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ABSTRACT

Renewable generation and energy storage are playing an ever increasing role in power systems.

Hence, there is a growing need for integrating these resources into the optimal power flow (OPF)

problem. While storage devices are important for mitigating renewable variability, they introduce

temporal coupling in the OPF constraints, resulting in a multiperiod OPF formulation. This work

explores a solution method for multiperiod AC OPF problems that combines a successive quadratic

programming approach (AC-QP) with a second-order cone programming (SOCP) relaxation of the

OPF problem. The solution of the SOCP relaxation is used to initialize the AC-QP OPF algorithm.

Additionally, the lower bound on the objective value obtained from the SOCP relaxation provides

a measure of solution quality. Compared to other initialization schemes, the SOCP-based approach

offers improved convergence rate, execution time and solution quality.

A reformulation of the the AC-QP OPF method that includes wind generation uncertainty is

then presented. The resulting stochastic optimization problem is solved using a scenario based

algorithm that is based on randomized methods that provide probabilistic guarantees of the solu-

tion. This approach produces an AC-feasible solution while satisfying reasonable reliability criteria.

The proposed algorithm improves on techniques in prior work, as it does not rely upon model ap-

proximations and maintains scalability with respect to the number of scenarios considered in the

OPF problem. The optimality of the proposed method is assessed using the lower bound from

the solution of an SOCP relaxation and is shown to be sufficiently close to the globally optimal

solution. Moreover, the reliability of the OPF solution is validated via Monte Carlo simulation and

is demonstrated to fall within acceptable violation levels. Timing results are provided to emphasize

the scalability of the method with respect to the number of scenarios considered and demonstrate

its utility for real-time applications.

Several extensions of this stochastic OPF are then developed for both operational and plan-

ning purposes. The first is to include the cost of generator reserve capacity in the objective of

the stochastic OPF problem. The need for the increased accuracy provided by the AC OPF is

highlighted by a case study that compares the reliability levels achieved by the AC-QP algorithm

to those from the solution of a stochastic DC OPF. Next, the problem is extended to a planning

xii



context, determining the maximum wind penetration that can be added in a network while main-

taining acceptable reliability criteria. The scalability of this planning method with respect not only

to large numbers of wind scenarios but also to moderate network size is demonstrated. Finally,

a formulation that minimizes both the cost of generation and the cost of reserve capacity while

maximizing the wind generation added in the network is investigated. The proposed framework is

then used to explore the inherent tradeoff between these competing objectives. A sensitivity study

is then conducted to explore how the cost placed on generator reserve capacity can significantly

impact the maximum wind penetration that can be reliably added in a network.
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CHAPTER I

Introduction

1.1 The Optimal Power Flow Problem

The goal of an optimal power flow (OPF) is to determine the optimal operating point for an

electric power system relative to a specified objective, such as minimizing generation cost, losses, or

renewable spillage. In optimizing the specified objective, the solution must satisfy engineering and

physical constraints. These consist of the nonlinear AC power flow equations, line-flow limits, and

operational limits on decision variables (including voltage magnitude limits and generator active

and reactive power output limits) [1]. Let all decision variables be collected in a vector, x. Given

the particular objective function of interest, denoted C(x), the general AC OPF can be compactly

represented in the following form:

min
x
C(x) (1.1a)

subject to:

g(x) ≤ 0 (1.1b)

h(x) = 0, (1.1c)

where g(x) is used to represent all inequality constraints, including decision variable operational

limits and nonconvex line-flow constraints. Likewise, h(x) denotes the nonconvex power balance

equality constraints. The exact formulation used in this work is discussed in detail in Chapter II.

Many solution methods have been applied to AC OPF problems. These include gradient meth-

ods, Newton’s method, successive quadratic programming methods (AC-QP), and interior point

methods [1–4]. Additionally, the DC OPF formulation is often used to approximate the AC OPF

problem as a quadratic program (QP) [5–7]. Due to its convexity and scalability to large networks,

the DC OPF approximation offers a variety of computational benefits. Under normal operating

1



conditions, it usually provides a reasonable approximation of the AC OPF problem [8]. However,

it does not necessarily result in an AC feasible solution, and there are cases where the DC power

flow has non-negligible errors compared to the AC power flow [9,10].

The AC-QP OPF algorithm forms the basis of the work in this dissertation. This algorithm

uses a successive linearization procedure adapted from [1]. Given an AC power flow solution, x0,

the nonconvex AC OPF problem is approximated as a QP by linearizing all constraints around

the power flow solution. Decision variables in this QP are changes from the power flow solution,

represented by ∆x, and can be represented as follows:

min
∆x

C(x0 + ∆x) (1.2a)

subject to:

g(x0) +
∂g(x)

∂x

∣∣∣
x0

∆x ≤ 0 (1.2b)

h(x0) +
∂h(x)

∂x

∣∣∣
x0

∆x = 0. (1.2c)

The feasibility of the QP solution is checked with an AC power flow, and a new linearization is

formed in the next QP if all constraints are not satisfied. These iterations continue until the QP

and power flow iterations agree within a reasonably small tolerance. The AC-QP algorithm has

the advantage of providing an AC-feasible solution, as each iteration solves an AC power flow.

Additionally, solvers for quadratic programs and AC power flow methods scale well, making the

AC-QP algorithm applicable to large networks. However, these advantages come with some trade-

offs: this method is dependent on an initial converged AC power flow and the optimality of the final

solution is sensitive to this initialization. Depending on the proximity of the initialization to the

globally optimal solution, the AC-QP algorithm runs the risk of failing to converge or converging to

only a locally optimal solution. Thus, developing better initialization procedures is important for

improving the performance of the AC-QP algorithm. The initialization challenges of the AC-QP

algorithm are particularly pronounced following a large change in loading and/or network topology

which results in a significant change in the operating point (e.g., contingency events), as well as for

planning scenarios which offer limited prior knowledge of the solution.

There have been many recent developments in applying semidefinite programming (SDP) and

second-order cone programming (SOCP) methods to formulate convex relaxations of the OPF

problem. Several examples of these relaxations can be found in [11–23]. Convex relaxations lower

bound the objective value, can certify problem infeasibility, and, in many cases, provide the global
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solution (i.e., the relaxations are often exact). However, there are many practical problems for

which existing relaxations fail to be exact, so the solutions they produce are not physically real-

izable [24–26]. While solvers for the SDP relaxations are available for moderately sized networks,

application to large networks is generally more complicated than other solution methods [14, 18].

Thus, further research is needed to employ these methods in real-time applications for large net-

works. In contrast, the SOCP relaxation in [13] can be quickly solved for large networks to obtain

a lower bound on the globally optimal objective value. The SOCP solution provides generation and

voltage schedules, which are used to solve the first AC power flow to initialize the AC-QP algorithm.

This approach enables consideration of problems for which the SOCP relaxation is not exact. Pro-

viding a procedure for combining these two methods in this manner is the first contribution of this

research.

1.1.1 Security-Constrained Optimal Power Flows

As previously described, a common objective of OPF problems is to minimize the cost of

conventional generation. While such formulations ensure the economic operation of power systems,

the resulting solution may be insecure. The (N − 1) reliability criteria are used to define a secure

operating point. These require that any single contingency, meaning an outage of any single

component in a network, should not induce any further constraint violations. This operating

strategy is designed to avoid a cascading failure of the network. To enforce these criteria in an

optimal way, standard OPF formulations can be modified to ensure that the resulting solution is

not only feasible under normal operation, but also that there are no constraint violations in any

post-contingency states. Given a set of contingencies to be considered in the OPF problem, denoted

C, the security-constrained OPF (SCOPF) takes the following form:

min
x
C(x) (1.3a)

subject to:

g(x) ≤ 0 (1.3b)

h(x) = 0 (1.3c)

∀m ∈ C :

gm(x) ≤ 0 (1.3d)

hm(x) = 0, (1.3e)
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where gm and hm represent the network constraints under contingency m, and are referred to as

the security (or contingency) constraints. For example, if contingency m considers a particular line

being out of service, then the network model in constraints gm would not contain that line.

There is an inherent tradeoff between optimality and reliability present in such problems. While

the security constraints ensure that the resulting solution will be feasible for any contingency

considered, doing so frequently requires adjusting generation schedules and voltage setpoints to

a less economic operating point. As formulated, they also introduce additional computational

complexity, as the number of security constraints could be quite large when considering the full

set of (N − 1) constraints for realistically large networks. As described in [1], this additional

computational burden is often reduced by using a contingency screening process. Such approaches

individually introduce contingencies in an iterative manner until the resulting OPF solution is

feasible for all contingencies under consideration.

While the OPF formulations described in the chapters that follow do not explicitly include

security constraints, it should be noted that each is directly applicable to such an extension. In the

AC-QP algorithm, each contingency considered requires including an additional set of (modified)

linearized OPF constraints in the QP, as well as solving an additional power flow at each iteration.

1.2 Incorporating Energy Storage Devices

Renewable generation offers economic and environmental benefits, but also challenges system

reliability due to its inherent variability. Storage devices provide a means of (at least partially)

mitigating this variability. Thus, OPF methods must be adapted to incorporate both renewable

generation and storage [27]. However, the state-of-charge dynamics of storage devices [28] introduce

temporal coupling, requiring a multiperiod OPF formulation. Multiperiod versions of both an

AC-QP algorithm and an SOCP relaxation which include renewable generation and storage devices

that have non-ideal charging and discharging efficiencies are provided in the chapters that follow.

Many multiperiod OPF formulations that include renewable generation and storage, as in [29]

and [30], use a horizon of 24 hours. The size and complexity of the multiperiod OPF problem

when using such a long horizon may substantially increase the computation time, thus limiting the

real-time applications of the OPF tool developed. However, the length of the horizon affects the

benefits that are derived from solving the multiperiod OPF, as decisions seek to minimize cost over

the entire horizon, not simply the cost at the current time period. Implementing a longer horizon

may thus increase the quality of solution in terms of minimum cost of generation, but also makes
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the solution more susceptible to forecast error. This tradeoff becomes particularly important in

real-time applications for realistically large networks. Various horizons have been explored in this

work, ranging from 1 hour to 8 hours, with a time-step length of half an hour. An 8-hour horizon

therefore requires optimizing over 16 time steps. Results that explore various choices of horizons

are included, offering insights into the sensitivity of the solution to this choice.

1.3 A Stochastic Optimal Power Flow Formulation

The second class of contributions made in this work involves adapting the AC-QP method to

solve a stochastic AC OPF problem. This problem aims to find a solution that satisfies the non-

convex constraints of the OPF problem in a probabilistic sense, while providing certain confidence

on the constraint violation level due to the uncertain realizations of renewable generation. In other

words, given a base case wind forecast, Pw, the AC OPF solution must first be feasible for this

forecast. However, given that forecast errors can be significant, the reliability of the solution for

any plausible realization of wind generation, P̃w, must also be considered. Note that the presence

of P̃w introduces uncertainty into the nonconvex OPF constraints. Applying a chance-constrained

formulation, the stochastic AC OPF considered in this work takes the general form

min
x
C(x) (1.4a)

subject to:

g(x, Pw) ≤ 0 (1.4b)

h(x, Pw) = 0 (1.4c)

h(x, P̃w) = 0 ∀P̃w ∈ Ω (1.4d)

P
[
P̃w ∈ Ω|g(x, P̃w) ≤ 0

]
≥ 1− ε, (1.4e)

where Ω is the support for the probability distribution of uncertain wind generation, and ε is the

desired reliability level (i.e. a choice of ε = 0.1 would imply that the OPF constraints will be

satisfied with probability of at least 90%).

There are many approaches that try to incorporate the stochasticity of the problem assuming

the DC power flow model [31–35]. However, the lack of AC feasibility may result in violation of the

desired reliability levels. Numerous works consider the uncertainty by including in the optimiza-

tion problem a certain set of scenarios that is heuristically chosen [31–33], usually using a scenario

reduction technique. However, the latter does not provide any solution performance guarantees.

Moreover, different directions look into analytical reformulations that mainly assume a closed form
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for the uncertainty distribution (e.g Gaussian) [35, 36] and hence can provide solutions with prob-

abilistic performance. However, as the uncertainty realizations (e.g wind power forecast errors)

may not necessarily closely follow such analytical distributions, there is an inherent inaccuracy in

such descriptions. Moreover, the complexity of those methods may increase dramatically when

the nonconvex OPF nature is considered. Furthermore, many formulations are based on robust

optimization [37], where it is difficult to quantify the solution performance since (similar to the

heuristic scenario techniques) the selected uncertainty set might end up being overly conservative

or too risky.

This work proposes an OPF methodology which finds solutions that come with guarantees,

does not require a specific distribution of the uncertainty, and maintains reasonable complexity

and solution time for real-time operation. Randomized optimization techniques like [38–40] satisfy

those objectives. Those techniques are basically scenario based methods; however, their solution

is a-priori guaranteed to satisfy the system constraints with certain probability and at a certain

confidence level. These techniques were first applied in the stochastic DC OPF problem in [34] and

later, using the SDP relaxation of the power flow constraints, in the stochastic AC OPF in [41].

The AC-QP OPF method is employed to achieve better scalability properties compared to convex

relaxations. As the underlying problem solved by this method is nonconvex, the methods in [38,39]

cannot be used, since they require the convexity of the underlying problem. Additionally, [40]

cannot be practically applied, as it requires finding the optimal solution of a robust counterpart of

the initial problem. This cannot be easily achieved in the AC-QP OPF algorithm. The proposed

formulation therefore relies on a recent algorithm presented in [42] that does not require convexity

of the problem, but requires identifying the so called support set of the scenarios used in the

optimization. The definition of this support set is discussed in detail in Chapter VII.

The stochastic AC-QP algorithm is also applicable to planning problems involving renewable

generation. As such, two planning problems are also considered in this work. The objective of the

first is to determine the maximum wind penetration that can be added in a network, while main-

taining reliability standards. As in the operational setting, the reliability guarantees to accompany

the solution come from the application of the scenario approach in [42]. Introducing large amounts

of renewable generation in a network can potentially displace a significant amount of conventional

generation, reducing total operating costs. However, significant generator reserve capacity is needed

to ensure that the system is able to respond to potential forecast errors. A second planning problem

is thus proposed, the objective of which is to minimize the total cost of conventional generation
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and of generator reserve capacity, while maximizing the wind penetration. Because a stochastic

OPF formulation is utilized, the optimal wind investment schedule determined in both cases is

also accompanied with theoretical reliability guarantees. While such planning problems have been

investigated in the DC OPF context [43], this work extends such formulations to the AC OPF

setting, increasing the accuracy of the resulting solution.

1.4 Summary of Contributions

The following list summarizes the major contributions of the research discussed in the chapters

that follow.

• The AC-QP OPF has been extended to a multiperiod formulation that includes renewable

generation and storage.

• An improved initialization technique is proposed for the AC-QP algorithm using the solution

of an SOCP relaxation.

• A stochastic AC-QP OPF algorithm has been developed to address wind uncertainty. A

scenario approach is applied to solve the underlying chance-constrained optimization and to

provide a-posteriori theoretical reliability guarantees to accompany the OPF solution.

• Several operational and planning decisions involving renewable generation have been investi-

gated in a stochastic setting.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter II describes the multiperiod

OPF problem formulation with storage and wind. It is deterministic, in the sense that it assumes a

perfect wind generation forecast is available. Chapter III presents the details of the AC-QP solution

method, while Chapter IV proposes a method for enforcing storage complementarity. Chapter V

provides an improved initialization procedure for the AC-QP algorithm using a second order cone

program relaxation of the AC OPF problem. Chapter VI explores the sensitivity of this method to

the choice of optimization horizon under various assumptions of forecast uncertainty. A modified

version of the AC-QP method for solving the stochastic AC OPF problem including wind forecast

uncertainty is given in Chapter VII. This stochastic OPF is extended to optimally allocate generator
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reserve capacity in Chapter VIII. It is then applied in a planning context to determine the maximum

wind penetration that can be added in a network in Chapter IX. The cost of conventional generation

and of generator reserve capacity is included in this planning formulation in Chapter X. Conclusions

and proposed directions of future research are then offered in Chapter XI.
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CHAPTER II

Multi-period AC OPF Problem

The OPF problem seeks to minimize the cost of conventional generation while satisfying power

balance constraints and operational limits on control variables. The formulation presented includes

both storage devices and wind generation. Consider an n-bus power system with buses in the

set N = {1, . . . , n}. Define the set of buses with traditional generators as G. Each generator

i ∈ G has an associated convex quadratic cost curve of its active power generation, Pg,i, denoted

Ci(Pg,i) = c2,iP
2
g,i + c1,iPg,i + c0,i. In this expression, c2,i, c1,i, and c0,i are the quadratic, linear,

and constant cost coefficients, respectively. Let S denote the set of storage buses and W denote

the set of buses with wind generation. The slack bus is denoted by slack.

A line from node i to node j is modeled by the equivalent circuit given in Figure 2.1. Each

line is modeled as an ideal transformer with a specified turns ratio τije
jθshift,ij : 1 in series with a

Π-circuit with series impedance Rij + jXij and shunt admittance jbsh,ij , where j is the imaginary

unit. The corresponding series admittance is given by gij + jbij = 1/(Rij + jXij). The active and

reactive flows into the line’s terminal i are denoted Pij and Qij respectively. The squared current

flow is given by Lij = I2
ij , where Iij represents the current flow into terminal i. Similarly, Iπ gives

the current flow in the π circuit. The complex voltages across the i and j terminals are represented

by Ṽi and Ṽj respectively. The set of lines within the network is denoted by L. Branches within

this set are represented as (i, j) ∈ L; the ordering of this pair indicates that the ideal transformer

is at end i of the line. The maximum apparent power flow on line (i, j) is Smaxij .

The time horizon is denoted by T = {0, . . . , T − 1}, and the time steps are indexed by t. The

length of each time step is Ts. Upper and lower limits on active and reactive power injection at

generator bus i ∈ G are denoted by Pmaxg,i , Pming,i and Qmaxg,i , Qming,i , respectively. This formulation

models storage at bus i ∈ S as a sink or source of active power with charging and discharging
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Lij = |Iij |2

Iij
+

−
Ṽi

τije
jθshift,ij : 1

Rij
Iπ

Xij

bsh,ij
2

bsh,ij
2

+

−
Ṽj

Pij + jQij

Figure 2.1: Line model.

efficiencies ηc,i and ηd,i, respectively, and corresponding maximum rates Rmaxc,i and Rmaxd,i . The

initial and final state of charge are einiti and etermi , respectively, and the maximum state of charge is

Ei. Wind generation at bus i ∈ W and time t ∈ T is modeled as a source of active power injection

with a maximum capacity Wmax
i (t), zero marginal cost and full curtailment allowed.

The decision variables are the (complex) voltages at each bus and each time, Ṽi(t) = Vi(t)∠θi(t),

i ∈ N , t ∈ T , and the battery state of charge ei(t) for each storage device i ∈ S and time t ∈ T .

If positive, the charging rate at time t ∈ T is rc,i(t) = (ei(t + 1) − ei(t))/(Tsηc,i). Otherwise,

the discharge rate at time t ∈ T is rd,i(t) = ηd,i(ei(t) − ei(t + 1))/Ts. As modeled by the power

flow equations, the voltages are dependent upon power injections into the network given by Pg,i (t),

Qg,i (t), i ∈ G; Pw,i (t), i ∈ W; rd,i (t)−rc,i (t), i ∈ S; and the active and reactive power loads Pd,i (t),

Qd,i (t), i ∈ N at all times t ∈ T . The shunt admittance at bus i ∈ N is given by gsh,i + jbsh,i. The

upper and lower limits on the voltage magnitude at bus i ∈ N are V max
i and V min

i , respectively.

With these definitions, the multiperiod OPF problem can be expressed as:

min
Ṽ (t),e(t),rc(t),rd(t),
Pg(t),Qg(t),Pw(t)

∑
t∈T

∑
i∈G

Ci(Pg,i (t)) subject to (∀t ∈ T ) (2.1a)

Pming,i ≤ Pg,i (t) ≤ Pmaxg,i ∀i ∈ G (2.1b)

Qming,i ≤ Qg,i (t) ≤ Qmaxg,i ∀i ∈ G (2.1c)

0 ≤ Pw,i (t) ≤Wmax
i (t) ∀i ∈ W (2.1d)

0 ≤ rc,i (t) ≤ Rmaxc,i ∀i ∈ S (2.1e)

0 ≤ rd,i (t) ≤ Rmaxd,i ∀i ∈ S (2.1f)

0 ≤ ei (t) ≤ Ei ∀i ∈ S (2.1g)

ei (0) = einiti ∀i ∈ S (2.1h)

ei (T ) = etermi ∀i ∈ S (2.1i)

Ts

(
ηc,irc,i (t)− rd,i (t)

ηd,i

)
= ei (t+ 1)− ei (t) ∀i ∈ S (2.1j)
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rc,i (t) rd,i (t) = 0 ∀i ∈ S (2.1k)

V mini ≤ Vi (t) ≤ V maxi ∀i ∈ N (2.1l)

θslack (t) = 0 (2.1m)

Pij(t) =
Vi(t)

2gij
τ2
ij

− Vi(t)Vj(t)

τij
· [gij cos(θij(t)) + bij sin(θij(t))] ∀ (i, j) ∈ L (2.1n)

Pji(t) = Vj(t)
2gij −

Vi(t)Vj(t)

τij
· [gij cos(θji(t)) + bij sin(θji(t))] ∀ (i, j) ∈ L (2.1o)

Qij(t) =
−Vi(t)2

τ2
ij

(
bij +

bsh,ij
2

)
+
Vi(t)Vj(t)

τij
· [bij cos(θij(t))− gij sin(θij(t))] ∀ (i, j) ∈ L (2.1p)

Qji(t) = −Vj(t)2

(
bij +

bsh,ij
2

)
+
Vi(t)Vj(t)

τij
· [bij cos(θji(t))− gij sin(θji(t))] ∀ (i, j) ∈ L (2.1q)

Pij(t)
2 +Qij(t)

2 ≤
(
Smaxij

)2 ∀ (i, j) ∈ L (2.1r)

Pji(t)
2 +Qji(t)

2 ≤
(
Smaxij

)2 ∀ (i, j) ∈ L (2.1s)

Pg,i (t) + Pw,i (t) + rd,i (t)− rc,i (t)− Pd,i (t) =
∑

(i,j)∈L

Pij(t) +
∑

(j,i)∈L

Pij(t) + gsh,iVi(t)
2 ∀i ∈ N (2.1t)

Qg,i (t)−Qd,i (t) =
∑

(i,j)∈L

Qij(t) +
∑

(j,i)∈L

Qij(t) + bsh,iVi(t)
2 ∀i ∈ N (2.1u)

where the power injections equal zero when the corresponding device does not exist at a bus (e.g.,

Pg,i = 0,∀i ∈ N \ G). Constraints (2.1b) and (2.1c) limit the active and reactive generation

at conventional generators. Constraint (2.1d) limits the active power output of wind generators.

Constraints (2.1e) and (2.1f) limit the charge and discharge rates, respectively, (2.1g) limits the

maximum energy storage, and (2.1j) controls the state-of-charge evolution with boundary condi-

tions set by (2.1h) and (2.1i). Constraint (2.1k) prevents simultaneous charging and discharging

of the storage devices. See [28] for further details on this storage device model. Note that con-

straints (2.1e)-(2.1k) could be replaced with another storage model if desired; the proposed frame-

work is not limited to this modeling choice. The voltage magnitude limits are enforced by (2.1l),

and (2.1m) sets the reference angle. Constraints (2.1n)-(2.1q) define the active and reactive line

flows at both ends of each branch in the network, where for each line (i, j) ∈ L, θij = θi−θj−θshift,ij ,

and θji = θj − θi + θshift,ij . These line flows are used in (2.1r)-(2.1s) to enforce apparent power

line flow limits. The power flow equations (2.1t) and (2.1u) relate the voltages and the power in-

jections. Note that adding generator ramp rate limits to this formulation is straightforward; these

constraints are excluded for simplicity.

The main technical challenge in solving this problem is due to the nonconvexity of constraints

(2.1n)-(2.1s), (2.1t)-(2.1u), and (2.1k). A method for solving the nonconvex power balance and line

flow constraints is given in Chapter III, while storage complementarity is addressed in Chapter IV.
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CHAPTER III

AC-QP Solution Algorithm

The AC-QP OPF algorithm is employed in this work to solve Problem (2.1). It is a local

solution method adopted from [1], which is summarized in Figure 3.1. Note that the nonconvex

storage complementarity constraint (2.1k) is initially neglected in the development of this method.

However, it is incorporated into the formulation in Chapter IV. The AC-QP algorithm begins

by solving a separate AC power flow for each time period in the optimization horizon from an

initial (possibly approximate) operating point. These solutions are used to linearize the nonconvex

constraints in Problem (2.1). Define Ga ∈ RnB×nG to be the node-generator incidence matrix,

Wa ∈ RnB×nW to be the node-wind incidence matrix, and Sa ∈ RnB×nS to be the node-storage

incidence matrix. Here nB, nG, nW , and nS represent the numbers of buses, generators, wind nodes,

and storage nodes in the network, respectively. As such, Ga(i, j) = 1 if generator j is located at

bus i; otherwise Ga(i, j) = 0. Wa and Sa are defined similarly. Given the Jacobian of the power

flow equations at each time t ∈ T , J(t), constraints (2.1t)-(2.1u) can be replaced with their first

order approximation

J(t)∆x(t) = ∆S(t), (3.1)

where

J(t) =

∂P∂θ (t) ∂P
∂V (t)

∂Q
∂θ (t) ∂Q

∂V (t)

 , ∆x(t) =

∆θ(t)

∆V (t)



∆S(t) =

Ga∆Pg(t)− Sa(∆rc(t)−∆rd(t)
)

+Wa∆Pw(t)

Ga∆Qg(t)

 .
Likewise, the sensitivity factors of the flow on each line (i, j) ∈ L∗ with respect to the voltage
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Figure 3.1: Flowchart for the base AC-QP OPF algorithm, (adapted from [1], [44]).

angle and magnitude of each node k ∈ N at each time t ∈ T , denoted
∂Sij

∂θk
(t) and

∂Sij

∂Vk
(t), can be

calculated from the power flow solutions. These are then used to linearize constraints (2.1n)-(2.1s):

S◦ij(t) +
∑
k∈N

∂Sij
∂θk

(t)∆θk(t) +
∑
k∈N

∂Sij
∂Vk(t)

∆Vk(t) ≤ Smaxij ∀ (i, j) ∈ L∗ (3.2a)

S◦ji(t) +
∑
k∈N

∂Sji
∂θk

(t)∆θk(t) +
∑
k∈N

∂Sji
∂Vk(t)

∆Vk(t) ≤ Smaxij ∀ (i, j) ∈ L∗. (3.2b)

Note that in these constraints, S◦ij(t) and S◦ji(t) are the line flows on each line (i, j) ∈ L∗ calcu-

lated from the power flow solution. Again neglecting constraint (2.1k) and using these linearized

constraints, Problem (2.1) can be approximated as a QP.

The QP is then solved to find a generation schedule that minimizes the generation cost while

enforcing (linearized) power balance and line flow equations. The QP solution provides new gener-

ation and voltage schedules that are used in the next set1 of AC power flows.

In the QP, the notation ∆ is used to denote a change in the corresponding variable from the

1A separate power flow is required for each time step.
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previous power flow solution. These are the decision variables in the problem. The superscript ‘◦’
denotes quantities obtained from the AC power flow, which are fixed parameters in the optimization

problem. These are updated after each QP–(power flow) iteration. The QP solved at each iteration

is formulated as follows:

min
∆Pg(t),∆Qg(t),∆θ(t),∆V (t),

∆Pw(t),e(t),∆rc(t),∆rd(t)

∑
t∈T

∑
i∈G

Ci
(
P ◦g,i(t) + ∆Pg,i(t)

)
(3.3a)

subject to ∀t ∈ T (3.1), (3.2)

Pming,i ≤ P ◦g,i(t) + ∆Pg,i(t) ≤ Pmaxg,i ∀i ∈ G (3.3b)

Qming,i ≤ Q◦g,i(t) + ∆Qg,i(t) ≤ Qmaxg,i ∀i ∈ G (3.3c)

∆θslack(t) = 0 (3.3d)

− π ≤ θ◦i (t) + ∆θi(t) ≤ π ∀i ∈ N\slack (3.3e)

V mini ≤ V ◦i (t) + ∆Vi(t) ≤ V maxi ∀i ∈ N (3.3f)

0 ≤ P ◦w,i(t) + ∆Pw,i(t) ≤Wmax
i (t) ∀i ∈ W (3.3g)

Ts
(
ηc
(
r◦c,i(t) + ∆rc,i(t)

)
−
(
r◦d,i(t) + ∆rd,i(t)

)
/ηd,i

)
= ei(t+ 1)− ei(t) ∀i ∈ S (3.3h)

ei(0) = einiti ∀i ∈ S (3.3i)

ei(T ) = etermi ∀i ∈ S (3.3j)

0 ≤ r◦c,i(t) + ∆rc,i(t) ≤ Rmaxc,i (t) ∀i ∈ S (3.3k)

0 ≤ r◦d,i(t) + ∆rd,i(t) ≤ Rmaxd,i (t) ∀i ∈ S (3.3l)

0 ≤ ei(t) ≤ Ei ∀i ∈ S (3.3m)

The QP–(power flow) iterations continue until the difference between the QP and power flow

solutions is within a specified tolerance (10−3 p.u. provides sufficient accuracy). At that point, the

inner loop of the method in Figure 3.1 is terminated, and the nonconvex constraints (2.1t)-(2.1u)

are satisfied with sufficient accuracy.

In practice, it has been observed that only a small subset of line flow constraints are binding at

optimality. Noting this, the linearized line-flow constraints (3.2a)-(3.2b) are initially enforced for all

lines that are at or above 95% of their line-flow limit after the first AC power flow, the set of which

is denoted L∗. This set is updated at the beginning of each outer loop of the AC-QP algorithm

(bolded in Figure 3.1). Introducing line limit constraints in this iterative manner generally reduces

the number of branch flow constraints that must be explicitly modeled in the QP, which improves

the solution time of each QP. This reduction is particularly noticeable in realistically large networks

having several thousand nodes. The outer loop ensures that the nonconvex line flow constraints
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Algorithm 1 Trust-region step of the AC-QP OPF algorithm

1: Calculate the predicted change in system losses from the QP solution at each time t ∈ T
according to (3.5).

2: Calculate the actual change in system losses from the power flow solution at each time t ∈ T
according to (3.4).

3: Update QP decision variable limits at the next iteration:
4: if maxt∈T |∆P kloss act(t)−∆P kloss pred(t)| < tolerance
5: The linearization is considered accurate.
6: Increase decision variable limits at next iteration by a scaling factor: d(k + 1) = min(2 ×

d(k), 1).
7: else
8: The linearization is considered inaccurate.
9: Reduce decision variable limits at next iteration by a scaling factor: d(k+ 1) = Sc× d(k).

10: end if

(2.1n)-(2.1s) are satisfied with acceptable accuracy at convergence. It should also be noted that in

the worst case, all line flow constraints will be added to the QP, as in a typical OPF formulation.

The convergence of this method depends on the accuracy of the linearization at each iteration,

which is generally only valid for small changes. To improve convergence, a “trust-region” step,

based on the formulation in [44], is included in the algorithm after each set of AC power flows to

check the accuracy of the linearization before the next QP is solved. The implementation of the

trust-region step is summarized in Algorithm 1, and the updated AC-QP algorithm with this step

is given in Figure 3.2.

The actual change in the total losses,

∆P kloss act(t) = P kloss(t)− P k−1
loss (t), ∀t ∈ T , (3.4)

is computed after the power flow step, where superscript k indicates the kth iteration of the AC-QP

algorithm. The actual change in losses is compared with that predicted from the QP solution,

∆P kloss pred(t) =
∑
i∈N

∑
j∈N

[(∂Pi
∂θj

(t)
)k−1

∆θkj (t) +
(∂Pi
∂Vj

(t)
)k−1

∆Vj(t)
k

]
. (3.5)

If the difference between the predicted and actual losses at each time t ∈ T is within a specified

tolerance (a suitable value being 10%), the linearization is considered sufficiently accurate. Oth-

erwise, the linearization is of questionable accuracy, and all decision variable limits in the QP at

the next iteration are reduced by a scaling factor, denoted d(k) for iteration k. If after the next

QP–(power flow) iteration the linearization is again insufficiently accurate, the scaling factor d(k)
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Figure 3.2: Flowchart for the AC-QP OPF algorithm with a trust region step.

is further reduced by a constant, denoted Sc in Algorithm 1. (A value of Sc = 0.5 was used in

this work.) If the linearization provides acceptable accuracy though, d(k) is increased according to

d(k + 1) = min(2× d(k), 1).

This process reduces the magnitude of the changes from the previous AC power flow solution

that can be scheduled by the QP. As the decision variable step size at each iteration shrinks until

the linearization is sufficiently accurate, this improves the convergence of the inner loop of the

method. If the outer loop is required because new lines become overloaded, decision variable limits

are reset to their original values (i.e. d(k) = 1) and the process repeats.

Often convergence can be further improved by reducing the range of values that appear in the

admittance matrix. This is achieved by removing low-impedance lines (i.e., lines with impedance

less than 1 × 10−3 pu) by merging the connected buses; the method described in [45] was used in

this work. This is similar to the preprocessing steps used in many commercial software packages,

for example [46].

The traditional AC-QP OPF solution method has been extended to a multiperiod setting to
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include both renewable generation and energy storage devices. The algorithm is used to solve

Problem (2.1), including the nonconvex power balance and line flow constraints. Moreover, a

trust region step has been developed to improve the convergence rate of the proposed method.

An improved initialization method to further improve the convergence of this algorithm, as well

as the optimality of the final solution, is proposed in Chapter V. This formulation is extended

in Chapter IV, which presents a technique for solving the nonconvex storage complementarity

constraint in Problem (2.1).
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CHAPTER IV

Enforcing Storage Complementarity

From an optimization perspective, the addition of storage devices into power system models

presents unique challenges that must be addressed. One issue of particular importance that is

addressed in this work is complementarity between charging and discharging of storage devices.

There are situations where simultaneous charging and discharging would reduce overall operating

costs. In particular, such a cost reduction would be achieved by allowing simultaneous charg-

ing and discharging whenever a storage device was located at a bus with a negative “Locational

Marginal Price” (i.e., a negative-valued Lagrange multiplier associated with the active power bal-

ance constraint (2.1t)). From a purely mathematical point of view, producing solutions that result

in devices simultaneously charging and discharging is not a problem. However, such solutions are

not physically meaningful. Explicitly enforcing this complementarity in the OPF problem would

require adding constraint (2.1k) for every storage device in the network, which would require integer

variables in implementation.

Storage charging and discharging complementarity within the QP in Chapter III is an example of

a broader class of problems, namely quadratic programs with complementarity constraints (QPCCs)

[47]. This set of problems has been widely researched, and many algorithms have been developed

to solve them. If the problem has m complementarity constraints, a straightforward but inefficient

way to solve the problem is through full enumeration of the possible constraint values satisfying

complementarity. However, practical solution techniques seek to avoid such enumeration. One

possibility is to use a semidefinite programming heuristic to find a suitable subset of the 2m possible

quadratic programs to solve, and select an optimal solution from the results of that subset [48].

Another broad class of solution methods often used for these problems include sequential quadratic

programming [49]. Still others include a modified logical Benders’ decomposition to generate cuts of
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the feasible region, sparsification to form a quadratic relaxation of the original QPCC, and penalty

function methods that maintain convexity but satisfy complementarity at optimality [50].

Instead, an iterative approach that does not require the use of integer variables and does not

increase the complexity of the original QP is proposed. Moreover, because the AC-QP OPF is

already an iterative algorithm, the proposed approach does not change the type of problem being

solved or nature of the method (iterative as compared to non-iterative). However, the resulting

solutions are physically meaningful, and reveal at optimality the charging/discharging patterns for

storage devices.

The initial (dis)charging status of each storage device i ∈ S at each time step t ∈ T is deter-

mined by the net value of charging/discharging in the initial storage (dis)charging schedule. When

in charging mode, the status is enforced in the QP by setting the discharging limit Rmaxd,i (t) to

zero, with Rmaxc,i (t) taking its proper value. Adding this check after the first iteration enforces com-

plementarity between storage charging and discharging explicitly, ensuring physically meaningful

solutions. However, this assignment of a device’s charge/discharge status at the first iteration may

not be optimal for subsequent iterations. To account for the fact that in subsequent iterations it

may be optimal for a storage device to switch its status, additional checks are added.

If the QP solves to a non-zero value of rc,i(t), the status remains unchanged for the next

AC-QP iteration. If, however, the QP solves to the zero limit rc,i(t) = 0 and the Lagrangian

multiplier corresponding to that lower inequality constraint is positive1 then the status is changed

to discharging for the next iteration of the AC-QP algorithm. Likewise for transitioning from

discharging to charging.

This algorithm enforces complementarity explicitly, due to the fact that at every iteration

exactly one of the device charging or discharging upper limits is modified to force the corresponding

variable to zero. Additionally, the algorithm allows for device status switching between iterations.

Therefore this algorithm produces optimal solutions to the OPF problem but maintains linearity

of the constraints in the problem being solved. Thus, constraint (2.1k) is enforced in an iterative

manner. A more detailed discussion of this process can be found in [51]. Figure 4.1 shows the

AC-QP OPF algorithm with this additional processing step to enforce storage complementarity.

1A positive Lagrangian multiplier indicates that the cost would be reduced by moving beyond the limit.
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Figure 4.1: Flowchart for the AC-QP OPF algorithm enforcing storage complementarity.

4.1 An Indicative Example

The proposed method for enforcing storage complementarity was tested on a modified RTS-96

system [52]. The RTS-96 system is comprised of three symmetric areas with 73 nodes and 120 lines.

Significant wind generation was added to area 1 of the system, with lesser wind added in areas 2

and 3. Correspondingly, traditional generators were removed from service in area 1 and to a lesser

extent in area 2. In total, 19 wind locations were added in the system. Four storage devices were

also added at locations throughout the system.

The test case assumes that a unit commitment (UC) has previously been run using day-ahead

demand and wind forecasts. This UC produces a schedule of generators that are in service. The

OPF then runs every 15 minutes or so, using up-to-date forecasts of demand and wind to establish
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Figure 4.2: Total Conventional Generation.

the most economical real-time operating conditions.

The AC-QP OPF algorithm was run with and without storage complementarity being enforced,

to explore how the solution quality might change. Figures 4.2 to 4.4 show the results for hours

10-13 of day 1 of the RTS-96 system data. Online generation is scheduled as shown in Figure 4.2,

storage devices are scheduled as in Figures 4.3 and 4.4, and available wind generation is scheduled

to maintain power balance. Figure 4.3 shows the total change in state-of-charge across all devices

at each hour, and Figure 4.4 shows the total net power demand for all storage devices at each

hour. Figure 4.2 shows the effect on the scheduling of conventional generation, and therefore total

cost, of adding storage complementarity constraints. It should be noted that there is a negligible

effect on the generation schedule when complementarity is enforced. However, the solution is only

physically realizable with this additional consideration.

Figures 4.3 and 4.4 highlight an important phenomenon that can occur when simultaneous

charging and discharging is observed. Examining the results in Figure 4.3, with and without

complementarity enforced, the change in state-of-charge at each hour is nearly equal. However, the

corresponding results in Figure 4.4 indicate that for the same change in state-of-charge, storage

devices appear to the network as much larger loads when simultaneous charging and discharging

occur. In other words, when complementarity is not enforced, solutions that undergo simultaneous

charging and discharging will always underestimate the state-of-charge, as proven in [53].
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Figure 4.3: Total Change in State of Charge.
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Figure 4.4: Total Storage Demand.

4.2 Conclusions

The AC-QP algorithm from Chapter III has been extended to address the challenges associ-

ated with adding storage in OPF formulations, namely including temporal coupling over the time
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horizon and complementarity between storage charging and discharging. The latter ensures that so-

lutions obtained from this solution method are physically realizable. Compared with other solution

methods used for quadratic programs with complementarity constraints (QPCCs), the proposed

method is simple to implement and does not increase the complexity of the original OPF problem.

Moreover, the proposed method maintains the convergence properties of the AC-QP problems. The

current implementation relies upon a single choice of the optimization horizon, T . The sensitivity

of the optimality of the OPF solution and of the total execution to the choice of this horizon is

examined in Chapter VI.
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CHAPTER V

Improved AC-QP Initialization with an SOCP Relaxation

The performance of the AC-QP algorithm in Chapter IV is greatly improved by an initialization

near the global optimum. One such initialization comes from the solution of a second order cone

program (SOCP) relaxation of the OPF problem. The SOCP solution provides the power injections

Pg(t), Qg(t), Pw(t), rc(t), rd(t) and voltage magnitudes that are used for the initial power flow.

Additionally, voltage angle differences across each line in the network are calculated from the

apparent power line flows and voltage magnitudes. Based on those angle differences, a least-squares

problem then establishes a best fit for the voltage angles at all nodes in the network. This provides

an initialization for voltage angles. The voltage magnitude and angle schedules from the SOCP

initialization are particularly useful when applying the AC-QP algorithm to large systems, where

obtaining a converged AC power flow can be challenging. Moreoever, as the SOCP relaxation that

follows lower bounds the optimal objective value of (2.1), it forms a convenient measure of the

AC-QP solution quality.

5.1 SOCP Relaxation of the Multiperiod OPF Problem

Recall that the multiperiod OPF problem in (2.1) is a nonconvex optimization problem due to

the nonlinear power flow equations (2.1t) and (2.1u) as well as the complementarity constraint (2.1k)

that prevents simultaneous charging and discharging of the storage devices. This section addresses

both sources of nonconvexity to form a convex relaxation of (2.1).

5.1.1 SOCP Relaxation of the Power Flow Equations

Recent research efforts have developed a diverse variety of convex relaxations of the power flow

equations, with trade-offs in computational tractability and tightness. In order to initialize the
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AC-QP algorithm, a convex relaxation with fast computational speed is desired. Therefore the

“branch-flow model” (BFM) relaxation of the power flow equations from [54] was selected. The

BFM relaxation has beneficial numerical characteristics relative to another SOCP relaxation based

on a “bus-injection model” [55] and is faster than other convex relaxations based on semidefinite

programming (e.g., [11,12,14,18]).

The BFM approach in [54] relaxes the DistFlow equations [56], which formulate the power flow

equations in terms of active power, reactive power, and squared current magnitude flows, Pij (t),

Qij (t), and Lij (t), respectively, out of terminal i for each line (i, j) ∈ L as well as squared voltage

magnitudes Vi (t)2 at each bus i ∈ N and time t ∈ T . Note that the time dependence of the rest

of the equations in this section is suppressed for brevity.

To derive the BFM relaxation, begin with the relationship between the active and reactive line

flows and the squared current magnitude (see Figure 2.1):

LijV
2
i = (Pij)

2 + (Qij)
2 . (5.1)

To form an SOCP, (5.1) is relaxed to an inequality constraint:

LijV
2
i ≥ (Pij)

2 + (Qij)
2 . (5.2)

Using (·)∗ to denote the complex conjugate operator, the current flow on the series impedance of

the Π-circuit model is:

Iπ =

(
Pij − jQij

Ṽ ∗i

)(
τije

−jθshift,ij
)
− j

bsh,ij Ṽi

2τijejθshift,ij
. (5.3)

The relationship between the terminal voltages is:

Ṽi

τijejθshift,ij
− Iπ (Rij + jXij) = Ṽj . (5.4)

Taking the squared magnitude of both sides of (5.4) and using (5.1) and (5.3) yields:

V 2
j =

V 2
i

τ2
ij

− 2 (XijQij +RijPij)− V 2
i Xij

bsh,ij
τ2
ij

+
(
R2
ij +X2

ij

) (
Qijbsh,ij + τ2

ijLij +
b2sh,ijV

2
i

4τ2
ij

)
. (5.5)
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Active and reactive line losses are:

Ploss,ij = Rijτ
2
ijLij +

Rijb
2
sh,ij

4τ2
ij

V 2
i +QijRijbsh,ij (5.6a)

Qloss,ij = Xijτ
2
ijLij +

(Xijb
2
sh,ij − 2bsh,ij

4τ2
ij

)
V 2
i . (5.6b)

The active and reactive injections at bus k are:

PSOCPk =
∑

(k,j)∈L

Pkj +
∑

(i,k)∈L

(
Ploss,ik − Pik

)
+ gsh,kV

2
k (5.7a)

QSOCPk =
∑

(k,j)∈L

Qkj +
∑

(i,k)∈L

(Qloss,ik −Qik) + bsh,kV
2
k . (5.7b)

5.1.2 Relaxation of the Charging/Discharging Complementarity Condition

As discussed in Chapter IV, the complementarity constraint (2.1k) prevents simultaneous charg-

ing and discharging of storage devices, which would lead to “fictitious” consumption of energy in

devices with non-ideal efficiencies (i.e., ηc,i, ηd,i < 1). The feasible region for constraint (2.1k) is

defined by the red dashed lines on the axes in Figure 5.1. In this work, a convex relaxation of this

space is used, which is given by the blue region in Figure 5.1. Mathematically, this constraint is

given by (2.1e) and (2.1f) augmented with:

rc,i (t) ≤ −
(Rmaxc,i

Rmaxd,i

)
rd,i(t) +Rmaxc,i ∀i ∈ S, t ∈ T . (5.8)

While this formulation allows some degree of simultaneous charging and discharging (i.e., points in

the blue region that are not on the red lines in Figure 5.1), it is the most straightforward way to

approximate the complementarity constraint. Other techniques for enforcing this constraint have

been proposed, including modifying the OPF objective to include a cost for storage (dis)charging,

which can be shown to strictly enforce complementarity under certain conditions [57], [58]. Since

conditions resulting in simultaneous charging and discharging are relatively rare, the convex relax-

ation typically provides good initializations and close lower bounds, as demonstrated by the results

in Section 5.2.1

1The complementarity constraint is enforced in the AC-QP algorithm, so the final solution cannot have simulta-
neous charging and discharging.
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Figure 5.1: Charging/discharging characteristic. The complementarity constraint (2.1k), with fea-
sible space denoted by the red dashed lines, prevents simultaneous charging and dis-
charging. The blue region shows the convex relaxation of the complementarity con-
straint (5.8) that is used in the SOCP relaxation.

5.1.3 Formulation of the SOCP Relaxation of the Multiperiod OPF Problem

The SOCP relaxation of the multiperiod OPF problem is given by combining the relaxations

of the power flow equations and the complementarity constraint:

min
w(t),Pg(t),Qg(t),V (t),Pij(t),Qij(t),

Lit(t),Pw(t),rd(t),rc(t),e(t)

∑
t∈T

∑
i∈G

ωi (t) subject to (∀t ∈ T ) (5.9a)

Eqns. (2.1b)–(2.1j), (2.1m), (5.2), (5.6)–(5.8)

1− c1,iPg,i (t)− c0,i + ωi (t) ≥

∥∥∥∥∥∥
1 + c1,iPg,i(t) + c0,i − ωi(t)

2
√
c2,i Pg,i(t)

∥∥∥∥∥∥
2

∀i ∈ G (5.9b)

(V mini )2 ≤ Vi(t)2 ≤ (V maxi )2 ∀i ∈ N (5.9c)

Smaxij ≥

∥∥∥∥∥∥
Pij(t)
Qij(t)

∥∥∥∥∥∥
2

∀(i, j) ∈ L (5.9d)

Smaxij ≥

∥∥∥∥∥∥
Ploss,ij(t)− Pij(t)
Qloss,ij(t)−Qij(t)

∥∥∥∥∥∥
2

∀(i, j) ∈ L (5.9e)

Pg,i (t) + Pw,i (t) + rd,i (t)− rc,i (t)− Pd,i (t) = PSOCPi (t) ∀i ∈ N (5.9f)

Qg,i (t)−Qd,i (t) = QSOCPi (t) ∀i ∈ N (5.9g)

where ‖ · ‖2 denotes the two-norm. Note that the line-flow limits (5.9d)–(5.9e) and the squared

current equation (5.2) are implemented with second-order cone constraints. The quadratic objective

is implemented with the auxiliary variables ωi (t), i ∈ G, t ∈ T and the SOCP constraint (5.9b).

The remainder of the constraints are linear. Thus, (5.9) is an SOCP.
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Table 5.1: Descriptions of Test Cases
Test Number Number Number Renewable

Network of Wind Storage Penetration
Buses, Lines Buses Buses (%)

PL-3012wp 2292, 2851 70 300 8.4

30-bus loop 30, 30 5 3 0.0049

PL-2383wp 2177, 2690 60 238 7.3

PEGASE-2869 2487, 4164 70 287 1.3

PL-3120sp 2314, 2886 70 312 10.0

PL-2737sop 2183, 2715 35 274 12.2

WECC 4259, 5868 531 10 45.2

Without consideration of the complementarity constraint (2.1k), the SOCP relaxation is exact

(i.e., yields the globally optimal solution) for radial networks that satisfy certain non-trivial tech-

nical conditions [54]. However, for more general networks such as those considered in the following

examples, the relaxation is usually not exact.

5.2 Results and Discussion

Both the SOCP relaxation and AC-QP algorithm have been applied to a variety of test cases.

This section presents detailed results for two of these test cases: modified versions of the Polish

3012wp test case [59] and a 30-bus loop network [60]. The scalability of these methods is further

demonstrated using five other large test cases (the Polish 2383wp, 2737sop and 3120sp cases [59],

the 2869-bus PEGASE network representing portions of the European power system [61], and a

4259-bus model of the Californian region of WECC). A summary of the details of each test case is

provided in Table 5.1.

It has been observed that for realistically large-scale networks and a time horizon exceeding 16

time steps, the AC-QP OPF is likely to require solution times longer than 5 minutes, which is a

reasonable time limit for on-line applications. Moreover, as will be discussed further in Chapter VI,

a moderate horizon of 4 hours (8 step with Ts = 30 minutes) is sufficient to obtain the economic

benefits of operating storage with renewable generation. All test cases therefore consider a horizon

of 4 hours with a time-step of Ts = 30 minutes, for a total of 8 time steps. Because renewable

generation may change more rapidly than this 30-minute time step, in an operational setting this

algorithm could be re-run frequently (every 5 to 10 minutes) using a receding horizon strategy [62]

to account for deviations in measured and forecast generation.

Storage and wind generation were added to each test network at randomly chosen buses. As the
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focus of this work is to provide an improved initialization for the AC-QP OPF method, the purpose

of adding storage and wind in these cases is to exercise the multiperiod OPF formulation. It should

be noted that the only temporal coupling in this problem is due to the presence of energy storage.

Without such devices, a multiperiod formulation is unnecessary. The available wind Wmax
i (t) at

each wind bus was chosen from a uniform random distribution over the range 1 to 100 MW. The

corresponding renewable penetration of each test case, which is calculated as the total available

wind generation as a percentage of total conventional generation capacity, is given in the final

column of Table 5.1. This forecast of available wind at each location is assumed to be perfect, as

this work relies upon a deterministic OPF formulation.2 Storage device power ratings were chosen

from a uniform distribution of 1–5 MW, and storage device energy ratings were chosen from a

uniform distribution of 1–20 MWh. Table 5.1 provides additional details for these test cases.

Three initialization approaches for the AC-QP algorithm were tested. The first used the gen-

eration and voltage schedules provided in the test case description. With this method, storage and

wind are unused in the initialization (i.e., no charging or discharging and full wind curtailment).

The second is a DC OPF that approximates total system losses as 3% of total load (i.e., the DC

power balance constraint at each bus is modified to include an additional 3% of the demand and

storage charging at that bus to account for system losses). The final initialization method is the

SOCP relaxation.3 Note that the first step of the AC-QP method is to solve a power flow using this

initial operating point. The algorithm thus begins from a full AC power flow solution, regardless

of the choice of initialization.

The formulations were implemented in MATLAB R2012a and solved on a MacBook Pro with

a quad-core Intel i7 2.3 GHz processor with 16 GB of 1600 MHz DDR3 RAM using MOSEK

version 7.0 to solve the SOCP programs and Gurobi version 5.6.3 to solve the quadratic programs.

A Newton algorithm was used to solve the power flows.

The results in this section demonstrate the computational tractability and solution quality for

the proposed approach of using the SOCP initialization with the AC-QP algorithm.

2Note that this deterministic OPF can be embedded in a receding horizon strategy to account for variability and
uncertainty. Furthermore, such deterministic OPF problems form the basis of many stochastic OPF formulations.
Integrating the proposed approach into stochastic OPF methods is discussed in Chapter VII.

3In an on-line environment, the state estimator solution would be available to initialize the OPF. As a surrogate, an
initialization based on the single-time-step OPF solution at t = 0, copied to each later time step, was also considered.
The results indicated that this approach was generally inferior to the initialization from the SOCP relaxation in both
computation time and solution quality. Inferiority of the single-step initialization is attributable to the fact that it
does not consider the forecast of future wind availability and the corresponding changes in storage utilization, both
of which are available to other initialization methods.
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5.2.1 Case 1: Polish 3012wp Network

The convergence and computation time of the AC-QP algorithm are substantially improved

by accurately predicting which line-flow constraints need to be explicitly enforced in the QP (i.e.,

determining the set L∗ in Problem (3.3)). The initial set of line-flow constraints is highly dependent

on the choice of initialization. This first test case emphasizes an important benefit of the SOCP

initialization method: compared to the other initializations, the power flow solution resulting from

the SOCP initialization more accurately predicts the set of line-flow constraints that must be

included in the QP. Consequently, fewer outer loops of the AC-QP algorithm (the bold path

in Figure 4.1) are required, reducing the number of QP–(power flow) iterations and hence the

computation time.

The results of the Polish 3012wp test case are summarized in Tables 5.2–5.3. For each initializa-

tion method, the second column of Table 5.2 gives the line index for line-flow constraints that are

added to the QP. The lines shown in parentheses were not identified from the initial power flow,

but were added through additional outer loops as they became overloaded in subsequent iterations

of the AC-QP algorithm. Compared with the other methods, the SOCP initialization performs

better in two aspects: 1) it requires the fewest number of explicitly enforced line-flow constraints,

which reduces the time required to solve the QP at each iteration, and 2) the initial set of line-flow

constraints is sufficient throughout the AC-QP iterations (i.e., no additional outer loops of the

AC-QP algorithm are required). The third column of Table 5.2 demonstrates that regardless of

the initialization procedure, the same line constraints are binding in the final solution for this test

case. Only the SOCP initialization yields a superset of the binding line-flow constraints.

Table 5.2: PL-3012wp: Explicitly Enforced Line-Flow Constraints
Initialization Initial Lines Line Limits

Method (Additional Lines) Binding at Soln.

Case description 324, 331, 529, 813, 231, 495, 529,
1411, 1412, 1436, 1833, 1367, 1388, 1519,

2225, (231), (495), (1367), (2829)
(1388), (1519), (2829)

DC OPF 231, 495, 542, 813, 231, 495, (529),
1367, 1388, 1519, 1718, 1367, 1388, 1519,
1833, 1878, 2233, 2473, 2829

2608, 2829, (529)

SOCP 231, 495, 529, 542, 231, 495, 529,
813, 1367, 1388, 1519, 1367, 1388, 1519,
1833, 2233, 2473, 2829 2829
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Table 5.3: PL-3012wp: Convergence and Execution Time
Initialization Number of Init. AC-QP Total

Method QP–(power flow) Time Time Time
iterations (sec) (sec) (sec)

Case Description 7 – 111 111

DC OPF 7 18 107 124

SOCP 4 19 58 77

Table 5.3 indicates that the SOCP initialization offers appreciable performance improvements

over the other forms of initialization. The SOCP method eliminates the need for additional outer

loops to add line-flow constraints not initially identified, thus reducing the total number of iter-

ations, as shown in the second column. Explicitly enforcing fewer inequality constraints reduces

the QP’s solution time at each iteration. These two factors greatly reduce the solution time of the

AC-QP algorithm, as demonstrated in the fourth column of this table. The fifth column shows that

SOCP initialization results in a total computation time that is substantially less than the other

methods. These timing results also highlight the scalability of these methods for large networks.

The objective value of the SOCP relaxation lower bounds the generation cost, thus providing

a useful metric for assessing the quality of the solution obtained from the AC-QP algorithm. For

this example, the SOCP gave a lower bound of 13.602 M$ on the cost of generation. All three

initialization processes resulted in convergence to the same total cost of generation of 13.618 M$,

implying a relaxation gap of at most 0.12%. Thus, the AC-QP solution is at least very close to

being globally optimal, and may, in fact, be the global optimum.4 Even though all initialization

methods resulted in equivalent dispatches, the choice of initialization process significantly affected

the solution time and the number of iterations required to reach that solution.

5.2.2 Case 2: 30-Bus Loop Network

The SOCP initialization is also useful for cases where the AC-QP algorithm finds a local solution

rather than the global optimum. The AC-QP algorithm provides neither a guarantee of finding a

global solution nor a metric for assessing solution quality. As shown in [60], OPF problems may

have multiple locally optimal solutions. Tables 5.4–5.5 provide results for a modified multiperiod

version of the 30-bus loop test case from [60] that demonstrate the utility of the SOCP initialization

for both finding a global solution and providing a metric of solution quality.

4This gap can be at least partially attributed to relaxations of the power flow equations (5.9f),(5.9g) and the
simultaneous charging/discharging constraint (5.8). For several test cases, solutions to the relaxation (5.9) exhibited
simultaneous charging and discharging at some buses.
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Table 5.4: 30-Bus Loop: Generation Cost
Initialization SOCP Lower AC-QP % Cost

Method Bound ($) Cost ($) Difference

Case description 23,840 31,577 32.5 %

DC OPF 23,840 26,759 12.2 %

SOCP 23,840 23,840 0.0011 %

Table 5.5: 30-Bus Loop: Total Generation and Losses
Initialization AC-QP Total AC-QP Total

Method Generation (MW) Losses (MW)

Case description 15,788 3,937.5

DC OPF 13,380 1,526.5

SOCP 11,920 69.3

As shown in Table 5.4, initializing the AC-QP algorithm using the case description or the

DC OPF results in solution costs that are significantly higher than the SOCP lower bound, while

the SOCP initialization gives a cost that is within 0.0011% of the lower bound.5 Using the lower

bound from the SOCP relaxation as an indicator of solution quality, it is reasonable to assert that

the solution resulting from the SOCP initialization is sufficiently close to the global optimum, while

the other two solutions are locally optimal solutions.

In this example, the suboptimal solutions resulting from the DC OPF and case description

initializations have power circulating around the loop while the global solution does not. As shown

in Table 5.5, this circulating power results in greatly increased losses. Substantially more generation

is required, incurring higher cost. Moreover, as each branch has a relatively small angle difference,

identifying such local optima may be difficult in more general problems. Similar phenomena have

been observed in actual systems, as described in [63].

The example demonstrates the value of the SOCP relaxation: 1) it provides a sufficient condition

for quickly assessing whether a solution to the AC-QP algorithm has an objective value that is close

to the globally optimal value, and 2) SOCP initialization results in a globally optimal solution for

this case.

5.2.3 Other Large Test Cases

The AC-QP algorithm with its various initializations was also applied to other large test cases,

including a 4259-bus model of the WECC system, to assess performance on networks of various

5The SOCP relaxation does not always yield a lower bound that is close to the global optimum (e.g., the lower
bound from the SOCP relaxation of the nine-bus system in [60] is 11% below the global optimum identified in [15]).
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sizes and topologies. An 8-step time horizon was used in all cases. The details of these test cases

are given in Table 5.1, and the results are summarized in Tables 5.6–5.9. Tables 5.6 and 5.7

show the convergence results of each test case and each initialization method. In each case, the

SOCP initialization method improves the convergence rate of the AC-QP algorithm, requiring a

smaller number of iterations and achieving the fastest total execution time. The computational

improvement is particularly significant for the PEGASE-2869 and PL-3120sp test cases. It is

important to note that these execution time improvements are achieved by changing only the

initialization procedure.

Initialization of the WECC case is particularly challenging. The initial power flow of the

AC-QP algorithm did not converge when initialized using the case description or the DC OPF.

This resulted in failure of the AC-QP algorithm. In contrast, SOCP initialization provides close-

to-feasible initial conditions that result in convergence of the initial power flow (and subsequently

of the AC-QP algorithm). Note that the execution time for the WECC case is fast enough for use

in a practical on-line setting, although including other features, such as contingency constraints,

requires further work.

Table 5.8 gives the total cost of generation while Table 5.9 provides the corresponding percent

difference in generation cost between the lower bound of the SOCP relaxation and the AC-QP

solution. In all cases, the SOCP initialization yields the AC-QP solution with generation cost

closest to the SOCP lower bound. It therefore provides a more economic operating point than

those resulting from the other two initializations. Note, however, that the small differences in

Table 5.9 may be due in part to the termination criterion used in the AC-QP algorithm.

The case PL-2383wp is of particular interest due to larger cost variations among the different

initialization methods. Figure 5.2 shows the total storage (dis)charging across all storage devices, as

well as the total wind generation across all wind nodes at each time step in the OPF horizon. Taking

the AC-QP solution initialized with the SOCP as a reference, the results presented are normalized

to show the difference in each solution for the various initialization algorithms. Looking at the

storage (dis)charging results over the 8-step horizon, the solution from the DC OPF initialization

generally makes less use of storage. As a consequence, less wind generation can be used to meet

demand, resulting in higher cost of operation. This highlights the economic value of optimally

scheduling storage in conjunction with renewable generation.

33



Table 5.6: Number of Iterations for Test Cases
Test Case DC SOCP

Network Description OPF Init.
Init. Init.

PL-2383wp 8 5 5
PEGASE-2869 8 8 4

PL-3120sp 11 7 5
PL-2737sop 6 6 3

WECC – – 4

Table 5.7: Total Execution Time (Seconds)
Test Case DC SOCP

Network Description OPF. Init.
Init. Init.

PL-2383wp 97 77 78
PEGASE-2869 127 149 87

PL-3120sp 159 126 98
PL-2737sop 81 94 62

WECC – – 128

Table 5.8: Total Cost of Generation for Test Cases
Test SOCP Case DC-OPF SOCP

Network Lower Description Init. Init.
Bound (M$) Init. (M$) (M$) (M$)

PL-2383wp 8.58 8.61 8.65 8.60

PEGASE-2869 0.875 0.882 0.879 0.878

PL-3120sp 11.2 11.2 11.2 11.2

PL-2737sop 6.44 6.47 6.47 6.47

WECC 0.208 – – 0.208

Table 5.9: Percent Cost Difference (%) for Test Cases
Test Case DC-OPF SOCP

Network Description Init. Init.
Init.

PL-2383wp 0.40 0.82 0.23

PEGASE-2869 0.72 0.43 0.27

PL-3120sp 0.30 0.30 0.30

PL-2737sop 0.37 0.37 0.37

WECC – – 0.03
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Figure 5.2: An example of differing use of storage and wind resulting in local minima.
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5.3 Conclusions

An AC OPF solution method that uses an SOCP relaxation to initialize an AC-QP successive

linearization algorithm has been proposed. The SOCP provides initial values for the decision

variables (traditional and renewable generation, and energy storage charge/discharge values) along

with approximate values for all voltage magnitudes and angles across the network. These values

are particularly useful for achieving convergence of the initial power flow in the AC-QP algorithm.

The resulting initial solution often lies in the vicinity of the globally optimal solution.

The proposed SOCP initialization offers several benefits over other approaches. The SOCP

relaxation often provides an accurate prediction of the subset of line-flow constraints that require

explicit representation in the QP. This reduces both the total number of iterations needed in the

AC-QP algorithm as well as the number of inequality constraints in the QP. These factors improve

the solution time of the AC-QP algorithm. The SOCP initialization reduces the likelihood of the

AC-QP algorithm converging to a local optimum that is far from the global solution. Furthermore,

the lower bound on the OPF objective given by the SOCP relaxation provides an indication of the

quality of the AC-QP solution. A small “gap” between the SOCP lower bound and the AC-QP

solution indicates that a nearly globally optimal outcome has been achieved.

The algorithm has been applied to a variety of multiperiod OPF test cases that incorporate

wind and storage resources. The results indicate that this approach scales well, with tractability

demonstrated for large-scale test cases up to 4259 buses and 8 time-steps. This choice of the number

of time steps used in the OPF formulation is explored further in Chapter VI.

35



CHAPTER VI

Choice of Optimization Horizon

Without constraint (2.1i) on the final state-of-charge, the OPF problem will typically use storage

in a greedy manner, fully discharging the storage device to minimize operational cost within the

time horizon. This is of particular importance for shorter horizon choices, which may suffer from

their short-sighted nature. This chapter explores one method for implementing constraint (2.1i)

and choosing etermi , as well as its impact on solution quality.

6.1 Avoiding the Greedy Use of Storage

A penalty term is added to the generation cost term of the OPF objective to avoid the greedy

use of storage and enforce constraint (2.1i) as a soft constraint. The modified objective is then

given by,

min
∆Pg(t),∆Qg(t),∆θ(t),∆V (t),

∆Pw(t),e(t),∆rc(t),∆rd(t)

∑
t∈T

∑
i∈G

Ci
(
P 0
g,i(t) + ∆Pg,i(t)

)
+ γ

∑
i∈S
‖ei(T )− etermi (T term)‖22 (6.1)

Note that the constraints in the QP solved at each iteration of the AC-QP algorithm are those given

in Problem 3.3, with constraint (3.3j) removed. The intuitive use of storage is to charge devices

during low demand and high renewable periods of the day, and then discharge them during high

demand and low renewable periods to achieve peak shaving and reduce the total operating cost.

However, shorter horizons may not achieve this desirable behavior, as the valley and peak periods

are not visible within the reduced optimization horizon.

To address this problem, a reference storage usage pattern can be determined by solving a
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higher level problem, such as unit commitment, that performs an optimization over a sufficiently

long horizon. The approach adopted has been to establish this reference trajectory by solving a

higher-level, approximate, storage allocation problem using six 4-hour time steps.

The multiperiod OPF seeks to minimize the total generation cost over the horizon of interest.

To do so, it can use storage freely, and only incurs a penalty cost if the state of charge of each

storage device at the end of the horizon deviates from the reference usage pattern. This terminal

penalty also ensures fair usage of storage devices over the entire day. As storage devices begin the

24 hours charged to half of their energy rating, they should be returned to that initial value at the

end of the 24-hour period. This is achieved by varying the penalty coefficient γ throughout the

24 hours, depending on the time at the end of the OPF horizon (denoted T term), according to the

following scheme:

γ =



102, T term ∈ [1, 15]

103, T term ∈ (15, 17]

104, T term ∈ (17, 19]

105, T term ∈ (19, 21]

106, T term ∈ (21, 24]

102, T term > 24.

(6.2)

This coefficient is relatively low for the first part of the day and then gradually increases as the

day progresses. The specific values given above are designed such that the largest coefficient is of

the same order of magnitude as the cost of conventional generation. Additionally, including several

steps to increase this penalty coefficient ensures a relatively smooth transition to return storage

energy levels at the end of the 24 hours to their initial values. Moreover, the very large coefficient

over the last few hours ensures that if it is feasible to do so, the state of charge of each storage

device will be returned to its initial value. While this policy ensures fair usage of storage devices,

it may impact the optimality of the final solution.

6.2 Test Cases

Two test cases are presented to assess the performance of the proposed method. They are

both based on a modified version of the Polish 3012wp network from [59]. This system has been

augmented with both wind nodes and storage devices. Three hundred storage devices were placed
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at randomly chosen locations within the network. The maximum (dis)charging rating and energy

rating of each device were then chosen from a uniform random distribution over the ranges 1–

5 MW and 1–20 MWh, respectively. One hundred wind locations were randomly chosen within

the network. The available wind at those locations was likewise chosen from a uniform random

distribution over the range 1–100 MW. To create a demand profile over 24 hours, the hourly load

data provided in the RTS-96 test case description for a summer weekend was used [52]. Both

cases are assumed to begin at 7 p.m., just after the midday peak demand period has occurred.

Additionally, it is assumed that storage devices begin each 24-hour period charged to half of their

maximum energy ratings, and must be returned to that value by the end of the 24-hour period to

maintain a fair usage policy. The demand and wind profiles assumed in this case over the course

of 24 hours are given by the solid lines in Figure 6.1.

Both test cases presented use the same network description, as well as randomly chosen wind

and storage device locations and ratings. The difference between the two cases is in the assumption

of load and wind forecast accuracy. Initially, results are presented assuming perfect wind and

load forecasts. This test case is used to assess the computational scalability of the method and to

demonstrate the sensitivity of the total cost of generation to the OPF horizon chosen. The second

test case introduces an event such that the load forecast has significant error, as shown by the

dotted line in Figure 6.1. This case highlights the sensitivity of the OPF solution to forecast errors,

and considers the effect of horizon length.
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Figure 6.1: Demand and Wind Profiles Used in Both Test Cases
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Figure 6.2: Case 1: Cost of Generation and Total Stored Energy Results

6.3 Results and Discussion

6.3.1 Test Case 1: Perfect Wind and Load Forecasts

The results of the first test case are given in Figures 6.2–6.7. Note that the x-axis in these plots

gives the hour after 7 pm. As such, this time axis begins with the overnight period at the far left

of the plots. Both the total cost of generation and total stored energy of all 300 storage devices

over the 24-hour period considered are given in Figure 6.2. The storage state of charge reference

pattern over the entire day, denoted by T=24 in the lower figure, establishes the terminal value

that is used in the penalty term in the OPF objective function (6.1).

Figure 6.2 demonstrates the improved performance of the longer OPF horizons in scheduling

storage (dis)charging. Shorter horizons, such as 1 or 2 hours, result in storage charging over the

valley period (hours 7–13) being insufficiently scheduled, such that during the peak demand period

(hours 15–24) less storage is available to achieve lower peak operating costs. This highlights the

short-sighted nature of these horizons that are unable to anticipate the upcoming peak demand. It

should also be observed that these shorter horizons not only charge storage devices to a lower state

of charge, but also begin discharging several hours before the peak demand period, contributing to

a higher cost of operation. Conversely, longer horizons, such as 4, 6 or 8 hours, successfully charge

storage devices to a higher state of charge level before the peak demand period. Storage can then

be discharged during the peak periods, resulting in significant cost savings.
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Figure 6.3: Case 1: Hourly Percent Savings Compared to No Storage Case
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Figure 6.4: Case 1: Total Cost Percent Savings Over 24 Hours for Various Horizons

Figure 6.3 highlights the economic improvement for each horizon tested, relative to the cost

of operation with no storage in the network. Both the 1- and 2-hour horizons achieve some cost

savings during hours 14–16, but also incur higher cost during the high-demand hours of 19–21, as

storage must be charged to return to its initial state of charge. However, using a longer horizon,
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Figure 6.5: Case 1: AC-QP OPF Timing Results

such as 4, 6, or 8 hours, avoids this issue and can achieve cost savings up to 4% during peak demand

periods in this case. Figure 6.4 shows the improved cost savings over an entire day that result from

optimally scheduling storage (dis)charging. The savings can be up to 0.9% per day in this case.

While longer horizons produce higher cost savings, there is a diminishing benefit as the length of

the OPF horizon is increased.

Figures 6.5–6.6 show the computation time for various OPF horizons. For real-time OPF

applications, an execution time target of 5 minutes is assumed. While longer horizons can schedule

storage devices more economically, the computation time of the AC-QP OPF method increases

significantly as the horizon increases, as shown in Figure 6.5. Moreover, when the initialization time

to solve the SOCP OPF relaxation given in Chapter V is considered in the total computation time,

as shown in Figure 6.6, the increase in total time for longer OPF horizons is even more pronounced.

Horizons longer than 8 hours have not been considered as they are likely to exceed the 5 minute

target assumed for real-time applications. Computation time must be carefully addressed when

choosing an appropriate horizon, especially considering the diminishing cost benefits achieved with

longer horizons.
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γ = 1e1

γ = 1e2

γ = 1e3

γ = 1e4

γ = 1e5

γ = 1e6

Figure 6.7: Case 1: Total Energy and Cost Comparison - Constant γ, T = 4

Figure 6.7 shows the sensitivity of these results to the choice of the storage terminal penalty

coefficient γ. The first test case is repeated for a constant choice of γ throughout the day and

a horizon of 4 hours. When γ is less than 104, storage is discharged before the peak demand

period. This short-sighted operation of storage leads to a higher operating cost over the entire day,
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Figure 6.8: Case 2 Cost of Generation and Total Stored Energy Results

compared to the time-varying scheme proposed. Conversely, when γ is increased to 105 or 106, the

storage usage pattern matches the reference pattern more closely. This leads to a slightly lower cost

of operation compared to the time-varying scheme. However, this result relies upon the assumption

of having a perfect demand forecast.

6.3.2 Test Case 2: Introducing Load Forecast Error

The second test case, the results of which are summarized in Figures 6.8–6.11, explores the

impact of significant forecast errors on the quality of solutions for various OPF horizons. As the

day begins, the wind and demand forecasts are those given by the solid lines in Figure 6.1. Then,

at hour 16, a new demand forecast is received, which is shown by the dotted curve in Figure 6.1.

Comparing the original forecast and actual demand curves, it it observed that there is significant

error in the original forecast. In particular, the actual demand lacks the peak demand period

that was originally anticipated. The degree to which this forecast error impacts the quality of the

solutions achieved by the AC-QP OPF depends on the horizon chosen, as shown in Figure 6.8.

As in the first case, storage devices begin charging at hour 5. The longer horizons (4 and

6 hours) charge those devices more rapidly, and have them more fully charged by hour 14. This

is due to the fact that those horizons are sufficiently long for the peak demand at hour 16 to be

anticipated. However, the shorter horizons (1 and 2 hours) begin charging, but at a lower rate, as
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Figure 6.9: Case 2 Hourly Percent Savings Compared to No Storage Case

the peak demand has not yet been taken into account. As in the first case, the shorter horizon

results are short-sighted, and so begin discharging storage devices at hour 14. In this case, however,

the demand forecast for which the storage (dis)charging pattern was planned was in error. An event

occurs at hour 16 such that a large portion of the anticipated demand does not eventuate, and load

continues to decrease over the rest of the day. Consequently, the original peak demand period never

occurs. The longer horizons have already incurred the extra cost of charging storage to a higher

level in planning for that peak, which results in a higher cost compared to the shorter horizon

results. This is just one example where relying upon a longer horizon, which is more economic

given a reliable forecast, leaves operations vulnerable to forecast error and actually results in a

higher cost solution.

Figure 6.9 emphasizes the impact that forecast error may have on the cost savings achieved by

adding storage to a network. Compared to the case without any storage in the network, all horizons

achieve similar cost savings until hour 14. At that time, the longer horizons incur a cost to charge

storage to a higher energy level, while the shorter horizons achieve cost savings up to 4.5% in this

case, as they have already begun returning power from storage devices to the network. Then, after

the unanticipated load-reduction event at hour 16, all horizons use the available storage to return

power to the network. It is again clear that shorter horizons may be beneficial in scenarios with

less reliable forecasts.
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Figure 6.10: Case 2 Total Cost Percent Savings Over 24 Hours for Various Horizons

Considering the cost of operation over the entire 24-hour period, Figure 6.10 emphasizes the

significance of forecast error on the quality of the solution. This plot shows that the difference in

cost of operation between a 1-hour and 6-hour horizon is approximately 0.3%. In the presence of

significant error, using a 1-hour horizon could save almost 1% per day. Forecast errors should also

be taken into account when choosing appropriate values for γ. Figure 6.11 shows the results of

this second case study for a constant γ throughout the day. In the presence of significant forecast

errors, choices of γ that are less than 104 achieve the same use of storage and cost of operation

as the time-varying scheme (6.2). However, when γ is increased to 105 or 106, while the use of

storage more closely matches the reference pattern, the cost of operation is higher compared to

the time-varying scheme. Placing such large penalties on deviation from terminal state of charge

reduces the flexibility of the storage to adapt to forecast errors.

Taken together, these figures reveal that the degree of confidence placed in a demand or wind

forecast must be assessed carefully, as that accuracy can have a significant impact on the choice

of horizon length. Finally, as in the first test case, Figure 6.12 demonstrates the scalability of this

method for a realistically large network, as all cases are within the 5-minute limit set for real-time

applications. It should also be noted that if large forecast errors are a concern and shorter horizons

are implemented, significant execution time savings can be achieved.
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Figure 6.11: Case 2 Total Energy and Cost Comparison - Constant γ, T = 4
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6.4 Conclusions

Several factors influencing the choice of OPF horizon used in the multiperiod AC-QP formu-

lation from Chapter V have been explored. First, when forecasts are accurate, longer horizons

offer significant benefits in reducing operational costs. Conversely, when large forecast errors are

anticipated, choosing a longer horizon may increase the operational cost, while shorter horizons can

achieve greater cost savings. Together, these investigations demonstrate that optimal scheduling is

reliant upon matching the horizon length to the forecast quality. The scalability of the proposed

approach has also been demonstrated on a realistically large network and timing results fall within

a reasonable (5-minute) operation time limit. The AC-QP algorithm is extended to consider wind

forecast uncertainty in Chapters VII-X.
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CHAPTER VII

Introducing Renewable Generation Uncertainty

As demonstrated in Chapter VI, forecast quality can have a significant impact on the economic

operation of power systems. Due to its variable nature, renewable generation is a main source of

uncertainty in power systems. Accurate methods for mitigating such uncertainty are crucial for the

reliable operation of power systems. This chapter extends the AC-QP OPF method to a stochastic

setting that includes wind generation uncertainty.

7.1 Introducing scenarios into the AC-QP OPF

The solution of the AC-QP OPF formulation presented in previous chapters is deterministic in

the sense that it does not take into account the uncertainties of the system. In this section, wind

power uncertainty is considered, and the algorithm shown in Figure 4.1 is reformulated to provide

a solution that is robust over a finite set of possible wind generation scenarios. This results in a

probabilistic AC-QP OPF algorithm (AC-QP pOPF). The base case generation dispatch will satisfy

the network constraints for a particular wind forecast. Any wind power scenario differing from the

forecast will introduce a generation-load mismatch, driving the system to a new operating point.

This active power mismatch is assumed to be compensated according to a linear policy, adjusting

the power of each generator based on a distribution (or participation) vector as in [34], [1]. Let

Pg represent the base case generation dispatch corresponding to a particular wind forecast, Pw. If

a wind scenario, denoted Pmw , is then encountered, the base case generation dispatch is adjusted

according to a distribution vector, d:

Pmg = Pg − d
∑
k∈W

(
Pmw,k − Pw,k

)
. (7.1)
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Note that the nonnegative entries of d describe the contribution of each generator in alleviating

the forecast error. As each scenario will also incur different losses in the network, generation must

also be adjusted in a similar manner to cover this variation. It is assumed in this work that the

generator voltage magnitude setpoints remain constant through deviations from the wind power

forecast.

The robust (over the scenarios) reformulation is based on a series of iterations between an AC

power flow and a QP, as in the deterministic algorithm shown in Figure 4.1. The initialization

of the first set of AC power flows is provided by a reformulation of the SOCP relaxation given

in Chapter V. In this modified SOCP, each new scenario requires additional variables for the

voltage magnitude at load buses (Vi ∀i ∈ pq), the active and reactive flows on each line (Pij , Qij

∀(i, j) ∈ L), the square current magnitude flows (Lij ∀(i, j) ∈ L), and generator reactive power

output (Qg,i ∀i ∈ G). The network constraints in Problem 5.9 are duplicated within the SOCP for

each new operating point due to a scenario. The coupling between the base case and each scenario is

maintained through the generator active power output linear policy and common voltage magnitude

setpoints.

A QP is then solved to schedule changes from the initial power flow solutions to alleviate

constraint violations and satisfy the objective. A separate linearization is formed for each scenario

in the QP using the solution of the corresponding power flow. Separate AC power flows are then

solved for the base case and each scenario, and these iterations continue until the power flow and

QP solutions agree within an acceptable tolerance.

The objective and constraints for the base case wind forecast are those given in Problem (3.3),

with three modifications. First, a single period OPF formulation is considered (i.e. T = 1), so

the time dependence of all constraints is suppressed in the formulations that follow. Second, no

storage has been added in the network, so constraints (3.3h)-(3.3m) are omitted from the base case

description. Finally, while the base case wind generation, Pw, is a decision variable in Problem 3.3,

it is considered a fixed parameter in this formulation. Likewise, the wind generation in each scenario

is a fixed parameter in the optimization problem. The set of wind scenarios to be considered in

the pOPF problem is denoted S and is indexed by the variable m. A scenario in this context is

defined by a vector of wind generation values. For example, if the base case forecast of one wind

generator is 100 MW, a possible scenario could be that it produces only 95 MW instead of its

forecasted value. For every scenario m ∈ S, the set of operational constraints (7.2b)-(7.2h), which

are in line with the base case description, is added to the optimization problem. The QP solved at
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each iteration of the AC-QP pOPF algorithm is then as follows:

min
∆Pg,∆Qg,∆θ,∆V,α

m,
∆Pm

g ,∆Qm
g ,∆θ

m,∆Vm

∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
(7.2a)

subject to (3.1), (3.2), (3.3b)− (3.3d), (3.3f)

∀m ∈ S :

Jm∆xm = ∆Sm (7.2b)

Pming,i ≤ P
◦,m
g,i + ∆Pg,i + αmdi ≤ Pmaxg,i ∀i ∈ G (7.2c)

Qming,i ≤ Q
◦,m
g,i + ∆Qmg,i ≤ Qmaxg,i ∀i ∈ G (7.2d)

∆θmslack = 0 (7.2e)

V mini ≤ V ◦,mi + ∆V mi ≤ V maxi ∀i ∈ N (7.2f)

∆Vi = ∆V mi ∀i ∈ G (7.2g)

S◦,mij +
∑
k∈N

∂Sij
∂θk

m

∆θmk +
∑
k∈N

∂Sij
∂Vk

m

∆V mk ≤ Smaxij ∀ (i, j) ∈ L∗,m and ∀ (j, i) ∈ L∗,m. (7.2h)

The modified linearization for each scenario is given by

∆xm =

∆θm

∆V m

 ,∆Sm =

Ga[∆Pg + αmd]

Ga∆Q
m
g

 ,
where Ga is the node-generator incidence matrix defined in Chapter III.

Each scenario m introduces extra variables, namely the reactive power output of each generator

(∆Qmg ) and the complex voltage at each bus (∆V m, ∆θm). Note that the term αmd has been

added to the definition of ∆Sm and to constraint (7.2c), where αm represents the difference in

total active power losses between the base case and scenario m. In a distributed slack manner, this

accounts for the the fact that total system losses will differ between the base case and each scenario.

The deviation of the active power generation, ∆Pg, is forced to take the same value for the base

case and all scenarios. Recall the linear policy given in (7.1) that is used to run the AC power

flows of the base case and each scenario. The parameter P ◦g in the QP represents the active power

generation from the base case power flow solution. It is thus Pg adjusted for the actual system

losses in a distributed slack manner. Likewise, P ◦,mg is obtained from the power flow solution of

scenario m, and is Pmg adjusted for the actual network losses. As such, the mismatch introduced

by each scenario is already taken into account in the corresponding generation dispatch, P ◦,mg ,

obtained from the previous AC power flow. The same generator voltage magnitude setpoints are
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enforced in the base case and each scenario through constraint (7.2g).

Once the algorithm has converged, the final solution guarantees that the operating point of the

base case and the operating points for the considered scenarios will satisfy the nonconvex AC power

flow constraints with sufficient accuracy. However, there is no guarantee that the constraints will

be satisfied for any arbitrary scenario that may be encountered in actual operation. To achieve

such generalization properties, a randomized optimization technique is applied, which is the topic

of Section 7.3.

7.2 Improving the scalability of the AC-QP pOPF

The previous section presented the pOPF for the general case where a finite number of wind

power scenarios are considered. To improve the scalability of the method with respect to the

number of scenarios that can be incorporated in the pOPF problem, the modified algorithm shown

in Figure 7.1 is proposed. This algorithm is based on ranking the scenarios according to the absolute

value of the difference between the scenario and the forecast, |
∑

i∈W(Pmw,i − Pw,i)|. This updated

method adds only the highest ranked wind scenario to the pOPF at the beginning of each outer loop.

Then, if the solution results in constraint violations for any of the remaining scenarios, one more

scenario from those with violations is added in the same way to the pOPF at the next iteration.

In practice, it has been observed that relatively few of these outer loops are necessary to satisfy

the constraints for even a very large number of scenarios. In other words, a solution satisfying the

constraints for a very large set of possible scenarios is found by explicitly including only a small

fraction of them in the pOPF problem. Limiting the size of the subset of wind power scenarios

explicitly modeled in the pOPF problem reduces the number of variables and constraints in the

QP, making the AC-QP pOPF faster to achieve a feasible solution for all considered scenarios. It

is this iterative approach of introducing scenarios that makes the proposed AC-QP method highly

scalable with respect to the number of scenarios considered in the pOPF problem.

7.3 Providing a-posteriori probabilistic guarantees

The proposed algorithm provides a method for selecting a subset of scenarios to include in the

pOPF problem to generate a solution that is feasible for a much larger set of scenarios. As such,

the solution resulting from optimizing over a very small number of scenarios is an identical feasible

solution to the pOPF problem considering the entire (potentially much larger) set of scenarios. The
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Figure 7.1: AC-QP pOPF algorithm for N scenarios.

crucial criterion of this algorithm is that the solution satisfies the constraints for all other scenarios,

even though they were not used explicitly in the solution method [64].

The framework in [42] is then employed to find a-posteriori probabilistic guarantees to accom-

pany the solution of the nonconvex problem. This method is applicable to any algorithm that takes

as an input a particular set of scenarios and provides a feasible solution of the problem. The critical

point is the definition of the support set, also known as a compression scheme in [64], which is the

set of scenarios that support the solution. In other words, if the solution of the problem using a set

of N scenarios, SN , is considered, and an identical solution can be achieved given a subset Sk of SN

that contains only k scenarios, then the set Sk is a support set of the problem with N scenarios.

With the cardinality k of the support set of the problem associated with N scenarios identified,

a theoretical upper bound on the probability of constraint violation is provided by the formula
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from [42]:

ε(k) =


1, if k = N

1− N−k

√
β

N(Nk )
, otherwise

(7.3)

where β ∈ (0, 1) is a design parameter representing the probability that the upper bound ε will be

violated. In other words, β is the probability that the probability of constraint violation will be

greater that ε. A choice of β that is sufficiently small (e.g. β = 10−4) will ensure that the calculated

upper bound ε will hold with “very high confidence”.

It is important to note that there are only two assumptions required for this bound to be valid.

First, the algorithm must map the scenario set to a ‘unique’ solution satisfying the constraints

for all the scenarios in the set. Second, the solution must be invariant to any permutation of the

scenarios taken into account. These requirements are both satisfied for the proposed algorithm.

The provided theoretical guarantees are a-posteriori, as the cardinality of the support set can

only be identified after the solution is obtained. Moreover, the result will be less conservative if a

support set of minimum cardinality is found. The algorithm proposed in Section 7.2 can then be

used to obtain a solution and identify the cardinality of the support set. The previously defined

theoretical probabilistic bound is then validated via Monte Carlo simulation.

7.4 Results and Discussion

7.4.1 An indicative example of the AC-QP pOPF

A first test case that uses the IEEE 14-bus network and unit commitment [59] is presented

to demonstrate the progression of this method when 1500 scenarios are considered in the pOPF

problem, and how the resulting support set for this problem is identified. The network has been

augmented with two wind generators at nodes 9 and 3; 40 MW of available wind power is assumed

at each node in the base case forecast. This corresponds to a renewable penetration (calculated

as the ratio of total available wind generation to total generation capacity) of 9.4%. The AC-QP

method described in Figure 7.1 is used to solve the pOPF problem considering 1500 scenarios. The

results of this first example are shown in Figure 7.2.

The method begins by randomly choosing 1500 scenarios from a set of 10,000 possible scenarios.

These 1500 scenarios are then ranked according to the criterion established in Section 7.2, the

absolute value of the total forecast error. An SOCP relaxation is solved including only the first
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Figure 7.2: Solving pOPF with 1500 scenarios.

scenario, which corresponds to the scenario with the largest total mismatch, to initialize the AC-QP

algorithm. That single scenario is also included in the QP of the AC-QP algorithm. After the

AC-QP method has terminated, the solution is feasible for the base case forecast and the first

scenario introduced into the problem. An AC power flow is then solved for the remaining 1499

scenarios being considered, and the set of scenarios with constraint violations is identified.

After the AC-QP method terminates with only one scenario included, the AC power flow so-

lutions corresponding to the remaining 1499 scenarios reveal that there are 226 scenarios with

constraint violations. This is shown as the initial point at the leftmost portion of the x-axis in

the upper plot of Figure 7.2. These 226 scenarios are again sorted with respect to the absolute

mismatch criterion, and the first ranked scenario (again corresponding to the scenario with the

largest mismatch that has constraint violations) is now added to the set of scenarios included in

the pOPF problem. The SOCP relaxation is solved again with two scenarios to reinitialize the

AC-QP algorithm. This process repeats, introducing a single scenario into the AC-QP in each out-

ermost loop of the algorithm. In this way, a very small number of scenarios that must be explicitly

included in the AC-QP such that constraints are satisfied for all 1500 scenarios is identified.

In this particular example, only 4 scenarios out of the 1500 possibilities needed to be included

in the AC-QP such that the resulting solution satisfied the constraints for all 1500 scenarios. In

other words, using only those 4 scenarios provides an identical feasible solution to the problem
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that incorporates all 1500 scenarios. Moreover, this implies that those 4 scenarios comprise a

support set for the problem associated with the larger set of 1500 scenarios. The resulting solution

is accompanied with a-posteriori probabilistic guarantees, calculated using (7.3). As a feasible

solution for the 1500 scenarios is found, and because the same feasible solution exists for the

problem including only 4 of those scenarios, it can be claimed with very high confidence (choosing

β = 10−4) that the solution of this algorithm will satisfy the AC OPF constraints with probability

of at least 97.2% over any possible realization of the wind power. In fact, Monte-Carlo simulation

revealed that the empirical probability of violation in this case is only 0.23%. The empirical

violation probability is evaluated by checking the violation of the constraints for 10,000 scenarios.

The scenarios are generated by a Markov Chain Monte Carlo (MCMC) mechanism that builds a

transition probability matrix that suggests with what probability the uncertain variables will move

from one value to another in time [65]. Normalized hourly measured wind power data, both forecasts

and actual values, for the total wind power infeed of Germany over the period from 2006-2011 was

used to train the model.

In addition to its feasibility, the optimality of the pOPF solution must also be considered. The

lower plot of Figure 7.2 shows the AC-QP cost and corresponding SOCP lower bound after each

additional scenario is added. These results demonstrate the inherent tradeoff between reliability

and optimality: each additional scenario increases the cost of operation, until constraints have been

satisfied for all 1500 scenarios and no further scenarios need be included in the pOPF. Addition-

ally, notice that the AC-QP cost results are sufficiently close to the lower bound established by

the objective value of the SOCP solution. The AC-QP solution can therefore be claimed to be

sufficiently close to the globally optimal solution.

7.4.2 Extended results

The previous example using the modified IEEE 14-bus network is now expanded to assess the

performance of the proposed AC-QP pOPF method as the number of scenarios considered in the

pOPF problem (the value of N in Figure 7.1) is increased from 10 to 15001. The choice of 1500

scenarios here is sufficiently large to explore the impact on the empirical probability of violation

of increasing numbers of scenarios considered in the pOPF problem. As in the previous example,

the quality of solution from the AC-QP pOPF algorithm is assessed via Monte Carlo simulation

using 10,000 possible scenarios. For each scenario, an AC power flow is run and the violation of any

1Recall that an example for N=1500 case was presented in Chapter 7.4.1.
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constraint is checked. Out of those 10,000 scenarios, those that result in any constraint violations

(including generator active and reactive power limits, voltage magnitude limits, and line flow limits)

are recorded to provide an empirical probability of constraint violation. For each choice of N , the

number of scenarios considered in the pOPF, 500 repeated trials are then performed. Each trial

differs in the specific set of N randomly chosen wind power scenarios that are considered in the

problem. These results are gathered in boxplots which give several statistical quantities of interest

for each set of 500 trials, given the number of scenarios to be considered in the pOPF: the central

line inside the box shows the median over all 500 trials; the bottom and top edges of each box show

the 25% and 75% percentiles respectively; and the vertical lines show the extreme values.

The generation cost and corresponding empirical probability of constraint violation results for

increasing N are shown in Figure 7.3(a) and Figure 7.4, respectively. These figures demonstrate the

inherent tradeoff between reliability and optimal cost of operation. As more scenarios are included

in the pOPF problem, the cost of operation increases, resulting in a less economic operating point.

However, with an increasing number of scenarios added to the algorithm, the solution is more

robust and fewer scenarios create constraint violations. Thus, although less economic, operating

points that consider larger numbers of scenarios in the pOPF are more reliable. Furthermore,

Figure 7.3(b) validates the quality of solution of these results: the cost of generation in all cases

is within 0.26% of the SOCP lower bound, and is thus sufficiently close to the globally optimal

solution.

The empirical probability of violation in Figure 7.4 decreases significantly as the number of

scenarios included in the pOPF algorithm increases. Notice that with only 50 scenarios included in

the pOPF problem, the empirical probability of violation is already below 5% for 75% of the trials.

Based on the theory discussed in Section 7.3, the solution of the proposed algorithm should

satisfy the a-posteriori probabilistic guarantees. To verify this, the cardinality of the support set

for each trial is identified and the corresponding theoretical upper bound on constraint violation

based on (7.3) is calculated. Figure 7.5 summarizes the cardinality of the support set for each trial.

As these results show, a very small number of scenarios, on average around 2, need to be explicitly

enforced in the AC-QP problem for all constraints to be satisfied for the remaining scenarios.

Noting that the median values in these results are somewhat biased, Figure 7.6 gives individual

histograms of the data summarized by the boxplots for N = 10, 200, 600 and 1500 for completeness.

For the cases considering 10 and 200 scenarios, this distribution is heavily weighted at 2-3 support

scenarios. However, when N is increased to 1500, it is slightly more evenly distributed between 1-3
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Figure 7.3: (a) Cost of generation, (b) Distance from SOCP lower bound results.

support scenarios.

A comparison between the empirical and theoretical violation results is provided in Figure 7.7.

The y-axis of this plot gives the theoretical minus the empirical probability of violation. Note that

this difference is positive, which highlights the fact that the solution of the AC-QP pOPF algorithm

results in an empirical probability of violation that satisfies the theoretical bounds in all trials.

To ensure the reliability of a system, large numbers of scenarios may need to be included in the

pOPF problem. The scalability of any proposed algorithm is therefore an important factor that

must be assessed. For the purposes of real-time operation, a threshold of 5 minutes (300 seconds)

is assumed to be an acceptable limit on total execution time. Figure 7.8 summarizes the timing

results for the proposed AC-QP pOPF algorithm. As demonstrated in these results, the timing

requirement is satisfied in all trials, even those considering 1500 scenarios, which have a median

solution time less than 20 seconds. This suggests that the proposed method scales well with respect

to the number of scenarios included in the pOPF problem.

7.5 Conclusions

The AC-QP OPF solution method in Chapter III has been extended to include wind power

uncertainty, captured through the addition of a finite number of possible wind scenarios. The
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Figure 7.4: AC-QP empirical violation.

scalability of this algorithm with respect to large numbers of scenarios has been demonstrated,

and the timing results support its utility for real-time applications. Randomized optimization

techniques are then applied to characterize the solution with a-posteriori theoretical probabilistic

guarantees. The empirical reliability of the solution has been evaluated to assess the quality of the

AC-QP solution and verify the theoretical bound.

The proposed algorithm offers several advantages compared to other approaches. It does not

rely upon model approximations as in DC OPF formulations. Moreover, it produces an AC feasible

solution, where convex relaxations may not be tight. It also maintains scalability with respect to

the number of scenarios to be optimized over, which is a limitation of convex relaxations. Finally,

it provides a probabilistically robust solution with a-posteriori probabilistic violation guarantees.

The objective of this formulation is to minimize the cost of conventional generation. However,

significant generator reserve capacity may be necessary to maintain reliability standards in the

presence of large forecast errors. As this is a relatively expensive service for generators to provide,

it should be included in the objective of the pOPF problem. The cost of generator reserves is

incorporated in the pOPF problem in Chapter VIII. Moreover, while this work relies upon a fixed

wind generation forecast, it is extended in Chapters IX and X to determine the maximum wind

penetration that can be introduced in a network while maintaining reliability standards.
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CHAPTER VIII

Optimizing the Cost of Generator Reserve Capacity While

Considering Uncertainty

The formulation in Chapter VII is suitable for an operational setting to schedule conventional

generation in an economic manner such that reliability standards are maintained in the presence

of significant wind generation forecast error. To do so, generators must maintain sufficient reserve

capacity to respond to the generation-load mismatch introduced by wind variability. Compared to

the cost of conventional generation, reserve capacity is a relatively expensive service to provide.

Another important operational problem is thus optimally allocating generator reserve capacity.

Accurately solving this problem can have significant economic impacts on the operation of power

systems. This chapter extends the AC-QP pOPF method to include the cost of generator reserve

capacity. It also motivates the need for the increased accuracy provided by an AC OPF formulation,

compared to one relying upon a DC OPF.

8.1 Adapted AC-QP Algorithm

The AC-QP pOPF algorithm shown in Figure 7.1 is reformulated to provide a solution that

is robust over a finite set of possible wind generation scenarios, while minimizing both the cost of

conventional generation and the cost of generator reserve capacity. It is assumed that the vector

of generator distribution factors, d, is a fixed input parameter, and that the linear policy (7.1)

describes how generators respond to wind forecast errors. As in the previous pOPF formulation,

scenarios are modeled as vectors of wind generation values. The modified QP solved at each

iteration of the AC-QP in Figure 4.1 that includes the cost of generator reserves is formulated as

follows.
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min
Rg,∆Pg,∆Qg,∆θ,∆V,

αm,∆Pm
g ,∆Qm

g ,∆θ
m,∆Vm

∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
+
∑
i∈G

C̃i
(
Rg,i

)
(8.1a)

subject to (3.3b)− (3.3d), (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h)

J∆x = ∆S (8.1b)

∀m ∈ S :

Jm∆xm = ∆Ŝm (8.1c)

Pming,i ≤ P
◦,m
g,i + ∆Pg,i + αmdi ≤ Pmaxg,i ∀i ∈ G (8.1d)

−Rg,i ≤ αmdi − di
∑
k∈W

(Pmw,k − Pw,k) ≤ Rg,i ∀i ∈ G (8.1e)

where

∆S =

Ga∆Pg
Ga∆Qg

 , ∆Ŝm =

Ga[∆Pg + αmd]

Ga∆Q
m
g



In this problem, the second term of the objective is the cost of generator reserve capacity. Constraint

(8.1e) models the reserve capacity each generator can provide as a function of the distribution

vector, d, the total active power mismatch introduced by all scenarios, and the change in total

system losses. This constraint captures the greatest (among all scenarios) reserve capacity that

generators would be required to provide. Note that as in the formulation in Chapter VII, the term

αmd has been added to the definition of ∆Ŝm and to constraint (8.1d). In a distributed slack

manner, this accounts for the the fact that total system losses will differ between the base case and

each scenario. While prior work [66], [67] has focused on solving these types of problems using a

DC approximation or convex relaxations, there is a need for more accurate methods to optimally

schedule these reserve services. This need results from the fact that the DC approximation is

subject to modeling errors, and there are no guarantees that convex relaxations will be tight for

arbitrary networks.

8.2 An Indicative Example

This need for more accurate methods can be seen even on small networks, such as the IEEE

14-bus network. A modified version of that network has been augmented with 2 wind nodes, each

of which has a rated capacity of 40 MW. The AC-QP pOPF method described in Chapter VII

was then applied to solve Problem (8.1). The cost and empirical violation results of the AC-
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QP algorithm are given in Figures 8.1 and 8.3. These results are also compared to those from a

stochastic DC OPF, in which a scenario approach is also used. The results of this method are given

in Figures 8.2 and 8.4. As in Chapter VII, boxplots are used to summarize each of these results.

Recall the statistical quantities of interest for each set of 500 trials that these include: the central

line inside the box shows the median over all 500 trials; the bottom and top edges of each box show

the 25% and 75% percentiles respectively; the vertical lines extend to the 99% percentile; and the

dots represent statistical outliers.

Comparing Figures 8.1 and 8.2, two observations can be made. First, the natural tradeoff

between increasing numbers of scenarios considered in the pOPF problem and the cost of operation

is observed. Note that this cost of operation includes both the cost of conventional generation,

as well as the cost of generator reserve capacity. As the number of scenarios considered in the

pOPF problem increases, the resulting solution should theoretically be feasible for a winder range

of arbitrary scenarios that may be encountered in operation. However, this increased reliability

results in a higher cost of operation. Second, the DC approximation results in a slightly lower cost

of operation than the AC-QP method. This cost reduction is likely a result of the fact that the DC

pOPF solution will not necessarily satisfy the nonconvex AC OPF constraints.

Figures 8.3 and 8.4 give the empirical probability of violation, which is determined by checking

the pOPF solutions with the power flow solutions of 10,000 possible wind scenarios. The AC-QP

results in Figure 8.3 reveal that the probability of violation is below 10% after 100 scenarios have

been included in the problem. The DC pOPF results are checked with an AC power flow, as well

as with a DC power flow. Figure 8.4 shows that while the DC power flow results have an empirical

probability of violation below 10% after 300 scenarios are added to the problem, the AC power flow

results do not follow this trend. In fact, the probability of violation remains close to 100% even after

1500 scenarios have been considered in the problem. This is due to the model mismatch introduced

by the DC approximation. This example clearly motivates the need for accurate optimization

methods, such as the AC-QP pOPF algorithm, in reserve scheduling under forecast uncertainty.

Expanded results for the proposed AC-QP method are included in Figures 8.5-8.7. The scalabil-

ity of the proposed method is highlighted by the timing results in Figures 8.5. The total execution

time is less than 180 seconds (3 minutes) in 99% of all trials, which is acceptable for a real-time

operation setting. Moreover, the number of scenarios considered in the pOPF problem has a min-

imal effect on the median solution time. Thus, this approach is of particular interest for solving

pOPF problems that consider very large sets of possible wind scenarios.
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The timing results in Figure 8.5 are directly related to the number of support scenarios in each

trial. Recall that these are the scenarios that must be explicitly included in the pOPF problem.

These results are included in Figure 8.6. The median number of support scenarios in this case is

only 2 scenarios, regardless of the size of the set of scenarios being considered in the problem. In

fact, in 99% of all trials, the number of support scenarios is less than or equal to 4. This further

demonstrates the scalability of the proposed algorithm for optimally allocating the generator reserve

capacity that is needed to maintain reliability standards.

As described in Chapter VII, the a-posteriori theoretical probability of violation can be calcu-

lated using the number of support scenarios in each trial, along with (7.3). The difference between

these theoretical upper bounds and the empirical results given in Figure 8.3 are summarized in

Figure 8.7. As this difference is nonnegative in all trials, the calculated upper bound on the proba-

bility of violation is always satisfied. Furthermore, the empirical results converge to the calculated

theoretical upper limits as N increases.

8.3 Conclusions

The AC-QP pOPF method from Chapter VII has been adapted to optimally allocate generator

reserve capacity, while also minimizing the total cost of conventional generation. An example

has been developed that clearly demonstrates the need for the increased accuracy provided by

an AC pOPF formulation, to ensure that reliability standards are maintained. The scalability

of the algorithm with respect to the number of scenarios considered in the problem has been

demonstrated, and the total execution time has been shown to be suitable for real-time operational

settings. This formulation assumed a fixed value for the generator distribution vector, d. However,

determining which generators will respond to the active power mismatch, as well as how much

each will contribute in reserves, is a natural component of the reserve scheduling problem. This

formulation will be extended in Chapters IX and X to include d as a decision variable in the pOPF

problem.
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Figure 8.1: AC-QP pOPF Generation Cost Results
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Figure 8.2: DC pOPF Generation Cost Results
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Figure 8.3: AC-QP pOPF Empirical Probability of Violation Results
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Figure 8.4: DC pOPF Empirical Probability of Violation Results

66



0

50

100

150

200

250

300

350

10 50 100 200 300 600 900 1200 1500
Number of Scenarios in pOPF

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
.)

14 Bus w/ 2 Wind: AC−QP Time

Figure 8.5: AC-QP pOPF Time Results

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

10 50 100 200 300 600 900 1200 1500
Number of Scenarios in pOPF

N
u
m

b
e
r 

o
f 
S

u
p
p
o
rt

 S
c
e
n
a
ri
o
s
 i
n
 A

C
−

Q
P

 p
O

P
F

14 Bus w/ 2 Wind: Number of Support Scenarios

Figure 8.6: AC-QP pOPF Number of Support Scenarios Results
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CHAPTER IX

Optimizing Wind Penetration While Considering Uncertainty

The pOPF formulations in Chapters VII and VIII rely upon having a base case wind forecast

and are designed for an operational setting. However, determining the base case wind generation for

which the operation of conventional generation can be reliably scheduled for a wide range of possible

wind scenarios is a challenging problem. Given a set of potential wind locations within a network,

determining the maximum wind capacity that should be installed at each is thus an important

planning problem. While the base case forecast was a fixed input parameter in the formulation

in Chapter VII, the base case wind generation is a decision variable in this planning problem.

Solution methods have been developed for this problem in the stochastic DC optimal power flow

(OPF) context, as in [43]. While such formulations address the uncertainty of wind generation,

the DC approximation may result in solutions that do not satisfy the AC power flow equations,

as demonstrated in Chapter VIII. Such work must therefore be extended to the AC OPF setting,

improving the accuracy of the network model in the OPF problem to ensure reliability standards

are maintained.

9.1 Updated AC-QP OPF Formulation

The problem assumes that, as in the previous formulation in Chapter VII, two input parameters

have been chosen: a set of wind node locations (denoted W), and a set S of wind scenarios for

each wind location to be considered in the pOPF problem. When the base case wind forecast

is a fixed parameter (as in Chapters VII and VIII), each scenario is represented by a vector of

wind generation values. However, in this context, the base case wind generation is itself a decision

variable that is being maximized. Scenarios must therefore be represented differently to account for

the fact that the base case is changing. Each scenario, indexed by the variable m, is characterized
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by a vector Em. Each nonnegative entry of this vector, Emi , gives the percentage of the base case

wind generation taken at node i in scenario m. For example, if in scenario m the actual wind

output at node i would be 95% of the base case value, then Emi = 0.95. It is possible that the value

Emi takes may be greater than 1. While the maximum base case wind generation is constrained to

a realistic value, it is possible in such cases that the value of wind generation in a given scenario

will exceed this upper limit.

The problem is then solved in the following manner using a modified AC-QP algorithm. As in

previous formulations, the AC-QP method is initialized from the solution of an SOCP relaxation

of the AC OPF problem. It is assumed in the SOCP that there is no wind in the network. A value

of the base case wind generation, denoted P ◦w, is also required. In this work, it is assumed that

P ◦w,i = 0 for all wind nodes i ∈ W. Note that this choice is only used in the first QP-(power flow)

iteration. The initial AC power flow for the base case is solved using P ◦w and the generation schedule

from the SOCP solution, P initg . The result of the power flow gives an updated generation schedule,

P ◦g , that has been adjusted to account for network losses. The initial power flow for each scenario

can be run in a similar manner. The wind generation schedule in scenario m can be calculated as

P ◦,mw = diag{Em}P ◦w. The generation schedule for each scenario, P init,mg , is then found by adjusting

the base case generation schedule according to the linear policy described by (7.1). It should be

noted that the distribution vector in this policy is a decision variable in this optimization problem.

The value of this vector that was used to solve the previous AC power flow will be represented in

the QP by d◦. An AC power flow is then solved for each scenario using P init,mg and P ◦,mw . As in

the base case, the power flow solution gives an updated generation schedule, P ◦,mg , that has been

adjusted to account for the network losses. As such, the value of P ◦,mg includes not only the total

system losses in each scenario, but also the distributed wind forecast error determined by the base

case wind generation and the scenario vectors Em.

A QP is solved at each iteration of the algorithm to schedule changes from the power flow

solutions. The values of P ◦g and P ◦,mg are then updated after each set of AC power flows. Likewise,

the value of P ◦w is updated at each iteration based on the value of ∆Pw in the QP solution. The QP

that must be solved at each iteration to schedule changes from the previous power flow solution is as

follows. The OPF objective is to maximize the total base case wind generation,
∑

i∈W(P ◦w,i+∆Pw,i).

The nonconvex power balance constraints are linearized through constraints (9.1b) and (9.1d). The

lower bound of constraint (9.1c) ensures the feasibility of the base case wind forecast, while the

corresponding upper limit is included to provide a realistic wind generation schedule that is reflective
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of available technology. A value of 250 MW was used for Pmaxw,i in this work. Generator active power

limits are enforced for each scenario through constraint (9.1e). Constraint (9.1f) enforces entries

of the vector d to be nonnegative, while the sum of all entries is constrained to equal 100% through

constraint (9.1g).

The QP solved at each iteration is then formulated as:

max
∆Pw,∆Pg,∆Qg,∆θ,∆V,
αm,d,∆Qm

g ,∆θ
m,∆Vm

∑
i∈W

(
P ◦w,i + ∆Pw,i

)
(9.1a)

subject to (3.3b)− (3.3d), (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h)

J∆x = ∆S (9.1b)

0 ≤ P ◦w,i + ∆Pw,i ≤ Pmaxw,i ∀i ∈ W (9.1c)

∀m ∈ S :

Jm∆xm = ∆S̄m (9.1d)

Pming,i ≤ P
◦,m
g,i + ∆Pg,i + αmdi + d◦i

∑
k∈W

(Emk P
◦
w,k − P ◦w,k)

− di
∑
k∈W

[ Emk (P ◦w,k + ∆Pw,k)− P ◦w,k −∆Pw,k] ≤ Pmaxg,i ∀i ∈ G (9.1e)

di ≥ 0 ∀i ∈ G (9.1f)∑
i∈G

di = 1 (9.1g)

where

J =

∂P∂θ ∂P
∂V

∂Q
∂θ

∂Q
∂V

 ,∆x =

∆θ

∆V

 ,∆S =

Ga∆Pg +Wa∆Pw

Ga∆Qg


As defined in Chapter III, Ga is the node-generator incidence matrix and Wa is the node-wind

incidence matrix. As in previous formulations, the linearized line-flow constraints are initially

enforced for all lines that are at or above 95% of their line-flow limit. This set is then updated at

the beginning of each outer loop of the AC-QP algorithm to include any lines that are overloaded

but have not yet been added to the set (bolded in Figure 4.1). Doing so limits the number of

equality constraints that must be explicitly modeled in the QP. This has been demonstrated to

improve the solution time of the AC-QP network, particularly for large networks [68].

The linearization for each scenario is then modeled as

∆xm =

∆θm

∆V m

 ,
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∆S̄m =



Ga{∆Pg + αmd+ d◦
∑

k∈W(Emk P
◦
w,k − P ◦w,k)

−d
∑

k∈W [ Emk (P ◦w,k + ∆Pw,k)− P ◦w,k −∆Pw,k]}+

Wa[diag{Em}∆Pw]

Ga∆Q
m
g


. (9.2)

In this linearization, the active power component of ∆S̄m has several terms. Applying a distributed

slack formulation, the term αmd introduces a degree of freedom to account for the fact that active

power losses differ between the base case and each scenario. It should be noted that when the AC-

QP method has converged, αm takes a sufficiently small value, such that this difference in losses does

not introduce any constraint violations. The change in conventional generator participation in the

increased or decreased mismatch in scenario m is modeled by d
∑

k∈W [ Emk (P ◦w,k + ∆Pw,k)−P ◦w,k−

∆Pw,k] . Finally, as d is a decision variable in this problem, the term d◦
∑

k∈W(Emk P
◦
w,k − P ◦w,k) is

required to adjust the conventional generator dispatch for any changes in d. This is due to the fact

that as defined in (7.1), P ◦,mg,i includes the mismatch of scenario m that was based on the base case

wind generation from the previous QP-(power flow) iteration.

Each scenario m requires extra variables for the reactive power output of each generator (∆Qmg )

and the voltage at each bus (∆V m, ∆θm). Note that both the deviation of the active power

generation, ∆Pg, and the generator voltage magnitude setpoints are required to take the same

value for the base case and all scenarios.

The algorithm provides a solution satisfying the nonconvex AC power flow constraints for the

base case and all considered scenarios. The randomized optimization technique discussed in Chap-

ter VII is then employed to provide probabilistic guarantees to accompany the solution.

9.2 Addressing the Bilinearity in the AC-QP pOPF Problem

As formulated, ∆Pw, αm, and d are all decision variables in the pOPF problem. Bilinearities

thus arise in the terms in constraint (9.1e) and definition (9.2) that contain the products of these

variables. The pOPF including these bilinear terms is solved by replacing the QP with a two-stage

iterative solution method, the details of which are as follow.
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Stage 1: Maximizing Wind Generation

The goal of the first stage is to determine the maximum base case wind generation that can be

added in the network, subject to the linearized network constraints. To do so, the pOPF problem

is solved assuming that the vector d is a fixed parameter, while αm and ∆Pw are decision variables.

The QP solved in Stage 1 is then as follows.

max
∆Pw,∆Pg,∆Qg,∆θ,∆V,
αm,∆Qm

g ,∆θ
m,∆Vm

∑
i∈W

(
P ◦w,i + ∆Pw,i

)
(9.3a)

subject to (3.3b)− (3.3d), (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h), (9.1b)− (9.1c), (9.1d)− (9.1e)∑
i∈W

∆Pw,i ≥
∑
i∈W

∆P zw,i (9.3b)

Constraint (9.3b) is added to improve the convergence of this iterative solution method. In

this constraint, the variable z is used to index the Stage 1-Stage 2 iterations. As these iterations

between the two stages proceed, this constraint enforces adding increasing amounts of wind into

the network. The values of αm and ∆Pw then become fixed parameters in Stage 2, in which an

optimal value of d is determined.

Stage 2: Maximizing Generator Reserve Capacity

The second stage determines an optimal distribution vector, d, to increase the amount of wind

that can be added in the network. The original objective of maximizing total wind generation

(which is a fixed parameter in this stage) is replaced with the modified objective of maximizing

total reserve capacity of all conventional generators. The intuition behind this modified objective

is that if conventional generators have larger reserve capacity, more wind can be integrated in the

network in the next stage, as generators have greater ability to respond to larger forecast errors.

This is a consequence of the linear policy assumed for how conventional generators respond to the

wind generator forecast error. The QP solved in Stage 2 is then as follows.

max
∆Pg,∆Qg,∆θ,∆V,
d,∆Qm

g ,∆θ
m,∆Vm

∑
i∈G

[ (Pmaxg,i − P ◦g,i −∆Pg,i) + (P ◦g,i + ∆Pg,i − Pming,i )] (9.4a)

subject to (3.3b)− (3.3d), (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h), (9.1b)− (9.1c), (9.1d)− (9.1g)

Stage 2 then provides an updated value of the vector d to Stage 1. These iterations repeat

73



Converged? 

Change in Base Case

Wind Forecast 

< tolerance

Solve Stage 2 Problem:

Input (Fixed) Parameters: 

 ∆P
w

 αm

Control Variables:

 d

Yes

No

Exit to Next 

Iteration of AC-QP 

Algorithm

Solve Stage 1 Problem:

Input (Fixed) Parameters:

 d

Control Variables:

 ∆P
w

 αm

Given Results of AC Power

Flows from Previous 

(QP-Power Flow) Iteration

Figure 9.1: Iterative Solution Algorithm for Bilinear Terms in Constraints (9.1d) and (9.1e).

until the change in the total base case wind forecast,
∑

i∈W(P ◦w,i + ∆Pw,i), is within some small

tolerance. The details of this iterative algorithm are summarized in Figure 9.1. Note that this

iterative solution method replaces the “Solve QP with latest power flow results” box in Figure 4.1.

9.3 Identifying a Minimal Set of Support Scenarios

In the IEEE 14-bus test case discussed in Chapter VII, it was observed that when optimiz-

ing over a very large set of N wind scenarios, only a small subset of k scenarios were required

to be explicitly modeled in the optimization problem for the resulting solution to be feasible for

the remaining (N − k) scenarios. This subset of k scenarios comprises the set of support scenarios

associated with the problem optimizing over N scenarios, as including any of the remaining (N−k)

scenarios in the optimization problem will not change the solution. This property is of particu-

lar interest in the large-scale test case, as introducing a scenario into the pOPF problem requires

duplicating the network constraints and introducing many additional decision variables. This has

significant consequences when considering execution time for planning applications. Thus, identi-

fying a minimal support set is beneficial to solve the pOPF problem in a reasonable time frame.

Moreover, this minimal set of support scenarios has important implications for deriving an a-

posteriori probabilistic guarantee on the probability of violation to accompany the solution. Recall

from (7.3) that this theoretical upper bound depends on the number of scenarios considered in the

74



pOPF problem (N), the cardinality of this set of support scenarios (k), and a design parameter

(β). To be a meaningful upper bound, it should be as tight as possible. From the formula, it can

be seen that this can be achieved in two ways: either optimizing over a larger set of scenarios (i.e.

increasing N), or reducing the number of scenarios in the support set (reducing k). The latter is a

topic to be examined in greater detail in future research.

The proposed formulation initially sorts the N scenarios to be considered according to the total

difference between the scenario and the base case generation,

∑
i∈W

(Pmw,i − Pw,i). (9.5)

Note that this calculation uses only the base case generation (and corresponding scenarios) used

to initialize the AC-QP method. Initially, two scenarios are introduced into the pOPF problem.

These scenarios are the first and last ranked ones, which correspond to the scenarios introducing

the most positive and most negative mismatches, respectively. After the algorithm has converged,

and a feasible solution for these two scenarios is found, AC power flows are solved to check the

feasibility of the (N − 2) scenarios. One additional scenario is then introduced in the pOPF

problem, corresponding to the scenario with the greatest number of constraint violations. The goal

of iteratively introducing scenarios into the optimization, as in Chapter VII, is to arrive at a small1

set of support scenarios.

9.4 Test Case Results and Discussion

The proposed method was tested on the IEEE 118-bus network [59] that has been augmented

with 10 randomly chosen wind nodes. It was assumed that each potential wind site has a capacity

of 250 MW. The results of this test case for increasing numbers of scenarios included in the pOPF

problem (i.e. the value of N in Figure 7.1) are summarized in Figures 9.2-9.6. Boxplots are used

to summarize the results of 500 repeated trials, where each trial differs in the specific set of N

randomly chosen wind scenarios. Recall that these give several statistical quantities of interest

for each set of 500 trials: the central line inside the box shows the median over all 500 trials; the

bottom and top edges of each box show the 25% and 75% percentiles respectively; and the vertical

lines show the extreme values. Statistical outliers are then marked by an asterisk.

1Note that ideally this small set should be a minimal set of support scenarios. However, this is not guaranteed.
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Figure 9.2: AC-QP Wind Added to Network.

Figure 9.2 shows the amount of wind that can be added in the network for various sets of N

scenarios. These results demonstrate the need to account for the uncertainty of wind generation

when planning how much wind to install at various network locations. If only 100 scenarios are

considered, the median total wind generation added to the network is 1713 MW. However, the

median total wind generation decreases to 1138 MW when 1500 scenarios are included in the

optimization. As the number of scenarios considered in the pOPF increases, less wind can be

added in the network to maintain reliability standards.

The scalability of the proposed method is highlighted by the results in Figure 9.3. In 99% of

all trials, the AC-QP pOPF algorithm is solved within 18 minutes (1080 seconds), which is an

appropriate time frame for planning problems. Moreover, due to the iterative manner in which

scenarios are introduced into the problem, the execution time is only slightly affected by increasing

N in the pOPF problem. Thus, the method is scalable with respect to network size and to the

number of scenarios for which the resulting solution must be feasible.

Figure 9.4 shows the cardinality of the set of support scenarios identified in each trial. Denoted k

in (7.3), this number is used to calculate the theoretical a-posteriori probability of violation for each

trial (shown in Figure 9.5). While the number of support scenarios increases with larger numbers

of scenarios considered in the problem, they remain a very small fraction of the much larger sets

of N scenarios. This translates into reasonably low theoretical upper bounds on the probability
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Figure 9.3: AC-QP Total Execution Time.
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Figure 9.4: AC-QP Number of Support Scenarios.

of violation. As Figure 9.5 shows, the support set results correspond to theoretical upper bounds

ranging from 20-33% when only 100 scenarios are considered in the problem. However, after N is

increased to 1000 scenarios, the theoretical probability of any constraint violation is below 10%.

The empirical quality of solution from the AC-QP pOPF algorithm is assessed via Monte Carlo
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Figure 9.5: AC-QP A-Posteriori Theoretical Probability of Violation.
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Figure 9.6: AC-QP Empirical Probability of Violation.

simulations using 10,000 possible scenarios. For each scenario, an AC power flow is run and the

violation of any constraint is checked. Out of those 10,000 scenarios, those that result in any

constraint violations (including generator active and reactive power limits, voltage magnitude limits,

and line flow limits) are recorded to provide an empirical probability of constraint violation. The
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results of these simulations are summarized in Figure 9.6. While the theoretical upper bound on

the probability of violation is unacceptably high for the case of N = 100, the empirical results are

more conservative. In this case, the empirical probability of violation is below 10% for all trials,

and is less than 1% when N is increased to at least 1000 scenarios.

9.5 Conclusions

The stochastic AC-QP pOPF algorithm has been extended to a planning context to determine

the maximum wind penetration that can be integrated in a network while maintaining reliability

standards. The scalability of this method with respect to large numbers of wind scenarios and

moderate network size has been demonstrated. The proposed algorithm does not rely upon model

approximations and provides an AC-feasible solution, providing reliable wind installation solutions.

Moreover, through the application of the scenario approach from the field of randomized optimiza-

tion, the final solution is accompanied with theoretical a-posteriori guarantees on the probability

of violation.

While this formulation focuses on maximizing the amount of wind that can be added in a

network, it has not considered the cost of generator reserve capacity required to maintain reliability

standards. As shown in Chapter VIII, the relatively expensive nature of this service can have a

significant impact on the optimality of the final solution. It should therefore be included in the

wind generation planning decisions as well. As such, the cost of generator reserves is incorporated

in this formulation in Chapter X.
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CHAPTER X

Co-Optimizing Wind Penetration and Reserve Capacity While

Considering Uncertainty

As demonstrated in Chapter IX, determining the size of future wind generation at potential

network locations to maximize the renewable penetration in a network is an important planning

problem. Increasing the renewable generation in a network displaces conventional generation,

reducing the operating cost. However, greater amounts of relatively expensive generator reserve

capacity are necessary to maintain reliability standards as the wind penetration increases. The

planning problem to decide on an optimal investment in wind generation must therefore consider

such tradeoffs. The stochastic AC-QP pOPF solution algorithm presented in Chapter IX is modified

to solve this problem.

10.1 Reformulated AC-QP OPF Problem

As in the previous formulation, the AC-QP pOPF is initialized from the solution of an SOCP

relaxation of the AC OPF problem with no wind in the network. Recall that each scenario, indexed

by m, is characterized by a vector Em. Each nonnegative entry Emi gives the percentage of the

base case wind generation taken at node i in scenario m. The initial value of wind generation in

the base case is denoted P ◦w, and the initial wind generation schedule in scenario m is calculated

as P ◦,mw = diag{Em}P ◦w. The initial AC power flow for the base case is solved using P ◦w and the

generation schedule from the SOCP solution, P initg . This provides an updated generation schedule,

P ◦g , that has been adjusted to account for network losses. Likewise, the initial power flow for each

scenario is solved using P ◦,mw and P init,mg , where the latter is the base case generation schedule

adjusted to the linear policy (7.1). This gives an updated generation schedule, P ◦,mg that has been

adjusted to account for the network losses. As such, the value of P ◦,mg includes not only the total
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system losses in each scenario, but also the distributed wind forecast error determined by the base

case wind generation.

A QP is then solved at each iteration of the algorithm to schedule changes from the power flow

solutions. The values of P ◦g and P ◦,mg are then updated after each set of AC power flows. The QP

that must be solved at each iteration to schedule changes from the previous power flow solution is

as follows:

min
∆Pg,Rg,∆Pw,∆θ,∆V,∆Qg,
αm,d,∆Qm

g ,∆θ
m,∆Vm

ξ1

[∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
+
∑
i∈G

C̃i
(
Rg,i

)]
− ξ2

∑
i∈W

∆Pw,i (10.1a)

subject to (3.3b)− (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h)

J∆x = ∆S̃ (10.1b)

0 ≤ P ◦w,i + ∆Pw,i ≤ Pmaxw,i ∀i ∈ W (10.1c)

∀m ∈ S :

Jm∆xm = ∆S̆m (10.1d)

Pming,i ≤ P
◦,m
g,i + ∆Pg,i + αmdi + d◦i

∑
k∈W

(Emk P
◦
w,k − P ◦w,k)

− di
∑
k∈W

[ Emk (P ◦w,k + ∆Pw,k)− P ◦w,k −∆Pw,k] ≤ Pmaxg,i ∀i ∈ G (10.1e)

−Rg,i ≤ αmdi − di
∑
k∈W

(Emk (P ◦w,k + ∆Pw,k)− P ◦w,k −∆Pw,k) ≤ Rg,i ∀i ∈ G (10.1f)

di ≥ 0 ∀i ∈ G (10.1g)∑
i∈G

di = 1 (10.1h)

where

∆S̃ =

Ga∆Pg +Wa∆Pw

Ga∆Qg

 ,

∆S̆m =



Ga{∆Pg + αmd+ d◦
∑

k∈W(Emk P
◦
w,k − P ◦w,k)

−d
∑

k∈W [ Emk (P ◦w,k + ∆Pw,k)− P ◦w,k −∆Pw,k]}+

Wa[diag{Em}∆Pw]

Ga∆Q
m
g


.

In this linearization, the active power component of ∆S̆m has several terms. Applying a distributed

slack formulation, the term αmd introduces a degree of freedom to account for the fact that active
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power losses differ between the base case and each scenario. It should be noted that when the AC-

QP method has converged, αm takes a sufficiently small value, such that this difference in losses does

not introduce any constraint violations. The change in conventional generator participation in the

increased or decreased mismatch in scenario m is modeled by d
∑

k∈W [ Emk (P ◦w,k + ∆Pw,k)−P ◦w,k−

∆Pw,k] . Finally, as d is a decision variable in this problem, the term d◦
∑

k∈W(Emk P
◦
w,k − P ◦w,k) is

required to adjust the conventional generator dispatch for any changes in d. This is due to the fact

that P ◦,mg,i already accounted for the mismatch in scenario m according to the linear policy when

solving the previous AC power flow.

This problem seeks a solution that co-optimizes three objectives. The first is to minimize the

total cost of conventional generation. The second is to minimize the total cost of generator re-

serve capacity. The final objective term is to maximize the total wind generation in the network.

Increasing the amount of wind in a network displaces conventional generation, reducing the cost

of conventional generation. Conversely, decreasing the cost of generator reserve capacity and in-

creasing the total amount of wind in the network are competing objectives. The weighting factor

of the third term in the objective function, relative to the first two terms, will thus influence the

final solution. Placing a very high weight on this third term (i.e. choosing ξ2 � ξ1) will result

in more wind being added to the network because the reserve capacity required to accommodate

higher forecast errors is relatively cheap. Conversely, substantially decreasing the weight of this

term (ξ2 � ξ1) places a relatively higher cost on reserve capacity, resulting in less wind being added

to the network. Conducting a sensitivity study to explore this tradeoff is a topic of future research.

In this work, weighting factors of ξ1 = 10−2 and ξ2 = $1/p.u. were placed on the corresponding

objective terms. The value of ξ1 accounts for the fact that the units of the third objective term

are in p.u., while the cost coefficients of the first two terms convert the p.u. arguments to MW.

Moreover, the coefficient ξ2 is used to convert the total base case wind generation to a monetary

cost.

This is a planning problem, as it would be used to determine the optimal investment in wind

generation that should be made at each potential wind location. It differs from the problems in

Chapters VIII and IX in a few ways. This problem considers the generator distribution vector,

d, as a decision variable, which is a fixed parameter in Chapter VIII. It is also different from the

work in Chapter VIII, as the role of the wind forecast in previous formulations is replaced by the

maximum base case wind generation, which is a decision variable in this problem. Compared to

that in Chapter IX, this problem co-optimizes the cost of generator reserves and of conventional
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generation.

Note that there are terms in constraints (10.1e)-(10.1f) and in the definition of ∆S̆m that in-

volve the product of d and ∆Pw, as well as d and αm. As these are all decision variables in the

QP, several bilinear terms appear in the optimization problem. To solve this, the QP solved at

each iteration of the AC-QP pOPF method is replaced with a two-stage iterative solution method,

similar to that proposed in Chapter IX.

Stage 1: Maximizing Wind Generation

The first stage of this algorithm focuses on maximizing the wind penetration in the network,

while simultaneously minimizing the total cost of conventional generation and the cost of generator

reserve capacity. In this problem, ∆Pw and αm are decision variables, while d is a fixed parameter.

The QP solved in Stage 1 is then as follows.

min
∆Pg,Rg,∆Pw,∆θ,∆V,∆Qg,

αm,∆Qm
g ,∆θ

m,∆Vm

ξ1

[∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
+
∑
i∈G

C̃i
(
Rg,i

)]
− ξ2

∑
i∈W

∆Pw,i (10.2a)

subject to (3.3b)− (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h), (10.1b)− (10.1f)

∀m ∈ S :∑
i∈W

∆Pw,i ≥
∑
i∈W

∆P zw,i (10.2b)

In this formulation, constraint (10.2b) is added to improve the convergence of this iterative so-

lution method. In this constraint, the variable z is used to index the Stage 1 - Stage 2 iterations. As

these iterations between the two stages proceed, this constraint enforces adding increasing amounts

of wind into the network.

Stage 2: Minimizing the Cost of Generator Reserve Capacity

The second stage receives as an input from the first stage the values of αm and ∆Pw; these

are thus fixed parameters in this stage. The objective of the second stage aims to minimize the

cost of generator reserve capacity, while simultaneously minimizing the total cost of conventional

generation. In this problem, d is a decision variable. The subsequent QP is solved in Stage 2 of the

algorithm.
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min
∆Pg,Rg,∆θ,∆V,∆Qg,
d,∆Qm

g ,∆θ
m,∆Vm

ξ1

[∑
i∈G

Ci
(
P ◦g,i + ∆Pg,i

)
+
∑
i∈G

C̃i
(
Rg,i

)]
(10.3a)

subject to (3.3b)− (3.3f), (3.2a)− (3.2b), (7.2d)− (7.2h), (10.1b)− (10.1f)

di ≥ 0 ∀i ∈ G (10.3b)∑
i∈G

di = 1 (10.3c)

In this problem, constraint (10.3b) ensures that all entries of the generator distribution vector

are nonnegative, while constraint (10.3c) constrains their sum to equal 100%. The choice of this

vector will impact how network losses (as well as wind forecast error) are allocated to each generator.

Stage 2 initially determines d based on the active power losses from the previous AC power flow,

which are incorporated in P ◦,mg , as well as the change in losses estimated by the value of αm

determined from Stage 1. With a new choice of d, Stage 1 is solved again, providing a new estimate

of the change in losses by determining a new value of αm. Once the two stages have converged, the

actual impact on losses of this new distribution vector is updated through the new value of P ◦,mg

from the power flow solution.

At convergence, the maximum base case wind generation has been found, while minimizing

the costs of conventional generation and of reserve capability. Moreover, as a scenario approach is

applied to this stochastic AC OPF planning problem, the resulting solution is also accompanied

with theoretical a-posteriori reliability guarantees. The details of this method are summarized in

Figure 10.1. Note that this iterative solution method replaces the “Solve QP with latest power flow

results” box in Figure 4.1.

10.2 Test Case 1: Assuming Generator Reserve Capacity is Four Times as

Expensive as Cost of Conventional Generation

The proposed algorithm was tested on the IEEE 118-bus network that has been augmented with

10 randomly chosen wind nodes. It was assumed that each potential wind site has a capacity up

to 250 MW (i.e. Pmaxw,i = 2.5 p.u. in constraint (10.1c)). The results of this test case for increasing

numbers of scenarios included in the pOPF problem are summarized in Figures 10.2-10.8. As in

previous studies, bloxplots are used to summarize the results. The central line inside each box

gives the median over all 500 trials; the bottom and top edges of each box show the 25% and 75%
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Figure 10.1: Iterative Algorithm to Solve Problem (10.1) with Bilinear Terms

percentiles respectively; and the vertical lines show the extreme values.

Figure 10.2 shows the value of each term in the objective function for various sets of N scenarios.

As the number of scenarios considered in the pOPF increases, less wind can be added in the

network to maintain reliability standards. This is reflected in the bottom subplot. Having less

wind generation in the network results in a higher cost of conventional generation, as shown in the

top subplot. Introducing greater amounts of wind in the network results in greater forecast errors

considered, as demonstrated in Figure 10.3. The maximum absolute forecast error shown in this

plot is calculated as maxm∈S |
∑

k∈W(Emk P
◦
w,k − P ◦w,k)|. As seen in constraint (10.1f), the value of

this sum represents the forecast error that would be distributed to conventional generators. The

maximum absolute value is thus directly related to the maximum amount of reserves required for

the set of scenarios considered. Conventional generators must maintain larger reserve capacity to

respond to these forecast errors. However, such reserve services are expensive to provide. Thus,

the amount of wind added in the network and cost of generator reserves are directly related, as

reflected in the middle subplot.

As reserves are assumed in this case to be significantly more expensive than the cost of conven-

tional generation, there are many cases where no wind is added to the network. In these cases, the

cost of generator reserve capacity is sufficiently high that it is more economical to supply demand

using only conventional generation. Together, these results demonstrate the need to account for
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the uncertainty of wind generation when planning how much wind to install at various network

locations. Furthermore, they show the significant impact on the cost of operation that wind can

have.
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Figure 10.3: Test Case 1 AC-QP Maximum Total Forecast Error

86



0

100

200

300

400

500

600

700

800

900

100 500 1000 1500
Number of Scenarios in pOPF

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
.)

118 Bus w/ 10 Wind: AC−QP Time

Figure 10.4: Test Case 1 AC-QP Execution Time

The scalability of the proposed method is highlighted by the results in Figure 10.4. In 99%

of all trials, the AC-QP pOPF algorithm is solved within 10 minutes (600 seconds), which is an

appropriate time frame for planning problems. In fact, in this case the execution time is significantly

lower for cases considering larger sets of scenarios. This is due to the high cost on generator reserve

capacity, which results in less wind being added to the network as more scenarios are considered.

As shown in Figure 10.2, when 1500 scenarios are considered, the median value of wind added to

the network is 0 MW. In such cases, the problem solved reverts to a standard AC OPF problem,

and the solution to each scenario is identical to that of the base case. As this is a much less complex

problem to solve, the computation time is greatly reduced. Moreover, due to the iterative manner in

which scenarios are introduced into the problem, the median execution time is only slightly affected

by increasing N in the pOPF problem. Thus, the method is scalable with respect to network size

and to the number of scenarios for which the resulting solution must be feasible.

Figure 10.5 shows the cardinality of the set of support scenarios identified in each trial. This

number is used to calculate the theoretical a-posteriori probability of violation for each trial (shown

in Figure 10.6). The number of support scenarios remains a very small fraction of the large sets of N

scenarios considered in the problem. As previously mentioned, less wind is added to the network as

larger sets of scenarios are considered. As such, the number of support scenarios decreases. When

1500 scenarios are considered, the median number of support scenarios is only 2. This corresponds
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Figure 10.5: Test Case 1 AC-QP Support Scenarios

to the cases where it is already uneconomical to add wind to the network when only the first 2

scenarios are introduced into the problem. As the theoretical upper bounds on the probability of

violation depend only on the cardinality of the set of support scenarios indentified, the results in

Figure 10.5 translate into reasonably low theoretical guarantees. As Figure 10.6 shows, the support

set results correspond to theoretical upper bounds ranging from 20-37% when only 100 scenarios

are considered in the problem. However, after N is increased to 1000 scenarios, the theoretical

probability of any constraint violation is below 10%.

The empirical quality of solution from the AC-QP pOPF algorithm is assessed via Monte Carlo

simulations using 10,000 possible scenarios. For each scenario, an AC power flow is run and the

violation of any constraint is checked. Out of those 10,000 scenarios, those that result in any

constraint violations (including generator active and reactive power limits, voltage magnitude limits,

and line flow limits) are recorded to provide an empirical probability of constraint violation. The

results of these simulations are summarized in Figure 10.7. While the theoretical upper bound on

the probability of violation is unacceptably high for the case of N = 100, the empirical results are

more conservative. In this case, the empirical probability of violation is below 10% for all trials,

and is less than 1% when N is increased to at least 1000 scenarios. Finally, Figure 10.8 shows

the difference between the theoretical upper bound and empirical probability of violation found in

each trial. As this difference is nonnegative in all trials, meaning that the empirical probability of
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violation is lower than the calculated theoretical upper bound, this figure demonstrates that the

empirical probability of violation results satisfy the theoretical upper bounds given in Figure 10.6.
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Figure 10.8: Test Case 1 AC-QP Difference Between Theoretical & Empirical Probability of Vio-

lation

10.3 Test Case 2: Assuming Generator Reserve Capacity is Twice as Expensive

as Cost of Conventional Generation

The previous case study was revisited, assuming a lower cost of generator reserve capacity. In

this case, reserves are assumed to be twice as expensive as conventional generation, rather than

four times as in the previous case. In each trial, the pOPF problem was solved considering the same

set of N scenarios as in the previous case. In other words, for a trial considering N=100 scenarios,

the same set of E vectors was used in both cases. The results of this second test case for increasing

numbers of scenarios included in the pOPF problem are given in Figures 10.9-10.15.

Figure 10.9 shows the value of each term in the objective function for various sets of N scenarios.

As in the previous test case, less wind can be added in the network as the number of scenarios

considered increases, as shown in the bottom subplot. This results in a higher cost of conventional

generation as the number of scenarios considered increases, as shown in the top subplot. However,

in this case, there is a significant amount of wind added in the network in every trial. Using a

lower cost on generator reserve capacity, it is always economical to add wind into the network.

As the number of scenarios considered in the problem increases, the solution is feasible for more

extreme scenarios. A more “extreme” scenario is one with larger deviations from the base case wind
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Figure 10.9: Test Case 2 AC-QP Objective Term Values

generation schedule (i.e. having entries of Em significantly different from 1). This is demonstrated

in Figure 10.10, which gives the maximum absolute forecast error, calculated as in the previous test

case. Although the amount of wind added to the network decreases as larger sets of scenarios are

considered, the magnitude of forecast error increases due to the presence of these extreme scenarios.

This is opposite of the trend observed in the previous test case, where it is uneconomical to add

wind when extreme scenarios are considered. This maximum absolute forecast error is directly

related to the generator reserves required, so conventional generators must maintain larger reserve

capacities to respond. The cost of generator reserves thus increases as the number of scenarios

considered in the pOPF problem increases, as seen in the middle subplot.

Compared to the results of the previous test case, the cost of conventional generation is lower,

as more wind is added in the network. There are also opposite trends observed regarding the cost

of generator reserve capacity. With a higher cost of generator reserves assumed, the number of

scenarios considered and reserve cost are inversely related. However, they are directly related when

a lower cost is assumed. This is due to the fact that in this case, it is still economical to add wind

in the network, even considering the additional cost of reserve capacity incurred.
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Figure 10.10: Test Case 2 AC-QP Maximum Total Forecast Error
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Figure 10.11: Test Case 2 AC-QP Execution Time

Figure 10.11 highlights the scalability of the proposed method for this case considering a lower

cost of generator reserves. In 99% of all trials the AC-QP pOPF algorithm is solved within 10

minutes (600 seconds), and the median execution time is negligibly affected by increasing N in the
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Figure 10.12: Test Case 2 AC-QP Support Scenarios

pOPF problem. Thus, as in the previous test case, the method is scalable with respect to network

size and to the number of scenarios for which the resulting solution must be feasible. This is due

to the fact that the cardinality of the support set is not significantly affected as the number of

scenarios considered increases.

The cardinality of the set of support scenarios identified in each trial is given in Figure 10.12,

and the corresponding theoretical upper bound on the probability of violation is shown in Figure

10.13. Compared to the previous test case, the number of support scenarios is greater, as a larger

amount of wind has been added to the network. This translates to a higher theoretical probability

of violation. However, similar to the results of the previous case, these theoretical bounds range

from 20-41% when only 100 scenarios are considered in the problem. When N is sufficiently large

(at least 1000 scenarios), the theoretical probability of any constraint violation is below 10%.

The empirical probability of violation results are summarized in Figure 10.14. As in the previous

case, the empirical probability of violation is below 10% for all trials and less than 1% when N is

increased to at least 1000 scenarios. The empirical results also satisfy the theoretical upper bounds,

as demonstrated in Figure 10.15. Moreover, compared to the results in Figure 10.7, the empirical

results are slightly lower when 100 scenarios are considered, and slightly higher when N = 1500.
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Figure 10.14: Test Case 2 AC-QP Empirical Probability of Violation
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10.4 Conclusions

The stochastic AC-QP pOPF algorithm from Chapter IX has been extended to consider the

cost of conventional generation, as well as the cost of generator reserve capacity, in determining the

maximum base case wind generation that can be added in a network. The scalability of this method

with respect to large numbers of wind scenarios and moderate network size has been demonstrated.

The final solution is accompanied with theoretical a-posteriori guarantees on the probability of

violation. Moreover, the sensitivity study has demonstrated that the cost placed on generator

reserve capacity significantly impacts the maximum wind penetration that can be reliably added

in a network.
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CHAPTER XI

Conclusions and Future Extensions

The AC OPF problem is of critical importance to ensure the economic operation of power

systems. At the same time, the nonconvexity introduced by the nonlinear power balance and

line flow constraints make it a particularly challenging optimization problem to solve. As such,

there is a great need for developing accurate, reliable solution methods that can be solved in a

reasonable amount of time for operational settings. The work presented is based on the AC-QP

successive linearization algorithm. Compared to other techniques, this iterative method offers two

advantages. First, it does not rely upon any model approximations or relaxations of the nonconvex

constraints embedded in the AC OPF problem. It thus provides an AC-feasible solution. Second,

each iteration of the method consists of solving a QP and running an AC power flow. Mature solvers

exist for both steps, even for realistically large networks comprised of several thousand nodes. The

method therefore offers promising scalability properties. This algorithm has been well established

for traditional electricity networks. However, the work in this dissertation has focused on extending

the AC-QP method to address two challenges facing future power systems, namely the integration

of energy storage devices and of stochastic renewable generation sources.

Incorporating energy storage into the OPF problem introduces temporal coupling through the

state-of-charge dynamic equations. This requires shifting the traditional, single-period OPF for-

mulation to a multiperiod one. This can significantly impact the scalability benefits offered by the

AC-QP method for realistically large networks when long horizons are considered. The algorithm

has been expanded to a multiperiod formulation, including both renewable generation and energy

storage devices. Recent advances from the field of convex optimization have then been applied to

improve the performance and solution quality of this algorithm for solving multiperiod AC OPF

problems in large-scale networks and moderate time horizons.
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An improved initialization technique using an SOCP relaxation has been developed. This initial-

ization offers several benefits compared to other approaches. The SOCP relaxation often provides

an accurate prediction of the subset of line-flow constraints that require explicit representation in

the QP. This reduces both the total number of iterations needed in the AC-QP algorithm as well

as the number of inequality constraints in the QP. These factors improve the solution time of

the AC-QP algorithm. The SOCP initialization reduces the likelihood of the AC-QP algorithm

converging to a local optimum that is far from the global solution. Furthermore, the lower bound

on the OPF objective given by the SOCP relaxation provides an indication of the quality of the

AC-QP solution. A small “gap” between the SOCP lower bound and the AC-QP solution indicates

that a nearly globally optimal outcome has been achieved. As the AC-QP method is a local solution

method, assessing the quality of solution is of particular importance.

Renewable generation sources offer many economic and environmental benefits. As such, they

must be included in OPF formulations to determine their optimal operation. However, such sources

introduce uncertainty into power systems that present challenges from a reliability perspective.

Stochastic OPF formulations are thus crucial for maintaining reliability standards in the presence of

significant renewable penetration. The AC-QP OPF solution method has been extended to include

wind power uncertainty, captured through the addition of a finite number of possible wind scenarios.

The scalability of this algorithm with respect to large numbers of scenarios and moderate network

size has been demonstrated, and the timing results support its utility for real-time applications.

The algorithm fits in the framework of a randomized optimization technique that can characterize

the solution with a-posteriori theoretical probabilistic guarantees. This modified AC-QP pOPF

algorithm offers several advantages compared to other stochastic OPF techniques. It does not rely

upon model approximations as in DC OPF formulations. It therefore produces an AC feasible

solution where convex relaxations may not be tight. Moreover, it maintains scalability with respect

to the number of scenarios to be optimized over, which is a limitation of convex relaxations. Finally,

it provides a probabilistically robust solution with a-posteriori probabilistic violation guarantees.

Stochastic OPF formulations are also needed for planning decisions involving renewable gen-

eration. As such, the stochastic AC-QP OPF method has been adapted to solve two planning

problems. The first is used to find the maximum wind penetration that can be added in a network,

while maintaining reliability standards. Greater amounts of generator reserve capacity are needed

when the amount of wind generation in a network increases. As this is a relatively expensive service

to provide, it should be considered when determining the optimal amount of wind to install at a
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particular location. The cost of conventional generation and of generator reserve capacity are in-

cluded in the second reformulation, providing a tool to explore the tradeoff between the cost placed

on generator reserves and the optimal wind penetration.

11.1 Future Extensions

The work presented in this dissertation motivates several extensions that will be topics of

future research. In the multiperiod OPF context, further improving the initialization process of the

AC-QP method could offer significant timing benefits for online applications. Future research will

explore using recently developed linear and SOCP relaxations and approximations of the power flow

equations, such as those in [19, 20, 55, 69, 70], to provide an initialization for the AC-QP method.

The tradeoff between the computational speed, problem complexity, and accuracy of each will then

be assessed.

There are also several open questions in the stochastic AC-QP context. The first involves the

iterative process for introducing scenarios into the pOPF problem. This choice not only influences

the execution time of the method, but also determines the size of the set of support scenarios

identified. The latter has important implications for deriving a-posteriori probabilistic guarantees

on the probability of violation to accompany the solution. In addition to the two approaches

described in Chapters VII and IX, other methods (for example, a 2-norm ranking) will be explored

to identify which scenarios should be introduced in the pOPF problem. Comparisons will then be

drawn as to which ranking produces the minimal support set. Moreover, the dependence of this

conclusion on the types of constraints that are violated most frequently will be investigated.

Another direction of future research is to apply various mathematical decomposition tech-

niques to the pOPF problem. These could include the alternating direction method of multipli-

ers (ADMM), dual decomposition methods, and other recently developed augmented Lagrangian

methods offering improved convergence properties. These can be used to split the pOPF problem

spatially, dividing the network into subnetworks. They could also be used to divide the problem

with respect to the scenarios included in the problem. In such a formulation, each subproblem

would be an AC OPF that assumes a particular wind generation pattern. The coupling constraints

between the base case and each scenario are those maintaining consistent generator voltage magni-

tude setpoints and implementing the linear policy to adjust the base case generation to compensate

for wind forecast errors. Comparisons of each decomposition approach, or possibly a combination

of both, will be made to determine which offers the greatest computation time reduction.
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The included stochastic pOPF work focused on one source of uncertainty in power systems,

namely wind generation forecast error. However, the AC-QP pOPF method is directly applicable

to other sources of uncertainty, such as transmission line outages. While the current operation of

power systems relies upon maintaining the (N−1) security criteria, such constraints could instead be

enforced in a probabilistic sense using a scenario approach. The operating cost of the probabilistic

(N −1) solution should theoretically be lower than the solution that strictly enforces those criteria.

However, there could be outage scenarios for which the probabilistic solution is infeasible. This

tradeoff will be explored, and insights into which scenarios create particular vulnerabilities in a

power system will be investigated.

One final possible extension of this work is to develop a multiperiod version of the AC-QP

pOPF formulation. As such, energy storage devices can be incorporated into the problem, and the

role of storage to mitigate wind forecast error will be explored. The presented case studies will be

revisited, investigating how the optimality and reliability of the resulting solution is affected by the

presence of energy storage. This will also provide insight into how the operation of storage differs

when its purpose shifts from a purely economic role to one considering reliability as well.

99



BIBLIOGRAPHY

100



BIBLIOGRAPHY

[1] A. Wood, B. Wollenberg, and G. Sheble, Power Generation, Operation and Control, 3rd ed.

John Wiley and Sons, Inc., 2013.

[2] M. Huneault and F. Galiana, “A Survey of the Optimal Power Flow Literature,” IEEE Trans.

Power Syst., vol. 6, no. 2, pp. 762–770, May 1991.

[3] J. Momoh, R. Adapa, and M. El-Hawary, “A Review of Selected Optimal Power Flow Lit-

erature to 1993. Parts I & II,” IEEE Trans. Power Syst., vol. 14, no. 1, pp. 96–111, Feb.

1999.

[4] A. Castillo and R. O’Neill, “Survey of Approaches to Solving the ACOPF (OPF Paper 4),”

US Federal Energy Regulatory Commission, Tech. Rep., Mar. 2013.

[5] A. Motto, F. Galiana, A. Conejo, and J. Arroyo, “Network-Constrained Multiperiod Auction

for a Pool-Based Electricity Market,” IEEE Trans. Power Syst., vol. 17, no. 3, pp. 646–653,

Aug. 2002.

[6] T. Overbye, X. Cheng, and Y. Sun, “A Comparison of the AC and DC Power Flow Model for

LMP Calculations,” in 37th Hawaii Int. Conf. Syst. Sci. (HICSS), Jan. 2006.

[7] M. Amini, R. Jaddivada, S. Mishra, and O. Karabasoglu, “Distributed Security Constrained

Economic Dispatch,” in IEEE Innovative Smart Grid Technologies Conference (ISGT),

Bangkok, Thailand, Nov. 2015.

[8] K. Purchala, L. Meeus, D. Van Dommelen, and R. Belmans, “Usefulness of DC Power Flow

for Active Power Flow Analysis,” IEEE PES General Meeting, pp. 454–459, June 2005.

[9] B. Stott, J. Jardim, and O. Alsac, “DC Power Flow Revisited,” IEEE Transactions on Power

Systems, vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

101



[10] K. Dvijotham and D. Molzahn, “Error Bounds on Linear Power Flow Approximations: A

Convex Relaxation Approach,” in IEEE 55th Annu. Conf. Decis. Control (CDC), Dec. 2016.

[11] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite Programming for Optimal Power

Flow Problems,” Int. J. Electr. Power Energy Syst., vol. 30, no. 6, pp. 383–392, 2008.

[12] J. Lavaei and S. Low, “Zero Duality Gap in Optimal Power Flow Problem,” IEEE Transactions

on Power Systems, vol. 27, no. 1, pp. 92–107, Feb. 2012.

[13] S. Low, “Convex Relaxation of Optimal Power Flow–Part I: Formulations and Equivalence,”

IEEE Transactions on Control of Network Systems, vol. 1, no. 1, pp. 15–27, March 2014.

[14] D. Molzahn, J. Holzer, B. Lesieutre, and C. DeMarco, “Implementation of a Large-Scale

Optimal Power Flow Solver Based on Semidefinite Programming,” IEEE Trans. Power Syst.,

vol. 28, no. 4, pp. 3987–3998, Nov. 2013.

[15] D. Molzahn and I. Hiskens, “Moment-Based Relaxation of the Optimal Power Flow Problem,”

18th Power Syst. Comput. Conf. (PSCC), 18-22 Aug. 2014.

[16] B. Ghaddar, J. Marecek, and M. Mevissen, “Optimal Power Flow as a Polynomial Optimization

Problem,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 539–546, Jan. 2016.

[17] C. Josz, J. Maeght, P. Panciatici, and J. Gilbert, “Application of the Moment-SOS Approach

to Global Optimization of the OPF Problem,” IEEE Trans. Power Syst., vol. 30, no. 1, pp.

463–470, Jan. 2015.

[18] D. Molzahn and I. Hiskens, “Sparsity-Exploiting Moment-Based Relaxations of the Optimal

Power Flow Problem,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3168–3180, Nov. 2015.

[19] B. Kocuk, S. Dey, and A. Sun, “Strong SOCP Relaxations of the Optimal Power Flow Prob-

lem,” To appear in Oper. Res.

[20] C. Coffrin, H. Hijazi, and P. Van Hentenryck, “The QC Relaxation: Theoretical and Compu-

tational Results on Optimal Power Flow,” To appear in IEEE Trans. Power Syst.

[21] E. Dall’Anese, H. Zhu, and G. Giannakis, “Distributed Optimal Power Flow for Smart Micro-

grids,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1464–1475, Sept. 2013.

102



[22] D. Molzahn and I. Hiskens, “Mixed SDP/SOCP Moment Relaxations of the Optimal Power

Flow Problem,” in IEEE Eindhoven PowerTech, June 2015.

[23] R. Madani, S. Sojoudi, and J. Lavaei, “Convex Relaxation for Optimal Power Flow Problem:

Mesh Networks,” IEEE Trans. on Power Systems, vol. 30, no. 1, pp. 199–211, Jan. 2015.

[24] B. Lesieutre, D. Molzahn, A. Borden, and C. DeMarco, “Examining the Limits of the Appli-

cation of Semidefinite Programming to Power Flow Problems,” in 49th Annu. Allerton Conf.

Commun., Control, Comput., Sept. 2011, pp. 1492–1499.

[25] D. Molzahn, B. Lesieutre, and C. DeMarco, “Investigation of Non-Zero Duality Gap Solutions

to a Semidefinite Relaxation of the Optimal Power Flow Problem,” in 47th Hawaii Int. Conf.

Syst. Sci. (HICSS), 6-9 Jan. 2014.

[26] D. Molzahn and I. Hiskens, “Convex Relaxations of Optimal Power Flow Problems: An Illus-

trative Example,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 63, no. 5, pp. 650–660, May

2016.

[27] K. Chandy, S. Low, U. Topcu, and H. Xu, “A Simple Optimal Power Flow Model with Energy

Storage,” in IEEE 49th Ann. Conf. Decis. Contr. (CDC), Atlanta, GA, 2010, pp. 1051–1057.

[28] M. Almassalkhi and I. Hiskens, “Cascade Mitigation in Energy Hub Networks,” in IEEE 50th

Ann. Conf. Decis. Contr. (CDC), Orlando, FL, 2011, pp. 2181–2188.

[29] N. Nguyen, D. Bovo, and A. Berizzi, “Optimal Power Flow with Energy Storage Systems:

Single-Period Model vs. Multi-Period Model,” in IEEE Eindhoven PowerTech, June 2015.

[30] R. Jabr, S. Karaki, and J. Korbane, “Robust Multi-Period OPF With Storage and Renew-

ables,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2790–2799, September 2015.

[31] F. Bouffard and F. F. Galiana, “Stochastic security for operations planning with signiffcant

wind power generation,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 306–316,

2008.

[32] A. Papavasiliou, S. Oren, and R. ONeill, “Reserve requirements for wind power integration:

A scenario-based stochastic programming framework,” IEEE Transactions on Power Systems,

vol. 26, no. 4, pp. 2197–2206, 2011.

103



[33] J. Morales, A. Conejo, and J. Perez-Ruiz, “Economic valuation of reserves in power systems

with high penetration of wind power,” IEEE Transactions on Power Systems, vol. 24, no. 2,

pp. 900–910, 2009.

[34] M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson, “Probabilistic guarantees for

the N-1 security of systems with wind power generation,” in Probabilistic Methods Applied to

Power Systems Conference, 2012.

[35] L. Roald, F. Oldewurtel, T. Krause, and G. Andersson, “Analytical Reformulation of Secu-

rity Constrained Optimal Power Flow with Probabilistic Constraints,” in IEEE PowerTech

Conference, 2013.

[36] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained optimal power flow: Risk-

aware network control under uncertainty,” SIAM Review, vol. 56, no. 3, pp. 461–495, 2014.

[37] D. Bertsimas, E. Litvinov, X. Sun, J. Zhao, and T. Zheng, “Adaptive robust optimization for

the security constrained unit commitment problem,” IEEE Transactions on Power Systems,

vol. 28, no. 1, pp. 52–62, 2013.

[38] G. Calafore and M. C. Campi, “The scenario approach to robust control design,” IEEE Trans-

actions on Automatic Control, vol. 51, no. 5, pp. 742–753, 2006.

[39] T. Alamo, R. Tempo, and A. Luque, “On the sample complexity of randomized approaches to

the analysis and design under uncertainty,” Proceedings of the American Control Conference,

2010.

[40] K. Margellos, P. Goulart, and J. Lygeros, “On the road between robust optimization and

the scenario approach for chance constrained optimization problems,” IEEE Transactions on

Automatic Control, vol. 59, no. 8, pp. 2258–2263, 2014.

[41] M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, and G. Andersson, “Probabilistic

security-constrained AC optimal power flow,” in IEEE PowerTech Conference, 2013.

[42] M. Campi, S. Garatti, and F. Ramponi, “Non-convex scenario optimization with application

to system identification,” in 54th IEEE Conference on Decision and Control, 2015.

[43] M. Vrakopoulou, S. Chatzivasileiadis, E. Iggland, M. Imhof, T. Krause, O. Makela, J. L.

Mathieu, L. Roald, R. Wiget, and G. Andersson, “A unified analysis of security-constrained

104



OPF formulations considering uncertainty, risk, and controllability in single and multi-area

systems,” in IREP Symposium Bulk Power System Dynamics and Control - IX Optimization,

Security and Control of the Emerging Power Grid, 2013.

[44] A. M. Giacomoni and B. F. Wollenberg, “Linear Programming Optimal Power Flow Utilizing

a Trust Region Method,” in North Amer. Power Symp., 2010.

[45] D. Molzahn, C. Josz, I. Hiskens, and P. Panciatici, “Solution of Optimal Power Flow Problems

using Moment Relaxations Augmented with Objective Function Penalization,” IEEE 54th

Ann. Conf. Decis. Control (CDC), Dec. 2015.

[46] Siemens PTI, “Volume II: Program Application Guide,” Power System Simulation for Engi-

neering (PSS/E), vol. 31.0, Dec. 2007.

[47] X. Chen and J. Ye, “A class of quadratic programs with linear complementarity constraints,”

Set-Valued and Variational Analysis, vol. 17, no. 2, pp. 113–133, 2009.

[48] S. Braun and J. Mitchell, “A semidefinite programming heuristic for quadratic programming

problems with complementarity constraints,” Computational Optimization and Applications,

vol. 31, no. 1, pp. 5–29, 2005.

[49] J. Jian, J. Li, and X. Mo, “A strongly and superlinearly convergent SQP algorithm for opti-

mization problems with linear complementarity constraints,” Applied Mathematics and Opti-

mization, vol. 54, no. 1, pp. 17–46, 2006.

[50] L. Bai, J. Mitchell, and J. Pang, “On convex quadratic programs with linear complementarity

constraints,” Computational Optimization and Applications, vol. 54, no. 3, pp. 517–554, 2012.

[51] J. Felder and I. Hiskens, “Optimal Power Flow with Storage,” in 18th Power Syst. Comput.

Conf. (PSCC), Aug. 2014.

[52] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong,

S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A. Schneider,

M. Shahidehpour, and C. Singh, “The IEEE reliability test system - 1996,” IEEE Transactions

on Power Systems, vol. 14, no. 3, pp. 1010–1020, August 1999.

105



[53] M. Almassalkhi and I. Hiskens, “Model-Predictive Cascade Mitigation in Electric Power Sys-

tems With Storage and Renewables, Part I: Theory and Implementation,” IEEE Trans. Power

Syst., to appear.

[54] S. Low, “Convex Relaxation of Optimal Power Flow: Parts I & II,” IEEE Trans. Control

Network Syst., vol. 1, no. 1, pp. 15–27, Mar. 2014.

[55] L. Gan and S. Low, “Convex Relaxations and Linear Approximation for Optimal Power Flow

in Multiphase Radial Networks,” in 18th Power Syst. Comput. Conf. (PSCC), Aug. 2014.

[56] M. Baran and F. Wu, “Optimal Capacitor Placement on Radial Distribution Systems,” IEEE

Trans. Power Del., vol. 4, no. 1, pp. 725–734, Jan. 1989.

[57] Z. Li, Q. Guo, H. Sun, and J. Wang, “Sufficient Conditions for Exact Relaxation of Comple-

mentarity Constraints for Storage-Concerned Economic Dispatch,” IEEE Trans. Power Syst.,

vol. 31, no. 2, pp. 1653–1654, Mar. 2016.

[58] Z. Li , Q. Guo, H. Sun, and J. Wang, “Further Discussions on Sufficient Conditions for Exact

Relaxation of Complementarity Constraints for Storage-Concerned Economic Dispatch,” June

2015, arXiv:1505.02493.

[59] R. Zimmerman, C. Murillo-Sánchez, and R. Thomas, “MATPOWER: Steady-State Opera-

tions, Planning, and Analysis Tools for Power Systems Research and Education,” IEEE Trans.

Power Syst., no. 99, pp. 1–8, 2011.

[60] W. A. Bukhsh, A. Grothey, K. McKinnon, and P. Trodden, “Local Solutions of Optimal Power

Flow Problem,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4780–4788, Nov. 2013.

[61] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Contingency Ranking with

Respect to Overloads in Very Large Power Systems Taking into Account Uncertainty, Pre-

ventive and Corrective Actions,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4909–4917,

2013.

[62] E. Camacho and C. Bordons, Model Predictive Control, 2nd ed. New York: Springer Verlag,

2004.

[63] N. Janssens and A. Kamagate, “Loop Flows in a Ring AC Power System,” in 14th Power Syst.

Comput. Conf. (PSCC), June 2002.

106



[64] K. Margellos, M. Prandini, and J. Lygeros, “On the connection between compression learning

and scenario based single-stage and cascading optimization problems,” IEEE Transactions on

Automatic Control, vol. 60, no. 10, pp. 2716–2721, 2015.
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