq) (B.83)∫ ∞

0

dζR(3)(ζ) sin ((βj − βq)ζ) = −(βq − βj)3

2
R̂ (βj − βq) (B.84)∫ ∞

0

dζR(4)(ζ) cos ((βj − βq)ζ) =
(βq − βj)4

2
R̂ (βj − βq) (B.85)∫ ∞

0

dζR′(ζ) cos ((βj − βq)ζ) = −R(0)

− (βq − βj)
∫ ∞

0

dζR(ζ) sin ((βj − βq)ζ) (B.86)∫ ∞
0

dζR′′(ζ) sin ((βj − βq)ζ) = − (βq − βj)R(0)

− (βq − βj)2

∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ) (B.87)∫ ∞
0

dζR(3)(ζ) cos ((βj − βq)ζ) = −R′′(0) + (βq − βj)2R(0)

+ (βq − βj)3

∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ) (B.88)∫ ∞
0

dζR(4)(ζ) sin ((βj − βq)ζ) = − (βq − βj)R′′(0) + (βq − βj)3R(0)

+ (βq − βj)4

∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ) (B.89)
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Using the identities above we have∫ ∞
0

dζ
(
R(4)(ζ)− 4β2

qR′′(ζ)
)

cos((βj − βq)ζ) + 4βqR(3)(ζ) sin((βj − βq)ζ)

=
1

2
(βq − βj)2(βq + βj)

2R̂(βj − βq) (B.90)∫ ∞
0

dζ
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
cos((βj − βq)ζ) + 2 (βq − βj)R(3)(ζ) sin((βj − βq)ζ)

= −1

2
(βq − βj)2(βq + βj)

2R̂(βj − βq) (B.91)∫ ∞
0

dζ (2βj − 2βq)R(3)(ζ) cos((βj − βq)ζ) +
(
R(4)(ζ) + 4βjβqR′′(ζ)

)
sin((βj − βq)ζ)

= (βq − βj)R′′(0)− (βq − βj)(βq + βj)
2R(0)

− (βq − βj)2(βq + βj)
2

∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ) (B.92)

Then we have

L1 =
∑
j,j′

σ2µ2
jµ

2
j′

4βjβj′
R̂(0) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2Γ2
jq

4βjβq
(βq − βj)2(βq + βj)

2R̂(βj − βq) Re
(
bq b̄q∂

2
bj b̄j

)
−
∑
j,q,q 6=j

σ2Γ2
jq

4βjβq
(βq − βj)2(βq + βj)

2R̂(βj − βq) Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
+
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[
(βq − βj)R′′(0)− (βq − βj)(βq + βj)

2R(0)
]

Im
(
bj∂bj

)
−
∑
j,q,q 6=j

σ2Γ2
jq

2βjβq

[
(βq − βj)2(βq + βj)

2

∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ)

]
Im
(
bj∂bj

)
(B.93)

We then use that

σ2Γ2
jq

βjβq
(βq − βj)2(βq + βj)

2 =
σ2µ2

jµ
2
q

βjβq
(B.94)
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and write

L1 =
∑
j,j′

σ2µ2
jµ

2
j′

4βjβj′
R̂(0) Re

(
bj b̄j′∂

2
bj b̄j′
− bjbj′∂2

bjbj′
− bj∂bjδjj′

)
+
∑
j,q,q 6=j

σ2µ2
jµ

2
q

4βjβq
R̂(βj − βq) Re

(
bq b̄q∂

2
bj b̄j

)
−
∑
j,q,q 6=j

σ2µ2
jµ

2
q

4βjβq
R̂(βj − βq) Re

(
bjbq∂

2
bjbq

+ bj∂bj

)
−
∑
j,q,q 6=j

σ2µ2
jµ

2
q

2βjβq(βj − βq)

[
−R(0) +

R′′(0)

(βj + βq)2

]
Im
(
bj∂bj

)
−
∑
j,q,q 6=j

σ2µ2
jµ

2
q

2βjβq

[∫ ∞
0

dζR(ζ) sin ((βj − βq)ζ)

]
Im
(
bj∂bj

)
(B.95)

Using the notation from chapter III and relabeling indices in the first sum we have

L1 =
∑
j,q

G
(0)
jq Re

(
bj b̄q∂

2
bj b̄q
− bjbq∂2

bjbq
− bj∂bjδjq

)
+
∑
j,q,q 6=j

G
(c)
jq

(
Re
(
bq b̄q∂

2
bj b̄j

)
− Re

(
bjbq∂

2
bjbq

+ bj∂bj

))
−
∑
j,q,q 6=j

σ2µ2
jµ

2
q

2βjβq(βj − βq)

[
−R(0) +

R′′(0)

(βj + βq)2

]
Im
(
bj∂bj

)
−
∑
j,q,q 6=j

G
(s)
jq Im

(
bj∂bj

)
(B.96)

B.3 Second Order Terms

Now we compute the second order terms of the generator. These terms will be

given by

L2 :=
∑
j

lim
L→∞

1

L

∫ L

0

dsE
[ 2∑
k=1

G
(k)
j

]
(B.97)

where

G
(1)
j := GR

j (b, ν(0),θ + βs, z)∂bRj , (B.98)

G
(2)
j := GI

j (b, ν(0),θ + βs, z)∂bIj . (B.99)
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Due to the averaging in the s variable only “diagonal” terms of GR
j and GI

j will

remain. More precisely, we will have

lim
L→∞

1

L

∫ L

0

dsG
(1)
j =

[
σ2

2βj

[
−3

4
µ2
jν

2(ζ)−
(

(πj)2

12
+

1

16

)
ν ′2(ζ)

]
bIj

+
∑
l>N

σ2

4βjβl

∫ ∞
−∞

dξe−βl|ξ|
(

cos(βjξ)C̃
I
jl(ζ, ξ)− sin(βjξ)C̃

R
jl (ζ, ξ)

)
bRj

+
∑
l>N

σ2

4βjβl

∫ ∞
−∞

dξe−βl|ξ|
(

cos(βjξ)C̃
R
jl (ζ, ξ) + sin(βjξ)C̃

I
jl(ζ, ξ)

)
bIj

]
∂bRj (B.100)

lim
L→∞

1

L

∫ L

0

dsG
(2)
j =

[
σ2

2βj

[
3

4
µ2
jν

2(ζ) +

(
(πj)2

12
+

1

16

)
ν ′2(ζ)

]
bRj

+
∑
l>N

σ2

4βjβl

∫ ∞
−∞

dξe−βl|ξ|
(

cos(βjξ)C̃
I
jl(ζ, ξ)− sin(βjξ)C̃

R
jl (ζ, ξ)

)
bIj

−
∑
l>N

σ2

4βjβl

∫ ∞
−∞

dξe−βl|ξ|
(

cos(βjξ)C̃
R
jl (ζ, ξ) + sin(βjξ)C̃

I
jl(ζ, ξ)

)
bRj

]
∂bIj (B.101)

where

C̃R
jl (ζ, ξ) := ΓjlΓljν

′′(ζ)ν ′′(ζ + ξ) + ΘjlΓljν
′(ζ)ν ′′′(ζ + ξ)

− β2
jΘjlΘljν

′(ζ)ν ′(ζ + ξ) (B.102)

C̃I
jl(ζ, ξ) := −βjΓjlΘljν

′′(ζ)ν ′(ζ + ξ)− βj(ΘjlΓlj + ΘjlΘlj)ν
′(ζ)ν ′′(ζ + ξ) (B.103)

Then

lim
L→∞

1

L

∫ L

0

dsE[G
(1)
j ] =

[
σ2

2βj

[
−3

4
µ2
jR(0) +

(
(πj)2

12
+

1

16

)
R′′(0)

]
bIj

+
∑
l>N

σ2Γ2
jl

2βjβl

∫ ∞
0

dξe−βlξ
[(
R(4)(ξ)− 4β2

jR′′(ξ)
)

cos(βjξ)

−4βjR(3)(ξ) sin(βjξ)
]
bIj

]
∂bRj (B.104)
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and

lim
L→∞

1

L

∫ L

0

dsE[G
(2)
j ] =

[
σ2

2βj

[
3

4
µ2
jR(0)−

(
(πj)2

12
+

1

16

)
R′′(0)

]
bRj

−
∑
l>N

σ2Γ2
jl

2βjβl

∫ ∞
0

dξe−βlξ
[(
R(4)(ξ)− 4β2

jR′′(ξ)
)

cos(βjξ)

−4βjR(3)(ξ) sin(βjξ)
]
bRj

]
∂bIj (B.105)

where we used

E[ν2(0)] = R(0) (B.106)

E[ν ′2(0)] = −R′′(0) (B.107)

E[C̃R
jl (0, ξ)] = (ΓjlΓlj −ΘjlΓlj)R(4)(ξ) + β2

jΘjlΘljR′′(ξ)

= Γ2
jl

(
R(4)(ξ)− 4β2

jR′′(ξ)
)

(B.108)

E[C̃I
jl(0, ξ)] = βj(ΘjlΓlj + ΘjlΘlj − ΓjlΘlj)R′′′(ξ)

= −4βjΓ
2
jlR(3)(ξ) (B.109)

as well as properties of even and odd functions.

Then

L2 =
∑
j

{
σ2

βj

[
−3

4
µ2
jR(0) +

(
(πj)2

12
+

1

16

)
R′′(0)

]

+
∑
l>N

σ2Γ2
jl

βjβl

∫ ∞
0

dξe−βlξ
[(
R(4)(ξ)− 4β2

jR′′(ξ)
)

cos(βjξ)

−4βjR(3)(ξ) sin(βjξ)
]}

Im
(
bj∂bj

)
. (B.110)
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We can simplify further using integration by parts and obtain

L2 =
∑
j

{
σ2

βj

[
−3

4
µ2
jR(0) +

(
(πj)2

12
+

1

16

)
R′′(0)

]

+
∑
l>N

σ2Γ2
jl

βjβl

[ ∫ ∞
0

dξR′′(ξ)e−βlξ
[
2
(
β2
l − β2

j

)
cos(βjξ)

−4βjβl sin(βjξ)] Im
(
bj∂bj

)
− 2βlR′′(0)

]}
Im
(
bj∂bj

)
=
∑
j

{
σ2

βj

[
−3

4
µ2
jR(0) +

(
(πj)2

12
+

1

16

)
R′′(0)

]

+
∑
l>N

σ2µ2
jµ

2
l

βjβl(β2
j + β2

l )
2

[ ∫ ∞
0

dξR′′(ξ)e−βlξ
[
2
(
β2
l − β2

j

)
cos(βjξ)

−4βjβl sin(βjξ)] Im
(
bj∂bj

)
− 2βlR′′(0)

]}
Im
(
bj∂bj

)
(B.111)

B.4 Change of Variables

We can express the generator in polar coordinates by writing the backward going

mode amplitudes as bj = P
1
2
j e

iψj . Then

∂bj = P
1
2
j e
−iψj∂Pj −

ie−iψj

2P
1
2
j

∂ψj , (B.112)

∂b̄j = P
1
2
j e

iψj∂Pj +
ieiψj

2P
1
2
j

∂ψj . (B.113)

Then we can write

Re
(
bjbq∂

2
bjbq

+ bj∂bj

)
= PjPq∂

2
PjPq
− 1

4
∂2
θjθq

+ Pj∂Pj (B.114)

Re
(
bq b̄q∂

2
bj b̄j

)
= PjPq∂

2
Pj

+ Pq∂Pj +
Pq
4Pj

∂2
θj

(B.115)

Re
(
bj b̄q∂

2
bj b̄q

)
− Re

(
bjbq∂

2
bjbq

)
− Re

(
bj∂bj

)
δjq =

1

2
∂2
θjθq

(B.116)

Im
(
bj∂bj

)
= −1

2
∂θj (B.117)

Combining expressions (B.95), (B.111) and using the identites above generator can

then be written as in section 3.9.
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