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ABSTRACT

There is growing interest in investigating the short-term delayed lag effects of environ-
mental pollutants (e.g. air particulate matter and ozone) on a health outcome of interest
measured at a certain time (e.g. daily mortality counts). Previous studies have shown that
not only the current level of the exposure but exposure levels up to past few days may
be associated with health event/outcome measured on current day. Distributed lag model
(DLM) has been used in environmental epidemiology to characterize the lag structure of
exposure effects. These models assume that the coefficients corresponding to exposures at
different lags follow a given function of the lags. Under mis-specification of this function,
DLM can lead to seriously biased estimates. In this dissertation, we first explore different
methods to make the traditional DLM more robust. We then extend the single pollutant
DLM to multi-pollutant scenarios. We illustrate the proposed methods using air pollution
data from the National Morbidity, Mortality and Air Pollution Study (NMMAPS) and a
dataset from Brigham and Women’s Hospital (BWH) prospective birth cohort study.

In the first project, we propose three classes of shrinkage methods to combine an uncon-
strained DLM estimator and a constrained DLM estimator and achieve a balance between
robustness and efficiency. The three classes of methods can be broadly described as (1)
empirical Bayes-type shrinkage, (2) hierarchical Bayes, and (3) generalized ridge regres-
sion. A two-step double shrinkage approach that enforces the effect estimates approach
zero at larger lags is also considered. A simulation study shows that all four approaches are
effective in trading off between bias and variance to attain lower mean squared error with
the two-step approaches having edge over others.

In the second project, we extend DLM to two-pollutant scenarios and focus on charac-
terizing pollutant-by-pollutant interaction. We first consider to model the interaction sur-
face by assuming the underlying basis functions are tensor products of the basis functions
that generate the main-effect distributed lag functions. We also extend Tukey’s one-degree-
of-freedom interaction model to two-dimensional DLM context as a parsimonious way to
model the interaction surface between two pollutants. Data adaptive approaches to allow
departure from the specified Tukey’s structure are also considered. A simulation study

xv



shows that shrinkage approach Bayesian constrained DLM has the best average perfor-
mance in terms of relative efficiency.

In the third project, we extend DLM to a truly multi-dimensional space and focus on
identifying important pollutants and pairwise interactions associated with a health out-
come. Penalization-based approaches that induce sparsity in solution are considered. We
propose a Hierarchical integrative Group LASSO (HiGLASSO) approach to perform vari-
able selection at a group level while maintaining strong heredity constraints. Empirically,
HiGLASSO identifies the correct set of important variables more frequently than other
approaches. Theoretically, we show that HiGLASSO enjoys Oracle properties including
selection and estimation consistency.

xvi



CHAPTER 1

Introduction

Particulate matter (PM) and ozone (O3) are two major pollutants affecting the air qual-

ity in the United States and throughout the world according to United States Environmental

Protection Agency (USEPA). Multiple studies have shown that increased risk of adverse

health outcomes are associated with exposure to air pollutants [Bell et al., 2004a, Ezzati

et al., 2002]. Air pollution has both short-term and long-term effects. Short-term effects

include asthma, respiratory infections, and emphysema [Le Tertre et al., 2002, Spix et al.,

1998, Katsouyanni et al., 1995, Touloumi et al., 1994]. Long-term effects include chronic

obstructive pulmonary disease, heart disease, and impaired brain function [Berglund and

Abbey, 1996, Brunekreef and Holgate, 2002, Miller et al., 2007]. Particularly, the associ-

ation between acute exposure to air particulate matter and mortality or morbidity has been

extensively studied. Many such studies have indicated that the short-term lagged effects of

air particulate matter are likely to be present [Samet et al., 2000, Schwartz, 2000, Braga

et al., 2001, Zanobetti et al., 2003]. In other words, the current measure of health out-

come such as mortality count on a given day is not only affected by the current/same-day

measure of the exposure but also its lagged measures within a time window preceding the

health event. It is crucial to account for such lagged/delayed effects in statistical modeling.

Estimating the coefficients of lagged effects collectively in a traditional regression setting is

difficult because the exposure values are serially correlated. Distributed lag model (DLM)

is a common solution employed in environmental epidemiology for estimating short-term

effects of environmental exposures. This dissertation considers the framework of DLM and

employs shrinkage methods to make DLM more robust and efficient.

DLM was originally proposed by Almon [1965] in the econometrics literature. The
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fundamental assumption underlying DLM is that the regression coefficients follow a cer-

tain structure that implies constraint(s) on the coefficients as a function of the lags. DLM

can be viewed as a special type of varying coefficient models [Hastie and Tibshirani, 1993]

and they serve as a general solution to circumvent the collinearity problem in serially mea-

sured exposure data. At the same time, the effect coefficients can be estimated with greater

precision due to reduction in number of parameters. Common constraints include a polyno-

mial and a natural cubic spline [Hastie and Tibshirani, 1993]. Recently, some variations of

DLM have been developed to capture the distributed lag function more flexibly. General-

ized additive distributed lag models [Zanobetti et al., 2000] flexibly quantify the distributed

lag function using splines [Hastie and Tibshirani, 1990]. Distributed lag nonlinear models

[Gasparrini et al., 2010] were developed to simultaneously capture the nonlinear exposure-

response association and nonlinear distributed lag function. Bayesian DLM [Welty et al.,

2009] was proposed to constrain the shape of the distributed lag function through the struc-

tural specification of the prior covariance matrix. While a myriad of DLM extensions have

been proposed, they largely focus on associating the increased risk of adverse health out-

comes with exposure to a single air pollutant. Since we are simultaneously exposed to

a complex mixture of multiple chemicals/exposures, it is important to develop statistical

methods that extend DLM to the scenario with two or more pollutants.

Air pollution policies worldwide are typically based on the scientific evidence re-

garding the health impact of each pollutant separately [Dominici et al., 2010]. For exam-

ple, as of today, National Ambient Air Quality Standards (NAAQS) are still established on

the basis of six individual criteria pollutants - carbon monoxide (CO), lead (Pb), nitrogen

dioxide (NO2), ozone (O3), particle matter (PM), and sulfur dioxide (SO2). Regulators

are aware that the ambient levels of the criteria pollutants are related and the harm to hu-

man health from each pollutant potentially depends on the levels of other pollutants (i.e.

possible existence of interactions between pollutants). However, the ability to design and

implement multi-pollutant policies is limited due to the scarcity of scientific results on how

air pollution mixtures jointly affect human health. If the synergistic effects associated with

simultaneous exposure to multiple pollutants can be estimated in a more reliable fashion,

the air pollution standards can be established based upon combined levels of multiple pol-

2



lutants, such as the Air Quality Index (AQI) given by USEPA. There is a growing need for

statistical approaches addressing health risks due to multiple pollutants and their potential

interactions in a chemical mixture.

Some of the past multi-pollutant studies report the health effect of one pollutant

adjusted for the exposure to other pollutants [Bell et al., 2007, Rojas-Martinez et al., 2007].

Nonetheless, additive models are most likely inadequate. Some of the major elements of as-

sociating multiple pollutants to a health outcome in a time-series design are: (1) to identify

the key pollutants that are strongly associated with the outcome of interest; (2) to consider

potential interaction effects between pollutants; (3) to handle the collinearity between mul-

tiple pollutants; and (4) to account for serially correlated exposure measurements. Multiple

regression models with main effects for each pollutant and interaction terms for each pair

of pollutants as predictors have already been suggested [Mauderly et al., 2010]. However,

it is well-known that the statistical power for detecting an interaction effect is low and ef-

fect estimation becomes highly unstable when two or more pollutants are highly correlated

[Farrar and Glauber, 1967]. Tree-based regression approaches such as classification and

regression tree (CART) are useful to account for higher-order and nonlinear interactions

[Hu et al., 2008]. The interpretation of effect estimates is difficult in these types of model-

free, data driven approaches. Deletion/substitution/addition (DSA) algorithm [Sinisi and

van der Laan, 2004] allows users to specify the constraints on polynomial function form of

exposure and order of interaction. Nevertheless, statistical inference is again not reliable

when predictors are highly correlated [Dominici et al., 2008]. Some modern variable selec-

tion and dimension reduction techniques can be useful in multi-pollutant settings. Penal-

ized regression methods such as least absolute shrinkage and selection operator (LASSO)

[Tibshirani, 1996] can be employed to identify a small subset of individual predictors that

are highly associated with the outcome. Principal component analysis (PCA) have been

used to investigate the synergistic effects of multiple pollutants in several studies [Burnett

et al., 2001, Qian et al., 2004, Arif and Shah, 2007]. However, none of the existing multi-

pollutant approaches tries to capture the lagged effects and their possible interactions over

a biologically meaningful time period.

In a time-series setting, jointly considering the temporal dynamics of the current
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and past exposure in association with the outcome is crucial. Few attempts have been made

to incorporate the prior knowledge about the distributed lag function with two or more

pollutants. Roberts [Roberts, 2004] investigated the interaction between daily particulate

air pollution and daily mean temperature in Cook County, Illinois by stratifying the lagged

effect of particulate air pollution on mortality by temperature. High degree DLMs extend

basic DLMs to incorporate higher-order interactions between lagged predictors [Heaton

and Peng, 2014] but the extension is still restricted to single pollutants. The bivariate

DLM [Muggeo, 2007] is by far the only attempt to extend one-pollutant DLM to two-

pollutant scenarios. In [Muggeo, 2007], bivariate DLM is used to model the joint effect of

temperature and air particular matter with aerodynamic diameter less than 10 micrometers

(PM10) main effect in the same way as parametric DLM with two separate sets of basis

functions. Tensor products of the two were employed to characterize the DL surface for

temperature-PM10 interaction.

In this dissertation proposal, we propose to extend and modify single pollutant DLM

to the situation with two or more pollutants. In Chapter II, we first provide an overview

of DLMs and their variations in modeling the association between a time-series measured

health outcome and a single time-series measured air pollutant. We then introduce three

robust DLMs that shrink an unconstrained DLM estimator toward a model-dependent con-

strained DLM estimator using data-adaptive shrinkage. The three approaches are empirical

Bayes (EB), hierarchical Bayes (HB), and generalized ridge regression (GRR). In Chap-

ter III, we introduce a variance component score test (VCST) to test a given constrained

DLM against an unconstrained alternative. The test is motivated by GRR and serves as a

more powerful alternative to standard likelihood ratio test. In Chapter IV, we extend DLM

to two-pollutant scenarios and examine different strategies to model pairwise interactions

with consideration of lag structure. We propose an unified approach that combines DLM

and Tukey’s one degree of freedom model [Tukey, 1949]. The corresponding shrinkage

estimator [Ko et al., 2014] that is robust to misspecification of interaction structure is also

considered. In addition, we propose a Bayesian constrained DLM (BCDLM) approach

to characterize the joint effect of two pollutants and their interactions. In Chapter V, we

focus on penalization-based approaches to assess the joint effects of multiple pollutants
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on a health outcome. We propose a new algorithm called Hierarchical integrative Group

LASSO (HiGLASSO) to perform variable selection at group level while maintaining the

strong heredity constraints (inclusion of interaction only in presence of main effects). The

approach is quite general and can potentially be applied to a wide spectrum of problems

when a sparse solution is desired to identify interactions among a correlated or grouped

set of predictors. Across all chapters, we compare our method with various existing al-

ternatives via extensive simulation studies. In addition, we illustrate the proposed meth-

ods by using the data from the National Morbidity, Mortality, and Air Pollution Study

(NMMAPS). In Chapter V, we also illustrate HiGLASSO using a data set from Brigham

and Women’s Hospital (BWH) prospective pregnancy/birth cohort study that collects bio-

logical samples and detailed clinical data to identify effects of mixtures.

Overall, the dissertation provides a statistical framework for the assessment of health

effects of multiple environmental exposures, with the scientific goal of understanding the

interplay between a complex mixture of air pollutants after incorporating potential lagged

effects. These methods can potentially be useful in areas outside environmental epidemiol-

ogy. We hope that our work will lead to further research in other applications that involve

characterizing the joint effect of a set of correlated predictors and their interactions.
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CHAPTER 2

Robust Distributed Lag Models using Data

Adaptive Shrinkage

2.1 Introduction

In environmental epidemiology, investigators are often interested in estimating the ef-

fects of air pollution levels on counts of some health events (e.g. mortality and cardio-

vascular events). Sometimes the effects are not limited to the concurrent time periods but

delayed in time. A number of early studies suggest that multi-day average pollution levels

are more predictive of health event counts than a single-day pollution measure [Schwartz

and Dockery, 1992, Schwartz, 1994]. More recent time series studies found that mod-

els with just single-day pollution measures might underestimate the occurrence of health

events associated with air pollution [Schwartz, 2000, Roberts, 2005]. Modeling each single

lagged effect in separate models is not desirable and it is difficult to synthesize the results

across different models. The most straightforward approach to jointly consider the tempo-

ral dynamics is to use a generalized linear model (GLM) with current health event count

as the outcome and with current and past air pollution levels as covariates in the same re-

gression model. However, this simple but naive modeling entails two problems. First, a

large number of parameters needs to be estimated, resulting in loss of power due to large

degrees of freedom (df), especially when the sample size is small and the maximal number

of lags (L) is large. Second, the serial autocorrelation between lagged pollution levels is

often high. Thus, the lagged effect estimates, though consistent for the true effects in large

samples, could have inflated variance, and the sign of the effect estimates could be reversed
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in small samples [Farrar and Glauber, 1967].

Polynomial DLMs [Almon, 1965], originally proposed in econometrics, assume that

the unknown lag coefficients lie on a polynomial function of the lag with known degree.

More generally, a constrained DLM imposes a pre-specified structure to constrain the lag

coefficients as a function of the lags. They serve as a general solution to circumvent the

collinearity problem and estimate effect coefficients with greater precision. Beyond poly-

nomial constraints, several other functional forms [Corradi, 1977, Hastie and Tibshirani,

1993] have been used. The choice of the DL function often relies on prior knowledge

about the effects of exposure on health events. Thus, a linear DL function may be appropri-

ate for uniformly decreasing lagged effects and a quadratic DL function may be appropriate

for short delays in health effects after exposure. Such explicit prior knowledge may not be

available in many studies. Even with some degree of knowledge about the shape of the

DL functions, the parsimonious structure may omit some detailed characteristics of the lag

course, but lead to increased precision due to the reduced number of parameters to be esti-

mated [Zanobetti et al., 2000, 2002]. In addition, in examining multiple exposure-disease

pairs, it is difficult to assess each DL function in detail on a case-by-case basis.

As a potential solution, one could expand and enrich the class of DL functions, but that

would defeat the purpose of reducing the number of parameters to be estimated. Recently,

some variations of constrained DLMs have been proposed to capture the DL function more

flexibly. Generalized additive distributed lag models (GADLM) [Zanobetti et al., 2000] use

splines to represent the DL function. Muggeo [2008] proposed a flexible segmented break

point model with doubly penalized B-splines. Distributed lag nonlinear models (DLNMs)

[Gasparrini et al., 2010] were developed to simultaneously model the nonlinear exposure-

response dependencies and nonlinear DL function. Bayesian DLM (BDLM) [Welty et al.,

2009] has been proposed to incorporate prior knowledge about the shape of the DL function

through specification of the prior covariance matrix. BDLM has been extended to Bayesian

hierarchical DLM by adding another layer of hierarchy in order to account for regional

heterogeneity [Peng et al., 2009]. Obermeier et al. [2015] introduced a flexible DLM where

the lag effects are smoothed via a difference penalty and the last lag coefficient is shrunk

towards 0 via a ridge penalty.
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Using smoothing techniques to flexibly model the distributed lag function has been ex-

tensively discussed in the literature. In the single stage shrinkage methods we propose an

alternative framework to achieve the desired bias-variance tradeoff. Our proposed method

shrinks the unconstrained DLM estimator toward a model-dependent constrained DLM

estimator in a data-adaptive way. The underlying objective is to retain the flexibility of

unconstrained DLM for enhanced robustness and retain precision advantages by shrinking

toward a parsimonious constrained DLM. The resulting shrinkage estimators are robust to

misspecification of the working distributed lag function. The first approach is to perform

component-wise shrinkage by combining the two estimators using an EB type of weighting

[Mukherjee and Chatterjee, 2008, Chen et al., 2009]. The second approach is a new HB

approach. The third approach is GRR. The idea is the same as traditional ridge regression

except that the unconstrained DLM estimators are shrunk toward the constrained DLM es-

timator rather than shrinkage towards the null. The amount of shrinkage is controlled by

a tuning parameter chosen via a criterion such as corrected Akaike information criterion

(AICC) [Hurvich et al., 1998] and generalized cross-validation (GCV) [Golub et al., 1979].

The three shrinkage methods provide a general framework to shrink one estimator toward

its constrained counterpart in a data-adaptive manner. We also consider a two-stage shrink-

age approach where a hyperprior is introduced to penalize the estimates obtained from any

of the shrinkage approaches to ensure that the estimated DL function smoothly goes to zero

at larger lags, akin to BDLM. The two-stage methods allow misspecification of the max-

imal number of lags L, thus ensuring robustness with respect to the choice of L, another

user-defined tuning parameter in constructing a standard DLM.

In addition to introducing different shrinkage approaches to robustly model the dis-

tributed lag function, a major contribution of the chapter is to establish the correspondence

between a transformation matrix used in DLM with a constraint matrix that helps to define

the nonnull shrinkage targets driving the specification of corresponding priors and penal-

ties. In Section 2.2, we first give an overview of DLM and their variations, including Almon

polynomial DLM [Welty et al., 2009], GADLM [Zanobetti et al., 2000], DLNM [Gaspar-

rini et al., 2010], and BDLM [Welty et al., 2009]. The definitions of the transformation

matrix and constraint matrix and the details of the correspondence along with our shrink-
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age approaches will be introduced in Section 2.3. In Section 2.4, we conduct an extensive

simulation study to compare the proposed approaches to existing alternatives. In section

2.5, we illustrate our methods by analyzing data from NMMAPS to explore association be-

tween a set of ambient pollutants and counts of overall mortality, cardiovascular mortality,

and deaths due to respiratory events in Chicago, Illinois, from 1987 to 2000. Section 2.6

contains concluding remarks.

2.2 Distributed Lag Models (DLM)

DLMs are used to model the current values of a dependent variable based on both the

current values of an explanatory variable and the lagged values of this explanatory variable

for time series data. We use the following notation throughout the chapter. Let xt denote

the exposure measured at time t, such as ambient air pollution level, yt denote the response

measured at time t, such as daily mortality count, and zt denote the covariates at time t,

such as temperature and humidity. Let T be the length of the time series. We consider the

GLM g[E(yt|xt, xt−1, ..., xt−L, zt)] = α0 +z>t α1 +
∑L

`=0 β`xt−` where α0 is the intercept,

α1 represents the effect of covariates, L is the pre-determined maximum number of lags,

and β = (β0, β1, ..., βL)> is the vector of lagged effects. We consider the log-linear Poisson

model as follows.

yt ∼ Poisson(µt)

log µt = α0 + z>t α1 +
L∑
`=0

β`xt−`

The goal is to estimate the lag effect coefficients. For simplicity and without loss

of generality, we leave out intercept and covariates in later presentation. Distributed lag

function describes the relationship between the coefficient of the lagged exposure (i.e. β =

(β0, β1, ..., βL)>) and the lag (i.e. ` = 0, ..., L). Different DLM impose different constraints

on the temporally dynamic relationship between β and `. One common difficulty to all

DLM is the choice of maximum lag. We assume that the lag effect diminishes to zero after

a certain lag and the choice of L is large enough to cover all the lags with nonzero effects.

Only finite distributed lag models are considered.
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2.2.1 Unconstrained Distributed Lag Models

Unconstrained distributed lag models impose no constraints on the shape of the dis-

tributed lag function. Any pattern of the L + 1 lag coefficients can be estimated. The

most direct approach to estimate the coefficients is through unconstrained maximum likeli-

hood estimation (MLE). Let Xt = (xt, xt−1, ..., xt−L)> and let `(β) denote the likelihood

function. The unconstrained GLM estimator β̂ can be written as

β̂UDLM = arg max
β

`(β) = arg max
β

>∑
t=1

[ytβ
>Xt − eβ

>Xt − log(yt!)].

The estimation is simple and the interpretation is straightforward. However, un-

constrained distributed lag models entail two problems. The first one is that the serially

measured exposures can be highly collinear. The multi-collinearity would lead to unreli-

able coefficient estimates with inflated variance. The sequence of estimated lag coefficients

might bounce around and the signs could be switched in small samples [Farrar and Glauber,

1967]. The second problem is that a large number of parameters is to be estimated. The

df can be depleted quickly and result in loss of power, especially when the sample size is

small and the maximal number of lags (L) is large. The problem would be magnified if two

or more correlated pollutants are included in a regression model. Constrained DLM serve

as a remedy to the two problems.

2.2.2 Almon Polynomial Distributed Lag Models

Polynomial distributed lag models were first explored by Almon [Almon, 1965]. They

impose smoothness on the coefficients by restricting the lag coefficients to lie on a poly-

nomial function. If it is assumed that the lag coefficients lie on a polynomial of degree d

(d < L+ 1),

β` =
d∑
j=0

θj`
j (2.1)

where θ = (θ0, θ1, ..., θd)
> are the d + 1 free parameters to be estimated in the lower-

dimensional space. The construction reduce the number of parameters to be estimated from
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L+ 1 to d+ 1. Through matrix representation, Equation 2.1 can be rewritten as

β = Cθ

where C is a (L+ 1)× (d+ 1) matrix such that the (i, j) element is (i− 1)j−1, that is

C =


00 01 · · · 0d

10 11 · · · 1d

...
...

...
...

L0 L1 · · · Ld


(L+1)×(d+1)

.

We can define

Qt = C>Xt.

NowQt is a (d+1)×1 vector representing the transformed independent variables to be re-

gressed on corresponding to parameters θ(d+1)×1 in the constrained space. The constrained

log-likelihood function for Almon polynomial DLM estimator can be written as

`(θ) =
T∑
t=1

[ytθ
>Qt − eθ

>Qt − log(yt!)]

If we let θ̂ = arg maxθ `(θ), the implied estimated lagged effects from Almon polynomial

DLM can be expressed as

β̂CDLM = Cθ̂

and the variance estimates are

V (β̂) = CV (θ̂)C>.

The restrictions implied by a polynomial distributed lag model can always be tested against

the higher-degree polynomial distributed lag model or unrestricted polynomial lag model.

The lower the order of the polynomial, the smoother the lag distribution is. In other words,

lower order of polynomial distributed lag model assumes that the effects of adjacent lag
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coefficients are more similar.

Note that the construction of C is not unique. The above construction corresponds

to choosing 1, `, ..., `d as the d + 1 basis functions that generate the class of functions

that d−degree polynomial distributed lag function can lie in. Alternatively, any (d + 1)

basis functions that are obtained via a full-rank linear transformation from the above d+ 1

basis functions would lead to identical lag effect estimates. The full generalization of

constructing C will be detailed later.

2.2.3 Generalized Additive Distributed Lag Models

Zanobetti et al. [2000] proposed GADLMs. The approach is motivated by the effect of

”mortality displacement” in environmental epidemiology. Mortality displacement [Schim-

mel and Murawski, 1976] is the occurrence that high air pollution levels advance the deaths

of frail individuals by several days. The effect of particular matter on mortality may take

effect with some retard. The distributed lag function may be zero or positive at early lags

and then decrease and become negative (i.e. rebound effect) at larger lags [Zanobetti et al.,

2000, 2002]. Polynomial DLM may not be sufficient to capture this more ”localized” struc-

ture. Generalize additive DLM are more flexible to model the lag effect of the exposure of

interest. As the name suggests, they combine generalized additive models (GAM) [Hastie

and Tibshirani, 1990] and DLM.

Zanobetti proposed to model the distributed lag function as a regression spline func-

tion of ` as follows:

β` =
d∑
j=0

θj`
j +

K∑
k=1

θκk(`− κk)d+

where κ1, ..., κK is a set of K knot positions between 0 and L. Note that β` becomes

a piecewise dth degree polynomial in ` with K internal knots connecting the pieces. Now

there areK+d+1 parameters to estimate (i.e. θ = (θ0, ..., θd, θκ1, ..., θκK)>). If we expand

the basis matrix C as
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C =


00 01 · · · 0d (0− κ1)p+ · · · (0− κK)p+

10 11 · · · 1d (1− κ1)p+ · · · (1− κK)p+
...

...
...

...
...

...
...

L0 L1 · · · Ld (L− κ1)p+ · · · (L− κK)p+


(L+1)×(K+d+1)

,

the estimation and inference can be conveniently followed as in Section 2.2.2.

In general, if we assume thatB1(·), B2(·), ..., Bp(·) are p known basis functions that

generate the class of distributed lag function that β can lie in, the corresponding transfor-

mation matrix C is a (L + 1)× p matrix where the (i, j) element is Bj(i− 1). Again, the

DLM solution is invariant up to a full-rank linear transformation of C.

2.2.4 Distributed Lag Nonlinear Models (DLNM)

Zanobetti et al. [2000] developed a unified framework that model the exposure-response

dependencies and the lag effects simultaneously with an additional lag dimension. Inher-

ently, a 3-dimensional space with exposure, lag, and response as the three axes is consid-

ered. Both exposure-response relationship and the distributed lag function can be flexibly

model in a nonparametric fashion. A cross-basis, defined as a bi-dimensional space of

functions, is used to describe the shape of the relationship along the exposure and its lag

effects.

Consider Poisson regression

yt ∼ Poisson(µt)

log µt = f(Xt;β)

with an unknown smooth function f . Suppose vx basis functions that span the space

of functions of which we believe that f lies in are chosen. Let bt· be a 1 × vx row vector

obtained by applying vx basis functions to xt. Similarly, v` basis functions are chosen for

distributed lag function. Define a T × vx× (L+ 1) array Ḃ representing the lagged occur-
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rences of each of the basis variables of exposure. The (i, j, k) element of Ḃ is bi−(k−1), j,

the (k − 1) lagged exposure measure at time i evaluated at the jth basis function. DLNM

can be specified by

f(Xt;β) =
vx∑
j=1

v∑̀
k=1

b>tj·c
∗
·kθjk = w>t·θ

where btj· is the (L+ 1)× 1 vector sliced in the first two dimensions at t and j, respec-

tively, and wt· is obtained by applying the vx · v` cross-basis functions to xt. Note that wt·

is analogous to Qt introduced in Section 2.2.2. Let C∗ be a (L + 1) × v` transformation

matrix obtained by applying v` basis functions to lag vector (0, ..., L)>. The cross-basis is

presented as a tensor product. Define

Ȧ = (1> ⊗ Ḃ)� (1⊗ P1,3(C
∗)⊗ 1>)

where 1 is a vector of ones with proper dimensions, ⊗ is the Kronecker product, � is the

Hadamard product, and Pi,j defined as the operator that permutes the index i and index j of

an array. The final matrix of cross-basis functions W can be obtained by summing along

the third dimension of the T × (vx · v`)× (L+ 1) array Ȧ.

Interpreting the results of DLNM with nonlinear dependencies is difficult. One

solution is to present the response surface on a 3-dimensional plot. Alternatively, one can

fix the exposure level at a suitable value and show the relationship between response and

lag, or examine the exposure-response relationship at a certain lag. Given a vector of xP

with m exposure values used for prediction, the corresponding m × vx × (L + 1) array

ḂP and the final array ȦP can be derived following the above procedures. The predicted

effects of the m exposure levels at lag ` are given as

ȦP
··`θ̂

and the estimated variances are

diag[ȦP
··`V̂ar(θ̂)ȦP

··`
>].
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Note that the formulation in the paper is different from the generalized framework

that we described at the end of Section 2.2.3. If we defineBt as a (L+ 1)× vx matrix such

that the ith row is b>(t−i+1),., we can express wt· as

wt· = (I ⊗C∗>)vec(Bt)

where vec(·) is the vectorization function and I is a vx × vx identity matrix. Now the

transformation matrixC is simply (I⊗C∗>), the set of predictors in the original parameter

space at time t is vec(Bt), and the set of predictors in the transformed parameter space at

time t is wt·.

2.2.5 Bayesian Distributed Lag Models (BDLM)

The DLM introduced so far characterize the distributed lag function using a particu-

lar parametric form or a constant degree of smoothness. Welty et al. [2009] proposed to

incorporate the prior knowledge about the shape of the distributed lag function through a

structural specification of the prior covariance matrix. One advantage of this approach is

that the degree of smoothness of the distributed lag function can be estimated from the data.

The formulation of BDLM is relevant when the lagged effects of an exposure are unknown

at the first few lags and they taper off with increased lag. In other words, coefficients at

earlier lags are less unconstrained. The full hierarchical specifications are:

Y |β ∼ Poisson(eXβ)

β|ω, σ2 ∼ N (0, σ2Ω(ω))

Ω(ω) = V (ω1)W (ω2)V (ω1)

σ2 = 10 · Var(β̂0)

where V (ω) = diag[1, exp(ω), exp(2ω), ..., exp(Lω)],W (ω2) is the correlation matrix

derived from the covariance matrix V (ω2)V (ω2)
> + {IL+1 − V (ω2)}1L+11

>
L+1{IL+1 −

V (ω2)}>, IL+1 is a (L+ 1)× (L+ 1) identity matrix, 1L+1 is a (L+ 1)× 1 vector of ones,
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and β̂0 is the estimated coefficient for lag 0 from unconstrained GLM. Ω is constructed

in this way so that (i) the coefficients smoothly approach zero with increasing lag and (ii)

coefficients at smaller lags are less constrained (larger variance). The posterior distribution

can be computed through Gibbs sampling or other Markov chain Monte Carlo methods

[Carlin and Louis, 1997].

2.3 Robust Distributed Lag Models

We first consider the log-linear Poisson model:

yt ∼ Poisson(µt)

log µt = α0 + z>t α1 +
L∑
`=0

β`xt−`

The goal is to estimate the lagged effect coefficients {β`}. For simplicity and without

loss of generality, we leave out intercept and covariates in subsequent presentation. A

straightforward approach to estimate the coefficients is through unconstrained MLE. Let

Xt = (xt, xt−1, ..., xt−L)>. The unconstrained DLM estimator β̂UDLM can be written as

β̂UDLM = arg max
β

`u(β) = arg max
β

T∑
t=1

[ytβ
>Xt − eβ

>Xt − log(yt!)]. (2.2)

Constrained DLM imposes structure on β by assuming β` is a known function of ` for

` = 0, · · · , L. We assume that B1(·), · · · , Bp(·) are the p basis functions that generate

the class of functions in which β lies. A transformation matrix C [Gasparrini et al., 2010]

is defined as a (L + 1) × p matrix where the element (` + 1, j) is the jth basis function

Bj(·) measured at ` (i.e. Bj(`)). For instance, a p − 1 degree polynomial DLM requires

the specification of p basis functions. If a linear constraint is implemented, one possible

choice of basis functions is B1(`) = 1 and B2(`) = ` and the corresponding C becomes a

(L+1)×2 matrix with all 1’s in the first column and 0, 1, ..., L in the second column. We can

defineWt = C>Xt whereWt is a p× 1 vector representing the transformed independent

variables in the model, with corresponding coefficients θp×1 in a lower-dimensional space
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to be regressed on. The constrained DLM estimator is β̂CDLM = Cθ̂ where

θ̂ = arg max
θ

`c(θ) = arg max
θ

T∑
t=1

[ytθ
>Wt − eθ

>Wt − log(yt!)]. (2.3)

and the variance of β̂CDLM is given by V (β̂CDLM) = CV (θ̂)C>.

Note that the choice of basis functions for constructing C is unique only up to a full-

rank linear transformation. In section 2.3.2 to section 2.3.4, we will introduce different

approaches to shrink β̂UDLM toward β̂CDLM in a data-adaptive manner. All the methods

introduced in this section are summarized in Table 2.3.

2.3.1 Connection Between the Transformation Matrix C and the Con-

straint Matrix R

We establish the connection between a given transformation matrix C and its correspond-

ing constraint matrix R (as introduced below) that helps us generalize the proposed meth-

ods to a wider class of DLMs. The notion of the constraint matrix R originates from the

“smoothness prior” introduced by Shiller [1973].

Consider a (L + 1) × p transformation matrix C. Specifying p basis functions under-

lying a DL function results in p unconstrained parameters θ to be estimated as in (2.3).

Equivalently, it can be formulated as L+ 1 parameters in β to be estimated with L+ 1− p

constraints on β, obtained by maximizing (2.2) subject to the constraints. The constraints

can be represented by Rβ = 0 where R is the (L + 1 − p) × (L + 1) constraint matrix.

The basis functions in C span the solution space of Rβ = 0, thus C and R have a di-

rect correspondence. Define Ce as a (L + 1) × (L + 1) matrix [C 0(L+1)×(L+1−p)] where

0(L+1)×(L+1−p) is a (L + 1) × (L + 1 − p) matrix with zero entries. Applying singular

value decomposition (SVD) C>e = UCDCV
>
C where UC is the (L+ 1)× (L+ 1) unitary

matrix with left-singular column vectors, VC is the (L + 1)× (L + 1) unitary matrix with

right-singular column vector, andDC is a (L+ 1)× (L+ 1) diagonal matrix with singular

values of C>e along the diagonal, the (L + 1 − p) × (L + 1) constraint matrix R can be

obtained as the last (L + 1 − p) rows of V >C . More detailed description of the connection
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betweenR and C is provided in the Appendix 2.7.1. We summarize two important results

that are going to be used in the subsequent development.

Result 1: β̂CDLM = Cθ̂, where θ̂ is as given in (2.3), is equivalent to the maximizer of the

likelihood function in (2.2) subject to the constraintRβ = 0, whereR is as defined above.

Result 2: The lag coefficients of polynomial DLMs, spline-based DLMs with known knot

locations, or using any other basis functions can all be represented by β = Cθ where C

is a suitably defined (L + 1) × p transformation matrix and θ is a vector of unconstrained

parameters in Rp. Therefore, the constrained DLM solutions can alternatively be defined

as an element belonging to the null space of the corresponding constraint matrixR.

Remark 1: Throughout we use polynomial DLM as our shrinkage target in this chapter but

Results 1 and 2 suggest that the methods are generalizable to other more flexible DLMs.

2.3.2 Empirical Bayes-Type Shrinkage Estimator

The simplest way to combine two estimators is taking the weighted average of the two with

some reasonable data-adaptive choices for the weights. Mukherjee and Chatterjee [2008]

and Chen et al. [2009] proposed an Empirical Bayes type estimator to shrink a model-

free estimator toward a model-based estimator. For our context, we consider the following

EB-type estimator

β̂EB = β̂UDLM +K(β̂CDLM − β̂UDLM) (2.4)

withK = (V̂ ◦IL+1)[(V̂ +ψ̂ψ̂>)◦IL+1]
−1. V̂ is the estimated variance-covariance matrix

of β̂UDLM , ψ̂ = β̂CDLM − β̂UDLM , IL+1 is a (L + 1) × (L + 1) identity matrix, and ◦ is

the Hadamard product. The shrinkage factor can be represented byK = diag[k1, ..., kL+1]

with ki = vi/(vi + ψ̂2
i ) where ψ̂2

i is the ith diagonal component of ψ̂ψ̂>, and vi is the

ith diagonal element of V̂ for i = 1, · · · , L + 1. An alternative choice for defining the

weights is to consider the estimated variance-covariance matrix of ψ̂ instead of ψ̂ψ̂> in

(2.4). The expression and derivation of the variance-covariance estimate of ψ̂ are given in

the Appendix 2.7.2. From now on, we will denote the EB estimator in (2.4) as EB1 and the

EB estimator that replaces ψ̂ψ̂> with ˆCov(ψ̂) in (2.4) as EB2.

The shrinkage factor assesses how close the assumed working DL function in CDLM is
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to the pattern observed in the data. At one extreme, K = I yields β̂EB = β̂CDLM . At the

other extreme, K = 0 yields β̂EB = β̂UDLM . When the working DL function in CDLM

is not correctly specified, β̂EB is asymptotically equivalent to β̂UDLM and therefore β̂EB

is consistent. Let Σ be the asymptotic variance-covariance matrix of (β̂>UDLM , β̂
>
CDLM)>.

Since β̂EB is a function of β̂UDLM and β̂CDLM , the asymptotic variance-covariance of

β̂EB can be expressed in the form of GΣG> by using Taylor expansion where the exact

expression ofG is provided in the Appendix 2.7.2. The limiting distribution of
√
N(β̂EB−

β) is not a normal distribution as expected for most model averaged estimators [Claeskens

and Carroll, 2007]. However, Chen et al. [2009] showed that the normal approximation

works well and is acceptable in practice.

2.3.3 Hierarchical Bayes Model

We propose a HB approach that sets up a nonnull shrinkage target through specification of

the prior mean. The formulation of the prior rests on the “smoothness” prior [Shiller, 1973]

that smooths over the lag curve by specifying a certain degree of order differences of β to

follow a zero-mean normal distribution. For ease of presentation, we focus on polynomial

DLM below. The prior structure can be represented by

Rp−1β ∼ N (0, σ2
πIL−p+1),

whereRp−1 is a (L− p+ 1)× (L+ 1) constraint matrix for the (p− 1)th degree smooth-

ness prior that uses the p-degree order differences of β while σ2
π is the prior variance. The

element (i, j) of Rp−1 is (−1)(j−i)
(
p
j−i

)
for j = i, ..., i + p and 0 elsewhere. The shrink-

age target implied by the prior specification lie in the space spanned by the solution of

Rp−1β = 0 (i.e.
∑p

j=0(−1)j
(
p
j

)
β`+j = 0 for ` = 0, 1, ..., L − p + 1). We have shown

that the maximizer of the objective function in (2.2) subject to the constraint Rp−1β = 0

coincides with the (p− 1)-degree polynomial DLM estimator. In other words, the smooth-

ness approach is indeed shrinking β̂UDLM toward β̂CDLM . The proof is provided in the

Appendix 2.7.3. Without loss of generality, hereafter we denoteR as the constraint matrix

with M rows where M < L+ 1 is the number of constraints.
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Define a T × (L+ 1) design matrix X = (X1, · · · ,XT )> and and an outcome vector

Y = (y1, · · · , yT )> of length T . In order to allow uncertainty on the variance component

σ2
π, we specify the full HB model as:

Y |β ∼ Poisson(eXβ)

Rβ|σ2
π ∼ N (0, σ2

πIM)

σ2
π ∼ IG(aπ, bπ),

where aπ and bπ are hyper-prior parameters of the Inverse-Gamma (IG) distribution. The

full conditional distributions of σ2
π and β are provided in Appendix 2.7.4. The marginal

posterior density of β is not available in closed form. We use Metropolis Hastings algo-

rithm within a Gibbs sampler to approximate the posterior distribution and obtain the HB

estimator β̂HB as the posterior mean.

The connection between Bayesian modelling and penalized likelihood approach by

viewing prior as penalty is well-known. The dual problem of the HB model is to mini-

mize

`p(β) = −
T∑
t=1

[ytβ
>Xt − eβ

>Xt − log(yt!)] + λβ>R>Rβ

where R is defined previously and λ is the tuning parameter. We can use the Newton-

Raphson algorithm [Gill et al., 1981] to obtain GRR estimator β̂GRR by minimizing `p(β)

given λ. GCV [Golub et al., 1979] and AICC [Hurvich et al., 1998] are two common

criteria that can be used to choose the tuning parameter λ. Using the results demonstrated

in the previous section, we can assure that β̂GRR → β̂CDLM as λ → ∞ and β̂GRR →

β̂UDLM as λ → 0. The GRR model and HB model are similar and the major difference

is in how the amount of shrinkage is determined. It has been shown that the asymptotic

variance of β̂GRR is a monotonic decreasing function of λ, the asymptotic bias of β̂GRR

is a monotonic increasing function of λ, and the asymptotic mean square errors (MSE)

of β̂GRR is lower than the asymptotic MSE of β̂UDLM . The proofs are provided in the

Appendix 2.7.5. The described asymptotic properties assume that the tuning parameter λ

is fixed. Choosing λ from data would induce another layer of uncertainty in β̂GRR and the

derived variance formula may underestimate its true variance. To address this issue, we
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compare the proposed variance estimator with the empirical variance of the estimates in

our simulation study in section 2.4.

2.3.4 Two-stage Shrinkage

The Bayesian distributed lag model (BDLM) proposed by Welty et al. [2009] smooths over

the lagged effects β. They construct the prior variance-covariance matrix on β in a way

to ensure Var(β`) → 0 and Cor(β`−1, β`) → 1 as ` increases. The following hierarchy is

specified:

Y |β ∼ Poisson(eXβ)

β|ω, σ2 ∼ N (0, σ2Ω(ω)), Ω(ω) = V (ω1)W (ω2)V (ω1), σ2 = 10 · Var(β̂0),

where V (ω) = diag[1, exp(ω), exp(2ω), ..., exp(Lω)],W (ω2) = V (ω2)V (ω2)
>+

{IL+1−V (ω2)}1L+11
>
L+1{IL+1−V (ω2)}>, IL+1 is the (L+1)× (L+1) identity matrix,

1L+1 is a (L + 1) × 1 vector of ones, and β̂0 is the estimated coefficient for lag 0 from

unconstrained DLM. Rather than setting fixed values forω = (ω1, ω2)
>, Welty et al. [2009]

lets ω follow a discrete uniform distribution on IR2 and the posterior distribution of β can

be obtained accordingly.

We consider a two-stage shrinkage approach to ensure the additional property that the

estimated DL coefficients from one of the above shrinkage approaches smoothly go to zero

at larger lags. In the first stage, we shrink β̂UDLM toward β̂CDLM through one of the

shrinkage approaches introduced in section 2.3.2-2.3.3. In the second stage, we specify the

hyperprior on the variance-covariance matrix on β that constrains the coefficients at larger

lags to approach zero similar to BDLM. Without loss of generality, we consider the EB-

type estimator β̂EB as the shrinkage estimator from the first stage. The full specification of

the two-stage shrinkage model, withG and Σ defined in section 2.3.2, is given by:

β̂EB|β ∼ N (β,GΣG>)

β|ω, σ2 ∼ N (0, σ2Ω(ω)), Ω(ω) = V (ω1)W (ω2)V (ω1), σ2 ∼ IG(a0, b0),

where V (ω) andW (ω) are as defined in section 2.3.3. The full conditional distributions of

21



β, σ2, and ω = (ω1, ω2)
> are provided in Appendix 2.7.4. The joint posterior distribution

can be obtained via a Gibbs sampling technique and the two-stage shrinkage estimate β̂TSB

can be obtained accordingly.

The analogue of the previous two-stage shrinkage approach is the two-stage hyper-

penalized approach. Again, the estimator from the first stage can be any one of the shrink-

age estimators introduced previously. We take β̂EB as the shrinkage estimator obtained in

the first stage as before. A penalized objective function is constructed in the second stage

to penalize the departure from Var(β`) → 0 and Cor(β`−1, β`) → 1 as ` increases. The

two-stage hyper-penalized estimator is given by

β̂TSP = arg min
β
`TSP (β) = arg min

β
[(β−β̂EB)>(GΣG>)−1(β−β̂EB)+λβ>Ω(ω)−1β],

where λ is the tuning parameter. We select λ based on cross-validation. For ω, we search

through a grid of possible values of ω and choose the values that minimize the above

criterion. When β̂GRR is chosen as the shrinkage estimator from the first stage, a similar

framework can be followed.

2.4 Simulation Study

2.4.1 Simulation 1: Comparison of Single-Step Shrinkage Approaches

We conducted a simulation study to compare the estimation properties of UDLM, CDLM,

GADLM, BDLM, and the three shrinkage approaches introduced in sections 2.3.2 and 2.3.3

under a time-series setting. All together, we considered eight different smoothing methods:

UDLM, CDLM, EB1, EB2, GRR (with tuning parameter selected via AICC), GADLM,

BDLM, and HB. Among these, UDLM, CDLM, BDLM, and GADLM are existing alter-

natives. A cubic spline with four equally spaced internal knots is applied for GADLM. The

prior on ω = (ω1, ω2)
> for BDLM was set to be a discrete uniform distribution over the

equally spaced sequence of length 50 ranging from -0.2 to -0.004 in both dimensions. The

hyperprior on the variance for HB was set to be weakly informative [Gelman et al., 2008],

with both inverse gamma prior parameters set to 0.001.
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2.4.1.1 Simulation Settings

We first generated an exposure series of length 200 with mean 0 and first order auto-

correlation equal to 0.6 from the model xt = 0.6xt−1 + εt where εt ∼ i.i.d N(0, 1) for

t = 1, ..., 200. Following the structure of Welty et al. [2009], we simulated the outcome

series Y as continuous rather than count data for simplicity. The continuous Y can rep-

resent the logarithm transformation of the counts and the normal approximation is applied

for modeling purposes. We set L = 10 and generated the outcome series Y from the

model yt =
∑10

`=0 β`xt−` + εt where β = (β0, ..., β10)
> denote the true coefficients and

εt ∼ i.i.d N(0, 0.25) for t = 1, ..., 200. The error variance was determined to control the

signal-to-noise ratio.

Four sets of true βs were considered and different specifications of the working DL

function in CDLM were used. Shrinkage between UDLM and the CDLM constructed

based on the working DL was performed for all shrinkage methods including EB1, EB2,

GRR, and HB. The three combinations of true coefficients and specified working DL func-

tion reflect the first three scenarios of interest for comparing various methods: (1) the

working DL function completely matches true DL function, (2) the working DL function

moderately departs from the true DL function, and (3) the working DL function is very dif-

ferent from the true DL structure. Scenario 4 is created to reflect a realistic situation when

one is exploring association between multiple pollutants (e.g. O3, CO, SO2, NO, PM10)

and various outcomes (e.g. mortality, cardiovascular events, hospital admission). Each

exposure-outcome pair may have a different DL structure and it is not feasible to examine

each structure in depth. We consider a setting where data are generated from one of the

five underlying true DL functions, including (a) constant, (b) linear, (c) cubic, (d) cubic-

like smooth function with slight departure, and (e) oscillating, is used to generate data with

20% frequency each while the working DL function is a cubic polynomial. The summary

parameter configurations corresponding to the four scenarios is provided in Table 2.4. We

generated 1000 data sets for each scenario to evaluate the estimation performance.
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2.4.1.2 Evaluation Metrics

To compare the estimation performance of the eight methods, we used two sets of metrics.

The first set of metrics measures the estimation properties of β̂ as a vector. They are

(i) squared bias, (ii) variance, (iii) relative efficiency with respect to UDLM, and (iv) the

mean Euclidean distance to the true coefficient. The second set of metrics measures the

estimation properties of the total effect (i.e.
∑10

j=0 βj). The metrics are (i) squared bias, (ii)

variance, and (iii) relative efficiency with respect to UDLM. The relative efficiency is the

ratio of the MSE of UDLM estimates to the MSE of the estimate under each method. The

expressions of the metrics used for comparison are summarized in Table 2.5.

2.4.1.3 Simulation Results

The simulation results for the estimated lagged coefficient vector (β̂) are summarized in

the upper part of Table 2.1. As we observe, in scenario 1 when the working DL function

completely matches the true DL function, CDLM is nearly unbiased with lowest variance

and MSE across all the methods as expected. The relative efficiency is 8.43. Nonetheless,

GRR, HB, and GADLM with relative efficiency ranging from 4.52 to 5.38 perform rea-

sonably well and are superior to EB1, EB2, and BDLM with relative efficiency ranging

from 1.68 to 1.99. In scenario 2 when the working DL function moderately departs from

the true DL function, CDLM is more efficient than UDLM, with the loss from the bias

compensated for by a large reduction in variance. CDLM has relative efficiency equal to

2.26 and the relative efficiencies of the shrinkage methods range from 1.56 to 4.22. GRR

and HB outperform CDLM and UDLM in terms of relative efficiency and mean distance

whereas EB1 and EB2 are less efficient than CDLM. BDLM is approximately as efficient

as CDLM, and the mean distances are similar. When the working DL function is very dif-

ferent from the true DL structure as depicted in scenario 3, CDLM and GADLM are the

least efficient with relative efficiency around 0.70 since the large squared bias contributes to

the MSE despite the low variance. All the shrinkage methods and BDLM outperform both

UDLM and CDLM in terms of efficiency and mean distance in this scenario. In scenario

4, we can observe that GRR (2.09) and HB (2.22) have higher relative efficiency compared
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to other methods as well as stable performances across different individual lag structures.

This simulation scenario illustrates that the shrinkage methods can be useful in improving

robustness as well as retaining reasonable precision when encountering uncertainty in real-

world analysis. Overall, GRR and HB have the best average performance across various

lag structures (scenario 4), as well as reasonable efficiency under a given lag structure (sce-

narios 1-3). For example, GRR has relative efficiency of 5.38, 3.54, 1.15 and 2.09 and HB

has relative efficiency of 4.52, 4.22, 1.37 and 2.26 across simulation scenarios 1-4. Based

on the simulation results, HB and GRR have robust performance.

The simulation results for the estimated total effect (
∑10

l=0 β̂`) are summarized in the

lower part of Table 2.1. As we can see in scenarios 1 and 2, all the methods yield nearly

unbiased estimates for total effect and the variances are at a similar level except for EB1

and EB2. In scenario 3, when the true DL is non-smooth, the total effects estimated from

EB1, EB2, GADLM, and BDLM are slightly biased. In terms of relative efficiency, GRR,

GADLM, BDLM, and HB are approximately as efficient as UDLM for estimating the total

effect. Overall, the biases of the total effect estimates are minimal and the variances of the

total effect estimates are similar across the board with slightly higher values for EB1 and

EB2.

2.4.2 Simulation 2: Comparison of Two-stage Shrinkage Approaches

Our second simulation study was designed to investigate the effect of the two-stage shrink-

age when the number of maximum lag is allowed to be much larger than the truth. We

considered seven methods - EB1, TSB with EB1 from the first stage (TSB-EB1), TSP

with EB1 from the first stage (TSP-EB1), GRR, TSB with GRR from the first stage (TSB-

GRR), TSP with GRR from the first stage (TSP-GRR), and BDLM. For BDLM and TSB,

the prior on ω = (ω1, ω2)
> was set to be a discrete uniform distribution over the equally

spaced sequence of length 50 ranging from -0.2 to -0.004 in both dimensions. For TSP,

ω was chosen as the minimizer of the hyper-penalized criterion. The tuning parameters in

TSP-EB1 and TSP-GRR were selected based on 5-fold cross-validation. The working DL

function in CDLM was specified as a cubic polynomial throughout.
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2.4.2.1 Simulation Settings

We generated exposure series in the same way as the first simulation study. L = 15

was chosen and the true lagged coefficients beyond lag 7 are all set equal to 0. We

generated the outcome series Y from the model yt =
∑15

`=0 β`xt−` + εt with true coef-

ficients β = (0.07, 0.135, 0.2, 0.210, 0.18, 0.125, 0.06, 0.02, 0, 0, 0, 0, 0, 0, 0, 0)> and εt ∼

i.i.d N(0, 0.25) for t = 1, ..., 200. We generated 1000 data sets to evaluate the estimation

performance.

2.4.2.2 Evaluation Metrics

We evaluated the estimation properties of the seven methods based on the same four metrics

used in the first simulation scenario. The two-stage shrinkage methods can potentially al-

leviate the problem of having nonzero coefficient estimates at larger lags when the number

of maximum lags is large. Let MAV denote the mean absolute value of the coefficient esti-

mates for the lags with the true coefficients equal to 0 (i.e. MAV = 1
8000

∑1000
i=1

∑15
j=8 |β̂ij|).

We examine the MAVs of the seven methods to assess their performance when the maxi-

mum number of lags L is misspecified.

2.4.2.3 Simulation Results

The results are presented in Table 2.2. Overall, the two-stage approaches are effective

in increasing efficiency when L is misspecified. Both TSB and TSP further reduce MSE

and reduce the mean distance compared to the shrinkage estimator obtained in the first

stage. Specifically, compared to EB1 (1.83), TSB-EB1 (1.95) and TSP-EB1 (1.98) have

higher efficiencies while all three are less efficient than BDLM (3.42); in contrast, TSB-

GRR (10.47) and TSP-GRR (10.13) have higher efficiencies compared to GRR (6.54).

The efficiency gain from the second-stage shrinkage is limited for EB1 while the gain is

considerable for GRR.

The MAVs of the seven methods being compared are 0.047, 0.040, 0.029, 0.025, 0.012,

0.012, 0.019, respectively. The reduction from 0.047 to 0.040 and 0.029, corresponding

to 15% and 37% reduction in MAV, suggests the usefulness of imposing a second-stage
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shrinkage on EB1 to mitigate the “tail” problem. Similarly, a second stage shrinkage on

GRR aids in reducing the MAVs from 0.025 to 0.012 and 0.012, equivalent to 49% and

50% reduction in MAV. In this setting, a two-stage shrinkage approach with GRR in the

first stage (TSB-GRR) performs the best with respect to relative efficiency, mean distance

to the true coefficients, and MAV.

Remark 2: We conducted an analysis to evaluate whether ignoring the uncertainty from

choosing the tuning parameter λ in GRR would underestimate the variance of the cumula-

tive effects which are one of the primary quantities of interest in our context. We considered

the empirical variance of the 1000 cumulative estimates up to lag ` from 1000 repetitions

as the reference (i.e. 1
1000

∑1000
i=1 (

∑`
j=0 β̂ij −

∑`
j=0 β̄j)

2 for ` = 0, ..., 10). We computed

the average of the 1000 estimated variances of the cumulative lag coefficients from the

1000 repetitions (i.e. 1
1000

∑1000
i=1 V̂ar(

∑`
j=0 β̂ij) for ` = 0, ..., 10) as a percentage of the

reference. The results are presented in Table 2.6. We observe that the asymptotic variances

are slightly smaller on average than the empirical variances. The percentages range from

0.83 to 1.02 across simulations, indicating no more than 10% underestimation of the stan-

dard errors. The findings are in line with the coverage properties of confidence intervals

of GAMs using penalized regression splines studied by Marra and Wood [2012]. To en-

sure the validity of comparison across different methods, we will consider bootstrapping to

obtain standard error estimates for GRR and TSP-GRR in the analysis of NMMAPS Data.

2.5 Application to NMMAPS Data

We first explore the association of (1) daily PM10, (2) daily O3, and (3) daily SO2 with

(1) daily non-accidental mortality counts, (2) daily cardiovascular mortality counts, and (3)

daily respiratory mortality counts in Chicago, Illionis for the period between 1987 and 2000

using part of the NMMAPS data via UDLM, CDLM, and HB. A cubic polynomial working

DL function was applied for CDLM and is set as the shrinkage target for all shrinkage

methods. We then applied eight of the methods (UDLM, CDLM, EB1, GRR, BDLM,

HB, TSB-GRR, TSP-GRR) included in the simulation study to investigate the association

of PM10 and O3 with mortality counts and compare and contrast the two distributed lag
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analyses. A 4-degree polynomial working DL function was applied. The NMMAPS data

contain daily mortality, air pollution, and weather data collected across 108 metropolitan

areas in the United States from 1987 to 2000. Further details with respect to NMMAPS

data are available at http://www.ihapss.jhsph.edu/data/NMMAPS/.

Zanobetti et al. [2002] have shown that it is unlikely that lags beyond two weeks would

have substantial influence on associations between short-term exposures to pollution and

mortality; rather, inclusion of lags beyond two weeks might confound the estimation of

lagged effects. We consider lags up to L = 14 for PM10, O3, and SO2. Let xtk, ytk, and

ztk denote exposure level, outcome count, and vector of time-varying covariates, measured

on day t for age group k in Chicago with t = 1, ..., 5114 and k = 1, 2, 3, respectively.

The three age categories are greater or equal to 75 years old, between 65 and 74 years old,

and less than 65 years old. The three exposures were shared across the three age groups

(i.e. xtk ≡ xt) and the vector of covariates ztk is specified in the same way as in previous

analysis by Dominici et al. [2005]. The same set of covariates is considered in the models

for all exposures. We assume that the mortality count in Chicago on day t for each of the

age group k is a Poisson random variable Ytk with mean µtk such that

log(µtk) = X>t β + z>tkα

= X>t β + α0 +
2∑
j=1

α1jI(k = j) +
6∑
j=1

α2jI(dowt = j) + ns(tempt; 6 df,α3)

+ ns(temp(3)
t ; 6 df,α4) + ns(dptpt; 3 df,α5) + ns(dptp

(3)

t ; 3 df,α6)

+ ns(t; 98 df,α7) + ns(t; 14 df,α8)I(k = 1) + ns(t; 14 df,α9)I(k = 2),

where Xt = (xt, ..., xt−14)
>, β = (β0, ..., β14)

>, I(·) is the indicator function,ns(·) denotes

the natural spline with specified degrees of freedom (df) and αi represents the spline coef-

ficients for i = 3, ..., 9. Predictors dowt, tempt, tempt, dptpt, and dptpt represent the day

of week, current day’s temperature, average of the previous 3 days’ temperatures, current

day’s dewpoint temperature, and the average of the previous 3 days’ dewpoint temperatures

for day t. The indicator variables allow different baseline mortality rates within each age

group and within each day of week. The smooth term for time (t) is to adjust for long-term
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trends and seasonality and 98 df corresponds to 7 df per year over the 14-year horizon. The

last two product terms separate smooth functions of time with 2 df per year for each age

group contrast. The primary goal is to estimate the lagged coefficients β while α is the set

of covariate related parameters.

The mean concentrations (standard deviations in parenthesis) of PM10, O3, and SO2 are

37.06 (19.25) µg/m3, 19.14 (10.20) ppb, and 6.24 (2.95) ppb, respectively. The average

daily non-accidental mortality count, daily cardiovascular mortality count, and daily respi-

ratory mortality count are 38.47 (15.89), 16.97 (10.63), and 3.06 (2.73), respectively. We

present the results of exploratory analysis in Figure 2.1. Along the columns, we can see

that the estimated DL functions for cardiovascular deaths are similar to the estimates for

total mortality while the estimated DL functions for respiratory deaths are less informative

across different exposures. The finding suggests that cardiovascular death is the leading

composite of mortality in association with PM10, O3, and SO2. Along the rows, we can see

that the fitted DL functions of PM10 and SO2 are similar in that they increase at early lags,

decrease at mid-range lags, and increase back to 0 line at late lags. The trend suggests the

delayed effects of PM10 and SO2 and the phenomenon of mortality displacement [Zanobetti

et al., 2002, Zanobetti and Schwartz, 2008]. On the other hand, the fitted DL functions of

O3 peak at earlier lags and decrease toward 0 at large lags suggesting the acute effects of

O3 compared to PM10 and SO2. Departure of HB fit from the CDLM fit for PM10 indicates

that better bias-variance tradeoff can be achieved using shrinkage while the consistency be-

tween the CDLM fits and HB fits for O3 and SO2 suggest that the CDLM fits are adequate

and the HB approach data-adaptively aligns with CDLM in these situations.

Partial autocorrelation function (PACF) plots of PM10 and O3 are presented in the Figure

2.5. One can notice the slower decay and stronger autocorrelation in O3 time series than in

PM10 time series. Figure 2.2 compares the estimated DL functions obtained from the eight

methods for the association between PM10 and O3 and mortality in Chicago from 1987

to 2000. The stronger autocorrelation of O3 time series corresponds to the more variable

UDLM estimates. In addition, PM10 demonstrates the strongest positive effects at lag 2-3,

whereas O3 starts to demonstrate a positive effect at lag 0 itself. This observation suggests

an earlier onset of the short-term ozone effect on mortality in Chicago during the study
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period.

2.5.1 Estimation of Lag Coefficients

With respect to PM10, the strongest association occurs at lag 3 for UDLM, EB1, GRR,

BDLM, and TSP-GRR and at lag 2 for CDLM, HB, and TSB-GRR. The interquartile range

of PM10 is 21.49µg/m3. The quantity 100[exp(21.49β`) − 1] represents the percentage

change in daily mortality with an interquartile range (IQR) increase in PM10 at lag `. The

estimated percentage increases in mortality associated with a 21.49µg/m3 increase in PM10

at lag 3 are 0.65%, 0.56%, 0.44%, 0.54%, and 0.37% for UDLM, EB1, GRR, BDLM, and

TSP-GRR, respectively. All of the 95% confidence/credible intervals (CIs) do not contain

zero suggesting that PM10 at lag 3 is significantly associated with daily mortality. Although

all other methods shrink and smooth the DL function and result in attenuated lagged effect

estimates, the standard error estimates are smaller as well. From the left panel of Figure

2.2, we can observe that the estimated DL function obtained by HB and GRR for PM10

is closer to the UDLM fit than the CDLM fit indicating that CDLM might have led to

over-smoothing the DL function. Consequently, the effects at lags 2 and 3 are much less

evident for CDLM compared to UDLM, GRR, and HB due to potential underestimation

of the effects. In this example, shrinkage methods are certainly preferred since CDLM is

potentially underestimating the effects by misspecifying the DL function.

In contrast, the strongest association unequivocally occurs at lag 2 across all eight meth-

ods for O3. The IQR of O3 is 14.65 ppb. The quantity 100[exp(14.65β`) − 1] represents

the percentage change in daily mortality with an IQR increase in O3 at lag `. The estimated

percentage increases in mortality associated with a 14.65 ppb increase in O3 at lag 2 range

from 0.59% to 1.19% across the eight methods. All of the 95% CIs do not cover zero indi-

cating that O3 at lag 2 is significantly associated with daily mortality in Chicago from 1987

to 2000. The peak at earlier lags for O3 indicates an earlier window of susceptibility and a

more acute effect on mortality compared to PM10. The estimated DL function of GRR/HB

is more similar to the CDLM fit in this case. The two examples also illustrate the data

adaptive feature of GRR/HB. In a given situation, one will not know which DL structure
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is the best and GRR/HB can be taken as a default choice that will automatically adapt the

fit. The estimated lagged effects with 95% CIs obtained for PM10 and O3 are tabulated in

the Table 2.4. The BDLM and two-stage approaches enable us to misspecify L or allow

a maximal large L. Figure 2.3 shows analysis of NMMAPS data with L = 28 and one

can note the attractive feature of the two-step approaches, providing accurate and efficient

estimates at smaller lags, and shrinking the coefficients at larger lags to zero.

2.5.2 Estimation of Cumulative Lag Coefficients

Table 2.7 summarizes the estimated cumulative lagged effects of PM10 and O3 on mortality

up to lag 3, lag 7, and lag 14, respectively, with an IQR increase in exposure level. The cor-

responding graphical representation is shown in Figure 2.4. An interquartile (21.49µg/m3)

increase in PM10 in each of lag 0 to lag 3 is associated with an increase in relative risk of

mortality ranging from 0.48% to 0.75% across different methods. The 95% CIs with lower

bound close to 0 suggest plausible positive association. However, the estimated cumulative

lagged effects up to lag 7 range from 0.13% to 0.41% across the eight methods with all

the 95% CIs containing 0. The drop between lag 3 and lag 7 suggests the phenomenon of

mortality displacement that has been noted in previous studies [Zanobetti et al., 2002]. The

deaths of frail individuals would occur several days after the high air pollution level episode

resulting in the DL function to be positive at early lags and decrease and then become neg-

ative at larger lags. The estimates of the total effect (up to lag 14) from all eight methods

are similar, ranging from -0.87% to -0.43%. The finding is consistent with results from the

simulation study. The proposed shrinkage methods are capable of capturing the trend of

the DL functions (i.e. effects at each individual lag) more precisely than other methods,

whereas the total effect estimates and their standard errors are usually similar across meth-

ods. From Figure 2.2, we can also observe that the two-stage shrinkage methods TSB-GRR

and TSP-GRR shrink the tail of the estimated DL function towards 0. A interquartile(14.65

ppb) increase in O3 in each of lag 0 to lag 3 is associated with an increase in relative risk

of mortality ranging from 1.81% to 2.07% across different methods. All the 95 % CIs are

above 0 indicating the positive short-term effects of ozone on mortality in Chicago. The
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slightly larger cumulative effects up to lag 7 compared to the cumulative effects up to lag

3 suggests the tapering positive ozone effect on mortality between lag 3 and lag 7. In addi-

tion, the slightly smaller cumulative effects up to lag 14 compared to the cumulative effects

up to lag 7 suggests the ”harvesting” effects [Zanobetti and Schwartz, 2008].

2.6 Discussion

In this chapter, we first reviewed unconstrained DLMs and constrained DLMs for modeling

the lagged effects of air pollution levels on a health outcome in a time-series setting. The

unconstrained DLM estimator is robust because it imposes no constraint on the DL func-

tion, whereas the constrained DLM estimator is efficient due to parsimony. We introduced

three classes of statistical approaches to combine the two estimators in order to achieve

bias-variance tradeoff. The commonality is that the amount of shrinkage is determined in

a data-adaptive manner. The resulting shrinkage estimators are found to be more robust to

deviation of the working DL function in CDLM from the true DL function. They are more

efficient than a vanilla unconstrained DLM estimator across the board. Our simulation re-

sults indicate that GRR and HB perform well in terms of estimation accuracy across differ-

ent simulation scenarios. GADLM is competitive when the true DL function is smooth but

it leads to seriously biased estimates when the true DL function is non-smooth (simulation

setting 3). In contrast to spline-based DLMs and BDLM, our shrinkage approaches lever-

age the efficiency gain from the parsimonious parametrization of the working DL function

in CDLM.

Based on the simulation results, we recommend GRR and HB as the preferred methods

of choice. With massive data sets or multiple exposure-outcome pairs to explore, if com-

putational cost is of concern, GRR is computationally less expensive than HB. To help un-

derstand the differences in relative computing times, Table 2.12 presents the computational

time for analyzing the NMMAPS data by each method. Moreover, existing methods like

CDLM require the DL function be carefully selected on a case-by-case basis. Practitioners

may not have the resources to conduct such in depth exploration of the lag structure when

an agnostic association analysis is carried out with multiple outcome-exposure combina-
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tions. Use of shrinkage methods can be viewed as a way to automate this process and avoid

selection of a parametric structure for each individual analysis, as in simulation Scenario

4 and NMMAPS analysis. The proposed shrinkage methods are robust to misspecification

of the working DL function and can be used to conduct agnostic discovery searches in an

automatic and efficient fashion.

One of the key components for setting up the smoothness prior in HB and the penalty

term in GRR is the configuration of the constraint matrixR. It induces a nonnull shrinkage

target in both approaches. We established the connection betweenR and the transformation

matrix C in DLM framework. This correspondence is a major contribution of the paper.

There are two implications of this connection. First,R can be conveniently obtained as long

asC, that transforms the constrained parameters in the original space to the parameters in a

lower-dimensional unconstrained space, is available. Second, one can explicitly determine

the constraint(s) between adjacent lag coefficients by integrating subject-matter knowledge

about the shape and smoothness regarding the DL function and define the corresponding

C orR, thus the framework is flexible.

Unconstrained DLMs, constrained DLMs, and the other one-stage shrinkage methods

do not guarantee that the coefficients at larger lags approach zero. Two-stage shrinkage

methods are useful in remedying this problem. However, the computation time needed

is longer as taking into account the uncertainty at both stages concurrently requires some

resampling technique such as bootstrapping. Overall, the choice of the methods has less

influence on the estimated cumulative effects, as observed in the simulation study and the

NMMAPS analysis. Nevertheless, the shrinkage methods are useful in characterizing the

DL functions in a more precise manner by recognizing the possible bias in the CDLM speci-

fication. Precisely identifying the window of susceptibility to a disease event in association

with air pollution would facilitate environmental scientists to understand the pathway of

environmental factors to disease risk and possible interaction between different exposures.

These methods can potentially be extended to areas outside environmental epidemi-

ology. The notion of combining a model-free estimator and a model-based estimator is

attractive in real-world situations when no single estimator is universally optimal and it is

difficult to examine the validity of the underlying assumptions needed for a model-based
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estimator. We hope that our work will lead to further research in other applications.

2.7 Appendix

2.7.1 Connection Between C and R beyond Polynomial DLM

Denote

C: a (L+ 1)× p transformation matrix

R: a (L+ 1− p)× (L+ 1) constraint matrix

Ce: a (L + 1) × (L + 1) matrix [C 0(L+1)×(L+1−p)] where 0(L+1)×(L+1−p) is a (L + 1) ×

(L+ 1− p) zero matrix

Re: a (L+ 1)× (L+ 1) matrix

 R

0p×(L+1)

 where 0p×(L+1) is a p× (L+ 1) zero matrix

(1)R→ C

The p basis functions corresponding to the p columns of C span the solution space of

Rβ = 0 (orReβ = 0). C can be obtained by applying SVD onRe (i.e. Re = URDRV
>
R ).

The last p columns of VR is one choice of C.

(2) C → R

β = Cη and Rβ = 0 so we have RCη = 0. Deriving R from C is equivalent of

solving C>R> = 0 (or C>e R
> = 0). R can be obtained by applying SVD on C>e (i.e.

C>e = UCDCV
>
C ). The last (L+ 1− p) rows of V >C is one choice ofR.

Remark: DLM solution is invariant to row operations on R. For example, consider a

piecewise linear distributed lag function with L = 6 and only internal knot at 3. With basis

functions 1, `, and (`− 3)+, C is given by

34



C =



1 0 0

1 1 0

1 2 0

1 3 0

1 4 1

1 5 2

1 6 3


.

Following the above procedure,R can be obtained as

R =


0.000 −0.346 0.693 −0.030 −0.255 −0.439 0.377

0.000 −0.218 0.436 −0.290 −0.238 0.691 −0.381

0.000 −0.090 0.179 −0.549 0.779 −0.180 −0.139

−0.560 0.727 0.226 −0.275 −0.157 −0.039 0.079

 .

Through row operations, we can obtain

R =


1 −2 1 0 0 0 0

0 1 −2 1 0 0 0

0 0 0 1 −2 1 0

0 0 0 0 1 −2 1


as suggested. The solution of Rβ = 0 is a piecewise linear function with internal knot at

3.

2.7.2 Asymptotic Results for the Empirical Bayes estimator

We first derive the variance-covariance expression of ψ̂ = β̂UDLM − β̂CDLM and then

obtain the asymptotic theory of β̂EB1. Let S(t)
U (β) denote the first-order derivative of the

unconstrained DLM likelihood for time t (i.e. (yt − e−X
>
t β)Xt) S

(t)
C (θ) denote the first-

order derivative of the constrained DLM likelihood for time t (i.e. (yt− e−Z
>
t θ)Zt), and let

HU(β) and HC(θ) denote the Hessian matrices from the two models, respectively. Let β0
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denote the true vector of lagged coefficients. By Taylor expansion,

`
′
(β̂UDLM) = `

′
(β0) + `

′′
(β0)(β̂UDLM − β0) + op(|β̂UDLM − β0|)

⇒β̂UDLM − β0 = [−`′′(β0) + op(1)]−1`
′
(β0)

⇒Cov(β̂UDLM) = [−`′′(β0)]
−1Cov(`

′
(β0))[−`

′′
(β0)]

−1 + op(1)

⇒[−`′′(β0)]
−1Cov(`

′
(β0))[−`

′′
(β0)]

−1 P−→ Cov(β̂UDLM)

Since β̂UDLM → β0, −H−1U (β̂UDLM)−1
P−→ [−`′′(β0)]

−1. Also, Cov(`
′
(β0)) can be con-

sistently estimated by empirical variance
∑>

t=1 S
(t)
U (β̂UDLM)S

(t)
U (β̂UDLM)>. So,

Cov(β̂) = H−1U (β̂)[
>∑
t=1

S
(t)
U (β̂)S

(t)
U (β̂)>]H−1U (β̂)

Similarly,

Cov(θ̂) = H−1C (θ̂)[
>∑
t=1

S
(t)
C (θ̂)S

(t)
C (θ̂)>]H−1C (θ̂)

Cov(β̂UDLM , θ̂) = H−1U (β̂UDLM)[
>∑
t=1

S
(t)
U (β̂UDLM)S

(t)
C (θ̂)>]H−1C (θ̂)

Therefore,

Cov(ψ̂) = Cov(β̂UDLM − β̂CDLM)

= Cov(β̂UDLM −Cθ̂)

= Cov(β̂UDLM)− 2Cov(β̂UDLM , θ̂)C> +CCov(θ̂)C>

= H−1U (β̂UDLM)[
>∑
t=1

S
(t)
U (β̂UDLM)S

(t)
U (β̂UDLM)>]H−1U (β̂UDLM)

− 2H−1U (β̂UDLM)[
>∑
t=1

S
(t)
U (β̂UDLM)S

(t)
C (θ̂)>]H−1C (θ̂)C>

+CH−1C (θ̂)[
>∑
t=1

S
(t)
C (θ̂)S

(t)
C (θ̂)>]H−1C (θ̂)C>

Let βCDLM , βEB1, and ψ be the asymptotic limit of constrained DLM estimator, EB1
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estimator, and bias, respectively. We have

βEB1 = β0 +Kψ

whereK = (V ◦ IL+1)[(V +ψψ>) ◦ IL+1]
−1. When β0 6= βCDLM (ψ 6= 0), we can use

first-order Taylor expansion of β̂EB1 at (β>0 ,β
>
CDLM)> and the fact that V = Op(N

−1) to

obtain

√
N(β̂EB1 − βEB1) = G×

√
N [(β̂>UDLM , β̂

>
CDLM)> − (β>0 ,β

>
CDLM)>] + op(1)

where

G = [diag‘{
vj(vj − ψ2

j )

(vj + ψ2
j )

2
}, IL+1 − diag{

vj(vj − ψ2
j )

(vj + ψ2
j )

2
}]

where vjs are the diagonal elements of V and ψjs are the elements of ψ. Thus, β̂EB1 is
√
N -consistent and asymptotically normal when β0 6= βCDLM . Let Σ̂ denote the esti-

mated variance-covariance matrix of (β̂>UDLM , β̂
>
CDLM)>. With plug-in estimate of G, the

asymptotic variance of β̂EB1 can be estimated as ĜΣ̂Ĝ>.

2.7.3 Equivalence of (p − 1)-degree Polynomial DLM Estimator and

GRR/HB Shrinkage Target Corresponding to Rp−1

The general form of (p−1)-degree polynomial distributed lag function is β(`) =
∑p−1

i=0 ai`
i =

Cθ for ` = 0, · · · , LwhereC is a (L+1)×p transformation matrix with element (`+1, j)

equal to `(j−1) and θ = (a1, · · · , ap)>. Let Rp−1 be the (p − 1)-degree polynomial con-

straint matrix. We first show thatRp−1C = 0.

The corresponding constraints constructed inRp−1 are
∑p

j=0(−1)j
(
p
j

)
β(`+ j) = 0 for

` = 0, ..., L− p. ShowingRp−1C = 0 is the same as showing
∑p

j=0(−1)j
(
p
j

)
[
∑p

i=1 ai(`+
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j)i−1] = 0 for ` = 0, ..., L− p.

p∑
j=0

(−1)j
(
p

j

)
[

p∑
i=1

ai(`+ j)i−1]

=

p∑
i=1

p∑
j=0

(−1)j
(
p

j

)
ai(`+ j)i−1

=

p∑
i=1

ai[

p∑
j=0

(−1)j
(
p

j

)
(`+ j)i−1]

It is sufficient to show that
∑p

j=0(−1)j
(
p
j

)
(` + j)i−1 = 0 for ` = 0, ..., L − p and

1 ≤ i ≤ p. It is well-known that each polynomial can be uniquely expressed as a linear

combination of binomial coefficients.
∑p

j=0(−1)j
(
p
j

)
(`+ j)i−1 = 0 corresponds to the bi-

nomial coefficient involved (p−1)-degree term of the characteristic polynomial (`+ j)i−1.

We know that i is at most p so the coefficients of all the terms of degree larger than p − 1

must be zero so we have
∑p

j=0(−1)j
(
p
j

)
(`+ j)i−1 = 0 for ` = 0, ..., L− p and 1 ≤ i ≤ p.

Therefore,Rp−1C = 0.

The shrinkage target of GRR/HB estimator corresponding toRp−1 is the maximizer of

likelihood function in (1) of main text subject to the constraint Rp−1β = 0. Let β̂ denote

the GRR/HB estimator. Since β̂ conforms to the constraint, we have Rp−1β̂ = 0 and β̂

is an element in the kernel of Rp−1. From above, we have Rp−1C = 0 and we know

that the p columns of C are linearly independent. Thus, the kernel of Rp−1 is spanned

by the p columns of C. Subsequently, every element in the kernel can be expressed as

Cθ so β̂ must be in the form of Cθ. Therefore, the maximizing the likelihood function

in (1) in terms of β subject to the constraint Rp−1β = 0 is equivalent to maximizing the

likelihood function in (2) in terms of θ without any constraint. We then conclude that

(p−1)-degree polynomial DLM estimator and GRR/HB shrinkage target corresponding to

Rp−1 are equivalent.
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2.7.4 Conditional Distributions of HB Estimator and Two-stage Shrink-

age Estimator

The full conditional distributions of σ2
π and β for HB estimator are given by

f(σ2
π|β,Y ) ∝ IG(aπ +M/2, bπ + β>R>Rβ/2)

f(β|σ2
π,Y ) ∝

>∏
t=1

[exp(ytX
>
t β − eX

>
t β)] · exp(−β

>R>Rβ

2σ2
π

).

For two-stage shrinkage approach, if we let ω = (ω1, ω2)
> have a discrete uniform prior

distribution, the full conditional distributions of β, σ2, and ω are given by:

f(β|β̂EB,ω, σ2) ∼ N([1/σ2Ω(ω)−1 + (GΣG>)−1]−1(GΣG>)−1β̂EB, [1/σ
2Ω(ω)−1 + (GΣG)−1]−1)

p(ω|β̂EB,β, σ2) =
|Ω(ω)|−1/2exp[− 1

2σ2β
>Ω(ω)−1β]∑

ω∗ |Ω(ω∗)|−1/2exp[− 1
2σ2β>Ω(ω∗)−1β]

f(σ2|β̂EB,β,ω) ∼ IG(a0 + (L+ 1)/2, b0 + βTΩ(ω)−1β/2).

2.7.5 Analytical Results for the GRR Estimator

GRR estimator β̂GRR is given by

β̂GRR = arg min
β

[−
T∑
t=1

[ytβ
>Xt − eβ

>Xt − log(yt!)] + λβ>R>Rβ]

and its asymptotic MSEE[(β̂GRR−β)>(β̂GRR−β)] can be decomposed into f1(λ)+f2(λ)

where

f1(λ) = E[(β̂UDLM−β)>H>H(β̂UDLM−β)] = trace[(X>WX)(X>WX+λR>R)−2]

f2(λ) = (Hβ − β)>(Hβ − β) = λ2β>(R>R)(X>WX + λR>R)−2(R>R)β.
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We first show that f1(λ) is monotonic decreasing and f2(λ) is monotonic increasing and

then we show that f1(λ) + f2(λ) is convex.

df1(λ)

=dtrace[(X>ŴX)(X>ŴX + λR>R)−2]

=trace[2(X>ŴX + λR>R)−1(X>ŴX)d(X>ŴX + λR>R)−1]

=trace{−2(X>ŴX + λR>R)−1(X>ŴX)(X>ŴX + λR>R)−1[d(X>ŴX + λR>R)]

(X>ŴX)(X>ŴX + λR>R)−1}

=trace[−2R>R(X>ŴX)(X>ŴX + λR>R)−3]dλ

Since X>ŴX and R>R are positive definite and λ > 0, X>ŴX + λR>R is positive

definite (Weyl’s inequality). It follows that 2R>R(X>ŴX)(X>ŴX + λR>R)−3 is

positive definite and trace[−2R>R(X>ŴX)(X>ŴX + λR>R)−3] < 0. Therefore,

we have shown that f1(λ) is monotonic decreasing (f ′1(λ) < 0 ∀λ > 0).
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Assume λ2 > λ1 > 0,

f2(λ2)− f2(λ1)

=λ22β
>(R>R)(X>ŴX + λ2R

>R)−2(R>R)β − λ21β>(R>R)(X>ŴX + λ1R
>R)−2(R>R)β

=β>(R>R)[(
1

λ2
X>ŴX +R>R)−2 − (

1

λ1
X>ŴX +R>R)−2](R>R)β

=β>(R>R)(
1

λ2
X>ŴX +R>R)−2[(

1

λ1
X>ŴX +R>R)2 − (

1

λ2
X>ŴX +R>R)2]

(
1

λ1
X>ŴX +R>R)−2(R>R)β

=β>(R>R)(
1

λ2
X>ŴX +R>R)−2[(

1

λ21
− 1

λ22
)(X>ŴX)2 + (

1

λ1
− 1

λ2
)(X>ŴX)(R>R))]

(
1

λ1
X>ŴX +R>R)−2(R>R)β

=trace{ββ>(R>R)2(
1

λ2
X>ŴX +R>R)−2[(

1

λ21
− 1

λ22
)(X>ŴX)2

+ (
1

λ1
− 1

λ2
)(X>ŴX)(R>R))](

1

λ1
X>ŴX +R>R)−2}

=trace(A)

=
L+1∑
`=1

α`

where γ` is the `th eigenvalue of B. Since ββ>, X>ŴX , andR>R are positive definite

and λ2 > λ1, all of the terms thatA is composed of are positive definite and so isA. Hence,

f2(λ2) − f2(λ1) =
∑L+1

`=1 α` > 0. Therefore, we have shown that f2(λ) is monotonic

increasing.

f
′

2(λ)

=2λβ>(R>R)(X>ŴX + λR>R)−2(R>R)β − λ2trace[2(R>R)3ββ>(X>ŴX + λR>R)−3]
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f ′′1 (λ) + f ′′2 (λ)

=
dtrace[−2R>R(X>ŴX)(X>ŴX + λR>R)−3]

dλ

+ 2λβ>(R>R)(X>ŴX + λR>R)−2(R>R)β

+ 2λ
d[β>(R>R)(X>ŴX + λR>R)−2(R>R)β]

dλ

− 2λtrace[2(R>R)3ββ>(X>ŴX + λR>R)−3]

− λ2d[2(R>R)3ββ>(X>ŴX + λR>R)−3]

dλ

=trace[6(R>R)2(X>ŴX)(X>ŴX + λR>R)−4]

+ 2λβ>(R>R)(X>ŴX + λR>R)−2(R>R)β

+ 2λtrace[2(R>R)3ββ>(X>ŴX + λR>R)−3]

− 2λtrace[2(R>R)3ββ>(X>ŴX + λR>R)−3]

+ λ2trace[6(R>R)4ββ>(X>ŴX + λR>R)−4]

=trace[6(R>R)2(X>ŴX)(X>ŴX + λR>R)−4]

+ 2λβ>(R>R)(X>ŴX + λR>R)−2(R>R)β

+ λ2trace[6(R>R)4ββ>(X>ŴX + λR>R)−4] > 0

Therefore, we have shown that f1(λ) + f2(λ) is convex.
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Table 2.1: Squared bias (in the unit of 10−3), variance (in the unit of 10−3), relative effi-
ciency measured with respect to the variance of the UDLM estimator, and distance. Dis-
tances are the average Euclidean distance between the vector of lag coefficient estimates
and the vector of the true coefficients (i.e. ||β̂−β||2). Results for distributed lag (DL) func-
tion estimation (upper) and results for total effect estimation (lower) are averaged across
1000 simulation repetitions. Best performers in each row are in bold.

DL Function Estimation UDLM CDLM EB1 EB2 GRR GADLM BDLM HB
Squared Bias 0.02 0.00 0.01 0.01 0.00 0.00 0.51 0.00

(1) Working DL Function* Variance 19.49 2.31 9.80 10.56 3.62 4.15 11.13 4.32
Completely Matches Relative Efficiency 1.00 8.43 1.99 1.85 5.38 4.70 1.68 4.52

True DL Function Distance 0.14 0.05 0.09 0.10 0.05 0.06 0.11 0.06
Squared Bias 0.02 7.53 0.74 0.62 1.02 1.21 0.57 0.96

(2) Working DL Function* Variance 20.03 1.36 11.64 12.20 4.64 5.50 8.02 3.79
Moderately Departs from Relative Efficiency 1.00 2.26 1.62 1.56 3.54 2.99 2.33 4.22

True DL Function Distance 0.14 0.09 0.11 0.11 0.07 0.08 0.09 0.07
Squared Bias 0.02 27.59 1.68 1.41 7.27 17.68 6.29 6.15

(3) Non-smooth True Variance 20.23 1.36 15.50 15.95 10.38 9.62 8.95 8.65
DL Function Relative Efficiency 1.00 0.70 1.18 1.17 1.15 0.72 1.33 1.37

Distance 0.14 0.17 0.13 0.13 0.13 0.16 0.12 0.12
(4) Multiple True Squared Bias 0.02 1.19 0.17 0.15 0.40 0.36 0.34 0.26

DL Functions Relative Efficiency 1.00 1.54 1.53 1.42 2.09 1.79 1.77 2.26
Total Effect Estimation UDLM CDLM EB1 EB2 GRR GADLM BDLM HB

(1) Working DL Function* Squared Bias 0.01 0.00 0.02 0.02 0.01 0.00 0.19 0.01
Completely Matches Variance 3.31 3.26 3.74 3.76 3.29 3.35 3.20 3.31

True DL Function Relative Efficiency 1.00 1.02 0.88 0.88 1.01 0.99 0.98 1.00
(2) Working DL Function* Squared Bias 0.01 0.05 0.03 0.02 0.01 0.01 0.01 0.01
Moderately Departs from Variance 3.29 3.26 4.43 4.43 3.24 3.15 3.18 3.25

True DL Function Relative Efficiency 1.00 1.00 0.74 0.74 1.01 1.04 1.03 1.01
Squared Bias 0.00 0.00 0.04 0.03 0.00 0.02 0.04 0.00

(3) Non-smooth True Variance 3.04 2.99 3.55 3.53 3.00 3.08 2.90 3.01
DL Function Relative Efficiency 1.00 1.02 0.85 0.85 1.02 0.99 1.04 1.01

*The working distributed lag (DL) function in CDLM for CDLM, EB1, EB2, GRR, and HB.

Table 2.2: Squared bias (in the unit of 10−3), variance (in the unit of 10−3), relative ef-
ficiency measured with respect to the variance of UDLM estimator, and distance of the
vector of the distributed lag coefficient estimates obtained from seven statistical methods
under the scenario that maximum lag (`) is excessively specified. Distances are the average
Euclidean distance between the vector of lag coefficient estimates and the vector of the true
coefficients (i.e. ||β̂ − β||2) across 1000 simulation repetitions. Best performers in each
row are in bold.

EB1 TSB-EB1 TSP-EB1 GRR TSB-GRR TSP-GRR BDLM
Squared Bias 2.22 1.62 1.22 0.83 2.13 1.43 0.68
Variance 66.16 62.39 61.77 18.26 9.79 10.91 35.80
Efficiency 1.83 1.95 1.98 6.54 10.47 10.13 3.42
Distance 0.25 0.24 0.24 0.13 0.10 0.10 0.18
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Table 2.4: Summary of the three simulation scenarios for comparing UDLM, CDLM, EB1,
EB2, GRR, GADLM, BDLM, and HB in simulation study 1.

Scenario Working DL Function* True Distributed Lag Coefficients
(1) Working DL Function Completely Cubic βj = (j3 − 17j2 + 70j)/400 for j = 0, ..., 10

Matches True DL Function
(2) Working DL Function Moderately Quadratic Slight Departure from

Departs from True DL Function βj = (−0.7j2 + 2.3j + 50.8)/400 for j = 0, ..., 10
(3) Non-smooth True DL Function Quadratic Oscillating between 0.02 and 0.18

(a) βj = 0 for j = 0, · · · , 10
(b) βj = 0.014(10− j) for j = 0, · · · , 10

(4) Mixture of 5 True DL Function Cubic (c) Same as (1)
(d) Same as (2)
(e) Same as (3)

*The working distributed lag (DL) function in CDLM for CDLM, EB1, EB2, GRR, and HB.

Table 2.5: Metrics used for evaluating the estimation precision in simulation study 1.

Metric Lag Effects Vector (β) Total Effect (
∑10

j=0 βj)

Squared bias ( ˆ̄β − β)>( ˆ̄β − β) [
∑10

j=0(
ˆ̄βj − βj)]2

Variance trace[ 1
1000

∑1000
i=1 (β̂i − ˆ̄β)(β̂i − ˆ̄β)>] 1

1000

∑1000
i=1 (

∑10
j=0 β̂ij −

∑10
j=0

ˆ̄βj)
2

Relative Efficiency1
∑1000

i=1 ||β̂UDLM
i −β||22∑1000

i=1 ||β̂i−β||22

∑1000
i=1 (

∑10
j=0 β̂

UDLM
ij −

∑10
j=0 βj)

2∑1000
i=1 (

∑10
j=0 β̂ij−

∑10
j=0 βj)

2

Distance2 1
1000

∑1000
i=1 ||β̂i − β||2 -

1Relative efficiency with respect to UDLM in terms of mean squared errors (MSE)
2Mean distance to the true coefficient vector β
*β̂i = (β̂i0, ..., β̂i10)

>: the estimated lag coefficients from the ith data set for a particular method
** ˆ̄β = 1

1000

∑1000
i=1 β̂i and ˆ̄βj = 1

1000

∑1000
i=1 β̂ij for j = 0, ..., 10.

Table 2.6: Average of the 1000 estimated variances as a percentage of the empirical vari-
ance of the 1000 estimates from 1000 repetitions for the 11 cumulative lag coefficient
estimates based on GRR across the three scenarios in simulation study 1.

Percentage Scenario 1 Scenario 2 Scenario 3
Lag 0 0.91 0.83 0.96
Lag 1 0.97 0.88 0.93
Lag 2 0.93 0.96 0.94
Lag 3 0.92 0.92 1.02
Lag 4 0.92 0.90 0.95
Lag 5 0.93 0.99 0.89
Lag 6 0.93 0.97 0.91
Lag 7 0.95 0.95 0.93
Lag 8 0.97 0.95 0.95
Lag 9 0.95 0.95 0.91

Lag 10 0.96 0.98 0.95
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Table 2.7: Estimated mean and 95% confidence/credible interval of the cumulative lagged
effect (% change in mortality count) up to 3, 7, and 14 days of PM10 (upper) and O3 (lower)
on mortality with an interquartile range increase in exposure level (PM10: 21.49µg/m3,
O3: 14.65 ppb) in Chicago, Illinois from 1987 to 2000 based on the data from the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

PM10 Up to Lag 3 (95% CI1) Up to Lag 7 (95% CI1) Up to Lag 14 (95% CI1)
UDLM 0.75 (-0.01, 1.52) 0.32 (-0.71, 1.36) -0.75 (-2.24, 0.75)
CDLM 0.51 (-0.22, 1.23) 0.40 (-0.61, 1.40) -0.87 (-2.36, 0.62)

EB1 0.81 (0.07, 1.56) 0.41 (-0.54, 1.37) -0.71 (-1.98, 0.56)
GRR 0.67 (-0.06, 1.40) 0.21 (-0.80, 1.22) -0.74 (-2.23, 0.75)

BDLM 0.57 (-0.24, 1.43) -0.01 (-1.23, 1.16) -1.05 (-2.76, 0.69)
HB 0.63 (0.14, 1.12) 0.26 (-0.41, 0.94) -0.72 (-1.60, 0.15)

HB2-GRR 0.48 (-0.21, 1.18) 0.14 (-0.84, 1.12) -0.43 (-1.91, 1.05)
HP-GRR 0.97 (0.27, 1.67) 0.48 (-0.45, 1.41) -0.57 (-1.78, 0.64)

O3 Up to Lag 3 (95% CI1) Up to Lag 7 (95% CI1) Up to Lag 14 (95% CI1)
UDLM 2.04 (0.98, 3.11) 2.63 (1.31, 3.98) 2.25 (0.53, 4.01)
CDLM 2.03 (1.07, 3.00) 2.52 (1.28, 3.77) 2.10 (0.38, 3.85)

EB1 2.09 (0.82, 3.39) 2.59 (0.97, 4.24) 2.19 (0.11, 4.32)
GRR 2.08 (1.10, 3.07) 2.59 (1.33, 3.88) 2.21 (0.48, 3.97)

BDLM 1.91 (0.93, 2.90) 2.32 (1.11, 3.56) 2.26 (0.64, 3.91)
HB 2.12 (1.18, 3.07) 2.63 (1.41, 3.87) 2.23 (0.61, 3.88)

HB2-GRR 1.94 (1.01, 2.89) 2.30 (1.10, 3.52) 2.12 (0.46, 3.80)
HP-GRR 1.83 (0.97, 2.70) 2.18 (1.06, 3.31) 2.12 (0.53, 3.73)

1CI refers to confidence interval for UDLM, CDLM, EB1, GRR, and HP-GRR and refers to credible
interval for BDLM, HB, and HB2-GRR.
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Table 2.8: Estimated mean and 95% confidence/credible intervals (in parenthesis) for
the lag effects (% change in mortality count) of an interquartile range increase of PM10

(21.49µg/m3) on mortality in Chicago, Illinois from 1987 to 2000 based on the data from
the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight esti-
mation methods.

UDLM CDLM EB1 GRR BDLM HB HB2-GRR HP-GRR

Lag 0 -0.15 -0.13 -0.13 -0.17 -0.13 -0.15 -0.13 -0.15
(-0.61, 0.31) (-0.51, 0.26) (-0.59, 0.34) (-0.61, 0.27) (-0.57, 0.31) (-0.58, 0.28) (-0.55, 0.29) (-0.55, 0.25)

Lag 1 0.04 0.15 0.13 0.03 0.05 -0.02 0.10 0.04
(-0.40, 0.48) (-0.06, 0.35) (-0.18, 0.43) (-0.26, 0.33) (-0.37, 0.46) (-0.34, 0.31) (-0.17, 0.37) (-0.23, 0.31)

Lag 2 0.22 0.25 0.25 0.37 0.21 0.37 0.27 0.33
(-0.22, 0.65) (0.06, 0.44) (-0.23, 0.73) (0.14, 0.60) (-0.19, 0.60) (0.11, 0.63) (0.05, 0.48) (0.12, 0.55)

Lag 3 0.65 0.23 0.56 0.44 0.54 0.48 0.25 0.37
(0.22, 1.08) (0.05, 0.42) (0.36, 0.77) (0.22, 0.66) (0.16, 0.92) (0.21, 0.75) (0.05, 0.45) (0.18, 0.57)

Lag 4 0.22 0.15 0.15 0.19 0.13 0.21 0.07 0.12
(-0.20, 0.64) (-0.01, 0.31) (-0.17, 0.48) (-0.01, 0.40) (-0.22, 0.49) (-0.02, 0.43) (-0.10, 0.24) (-0.06, 0.29)

Lag 5 -0.27 0.03 -0.17 -0.13 -0.23 -0.17 -0.11 -0.15
(-0.69, 0.15) (-0.11, 0.17) (-0.32, -0.01) (-0.32, 0.05) (-0.55, 0.08) (-0.39, 0.06) (-0.26, 0.04) (-0.31, 0.00)

Lag 6 -0.41 -0.09 -0.31 -0.29 -0.27 -0.31 -0.17 -0.23
(-0.83, 0.02) (-0.24, 0.05) (-0.46, -0.15) (-0.47, -0.10) (-0.56, 0.03) (-0.52, -0.10) (-0.32, -0.02) (-0.37, -0.10)

Lag 7 0.03 -0.19 -0.08 -0.23 -0.11 -0.21 -0.14 -0.19
(-0.40, 0.45) (-0.34, -0.05) (-0.24, 0.07) (-0.42, -0.05) (-0.36, 0.15) (-0.42, 0.00) (-0.28, 0.00) (-0.32, -0.07)

Lag 8 -0.25 -0.26 -0.26 -0.12 -0.15 -0.10 -0.10 -0.16
(-0.70, 0.20) (-0.40, -0.11) (-0.71, 0.20) (-0.31, 0.06) (-0.38, 0.07) (-0.31, 0.11) (-0.22, 0.02) (-0.27, -0.04)

Lag 9 -0.03 -0.28 -0.14 -0.08 -0.13 -0.09 -0.09 -0.14
(-0.48, 0.43) (-0.41, -0.14) (-0.28, 0.00) (-0.27, 0.10) (-0.33, 0.07) (-0.32, 0.13) (-0.20, 0.02) (-0.25, -0.04)

Lag 10 -0.27 -0.25 -0.25 -0.14 -0.14 -0.15 -0.09 -0.14
(-0.73, 0.18) (-0.40, -0.11) (-0.75, 0.24) (-0.34, 0.06) (-0.32, 0.04) (-0.38, 0.07) (-0.20, 0.02) (-0.23, -0.04)

Lag 11 -0.12 -0.20 -0.19 -0.24 -0.13 -0.24 -0.08 -0.13
(-0.58, 0.33) (-0.37, -0.04) (-0.55, 0.17) (-0.44, -0.04) (-0.29, 0.04) (-0.48, 0.01) (-0.18, 0.02) (-0.21, -0.04)

Lag 12 -0.33 -0.13 -0.22 -0.31 -0.12 -0.31 -0.07 -0.12
(-0.79, 0.12) (-0.30, 0.04) (-0.39, -0.04) (-0.52, -0.10) (-0.28, 0.03) (-0.55, -0.06) (-0.17, 0.02) (-0.19, -0.04)

Lag 13 -0.25 -0.08 -0.14 -0.23 -0.10 -0.24 -0.07 -0.10
(-0.70, 0.21) (-0.25, 0.09) (-0.33, 0.06) (-0.50, 0.04) (-0.24, 0.03) (-0.55, 0.07) (-0.16, 0.02) (-0.17, -0.03)

Lag 14 0.18 -0.07 0.07 0.18 -0.08 0.18 -0.06 -0.09
(-0.24, 0.60) (-0.38, 0.25) (-0.27, 0.42) (-0.21, 0.56) (-0.21, 0.06) (-0.22, 0.58) (-0.14, 0.02) (-0.15, -0.03)
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Table 2.9: Estimated mean and 95% confidence/credible intervals (in parenthesis) for the
lag effects (% change in mortality count) of an interquartile range increase of O3 (14.65
ppb) on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the Na-
tional Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation
methods.

UDLM CDLM EB1 GRR BDLM HB HB2-GRR HP-GRR

Lag 0 0.50 0.33 0.36 0.32 0.45 0.37 0.32 0.30
(-0.21, 1.20) (-0.19, 0.85) (-0.26, 0.98) (-0.33, 0.98) (-0.22, 1.11) (-0.31, 1.00) (-0.29, 0.94) (-0.26, 0.85)

Lag 1 0.12 0.57 0.29 0.53 0.18 0.50 0.46 0.48
(-0.59, 0.83) (0.29, 0.85) (-0.08, 0.67) (0.06, 1.00) (-0.47, 0.83) (0.00, 1.09) (0.01, 0.91) (0.08, 0.88)

Lag 2 1.20 0.61 1.04 0.68 1.00 0.69 0.63 0.59
(0.49, 1.91) (0.35, 0.86) (0.70, 1.38) (0.34, 1.01) (0.38, 1.62) (0.26, 1.00) (0.31, 0.95) (0.30, 0.89)

Lag 3 0.22 0.51 0.39 0.54 0.27 0.54 0.52 0.45
(-0.48, 0.92) (0.27, 0.75) (0.09, 0.70) (0.21, 0.86) (-0.29, 0.84) (0.17, 0.90) (0.22, 0.82) (0.18, 0.72)

Lag 4 0.36 0.35 0.35 0.31 0.25 0.30 0.27 0.24
(-0.34, 1.06) (0.15, 0.55) (-0.39, 1.10) (0.01, 0.60) (-0.24, 0.75) (0.01, 0.70) (0.01, 0.54) (0.02, 0.46)

Lag 5 0.20 0.18 0.18 0.18 0.13 0.16 0.09 0.11
(-0.49, 0.90) (0.00, 0.36) (-0.62, 0.98) (-0.11, 0.46) (-0.30, 0.56) (-0.14, 0.53) (-0.16, 0.33) (-0.08, 0.29)

Lag 6 0.02 0.03 0.03 0.10 0.03 0.10 0.01 0.02
(-0.68, 0.71) (-0.16, 0.22) (-0.79, 0.85) (-0.19, 0.38) (-0.34, 0.40) (-0.28, 0.37) (-0.22, 0.24) (-0.14, 0.19)

Lag 7 0.01 -0.08 -0.07 -0.07 0.00 -0.05 -0.02 -0.03
(-0.68, 0.70) (-0.27, 0.12) (-0.74, 0.60) (-0.35, 0.21) (-0.33, 0.33) (-0.45, 0.21) (-0.23, 0.19) (-0.18, 0.12)

Lag 8 -0.08 -0.12 -0.12 -0.27 -0.04 -0.27 -0.06 -0.04
(-0.77, 0.62) (-0.31, 0.07) (-0.82, 0.59) (-0.55, 0.01) (-0.35, 0.27) (-0.55, 0.09) (-0.26, 0.15) (-0.17, 0.10)

Lag 9 -0.57 -0.11 -0.40 -0.22 -0.07 -0.26 -0.07 -0.02
(-1.26, 0.12) (-0.29, 0.07) (-0.60, -0.21) (-0.51, 0.06) (-0.40, 0.26) (-0.46, 0.20) (-0.26, 0.11) (-0.13, 0.10)

Lag 10 0.18 -0.05 0.02 0.12 0.03 0.12 -0.02 0.00
(-0.51, 0.88) (-0.24, 0.14) (-0.26, 0.29) (-0.17, 0.41) (-0.20, 0.26) (-0.23, 0.46) (-0.19, 0.14) (-0.11, 0.11)

Lag 11 0.57 0.02 0.41 0.32 0.05 0.36 0.02 0.00
(-0.13, 1.27) (-0.21, 0.24) (0.15, 0.67) (0.01, 0.64) (-0.20, 0.30) (-0.15, 0.59) (-0.14, 0.17) (-0.09, 0.10)

Lag 12 -0.19 0.05 -0.03 -0.03 -0.01 -0.02 -0.01 0.00
(-0.88, 0.50) (-0.18, 0.28) (-0.36, 0.31) (-0.34, 0.28) (-0.20, 0.18) (-0.38, 0.31) (-0.15, 0.14) (-0.09, 0.08)

Lag 13 -0.55 0.00 -0.39 -0.54 -0.03 -0.57 -0.03 0.00
(-1.23, 0.14) (-0.22, 0.23) (-0.64, -0.14) (-0.97, -0.10) (-0.22, 0.17) (-0.89, 0.14) (-0.18, 0.12) (-0.08, 0.08)

Lag 14 0.28 -0.20 0.13 0.24 0.01 0.26 -0.01 0.00
(-0.34, 0.90) (-0.64, 0.25) (-0.36, 0.63) (-0.33, 0.81) (-0.14, 0.15) (-0.43, 0.73) (-0.14, 0.12) (-0.07, 0.07)
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Table 2.10: Estimated mean and 95% confidence intervals (in parenthesis) for the cumu-
lative lag effect (% change in mortality count) of an interquartile range increase of PM10

(21.49µg/m3) across lags on mortality in Chicago, Illinois from 1987 to 2000 based on the
data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under
eight estimation methods.

UDLM CDLM EB1 GRR BDLM HB HB2-GRR HP-GRR

Lag 0 -0.15 -0.13 -0.13 -0.17 -0.18 -0.25 -0.13 -0.15
(-0.61, 0.31) (-0.51, 0.26) (-0.51, 0.25) (-0.61, 0.27) (-0.66, 0.24) (-0.59, 0.08) (-0.55, 0.29) (-0.53, 0.23)

Lag 1 -0.12 0.02 0.00 -0.14 -0.15 -0.09 -0.03 0.01
(-0.71, 0.48) (-0.53, 0.58) (-0.42, 0.42) (-0.70, 0.42) (-0.78, 0.41) (-0.48, 0.31) (-0.56, 0.51) (-0.40, 0.43)

Lag 2 0.10 0.27 0.25 0.23 0.17 0.29 0.24 0.36
(-0.58, 0.78) (-0.37, 0.92) (-0.39, 0.88) (-0.42, 0.89) (-0.60, 0.91) (-0.16, 0.73) (-0.38, 0.86) (-0.25, 0.96)

Lag 3 0.75 0.51 0.81 0.67 0.57 0.63 0.48 0.97
(-0.01, 1.52) (-0.22, 1.23) (0.07, 1.56) (-0.06, 1.40) (-0.24, 1.43) (0.14, 1.12) (-0.21, 1.18) (0.27, 1.67)

Lag 4 0.97 0.65 0.97 0.86 0.71 0.78 0.55 1.12
(0.13, 1.81) (-0.14, 1.45) (0.10, 1.83) (0.06, 1.67) (-0.18, 1.69) (0.23, 1.32) (-0.22, 1.32) (0.30, 1.94)

Lag 5 0.70 0.68 0.80 0.73 0.55 0.70 0.44 0.94
(-0.20, 1.61) (-0.19, 1.55) (-0.11, 1.71) (-0.15, 1.61) (-0.45, 1.59) (0.11, 1.30) (-0.39, 1.28) (0.06, 1.82)

Lag 6 0.30 0.59 0.50 0.44 0.24 0.49 0.28 0.60
(-0.67, 1.27) (-0.35, 1.52) (-0.44, 1.44) (-0.50, 1.39) (-0.84, 1.35) (-0.15, 1.13) (-0.63, 1.18) (-0.31, 1.51)

Lag 7 0.32 0.40 0.41 0.21 -0.01 0.26 0.14 0.48
(-0.71, 1.36) (-0.61, 1.40) (-0.54, 1.37) (-0.80, 1.22) (-1.23, 1.16) (-0.41, 0.94) (-0.84, 1.12) (-0.45, 1.41)

Lag 8 0.07 0.14 0.16 0.09 -0.15 0.09 0.04 0.24
(-1.03, 1.18) (-0.93, 1.21) (-0.93, 1.25) (-0.99, 1.16) (-1.39, 1.13) (-0.61, 0.79) (-1.02, 1.09) (-0.78, 1.26)

Lag 9 0.05 -0.13 0.02 0.00 -0.27 -0.03 -0.06 0.12
(-1.12, 1.22) (-1.27, 1.01) (-1.10, 1.13) (-1.14, 1.15) (-1.55, 1.13) (-0.76, 0.70) (-1.19, 1.07) (-0.92, 1.16)

Lag 10 -0.22 -0.39 -0.24 -0.14 -0.40 -0.16 -0.15 -0.05
(-1.46, 1.01) (-1.59, 0.82) (-1.54, 1.07) (-1.35, 1.08) (-1.79, 1.05) (-0.92, 0.60) (-1.35, 1.06) (-1.15, 1.05)

Lag 11 -0.35 -0.59 -0.43 -0.38 -0.64 -0.37 -0.23 -0.19
(-1.65, 0.95) (-1.86, 0.68) (-1.70, 0.84) (-1.66, 0.91) (-2.09, 0.91) (-1.17, 0.42) (-1.51, 1.05) (-1.31, 0.92)

Lag 12 -0.68 -0.72 -0.65 -0.69 -0.97 -0.67 -0.30 -0.35
(-2.05, 0.68) (-2.06, 0.62) (-1.96, 0.66) (-2.03, 0.66) (-2.51, 0.65) (-1.49, 0.16) (-1.65, 1.05) (-1.49, 0.79)

Lag 13 -0.93 -0.80 -0.78 -0.92 -1.23 -0.91 -0.37 -0.48
(-2.35, 0.49) (-2.21, 0.61) (-2.10, 0.53) (-2.33, 0.50) (-2.85, 0.45) (-1.77, -0.04) (-1.78, 1.05) (-1.66, 0.69)

Lag 14 -0.75 -0.87 -0.71 -0.74 -1.05 -0.72 -0.43 -0.57
(-2.24, 0.75) (-2.36, 0.62) (-1.98, 0.56) (-2.23, 0.75) (-2.76, 0.69) (-1.60, 0.15) (-1.91, 1.05) (-1.78, 0.64)

49



Table 2.11: Estimated mean and 95% confidence intervals (in parenthesis) for the cumula-
tive lag effect (% change in mortality count) of an interquartile range increase of O3 (14.65
ppb) across lags on mortality in Chicago, Illinois from 1987 to 2000 based on the data
from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight
estimation methods.

UDLM CDLM EB1 GRR BDLM HB HB2-GRR HP-GRR

Lag 0 0.50 0.33 0.36 0.32 0.45 0.37 0.32 0.30
(-0.21, 1.20) (-0.19, 0.85) (-0.26, 0.98) (-0.33, 0.98) (-0.22, 1.11) (-0.28, 1.03) (-0.29, 0.94) (-0.26, 0.85)

Lag 1 0.61 0.90 0.65 0.85 0.63 0.87 0.78 0.78
(-0.19, 1.42) (0.16, 1.64) (-0.27, 1.58) (0.10, 1.61) (-0.15, 1.40) (0.11, 1.64) (0.06, 1.51) (0.10, 1.45)

Lag 2 1.82 1.51 1.70 1.53 1.63 1.57 1.42 1.38
(0.87, 2.77) (0.65, 2.38) (0.59, 2.82) (0.66, 2.41) (0.74, 2.53) (0.73, 2.42) (0.58, 2.27) (0.60, 2.16)

Lag 3 2.04 2.03 2.09 2.08 1.91 2.12 1.94 1.83
(0.98, 3.11) (1.07, 3.00) (0.82, 3.39) (1.10, 3.07) (0.93, 2.90) (1.18, 3.07) (1.01, 2.89) (0.97, 2.70)

Lag 4 2.40 2.39 2.45 2.39 2.17 2.42 2.22 2.08
(1.27, 3.55) (1.34, 3.44) (0.86, 4.07) (1.31, 3.48) (1.12, 3.23) (1.39, 3.47) (1.19, 3.26) (1.14, 3.02)

Lag 5 2.61 2.57 2.63 2.57 2.29 2.59 2.31 2.18
(1.41, 3.83) (1.45, 3.69) (1.13, 4.16) (1.42, 3.73) (1.18, 3.42) (1.47, 3.71) (1.22, 3.41) (1.19, 3.19)

Lag 6 2.63 2.59 2.66 2.67 2.32 2.69 2.32 2.21
(1.36, 3.91) (1.42, 3.78) (1.01, 4.34) (1.46, 3.89) (1.16, 3.50) (1.51, 3.88) (1.17, 3.48) (1.15, 3.27)

Lag 7 2.63 2.52 2.59 2.59 2.32 2.63 2.30 2.18
(1.31, 3.98) (1.28, 3.77) (0.97, 4.24) (1.33, 3.88) (1.11, 3.56) (1.41, 3.87) (1.10, 3.52) (1.06, 3.31)

Lag 8 2.55 2.39 2.47 2.32 2.28 2.35 2.25 2.14
(1.18, 3.95) (1.08, 3.72) (0.84, 4.11) (1.00, 3.66) (1.02, 3.57) (1.07, 3.65) (0.99, 3.52) (0.95, 3.34)

Lag 9 1.97 2.28 2.05 2.09 2.21 2.09 2.17 2.12
(0.54, 3.41) (0.91, 3.68) (0.38, 3.75) (0.71, 3.49) (0.87, 3.57) (0.74, 3.45) (0.85, 3.51) (0.86, 3.40)

Lag 10 2.15 2.23 2.07 2.22 2.24 2.21 2.15 2.13
(0.66, 3.67) (0.80, 3.69) (0.32, 3.85) (0.77, 3.68) (0.85, 3.66) (0.80, 3.64) (0.77, 3.55) (0.79, 3.48)

Lag 11 2.73 2.25 2.48 2.55 2.29 2.57 2.17 2.13
(1.17, 4.32) (0.75, 3.77) (0.63, 4.37) (1.02, 4.09) (0.84, 3.76) (1.10, 4.06) (0.71, 3.64) (0.73, 3.55)

Lag 12 2.53 2.30 2.46 2.52 2.28 2.55 2.16 2.13
(0.91, 4.18) (0.73, 3.89) (0.45, 4.50) (0.93, 4.13) (0.77, 3.81) (1.04, 4.09) (0.64, 3.70) (0.66, 3.62)

Lag 13 1.97 2.31 2.06 1.97 2.26 1.96 2.13 2.12
(0.30, 3.67) (0.67, 3.97) (-0.02, 4.18) (0.31, 3.65) (0.69, 3.85) (0.39, 3.57) (0.54, 3.74) (0.59, 3.68)

Lag 14 2.25 2.10 2.19 2.21 2.26 2.23 2.12 2.12
(0.53, 4.01) (0.38, 3.85) (0.11, 4.32) (0.48, 3.97) (0.64, 3.91) (0.61, 3.88) (0.46, 3.80) (0.53, 3.73)

Table 2.12: Computation times of applying eight estimation methods to National Morbid-
ity, Mortality, and Air Pollution Study (NMMAPS) data on an Intel i7-2600 CPU with a
single 3.4GHz core.

Methods Time
UDLM 1.7 seconds
CDLM 1.6 seconds

EB1 5.8 seconds
GRR1 63.7 seconds

BDLM2 5.4 seconds
HB3 1.1 hours

HB2-GRR1,4 13.1 hours
HP-GRR1,4 14.1 hours

1 Tuning parameter is chosen from a grid of 100 equally-spaced values
2 Asymptotic normality of the Poisson likelihood is applied
3 Gibbs sampler is based on 10000 iterations
4 Standard error estimates are based on 1000 bootstrap samples
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Figure 2.1: Estimated distributed lag functions up to 14 days for PM10, O3, and SO2 on total
mortality, cardiovascular mortality, and respiratory mortality with 95% confidence/credible
interval at each lag in Chicago, Illinois from 1987 to 2000 based on the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) data.
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Figure 2.2: Estimated distributed lag functions up to 14 days for PM10 (left) and O3 (right)
on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.
The lag effects are presented as the percentage change in mortality with an interquartile
range increase in the exposure level (PM10: 21.49µg/m3, O3: 14.65 ppb).

Figure 2.3: Estimated distributed lag functions up to 28 days for PM10 (left) and O3 (right)
on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.
The lag effects are presented as the percentage change in mortality with an interquartile
range increase in the exposure level (PM10: 21.49µg/m3, O3: 14.65 ppb).
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Figure 2.4: Estimated mean and 95% confidence/credible interval of the cumulative lagged
effect (% change in mortality count) up to 3, 7, and 14 days of PM10 (left) and O3 (right)
on mortality with an interquartile range increase in exposure level (PM10: 21.49µg/m3,
O3: 14.65 ppb) in Chicago, Illinois from 1987 to 2000 based on the data from the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS) under eight estimation methods.

Figure 2.5: Partial autocorrelation function (PACF) plots for daily measurements of PM10

(left) and O3 (right) in Chicago, Illinois from 1987 to 2000 based on the National Morbidity,
Mortality and Air Pollution Study (NMMAPS) data.
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CHAPTER 3

A New Variance Component Score Test for

Testing Distributed Lag Functions

3.1 Introduction

DLMs, first introduced in the econometrics literature, are often used to model the current

value of a response variable at time t in association with both the current value and the

lagged values of an independent variable in a time series analysis. For example, environ-

mental epidemiologists model the current day mortality counts in association with daily

air pollution related exposure, such as PM10, up to several days prior to the event day

[Schwartz, 2000, Welty et al., 2009]. Economists study the long-term effects of macroe-

conomic variables on stock returns using distributed lag models [Majid and Yusof, 2009,

Hsu, 2015]. Unconstrained DLMs entail the potential problem of multicollinearity among

the various lagged values of the independent variable and the number of parameters to be

estimated can be large. Constrained DLMs assume some functional relationship between

lag coefficients and lag indices (in the form of a distributed lag function) and serve as a po-

tential solution to the problem. Common constraints include a polynomial [Almon, 1965],

a spline [Corradi, 1977], and a natural cubic spline [Hastie and Tibshirani, 1993]. There

exists extensive literature on characterization of the distributed lag function and inference,

assuming the constraints are correctly specified. Very few strategies exist for testing given

distributed lag (DL) constraints. In this chapter, we propose a new simple and efficient

framework for testing a constrained DLM against an unconstrained DLM. In Section 3.2,

we briefly introduce DLMs and present the proposed VCST procedure. In Section 3.3, we
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conduct a simulation study to compare the statistical power of the standard likelihood ratio

test (LRT) and VCST and illustrate both of the approaches using the NMMAPS data. We

conclude with discussions in Section 3.4.

3.2 Method

Let xt denote the independent variable measured at time t, yt denote the response variable

measured at time t, zt denote the other covariates obtained at time t, T be the length of

the time series, and L be the pre-determined maximum number of lags. Without loss of

generality, we leave out intercept and covariates in the rest of the presentation and con-

sider the generalized linear model ηt = g[µt] = g[E(yt|xt, xt−1, ..., xt−L)] = X>t β where

β = (β0, β1, ..., βL)> is the vector of the lag effects, Xt = (xt, xt−1, ..., xt−L)>, ηt is the

canonical (natural) parameter, g(·) is the link function, yt is a random variable generated

from a distribution F in canonical exponential family with probability density

f(yt) = exp{ytηt − b(ηt)
a(φ)

+ c(yt;φ)}, (3.1)

φ is the dispersion parameter, and a(·), b(·), and c(·) are known functions. It is well-known

that the exponential family possess the properties of µt = b
′
(X>t β) = g−1(X>t β) and

V (yt) = b
′′
(X>t β)a(φ) = ν(X>t β)a(φ) where ν(·) is the variance function.

3.2.1 Constrained DLM

Constrained DLM imposes a pre-specified structure to constrain the lag coefficients to be

a smooth function of the lags (i.e. β` = f(`) for ` = 0, · · · , L). Denote the p basis

functions that generate the class of functions in which β can lie as B1(·), · · · , Bp(·). The
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transformation matrix C as defined by Gasparrini et al. [2010] is given by

C =


B1(0) B2(0) · · · Bp(0)

B1(1) B2(1) · · · Bp(1)
...

...
...

...

B1(L) B2(L) · · · Bp(L)


(L+1)×p

The constrained DLM estimator can be expressed in the form of β = Cθ where θ is a

vector of p free parameters to be estimated in Rp. The maximum likelihood estimate of θ

is obtained as

θ̂ = arg max
θ

T∑
t=1

[
ytX

>
t Cθ − b(X>t Cθ)

]
.

The estimation of θ does not involve the dispersion parameter φ. The constrained DLM

estimator is given by β̂CDLM = Cθ̂. The C corresponding to an unconstrained DLM is a

(L+ 1)× (L+ 1) identity matrix.

3.2.2 Hypothesis Testing

β̂CDLM can be alternatively obtained by maximizing log-likelihood with respect to β sub-

ject toRβ = 0 whereR is a (L+ 1− p)× (L+ 1) constraint matrix corresponding to the

transformation matrix C [Chen et al., 2017]. The basis functions in C span the solution

space of Rβ = 0. R can be obtained from C via the following procedure. Define Ce as a

(L+1)×(L+1) matrix [C 0(L+1)×(L+1−p)] where 0(L+1)×(L+1−p) is a (L+1)×(L+1−p)

matrix with zero entries. Applying SVDC>e = UCDCV
>
C whereUC is the (L+1)×(L+1)

unitary matrix with left-singular column vectors, VC is the (L+1)× (L+1) unitary matrix

with right-singular column vectors, and DC is a (L + 1) × (L + 1) diagonal matrix with

singular values of C>e along the diagonal, the constraint matrix R can then be obtained as

the last (L+ 1− p) rows of V >C .

Testing a particular DLM structure against an unconstrained alternative can now be

formulated as testing H0 : Rβ = 0 against H1 : Rβ 6= 0. A standard likelihood ratio

test (LRT), Wald test, and score test can be conducted and the test statistics asymptotically

follow a χ2 distribution with L + 1 − p degrees of freedom and large sample inference
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can be obtained. We propose a VCST approach to this problem. Consider a generalized

ridge regression estimator [Chen et al., 2017] that minimizes the penalized negative log-

likelihood function

`p(β) =
[
S(Xβ)− Y >Xβ

]
+ λβ>R>Rβ (3.2)

where Y = (y1, ..., yT )>, X is a T × (L + 1) matrix with X>t as the t-th row for t =

1, · · · , T , S(·) is the RT → R1 cumulant function such that S(a) =
∑>

t=1 b(at) with

a = (a1, · · · , aT )>, and λ is the tuning parameter. We can rewrite

R>R = UDU> (3.3)

where U is a (L + 1) × (L + 1) matrix with orthogonal columns and D is a diagonal

matrix with the eigenvalues of R>R using SVD. Since R>R is not of full rank and has

rank L + 1 − p, we can write D =

D1 0

0 0

 where D1 is a (L + 1 − p) × (L + 1 − p)

diagonal matrix of full rank. LetU = [U1 U2] whereU1 is a (L+ 1)× (L+ 1− p) matrix

with columns of singular vectors corresponding to nonzero eigenvalues in D and U2 is a

(L+ 1)× p matrix with columns of singular vectors corresponding to the eigenvalues of 0.

One can rewrite the penalized negative log-likelihood as

`p(β) =
[
S(X∗β∗ +Z∗u)− Y >(X∗β∗ +Z∗u)

]
+ λu>u (3.4)

where X∗ = XU2, β∗ = U>2 β, Z∗ = XU1D
−1/2
1 , and u = D

1/2
1 U>1 β. We rewrite

(3.2) as (3.4) to divide X into two parts, namely X∗ and Z∗. The first part X∗ represents

the orthogonal projection of X onto the space (say,W) spanned by the p basis functions.

The second part Z∗ contains the transformed variables in the orthogonal complement of

W . The notion is to transform β and separate the component representing the specified

DLM (β∗) from the component representing the departure from the DLM (u). Testing

H0 : Rβ = 0 against H1 : Rβ 6= 0 is the same as testing whether u varies significantly

from 0 or not.
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The expressions in (3.4) can be viewed as the joint log-likelihood of f(Y ,u|X∗) =

f(Y |u,X∗)f(u|X∗) = f(Y |u,X∗)f(u) in a typical generalized linear mixed model of

the form

Y |u,X∗ ∼ F(X∗β∗ +Z∗u) , u ∼ N(0, σ2
u) (3.5)

where F is the canonical distribution belonging to the exponential family defined in (3.1)

and σ2
u is the random effect variance, inversely proportional to λ in (3.4), with u indepen-

dent ofX∗ as a result of the definition of u andX∗ by performing the SVD as (3.3).

As λ in (3.4) becomes larger, Rβ is forced to approach 0. Since σ2
u ∝ 1

λ
and σ2

u → 0

as λ→∞, testing H0 : Rβ = 0 against H1 : Rβ 6= 0 is equivalent to testing H0 : σ2
u = 0

against H1 : σ2
u > 0. Let µ(H0)

t = EH0(yt), the expected value of yt under the null and let

µ(H0) = (µ
(H0)
1 , · · · , µ(H0)

T )>, ∆ = diag[g
′
(µt)], and V = diag{a(φ)ν(µt)[g

′
(µt)]

2}. The

VCST statistic [Lin, 1997, Zhang and Lin, 2003] is given by

Q = (Y − µ̂(H0))>∆̂V̂ −1Z∗Z∗>V̂ −1∆̂(Y − µ̂(H0)). (3.6)

where µ̂(H0), ∆̂, and V̂ are restricted maximum likelihood (REML) estimates of µ(H0),

∆, and V , respectively, under H0. The test statistic Q asymptotically follows a mixture∑L+1−p
i=1 γiχ

2
1,i where γ1, ..., γL+1−p are the eigenvalues of V̂ −1/2Z∗>Z∗V̂ −1/2 and χ2

1,i

are independent χ2
1 random variables. The Davies exact method [Davies, 1980a] based

on inverting the characteristic function can be used to calculate the distribution of any

quadratic form in normal random variables. The details are provided in the Appendix

3.5.2. We make use of the method to obtain the threshold of a significance level and p-

value corresponding to Q via R package CompQuadForm for simulation and data analysis

in later sections.

Remark: The VCST approach can be applied for testing H0 : R0β = 0 against H1 :

R1β = 0 where the DLM represented byR0 is nested within the DLM represented byR1.

LetC0 andC1 denote the (L+1)×p0 transformation matrix and (L+1)×p1 transformation

matrix corresponding to R0 and R1, respectively. The penalized negative log-likelihood
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function analogous to (3.2) is given by

`p(θ) =
[
S(XC1θ)− Y >XC1θ

]
+ λθ>C>1 R

>
0R0C1θ. (3.7)

Similarly, (3.7) can be rewritten as the joint log-likelihood function of a generalized linear

mixed model and the hypothesis testing can be conducted subsequently. However, the

power gain from VCST as opposed to LRT is less in this situation because the degrees

of freedom of LRT, namely p1 − p0, is generally small. For example, for testing a cubic

DLM versus a linear DLM, we will have p1 − p0 = 2. We considered a simulation setting

to illustrate the potential power gain when testing a nested DLM against a more general

one for small to moderate p1 − p0. The results are provided in Appendix 3.5.2. One can

observe that the LRT and VCST have similar power when the difference in the degree of

the two DLMs is small and there is modest power gain by using VCST when this difference

is large.

3.3 Results

3.3.1 Simulation

We conducted a simulation study to compare the power of the standard LRT and VCST for

testing H0 : Rβ = 0 against H1 : Rβ 6= 0. We generated a predictor series of length

2000 with mean 0 and first order autocorrelation ρ = 0.6 from the model xt = ρxt−1 + εt

where εt ∼ i.i.d N(0, 1) for t = 1, ..., 2000 for the independent variable. We then set

L = 30 and generated the outcome series Y from the model yt = δ
∑L

`=0 β`xt−`+εt where

β = (β0, ..., βL)> denote the true coefficients and εt ∼ i.i.d N(0, 1) for t = 1, ..., 2000. δ

is used to control the signal-to-noise ratio. We generated 1000 data sets and calculated the

empirical power at level α = 0.05 as the observed proportion of times that a test yields a

p-value less than α.

We first examined the type I error rate and power of the two testing procedures across

different combinations of true DLMs and fitted DLMs. The results with moderate signal-

to-noise level (δ = 1) are presented in Table 3.1 and the results with stronger (δ = 1.25) and
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weaker (δ = 0.8) signal-to-noise levels are provided in Tables 3.3 and 3.4. When the true

DLM coincides with the fitted DLM, the numbers in italics are estimated type I error rates.

When the true DLM is different from the fitted DLM, the numbers are estimated powers.

As we can observe, both LRT and VCST properly maintain the type I error rate at level

α = 0.05. In addition, VCST is more powerful than LRT irrespective of the signal-to-noise

level across all combinations of true DLM and fitted DLM. We also examined the gain

in statistical power to detect the departure from a DLM using VCST as opposed to using

LRT with different autocorrelation levels for predictor series ρ and different maximum

number of lags L. The left panel of Figure 3.1 displays the power curves of VCST against

LRT with three different autocorrelation levels. The three curves are all above the 45◦

line indicating that VCST is more powerful than LRT across the board. Moreover, the

higher the correlation in the predictor series is, the more advantageous using VCST is. The

justification is that LRT treats L correlated predictors as L independent variables and it

does not make use of the serial correlation when constructing the test statistic, whereas

VCST orthogonalizes the design matrix by removing the correlation and increases power

through testing on a single variance component by estimating the true underlying degrees

of freedom (df). The right panel of Figure 3.1 exhibits the power curves of VCST against

LRT with three different maximum numbers of lags L. Again, the curves are all above the

45◦ line illustrating that VCST is more powerful than LRT across different L. We can also

notice that the larger the L, the more power gain from using VCST. The explanation is that

large L leads to loss of power at the expense of more degrees of freedom for LRT. The gain

in power by using VCST via estimating the effective df is more appreciable when L is large

and the correlation in xt is strong.

3.3.2 Application to NMMAPS Data

We illustrated LRT and VCST using NMMAPS data. The details describing NMMAPS

data are available at http://www.ihapss.jhsph.edu/data/NMMAPS/. We fol-

low Welty et al. [2009] for the choice of L = 14 and the specification of covariates to asso-

ciate daily particular matter, with aerodynamic diameter less than 10 micrometers (PM10),
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with (1) cardiovascular death count and (2) daily non-accidental mortality counts. We con-

sider polynomial DLMs from degrees 1 to 5 for the lagged effects of exposure on each

health outcome. We conducted hypothesis testing to evaluate whether the specified DLMs

depart from the underlying unconstrained DLM. Since the outcomes are counts, we specify

the first term of the penalized log-likelihood function (3.2) as the negative log-likelihood

of Poisson distribution with mean eXβ. Similar testing procedure as described in Section

3.2.2 follows.

Table 3.2 presents the p-values obtained from LRT and VCST. In general, the two test-

ing procedures yield similar results for each combination of a specified DLM and a health

outcome, with the p-values from VCST slightly smaller than those obtained from LRT. We

resist to interpret that smaller p-values indicate higher power although the smaller p-values

from VCST provide stronger evidence against the null. For this example, both tests suggest

that none of the DL functions considered is adequate for modeling cardiovascular death in

association with PM10. For mortality, it is suggested that a 5-degree polynomial is more

appropriate to characterize the DL function than the lower-order polynomial.

The estimated distributed lag functions are displayed in Figure 3.2. The interquartile

range of PM10 is 21.49µg/m3. The quantity 100[exp(21.49
∑`

j=0 βj) − 1] represents to

the percentage change in daily cardiovascular death/non-accidental mortality associated

with an IQR increase in PM10 (21.49µg/m3) across lag 0-`. For cardiovascular death, the

estimated cumulative lag effects up to lag 4, lag 7, and lag 14 are 1.61% (95%CI: [0.34%,

2.87%]), 1.27% (95%CI: [-0.30%, 2.84%]), and 0.53% (95%CI: [-1.74%, 2.80%]) based

on the unconstrained DLM. For non-accidental mortality, the estimated cumulative lag

effects up to lag4, lag 7, and lag 14 are 0.69% (95%CI: [-0.11%, 1.49%]), 0.27% (95%CI: [-

0.74%, 1.27%]), and -0.80% (95%CI: [-2.29%, 0.69%]) based on the 5-degree polynomial

DLM.

3.4 Discussion

The simulation study indicates that VCST procedure is more powerful than a standard

LRT for testing a constrained DLM against an unconstrained alternative across different
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scenarios. The power gain from VCST over LRT is greater when the predictor series auto-

correlation is larger and when the maximal lag is larger. One caveat is that the VCST

framework only applies to the constrained DLMs for which the estimator can be written

in the form of Cθ, so that the corresponding constraint matrix R can be obtained and the

hypothesis testing can be constructed as H0 : Rβ = 0 against H1 : Rβ 6= 0. Most

commonly used DLMs fall into this category. Bayesian DLM [Welty et al., 2009] is an ex-

ception since all the lag effect coefficients are related through the specification of variance-

covariance matrix rather than the mean. Although we illustrate the testing procedure using

a data set in environmental epidemiology, the new test is potentially useful for time series

analysis in economics, finance, ecology, and a wide range of applications.

3.5 Appendix

3.5.1 Davies Exact Method

The test statisticQ for VCST asymptotically follows a mixture
∑L+1−p

i=1 γiXi where γ1, ..., γL+1−p

are the eigenvalues of V̂ −1/2Z∗>Z∗V̂ −1/2 and Xis are independent χ2
1 random variables.

The characteristic function of Q is

ψ(µ) = E(eiµQ) =
1∏L+1−p

j=1 (1− 2iµλj)
1
2

and the numerical inversion of the characteristic function based on Poisson formula can be

used to derive the distribution function

F (x) ∼
∞∑

ν=−∞

sin(δνx)

πν
ψ(δν) ≈

N∑
ν=−N

sin(δνx)

πν
ψ(δν)

with sufficiently small δ. The calculation of truncation point N is discussed in Bohman

[1970] and the bounds of integration error are detailed in Davies [1980b].
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3.5.2 Simulation on Testing H0 : R0β = 0 against H1 : R1β = 0

We conducted a simulation study to compare the power of the standard LRT and VCST for

testing H0 : R0β = 0 against H1 : R1β 6= 0 where R0 corresponds to quadratic DLM

and R1 corresponds to a higher-degree polynomial DLM. We set L = 30 and generated

data from the DLM under the alternative. Figure 3.3 displays the power curves of VCST

against 2DF LRT. When the degrees of freedom under the null and under the alternative (i.e.

p1− p0) only differ by 2, the curve almost coincides with the 45 degree line indicating that

the two tests have similar power in detecting the departure from a quadratic DLM. When

the difference in degrees of freedom increases, VCST becomes more powerful compared

to LRT. The example demonstrates that VCST can be applied to test a nested DLM against

a more general one but it is not ideal in the situations where the difference between the

number of parameters under the alternative and the number of parameters under the null is

small and a LRT with low DF is sufficiently powerful.

Table 3.1: Empirical type I error and power of likelihood ratio test (LRT) and variance
component score test (VCST) for testing a constrained DLMs against an unconstrained
alternative based on 1000 repetitions when signal-to-noise level is moderate (δ = 1) with
significance level 0.05.

True DLM
Fitted DLM Linear Quadratic Cubic

LRT VCST LRT VCST LRT VCST
Linear 0.057 0.040 - - - -

Quadratic 0.234 0.584 0.038 0.039 - -
Cubic 0.282 0.611 0.276 0.612 0.045 0.047

Unstructured 0.317 0.640 0.312 0.641 0.319 0.572
*Italicized numbers are type I error rates at level 0.05.
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Table 3.2: P -values obtained from likelihood ratio test (LRT) (with L + 1 − p degrees of
freedom) and variance component score test (VCST) for testing a specified distributed lag
model (DLM) against an unconstrained DLM in association of daily PM10 measurements
with cardiovascular death and non-accidental mortality in Chicago, Illinois from 1987 to
2000 using the National Mortality, Morbidity, and Air Pollution Study (NMMAPS) data
where the maximum number of lags L is fixed at 14 days and p denote the number of basis
functions of a DLM.

DLM
CVD1 Mortality

LRT VCST LRT VCST
Linear (p = 2) 0.002 0.002 0.009 0.005

Quadratic (p = 3) 0.003 0.007 0.017 0.015
Cubic (p = 4) 0.020 0.019 0.055 0.013

4DF Polynomial (p = 5) 0.040 0.032 0.084 0.019
5DF Polynomial (p = 6) 0.038 0.033 0.286 0.150

1CVD: cardiovascular deaths

Table 3.3: Empirical type I error and power of likelihood ratio test (LRT) and variance
component score test (VCST) for testing a constrained distributed lag model (DLM) against
an unconstrained alternative based on 1000 repetitions when signal-to-noise level is weak
(δ = 0.8) with significance level 0.05.

True DLM
Fitted DLM Linear Quadratic Cubic

LRT VCST LRT VCST LRT VCST
Linear 0.051 0.046 - - - -

Quadratic 0.153 0.359 0.054 0.037 - -
Cubic 0.156 0.384 0.136 0.370 0.054 0.044

Unstructured 0.172 0.393 0.163 0.380 0.185 0.337
*Italicized numbers are type I error rates at level 0.05.

Table 3.4: Empirical type I error and power of likelihood ratio test (LRT) and variance
component score test (VCST) for testing a constrained distributed lag model (DLM) against
an unconstrained alternative based on 1000 repetitions when signal-to-noise level is strong
(δ = 1.25) with significance level 0.05.

True DLM
Fitted DLM Linear Quadratic Cubic

LRT VCST LRT VCST LRT VCST
Linear 0.047 0.051 - - - -

Quadratic 0.413 0.837 0.049 0.043 - -
Cubic 0.448 0.813 0.442 0.831 0.059 0.055

Unstructured 0.493 0.851 0.504 0.849 0.498 0.793
*Italicized numbers are type I error rates at level 0.05.
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Figure 3.1: Plots of the power of variance component score test (VCST) against the power
of likelihood ratio test (LRT) for testing a constrained distributed lag model (DLM) against
an unconstrained alternative with three different first order autocorrelation levels (ρ) for
predictor series (left panel) and three different maximum number of lags (L) for predictor
series (right panel) based on 1000 repetitions.

Figure 3.2: Plots of estimated distributed lag functions for cardiovascular death (left panel)
and non-accidental mortality (right panel) in association with PM10 in Chicago, Illinois
from 1987 to 2000 using the National Mortality, Morbidity, and Air Pollution Study
(NMMAPS) data.
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Figure 3.3: Plots of the power of variance component score test (VCST) against the power
of likelihood ratio test (LRT) for testing a quadratic distributed lag model (DLM) (p0 = 2)
against a higher-degree polynomial (p1 = 4, 8, 14) distributed lag model (DLM) based on
1000 repetitions.
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CHAPTER 4

Distributed Lag Models with Two Pollutants

4.1 Introduction

The association between air pollution and adverse health outcomes has been an important

public health concern and a topic of extensive research in environmental epidemiology

[Pope and Dockery, 2006, Brook et al., 2010]. While long-term studies focus on esti-

mating the effects of exposure to air pollution by following cohorts over years to decades

[Pope, 2007], short-term studies focus on examining the relationship between daily counts

of events related to mortality and morbidity in a geographically referenced population and

ambient exposure levels. The short-term or acute effects of air pollution exposure on health

outcomes, such as mortality and cardiovascular events, have been widely studied [Pope

et al., 1995, Katsouyanni et al., 1997, Bell et al., 2004b, Pope and Dockery, 2006]. Do-

minici et al. [2006] estimated the risks of cardiovascular and respiratory hospital admis-

sions associated with short-term exposure to fine particulate air pollution in 204 U.S urban

counties. However, most studies so far have considered adverse health effects of exposure

to a single pollutant [Dominici et al., 2010]. When ambient data are available on multiple

pollutants, it is standard practice to analyze their effects one at a time by fitting multiple

single pollutant models. For instance, Zeka and Schwartz [2004] assessed the individual

effects of multiple pollutants using the NMMAPS data. However, the health burden from

simultaneous exposure to multiple pollutants may differ from the sum of individual ef-

fects. A multi-pollutant approach that considers the joint effects of chemical mixtures of

exposures is likely to yield more accurate assessment of health risk [Billionnet et al., 2012,
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Coull et al., 2015]. One pollutant may modify the effects of other pollutants and the mode

of action can be synergistic or antagonistic [Mauderly, 1993, Greenland, 1993]. It is often

desirable to consider the interaction effects between two pollutants in a joint model.

A variety of approaches have been proposed to estimate the health effects of multiple

pollutants [Sun et al., 2013]. The most straightforward approach is a multiple regression

model with a main effect for each pollutant and a two-way cross-product linear interaction

term for each pair of pollutants [Dominici et al., 2010]. Penalized regression methods such

as LASSO [Tibshirani, 1996] and elastic net [Zou and Hastie, 2005] can be employed to

identify a small subset of individual pollutants and interaction terms that are most notably

associated with the outcome. In several studies, PCA have been used as a dimension re-

duction tool prior to multi-pollutant modeling [Arif and Shah, 2007, Qian et al., 2004].

Tree-based approaches such as CART are useful to account for higher-order and nonlinear

interactions [Hu et al., 2008]. The DSA algorithm [Sinisi and van der Laan, 2004] allows

users to specify the constraints on polynomial function form of exposure and the order of

interaction. Bobb et al. [2013] used reduced hierarchical models to estimate health effects

of simultaneous exposure to multiple pollutants by allowing for nonlinear associations of

each of the pollutants and their interaction via natural splines. In a health effects analysis

of mixtures, Bayesian kernel machine regression (BKMR) [Bobb et al., 2014] was devel-

oped to flexibly estimate the exposure-response relationship and facilitate inference on the

strength of the association between individual pollutants and health outcomes. These di-

mension reduction or variable selection techniques typically consider cross-sectional data

measured at a single time point. Very few methods so far consider the problem of captur-

ing the lagged effect of two pollutants and their potential interactions over a biologically

meaningful time period. Recent time-series studies reported that models with only single-

day pollution measures might underestimate risk when there is a cumulative effect of air

pollution over a time window preceding a health event [Schwartz, 2000, Roberts, 2005].

DLMs are a class of models often used to simultaneously include lagged measures of

concentration levels of an ambient air pollutant. Parametric DLM assumes that the lag ef-

fect coefficients lie on a function of the lags, such as lower-degree polynomials [Almon,

1965] or a spline [Corradi, 1977]. Generalized additive DLM [Zanobetti et al., 2000] uses
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penalized regression splines [Marx and Eilers, 1998] to represent the DL function in a more

flexible manner. BDLM [Welty et al., 2009] was proposed to incorporate prior knowledge

about the DL function through specification of the prior variance-covariance matrix of lag

coefficients. Most of the discussion regarding DLM has been in the context of associating

a health event time series with an exposure time series corresponding to a single pollutant.

Extensions to higher dimensions include bivariate DLM [Muggeo, 2007] (BiDLM) and

high degree DLM (HDDLM) [Heaton and Peng, 2014]. BiDLM was proposed to analyze

the joint effect of temperature and PM10 on mortality in Sicily, South Italy. The tempera-

ture main effect and PM10 main effect were modeled in the same way as parametric DLM

with two separate sets of basis functions. Tensor products of the two were employed to

characterize the DL surface for temperature-PM10 interaction. BiDLM is the only previous

method that has been proposed to account for lag effects in two-dimensional settings. The

HDDLM paper extended DLM to incorporate higher-order interactions between lagged

predictors corresponding to a single exposure, using a Gaussian process prior on lag coef-

ficients to account for predictor collinearity and as a dimension reduction tool. However,

this approach still estimates the cumulative lagged effects of a single pollutant. The goal of

this chapter is to propose DLM with two pollutants that characterize interaction between

the two exposure time series on a health outcome time series in a meaningful manner. We

try to borrow ideas from the classical interaction analysis literature to ask the scientifically

relevant question whether the two distributed lag coefficients/profiles for pollutant 1 will be

significantly different when pollutant 2 is fixed at the lowest quartile versus when it is fixed

at the highest quartile. Our main tools are dimension reduction and shrinkage to capture

the interacting lag profiles in a parsimonious manner.

Tukey’s one degree-of-freedom test for non-additivity [Tukey, 1949] is a parsimonious

approach to model the interaction term as a scaled product of its corresponding main ef-

fects. Tukey’s model implicitly assumes that interaction term can only be present when

both the main effects are present. Tukey’s single parameter form of interaction has re-

cently been adopted for testing gene-environment interaction and gene-gene interaction to

achieve higher statistical power [Chatterjee et al., 2006, Maity et al., 2009, Wang et al.,

2015]. Ko et al. [2014] proposed to model gene-environment interaction using a shrinkage
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estimator that combines the estimates from Tukey’s model and the estimates from the sat-

urated interaction model. The rationale is to simultaneously preserve the robustness when

the underlying truth departs from Tukey’s interaction structure and gain efficiency from the

parsimony of Tukey’s model when the model is plausible. One can conceptualize a Tukey

type interaction structure for DLMs where the main effects are described by DLMs and

the interaction is a scaled product of the main effects. In this chapter, we extend Tukey’s

model to DLMs where the interaction is parameterized as a scaled product of two DLM

main effects. We will consider estimation and inference under such an extension in both

frequentist and Bayesian framework.

In addition to the Tukey structure DLMs, we also propose a Bayesian constrained DLM

(BCDLM) approach to characterize the joint effect of two pollutants. We use a set of B-

spline [Beatty and Barsky, 1987] basis functions to model the DL function of each expo-

sure. The tensor-product of the two basis sets are used to model the DL surface of the

interaction between two exposures. Hierarchical structure of the BCDLM defined via hy-

perprior specification on the DL coefficients enables shrinkage and avoids overfitting. In-

stead of shrinking all main effects and interaction effects toward zero, we set a pre-specified

parametric DLM as the shrinkage target in this approach. BCDLM is able to strike a de-

sirable bias-variance tradeoff in a data-adaptive way with a fit that lies in between a fully

flexible fit and a constrained parametric DLM fit.

The rest of the chapter is organized as follows. In Section 4.2, we first review the ex-

isting methods and their variations, including (1) unconstrained DLM (UDLM), (2) bivari-

ate DLM (BiDLM), and (3) two-dimensional HDDLM (BiHDDLM). We then introduce

the proposed new methods (1) Tukey’s DLM (TDLM), (2) Bayesian Tukey’s DLM (BT-

DLM), and (3) Bayesian constrained DLM (BCDLM). Our parameters of interest are the

marginal effects of one pollutant when the other pollutant level is fixed at certain values,

after accounting for potential interactions. Mathematically, this composite parameter can

be represented as a function of main effects and interaction parameters. In Section 4.3,

we conduct a simulation study to evaluate the operating characteristics of the six different

methods and come up with a recommendation and guideline for practitioners. In Section

4.4, we illustrate the methods by analyzing data from the NMMAPS to estimate the lagged
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effects of air PM10 and O3 concentration on mortality in Chicago, Illinois from 1987 to

2000. We conclude with a discussion in Section 4.5.

There are several novel features of this chapter. The first is to extend DLM to handle

two pollutants. We attempt to characterize the changes in DL function corresponding to

one exposure when the other is fixed at different values. Extending the well-known Tukey’s

model for interaction to DLM is another innovation. Finally, beyond the class of Tukey’s

model, using data adaptive shrinkage to allow for an unconstrained interaction model to

shrink towards a parametric DLM structure is a new contribution to the literature. More

broadly, beyond air pollution epidemiology, the chapter posits new ideas for thinking about

interaction structures between a pair of time series predictors with potential lagged effects

on an outcome time series.

4.2 Methods

Let x1t denote the first exposure measured at time t (e.g. PM10), x2t denote the second

exposure measured at time t (e.g. O3), yt denote the response measured at time t (e.g. daily

mortality count), and zt denote the vector of covariates at time t, such as temperature and

humidity, in addition to a constant 1 corresponding to the intercept parameter. Let T be

the length of the time series, L1 and L2 be the maximum number of lags considered for the

first and second exposure, respectively. In addition, we denote X1t = (x1t, · · · , x1,t−L1)
>,

X2t = (x2t, · · · , x2,t−L2)
>, and XIt = X1t ⊗X2t where ⊗ is the Kronecker product and

the (L1 + 1)(L2 + 1) elements in XIt refer to the two-way interaction terms between the

two exposures. The log-linear Poisson DLM with all pairwise interactions between lagged

measurements of the two exposures is described as

yt ∼ Poisson(µt) (4.1)

log(µt) = z>t α+X>1tβ1 +X>2tβ2 +X>Itγ

= z>t α+

L1∑
i=0

x1,t−iβ1i +

L2∑
j=0

x2,t−jβ2j +

L1∑
i=0

L2∑
j=0

γijx1,t−ix2,t−j
(4.2)
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where α represents the effect of covariates, β1 = (β10, · · · , β1L1)
> is the (L1 + 1)-vector

of lagged main effects of the first exposure, β2 = (β20, · · · , β2L2)
> is the (L2 + 1)-vector

of lagged main effects of the second exposure, and γ = vec(Γ) = (γ00, γ01, · · · , γL1L2)
>

such that Γ is the (L1 + 1) × (L2 + 1) matrix of interaction effects. Our primary goal is

to estimate main effects β1 and β2 and interaction effects γ. For simplicity, we leave out

z>t α in subsequent presentation.

Remark: (4.1) and (4.2) model the conditional mean response at a time point t given

the current and past measurements of the two exposures. Nonnull interaction effect in

(4.2) implies that the lagged effects of the first exposure depend on the level of the second

exposure, and vice versa. It is noted that the interaction effects are not symmetric in (4.2),

namely γij 6= γji for i 6= j. Naturally, the quantity of interest is the marginal effect of one

exposure at a certain lag, given the other exposure fixed at a certain level such as median or

a specified quantile. Algebraically, if we fix the second exposure at x∗2 across all lags, the

marginal lag effects of the first exposure at lag i can be written as β∗1i = β1i + x∗2
∑L2

j=0 γij

for i = 0, · · · , L1. The vector representation is

βm1 (x∗2) = β1 + x∗2 · Γ1 (4.3)

where 1 is a vector of 1s. Similarly, if we fix the first exposure at x∗1, the marginal lag effects

of the second exposure at lag j can be written as β∗2j = β2j +x∗1
∑L1

i=0 γij for j = 0, · · · , L2

with vector representation

βm2 (x∗1) = β2 + x∗1 · Γ>1.

Throughout the rest of this chapter, we will summarize the estimates of β1, β2, and γ =

vec(Γ) based on the above expressions and interpret the marginal lagged effects of one

exposure when the other exposure is fixed across all lags.
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4.2.1 Existing Methods

4.2.1.1 Unconstrained Distributed Lag Model (UDLM)

As the name suggests, UDLM does not impose any constraints on coefficientsψ = (β>1 ,β
>
2 ,γ

>)>

in (4.2). The UDLM coefficients can be simply estimated via MLE.

ψ̂UDLM = arg max
ψ

T∑
t=1

[ytX
>
t ψ − eX

>
t ψ − log(yt!)],

where Xt = (X>1t,X
>
2t,X

>
It)
>. Standard frequentist inference based on large sample the-

ory of MLEs can be drawn subsequently. However, due to the collinearity between serially

measured exposure levels and the large number of parameters (i.e. L1 +L2 + 2 main effect

terms and (L1 + 1)(L2 + 1) interaction terms), the lagged effect estimates could be less

efficient with inflated variance [Farrar and Glauber, 1967] and the estimated DL functions

could be highly variable.

4.2.1.2 Bivariate Distributed Lag Model (BiDLM)

Parametric DLM imposes a smooth structure on lagged effect coefficients by assuming

each lag coefficient to be a linear combination of known basis functions measured at

its lag index. BiDLM extends this configuration to two-dimensional scenarios. Assume

B11(·), · · · , B1p1(·) are the p1 basis functions applied to β1 and B21(·), · · · , B2p2(·) are the

p2 basis functions applied to β2. Main effect coefficients are assumed to be of the form

β1i =
∑p1

m=1B1m(i)θ1m for i = 0, · · · , L1 and β2j =
∑p2

n=1B2n(j)θ2n for j = 0, · · · , L2

where {β1i} and {β2j} are elements of β1 and β2, respectively, and {θ1m } and {θ2n} are

free parameters to be estimated. In order to smooth the interaction surface, Muggeo [2007]

utilizes tensor products of marginal basis functions [Dierckx, 1995, De Boor et al., 1978].

The element corresponding to the interaction between x1,t−`1 and x2,t−`2 can be expressed

as γij =
∑p1

m=1

∑p2
n=1B1m(i)B2n(j)θImn.

Define C1 as a (L1 + 1)× p1 transformation matrix [Gasparrini et al., 2010] where the

element (i+1,m) isB1m(i) and similarly defineC2 as a (L2+1)×p2 transformation matrix

where the element (j + 1, n) is B2n(j). Denote θ1 = (θ11, · · · , θ1p1), θ2 = (θ21, · · · , θ2p2),
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and θI = (θI11, θI12, · · · , θIp1p2). The BiDLM coefficients can be written in terms of the

free parameters to be estimated as

β1 = C1θ1,β2 = C2θ2,γ = (C1 ⊗C2)θI (4.4)

where ⊗ is the Kronecker product. The free parameters θ1, θ2, and θI can be obtained by

maximizing the likelihood function

T∑
t=1

[yt[W
>
1tθ1 +W>

2tθ2 +W>
ItθI ]

> − eW>1tθ1+W>2tθ2+W>ItθI − log(yt!)]

whereW1t = C>1 X1t,W2t = C>2 X2t, andWIt = (C1⊗C2)
>XIt. Let Θ = (θ>1 ,θ

>
2 ,θ

>
I )>,

a vector of length p1 + p2 + p1p2 and C = diag[C1,C2,C1 ⊗ C2], a [(L1 + 1) + (L2 +

1) + (L1 + L2 + 2)] × [p1 + p2 + p1p2] matrix. The BiDLM estimator can be written as

ψ̂BiDLM = CΘ̂ and Cov(ψ̂BiDLM) = CCov(Θ̂)C>.

4.2.1.3 Two-dimensional High Degree Distributed Lag Model (BiHDDLM)

HDDLM [Heaton and Peng, 2014] was originally proposed to incorporate higher-order in-

teractions between lagged predictors in single-pollutant settings. We modify the underlying

structure of HDDLM to accommodate two-pollutant scenarios, considering up to two-way

interactions with the underlying model exactly stated in (4.2). The modeling strategy is

to construct a predictive process prior from the assumed Gaussian process prior on the lag

coefficients as a dimension reduction tool to handle the collinearity between time-series

exposure measurements. Moreover, a conditioning technique is incorporated to ensure that

the lagged coefficients at larger lags smoothly approach 0.

An important step to specify the predictive process is to choose the pseudo knot loca-

tions for β1, β2, and γ in (4.2) to approximate the parent process. Consider knot vectors

β∗1 = {β1`∗i }, β
∗
2 = {β2`∗j}, and γ∗ = {γ`∗k} where `∗i ∈ R1, `∗j ∈ R1, and `∗k ∈ R2 are artifi-

cially chosen internal knot locations for β1, β2, and γ, respectively and R1 := dim(β∗1) <

L1 + 1, R2 := dim(β∗2) < L2 + 1, RI := dim(γ∗) < (L1 + 1)(L2 + 1). β1, β2, and γ can

be mapped from β∗1 , β∗2 , and γ∗ using the predictive process interpolator [Banerjee et al.,
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2008] and the number of parameters reduces from (L1 + 1) + (L2 + 1) + (L1 + 1)(L2 + 1)

to R1 +R2 +RI .

Distributed lag functions in R1 and the distributed lag surface in R2 are subject to

constraints and lag effects should decrease to zero as the lag time increases. Consider two

large maximum numbers of lag M1 > L1 and M2 > L2 and corresponding expanded

vectors of coefficients β(e)
1 = (β>1 ,β

+
1
>

)>, β(e)
2 = (β>2 ,β

+
2
>

)>, and γ(e) = (γ>,γ+>)>

where β+
1 , β+

2 , and γ+ are the additional lag coefficients with lengths M1 − L1 − 1, M2 −

L2 − 1, and M1M2 − (L1 + 1)(L2 + 1), respectively. Conditioning on L1 and L2, the

distributions for β1, β2, and γ reduce to finding the conditional distribution of [β1|β+
1 ],

[β2|β+
2 ], and [γ|γ+].

Now we combine the predictive process in conjunction with conditioning on the ex-

panded vectors. Let each of β∗1|β+
1 , β∗2|β+

2 , and γ∗|γ+ follows a zero-mean Gaussian

process with isotropic Matérn covariance function. The corresponding prior specifications

are

β∗1|β+
1 = 0, σ2

1, ν1, ψ1 ∼ N(0, {σ2
1Mν1(||`i − `i′ ||;ψ1)}i,i′ )

β∗2|β+
2 = 0, σ2

2, ν2, ψ2 ∼ N(0, {σ2
2Mν2(||`j − `j′ ||;ψ2)}j,j′ )

γ∗|γ+ = 0, σ2
I , νI , ψI ∼ N(0, {σ2

IMνI (||`k − `k′ ||;ψI)}k,k′ )

whereMν(|| · ||;ψ) is the Matérn correlation function with smoothness parameter ν and

decay parameter ψ. By conditioning on the additional lag coefficients equal to zero, BiHD-

DLM ensures that the lag coefficients decrease to zero as the lag increases. Details of the

procedure to construct the predictive process interpolator are presented in Appendix 4.6.1.

The smoothness parameter ν inMν controls the smoothness of DL functions and DL

surface. Gneiting et al. [2012] indicates that estimating the smoothness parameter ν is

notoriously difficult. Following Heaton and Peng [2014], we fix ν1 = ν2 = νI = 3 to

allow for the resulting distributed lag curves for main effects and the distributed lag surface

for interaction effect to be twice differentiable. Zhang [2004] Heaton and Peng Heaton

and Peng [2014] showed that weakly consistent estimators for ψ1, ψ2, and ψI do not exist,

implying that the decay parameters can be fixed a priori without sacrificing flexibility as

long as non-informative priors are specified for σ2
1 , σ2

2 , and σ2
I [Du et al., 2009, Zhang
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and Wang, 2010]. We chose ψ1 = ψ2 = ψI = 0.6 based on the guidelines provided by

Heaton and Peng [2014] and Datta et al. [2015]. To complete the model specification, we

assume a vague prior on each of σ2
1 , σ2

2 , and σ2
I as an inverse gamma distribution with shape

parameter equal to 2 and scale parameter equal to 1. Posterior draws are obtained using

well-established Markov chain Monte Carlo (MCMC) techniques [Gamerman and Lopes,

2006].

4.2.2 Proposed Methods

4.2.2.1 Tukey’s Distributed Lag Model (TDLM)

The underlying motivation for Tukey’s model for interaction is through a latent variable

framework [Chatterjee et al., 2006]. Suppose we define a surrogate variable for each ex-

posure that aggregates the temporal lagged effect of the exposure through weighted sum at

time t. Namely,

s1t =

L1∑
i=0

w1ix1,t−i, s2t =

L2∑
j=0

w2jx2,t−j. (4.5)

If we assume that the association between yt,X1t andX2t is through the interaction model

log(E[yt]) = µ0 + µ1s1t + µ2s2t + µIs1ts2t. (4.6)

Substituting (4.5) in (4.6), we can obtain

log(E[yt]) = µ0 +

L1∑
i=0

µ1w1ix1,t−i +

L2∑
j=0

µ2w2jx2,t−j +

L1∑
i=0

L2∑
j=0

µIw1iw2jx1,t−ix2,t−j

= µ0 +

L1∑
i=0

β1ix1,t−i +

L2∑
j=0

β2jx2,t−j +

L1∑
i=0

L2∑
j=0

γijx1,t−ix2,t−j

where β1i = µ1w1i, β2j = µ2w2j , and γij = µIw1iw2j . Note that we can express the

interaction coefficient as γij = β1iβ2j(
µI
µ1µ2

), a scaled product of the corresponding main-

effect coefficients. This motivates the use of Tukey’s style interaction in our context. Es-

timating the lagged effects is the same as estimating the relative weights to combine the

exposure lagged measurements into a summary surrogate variable. To extend the classical
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Tukey’s interaction structure to DLMs, we now assume that the main effects are specified

in the same way as BiDLM with constrained parameterization such that β1 = C1θ1 and

β2 = C2θ2 as in (4.4). In matrix form, the interaction coefficients can be expressed under

Tukey’s model as

γ = η · (β1 ⊗ β2) = (C1 ⊗C2)[η(θ1 ⊗ θ2)].

Note that the interaction structure corresponding to TDLM is a special case of BiDLM

with θI = η(θ1 ⊗ θ2). The number of parameters used for modeling the interaction effect

reduces from p1p2 to 1. The free parameters θ1, θ2, and η can be estimated by maximizing

the likelihood function

T∑
t=1

{yt[W>
1tθ1+W>

2tθ2+η ·W>
It (θ1⊗θ2)]−eW

>
1tθ1+W

>
2tθ2+η·W>It (θ1⊗θ2)−log(yt!)}. (4.7)

TDLM is a nonlinear regression model where the objective function (4.7) involves prod-

uct of the parameters. Linear approximation using first-order Taylor series expansion can

be applied for parameter estimation and statistical inference [Bates and Watts, 1988]. How-

ever, empirically, we found that the approximation accuracy using first order approxima-

tion is poor and the asymptotic variance is far from empirical variance based on resampling

[Efron, 1981]. We therefore consider an iterative approach for estimation. We first (a) fix

θ1,θ2 and estimate η, (b) fix θ2, η and estimate θ1, and then (c) fix θ1, η and estimate θ2

until the solution converges (details provided in Appendix 4.6.2). The stopping criteria is

when the percentage change in the value of likelihood (4.7) is smaller than a pre-specified

margin (e.g. 10−6). Since the value of the objective function decreases at each step, the

solution is guaranteed to converge. We recognize that the likelihood function (4.7) is non-

convex in terms of the parameters β1, β2, and η so the convergence to a global maximum

is not guaranteed by this iterative procedure. However, in our numerical studies, when the

main effects are bounded away from zero, the choice of various initial values did not affect

the final parameter estimates. When at least one of the main effects are close to the null

value, the parameter η is not identifiable and estimation instability occurs in these cases.
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In the actual application context, one would expect that the interest in two pollutant DLM

will originate only after observing significance in the marginal DLM models for each sin-

gle pollutant and thus assuming at least one lag coefficient is nonzero for each pollutant

is a reasonable assumption. For statistical inference, we consider a standard vanilla boot-

strap by resampling observations with replacement to obtain bootstrap standard errors and

confidence intervals.

4.2.2.2 Bayesian Tukey’s Distributed Lag Model (BTDLM)

Under a Bayesian formulation of Tukeys DLM, the main effects are parametrically speci-

fied in the same way as in (4.4). The interaction effects are modelled in the spirit of TDLM.

The distinction from the presentation in the previous section is that BTDLM allows depar-

ture from Tukey’s interaction structure in a data-adaptive way. Instead of assuming that

each interaction term is a scaled product of the corresponding main effects, BTDLM as-

sumes that the scalar parameter can vary across different interaction terms through the

following prior specification

γ = η � (β1 ⊗ β2),η ∼ N(0, σ2Σ(ω))

where η = (η00, η01, · · · , ηL1L2)
> is the vector of scalars, � is the operator denoting

element-wise multiplication, σ2 is the common variance, and Σ is the correlation matrix

parameterized by a single parameter ω > 0. The correlation between ηij and ηi∗j∗ is given

by ω
√

(i−i∗)2+(j−j∗)2 . The prior on η relaxes the strict specification of Tukey’s interaction

structure. The amount of departure from Tukey’s model is controlled by the parameter ω.

At one extreme, when ω = 0, no structure is imposed on the interaction effects. The inter-

action coefficients are simply a reparametrization of the UDLM coefficients in (4.2). At the

other extreme when ω = 1, the model degenerates to TDLM and enforces the interaction

coefficients to follow the Tukey’s structure. When ω approaches 1, the correlation between

neighboring coefficients tends to be larger, resulting in a smoother interaction surface.

To complete the model specifications, we assign θ1 ∼ N(0, 1002I) and θ2 ∼ N(0, 1002I)

as vague priors for main effect coefficients. We assume a non-informative prior on variance
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parameter [Gelman et al., 2006] σ2 ∼ IG(a = 0.001, b = 0.001) where a and b are the

shape and scale parameters of Inverse-Gamma (IG) distribution for common variance. To

alleviate computational burden, we let ω have a discrete uniform prior rather than a continu-

ous one. The marginal posterior density of β1, β2, and γ is not available in closed form. We

use Metropolis Hastings algorithm [Hastings, 1970] within a Gibbs sampler [Geman and

Geman, 1984] to approximate the posterior distribution and obtain the BTDLM estimator

as the posterior mean and the corresponding highest posterior density (HPD) interval [Box

and Tiao, 2011] as the corresponding credible interval. The full conditional distributions

are presented in Appendix 4.6.3.

4.2.2.3 Bayesian Constrained Distributed Lag Model (BCDLM)

BiDLM is a fully parametric model. The dimension reduction from (L1 + 1) + (L2 + 1) +

(L1 + 1)(L2 + 1) parameters to p1 + p2 + p1p2 parameters results in efficiency gain in esti-

mation. However, the benefit can be counterbalanced by potential bias when the underlying

structure for DL functions/surface is misspecified. There are various ways to allow depar-

ture from BiDLM and achieve bias-variance tradeoff. For example, the robust distributed

lag models proposed by Chen et al. [2017]. We propose a BCDLM to shrink UDLM esti-

mates (identical to BiDLM estimates with a full-rank transformation) in a smooth manner

toward a pre-specified BiDLM.

Let B+
11(·), · · · , B+

1,L1+1(·) be L1 + 1 basis functions for the first exposure. For exam-

ple, the B-spline basis functions of degree 3 (cubic) with intercept and L1 − 3 equispaced

internal knots positioned between 0 and L1. Note that the basis functions describe the non-

linearity in DL function and exposure effect at each lag is still assumed to be linear. Let T1

be the corresponding (L1 + 1)× (L1 + 1) transformation matrix. Let T2 denote the square

transformation matrix with dimension (L2 + 1)× (L2 + 1), constructed in a similar manner

for the second exposure, and let the transformation matrix for the interaction parameter be

TI = (T1 ⊗ T2) with dimension (L1 + 1)(L2 + 1) × (L1 + 1)(L2 + 1). If we applied

the transformation operators T1, T2, and TI to BiDLM, the resulting estimator would be

identical to UDLM estimator since full-rank transformation on regression coefficients does

not change the model fit. However, if we imposed shrinkage on regression coefficients
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using L2 penalty, BiDLM estimator and UDLM estimator would be different since the

shrinkage is employed in different parameter spaces. UDLM estimator can be viewed as

choosing B+
1m(i) = I(m = i + 1) for m = 1, · · · , L1 + 1 and B+

2n(j) = I(n = j + 1)

for n = 1, · · · , L2 + 1, where I(·) is an indicator function, corresponding to T1 = I and

T2 = I . Although the two sets of estimates share the same shrinkage target (i.e. zero line),

the solution paths are different. If the basis functions selected for T1 and T2 are smooth,

BiDLM with shrinkage leads to smooth estimates, whereas UDLM with shrinkage does not

lead to smooth estimates.

Instead of shrinking the model coefficients toward 0, we consider shrinking them to

a nonnull target, determined by the transformation matrices C1, C2, and CI = (C1 ⊗

C2) for BiDLM defined in (4.4). Without loss of generality, we only describe how to

construct the nonnull shrinkage target for the first exposure. We first separate T1 into two

parts - C1 and Cc
1 where C>1 C

c
1 = 0. We make use of this orthogonal decomposition to

obtain Cc
1 the columns of which span the complementary column space of C1. C1 and

Cc
1 defines the decomposition of transformation corresponding to shrinkage toward a pre-

specified target and shrinkage toward 0, respectively. The orthogonal projection of T1 onto

the complementary column space of C1 is given by

P1 = [I −C1(C
>
1 C1)

−1C>1 ]T1. (4.8)

Using singular value decomposition (SVD), we can write

P1 = U1D1V
>
1

whereU1 contains the columns of left-singular vectors,D1 is a diagonal matrix with eigen-

values of P1, and V1 contains the columns of right-singular vectors. Since the rank of P1 is

L1 + 1− p1, we can writeU1 = [U11 U12] whereU11 is a (L1 + 1)× (L1 + 1− p1) matrix

with columns of singular vectors corresponding to nonzero eigenvalues inD1 and U12 is a

(L1 + 1)× p1 matrix with columns of singular vectors corresponding to the eigenvalues of

0. We considerCc
1 = U11. It is easy to show thatC>1 C

c
1 = 0 and the p1 columns ofC1 and

the L1 + 1 − p1 columns of Cc
1 span the entire RL1+1. In other words, shrinkage through
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the columns of Cc
1 defines BiDLM estimate as the shrinkage target. The complementary

matrices Cc
2 and Cc

I for the second exposure and interaction can be constructed using C2,

T2 and CI , TI , respectively, in a similar way.

The likelihood corresponding to the above specification is given by

Y |β1,β2,γ ∼ Poisson(eX1β1+X2β2+XIγ)

where Y = (y1, · · · , yT )>, X1 = (X11, · · · ,X1T )>, X2 = (X21, · · · ,X2T )>, and XI =

(XI1, · · · ,XIT )>. The prior specifications corresponding to BCDLM parameters are

β1 = C1θ1 +Cc
1θ

c
1, β2 = C2θ2 +Cc

2θ
c
2, γ = CIθI +Cc

Iθ
c
I

θ1 ∼ N(0, 1002I), θ2 ∼ N(0, 1002I), θI ∼ N(0, 1002I)

θc1 ∼ N(0, σ2
1I), θc2 ∼ N(0, σ2

2I), θcI ∼ N(0, σ2
II)

where θ1, θ2, and θI are the coefficients without shrinkage and θc1, θc2, and θcI are the

coefficients to be shrunk toward 0. In other words, β1, β2, and γ, are shrunk towardC1θ1,

C2θ2, andCIθI , respectively. To complete the model specification, we assign hyper-priors

as

σ2
1 ∼ IG(a0, b0), σ

2
2 ∼ IG(a0, b0), σ

2
I ∼ IG(a0, b0).

We fix a0 = b0 = 0.001 to assume an noninformative hyper-prior [Gelman et al., 2006].

Metropolis Hastings algorithm Hastings [1970] within a Gibbs sampler [Geman and Ge-

man, 1984] can alternatively be used to approximate the posterior distribution of the model

parameters. The full conditional distributions are provided in Appendix 4.6.4. The hyper-

priors of BCDLM can alternatively be viewed as penalty terms in penalized likelihood. The

dual representation is provided in Appendix 4.6.5.

Remark: The hyper-priors of BCDLM can be viewed as the penalty in penalized likeli-
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hood. The dual representation of BCDLM in frequentist framework is to minimize

−
>∑
t=1

{yt[X>1t(C1θ1 +Cc
1θ

c
1) +X>2t(C2θ2 +Cc

2θ
c
2) +X>It(CIθI +Cc

Iθ
c
I)]

−eX>1t(C1θ1+Cc
1θ

c
1)+X

>
2t(C2θ2+Cc

2θ
c
2)+X

>
It(CIθI+C

c
Iθ

c
I) − log(yt!)}

+λ1θ
c
1
>θc1 + λ2θ

c
2
>θc2 + λIθ

c
I
>θcI

where λ1, λ2, and λI are tuning parameters that control the amount of shrinkage. When λ1,

λ2, λI → 0, the DL coefficients estimates approach Ψ̂UDLM as full-rank transformation

of regression coefficients does not change the model fit of unpenalized likelihood. When

λ1, λ2, λI →∞, the DL coefficients estimates approach Ψ̂BiDLM as θc1, θc2, and θcI are all

shrunk to zero.

The asymptotic MSE of Ψ̂BCDLM can be decomposed into the sum of squared bias

Ψ>(W>Ω̂W + S)−2Ψ

and variance

p1∑
j=1

1

kj
+

L1+1∑
j=p1+1

kj
(kj + λ1)2

+

d1∑
j=L1+2

1

kj
+

d2∑
j=d1+1

kj
(kj + λ2)2

+

d3∑
j=d2+1

1

kj
+

d4∑
j=d3+1

kj
(kj + λI)2

where W =
[
X1C1|X1C

c
1|X2C2|X2C

c
2|XICI |XIC

c
I

]
, Ω̂ is a diagonal matrix with the

mean value of Y along the diagonal,

S = diag[0p1 , λ11L1+1,0p2 , λ21L2+1,0p1p2 , λII(L1+1)(L2+1)], kj is the jth eigenvalue of

W>Ω̂W , and d1 = L1 + p2 + 1, d2 = L1 + L2 + 2, d3 = L1 + L2 + p1p2 + 2, and

d4 = (L1 + 1) + (L2 + 1) + (L1 + 1)(L2 + 1), respectively. Through some algebra, it has

been shown that the squared bias is a monotonically increasing function and the variance

is a monotonically decreasing function of the tuning parameters. Along with the convexity

of the asymptotic MSE, there always exist λ1, λ2, λI > 0 that achieve greater bias-variance

tradeoff.
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4.3 Simulation Study

We conducted a simulation study to compare the estimation performance of the six methods

introduced in Section 4.2 under different settings. We evaluate the estimation precision in

terms of bias and MSE of the marginal lagged effects βm1 (x∗2) introduced in (4.3) based

on 1000 repetitions for each simulation setting. We implemented the three frequentist

methods UDLM, BiDLM, and TDLM using the built-in R function glm. We implemented

the three Bayesian methods BiHDDLM, BTDLM, and BCDLM by calling the software

Just Another Gibbs Sampler (JAGS) using R package rjags [Lunn et al., 2009]. The

average computation times for 1000 data sets under each method are provided in Table 4.3

and all simulations were performed in R version 3.3.1.

4.3.1 Simulation Settings

We generated two separate exposure time series (i = 1, 2) of length 1000 with mean 3 and

first-order autocorrelation equal to 0.5 from the model xit = 0.5xit−1 + εit where εit ∼

i.i.d N(0, 0.75) for i = 1, 2 and t = 1, · · · , 1000. We set L1 = L2 = 9 and generated

the outcome yt from a Poisson distribution with mean exp(β0 +X>1tβ1 +X>2tβ2 +X>Itγ)

for t = 1, · · · , 1000 where X1t, X2t, and XIt are as defined in Section 4.2. Let β0 =

3 and consider two DL functions for main-effect coefficients β1 and β2 - (a) cubic and

(b) function with departure from cubic (see Appendix 4.6.5). We consider five different

underlying true interaction structures for γ:

• (1) No interaction: γij = 0 for i = 0, · · · , L1 and j = 0, · · · , L2

• (2) Tukey’s style interaction: interaction effects are scaled product of their corre-

sponding main effects - γ ∝ (β1 ⊗ β2)

• (3) Kronecker product interaction: basis functions for interaction effects are tensor

product of main-effect basis functions - γ ∝ (C1 ⊗C2)θI

• (4) Sparse interaction: only the interaction terms between exposure 1 at lag 1-2 and

exposure 2 at lag 1-2 are nonzero

83



γij = 0.7, i = 1, 2 and j = 1, 2

γij = 0, otherwise

• (5) Unstructured interaction

The exact specifications of the two main-effect coefficients and the five interaction-effect

coefficients, including the unstructured interaction, are available in Appendix 4.6.5. In

total, nine simulation scenarios, including all combinations of the two main-effect coef-

ficients (a-b) and five interaction-effect coefficients (1-5) except the combination of (b)

and (3), are considered. Excluding the combination of (b) and (3) is due to that Kronecker

product interaction cannot be constructed when the corresponding main effects are not fully

parametric as their underlying basis functions are undefined.

4.3.2 Evaluation Metrics

The marginal lagged effects of the first exposure defined in (4.3) is a function of the second

exposure. The effects depend on the level at which the second exposure is fixed. One way

to eliminate the effect of the second exposure is to integrate it out. We consider to use finite

Riemann sum to numerically approximate the integral given by

β∗1 =

∫
β∗1(x2)dx2 ≈

1

S

S∑
s=1

β∗1(x
(q(s−0.5)/S)

2 )

where x
(q(s−0.5)/S)

2 is the (s − 0.5)/S-th quantile of x2. The empirical bias and empirical

relative efficiency of the above quantity with S = 20 are used to summarize the simulation

results across different scenarios. The squared bias is computed as

( ˆ̄β∗1 − β∗1)>( ˆ̄β∗1 − β∗1)

where ˆ̄β∗1 is the average of the estimates from 1000 repetitions. The empirical MSE is

computed as
1

1000

1000∑
j=1

||β̂∗1j − β∗1||22.
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The relative efficiency is expressed with respect to the MSE of UDLM estimate, namely

the MSE of UDLM divided by the MSE of a certain method. We emphasize that the

efficiency is defined defined through MSE rather than variance in this chapter. Because

of the symmetry between x1 and x2, we only present the results for the marginal lagged

effects of x1.

4.3.3 Simulation Results

The results for the situation with main effects generated from a cubic DL function are sum-

marized in Table 4.1. As we can observe in scenario (1), all methods are more efficient than

UDLM with relative efficiency ranging from 6.27 to 19.24 since the non-UDLM methods

model the main effects and interaction effects in a parsimonious fashion, parametrically

or nonparametrically. The empirical squared bias is minimal for UDLM (0.02), BiDLM

(0.00) and BCDLM (0.00) and is moderately small for TDLM (0.19), BiHDDLM (0.45),

and BTDLM (0.13). No interaction is a special case of Tukey’s model with η = 0. Because

TDLM correctly specify the main effects and interaction effects with a smaller number of

parameters, it achieves the highest efficiency (19.24). In scenario (2) where the nonnull

interaction effects are of Tukey’s form, all methods have similar, though slightly smaller,

relative efficiency in comparison with scenario (1) except BiHDDLM (0.78), ranging from

5.76 to 18.66. Again, TDLM has the highest relative efficiency as expected. The loss in

efficiency for BiHDDLM is largely due to the biased estimates for interaction effects. Bi-

HDDLM only assumes that the interaction surface is smooth without any particular struc-

ture. Tukey’s style interaction does not guarantee the smoothness of the interaction surface

and BiHDDLM fails to capture the structure. Scenario (3) represents the situation where

the true interaction structure departs from Tukey’s form. As we can see that now TDLM

(3.45) is less efficient than BiDLM (6.68) because of the bias induced in estimating the

interaction surface. However, TDLM is still more efficient than UDLM (1.00), BiHDDLM

(1.10), and BTDLM (2.77) because the gain from using a single parameter for modeling

the interaction effect only partly offsetted by the imposed bias (1.05). BiDLM correctly

specifies both main effects and interaction effects in this scenario and it attains the highest
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efficiency.

Both scenario (1) and scenario (2) are special cases of scenario (3). Even though

BiDLM is less efficient than TDLM in the first two scenarios as expected, it still main-

tains a decent level of efficiency. Across scenarios (1)-(3), we note that the squared bias

and relative efficiency of BTDLM always fall between BiDLM and TDLM, suggesting

that BTDLM successfully performs shrinkage between the two models and achieves a bet-

ter average performance. In addition, we can observe that the BCDLM (relative efficiency

= 6.27, 5.76, 6.17) is slightly less efficient than BiDLM (relative efficiency = 6.82, 6.14,

6.68) across the three scenarios. The gap is due to the flexibility of BCDLM that accounts

for possible departure from Kronecker product type of interaction structure. Scenarios (4)

and (5) are the situations where UDLM is the only method that can unbiasedly estimate the

interaction surface. As expected, both BiDLM and TDLM suffer from serious bias and the

efficiency gains from dimension reduction diminished substantially. The relative efficiency

ranges from 0.05 to 0.07. The class of interaction surfaces that BiDLM and TDLM can

described is restricted and is distant from sparse and unstructured interaction structures.

Note that all the methods jointly estimate the main effects and interaction effects and thus

misspecifying the interaction effects could possibly distort the estimation of main effects as

well as they are not orthogonal. BiHDDLM has squared bias 13.32 and 20.25 for scenarios

(4) and (5) and is less biased than BiDLM and TDLM. On the other hand, it is much less ef-

ficient than UDLM. Both BTDLM (1.71, 1.88) and BCDLM (2.80, 2.70) are more efficient

than UDLM by allowing departure from a specified interaction structure. BCDLM is less

biased and more efficient than BTDLM across the two scenarios. The possible explanation

is that BTDLM does shrinkage between Tukey’s style interaction and Kronecker product

interaction whereas BCDLM allows the most general case to be completely unstructured.

Across all the scenarios when the main-effects are correctly specified, BCDLM has the best

average performance in terms of estimation efficiency.

We summarize the results where main effects deviate from a cubic DL function in

Table 4.2. As we can see that both BiDLM and TDLM are seriously biased, largely due to

misspecification of the main-effect terms. These two methods are the least efficient. If we

contrast scenarios (1) and scenario (2), we can see that the squared bias hugely increase for
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the two, indicating that misspecification of main effect not only influences the estimation

accuracy of main-effect DL function, but also the interaction DL surface. The reason is

that TDLM explicitly connects the interaction coefficients with main-effect coefficients

through the single scalar η and BiDLM implicitly connects the two sets of coefficients

through specifying the transformation matrix of interaction as the Kronecker product of the

transformation matrices of two exposures (i.e. C1 ⊗ C2). BiHDDLM and BTDLM are

biased across the board as well, with squared bias ranging from 8.17 and 132.07 and from

7.39 to 35.50, respectively. They are more efficient than UDLM only in the scenario where

there is no interaction. BCDLM is slightly biased across different scenarios with squared

bias ranging from 0.09 to 0.52. The BCDLM leads to gains in efficiency with reduced bias,

especially in the scenario where there is no interaction. The relative efficiencies are 3.25,

1.35, 1.78, and 1.34 across the four scenarios. Summarizing the results in Tables 4.1 and

4.2, it is clear that the BCDLM approach has desirable MSE properties across the scenarios,

offering a robust and efficient solution to this problem. The two tables summarize the

simulation results to assess the estimation precision of the quantity provided in (4.3.2). We

also provide the results based on the marginal lagged effects of one exposure when the

other exposure is fixed at median in 4.3. The results and findings are similar.

4.4 Application

4.4.1 Data Overview and Modeling

We apply the six methods compared in the simulation section to the NMMAPS data. We

jointly model daily time series of (1) PM10 and (2) O3 in association to all-cause non-

accidental mortality counts in Chicago, Illinois for the period between 1987 and 2000. The

data contain daily mortality, air pollution, and weather data collected across 109 metropoli-

tan areas in the United States from 1987 to 2000. Further details with respect to data as-

sembly are available at http://www.ihapss.jhsph.edu/data/NMMAPS/. Pre-

vious single city studies found that the largest effects are present in the first seven lags

[Schwartz, 2000, Goodman et al., 2004]. In addition, Zanobetti et al. [2000] indicated that
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it is unlikely that lags beyond two weeks would have substantial influence on associations

between short-term exposures to pollution and mortality. We therefore set L1 = L2 = 14

for PM10 and O3, respectively.

Previous studies showed that it is crucial to account for meteorologic variables as po-

tential confounders such as weather and seasonality in the analysis of air pollution effects

[Peng et al., 2006, Welty and Zeger, 2005]. We specify the adjustment covariates in the

same way as Dominici et al. [2005]. Let x1tk, x2tk, ytk, and ztk denote PM10 level, O3

level, mortality count, and vector of time-varying covariates, measured on day t for age

group k in Chicago for t = 1, ..., 5114 and k = 1, 2, 3, respectively. The three age cat-

egories are greater or equal to 75 years old, between 65 and 74 years old, and less than

65 years old. PM10 and O3 were shared exposures across the three age groups so we have

xtk ≡ xt. We assume that the mortality count in Chicago on day t for each of the age group

k is a Poisson random variable Ytk with mean µtk such that

log(µtk) = X>1tβ1 +X>2tβ2 +X>Itγ + z>tkα

= X>1tβ1 +X>2tβ2 +X>Itγ + α0 +
2∑
j=1

α1jI(k = j)

+
6∑
j=1

α2jI(dowt = j) + ns(tempt; 6 df,α3)

+ ns(temp(3)
t ; 6 df,α4) + ns(dptpt; 3 df,α5) + ns(dptp

(3)

t ; 3 df,α6)

+ ns(t; 98 df,α7) + ns(t; 14 df,α8)I(k = 1) + ns(t; 14 df,α9)I(k = 2)

where X1t = (x1t, ..., x1,t−14)
>, X2t = (x2t, ..., x2,t−14)

>, XIt = X1t ⊗ X2t, I(·) is

the indicator function, and ns(·) denotes the natural spline with specified df. Predictors

dowt, tempt, tempt, dptpt, and dptpt represent the day of week, current day’s temperature,

adjusted average lag 1-3 temperature, current day’s dewpoint temperature, and adjusted

average lag 1-3 dewpoint temperatures for day t. The indicator variables allow different

baseline mortality rates within each age group and within each day of week. The smooth

term for time (t) is to adjust for long-term trends and seasonality and 98 df corresponds to 7

df per year over the 14-year horizon. The last two product terms separate smooth functions
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of time with 2 df per year for each age group contrast. The primary goal is to estimate the

coefficients β1, β2, and γ and α is the set of covariate parameters. A 4-degree polynomial

DL function is applied to both β1 and β2 for CDLM, TDLM, BTDLM, and BCDLM. The

computation times are provided in Table 4.4.

The mean concentrations (standard deviations in parentheses) of PM10 and O3 are 37.06

(19.25) µg/m3 and 19.14 (10.20) ppb, respectively. The first quartile (Q1), second quartile

(Q2), and third quartile (Q3) of PM10 are 24.29 µg/m3, 34.25 µg/m3, and 45.78 µg/m3

and the three quartiles of O3 are 13.51 ppb, 20.53 ppb, and 27.92 ppb, respectively. We

observed minimal skewness in PM10 and O3 measurements and no extreme values need

further investigation. PACF indicates that the autocorrelation PM10 and O3 have autocor-

relation 0.42 and 0.74, respectively, at lag 1. O3 time series displays strong correlation and

slower decay than PM10. The correlation on both time series suggests that some smoothing

on DL coefficients is needed. The average daily non-accidental mortality count is 38.47

with standard deviation 15.89.

4.4.2 Estimating Marginal Distributed Lag Function

The quantity 100{exp[10(β1i + x∗2
∑L2

n=0 γin)]} represents the percentage change in daily

mortality with 10 µg/m3 increase in PM10 at lag iwhen O3 is at x∗2 ppb. Similarly, the quan-

tity 100{exp[10(β2j + x∗1
∑L1

m=0 γmj)]} represents the percentage change in daily mortality

with 10 ppb increase in O3 at lag j when PM10 is at x∗1 µg/m
3. We present the marginal

lagged effects of PM10 and O3 when the other pollutant is fixed at Q1, Q2, and Q3, respec-

tively in Figures 4.1 and 4.2. Each panel in Figure 4.1 presents the marginal DL functions

of PM10 when O3 is fixed at Q1, Q2, and Q3 for one of the six methods. Likewise, each

panel in Figure 4.2 presents the marginal DL functions of O3 when PM10 is fixed at Q1,

Q2, and Q3. If we look across the panels in Figure 4.1, we can observe that the fits of the

three shrinkage methods BiHDDLM, BTDLM, and BCDLM are closer to UDLM fit than

the CDLM fit and TDLM fit, suggesting that CDLM and TDLM might over-smooth the

DL function. When O3 is at Q2 and Q3, the over-smoothing of CDLM and TDLM results

in underestimation of the PM10 peak effect at lag 3. For instance, the estimated percentage
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increases in mortality associated with a 10µg/m3 increase in PM10 at lag 3 when O3 fixed

atQ3 are 0.59%, 0.41%, 0.31%, 0.26%, 0.18%, and 0.06% for UDLM, BTDLM, BCDLM,

BiHDDLM, CDLM, and TDLM. The lower bounds of 95% confidence/credible intervals

for the former four methods are appreciably above zero and the lower bounds of CDLM

and TDLM are closer to zero. In this situation, shrinkage methods are more desirable since

CDLM and TDLM misspecify the DL function and potentially underestimate the lag ef-

fects. In contrast, when we look across the panles in Figure 4.2, all methods except UDLM

yield similar DL functions, indicating that potential misspecification by using CDLM and

TDLM is minimal. We observe that the DL function peaks at lag 0 with PM10 fixed at

Q1 and Q2 and peaks at lag 2 with PM10 fixed at Q3. The earlier peak for O3 compared

to PM10 suggests a more acute effect with an earlier window of susceptibility. We also

observe that the UDLM fits of PM10 fluctuate more drastically than the UDLM fits of O3.

This reflects the stronger collinearity of O3 time series and smoothing the DL function is

certainly needed and preferred in this case.

We can observe that some of the estimated lagged effects are negative at larger lags for

PM10. The phenomenon is noted as mortality displacement [Zanobetti et al., 2000] and

had been discovered in previous studies. Mortality displacement, also referred as harvest-

ing effect [Zanobetti et al., 2002], is the temporal shift of mortality rate. Usually higher

mortality rate due to the deaths of frail individuals a couple of days after the high air pollu-

tion episode is followed by compensatory reduction in mortality rate due to the decrease in

frail individuals. The finding of possible mortality displacement is consistent with previous

studies.

4.4.3 Assessing Interaction Effects

Within each panel of Figures 4.1 and 4.2, we notice that the estimated DL functions of

one pollutant vary with the level of the other pollutant, indicating PM10 might moderate O3

effect and vice versa. For UDLM, CDLM, and TDLM, we conducted likelihood ratio test

to inspect whether the interaction effects are significantly different from 0. The p-values

are 1.65 × 10−11 (DF = 225), 5.33 × 10−9 (DF = 25), and < 10−4 (DF = 1), respectively.
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The precision of the p-vale of TDLM is only up to 10−4 due to finite bootstrap samples.

For three shrinkage methods BiHDDLM, BTDLM, and BCDLM, we computed the differ-

ence in deviance information criterion (DIC) [Spiegelhalter et al., 2002] between the model

without and the model with interaction as a measure of model complexity and model fit.

The DIC differences are 41.62, 25.56, and 68.35, respectively. It is difficult to determine

a clear threshold of DIC difference for model selection [Plummer, 2008]. However, mod-

els with smaller DIC are generally preferred when DIC differences are greater than 10.

Coupled with the p-values obtained from the frequentist approaches, we conclude that the

interaction between PM10 and O3 is evident.

From Figure 4.1 and Figure 4.2, we can see that generally the Q3 curves are above Q2

curves and Q1 curves suggesting that PM10 and O3 have synergistic effects on each other.

In other words, PM10 presents higher effect on mortality when O3 is at a higher level, and

vice versa. Furthermore, we observe that the gaps between the curves of the three quartiles

diminish beyond lag 6 across the board. The interaction between PM10 and O3 occurs

at early lags. We added a dotted blue curve in each panel for the estimated DL function

from single-pollutant analysis (model with PM10 alone or O3 alone). The interposed curves

represent the “average” DL effects if we disregard the interaction effect between the two

pollutants.

4.4.4 Estimating Total Effects

As marginal lagged effects, total effects of PM10 and O3 vary with the level of the other

pollutant. The quantity 100{exp[10
∑L1

i=0(β1i + x∗2
∑L2

n=0 γin)]} is the total effect of PM10

when O3 is fixed at x∗2. Similarly, the quantity 100{exp[10
∑L2

j=0(β2j + x∗1
∑L1

m=0 γmj)]}

is the total effect of O3 when PM10 is fixed at x∗1. Generally, the shrinkage methods have

narrow confidence intervals than frequentist methods, suggesting that bias-variance trade-

off and higher efficiency are achieved. The total effect of PM10 range from -1.66% to

-0.97%, from -0.93% to -0.31%, and from 0.01% to 0.40% across different methods when

O3 is fixed at Q1, Q2, and Q3, respectively. The total effect of O3 range from -1.63% to

-1.28%, from -0.63% to -0.08%, and from 0.46% to 1.39% across different methods when
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PM10 is fixed at the three quartiles, respectively. As we can see that the total effects of

PM10 (O3) are larger when O3 (PM10) is fixed at a higher level. Once again, PM10 and O3

present synergistic effects on each other.

4.5 Discussion

In analyzing NMMAPS data, we demonstrated the importance of accounting for interac-

tion between PM10 and O3 time series in modeling the joint pollution effect on mortal-

ity. Two major pieces of evidence support the existence of pollutant-pollutant interaction

- (1) marginal DL function of one pollutant varies when the level of the other pollutant

changes, and (2) small p-values from frequentist approaches and large DICs from Bayesian

approaches suggesting evidence in favor of PM10× O3 interaction. This adds to the evi-

dence in support of plausible synergism involving O3 that has been established in previous

studies [Mauderly and Samet, 2009]. Development of two-pollutant DLM is key to our

analysis.

In this chapter, we presented six different strategies to model lagged effects of two pol-

lutants in a joint model. We reviewed two existing frequentist methods UDLM and BiDLM

and we adapted HDDLM to two-dimensional situation (i.e. BiHDDLM). We proposed fre-

quentist TDLM using Tukey’s interaction structure, its Bayesian version, and a Bayesian

approach to perform shrinkage between UDLM and BiDLM. There are two major novel-

ties. We adopted Tukey’s one-degree-of-freedom interaction structure to parsimoniously

model two-way interaction. The estimation is efficient and the interaction testing is pow-

erful. We also introduced the Bayesian version of TDLM (i.e. BTDLM) and the Bayesian

version of BiDLM (i.e. BCDLM). The Bayesian models allow departure from the pre-

specified structure of DL function/surface and are robust to misspecification. They are

data-adaptive and able to achieve bias-variance trade-off.

There are some limitations for the six approaches. UDLM is unbiased but potentially

less efficient, especially when the autocorrelation between serial pollution measurement is

large, especially when the autocorrelation between serial pollution measurement is high.

BiDLM imposes some structure to constrain the lag coefficients as a function of the lags
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and reduces the number of free parameters in the model. It can potentially achieve greater

estimation precision. Nonetheless, when the DL structure is misspecified, the model-

dependent BiDLM estimator can be seriously biased. Tukey’s type interaction is mostly

used for hypothesis testing rather than estimation in previous research. There are a few

drawbacks that hinder the use of Tukey’s model in effect estimation. Expressing interac-

tion effects as a scaled product of its corresponding main effects implies that the interac-

tion effects can be nonzero only when the main effects are nonzero. This feature adheres

to the statistical principle that higher-order terms are considered only when their lower-

order terms are present in ths model, whereas the lack of identifiability with respect to the

scaled parameter in Tukey’s model when main effects are not present makes the inference

invalid. In addition, Tukey’s model is not invariant to location shifts. Different centering

schemes lead to different estimates of scaled parameter η and no universal remedy exists.

Computationally, the non-convexity of the parameter space does not guarantee global opti-

mum can be achieved. Also, the approximation of the maximum likelihood function using

second-order Taylor expansion in terms of the model parameters is not precise. Therefore,

analytically obtaining the estimates and their standard errors is forfeited. It is necessary to

make use of iterative procedure and resampling approach.

One limitation of BiHDDLM is that it does not fully integrate the prior knowledge of

the DL structure and the estimation efficiency is partly offset by its flexibility. It only as-

sumes the smoothness of DL functions and DL surface. In addition, BiHDDLM implicitly

assumes that the two pollutants are symmetrically modelled. The symmetry specification

implies that Cor(γij, γi+d,j) = Cor(γij, γi,j+d), which may not be true in practice. In ad-

dition, predictive process interpolator tends to oversmooth DL functions and DL surface,

resulting in biased estimates. Nevertheless, BiHDDLM assumes that the lagged effects

at larger lags approach to 0. It is difficult for other methods to incorporate this feature.

The hierarchical Bayesian model BCDLM is robust to misspecification of DL structure.

The data-adaptive shrinkage can be regarded as an automatic procedure to attain a balance

between a more general model UDLM and a more constrained model CDLM. The full-

rank transformation on UDLM imposes smoothness on the shrinkage path and the a priori

knowledge about the DL structure can be incorporated. It is noted that BCDLM can be
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extended for exploring higher-order interaction and multiple-pollutant scenarios.

The two-pollutant DLM approaches introduced in this chapter can be directly extended

to multi-pollutant situations where up to two-way interaction is considered. If one would

like to consider higher-order interaction and/or nonlinear interaction, extension from tree-

based approach such as CART and BKMR can be promising. In some occasions, choosing

important pollutants among multiple candidates that are associated with a health outcome

is the primary goal. LASSO and its variations are useful in dealing with variable selection

in multi-pollutant situations.

In real-world situations, it is usually difficult to validate the underlying assumptions of

a model-based estimator. The notion of data-adaptive shrinkage is attractive when no single

estimator is universally optimal. When facing uncertainty, robust models such as BCDLM

that possesses better average performance are more desirable. BCDLM can potentially be

extended to areas outside environmental epidemiology. We hope our work will lead to more

attempts in developing two-dimensional and multi-dimensional DLM in the future.

4.6 Appendix

4.6.1 Predictive Process Interpolator for Two-dimensional High De-

gree Distributed Lag Model (BiHDDLM)

Without loss of generality, we describe the procedures to construct the predictive process

interpolator for β1. The interpolators for β2 and γ can be obtained in a similar manner.

1. Obtain the joint variance-covariance matrix of (β>1 ,β
∗
1
>,β+>

1 )> using the Gaussian

process prior.

2. Obtain the conditional variance-covariance matrix of β1,β
∗
1|β+

1 = 0 using the prop-

erties of multivariate Gaussian distribution and conditional distribution. Namely,

Var(β1,β
∗
1|β+

1 ) = (R11 −R12R
−1
22R

>
12)

whereR11 = Var((β>1 ,β
∗
1
>)>),R22 = Var(β+

1 ), andR12 = Cov((β>1 ,β
∗
1
>)>,β>1 ).
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3. Compute the predictive process basis matrix as

B1 = Cov(β1,β
∗
1|β+

1 = 0)Var−1(β∗1|β+
1 = 0).

Bayesian computation is performed based on β∗1 using MCMC and the coefficient estimates

of β1 can be mapped through

β1 = B1β
∗
1.

4.6.2 Iterative Algorithm for Tukey’s Distributed Lag Model (TDLM)

Define Vec(·) as an operator that transforms a q×rmatrixA to a column vector (a11, · · · , a1r, · · · , aqr)T

of length qr and Vec(−1)(·) is the reversed operator. LetQ(θ1,θ2, η) be the likelihood func-

tion of TDLM valued at θ1,θ2, η, namely

Q(θ1,θ2, η) =
T∑
t=1

[yt[W
>
1tθ1 +W>

2tθ2 +W>
ItθI ]

> − eW>1tθ1+W>2tθ2+W>ItθI − log(yt!)]

The iterative algorithm for fitting a Tukey’s distributed lag model proceeds as follows:

Step 1: Initialize θ̂(0)1 , θ̂(0)2 , and η̂(0)

Step 2: Given θ̂(m−1)2 and η̂(m−1), update θ̂(m)
1 .

Let W ∗
0t = W>

2t θ̂
(m−1)
2 andW ∗

1t = W1t + η̂(m−1)Vec−1(WIt)θ̂
(m−1)
2 .

θ̂
(m)
1 = argmin

θ1

T∑
t=1

[yt[W
∗
0t +W ∗

1t
>θ1]− eW0t+W ∗1t

>θ1 − log(yt!)]

Step 3: Given θ̂(m)
1 and η̂(m−1), update θ̂(m)

2 .

Let W ∗
0t = W>

1t θ̂
(m)
1 andW ∗

2t = W2t + η̂(m−1)Vec−1(W T
It)θ̂

(m)
1 .

θ̂
(m)
2 = argmin

θ2

T∑
t=1

[yt[W
∗
0t +W ∗

2t
>θ1]− eW0t+W ∗2t

>θ2 − log(yt!)]
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Step 4: Given θ̂(m)
1 and θ̂(m)

2 , update η̂(m).

Let W ∗
0t = W>

1t θ̂
(m)
1 +W>

2t θ̂
(m)
2 and W ∗

It = W>
It (θ̂

(m)
1 ⊗ θ̂(m)

2 ).

η̂(m) = argmin
η

T∑
t=1

[yt[W
∗
0t + ηW ∗

It]− eW
∗
0t+ηW

∗
It − log(yt!)]

Step 5: Compute relative increase in likelihood

∆(m) =
Q(θ̂

(m)
1 , θ̂

(m)
2 , η̂(m))

Q(θ̂
(m−1)
1 , θ̂

(m−1)
2 , η̂(m−1))

− 1

Stop the algorithm if ∆(m) is smaller than the pre-specified value. Otherwise, repeat steps

2-4 until convergence.

4.6.3 Full Conditional Distribution of Bayesian Tukey’s Distributed

Lag Model (BTDLM)

With constraintsβ1 = C1θ1, β2 = C2θ2, and γ = η�(β1⊗β2), we have f(Y |θ1,θ2,η) =

exp{Y T [X1C1θ1 +X2C2θ2 +XI(η � ((C1 ⊗C2)(θ1 ⊗ θ2)))]

−eX1C1θ1+X2C2θ2+XI(η�((C1⊗C2)(θ1⊗θ2)))}

The full conditional distributions of θ1, θ2, η, σ2 and ω are

f(θ1|θ2,η, σ2, ω,Y ) ∝ f(Y |θ1,θ2,η) · exp(− θT1 θ1
2 · 1002

)

f(θ2|θ1,η, σ2, ω,Y ) ∝ f(Y |θ1,θ2,η) · exp(− θT2 θ2
2 · 1002

)

f(η|θ1,θ2, σ2, ω,Y ) ∝ f(Y |θ1,θ2,η) · exp(−η
TΣ(ω)η

2σ2
)

f(σ2|θ1,θ2,η, ω,Y ) ∼ IG(a+ (L1 + 1)(L2 + 1)/2, b+ ηTΣ−1(ω)η/2)

p(ω|θ1,θ2,η, σ2,Y ) =
|σ2Σ(ω)|−1/2exp(− 1

2σ2η
TΣ−1(ω)η)∑

ω∗ |σ2Σ(ω∗)|−1/2exp(− 1
2σ2ηTΣ−1(ω∗)η)
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4.6.4 Full Conditional Distribution of Bayesian Constrained Distributed

Lag Model (BCDLM)

With constraints β1 = C1θ1 +Cc
1θ

c
1, β2 = C2θ2 +Cc

2θ
c
2, and γ = CIθI +Cc

Iθ
c
I , we have

f(Y |θ1,θ2,θI ,θc1,θc2,θcI)

= exp{Y T [X1C1θ1 +X2C2θ2 +XICIθI +X1C
c
1θ

c
1 +X2C

c
2θ

c
2 +XIC

c
Iθ

c
I ]

−eX1C1θ1+X2C2θ2+XICIθI+X1Cc
1θ

c
1+X2Cc

2θ
c
2+XIC

c
Iθ

c
I . Without loss of generality, we only

present the conditional distribution of θ1, Cc
1, and σ2

1 . The conditional distributions of

other parameters can be constructed by symmetry.

f(θ1|θ2,θI ,θc1,θc2,θcI , σ2
1, σ

2
2, σ

2
I ,Y ) ∝ f(Y |θ1,θ2,θI ,θc1,θc2,θcI) · exp(− θ>1 θ1

2 · 1002
)

f(θc1|θ1,θ2,θI ,θc2,θcI , σ2
1, σ

2
2, σ

2
I ,Y ) ∝ f(Y |θ1,θ2,θI ,θc1,θc2,θcI) · exp(−θ

c
1
>θc1

2σ2
1

)

f(σ2
1|θ1,θ2,θI ,θc1,θc2,θcI , σ2

2, σ
2
I ,Y ) ∼ IG(a0 + (L1 − p1 + 1)/2, b0 + θc1

>θc1/2)

4.6.5 Simulation Settings

Main effect coefficients β1 and β2:

• (a) Cubic:

βij = 0.0014[j(j − 7)(j − 9) + 8] for i = 1, 2 and j = 0, · · · , 9

• (b) Function with departure from cubic:

β1 = β2 = (0.25, 0.2, 0,−0.1,−0.15, 0, 0.2, 0.1, 0,−0.05)>

Interaction coefficients γ:

• (1) No interaction, (2) Tukey’s style interaction, (3) Kronecker product interaction,
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and (4) Sparse interaction are as defined in the main text

• (5) Unstructured interaction:

v = (0.2, 0.6, 1, 0.5, 0, 0.1, 0.7, 0.9, 0.2, 0.4)>

γ = v ⊗ v

Table 4.1: Empirical squared bias and empirical relative efficiency (measured with respect
to the mean squared error of UDLM estimate) of marginal lagged effects across six different
2-dimensional distributed lag models based on 1000 simulation iterations. The lagged
effects of the both exposures are generated from the same cubic DL function.

Interaction Structure Metric UDLM BiDLM TDLM BiHDDLM BTDLM BCDLM

(1) No Interaction Squared Bias 0.02 0.00 0.19 0.45 0.13 0.00
Relative Efficiency 1.00 6.82 19.24 12.39 8.09 6.27

(2) Tukey’s Structure Squared Bias 0.01 0.00 0.01 5.49 0.01 0.00
Relative Efficiency 1.00 6.14 18.66 0.78 6.71 5.76

(3) Kronecker Product Squared Bias 0.02 0.00 1.05 3.66 0.90 0.00
Relative Efficiency 1.00 6.68 3.45 1.10 2.77 6.17

(4) Sparse Squared Bias 0.00 66.22 67.14 13.32 1.43 0.08
Relative Efficiency 1.00 0.07 0.07 0.34 1.71 2.80

(5) Unstructured Squared Bias 0.00 93.08 93.98 20.25 1.08 0.09
Relative Efficiency 1.00 0.05 0.05 0.23 1.88 2.70

Table 4.2: Empirical squared bias and empirical relative efficiency (measured with respect
to the mean squared error of UDLM estimate) of marginal lagged effects across six different
2-dimensional distributed lag models based on 1000 simulation iterations. The lagged
effects of the both exposures are generated from the same cubic-like DL function (moderate
departure from a cubic function).

Interaction Structure Metric UDLM BiDLM TDLM BiHDDLM BTDLM BCDLM

(1) No Interaction Squared Bias 0.02 69.51 70.03 8.17 7.39 0.10
Relative Efficiency 1.00 0.24 0.25 1.78 1.59 3.25

(2) Tukey’s Structure Squared Bias 0.01 990.83 1023.84 132.07 35.50 0.09
Relative Efficiency 1.00 0.00 0.00 0.02 0.05 1.35

(4) Sparse Squared Bias 0.01 210.32 215.94 33.15 10.80 0.52
Relative Efficiency 1.00 0.02 0.02 0.14 0.35 1.78

(5) Unstructured Squared Bias 0.01 989.93 1019.06 131.61 31.83 0.10
Relative Efficiency 1.00 0.00 0.00 0.02 0.04 1.34
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Table 4.3: Average computation times of applying six two-pollutant distributed lag models
on an Intel i7-2600 CPU with a single 3.4GHz core in one simulation scenario with length
of time series T = 1000, maximum number of lag of the first pollutant L1 = 9, and
maximum number of lag of the second pollutant L2 = 9 based on 1000 repetitions.

Methods Time
UDLM 0.07 seconds
BiDLM 0.01 seconds
TDLM 0.33 seconds

BiHDDLM1 2.6 mins
BTDLM1 8.9 mins
BCDLM1 8.8 mins

1 Gibbs sampler is based on 20000 burn-ins and 10000 posterior draws with thinning interval equal to 10

Table 4.4: Computation times of applying six two-pollutant distributed lag models on an
Intel i7-2600 CPU with a single 3.4GHz core to the National Morbidity and Mortality Air
Pollution Study (NMMAPS) to estimate the lagged effects of air particulate matter with
aerodynamic diameter less than 10 micrometers (PM10) and ozone (O3) concentration on
mortality in Chicago, Illinois from 1987 to 2000.

Methods Time
UDLM 9.2 seconds
BiDLM 3.2 seconds
TDLM1 190 mins

BiHDDLM2 38 mins
BTDLM2 79 mins
BCDLM2 82 mins

1 Standard error estimate is based on 1000 bootstrap samples
2 Gibbs sampler is based on 20000 burn-ins and 10000 posterior draws with thinning interval equal to 10
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Figure 4.1: Estimated distributed lag functions up to 14 days for PM10 on mortality in
Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mor-
tality, and Air Pollution Study (NMMAPS) under six estimation methods when O3 is fixed
at first quartile (black), second quartile (red), and third quartile (green) in a joint model
and when O3 is disregarded in a single-pollutant model for PM10 (blue). The lag effects
are presented as the percentage change in mortality with an 10 µg/m3 increase in PM10.
The six estimation methods are unconstrained distributed lag model (UDLM), bivariate
distributed lag model (BiDLM), two-dimensional high degree distributed lag models (Bi-
HDDLM), Tukey’s distributed lag model (TDLM), Bayesian Tukey’s distributed lag model
(BTDLM), Bayesian constrained distributed lag model (BCDLM).

100



Figure 4.2: Estimated distributed lag functions up to 14 days for O3 on mortality in
Chicago, Illinois from 1987 to 2000 based on the data from the National Morbidity, Mor-
tality, and Air Pollution Study (NMMAPS) under six estimation methods when PM10 is
fixed at first quartile (black), second quartile (red), and third quartile (green) in a joint
model and when PM10 is disregarded in a single-pollutant model for O3 (blue). The lag
effects are presented as the percentage change in mortality with an 10 ppb increase in O3.
The six estimation methods are unconstrained distributed lag model (UDLM), bivariate
distributed lag model (BiDLM), two-dimensional high degree distributed lag models (Bi-
HDDLM), Tukey’s distributed lag model (TDLM), Bayesian Tukey’s distributed lag model
(BTDLM), Bayesian constrained distributed lag model (BCDLM).
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Figure 4.3: Estimated distributed lag functions up to 14 days for PM10 (upper) and O3

(lower) on mortality in Chicago, Illinois from 1987 to 2000 based on the data from the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS) under six estimation
methods when the other exposure is fixed at first quartile (left), second quartile (middle),
and third quartile (right) in a joint model. The lag effects are presented as the percentage
change in mortality with an 10 µg/m3 increase in PM10 or 10 ppb increase in O3. The six
estimation methods are unconstrained distributed lag model (UDLM), bivariate distributed
lag model (BiDLM), two-dimensional high degree distributed lag models (BiHDDLM),
Tukey’s distributed lag model (TDLM), Bayesian Tukey’s distributed lag model (BTDLM),
Bayesian constrained distributed lag model (BCDLM).
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CHAPTER 5

Hierarchical Integrative Group LASSO

5.1 Introduction

A natural extension of single-pollutant DLM and two-pollutant DLM from previous chap-

ters is to consider multiple-pollutant DLM. A variety of approaches have been proposed to

estimate the health effects of multiple pollutants [Billionnet et al., 2012, Sun et al., 2013].

The most straightforward approach is a multiple regression model with a main effect for

each pollutant and a two-way cross-product linear interaction term for each pair of pollu-

tants [Dominici et al., 2010]. Penalized regression methods such as LASSO [Tibshirani,

1996] and elastic-net [Zou and Hastie, 2005] can be employed to identify a small subset

of individual pollutants and interaction terms that are most notably associated with the

outcome. In several studies, PCA have been used as a dimension reduction tool prior to

multi-pollutant modeling [Arif and Shah, 2007, Qian et al., 2004].

Tree-based approaches such as CART are useful to account for higher-order and non-

linear interactions [Hu et al., 2008]. The DSA algorithm [Sinisi and van der Laan, 2004]

allows users to specify the constraints on polynomial function form of exposure and the

order of interaction. Bobb et al. [2013] used reduced hierarchical models to estimate health

effects of simultaneous exposure to multiple pollutants by modeling nonlinear associa-

tions of main effects of the pollutants and their interactions via natural splines. In a health

effects analysis of mixtures, BKMR [Bobb et al., 2014] was developed to avoid spline

basis specifications and estimate the exposure-response relationship and facilitate infer-

ence on the strength of the association between individual pollutants and health outcomes.
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However, these dimension reduction or variable selection techniques typically consider

cross-sectional data. Very few methods so far directly address the lagged effect of multiple

pollutants and their potential interactions over time.

A direct approach to incorporate the temporal dynamics of lags from multiple pollutants

is a multiple regression model with all lagged measurements from multiple pollutants and

their pairwise product terms as predictors. The model is certainly not optimal due to large

number of parameters. The effect estimates are often not available by using traditional

methods when the number of predictors is greater than sample size. Even with a larger

sample size, the effect estimates can be unstable due to collinearity and statistical power

for detecting main effect and/or interaction effect will typically be very low. Dimension

reduction techniques such as a parametric DLM can be employed to help with the curse

of dimensionality, but the number of predictors relative to sample size can still be large.

A natural approach to tackle the problem is to induce sparsity in estimation. Penalized

regression methods such as LASSO [Tibshirani, 1996] is a popular solution for variable

selection that identifies a small subset of predictors highly associated with the outcome

through selection and shrinkage.

The general structure of the statistical problem that we are solving is how to perform

variable selection and screening in the model accounting for pairwise interaction effects

with S groups of predictors given as

y =
S∑
j=1

Xjβj +
∑
k<l

Xklγkl + ε (5.1)

where Xj is the n × pj design matrix for group j with corresponding coefficient vector

βj of length pj for j = 1, · · · , S and Xkl be the n × (pkpl) design matrix for two-way

interaction between group k and group l where γkl is the corresponding (pkpl)−vector of

interaction coefficients for 1 ≤ k < l ≤ S, and ε is the error vector following a multivariate

standard Gaussian distribution. The group configuration can be defined through (a) set of

basis functions representing nonlinearity or distributed lag structure, (b) multiple serially

measurements from the same variable, (c) dummy variables representing multiple levels of

categorical variables, or (d) natural grouping based on domain knowledge. We will give
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examples later in this chapter. In addition, a sparse solution under strong heredity imposed

at a group level is considered. Namely, an interaction term can be nonzero only when its

corresponding main effect terms are nonzero.

We explain how a multi-pollutant DLM with consideration of lagged effects fits into the

structure presented in (5.1) by expanding an individual pollutant into a group of variables

containing its current and past measurements. We consider the scenario with S serially

measured pollutants in association with a serially measured continuous health outcome

for time t = 1, · · · , T . Assume that the maximum number of lags for pollutant s is Ls

with s = 1, · · · , S. Let xts denote the measurement of pollutant s at time t. Let xts =

(xts, · · · , xt−Ls,s)
> be the Ls + 1−vector of lagged measurements at time t for pollutant

s. We denote Xs as a T × (Ls + 1) matrix with x>ts on row t for t = 1, · · · , T . Let Xss′

be a T × (Ls + 1)(Ls′ + 1) matrix with (x>ts ⊗ x>ts′) on row t, representing inter-pollutant

interactions. Also, let y = (y1, ·, yT )> denote the vector of outcome. The saturated model

with S pollutants each with Ls lags and pairwise interaction is written as

E(y) =
S∑
s=1

Xsβs +
∑
s<s′

Xss′γss′ (5.2)

where βs is a (Ls + 1)-vector of lagged coefficients for pollutant s and γss′ is a (Ls +

1)(Ls′ + 1)-vector of coefficients for interaction between pollutant s and pollutant s′. The

number of parameters to be estimated is
∑S

s=1(Ls + 1) +
∑

s 6=s′ (Ls + 1)(Ls′ + 1). In

assessing the pollutants’ short-term effects, the pollutants are measured daily and number

of lags typically to be considered is between 7 and 14 days, corresponding to Ls = 8 or 15.

The dimensions of βss and γss′s can thus be large and some form of dimension reduction

is needed.

Recall the transformation matrix constructed for DLM introduced in Section 2.2.3. As-

sume Cs is a (Ls + 1) × ds transformation matrix applied to βs for s = 1, · · · , S. In

addition, let Css′ = Cs ⊗ Cs′ be a (Ls + 1)(Ls′ + 1) × dsds′ transformation matrix cor-

responding to γss′ following the framework of BiDLM [Muggeo, 2007] in Chapter IV. We
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have the following equations

βs = Csθs for s = 1, · · · , S

γss′ = Css′θss′ for 1 ≤ s < s′ ≤ S.

where θss and θss′s are vectors of parameters in a lower dimensional subspace. Replacing

two sets of equations into (5.2), we have

E(y) =
S∑
s=1

XsCsθs +
∑
s<s′

Xss′Css′θss′

=
S∑
s=1

Wsθs +
∑
s<s′

Wss′θss′ (5.3)

where Ws = XsCs for s = 1, · · · , S and Wss′ = Xss′Css′ for 1 ≤ s < s′ ≤ S. Wss

and Wss′s can be viewed as new design matrices for main effects and interaction effects,

respectively. The size for group s is now ds for s = 1, · · · , S and the number of parameters

is reduced to
∑S

s=1 ds+
∑

s 6=s′ dsds′ . Now we can see that the mean model in (5.3) and (5.1)

are of the same form and a variable selection technique that can be applied for selecting

main and interaction effects in (5.1) applied to (5.3).

Motivated by the need for a multi-pollutant DLM incorporating sparsity, we propose a

HiGLASSO approach to perform variable selection at a group level in (5.1) while maintain-

ing the strong heredity constraint [Bien et al., 2013]. Strong heredity enforces a model to

include interaction only when both its corresponding main effects are present in the model.

Analogous to adaptive group LASSO [Wang and Leng, 2008], weights are attached to the

penalty terms to guarantee selection consistency and estimation consistency under certain

conditions. Selection consistency implies that null variables converge to zero in probability

as n goes to infinity. Estimation consistency implies that the difference between estimated

coefficients and the true coefficients converges to zero in probability as n goes to infin-

ity. Weights, assumed as functions of model coefficients, are integratively estimated with

model coefficients in a one-stage framework.

The rest of this chapter is organized as follows. In Section 5.2, we give an overview of
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various existing variable selection approaches that are potential choices for interaction se-

lection and screening. In Section 5.3, we present the newly proposed HiGLASSO method.

In Section 5.4, we compare and contrast various potential methods via an extensive simula-

tion study in terms of their selection performance across different methods. In Section 5.5,

we illustrate the proposed method by using NMMAPS dataset. In Section 5.6, we apply

the proposed method to a dataset from Brigham and Women’s Hospital (BWH) prospec-

tive pregnancy/birth cohort study that collects biological samples and detailed clinical data

to identify important complex mixtures of chemical compounds and their possible inter-

actions that are associated with biomarkers of oxidative stress. We will conclude with a

discussion in Section 5.7.

5.2 LASSO-type Variable Selection Approaches

Two major classes of methods for variable selection methods are forward (stepwise) selec-

tion methods and penalization-based methods. Forward selection approaches provide use-

ful alternatives to penalization-based approaches due to their scalability and interpretability.

However, we focus on penalization-based approaches in this chapter. For forward selec-

tion approaches without interaction effects, we refer to Boos et al. [2009], Wasserman and

Roeder [2009], and Luo and Ghosal [2015].

5.2.1 Variable Selection without Group Structure

Consider the usual regression setting with n observations and p predictors. Let X be the

n× p design matrix, y be a n−vector of responses variables, and β = (β1, ..., βp)
> be the

p−vector of coefficients. The first-order model containing only linear main-effects without

any interactions is given as

y = Xβ + ε

where ε is the error vector following a multivariate standard Gaussian distribution. Through-

out this chapter, let ||µ||q denote the Lq−norm of a length r vector µ = (µ1, · · · , µr)>,

defined as (
∑r

i=1 ||µi||q)1/q, for 0 < q <∞.
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Ridge regression [Hoerl and Kennard, 1970] with L2−norm penalty is the first pro-

posed penalization-based approach. However, it is a remedial measure to alleviate multi-

collinearity among regression correlated set of predictor variables in a model and does not

shrink the regression coefficients to exact zero. On the other hand, LASSO [Tibshirani,

1996] utilizes L1-norm constraint to regularize the parameter vector. The LASSO estimate

is given by

β̂LASSO = arg min
β

{
||y −Xβ||22 + λ||β||1

}
.

Because of the nature of the constraint, some of the coefficients are shrunk exactly to

zero. Least angle regression [Efron et al., 2004], gradient descent algorithm, and shoot-

ing method [Fu, 1998] can be used to obtain the coefficient path with varying λ. In signal

processing literature, LASSO is also known as basis pursuit. [Chen et al., 2001]. It has

been shown that there exist certain scenarios where the LASSO is biased in estimation and

inconsistent for variable selection. Some recent approaches are proposed to construct a

de-bias LASSO estimator [Javanmard and Montanari, 2015, Tian et al., 2015].

Zou [2006] introduced adaptive LASSO where different coefficients are penalized with

different weights. The adaptive LASSO estimates are given by

β̂aLASSO = arg min
β

{
||y −Xβ||22 + λ

p∑
j=1

ŵj|βj|
}

where ŵj is the pre-specified weight assigned to |βj|. It has been shown that when weights

are chosen as ŵj = |β̂j|−γ with γ > 0 where β̂ = (β̂1, · · · , β̂p)>s is an
√
n-consistent

estimate of β, adaptive LASSO has theoretical properties - (1) consistency in variable

selection, (2) consistency in estimation, and (3) asymptotic normality. Better subset re-

gression using the nonnegative garrote [Breiman, 1995] constrains the number of nonzero

coefficients to achieve subset selection and the estimates are given by L0-norm penalty

β̂NNG = arg min
β

{
||y −Xβ||22 + λ||β||0

}
where λ||β||0 = λ

∑p
j=1 I(βj 6= 0) and I(·) is an indicator function. Zou [2006] showed

that nonnegative garrote is closely related to a special case of adaptive LASSO with γ = 1
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with additional sign constraints and nonnegative garrote can be viewed as an integrative

LASSO.

5.2.2 Variable Selection with Group Structure

The methods described in Section 5.2.1 treat each predictor variable separately and are de-

signed to select variables individually. However, there are situations where it is desirable to

choose variables in a grouped manner. Group LASSO [Yuan and Lin, 2006] was proposed

to behave like LASSO at a group level. Suppose that p predictors are divided into S groups

and pj is the size of group j for j = 1, ..., S. LetXj and βj denote the n×pj design matrix

and coefficient vector of length pj corresponding to group j, respectively. A model with

group of predictors without any interactions is given as

y =
S∑
j=1

Xjβj + ε

The objective function of group LASSO is

β̂gLASSO = arg min
βj

{
||y −

S∑
j=1

Xjβj||22 + λ
S∑
j=1

√
pj||βj||2

}
.

The L2 norm penalty induced at a group level ensures that all the coefficients within the

same group retain or drop out of a model simultaneously. In other words, variable selection

is operated at a group level. Group LARS [Efron et al., 2004], a group version of non-

negative garrote [Breiman, 1995], and block gradient descent can be applied to obtain the

solution path. Lin and Zhang introduced COmponent Selection and Smoothing Operator

(COSSO) [Lin et al., 2006], a penalized least squares method with the penalty function

being the sum of component norms rather than the sum of squared component norms, to

achieve group-level sparsity. An algorithm that iterates between the smoothing spline and

the nonnegative garrote is considered. Group LASSO and COSSO yield sparsity at a group

level but not within a group. If sparsity at both a group level and an individual level is
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desired, the sparse group LASSO [Friedman et al., 2010] with objective function

β̂sgLASSO = arg min
βj

{
||y −

S∑
j=1

Xjβj||22 + λ1

S∑
j=1

√
pj||βj||2 + λ2||β||1

}
.

may be considered.

The above variable selection approaches at a group level are not fully efficient and the

resulting variables selected could be inconsistent, due to the same amount of shrinkage

applied to each group of regression coefficients, under certain conditions. Adaptive group

LASSO [Wang and Leng, 2008] was proposed in the spirit of adaptive LASSO to serve as

a remedy. The objective function of adaptive group LASSO is given by

β̂agLASSO = arg min
βj

{
||y −

S∑
j=1

Xjβj||22 + λ
S∑
j=1

ŵj||βj||2
}
.

A common choice of weights is ŵj = ||β̂j||−γ2 with γ > 0 for j = 1, · · · , S. The proposed

adaptive group LASSO has been shown to achieve selection consistency and estimation

consistency.

5.2.3 Variable Selection Models for Interaction Identification with Hered-

ity Assumption

If interactions could be selected under no heredity constraint, the approaches introduced

in the previous two sections can be conveniently extended by including the interaction

terms as a product of two variables in the feature space. Consider the p-predictor setting in

Section 5.2.1. Let xj be the n−vector for predictor j with coefficient βj , for j = 1, · · · , p.

Let γkl be the coefficient of interaction between xk and xl. Conventionally, interaction

models are studied under strong or weak heredity constraints [Hamada and Wu, 1992,

Chipman, 1996, Nelder, 1977, Peixoto, 1987], defined as follows.

• Strong Heredity: If an interaction term is included in the model, both of its corre-

sponding main effects must be present in the model as well. That is, if γkl 6= 0, then

βk 6= 0 and βl 6= 0.
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• Weak Heredity: If an interaction term is included in the model, either of its corre-

sponding main effects must be present in the model as well. That is, if γkl 6= 0, then

βk 6= 0 or βl 6= 0.

The heredity property is also known as “marginality” and “being hierarchically well-formulated.”

Some statisticians argue that models violating heredity constraints are not sensible and

heredity constraints make model interpretation easier [McCullagh, 1984] and improve sta-

tistical power [Cox, 1984]. Constraints to enforce heredity have been incorporated into tra-

ditional step-wise selection approaches [Wu et al., 2010, Bickel et al., 2010, Crews et al.,

2011]. Recently, Hao and Zhang [2014] proposed iFORM that allows linear interactions

to appear in the model only when the main effects have already been selected. Narisetty

et al. [2017] proposed Selection of Non-linear Interactions by a Forward stepwise method

(SNIF) as an extension to account for potential non-linear interactions. Again, we focus on

penalization-based approaches instead of selection approaches in the rest of this section.

A generic second-order model accounting for pairwise interaction effects with individ-

ual predictors is given as

y = Xβ +XIγ + ε

whereXI = [x1 � x2, · · · ,xp−1 � xp] denotes the n× [p(p− 1)/2] design matrix for in-

teraction and γ = (γ12, · · · , γp−1,p)>. Yuan et al. [2009] modified the nonnegative garrote

algorithm by adding linear inequality constraints to enforce heredity. Choi et al. [2010]

proposed a non-convex strong heredity interaction model (SHIM) by reparametrizing the

interaction coefficients. The interaction coefficients are expressed as scaled products of

their corresponding main effect terms, namely γij = ηijβiβj for 1 ≤ i < j ≤ p where

ηijs are scalar parameters to be penalized. The strong heredity is therefore automatically

enforced. Penalization is imposed on the derived scalars for interaction, rather than the

interaction coefficients at the original scale. An iterative algorithm between LASSO and

group LASSO is applied to estimate the model coefficients. The hierNet approach [Bien

et al., 2013], a LASSO for hierarchical interactions, imposes a set of convex constraints

to LASSO to accommodate the hierarchical restrictions. Specifically, it minimizes the fol-
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lowing object function

1

2
||y −Xβ −

p∑
k=1

p∑
l=1

(xk · xl)γkl||22 + λ1

p∑
j=1

|βj|+
1

2
λ2

p∑
k=1

p∑
l=1

|γkl|

subject to the constraints γkl = γlk ∀ 1 ≤ k, l ≤ p and
∑p

l=1 |γkl| ≤ |βk| ∀k = 1, · · · , p.

The first constraint assumes symmetry and the second constraint induces strong heredity.

The convex relaxation of the non-convex constraints is employed by separating the positive

and negative parts of each βj . An Alternating Direction Method of Multipliers (ADMM)

algorithm [Boyd et al., 2011] can be used to solve the constrained optimization problems.

A FrAmework for Modeling Interactions with a convex penaLtY (FAMILY) [Haris et al.,

2016] was recently proposed to generalize LASSO using main effects only, LASSO using

main effects and all pairwise interactions, and hierNet. It can be formulated as a convex

optimization problem and can also be solved using an efficient ADMM algorithm.

Learning Interactions via Hierarchical Group-Lasso (GLinternet) [Lim and Hastie, 2013]

utilizes overlapped group LASSO penalty to enforce the strong heredity. The objective

function is given by

1

2
||y −Xβ −

p∑
k=1

p∑
l=1

[xk,xl,xk · xl]γ∗kl||22 + λ1||β||1 +
1

2
λ2

p∑
k=1

p∑
l=1

||γ∗kl||2

where each γ∗kl is a three dimensional vector with the first two elements corresponding

to main effects and the third element corresponding to interaction effect. Note that the

main effects appear twice in the above function, creating an overlap in the penalty term.

Strong heredity constraints are naturally respected because group LASSO penalties enforce

all the variables within the same group to be selected or not selected. In other words,

whenever an interaction is estimated to be nonzero, both its associated main effects are also

included in the model since all three terms are bundled in the same group. A Fast Iterative

Soft Thresholding Algorithm (FISTA) can be adapted to solve the GLinternet optimization

problem [Beck and Teboulle, 2009]. A similar approach that employs composite absolute

penalties [Zhao et al., 2009] was also proposed for selection under hierarchical constraints.

Following the notation in Section 5.2.2, a second-order model accounting for pairwise
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interaction effects with groups of predictors is given as

y =
S∑
j=1

Xjβj +

p−1∑
k=1

p∑
l=k+1

Xklγkl + ε

where Xkl is the n × (pkpl) design matrix for two-way interaction between group k and

group l and γkl be the corresponding (pkpl)−vector of interaction coefficients. Variable

selection using Adaptive Nonlinear Interaction Structures in High dimensions (VANISH)

[Radchenko and James, 2010] is by far the only penalization-based method capable of per-

forming variable selection with both main effects and interaction effects at a group level

while maintaining the strong heredity constraints. The group structure was originally de-

signed to allow for nonlinear effects but it can potentially accommodate other situations

where groups are defined otherwise. VANISH optimizes a penalized objective function as

1

2
||y −

S∑
j=1

Xjβj −
p−1∑
k=1

p∑
l=k+1

Xklγkl||22 + λ1

p∑
j=1

(||βj||22 +
∑
k>j

||γkj||22 +
∑
l>j

||γjl||22)1/2

+ λ2

p−1∑
k=1

p∑
l=k+1

||γkl||2.

By construction, βjs and γkls are bundled together in the first penalty term so main effect

coefficients and interaction coefficients are all zero or all nonzero, based on the property of

group LASSO penalty. An accelerated algorithm that incorporates block gradient descent

and involves a single sweep through all variables can be applied to reduce computational

burden.

5.3 Hierarchical Integrative Group LASSO (HiGLASSO)

We propose a HiGLASSO framework to solve the variable selection problem at a group

level with two-way interaction using integrative LASSO, while maintaining the strong

heredity constraints. The framework serves as the first penalization-based approach that

incorporates integrative weights in group variable selection models of interaction with

heredity. It has theoretical advantages of achieving selection consistency and estimation
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consistency. A quadratic approximation for penalty function is considered to circumvent

the non-convex problem and reduces computational burden.

5.3.1 Major Features of HiGLASSO

HiGLASSO has four major properties.

(1) Induces sparsity for variable selection (LASSO) :

As all the methods introduced in Section 5.2 , HiGLASSO induces sparsity by including

penalty terms in least squared objective function so it is capable of performing variable

selection akin to other LASSO-based approaches.

(2) Maintains group structure (Group):

HiGLASSO has the capability to select predictive variables in a grouped manner. The

group structure can be defined based on the context of application. For example, it could

be

(a) set of basis functions representing nonlinear relationships. For example, using cubic

splines without intercept, a single continuous variable x can be expanded to a group

of three variables [x, x2, x3]. Without loss of generality, we consider the group struc-

ture to be nonlinear expansion of continuous variables via some pre-specified basis

functions in our presentation. Particularly, with p basis functions B1(·), · · · , Bp(·), a

continuous variable x can be expanded to a group of p variables B1(x), · · · , Bp(x).

(b) multiple serially measurements from the same variable. For example, a serially

measured pollutant xt can be expanded to a group of (L + 1) lagged variables

[xt, · · · , xt−L] where xt is the pollutant measured at time t.

(c) dummy variables representing different levels of categorical variables. For example,

a 3-level categorical variable x can be expanded into a group of two dummy variables

[I(x = 1), I(x = 2)] where x = 0, 1, or 2.

114



(d) natural grouping based on domain knowledge. For example, exposure markers shar-

ing the same metabolic pathway may be classified in the same group.

HiGLASSO framework is very general and can be applied to broader context where two-

way interaction is considered among a set of predictors and selection is to be conducted at

a group level. All the variables within the same group are selected or not selected. The

sparsity is induced at a group level, not individual level.

(3) Imposes strong heredity on two-way interaction (Hierarchical):

When conducting statistical analysis, a standard practice is to consider the higher-order

terms only when the corresponding lower-order terms are present in the model. It is well-

known that not properly adjusting for nonlinear main effects might result in spurious de-

tection of interaction effects [Bauer and Cai, 2009, Cornelis et al., 2012, Mukherjee et al.,

2012, He et al., 2016], since the higher-order terms for main effects and interaction terms

between two predictor are not easily differentiable when the signal-to-noise level is low.

Therefore, it is desirable to impose strong heredity constraints in an interaction model al-

lowing for nonlinear main effects. HiGLASSO reparametrizes each interaction coefficient

as a scaled product of its corresponding main effect coefficients, in the spirit of SHIM [Choi

et al., 2010]. Penalization is operated on the derived scalar parameters rather than the orig-

inal interaction coefficients. The strong heredity is thus maintained through the underlying

construction.

(4) Incorporates weights (Integrative):

LASSO penalizes each variable in the same magnitude. Likewise, group LASSO penal-

izes each group of variables in a similar manner. It has been shown that the same tuning

parameter λ (amount of penalization) for each predictor/group without assessing their rela-

tive importance may degrade the estimation efficiency and affect the selection consistency

[Leng et al., 2006, Zou, 2006, Yuan and Lin, 2007]. Adaptive LASSO [Zou, 2006] and

adaptive group LASSO [Wang and Leng, 2008] serve as potential remedies. A separate

penalty factor can be assigned to each predictor/group based on initial estimates. Typically,

a two-stage approach is employed.
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In the first stage, the reciprocal of the absolute values of the ordinary least squared

(OLS) estimates are obtained as adaptive weights. In the second stage, the adaptive weights

are substituted into the penalty term and the penalized least squared function can be mini-

mized in terms of the model coefficients. However, this approach has two major limitations.

When p > n, OLS does not work. One workaround is to recourse to the estimate obtained

from “unadaptive” version of LASSO or group LASSO, following adaptive elastic-net [Zou

and Zhang, 2009]. Furthermore, the estimation consistency only holds when the adaptive

weights are inversely proportional
√
n-consistent estimates of β to a positive power. Since

we consider groups of variables and their two-way interaction, the number of effective pre-

dictors can potentially be larger than the sample size. It is difficult to obtain a consistent

estimate of main effects and interaction effects in a high-dimensional situation. We there-

fore consider estimating the weights and model parameters simultaneously in HiGLASSO.

None of the existing variable selection methods targeted towards interaction possesses

all four features simultaneously. On one hand, GLinternet [Lim and Hastie, 2013] and

VANISH [Radchenko and James, 2010] have the first three features but it is difficult to

incorporate the fourth since these two methods have a penalty term that involves both main

effect terms and interactions. Shrinking interaction terms and their corresponding main

effect terms by the same penalty factors is not optimal. On the other hand, SHIM [Choi

et al., 2010] only considers linear main effects and linear interaction effects and it possess

features (1), (3), and (4). The problem with imposing group structure on SHIM is that

obtaining adaptive weights following Breiman [1995] and Zou [2006] might not be feasi-

ble anymore because of high dimensionality. HiGLASSO is developed to overcome the

barriers.

5.3.2 Developing the HiGLASSO Framework

Consider the regression setting where there are n subjects and S groups of predictors with

pj as the size of group j for j = 1, · · · , S. Let xijk denote the kth predictor in group j for

subject i. Let xij = (xij1, · · · , xijpj)> be the vector of group j for subject i and let Xj be
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the n × pj design matrix for group j with x>ij on row i. Let Xjj′ denote the n × (pjpj′)

design matrix for two-way interaction between group j and group j′ with (xij ⊗ xij′)>

on row i, for 1 ≤ j < j′ ≤ S. Let yi be the continuous outcome for subject i and let

y = (y1, · · · , yn)> be the outcome vector of length n. Without loss of generality, we center

all variables and leave out intercept and covariates in the subsequent presentation. Also, we

will consider the group structure defined as a set of basis functions representing nonlinear

relationships.

We consider a linear regression model with main effect terms and all possible two-way

interaction terms, that is

E(y) =
S∑
j=1

Xjβj +
∑
j<j′

Xjj′γjj′ (5.4)

whereβj is the pj−vector of main-effect coefficients for group j and γjj′ is the (pjpj′)−vector

of coefficients for cross-product interaction between group j and group j′. We emphasize

that we do not consider inter-group interaction and only consider inter-group interaction.

The quadratic terms are not included either. In total, there are
∑S

j=1 pj main-effect terms

and
∑S−1

k=1

∑S
l=k+1 pkpl interaction terms. The dimension grows linearly with group size

pj and grows quadratically with number of groups S. It can be large with moderate S and

pj . For example, if S = 10 and pj = 4 ∀j, there will be 40 main effect terms and 720

interaction terms. In many occasions, the OLS solution is not available. The goal is to in-

corporate a weight function to perform variable selection at a group level while maintaining

the hereditary constraints.

In order to enforce heredity constraints, we rewrite (5.4) as

E(y) =
S∑
j=1

Xjβj +
∑
j<j′

Xjj′ [ηjj′ � (βj ⊗ βj′)]

by reparametrizing γjj′ = ηjj′ � (βj ⊗ βj′) for 1 ≤ j < j′ ≤ S where ηjj′ is a

(pjpj′)−vector of scalars for interaction between group j and group j′. Each interaction

coefficient is written as the product of a scalar and its corresponding two main effect coef-

ficients. Whenever βj = 0 and/or βj′ = 0, γjj′ = 0. If γjj′ 6= 0, it implies that ηjj′ 6= 0,
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βj 6= 0, and βj′ 6= 0. Therefore, the heredity constraints are maintained.

For the purpose of variable selection with heredity constraints, we impose penalization

on βjs and ηjj′s rather than βjs and γjj′s. We consider the penalized least squares criterion

given by

min
βj ,ηjj′

1

2
||y−

S∑
j=1

Xjβj −
∑
j<j′

Xjj′ [ηjj′ � (βj ⊗βj′)]||22 + λ1

S∑
j=1

||βj||2 + λ2
∑
j<j′

||ηjj′||2.

(5.5)

λ1 and λ2 controls the amount of shrinkage at main-effect levels and interaction levels,

respectively. When both βj and βj′ are not equal to zero, the model has the flexibility of

selecting main effects only or both main effects and interaction effects, with different λ2

values.

Adaptive ideas have been widely used in previous literature [Zou, 2006, Wang et al.,

2007, Zhang and Lu, 2007]. Penalizing different parameters differently can improve esti-

mation efficiency. We apply the adaptive idea to improve criterion (5.5) as

min
βj ,ηjj′

1

2
||y−

S∑
j=1

Xjβj−
∑
j<j′

Xjj′ [ηjj′�(βj⊗βj′)]||22+λ1
S∑
j=1

wj||βj||2+λ2
∑
j<j′

wjj′||ηjj′||2.

(5.6)

where wjs and wjj′s are pre-specified weights. The idea is to lightly penalize the coef-

ficients with stronger effects and to heavily penalize the coefficients with weaker effects.

Hence, the resulting coefficient estimates from criterion (5.6) are more coherent.

Following Breiman [1995], Zou [2006], and Wang and Leng [2008], the weights can

be obtained using OLS estimates. Accounting for reparametrization, the weights can be

computed as

wj =
1

||β̂OLSj ||22
, wjj′ =

1

||γ̂OLSjj′ � (β̂OLSj ⊗ β̂OLSj′ )||22

where β̂OLSj s and γ̂OLSjj′ s are OLS estimates and� is defined as element-wise division oper-

ator for vectors. However, the number of effective predictors (i.e.
∑S

j=1 pj +
∑S−1

k=1

∑S
l=k+1 pkpl)

can be larger than sample size n and the OLS estimates are not available. One alternative is

to replace OLS estimates with ridge regression estimates [Choi et al., 2010]. The issue be-

comes the selection of tuning parameter for ridge regression. In addition, inconsistency of
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ridge regression estimates prohibit an adaptive-LASSO-type approach to relish estimation

consistency. We therefore consider an integrative approach to estimate weights and model

parameters concurrently.

HiGLASSO is useful in identifying nonlinear main effects and nonlinear interaction

effects under heredity constraints. If identifying the composition of nonlinearity is the ad-

ditional aim, HiGLASSO incorporating inter-group sparsity may be considered. Criterion

(5.6) can be extended as

min
βj ,ηjj′

1

2
||y −

S∑
j=1

Xjβj −
∑
j<j′

Xjj′ [ηjj′ � (βj ⊗ βj′)]||22

+λ1

S∑
j=1

wj||βj||2 + λ2
∑
j<j′

wjj′||ηjj′ ||2 + λ3

S∑
j=1

||βj||1 + λ4
∑
j<j′

||ηjj′ ||1 .

The two additional penalty terms induce sparsity at individual level in the spirit of sparse

group LASSO [Friedman et al., 2010]. For instance, if a certain variable only has linear re-

lationship with the response, all the variables corresponding to nonlinear effects within the

group can be shrunk toward zero. However, introduction of two additional tuning param-

eters massively increase computational burden. Also, it is notoriously difficult to consider

integrative weights for the two additional terms. This extension is beyond the scope of

this chapter and we will focus on the HiGLASSO framework including only group-level

selection and interaction in the rest of presentation.

5.3.3 Integrative Weight Function Approximation

To estimate weights and model parameters simultaneously, the first step is to specify the

functional form of the weight functions. We consider weight functions based on the ex-

treme values of each group, namely,

wj ≡ exp[−||βj||∞
σ

] for j = 1, · · · , S (5.7)

wjj′ ≡ exp[−||ηjj
′ ||∞
σ

] for 1 ≤ j < j′ ≤ S
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where ||µ||∞ is the L∞ norm of µ defined as the largest absolute element of µ and σ is

a pre-determined scale parameter. In most practical situation, fixing σ = 1 is sufficient.

The weights are constructed in a way that a exponentially decayed weight in terms of the

extremum of a group is assigned to the group. Some other common choices are L0 norm,

L1 norm, and L2 norm. The rationale of choosing L∞ norm is that in many biological

applications more emphasis is placed on largest effect within a group rather than ‘average’

effect [Pan and Zhao, 2016]. For example, in modeling the lagged effects of air pollution in

association with some health outcomes, each group of variables may represent the lagged

measurements of the same pollutant over time. The effect may peak at a certain point or

linger over the entire period. The value of the largest effect across different time points is

more relevant in the context of identifying important pollutants. In addition, since we do

not impose sparsity within each group, the extremum of a group is more indicative than

other ‘averaging’ quantities for assessing the effect size of the group.

The first term of criterion (5.6) involves the product of βjs and ηjj′s. Thus, a (S +

1)−step iterative approach to cycle through β1, · · · ,βS , and ηjj′s until convergence is

considered. We first describe in details how to optimize the criterion in terms of βj given

β̂j′s with j′ 6= j and η̂jj′s from previous steps in Section 5.3.3.1. How to obtain η̂jj′

estimates given β̂js can be conducted in a similar fashion and will be outlined in Section

5.3.3.2.

5.3.3.1 Update Main-effect Coefficients

By substituting the specified weight function (5.7) into (5.6), given β̂j′s with j′ 6= j and

η̂jj′s, the objective function can be expressed as

min
βj

1

2
||ỹ − X̃jβj||22 + λ1exp[−||βj||∞

σ
]||βj||2 (5.8)

such that

ỹ = y −
∑
k 6=j

Xkβ̂k −
∑
k,l 6=j

Xkl[η̂kl � (β̂k ⊗ β̂l)]

X̃j = Xj +
∑
k<j

Xkj · diag(η̂kj)(β̂k ⊗ Ipj) +
∑
l>j

Xjl · diag(η̂jl)(Ipj ⊗ β̂l)
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where Ipj is an identity matrix of dimension pj . X̃j and ỹ represent the working design

matrix and working response vector at current step. Technically, the minimization prob-

lem in (5.8) can be solved directly using gradient descent algorithm or Newton-Raphson

algorithm [Gill et al., 1981].

Observing that the first term in (5.8) is in quadratic form of βj , a direct application of

local quadratic approximation (LQA) proposed by Fan and Li [2001] can be used to solve

the minimization problem with closed form. Let Pen1(βj) denote the penalty term in (5.8).

If we apply LQA approach, Pen1(βj) can be approximated as

Pen1(βj) ≈ Pen1(β̂
(m)
j ) +

1

2

pj∑
k=1

d
(m)
jk [β2

jk − (β̂
(m)
jk )2]

where βjk is the kth element of βj , β̂
(m)
j is the estimate of βj from mth iteration, and djk is

defined through ∂Pen1(βj)

∂βjk
= djkβjk. By calculating the derivative of Pen1(βj), we have

djk =

exp[− ||βj ||∞
σ

](||βj||2)−1 if |βjk| 6= ||βj||∞

exp[− ||βj ||∞
σ

](||βj||2)−1 − exp[− ||βj ||∞
σ

]||βj||2(|βjk|σ)−1 if |βjk| = ||βj||∞.

(5.9)

The problem with LQA approximation is that when |βjk| = ||βj||∞, djk might be negative

and there is no guarantee that the approximated Penj(βj) to be convex still.

Pan and Zhao [2016] proposed generalized local quadratic approximation (GLQA) to

operate convex quadratic approximation for a penalty function. Let P1(βj) denote GLQA

of Pen1(βj). Three preferred properties of P1(βj) are

1. P1(βj) is convex

2. P1(β̂
(m)
j ) = Pen1(β̂

(m)
j )

3. ∂P1(βj)

∂βjk
|
βjk=β̂

(m)
jk

=
∂Pen1(βj)

∂βjk
|
βjk=β̂

(m)
jk
∀ k.

Essentially, P1(βj) has to be a convex quadratic function of βj and the functional value up
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to first derivative measured at β̂(m)
j should retain. A natural choice is of the form

P1(βj) = Pen1(β̂
(m)
j ) +

1

2

pj∑
k=1

|d(m)
jk |[(β

2
jk + c1)

2 + c2].

c1 and c2 can be solved using the second and third conditions as above. The resulting choice

of P1(βj) becomes

P1(βj) = Pen1(β̂
(m)
j ) +

1

2

pj∑
k=1

|d(m)
jk |[(β

2
jk − (1−

d
(m)
jk

|d(m)
jk |

)β̂
(m)
jk )2 − (β̂

(m)
jk )2].

If we rewrite the P1(βj) in matrix form, (5.8) can be approximated as

1

2
||ỹ − X̃jβj||22 +

1

2
λ1β

>
j D

(m)
j βj − λ1c(m)>βj + Constant

whereD(m)
j =diag[(d

(m)
j1 , · · · , d(m)

jpj
)] and c(m) = ((|d(m)

j1 |−d
(m)
j1 )β̂

(m)
j1 , · · · , (|d(m)

jpj
|−d(m)

jpj
)β̂

(m)
jpj

)>.

βj can be updated in closed-form as

β̂j = (X̃>j X̃j + λ1D
(m)
j )−1(X̃>j ỹ + λ1 · c(m)). (5.10)

5.3.3.2 Update Interaction Scalars

By substituting the specified weight function (5.3.3) into (5.6), given β̂js, the objective

function can be expressed as

min
βj

1

2
||ỹ −

∑
j<j′

X̃jj′ηjj′ ||22 + λ2
∑
j<j′

exp[−||ηjj
′||∞
σ

]||ηjj′ ||2 (5.11)

where

ỹ = y −
S∑
k=1

Xkβ̂k

X̃jj′ = Xjj′diag[(β̂j ⊗ β̂j′)] for 1 ≤ j < j′ ≤ S.

Let Pen2(ηjj′) denote the individual penalty term in (5.11) and let P2(βjj′) denote
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GLQA of Pen2(ηjj′). We have

P2(ηjj′) = Pen1(η̂
(m)
jj′ ) +

1

2

pjpj′∑
k=1

|d(m)
jj′k|[(η

2
jj′k − (1−

d
(m)
jj′k

|d(m)
jj′k|

)η̂
(m)
jj′k)

2 − (η̂
(m)
jj′k)

2]

where ηjj′k is the kth element of (pjpj′)−vector of ηjj′ and djj′k is similarly defined through
∂Pen2(ηjj′ )

∂ηjj′k
= djj′kηjj′k as (5.9). (5.11) can be approximated as

1

2
||ỹ − X̃η||22 +

1

2
λ2η

>D(m)η − λ2C(m)>η + Constant

where X̃ = [X̃12, · · · , X̃S−1,S], η = (η>12, · · · ,η>S−1,S)>,

D(m) = diag[(d
(m)
121 , · · · , d

(m)
12(p1p2)

, · · · , d(m)
(S−1)S(pS−1pS)

], and C(m) is a [S(S − 1)/2] ×

[
∑

j<j′ pjpj′ ] block diagonal matrix such that the block corresponding to the interaction

between group j and group j′ is defined as a row vector of length pjpj′ with kth element

(|d(m)
jj′k| − d

(m)
jj′k)η̂

(m)
jj′k. ηjj′s can then be updated in closed form as

η̂ = (X̃>X̃ + λ2D
(m))−1(X̃>ỹ + λ2 ·C(m)). (5.12)

5.3.4 Algorithm

In previous section, we provided mathematical details about how to update individual βj

and all ηjj′s at each iteration. Here we describe the full algorithm for estimating βjs and

ηjj′s i HiGLASSO. Since the least squares criterion involves the product of βj and ηjj′ , an

iterative approach is employed. We first fix ηjj′ to estimate βj , then fix βj to estimate ηjj′ ,

and iterate the two steps until converge. The entire algorithm proceeds as follows:

Step 1: Orthogonalize main-effect design matrices Xj for j = 1, · · · , S and interaction de-

sign matricesXjj′ for 1 ≤ j < j′ ≤ S and center response vector y.

Step 2: Initial β̂(0)
j for j = 1, · · · , S and η̂(0)

jj′ for 1 ≤ j < j′ ≤ S. Set m = 1.

Step 3: For each j in 1, · · · , S, β̂(m)
j is updated via closed-form formula in (5.10), given

η̂
(m−1)
kj s and β̂(m)

k s for k < j, and η̂(m−1)
jl s β̂(m−1)

l s for l > j. Backtracking line
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search algorithm is followed to guarantee that β̂(m)
j leads to a lower value of the

objective function (5.8) than β̂(m)
j .

Step 4: Given β̂(m)
j s for j = 1, · · · , S, η̂(m)

jj′ s are updated via closed-form formula in (5.12).

Backtracking line search algorithm is followed to guarantee that η̂(m)
jj′ s leads to a

lower value of the objective function (5.11) than η̂(m−1)
jj′ s.

Step 5: Stop if the percentage change of penalized likelihood value is less than a pre-specified

margin δ, namely
P

(m−1)
n − P (m)

n

P
(m−1)
n

< δ.

where P (m)
n is the value of (5.6) evaluated at β̂(m)

j s and η̂(m)
jj′ s and η̂(m)

jj′ s. Otherwise,

let m = m+ 1 and repeat Step 3 and Step 4.

A common choice of β̂(0)
j s and η̂(0)

jj′ s is group LASSO estimator. Since we utilize sur-

rogate penalties to approximate the original penalties, there is no guarantee that each of the

S+1 updates decreases the value of penalized least squares criterion. In addition, GLQA is

more accurate in the neighborhood of previous update. We employ backtracking line search

algorithm [Dennis Jr and Schnabel, 1996] to ensure that the penalized least squares crite-

rion monotonically decreases throughout the entire procedure. Backtracking line search

method to determine the maximum amount to move along a given search direction based

on the Armijo-Goldstein condition [Armijo, 1966]. At each update, take the quantity ob-

tained from the closed-form formula (5.10) or (5.12) as a candidate. If the candidate does

not result to a decrease of the objective function, iteratively shrink the step size between

the previous update and the candidate quantity until a decrease of the objective function is

observed. At each step throughout the algorithm, now the value of the objective function

decreases so the solution is guaranteed to converge.

5.3.5 Asymptotic Properties

The theoretical properties of HiGLASSO are introduced in this section. For the purpose

of presentation, let Θ denote the vector of all coefficients, including main-effect coef-

ficients and interaction coefficients in original scale. Namely, Θ = (β>,η>)> where
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β = (β>1 , · · · ,β>S )> and η = (η>12, · · · ,η>S−1,S)>. Without loss of generality, we rear-

range the group indices to facilitate the proofs. Let first s0 ≤ S groups of predictors have

nonzero main effects. Suppose there are i0 nonzero two-way interaction terms out of at

most s0(s0 − 1)/2 possible pairs under strong heredity constraints and let I denote the

set of (j, j′) pairs with nonzero interaction effects. Denote β(1) = (β>1 , · · · ,β>s0)
> and

β(0) = (β>s0+1, · · · ,β>S )>. Likewise, let γ(1) be a vector concatenating all nonzero inter-

action vectors and let γ(0) be a vector concatenating all irrelevant interaction vectors. Let

an = max(λ1, λ2). The subscript n in an reflects the fact that the tuning parameter λ1 and

λ2 depend on sample size. Similarly, σ ≡ σn.

Theorem 1: Assume ann−1/2 →p 0 and σn → 0 as n→∞. Under the regular conditions

(A)-(D) of Andersen and Gill [1982], there exists a local minimizer such that ||Θ̂−Θ||2 =

Op(n
−1/2).

Proof: We first rewrite penalized least squares function (5.6) as

Q(Θ) = −l(Θ) + λ1

S∑
j=1

wj(βj)||βj||2 + λ2
∑
j<j′

wjj′(ηjj′)||ηjj′||2

where l(Θ) denotes the log-likelihood of Θ, corresponding to the least square term. X =

[X1, · · · ,XS,X12, · · · ,XS−1,S]. Let ∇l(Θ) = ∂
∂Θ
l(Θ) and ∇2l(Θ) = ∂2

∂Θ∂Θ>
l(Θ).

we have ∇l(Θ) = ∂
∂Θ
l(Θ) = Op(

√
n) and ∇2l(Θ) − I(Θ) = Op(n) where I(Θ) =

E[∇l(Θ)∇l(Θ)>]. Define µ = (µ>1 , · · · ,µ>S ,µ>12, · · · ,µ>S−1,S)> as a vector of length
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∑S
j=1 pj +

∑S−1
k=1

∑S
l=k+1 pkpl representing departure from underlying true Θ.

Q(Θ + n−1/2µ)−Q(Θ)

=− l(Θ + n−1/2µ) + l(Θ) + λ1

S∑
j=1

wj(βj + n−1/2µj)||βj + n−1/2µj||2 − λ1
S∑
j=1

wj(βj)||βj||2

+ λ2
∑
j<j′

wjj′(ηjj′ + n−1/2µjj′)||(ηjj′ + n−1/2µjj′)||2 − λ2
∑
j<j′

wjj′(ηjj′)||ηjj′||2

=− l(Θ + n−1/2µ) + l(Θ) + λ1

S∑
j=1

wj(βj + n−1/2µj)||βj + n−1/2µj||2 − λ1
s0∑
j=1

wj(βj)||βj||2

+ λ2
∑
j<j′

wjj′((ηjj′ + n−1/2µjj′))||(ηjj′ + n−1/2µjj′)||2 −
∑
j,j′∈I

wjj′(ηjj′)||ηjj′ ||2

≥− l(Θ + n−1/2µ) + l(Θ) + λ1

s0∑
j=1

wj(βj)(||βj + n−1/2µj||2 − ||βj||2)

+ λ2
∑
j,j′∈I

wjj′(ηjj′)(||ηj + n−1/2µj||2 − ||ηj||2) + op(1)

≥− l(Θ + n−1/2µ) + l(Θ)− s0λ1
√
n||µ||2 − i0λ2

√
n||µ||2 + op(1)

=− n−1/2[∇l(Θ)]>µ− 1

2n
µ>[∇2l(Θ)]µ[1 + op(1)]− s0λ1

√
n||µ||2 − i0λ2

√
n||µ||2 + op(1)

=−Op(1)µ+
1

2
µ>I(Θ)µ[1 + op(1)]− s0λ1

√
n||µ||2 − i0λ2

√
n||µ||2 + op(1)

(5.13)

Under the condition that ann−1/2 →p 0, we have the last three terms of (5.13) converge in

probability to a constant, that is

−s0λ1
√
n||µ||2 − i0λ2

√
n||µ||2 + op(1) = op(1).

The first term converges in probability to a linear function of µ and the second term is

quadratic in µ and dominates the rest terms. Subsequently, for any ε > 0, we always can

find a sufficiently large constant C such that

lim inf
n

P [ inf
||µ||2=C

Q(Θ + n−1/2µ) > Q(Θ)] > 1− ε.
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Hence, there exists a local minimizer such that ||Θ̂−Θ||2 = Op(n
−1/2).

Theorem 2 (Sparsity): Assume ann−1/2 →p 0 and σn → 0 as n → ∞. Under the regular

conditions (A)-(D) of Andersen and Gill [1982], the local minimizer in Theorem 1 satisfies

P (||β̂(0)||2 = 0)→ 1 and P (||γ̂(0)||2 = 0)→ 1.

Proof: LetX(0)
M andX(1)

M denote the main-effect design matrices corresponding to β(0) and

β(1), respectively. LetX(0)
I andX(1)

I denote the main-effect design matrices corresponding

to γ(0) and γ(1), respectively. Denote dM1 and dM2 denote the first-order derivative of the

first and second penalty terms in (5.6) with respect to β(0). Likewise, denote dI1 and dI2

denote the first-order derivative of the first and second penalty terms with respect to γ(0).

The score equation to solve for β̂(0) is given by

X
(0)
M
>(y − XΘ̂) + λ1d̂M1 + λ2d̂M2 = 0

→ 1√
n
X

(0)
M
>(y − XΘ)− (

1

n
X

(0)
M
>X

(0)
M )
√
n(β̂(0) − β(0))− (

1

n
X

(0)
M
>X

(1)
M )
√
n(β̂(1) − β(1))

− (
1

n
X

(0)
M
>X

(0)
I )
√
n(γ̂(0) − γ(0))− (

1

n
X

(0)
M
>X

(1)
I )
√
n(γ̂(1) − β(1))

+
1√
n
λ1d̂M1 +

1√
n
λ2d̂M2 = 0 (5.14)

The first five terms in (5.14) are Op(n
−1/2) according to

√
n estimation consistency shown

in Theorem 1. If β̂(0) 6= 0, λ1wj/
√
n and λ2wjj′/

√
n go to infinity. Therefore, the last

two terms go to infinity with probability 1 and they dominate the score equation. In other

words, the score equation cannot be satisfied with sufficiently large sample size. Therefore,

we conclude that P (||β̂(0)||2 = 0)→ 1. P (||γ̂(0)||2 = 0)→ 1.

5.4 Simulation Study

We compare the performance of HiGLASSO to other alternative approaches for select-

ing main effects and interaction effects. Here we emphasize that the group structure we

consider is defined through a set of basis functions representing nonlinearity for all group-

based approaches. The competing methods accounting for linear main-effect terms and
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linear pairwise interaction terms include multiple regression (MR-lin), LASSO (LASSO-

lin), adaptive LASSO (aLASSO-lin), and hierNet (hierNet). The competing alternatives

accounting for nonlinear main-effect terms and all pairwise interaction terms include multi-

ple regression (MR-nonlin), LASSO (LASSO-nonlin), adaptive LASSO (aLASSO-nonlin),

group LASSO (gLASSO), adaptive group LASSO (agLASSO), and VANISH (VANISH).

Each individual variable in methods accounting for linear effects only is expanded to three

variables in methods accounting for nonlinear effects using cubic splines. Specifically, each

scalar variable xj is expanded to (xj, x
2
j , x

3
j)
>, In other words, ps = 3 ∀s = 1, · · · , S for

all nonlinear methods with group structure including gLASSO, agLASSO, VANISH, and

HiGLASSO. We use R package glmnet to implement LASSO-lin, aLASSO-lin, LASSO-

nonlin, and aLASSO-nonlin, R package hierNet to implement hierNet, and R package

gglasso to implement gLASSO and agLASSO. For VANISH implementation, we used

the R script provided by the author Radchenko and James [2010]. The iterative algorithm

for HiGLASSO is implemented in R.

5.4.1 Simulation Setting

We consider 10 simulation scenarios in total to compare different variable selection meth-

ods. In each scenario, we generate 100 simulated data sets with n = 200 and number of

predictors (p) equal to 4 or 8 using regression model

y = f(x1, · · · ,xp) + ε

where ε ∼ N(0, σ2In) with σ2 = 9 or 36. All predictor values are independently generated

from a standard normal distribution. Different specifications of mean function f(·) across

different simulation scenarios are considered and the exact specifications are presented in

Table 5.1. Considering the cubic spline expansion with two-way interaction, p = 4 and

p = 8 correspond to 66 and 276 effective predictors, respectively. In the latter case, the

number of effective predictors is greater than sample size n = 200 so MR-nonlin fit is

not available and consequently aLASSO-nonlin and agLASSO fits are not available either.

We use out-of-sample mean squared prediction error (MSPE) to choose tuning parameter
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for all methods except MR-lin and MR-nonlin. Two separate data sets are generated for

each repetition in each simulation scenario. Given a value of tuning parameter, MSPE is

computed as the MSE of the second data set based on the coefficient estimate obtained

from the first data set. The model with the tuning parameter corresponding to the lowest

MSPE is the final fit.

5.4.2 Evaluation Metrics

We present the simulation results based on the following five metrics.

1. False negative main effects rate (FNM): average number of times of non-null main-

effect terms not selected by a model.

2. False positive main effects rate (FPM): average number of times of null main-effect

terms selected by a model.

3. False negative interaction effects rate (FNI): average number of times of non-null

interaction-effect terms not selected by a model.

4. False positive interaction effects rate (FPI): average number of times of null interaction-

effect terms selected by a model.

5. Number of occurrences of violating strong heredity constraints.

MR-lin and MR-nonlin do not induce sparsity. Hence, we rely on p-value with a cutoff

at 0.05 to determine whether particular term(s) are selected or not. Specifically, a full

model with the term being tested and a reduced model without the term are fitted. A F-

test is subsequently conducted to obtain the p-value. The first four metrics are scaled to

a range between 0 and 1, reflecting the average error rate per simulated data set and per

important/unimportant term. Note that smaller values of all five metrics indicate superior

performance.

129



5.4.3 Simulation Results

We present the results in Figure 5.1 - 5.5. The left and right plots in Figure 5.1 refer to

the scenario with linear main effects only and the scenario with linear main and interaction

effects, respectively. As we can see that all linear methods are able to detect the impor-

tant main effects and interaction effects. Among the nonlinear methods, MR-nonlin and

VANISH frequently miss the signal. HiGLASSO has lower FNM in selecting main effects

but higher FNI in selecting interaction effects than agLASSO. In terms of false discovery,

all methods except MR-nonlin, VANISH, and HiGLASSO select unimportant terms at an

unignorable frequency. VANISH is extremely conservative and HiGLASSO appears to be

slightly conservative in this case. Figure 5.2 refers to the same scenarios as Figure 5.1 ex-

cept that the signal now becomes weaker. We can observe that all nonlinear methods suffer

from power loss in capturing the linear main and interaction effects. Linear methods except

MR-lin have better performance of not missing the important signals, whereas they select

unimportant variables occasionally as well.

Figure 5.3 refers to the scenario with nonlinear main effects only (left) and the sce-

nario with nonlinear main and interaction effects (right). All linear methods and nonlinear

methods except MR-lin successfully detect the relevant main effects and interaction effects.

However, except MR-nonlin and HiGLASSO, all methods have large false discover rate.

MR-nonlin and HiGLASSO are top performers in this case. Figure 5.4 presents the results

when true model is under weak heredity constraints (left) and is violating heredity con-

straints (right). As expected, HiGLASSO rarely selects the relevant interaction terms due

to the strong heredity constraints. On the other hand, hierNet never misses the important

signals but it raises FNM and FNI to ensure that strong heredity constraints are maintained.

Figure 5.5 refers to similar scenarios as Figure 5.3 except that the number of predictors

is larger and now the number of effective parameters is greater than the sample size. As

we can observe, all methods except VANISH successfully identify important main and in-

teraction effects. However, HiGLASSO is the only method capable of controlling false

discovery rate at a minimum level.

We summarized the counts of violation of strong heredity constraints out of 100 data
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repetitions in Table 5.2. As expected, hierNet, VANISH, and HiGLASSO never violate

the constraints by construction. All other methods frequently select an interaction term

without having both of its corresponding main effects terms in the model. Most of the

selected non-hierarchical interaction terms are false discovery. In summary, performance

of HiGLASSO is very competitive across all the simulation settings in terms of various

metrics. The major strength of HiGLASSO is that its false identification of unimportant

effects (based on FNM and FNI) is much smaller compared to the other methods. It also

has comparable identification rate of important effects (based on FPM and FPI). In addition,

HiGLASSO admits a simple characterization of imposing heredity. If the interaction effects

in true model does not violate strong heredity constraints, HiGLASSO is superior to other

alternatives.

5.5 Application to NMMAPS

5.5.1 Data Overview and Modeling

We first illustrate HiGLASSO and other competing variable selection approaches using

NMMAPS data. Daily time series of five pollutants (S = 5) including (1) PM10, (2) O3,

(3) SO2, (4) NO2, and (5) CO with pairwise interactions are jointly modelled in associ-

ated with non-accidental mortality counts in Chicago, Illinois between 1987 and 2000. The

goal is to identify important pollutant(s) and pollutant-pollutant interaction(s) that con-

tribute the most in explaining the variability in mortality counts. To avoid repetition, we

refer to http://www.ihapss.jhsph.edu/data/NMMAPS/ for data configuration

in details.

Following Zanobetti et al. [2000], we set Ls = 14 for s = 1, · · · , 5. Since the most

commonly seen patterns of the estimated DL function are either monotonic decreasing over

time or increasing at early lags and decreasing at later lags, cubic polynomial is able to

capture the feature, including the possible mortality displacement, and is the most common

parametric choice of the DL function in quantifying the short-term lagged effects of air

pollution [Zanobetti and Schwartz, 2008, Bhaskaran et al., 2013]. We therefore choose
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the DL functions of the five pollutants to follow a cubic polynomial (with intercept). In

other words, a 15 × 4 transformation matrix Cs is applied to vector of lagged coefficients

for s = 1, · · · , 5. In addition, transformation matrix Css′ = Cs ⊗ Cs′ is applied to the

vector of interaction effects between pollutant s and pollutant s′, for 1 ≤ s < s′ ≤ 5. The

covariates are adjusted in the same way as Dominici et al. [2005] and we refer to Sections

2.5 and 4.4 for the details.

We emphasize that the group structure of a pollutant in this application corresponds to

its serial measurements. We still only consider the linear association between pollutants

and mortality. LASSO (R package glmnet), group LASSO (R package grplasso), and

HiGLASSO are applied to the data set. Adaptive LASSO, adaptive group LASSO, and

VANISH are excluded because the R package/function does not support Poisson loglinear

model. We use 5-fold cross-validation to select tuning parameter.

5.5.2 Variable Selection Results

We present the selection results in Table 5.3. Five main-effect terms and 10 interaction

terms are ranked from top to bottom based on their importance in each of the three methods.

The terms selected by individual methods are highlighted in bold. In summary, 3, 4, 4

main-effect terms and 6, 6, 0 interaction terms are selected by LASSO, group LASSO, and

HiGLASSO, respectively.

HiGLASSO selects all pollutants except NO2, without selecting any crossproduct terms.

We can observe that LASSO and group LASSO select more variables than HiGLASSO,

akin to the observations from simulation study. Apparently, LASSO and group LASSO

are not subject to heredity constraints and some of the interaction terms are present in the

model prior to their corresponding main effect terms. Despite disparate orderings across

the three methods, the results suggest stronger effects from PM10, SO2, O3, and the inter-

action between PM10 and O3 across the board as they appear earlier in the models. The

findings reiterate the results from single-pollutant models in Chapter II and the results from

two-pollutant models in Chapter IV and can be useful for future research on more com-

prehensive understanding of the short-term joint effects of multiple pollutants on public
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health.

5.6 Application to Brigham and Women’s Hospital (BWH)

Prospective Cohort Study

5.6.1 Data Overview

We utilize the dataset from an ongoing Brigham and Women’s Hospital (BWH) prospective

pregnancy/birth cohort study that collects biological samples and detailed clinical data. The

target population is a subset of women who initiated their care at the BWH Maternal-Fetal

Medicine (MFM) clinic and intend to deliver at BWH. Exclusion criteria are women who

had their initial prenatal visit at >15 weeks gestation. Our total sample size is 161 women.

Exposure to phthalates, phenols and polycyclic aromatic hydrocarbons (PAHs) has been

documented in nearly 100% of the U.S. general population [Crinnion, 2010]. Phthalates,

diesters of 1 2-benzenedicarboxylic acid, are a group of chemicals that are widely used

as plasticizers or solvents in diverse products in food packaging, cosmetics, and other in-

dustrial products. They can enter the human body through daily ingestion and inhalation

[Schettler, 2006]. Continuous daily exposure leads to effects similar to those caused by

bioaccumulative compounds [Wang et al., 2014]. Phenols is a class of chemical com-

pounds used in the manufacture of polycarbonate plastics and epoxy resins. Applications

include use in some food and drink packaging, compact discs, and medical devices [Rezg

et al., 2014]. The most commonly seen phenolic compound is bisphenol a (BPA). BPA is

well-known to possess estrogenic activity influencing reproductive and its induction of ox-

idative stress [Rezg et al., 2014] has been demonstrated. PAHs are a class of chemicals that

occur naturally in coal, crude oil, and gasoline. Human exposure can result from inhalation

but also through ingestion of certain foods such as grilled and smoked meats. Exposure to

PAHs has also been linked with cancer, cardiovascular disease and poor fetal development.

Oxidative stress is a condition of imbalance between reactive oxygen species and neu-

tralizing antioxidant capacity within a system. Much of the damage caused by oxidative

stress arises from its modification of the DNA inside a cell’s nucleus which gives rise to
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mutations. Conditions arisen from the damage caused by oxidative stress include neu-

rodegenerative disorders, lung diseases, and heart and blood vessel disorders [Betteridge,

2000]. Oxidative stress may in turn play an important role in the etiology of adverse health

outcomes such as preterm birth [Ferguson et al., 2015] and neurodegenerative disorders

[Uttara et al., 2009].

Blood and urine were collected at the time of the participants’ enrollment visits and an-

alyzed using liquid chromatography-mass spectrometry (LC-MS) method [Li et al., 2008,

Onyemauwa et al., 2009]. In total, we consider 9 phthatlate metabolites, 11 phenols, and 8

PAHs. They are tabulated in Table 5.4. Their concentrations in urine have been shown to

be variable over time within individuals [Meeker et al., 2012] so we average the biomarker

measurements from multiple visits to reduce measurement error. We consider 8-isoprostane

as the outcome variable for oxidative stress marker in our analysis. Participant’s weight,

blood pressure, health status, new diagnoses, BMI, self-identified race, occupation, fam-

ily history, income, educational attainment, and specific gravity are collected. All these

variables are the covariates to be adjusted for in the analysis.

5.6.2 Exploratory Analysis

There are 28 exposure variables that are considered in the analysis with sample size n =

161. We first fit a multiple regression model with 8-isoprostane as the dependent variable

and only the linear terms of the 28 exposure variables as independent variables. Seven

out of 28 variables have a p-value less than 0.05. They are mono-benzyl (MBzP), mo-

noethyl (MEP), Bisphenol A (BPA), benzophenone-3 (BP3), butyl paraben (BuPB), 4-

hydroxyphenanthrene (4-PHE), and 1-hydroxypyrene (1-PYR). We present the marginal

scatter plots between 8-isoprostane and each of the seven exposure superimposed with a

Locally Weighted Scatterplot Smoothing (LOWESS) curve in Figure 5.6. As we can see

that, the LOWESS fits suggest that some exposures might display nonlinear relationship in

association with 8-isoprostane. The finding reaffirms that a model accounting for nonlin-

earity is desired.

The mode of action for simultaneous burden from multiple exposures can be synergistic
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or antagonistic. We explore 378 possible pairwise linear interactions among 28 exposure

variables by regressing 8-isoprostane on a two-way interaction term one at a time, retaining

28 main effect terms in the model throughout. Out of 378 pairs, 35 of them have a p-value

less than 0.05. For example, we observe possible interaction between mono(2-ethyl-5-

hydroxyhexyl) (MEHHP) and mono(3-carboxypropyl) (MCPP) and possible interaction

between 2-hydroxyfluorene (2-FLU) and 2- and 3-hydroxyphenanthrene (2,3-PHE). We

summarize the p-values in a heatmap in Figure 5.7. We can observe that the pairs with

smaller p-values are somewhat clustered within the same category (i.e. phthatlates, phenols,

or PAHs). The phenomenon can partly attribute to the correlation between the exposure

measurements within the same category. Since we only account for linear main effects in

this exploratory analysis, the plausible interaction can relate to either true interaction effect

or higher-order main effects. In the next section, we will resort to methods that account

for both nonlinear main effects and nonlinear interaction effects and attempt to clear the

ambiguity.

5.6.3 Variable Selection Results

We expand each of the 28 exposure variables into a group of two variables using quadratic

splines for nonlinear methods. The effective number of predictors becomes 1568. None

of the typical adaptive penalization-based approach can be applied. We therefore con-

sider LASSO-lin, hierNet, LASSO-nonlin, gLASSO, and HiGLASSO in the analysis. We

present the effects selected by the five methods in Table 5.5, with the main and interac-

tion effects selected more than once highlighted in bold. As we can see that, hierNet only

selects two main effects without any interactions and it is the most conservative method.

On the other hand, LASSO-nonlin and gLASSO tend to select more terms, especially in-

teraction effects, than other methods in this case. Based on the findings in our simulation

study and from previous studies, some of the selected effects might be false discovery and

cannot be validated by competing methods. HiGLASSO is conservative among three non-

linear methods and the strong heredity is maintained as expected. Across the five methods,

PAH 1-PYR is the most frequently selected main effect and BP3 by 1-hydroxynapthalene
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(1-NAP) is the most frequently selected interaction effect. We note that MBzP, BP3, and

1-NAP are selected by group-based nonlinear methods but not by linear methods. The re-

sult suggests potential nonlinearity in the main effects of the three compounds and further

investigation is needed. These results can be useful for future research on understanding

the effects of mixtures of chemical compounds on oxidative stress.

5.7 Discussion

In this chapter, we developed a HiGLASSO approach to perform variable selection at a

group level while maintaining the strong heredity constraint. The approach enforces spar-

sity in the solution for variable selection at a group level with strong heredity on pairwise

interaction, and estimates weights and model parameters in an integrative manner. The pro-

posed approach can handle the situations where number of effective predictors is greater

than number of sample size.

In our simulation studies and BWH application, groups of variables are defined through

nonlinear expansion to explicitly account for nonlinear main and interaction effects. One

major disadvantage of using a general model like HiGLASSO is potential loss of power.

One possible remedy is to use a hybrid model where nonlinear main-effect terms are re-

tained but only linear interaction terms are included. The other possible solution is to

induce sparsity within groups, as outlined at the end of Section 5.3.2. Inducing sparsity

within groups can facilitate with identifying specific nature of association, whether it is

linear, quadratic, or in a more complicated functional form. Also, we did not explicitly

address the issue of correlation between groups. HiGLASSO with sparsity within groups

might partly alleviate the problem. Future theoretical and empirical work is needed to

address the issue.

We derived the consistency properties of HiGLASSO when sample size grows at a rate

relative to number of predictors p. Future line of theoretical works includes deriving the

properties when number of predictor goes to infinity. Computationally, two aspects can

be improved. The running time of HiGLASSO greatly depends on how close the initial

guess of parameter estimates are to the optimum. OLS estimates are not available when
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number of effective predictors is greater than sample size. Stability of using (adaptive)

group LASSO estimates as initial guess should be further inspected. Furthermore, the

scalability of our algorithm is suboptimal at this point. The major bottleneck is that matrix

inversion is inevitable to get exact updates at each iterative step and it is computationally

expensive. One potential solution is to make use of an algorithm such as gradient descent to

avoid matrix inversion. Sacrificing slight precision at early stage of iterations is acceptable

and matrix inversion is only needed a couple of times when the estimates are approaching

optimum to resume precision.
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Table 5.1: Model specifications in 10 simulation scenarios. “L” indicates linear main effects
only, “N” indicates nonlinear main effects only, “LL” indicates linear main and interaction
effects, “NN” indicates nonlinear main and interaction effects, “WH” indicates interaction
with weak heredity, and “NH” indicates interaction violating heredity. p represents the
number of predictors, σ2 represents the error variance, and true Effects column provides
the indices for nonnull main and interaction effects.

Case p σ2 Mean Function True Effects
L 4 9 E(y) = x2 x2

LL 4 9 E(y) = x2 + x3 + x2x3 x2,x3,x2x3

L 4 36 E(y) = x2 x2

LL 4 36 E(y) = x2 + x3 + x2x3 x2,x3,x2x3

N 4 9 E(y) = −2.5x1 + 1.4x2
1 + 1.3x3

1 − 1.3x3 − 1.4x2
3 + 0.2x3

3 x1,x3

NN 4 9 E(y) = 2.1x1 + 2.5x2
1 − 0.2x3

1 − 8.2x2 − 0.7x2
2 − 0.9x3

2 x1,x2,x1x2

+8.6x1x2 + 1.8x1x
2
2 − 0.8x1x

3
2 − 6.5x2

1x2 − 1.3x2
1x

2
2

+0.6x2
1x

3
2 − 1.1x3

1x2 − 0.2x3
1x

2
2 + 0.1x3

1x
3
2

WH 4 9 E(y) = x2 + x2x3 x2,x2x3

NH 4 9 E(y) = x2 + x1x4 x2,x1x4

N 8 9 E(y) = 2.1x4 + 2.5x2
4 − 0.2x3

4 − 8.2x6 − 0.7x2
6 − 0.9x3

6 x4,x6

NN 8 9 E(y) = 2.1x4 + 2.5x2
4 − 0.2x3

4 − 8.2x6 − 0.7x2
6 − 0.9x3

6 x4,x6,x4x6

+8.6x4x6 + 1.8x4x
2
6 − 0.8x4x

3
6 − 6.5x2

4x6 − 1.3x2
4x

2
6

+0.6x2
4x

3
6 − 1.1x3

4x6 − 0.2x3
4x

2
6 + 0.1x3

4x
3
6

Figure 5.1: False negative main effects rate (FNM), false positive main effects rate (FPM),
false negative interaction effects rate (FNI), and false positive interaction effects rate (FPI)
across 11 different models in the low-noise scenarios with true linear main effects only
(left) and with true linear main and interaction effects (right) based on 100 simulated data
sets.
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Table 5.3: Ordered pollutants and pollutant-pollutant interactions (the most important from
top) in association to mortality in Chicago, Illinois from 1987 to 2000 based on the National
Morbidity, Mortality, and Air Pollution Sutdy (NMMAPS) data. The selected terms by
LASSO, group LASSO, and HiGLASSO are in bold.

LASSO Group LASSO HiGLASSO
PM10× O3 PM10 PM10

NO2× O3 SO2 SO2

SO2 NO2× O3 O3

PM10 O3 CO
NO2× SO2 CO PM10× SO2

O3 CO × SO2 PM10× O3

PM10× SO2 PM10× O3 CO × SO2

CO × SO2 SO2× O3 SO2× O3

CO× O3 NO2× SO2 CO× O3

CO CO× O3 PM10× CO
PM10× CO PM10× CO NO2

SO2× O3 PM10× SO2 PM10× NO2

CO× NO2 PM10× NO2 NO2× O3

PM10× NO2 CO× NO2 NO2× SO2

NO2 NO2 CO× NO2

Figure 5.2: False negative main effects rate (FNM), false positive main effects rate (FPM),
false negative interaction effects rate (FNI), and false positive interaction effects rate (FPI)
across 11 different models in the high-noise scenarios with true linear main effects only
(left) and with true linear main and interaction effects (right) based on 100 simulated data
sets.
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Table 5.4: List of 28 exposure measurements including 9 phthatlates, 11 phenols, and 8
PAHs used in Brigham and Women’s Hospital (BWH) analysis.

Exposure Full Name (Acronym)

Phthatlates

mono(2-ethylhexyl) (MEHP)
mono(2-ethyl-5-hydroxyhexyl) (MEHHP)
mono(2-ethyl-5-oxohexyl) (MEOHP)
mono(2-ethyl-5-carboxypentyl) (MECPP)
monobenzyl (MBzP)
mono-n-butyl (MBP)
monoisobutyl (MiBP)
monoethyl (MEP)
mono(3-carboxypropyl) (MCPP)

Phenols

Bisphenol A (BPA)
Bisphenol S (BPS)
2,4-Dichlorophenol (2,4-DCP)
2,5-Dichlorophenol (2,5-DCP)
benzophenone-3 (BP3)
butyl paraben (BuPB)
ethyl paraben (EtPB)
methyl paraben (MePB)
propyl paraben (PrPB)
triclocarban (TCB)
triclosan (TCS)

PAHs

2-hydroxynapthalene (2-NAP)
1-hydroxynapthalene (1-NAP)
2-hydroxyfluorene (2-FLU)
2- and 3-hydroxyphenanthrene (2,3-PHE)
9-hydroxyphenanthrene (9-PHE)
1-hydroxyphenanthrene (1-PHE)
4-hydroxyphenanthrene (4-PHE)
1-hydroxypyrene (1-PYR)
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Table 5.5: Brigham and Women’s Hospital (BWH) prospective cohort study data set: se-
lected main effects and interaction effects.

Method Selected Variables
LASSO-lin 2-FLU, 1-PYR, MCPP×BuPB, MCPP×TCB, BP3×BuPB,

BP3×TCB, BP3×1-NAP, BuPB×TCB
hierNet 2-FLU, 1-PYR

LASSO-nonlin 2-FLU, 1-PYR, MBP×2-FLU,
MiBP×MEP, MiBP×2-FLU, MCPP×MePB, MCPP×TCB,
BP3×2-NAP, BP3×1-NAP, 2-NAP×1-PYR, 1-NAP×9-PHE,

1-NAP×1-PHE, 2-FLU×2- and 3-PHE, 2-FLU×1-PYR
gLASSO MBzP, BP3, BuPB, 2-NAP, 1-NAP, 2-FLU, 1-PYR,

MECPP×MEP, MECPP×1-NAP, MBZP×1-PYR,
MBP×2,5-DCP, MBP×1-PYR, MiBP×MEP, MiBP×2,4-DCP
MiBP×2,5-DCP, MiBP×2-FLU, MEP×BP3, MCPP×MePB

MCPP×PrPB, MCPP×2-FLU, MCPP×2- and 3-PHE, BPA×BPS
BPA×MePB, BPS×BP3, BPS×TCB, 2,4-DCP×1-PHE
BP3×1-NAP, BP3×2-FLU, TCS×2-NAP, TCS×2-FLU

2-FLU×1-PYR, 9-PHE×1-PHE
HiGLASSO MBzP, BP3, 1-NAP, 1-PYR, MBzP×1-PYR, BP3×1-NAP

Figure 5.3: False negative main effects rate (FNM), false positive main effects rate (FPM),
false negative interaction effects rate (FNI), and false positive interaction effects rate (FPI)
across 11 different models in the scenarios with true nonlinear main effects (left) and with
true nonlinear main and interaction effects (right) based on 100 simulated data sets.
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Figure 5.4: False negative main effects rate (FNM), false positive main effects rate (FPM),
false negative interaction effects rate (FNI), and false positive interaction effects rate (FPI)
across 11 different models in the scenarios with interaction under weak heredity (left) and
interaction violating heredity constraint (right) based on 100 simulated data sets.

Figure 5.5: False negative main effects rate (FNM), false positive main effects rate (FPM),
false negative interaction effects rate (FNI), and false positive interaction effects rate (FPI)
across 6 different models in the scenarios with true nonlinear main effects (left) and with
true nonlinear main and interaction effects (right) based on 100 simulated data sets. Num-
ber of effective predictors is greater than number of sample size.
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Figure 5.6: Scatter plots between seven exposures and 8-isoprostane superimposed with
a Locally Weighted Scatterplot Smoothing (LOWESS curve). The seven exposures are
mono-benzyl (MBzP), monoethyl (MEP), Bisphenol A (BPA), benzophenone-3 (BP3),
butyl paraben (BuPB), 4-hydroxyphenanthrene (4-PHE), and 1-hydroxypyrene (1-PYR).
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Figure 5.7: Heatmap for pairwise interaction p-values between 28 exposure variables. Each
p-value is obtained from a multiple regression model with 28 exposure main-effect terms
and a single interaction term. 1-9 are phthalates, 10-20 are phenols, and 21-28 are PAHs.
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CHAPTER 6

Conclusion

DLM has been extensively employed to study lagged effects of environmental exposures

on health outcomes in environmental epidemiology. Most of the existing DLMs are limited

to modeling one pollutant at a time. Existing multi-pollutants methods do not consider the

temporal dynamics of lags. In this dissertation, our main goal is to extend one-dimensional

DLMs to two or more pollutants. To achieve this goal, we first proposed methods to make

single pollutant DLMs robust and then consider two or more pollutants in a related frame-

work. The methods proposed in this dissertation all broadly relate to the concept of shrink-

age and selection.

Most existing shrinkage methods shrink an estimator toward the null (i.e. zero) to avoid

overfitting. In contrast, the approaches we introduced in Chapter II and Chapter IV shrink

an unconstrained estimator toward a meaningful nonnull shrinkage target. The target can be

tailored according to the prior knowledge in subject-matter domain. The flexibility to data

adaptively shrink between multiple nonnull targets protects against model misspecifications

without losing all of the efficiency advantage of a parametric model. The simulation results

indicate that these methods are robust to choice of nonnull target and optimal bias-variance

tradeoff can be achieved across different simulation scenarios. The powerful VCST for

testing a particular DLM structure against a general alternative developed in Chapter III can

serve as a screening procedure for choosing a proper parametric distributed lag structure as

a nonnull target. Instead of relying on agnostic robust DLMs, a VCST can be conducted as

a first-step screening method before a specific parametric DLM is fitted. One can then use

this parametric DLM as a target for shrinkage.

In Chapter IV, we considered different strategies to model pollutant-by-pollutant inter-
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action in two-dimensional DLMs. Assuming the basis functions underlying the interaction

DL surface as the tensor products of the basis functions underlying the main-effect DL

functions is a natural step. The marginal DL functions can still be expressed as the linear

combination of the same sets of basis functions, making interpretation more convenient.

Tukey’s single parameter form of interaction is a well-known way of modeling the interac-

tion surface and it is known to be powerful for hypothesis testing. We extend Tukey’s form

of interaction to DLMs: a major innovation in this dissertation. We also provided shrinkage

versions of the two-dimensional DLMs to protect against misclassification. A novel way

of interpreting changes in marginal DL function of one pollutant when the other pollutant

varies across different values was introduced. In Chapter V, we proposed a variable selec-

tion framework HiGLASSO that is a promising approach capable of incorporating weights

into variable selection at a group level with consideration of two-way interaction, while

maintaining the strong heredity constraints. Empirically, it outperforms other alternatives

in selection consistency and other metrics for variable selection.

The work presented in this dissertation indicates many areas of potential future re-

search. The robust DLMs aim at minimizing MSE by introducing small bias in exchange

for reduction in variance. Although they are capable of reducing MSE asymptotically, the

asymptotic bias is never zero. One possible extension is to perform correction based on

the expression of asymptotic bias to de-bias robust DLMs. While VCST provides a global

test for DLM, Bayesian variable selection methods can help with identification of nonnull

specific lag coefficients. Current version of HiGLASSO is not computationally efficient in

ultra-high dimensional variable selection. One possible way to streamline the algorithm is

to construct the solution path by leveraging information from solutions with adjacent tuning

parameters. The solutions with adjacent tuning parameters typically differ by no more than

one group of variables and a single sweep through all unselected variables may be suffi-

cient to ensure whether an unselected predictor is to enter the model or a selected predictor

is to exit the model. HiGLASSO only induces inter-group sparsity. In other words, all the

variables corresponding to a main or interaction effect are set to be zero or nonzero. In-

ducing sparsity within groups can potentially assist in identifying which variable(s) within

each group contributes to the association. Extending HiGLASSO to a situation allowing
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within-group sparsity can be another direction of future research.

Although we illustrated the proposed methods using examples in environmental epi-

demiology, these methods can potentially be adapted to a wide spectrum of problems.

Shrinkage methods that are adaptive and data-driven and certainly play an important role

in machine learning and data mining. The dissertation enables us to characterize lag ef-

fects of one pollutant when the other is set at a given value and thus can help with guiding

multi-pollutant policy for air quality standard. We hope that this dissertation contributes

to statistical methods for chemical mixtures and has broader relevance in the statistical

literature on selection and shrinkage for interaction models.
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