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Abstract 

Biologically active compounds, such as molecules isolated from natural sources 

like plants and marine sponges, have long been of interest to the synthetic chemistry 

community. Synthetic routes towards these biologically interesting compounds are 

constantly being sought after and improved upon by synthetic chemists, because efficient 

synthetic routes yield not only the compound in question in mass quantitites, but also 

allow for the formation of a library of compounds bearing small changes in structure that 

are not found in the originally isolated compound. These small changes can potentially 

have dramatic effects on the biological activity of the compounds in question. 

Nitrogen containing heterocycles appear in a wide variety of these aforementioned 

biologically active compounds, and for this reason have long been an attractive target to 

the synthetic community.  Heterocyclic scaffolds such as substituted pyrrolidines are 

present in compounds that display a wide variety of biological activity, such as antifungal, 

antibiotic, and antitumor properties. Cyclic guanidines are also present in a large number 

of biologically interesting molecules, such as compounds that display antibiotic, 

immunosuppressive, and neurotoxic properties. While synthetic methodologies to access 

the scaffolds in question currently exist, the majority of them rely on preexisting 

substitution present in the substrate to afford the desired substituted products. This 

precludes the ability to rapidly synthesize a library of compounds with various substitution 

patterns that can then be assayed for changes in biological activity.  
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The research described in this dissertation details the development of a 

methodology to synthesize substituted, nitrogen containing heterocycles in a palladium 

catalyzed, modular coupling reaction. Chapter 1 outlines the biological relevance of 

nitrogen containing heterocycles, and it details the previous efforts of the Wolfe group to 

synthesize the molecular scaffolds in question. Chapter 2 describes the synthesis of 

substituted pyrrolidines via a newly developed, anti-aminopalladation methodology. 

Substituted pyrrolidine products bearing previously unusable N-tosyl and N-trifluoroacetyl 

protecting groups were afforded in good yield. Chapters 3 and 4 detail the synthesis of 

substituted, cyclic guanidines from acyclic N-allyl guanidine substrates. Chapter 3 

focuses on coupling said guanidine substrates with aryl halides/triflates, in which 

substrates bearing cleavable N-cyano and N-tosyl protecting groups were utilized.  

Finally, Chapter 4 describes the successful coupling of guanidine substrates bearing N-

cyano and N-tosyl protectin groups with OBz-protected amine electrophiles in a variation 

on a 1,2-diamination reaction. 
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Chapter 1 

Synthetic Interest in and Methods Toward 

Nitrogen Containing Hetereocycles 

 

1-1 Introduction 

The prevalence of nitrogen containing heterocycles in biologically active natural 

products and pharmaceuticals has made these compounds highly attractive targets in 

synthetic chemistry for many years.1 Specifically, the pyrrolidine moiety appears as an 

important subunit in many biologically interesting compounds, such as preussin 

(antifungal activity), anisomycin (antibiotic activity), and broussonetine (glycosidase 

inhibitor).2 To this extent new methodology to synthesize these aforementioned and novel 

pyrrolidine compounds is highly sought after in the chemical community. 

Scheme 1-1. Biologically Active Compounds Containing the Pyrrolidine Scaffold 

 

1-2 Transition Metal Catalyzed Routes Toward Substituted Pyrrolidines 

In recent years, transition metal catalysis has been utilized to access substituted 

pyrrolidine cores in multiple ways. Tang and coworkers utilized a gold(I)-catalyzed domino 

ring-opening ring-closing hydroamination of methylenecyclopropanes with sulfonamides 
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to produce geminally substituted pyrrolidines in modest to good yields (Eq. 1-1).3 This 

method tolerates an array of groups for R1 and R2, such as phenyl, naphthyl, and aliphatic 

substituents. However, this method is limited in that substitution is only afforded at the 2 

position on the pyrrolidine ring and in many cases the yields are moderate at best. 

 

Another method of pyrrolidine formation is the cyclization of an amine that is 

tethered to an alkene.4 This cyclization is promoted by an electrophile such as a strong 

Brønsted acid or transition metal, and results have shown that these reactions can be 

accomplished catalytically using palladium as said electrophile.5 This method has been 

used by Stahl and coworkers to afford the pyrrolidine core in good yields, via an oxidative, 

Aza-Wacker cyclization, with tolerance of alkyl and aryl substituents on the alkene (Eq. 

1-2,1-3).6 However, one drawback of these reactions is the fact that only a 

monofunctionalization of the alkene is accomplished. This does not allow for the rapid 

formation of a library of compounds. 

Pd(OAc)2 (2 mol%)
pyridine (8 mol %)

toluene, 80 C, 5 h

N
1/2 O2 H2O

Pd(OAc)2 (2 mol%)
pyridine (8 mol %)

toluene, 80 C, 5 h

Ts
N

Ph
1/2 O2 H2O

87% yield

92% yield

NH

Me

Ts
Ts

NH
PhTs

(Eq. 1-2)

(Eq. 1-3)
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1-3 Wolfe Group Efforts Toward Pyrrolidines via Carbomanation Reactions 

The existing limitations on pyrrolidine synthesis have led the Wolfe group to 

explore alkene difunctionalization, via carboamination reactions, as a potential route to 

access substituted pyrrolidines. This method involves the formation of a new C-C bond 

simultaneous to the C-N bond forming cyclization event. Carboamination reactions have 

been employed by our group over the past 10+ years to generate substituted pyrrolidine 

cores in good yields and with good diastereoselectivity (Scheme 1-2).7 

Scheme 1-2. Examples of Pyrrolidine Formation via Carbopalladation. 

 

1-4 Mechanistic Analysis of Syn-Aminopalladation 

In order to probe the mechanism by which the pyrrolidine forming carboamination 

reaction was operating, deuterium-labelled substrate 1-1 was subjected to previously 

described reaction conditions.7 
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Analysis of product 1-2 led to the conclusion that these reactions were proceeding via a 

syn-aminopalladation mechanism (Scheme 1-3). The catalytic cycle begins with oxidative 

addition of Pd(0) into the aryl bromide bond to give 1-3. Simultaneous deprotonation and 

coordination of the amine substrate leads to the formation of palladium amido-complex 1-

4, which is then followed by syn addition across the alkene to give 1-5. Subsequent 

reductive elimination of the palladium complex gives desired product 1-6 and reforms the 

original Pd(0) complex, allowing re-entry into the catalytic cycle. 

Scheme 1-3. The Syn-Aminopalladation Mechanism. 

LnPd0

LnPdII Ar

Ar-Br

NH
DPG

N
D

PG

N
D

PdII

PG

Ar

Ln

N
DPG

Ar

Br

PdLn

Ar

CsBr

Cs2CO3

1-3

1-4

1-5

1-6

 

One drawback of the previously described carboamination methodology was 

discovered, however - the catalytic system was found to be incompatible with substrates 
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containing increasingly electron-poor nitrogen atoms, such as benzoyl and tosyl protected 

amines (Table 1-1). Reactions employing the use of electron-poor cyclizing groups afford 

exclusively undesired Heck side product under syn-aminopalladation reaction 

conditions.8 

Table 1-1. Incompatability of Electron-Poor Nucleophiles with Syn Conditions. 

 

The development of a catalyst system that tolerates these electron-poor substrates 

would greatly increase the scope and utility of this methodology. Our group has already 

had to deal with protecting group issues in the total synthesis of (+)-aphanorphine, in 

which the Boc group required for the carboamination step was not compatible with the 

subsequent Friedl-Crafts alkylation, and the tosyl protecting group required for the Friedl-

Crafts step was not compatible with the preceeding carbomamination reaction. This 

resulted in inefficient protecting group manipulation and a longer overall synthetic route 

(Scheme 1-4).9 
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Scheme 1-4. Total Synthesis of (+)-Aphanorphine. 

 

1-5 Development of Anti-Aminopalladation Methodology 

Beginning in the fall of 2012, the issue of electron poor substrates undergoing the 

Heck reaction preferentially to the desired carboamination reaction had begun to be 

explored by Mr. Ryan Fornwald. He found that the reactivity of sulfonamide substrates 

was greatly affected by the catalyst systems that they were exposed to. As expected, 

electron-poor substrates only gave the desired cyclized product in modest yields when 

exposed to our previously established syn-aminopalladation conditions (aryl bromide 

electrophile, NaOtBu base, and toluene solvent). However, a change in conditions (aryl 

triflate electrophile, LiOtBu base, and benzotrifluoride solvent) with RuPhos as the ligand 

afforded the desired cyclized product in good yield. Furthermore, the change in conditions 

led to a change in the operative mechanism of the reaction from syn-aminopalladation to 

anti-aminopalladation, as supported by the preparation and reaction of deuterium labelled 

substrate 1-12 (Scheme 1-5).10  
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Scheme 1-5. Syn vs. Anti-Aminopalladation of Sulfonamide 1-12. 

 

The aforementioned anti-aminopalladation catalytic cycle begins with oxidative 

addition of Pd(0) into the aryl-triflate bond. We hypothesize that the weakly coordinating 

triflate anion results in cationic palladium complex 1-15. The formation of this cationic 

palladium complex, combined with decreased nucleophilicity of the electron-poor nitrogen 

atom, results in the formation of 1-16, wherein the palladium complex is coordinated to 

the alkene instead of the nitrogen atom. Subsequent anti attack of the nitrogen results in 

1-17, which affords desired cyclized product 1-18 upon undergoing reductive elimination. 
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Scheme 1-6. Anti-Aminopalladation Mechanism. 

LnPd0

LnPdII

Base

Ar

OTf

Ar-OTf

S
N N

H
D

Bn

S
N N

H
D

Bn

PdIILn

Ar

S
N

N
D

PdII

Bn

Ar
Ln

S
N N

D

Bn

Ar

OO

Bn OO

Bn

Bn

O
O

OO
Bn

OTf

1-15

1-16

1-17

1-18

 

This discovery led us to hypothesize that substrates bearing significantly electron-

withdrawing protecting groups, such as tosyl and trifluoroacetyl protected amines, could 

potentially afford the desired substituted heterocyclic products that were not available to 

us previously via our syn-aminopalladation methodology. Furthermore, we hypothesized 

that other substrate scaffolds in which the nucleophilic nitrogen atom is in an electron 

poor environment could be amenable to this new anti-aminopalladation methodology. 

One such scaffold that has been of particular interest in our group is the guanidine moiety 

(Eq. 1-5), as cyclic guanidines are present in a wide variety of biologically active 

compounds.11  
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 These new substrates were found to be amenable to these newly developed anti-

aminopalladation conditions, and the operative mechanistic pathway was confirmed to be 

anti through the use of deuterium labelling studies. A comparison of substrates and 

conditions reveals that amines bearing Boc or aryl protecting groups will undergo syn-

aminopalladation preferentially, while amines bearing N-tosyl or N-trifluoroacetyl protectin 

groups will undergo anti-aminopalladation preferentially. Furthermore, guanidine 

substrates bearing PMP protecting groups can be expected to undergo syn-

aminopalladation, while guanidines bearing CN/Bn or Ts/Bn protecting group 

combinations preferentially undergo anti-aminopalladation (see Eq. 3-1). 

1-6 Projects Described Herein 

Contained in this dissertation is the description of the three projects that I have 

worked on during the time of my PhD research. Chapter 2 details efforts to synthesize 

substituted pyrrolidines from tosyl and acetyl protected amine substrates via anti-

aminopalladation. The desired products were afforded in good yields, but low 

diastereoselectivities were generally observed. Chapter 3 details efforts to synthesized 

cyclic guanidines via anti-aminopalladation. Furthermore, this project represented an 

expansion of the scope of previous efforts by Blane Zavesky and Nick Babij to include 

guanidine substrates bearing cleavable tosyl and cyano protecting groups. Chapter 4 

details a somewhat new direction for the carboamination chemistry than is typically 

studied by the Wolfe group, as OBz-protected amine electrophiles were utilized, in place 
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of the aryl or pseudo-aryl halides that our group typically utilizes, with guanidine 

substrates to afford cyclic amino-guanidine products in an aminopalladation variation of 

a diamination reaction. 
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Chapter 2 

Palladium-Catalyzed Alkene Carboamination Reactions of Electron-Poor Nitrogen 

Nucleophiles 

 

2-1 Introduction 

Over the past decade our group has developed and investigated a series of Pd-

catalyzed alkene carboamination reactions for the synthesis of medicinally relevant 

nitrogen heterocycles.12 These transformations effect the cross-coupling of an aryl or 

alkenyl halide with a nitrogen nucleophile that contains a pendant alkene, and result in 

the formation of a ring, a C-N bond, a C-C bond, and up to two stereocenters. For 

example, we have illustrated that this method can be used for the stereoselective 

construction of N-protected pyrrolidines from substituted pent-4-enylamine derivatives 

(Eq. 2-1).13 These reactions are broadly effective with substrates bearing N-aryl, N-acetyl, 

N-Boc, or N-Cbz groups. However, the efficacy of these reactions is linked to the 

nucleophilicity of the cyclizing nitrogen atom, and substrates that contain highly electron-

withdrawing protetcting groups, such as N-tosyl or N-trifluoroacetyl, undergo Heck 

arylation of the alkene rather than carboamination to afford the desired heterocycle (Eq. 

2-2).14,15,16,17 
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2-2 Previous Work 

Our prior studies have shown that the mechanism of these reactions involves 

oxidiative addition of the aryl halide to Pd(0) to generate 2-1, which undergoes 

substitution with the nitrogen nucleophile to afford 2-2 (Scheme 1). The key C-N bond-

forming event occurs through syn-migratory insertion of the alkene into the Pd-N bond of 

2-2 to yield 2-3, which undergoes C-C bond-forming reductive elimination to generate the 

product 2-4.12 The syn-aminopalladation step is facilitated by relatively electron-rich 

nitrogen nucleophiles, and the rate of this step slows dramatically as the nucleophilicity 

of the nitrogen atom decreases.18 Thus, for electron-poor nucleophiles such as tosyl-

protected amines, Heck-type arylation of the alkene outcompetes the alkene 

carboamination process. We recently reported a new variant of the Pd-catalyzed alkene 

carboamination reactions whereby N-allylsulfamides were transformed to cyclic 

sulfamides.19 During the course of those studies we discovered that reaction conditions 

that favored the syn-aminopalladation mechanistic pathway illustrated above led to the 

formation of significant amounts of side products resulting from competing Heck arylation. 

However, this undesired side reaction was minimized through use of modified conditions 
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in which the reactions were carried out in a relatively polar solvent (PhCF3) with aryl 

triflates rather than aryl bromides as coupling partners. Given the success of these 

conditions with the relatively electron-poor sulfamide substrates, we reasoned that similar 

conditions may prove useful for Pd-catalyzed carboamination reactions of other electron-

poor nitrogen nucleophiles, such as N-tosyl or N-trifluoroacetyl protected amines. This 

would broaden the array of nitrogen protecting groups tolerated in these reactions, and 

would significantly expand the scope of this methodology. 

Scheme 2-1. Syn-Aminopalladation Formation of Pyrrolidine 2-4. 

 

2-3 Optimization Studies 

To test this hypothesis we examined the Pd-catalyzed coupling of 2-5a with phenyl 

triflate or p-tolyl triflate (Table 2-1). A series of Buchwald-type biarylphosphine ligands 

were surveyed,20 as these provided optimal results in our prior studies with sulfamides.19 

After some experimentation we found that use of a catalyst composed of Pd(OAc)2 

/CPhos, LiOtBu as base, and PhCF3 as solvent provided the highest yield of desired 

product 2-6a and only a small amount of Heck arylation side product 2-7. 
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Table 2-1. Optimization Studies.[a] 

 

2-4 Scope 

Following our preliminary optimization studies we proceeded to examine the 

coupling of phenyl triflate with several N-tosyl-pent-4-enylamine derivatives. As shown in 

Table 2-2, in most instances reactions proceed in good yield. However, in contrast to 

analogous transformations of N-Boc or N-acetyl protected pentenylamines, 



15 
 

diastereoselectivities were low (ca. 1–2:1) in most cases. Substitution at the internal 

alkene carbon atom was tolerated to some extent, although the yield for product 2-6g was 

modest. Efforts to employ substrates bearing internal alkenes were unsuccessful. In 

addition, attempts to form six-membered heterocycles using this method provided low 

yields (<35%) of the desired products. 

Table 2-2. Pd-Catalyzed Carboamination Reactions Between Phenyl Triflate and 

N-tosyl-pent-4-enylamine derivatives.[a] 

NH

Ts

R

PhOTf

Pd(OAc)2 (2 mol%)
CPhos (5 mol%)

LiOtBu (1.4 equiv.)

PhCF3 (0.1M),
100 °C, 15 h

N

Ts

Ph

N

Ts

Ph
Ph N

Ts

Ph

Me

N

Ts

Ph

Ph

N

Ts

Ph

Me

N

Ts

Ph

N

Ts

Ph

R

2-5 2-6

N

Ts

Ph

2-6a 76% 2-6b 90%
2.2:1 dr

2-6c 72%
2.4:1 dr

2-6d 55%
8:1 dr

2-6e 75%
1.8:1 dr

2-6f 76% 2-6g 34%

[a] Conditions: 1.0 equiv. 2-5, 1.2 equiv. ArOTf, 1.4 equiv. LiOtBu, 2
mol% Pd(OAc)2, PhCF3 (0.1M), 100 °C, 15 h. Yields are isolated
yields (average of two experiments).  

The reactivity of several different aryl triflates was also examined (Table 2-3), and 

the presence of electron-donating groups and electron-withdrawing groups was tolerated. 

Moreover, the sterically hindered 1-naphthyl triflate was successfully coupled with N-

tosyl-pent-4-enylamine in 72% yield to afford 2-6h. The presence of functional groups 
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such as aryl chlorides, nitriles, and non-enolizable ketones did not have a deleterious 

effect on reactivity or chemical yield. 

Table 2-3. Pd-Catalyzed Carboamination Reactions Between Aryl Triflates and N-

tosyl-pent-4-enylamine.[a] 

NH

Ts

ArOTf

2-5a

Pd(OAc)2 (2 mol%)
CPhos (5 mol%)

LiOtBu (1.4 equiv.)

PhCF3 (0.1 M),
100 °C, 15 h

N

Ts

Ar

2-6

N

Ts

N

Ts

CN

N

Ts

Cl

N

Ts

OMe

N

Ts

O

Ph

2-6h 72% 2-6i 61% 2-6j 68%

2-6k 64% 2-6l 67%

[a] Conditions: 1.0 equiv. 2-5a, 1.2 equiv. ArOTf, 1.4 equiv. LiOtBu,
2 mol% Pd(OAc)2, PhCF3, 100 °C, 15 h. Yields are isolated yields
(average of two experiments.  

Finally, the Pd-catalyzed carboamination of 2-5a with several different aryl bromide 

electrophiles was achieved by using RuPhos as ligand, NaOtBu as base, and 2 equiv. of 

LiOTf as an additive for these reactions (Table 2-4). Under these conditions, yields with 

aryl bromides were similar to those obtained with aryl triflate electrophiles. The role of the 

LiOTf additive could be to facilitate in situ formation of palladium triflate complexes, or the 

lithium cation may lead to pseudocationic complexes by binding to the halide ligand on 

Pd.21 Alternatively LiOTf may also increase the polarity (ionic strength) of the reaction 

medium.22 
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Table 2-4. Pd-Catalyzed Carboamination Reactions Between Aryl Bromides and 

N-tosyl-pent-4-enylamine.[a] 

NH

Ts

ArBr

2-5a

Pd(OAc)2 (2 mol%)
RuPhos (5 mol%)

NaOtBu (1.4 equiv.)
LiOTf (2 equiv.)

PhCF3 (0.1 M),
100 °C, 15 h

N

Ts

Ar

2-6

N

Ts

Cl

N

Ts

N

Ts

OMe2-6a 72% 2-6j 61% 2-6k 68%

[a] Conditions: 1.0 equiv. 2-5a, 1.2 equiv. ArBr, 1.4 equiv.
NaOtBu, 2.0 equiv. LiOTf, 2 mol% Pd(OAc)2, 5 mol% RuPhos,
PhCF3, 100 °C, 15 h. Yields are isolated yields (average of two
experiments.  

We also explored the reactivity of pent-4-enylamine substrates bearing N-

trifluoroacetyl groups. As shown in Table 2-5, these transformations were also effective 

with a range of different amine substrates, although yields were generally lower than for 

the analogous tosyl-protected derivatives. Diastereoselectivities were also modest, with 

the exception of 2-9e, which contains a relatively bulky phenyl substituent. 
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Table 2-5. Pd-catalyzed carboamination reactions between phenyl triflate and N-

trifluoroacetyl-pent-4-enylamine.[a] 

NH

R

Pd(OAc)2 (2 mol%)
CPhos (5 mol%)

LiOtBu (1.4 equiv.)

PhCF3 (0.2-0.5 M),
100 °C, 10-22 h

N

Ph

N

Ph
Ph

N

Ph

Ph

N

Ph

Me

N

Ph

R

2-8 2-9

N

Ph

2-9a 61% 2-9c 87%
2:1 dr

2-9e 54%[b]

7:1 dr

2-9d 69%
1.3:1 dr

2-9b 76%

[a] Conditions: 1.0 equiv. 2-8, 1.2 equiv. ArOTf, 1.4 equiv. LiOtBu,
2 mol% Pd(OAc)2, PhCF3 (0.2 M), 100 °C, 15 h. Yields are isolated
yields (average of two experiments).
[b] The reaction was conducted using 2 equiv. PhOTf, 4 mol%
Pd(OAc)2, and 10 mol% CPhos.

CF3O O CF3

CF3O CF3O CF3O

CF3O O CF3

Ph OTf

 

2-5 Formal Synthesis of (±)-aphanorphine 

To illustrate the potential utility of this transformation, we carried out a short formal 

synthesis of (±)-aphanorphine (Scheme 2-2). We had previously prepared an 

intermediate closely related to 2-11 via Pd-catalyzed carboamination of a Boc-protected 

pentenylamine derivative analogous to 2-10 followed by cleavage of the Boc-group and 

reprotection with TsCl.23 We were unable to directly access 2-11 via Pd-catalyzed 

carboamination due to the poor reactivity of substrate 2-10. However, use of our newly 

developed conditions led to the conversion of 2-10 to 2-11 in 82% yield. Subsequent 
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intramolecular Friedel–Crafts alkylation of 2-11 afforded 2-12, which is an N- and O-

protected analog of aphanorphine.24 

Scheme 2-2. Formal synthesis of (±)-aphanorphine. 

 

2-6 Mechanistic Studies via Deuterium Labelling 

The contrast in stereocontrol observed in reactions of N-tosyl vs. N-Boc protected 

pentenylamines prompted us to explore the stereochemistry of the alkene addition 

process, as we felt this could indicate that the two types of substrates react via different 

mechanisms.25 We have previously shown that carboamination reactions of Boc-

protected substrates proceed with syn-addition of the nitrogen atom and the aryl group to 

the alkene.13d For example, the coupling of deuterated substrate 2-13 with bromobenzene 

using a Pd(OAc)2/DPEPhos catalyst afforded 2-14 in 71% yield and >20:1 dr (Eq. 2-3). 

In contrast, we found that the coupling of tosyl-protected substrate 2-15 with phenyl triflate 

using our optimized conditions described above provided 2-16 in 76% yield and 13:1 dr 

(Eq. 2-4). This product results from anti-addition of the nitrogen atom and the aryl group 

to the double bond in 2-15.26 
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These results suggest that the mechanism of Pd-catalyzed alkene carboamination 

reactions of N-tosylpent-4-enylamines with aryl triflates is indeed different from that of the 

analogous Boc-protected substrates with aryl bromides. As shown below (Scheme 2-3), 

the mechanism with tosyl-protected derivatives is initiated by oxidative addition of the aryl 

triflate to Pd(0). However, upon formation intermediate 2-17 binds to the alkene to afford 

2-18, which then undergoes anti-aminopalladation27 to generate 2-19. Reductive 

elimination then leads to C-C bond formation to yield the product 2-20 with regeneration 

of the Pd(0) catalyst. 
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Scheme 2-3. Anti-Aminopalladation Mechanism. 

 

The modest diastereoselectivity observed in reactions of N-tosylamine derivatives 

(e.g., in the formation of 2-6b or 2-9c) is likely due to the possibility of the 

aminopalladation step occurring from either conformer 2-23 or 2-24, which are likely close 

in energy (Scheme 2-4).28 In contrast, reactions that proceed via syn-aminopalladation 

appear to occur via a highly organized transition state (2-21) in which the alkene π-bond 

is eclipsed with the Pd-N bond. 

Scheme 2-4. Pathway for Diastereomer Formation. 
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2-7 Conclusion 

The results presented above, along with those described in our recent studies on 

Pd-catalyzed alkene carboamination reactions of N-allyl sulfamides19 and N-tosyl-N-

propargyl guanidines,29 illustrate that transformations of relatively non-nucleophilic 

substrates that fail under syn-aminopalladation conditions can (in cases examined thus 

far) be achieved using conditions that promote anti-aminopalladation. Our prior 

mechanistic studies have shown that the rate of syn-aminopalladation is directly related 

to the nucleophilicity of the N-atom; electron-withdrawing N-substituents dramatically 

slow this process.18 In addition, Stahl has illustrated that alkene aminopalladation 

reactions are reversible when the N-atom bears an electron-withdrawing group.30 Thus, 

the syn-aminopalladation/reductive elimination sequence is unfavorable for electron-poor 

nucleophiles, and competing Heck arylation predominates. In contrast, it appears that 

when anti-aminopalladation conditions are employed the rates of anti-aminopalladation 

from 2-18 and subsequent reductive elimination from 2-19 are faster than the 

carbopalladation that would lead to Heck-arylation side products. 

In conclusion, we have developed new reaction conditions for Pd-catalyzed alkene 

carboaminations that allow for use of electron-withdrawing N-tosyl and N-trifluoroacetyl 

protecting groups. Although diastereoselectivities are typically modest, chemical yields 

are generally good, and this represents a useful expansion in the scope of alkene 

carboamination methodology. 

 

 



23 
 

2-8 Note from the Author 

This thesis chapter represents work that has been previously published in a peer-

reviewed journal, which has been reproduced or adapted here with permission from the 

authors. 

2-9 Experimental 

General: All reactions were carried out at under a nitrogen atmosphere in flame-dried 

glassware. Palladium(II) acetate and RuPhos were purchased from Strem Chemical Co. 

and used without purification, and CPhos was purchased from Sigma-Aldrich Co. and 

was used without further purification. Aryl triflates were prepared according to a procedure 

published by Frantz and coworkers,31 except the compounds were purified by column 

chromatography. All other reagents were obtained from commercial sources and were 

used as obtained unless otherwise noted. (±)-4-Methyl-N-{2-methyl-2-

[(trimethylsilyl)oxy]pent-4-en-1- yl}benzenesulfonamide (10) was prepared as previously 

reported.32 Bulk quantities of lithium tert-butoxide and sodium tert-butoxide were stored 

in nitrogen-filled glove box and small amounts were removed shortly before use. Toluene, 

THF, dichloromethane and diethyl ether were purified using a GlassContour solvent 

purification system. Ratios of diastereomers were determined by 1 H NMR analysis. 

Yields refer to isolated yields of compounds estimated to be ≥95% pure as determined by 

1H NMR analysis unless otherwise noted. The yields reported in the supporting 

information describe the result of a single experiment, whereas yields reported in Tables 

2–5, Scheme 2-2, and Equations 2-3–2-4 are average yields of two or more 

experiments. Thus, the yields reported in the supporting information may differ from those 

shown in Tables 2–5, Scheme 2-2, and Equations 2-3–2-4. Due to the presence of 
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diastereomers for compounds 2-8b−2-8e, S2 and 2-9b−2-9e, it was not possible to 

accurately determine coupling constants for fluorine-coupled carbons. As such, for these 

compounds a simple list of all 13C signals observed for the mixture is provided. 

Experimental Procedures and Compound Characterization Data 

 

N-Tosylpent-4-enamide (2-S1).33 A flame-dried flask equipped with a rubber septum and 

a stirbar was cooled under a stream of nitrogen and charged with 4-pentenoic acid (1 g, 

10 mmol) and THF (20 mL), then p-toluenesulfonyl isocyanate (1.5 mL, 10 mmol) was 

added. After stirring at rt for 10 min the septum was removed and triethylamine (1.4 mL, 

10 mmol) was added dropwise to the open flask, allowing for the release of the formed 

CO2. The resulting mixture was stirred at rt for 3 h then was diluted with 20 mL EtOAc, 

transferred to a separatory funnel, and then washed with HCl and brine. The organic layer 

was then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to yield 2.42 g 

(96%) of a white crystalline solid that was used without further purification. 1H NMR (400 

MHz, CDCl3) δ 8.04 (s, br, 1 H), 7.94 (d, J = 8.5 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 5.76–

5.69 (m, 1 H), 5.02–4.97 (m, 2 H), 2.45 (s, 3 H), 2.37– 2.3 (m, 4 H). 

 

4-Methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a).34 A flame dried flask was 

cooled under a stream of nitrogen and charged with 2-S1 (2.42 g, 9.05 mmol) and THF 

(27 mL). The mixture was cooled to 0 °C then lithium aluminum hydride (27.2 mL, 1 M in 
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THF) was added slowly, and the reaction mixture was warmed to rt and stirred overnight. 

The mixture was then cooled to °C and quenched with H2O (9 mL). Diethyl ether (27 mL) 

was added, followed by a solution of 10 M aqueous NaOH (27 mL). The organic layer 

was decanted, and the remaining white solid was washed with diethyl ether (2 x 27 mL). 

The combined organic layers were then dried over Na2SO4, filtered, and evaporated in 

vacuo to afford a clear, colorless oil. The crude product was purified via flash 

chromatography on silica gel to afford 1.54 g (71%) of the desired product as a colorless 

oil. Spectroscopic data for the compound are consistent with those previously reported.34 

1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 5.73–

5.68 (m, 1 H), 4.99–4.95 (m, 2 H), 4.38 (s, br, 1 H), 2.96 (q, J = 6.8 Hz, 2 H), 2.43 (s, 3 

H), 2.05 (q, J = 7.1 Hz, 2 H), 1.56 (p, J = 7.0 Hz, 2 H). 

 

2-Methyl-N-tosylpent-4-enamide (2-S2). A procedure similar to that for used for the 

preparation of 2-S1 was employed for the conversion of 2-methyl-4-pentenoic acid (0.685 

g, 6.0 mmol) to the title compound. This procedure afforded 1.53 g (95%) of the desired 

product as a white solid that was used without further purification. 1H NMR (400 MHz, 

CDCl3) δ 8.15 (s, br, 1 H), 7.94 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 5.66–5.56 

(m, 1 H), 5.00–4.94 (m, 2 H), 2.45 (s, 3 H), 2.35–2.14 (m, 2 H), 2.15–2.08 (m, 1 H), 1.11 

(d, J = 6.8 Hz, 3 H). 
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4-Methyl-N-(2-methylpent-4-en-1-yl)benzenesulfonamide (2-5b).35 A procedure 

similar to that used for the preparation of 2-5a was employed for the conversion of 2-S2 

to the title compound. This procedure afforded 0.60 g (42%) of the desired product as a 

colorless oil. Spectroscopic data for the compound are consistent with those previously 

reported.35 1H NMR (500 MHz, CDCl3) δ 7.73 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 

H), 5.72−5.64 (m, 1 H), 5.02–4.94 (m, 2 H), 4.35 (s, br, 1 H), 2.86 (dt, J = 12.8, 6.4 Hz, 1 

H), 2.76 (dt, 12.8, 6.4 Hz, 1 H), 2.43 (s, 3 H), 2.10–2.01 (m, 1 H), 1.96−1.84 (m, 1 H), 

1.74–1.61 (m, 1 H), 0.87 (d, J = 6.8 Hz, 3 H). 

 

4-Methyl-N-(1-phenylpent-4-en-1-yl)benzensulfonamide (2-5c).34 A flame dried flask 

was cooled under a stream of nitrogen and charged with 1-phenylpent-4-en-1-amine[36] 

(0.39 g, 2.4 mmol) and THF (24 mL). Tosyl chloride (0.52 g, 2.9 mmol) was then added, 

followed by triethylamine (0.4 mL, 2.9 mmol) and the solution was stirred at rt overnight. 

The reaction was then quenched with 2 M HCl (12 mL) and the mixture was transferred 

to a separatory funnel. The layers were separated, the aqueous layer was extracted with 

diethyl ether (3 x 20 mL), and the combined organic layers were dried over Na2SO4, 

filtered, and concentrated in vacuo to afford an off-white solid. The crude product was 

purified via flash chromatography on silica gel to yield 0.52 g (69%) of a white solid, mp 

66−68 °C. Spectroscopic data for the compound are consistent with those previously 

reported.34 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.0 Hz, 2 H), 7.16–7.15 (m, 3 H), 

7.12 (d, J = 8.0 Hz, 2 H), 7.00–6.98 (m, 2 H), 5.75–5.60 (m, 1 H), 4.97– 4.91 (m, 2 H), 
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4.75 (s, br, 1 H), 4.29 (q, J = 7.2 Hz, 1 H), 2.35 (s, 3 H), 1.99–1.88 (m, 3 H), 1.86–1.75 

(m, 1 H). 

 

4-Methyl-N-(3-methylpent-4-en-1-yl)benzensulfonamide (2-5d).37 A flame dried flask 

was cooled under a stream of nitrogen and charged with a solution of 3-methylpent-4-en-

1-amine[37] (85 mL, 8.5 mmol, 0.1 M in diethyl ether). p-Toluenesulfonyl chloride (1.94 

g, 10.2 mmol) was then added, followed by triethylamine (1.4 mL, 10.2 mL) and the 

resulting solution was stirred at rt overnight. The reaction was then quenched with 2 M 

HCl (50 mL) and the mixture was transferred to a separatory funnel. The layers were 

separated, the aqueous layer was extracted with diethyl ether (3 x 50 mL), and the 

combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo to 

afford a colorless oil. The crude product was purified via flash chromatography on silica 

gel to yield 1.19 g (55%) of the desired product as a colorless oil. Spectroscopic data for 

the compound are consistent with those previously reported.37 1H NMR (500 MHz, CDCl3) 

δ 7.46 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 5.61–5.54 (m, 1 H), 4.94–4.90 (m, 2 

H), 4.36 (s, br, 1 H), 3.00–2.90 (m, 2 H), 2.43 (s, 3 H), 2.17–2.12 (m, 1 H), 1.51–1.41 (m, 

2 H), 0.95 (d, J = 7.0 Hz, 3 H). 
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4-Methyl-N-(3-phenylpent-4-en-1-yl)benzenesulfonamide (2-5e). A flame dried flask 

was cooled under a stream of nitrogen and charged with 3-phenylpent-4-en-1-amine36 

(0.30 g, 1.86 mmol) and diethyl ether (19 mL). p-Toluenesulfonyl chloride (0.43 g, 2.2 

mmol) was then added, followed by triethylamine (0.31 mL, 2.2 mmol) and the resulting 

solution was stirred at rt overnight. The reaction was then quenched with 2 M HCl (20 mL) 

and the mixture was transferred to a separatory funnel. The layers were separated, the 

aqueous layer was extracted with diethyl ether (3 x 20 mL), and the combined organic 

layers were dried over Na2SO4, filtered, and concentrated in vacuo to afford a yellow oil. 

The crude product was purified via flash chromatography on silica gel to yield 1.19 g 

(55%) of the desired product as a pale yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J 

= 8.0 Hz, 2 H), 7.30–7.26 (m, 4 H), 7.22–7.10 (m, 1 H), 7.09 (d, J = 8.0 Hz, 2 H), 5.91–

5.82 (m, 1 H), 5.04–4.98 (m 2 H), 4.26 (s, br, 1 H), 3.28 (q, J = 7.6 Hz, 1 H), 2.92 (q, J = 

7.0 Hz, 2 H), 2.43 (s, 3 H), 1.94−1.82 (m, 2 H); 13C NMR (125 MHz, CDCl3) δ 143.4, 

142.8, 140.9, 136.9, 129.7, 128.7, 127.4, 127.1, 126.6, 114.9, 47.0, 41.4, 35.0, 21.5; IR 

(film) 3277, 2930, 1320, 1154 cm-1; MS (ESI+) 316.1371 (316.1366 calcd for 

C18H21NO2S, M + H+). 

 

N-(2-Allylphenyl)-4-methylbenzenesulfonamide (2-5f). A flame-dried flask was cooled 

under a stream of nitrogen and charged with 2-allylaniline[39] (1.00 g, 7.50 mmol) and 

diethyl ether (55 mL). p-Toluenesulfonyl chloride (1.72 g, 9.00 mmol) was added followed 

by triethylamine (1.25 mL, 9.00 mmol), at which point the solution became cloudy. The 
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reaction mixture was stirred at rt overnight then was concentrated in vacuo to yield a 

brown, viscous oil. The crude product was purified via flash chromatography on silica gel 

to afford 1.40 g (65%) of the title compound as a tan solid, mp 68−69 °C. Spectroscopic 

data for the compound are consistent with those previously reported.38 1H NMR (500 

MHz, CDCl3) δ 7.59 (d, J = 8.0 Hz, 2 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.21–7.19 (m, 3 H), 

7.12 (t, J = 7.0 Hz, 1 H), 7.07 (d, J = 7.0 Hz, 1 H), 6.49 (s, br, 1 H), 5.82–5.74 (m, 1 H), 

5.12 (d, J = 10.0 Hz, 1 H), 4.94 (d, J = 17.0 Hz, 1 H), 3.01 (d, J = 4.0 Hz, 2 H), 2.39 (s, 3 

H). 

 

1-(2-Methylallyl)-2-nitrobenzene (2-S3). A flame-dried flask was cooled under a stream 

of nitrogen and charged with nitrobenzene (2.26 g, 9.09 mmol) and THF (36 mL) and 

cooled to -40 ºC. A solution of phenylmagnesium bromide (10 mL, 10 mmol, 1 M in THF) 

was then added dropwise, and the resulting mixture stirred at -40 °C for 5 min. A solution 

of CuCN·LiCl (18.2 mL, 18.2 mmol, 1 M in THF) was then added dropwise. The mixture 

was stirred at -40 °C for 30 min then 3-bromo-2-methylpropene (1.1 mL, 10.91 mmol) was 

added dropwise and the solution was stirred at -40 ºC for 1.5 hours. The reaction was 

quenched with NH4Cl (40 mL) and the mixture was transferred to a separatory funnel. 

The layers were separated and the organic layer was washed with water (40 mL) and 

brine (40 mL), and then was dried over Na2SO4, filtered, and concentrated in vacuo to 

yield a brown oil. The crude product was purified via flash chromatography to afford 0.76 

g (47%) of the title compound as a brown oil. 1H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 
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8.0 Hz, 2 H), 7.52 (t, J = 7.6 Hz, 1 H), 7.38–7.35 (m, 2 H), 4.84 (s, 1 H), 4.51 (s, 1 H), 

3.64 (s, 2 H), 1.74 (s, 3 H). 

 

2-(2-Methylallyl)aniline (2-S4). A flame-dried flask was cooled under a stream of 

nitrogen and charged with zinc dust (2.77 g, 4.24 mmol), then 1-(2-methylallyl)-2-

nitrobenzene (0.50 g, 2.8 mmol) in distilled ethanol (20 mL) was added, followed by acetic 

acid (2.4 mL, 4.24 mmol). The reaction mixture was stirred at rt for 1 h, then was filtered 

through a plug of celite. The celite was rinsed with ethyl acetate and the combined organic 

layers were concentrated. A solution of saturated aqueous NaHCO3 (15 mL) was added 

to the resulting crude product, then the mixture was extracted with ethyl acetate (3 x 15 

mL), dried over Na2SO4, filtered, and concentrated in vacuo to yield 0.292 g (70%) of an 

orange oil that was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.09–

7.02 (m, 2 H), 6.75 (t, J = 7.2 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 4.87 (s, 1 H), 4.74 (s, 1 

H), 3.72 (s, br, 2 H), 3.28 (s, 2 H), 1.74 (s, 3 H). 

 

4-Methyl-N-[2-(2-methylallyl)phenyl]benzenesulfonamide (2-5g). A flame-dried flask 

was cooled under a stream of nitrogen and charged with 2-(2-methylallyl)aniline (0.29 g, 

1.99 mmol) and dichloromethane (20 mL). The solution was cooled to 0 ºC, p-

toluenesulfonyl chloride (0.38 g, 1.99 mmol) was added, followed by triethylamine (0.42 
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mL, 2.98 mmol), and the reaction mixture was stirred at rt overnight. The mixture was 

then concentrated in vacuo to yield a crude oil that was purified via flash chromatography 

on silica gel to afford 0.42 g (71%) of the title compound as a viscous orange oil. 

Spectroscopic data for the compound are consistent with those previously reported.40 1H 

NMR (500 MHz, CDCl3) δ 7.60 (d, J = 8.0 Hz, 2 H), 7.46 (d, J = 8.0 Hz, 1 H), 7.23–7.20 

(m, 3 H), 7.11 (t, J = 7.0 Hz, 1 H), 7.03 (d, J = 7.5 Hz, 1H), 6.68 (s, br, 1 H), 4.89 (s, 1 H), 

4.62 (s, 1 H), 2.92 (s, 2 H), 3.93 (s, 3 H), 1.57 (s, 3 H). 

 

2,2,2-Trifluoro-N-(pent-4-en-1-yl)acetamide (2-8a). A flame-dried flask was cooled 

under a stream of nitrogen and charged with a solution of pent-4-en-1-amine (50 mL, 5.0 

mmol, 0.1 M in diethyl ether) and cooled to 0 ºC. Triethylamine (1.4 mL, 10.0 mmol) was 

added, followed by trifluoroacetic anhydride (0.77 mL, 5.5 mmol). The resulting mixture 

was stirred at rt overnight then was diluted with water (20 mL). The mixture was 

transferred to a separatory funnel, the layers were separated, and the aqueous layer was 

extracted with diethyl ether (2 x 20 mL). The combined organic layers were washed with 

brine, dried over Na2SO4, filtered, and concentrated in vacuo to afford a red-orange oil. 

The crude product was purified via flash chromatography to yield 412 mg (45%) of the 

title compound as a clear, colorless oil. The compound was found to exist as a mixture of 

rotamers by 1H NMR analysis; data are for the major rotamer. Spectroscopic data for the 

compound are consistent with those previously reported.41 1H NMR (500 MHz, CDCl3) δ 

7.23 (s, br, 1 H), 5.75 (ddt, J = 17.0, 10.2, 6.7 Hz, 1 H), 5.14–4.84 (m, 2 H), 3.35 (q, J = 

6.8 Hz, 2 H), 2.05 (q, J = 7.2 Hz, 2 H), 1.68 (p, J = 7.2 Hz, 2 H). 
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2-Methylpent-4-enamide (2-S5). A flame-dried flask was cooled under a stream of 

nitrogen and charged with 2-methylpent-4-enoic acid (1.71 g, 15 mmol) and benzene (30 

mL), and was then cooled to 0ºC. Oxalyl chloride (2.6 mL, 30 mmol) was then added 

slowly, and the reaction mixture was stirred at rt for 3 h. The mixture was then 

concentrated in vacuo, and the resulting crude material was dissolved in THF (30 mL) 

and then slowly added to aqueous NH4OH at 0 ºC. The resulting mixture was then stirred 

at rt overnight. The mixture was concentrated, then diluted with water (15 mL) and ethyl 

acetate (30 mL) and transferred to a separatory funnel. The layers were separated, the 

aqueous layer was extracted with ethyl acetate (3 x 30 mL), and the combined organic 

layers were dried over Na2SO4, filtered, and concentrated in vacuo to afford 1.53 g (90%) 

of a white solid that was used without further purification. 

 

2-Methylpent-4-en-1-aminium chloride (2-S6). A flame-dried flask was cooled under a 

stream of nitrogen and charged with 2-methylpent-4-enamide (1.53 g, 13.5 mmol) and 

THF (40 mL), and the solution was cooled to 0 ºC. Lithium aluminum hydride (40.5 mL, 

40.5 mmol, 1 M in THF) was added slowly then the mixture was warmed to rt and stirred 

for 24 h. The mixture was then cooled to 0 ºC and quenched with water (13.5 mL), 1 M 

NaOH (13.5 mL), then additional water (40.5 mL). The organic layer was decanted and 

the remaining solids were washed with ether and the ether solution was decanted. The 
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combined ether layers were dried over Na2SO4 and filtered to afford a solution of 2-

methylpent-4-en-1-amine in ether. To this solution HCl (5 mL, 4 M in dioxanes) was slowly 

added, and then the mixture was concentrated in vacuo to afford 1.46 g (80%) of the title 

compound as an off-white solid. 1H NMR (500 MHz, CDCl3) δ 8.23 (s, br, 3 H), 5.80−5.67 

(m, 1 H), 5.13–5.08 (m, 2 H), 3.0–2.94 (m, 1 H), 2.79–2.72 (m, 1 H), 2.19– 2.15 (m, 1 H), 

2.09–1.99 (m, 2 H), 1.07 (d, J = 6.5 Hz, 3 H). 

 

2,2,2-Trifluoro-N-(2-methylpent-4-en-1-yl)acetamide (2-8b). A flame-dried flask was 

cooled under a stream of nitrogen and charged with 2-methylpent-4-en-1-aminium 

chloride (1.46 g, 10.8 mmol) and dichloromethane (20 mL), and then the solution was 

cooled to 0 ºC. Triethylamine (4.5 mL, 32.5 mmol) was added, followed by trifluoroacetic 

anhydride (1.8 mL, 13.0 mmol). The solution was then allowed to stir at rt overnight, and 

the reaction was treated with water (15 mL), then separated. The aqueous layer was 

extracted with dichloromethane (10 mL), and the combined organics were washed with 

brine. The layers were separated, and the organic phase was dried over Na2SO4, filtered, 

and concentrated in vacuo to afford a yellow oil. The crude product was purified via 

column chromatography on silica gel to yield 1.48 g (70%) of the title compound as a pale 

yellow oil. 1H NMR (500 MHz, CDCl3) δ 6.47 (s, br, 1 H), 5.81−5.73 (m, 1 H), 5.09–5.05 

(m, 2 H), 3.32–3.27 (m, 1 H), 3.25–3.19 (m, 1 H), 2.13–2.07 (m, 1 H), 2.03–1.98 (m, 1 H), 

1.09–1.80 (m, 1 H), 0.95 (d, J = 6.8 Hz, 3 H); 13C NMR (125 MHz, CDCl3) δ 157.4, 157.1, 
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135.8, 117.1, 115.9 (q, J = 286 Hz), 45.3, 38.8, 32.8, 17.4; IR (film) 3307, 2966, 1701, 

1154 cm-1; MS (ESI+) 196.0939 (196.0944 calcd for C8H12F3NO, M + H+). 

 

2,2,2-Trifluoro-N-(1-phenylpent-4-en-1-yl)acetamide (2-8c). A flame-dried flask was 

cooled under a stream of nitrogen and charged with 1-phenylpent-4-en-1-amine[36] 

(0.678 g, 4.2 mmol) and dichloromethane (5 mL). The solution was cooled to 0 ºC, and 

then triethylamine (1.17 mL, 8.4 mmol) was added followed by trifluoroacetic anhydride 

(0.64 mL, 4.6 mmol). The resulting mixture was stirred at rt overnight, then water was 

added (5 mL) and the mixture was transferred to a separatory funnel. The layers were 

separated, the aqueous layer was extracted with dichloromethane (10 mL), and then the 

combined organics layers were washed with brine, dried over Na2SO4, filtered, and 

concentrated in vacuo to afford a yellow oil. The crude product was purified via flash 

column chromatography on silica gel to yield 0.69 g (64%) of the title compound as a pale 

yellow oil. 1H NMR (500 MHz, CDCl3) δ 7.42–7.32 (m, 2 H), 7.33–7.31 (m, 1 H), 7.29–

7.28 (m, 2 H), 6.43 (s, br, 1 H), 5.83−5.76 (m, 1 H), 5.08–4.96 (m, 3 H), 2.13–1.99 (m, 4 

H); 13C NMR (125 MHz, CDCl3) δ 156.5, 156.2, 155.9, 139.7, 136.8, 129.0, 128.2, 126.6, 

116, 115.8 (q, J = 287.3 Hz), 53.9, 34.5, 30.1; IR (film) 3296, 1696, 1162 cm-1; MS (ESI+) 

258.1095 (258.1100 calcd for C13H14F3NO, M + H+). 
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2,2,2-Trifluoro-N-(3-phenylpent-4-en-1-yl)acetamide (2-8d). A flame-dried flask was 

cooled under a stream of nitrogen and charged with 3-phenylpent-4-en-1-amine36 (0.69 

g, 4.3 mmol) and dichloromethane (5 mL). The solution was cooled to 0 ºC then 

triethylamine (1.2 mL, 8.6 mmol) was added followed by trifluoroacetic anhydride (0.66 

mL, 4.7 mmol). The resulting mixture was stirred at rt overnight then water (5 mL) was 

added and the mixture was transferred to a separatory funnel. The layers were separated, 

the aqueous layer was extracted with dichloromethane (10 mL), and then the combined 

organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in 

vacuo to afford a red-orange oil. The crude product was purified via flash chromatography 

to yield 0.49 g (44%) of the title compound as a pale yellow oil. 1H NMR (500 MHz, CDCl3) 

δ 7.34–7.31 (m, 2 H), 7.29–7.21 (m, 1 H), 7.20–7.18 (m, 2 H), 6.19 (s, br, 1 H), 5.96 (m, 

1 H), 5.10 (dd, J = 13.9, 3.2 Hz, 2 H), 3.45−3.38 (m, 1 H), 3.34– 3.26 (m, 2 H), 2.10–1.99 

(m, 2 H); 13C NMR (125 MHz, CDCl3) δ 157.5, 157.2, 156.9, 156.6, 142.7, 140.8, 128.9, 

127.4, 126.9, 115.8 (q, J = 286 Hz), 115.1, 47.7, 38.6, 34.1; IR (film) 3300, 3084, 1700, 

1152 cm-1; MS (ESI+) 258.1096 (258.1100 calcd for C13H14F3NO, M + H+). 

 

N-(2-Allylphenyl)-2,2,2-trifluoroacetamide (2-8e). A flame-dried flask was cooled under 

a stream of nitrogen and charged with 2-allylaniline (0.75 g, 5.6 mmol) and 

dichloromethane (5.6 mL). The solution was cooled to 0 ºC, and then triethylamine (1.6 

mL, 11.2 mmol) was added followed by trifluoroacetic anhydride (0.9 mL, 6.2 mmol). The 

resulting mixture was stirred at rt overnight then water (10 mL) was added and the mixture 
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was transferred to a separatory funnel. The layers were separated, the aqueous layer 

was extracted with dichloromethane (10 mL), and then the combined organic layers were 

washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo to afford a 

yellow oil. The crude product was purified via column chromatography to yield 1.03 g 

(80%) of the title compound as a pale yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.13 (s, br, 

1 H), 7.89 (d, J = 8.0 Hz, 1 H), 7.35–7.29 (m, 1 H), 7.26–7.20 (m, 2 H), 6.00–5.91 (m, 1 

H), 5.26–5.14 (m, 2 H), 3.42 (d, J = 6.0 Hz, 2 H), 13C NMR (125 MHz, CDCl3) δ 155.4, 

155.1, 154.8, 154.5, 135.5, 133.6, 130.7, 130.3, 127.9, 127.0, 123.3, 117.5, 115.9 (q, J = 

287 Hz), 37.1; IR (film) 3276, 1703, 1159 cm-1; MS (ESI+) 230.0785 (230.0787 calcd for 

C11H10F3NO, M + H+). 

Experimental Procedures and Compound Characterization Data for Pyrrolidine 

Products 

General Procedure for Pd-Catalyzed Carboamination Reactions of Aryl Triflates.  

An oven dried test tube equipped with a magnetic stirbar and a rubber septum was cooled 

under a stream of nitrogen and charged with Pd(OAc)2 (2 mol %), CPhos or RuPhos (5 

mol %), and LiOtBu (1.4 equiv). The tube was purged with nitrogen and then a solution 

of the aryl triflate (1.2 equiv) in PhCF3 (1 mL) was added and the resulting mixture was 

stirred at rt for 1 min. A solution of the N-protected amine substrate (1 equiv) in PhCF3 

(1.5 mL) was added, and the mixture was heated to 100 ºC for 15 h. The mixture was 

then cooled to rt, saturated aq NH4Cl (2 mL) was added, the organic layer was removed, 

and the aqueous layer was extracted with dichloromethane (4 x 2 mL). The combined 

organic layers were dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. 

The crude product was then purified via flash chromatography. 
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2-Benzyl-1-tosylpyrrolidine (2-6a). The general procedure was employed for the 

reaction of phenyl trifluoromethanesulfonate (49 µL, 0.30 mmol) with 4-methyl-N-(pent-4-

en-1-yl)benzenesulfonamide (2-5a) (60 mg, 0.25 mmol). This procedure afforded 60 mg 

(76%) of the title compound as a white solid, m.p. 91−93 °C. Spectroscopic data for the 

compound are consistent with those previously reported.34 1H NMR (500 MHz, CDCl3) δ 

7.76 (d, J = 8.5 Hz, 2 H), 7.32–7.20 (m, 6 H), 3.85−3.79 (m, 1 H), 3.43–3.36 (m, 1 H), 

3.25 (dd, J = 13.3, 3.5 Hz, 1 H), 3.16−3.10 (m, 1 H), 2.75 (dd, J = 13.3, 9.6 Hz, 1 H), 2.42 

(s, 3 H), 1.68–1.60 (m, 2 H), 1.49–1.40 (m, 2 H). 

 

2-Benzyl-5-phenyl-1-tosylpyrrolidine (2-6b). The general procedure was employed for 

the reaction of phenyl trifluoromethanesulfonate (40 µL, 0.24 mmol) with 4-methyl-N-(1-

phenylpent-4-en-1-yl)benzensulfonamide (2-5c) (62.8 mg, 0.20 mmol). This procedure 

afforded 70 mg (90%) of the title compound as a pale yellow viscous oil. This compound 

was found to exist as a 2.2:1 mix of diastereomers by 1 H NMR analysis; data are for the 

major diastereomer. Spectroscopic data for the compound are consistent with those 

previously reported.34 1H NMR (500 MHz, CDCl3) δ 7.71 (d, J = 8.0 Hz, 2 H), 7.39–7.20 

(m, 9 H), 7.12–7.02 (m, 2 H), 6.95 (d, J = 7.5 Hz, 1 H), 4.73–4.70 (m, 1 H), 4.01–3.94 (m, 

1 H), 3.54 (ddd, J = 13.0, 5.5, 3.2 Hz, 1 H), 2.78 (ddd, J = 13.0, 10.7, 2.1 Hz, 1 H), 2.40 

(s, 3 H), 1.90-1.86 (m, 2 H), 1.68–1.55 (m, 1 H), 1.48–1.42 (m, 1 H). 
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2-Benzyl-3-methyl-1-tosylpyrrolidine (2-6c). The general procedure was employed for 

the reaction of phenyl trifluoromethanesulfonate (40 µL, 0.24 mmol) with 4-methyl-N-(3-

methylpent-4-en-1-yl)benzensulfonamide (2-5d) (50.7 mg, 0.20 mmol) using 2 mL of 

benzotrifluoride. This procedure afforded 46 mg (70%) of the title compound as a pale 

yellow solid, m.p. 80–82 °C. This compound was found to exist as a 2.6:1 mix of 

diastereomers by 1H NMR analysis; data are for the mixture. 1H NMR (500 MHz, CDCl3) 

δ 7.77 (d, J = 8.0 Hz, 2 H), 7.70 (d, J = 8.0 Hz, 0.8 H), 7.34–7.26 (m, 9.8 H), 3.94 (td, J = 

7.9, 4.4 Hz, 0.4 H), 3.43–3.38 (m, 1.4 H), 3.31–3.16 (m, 3.4 H), 3.07 (m, 0.4 H), 2.91–

2.85 (m, 1.4 H), 2.42 (s, 4.2 H), 1.98 (ddp, J = 10.8, 6.8, 3.9, 3.3 Hz, 1 H), 1.81–1.55 (m, 

1.8 H), 1.25–1.20 (m, 0.4 H), 1.08 (ddt, J = 12.1, 7.0, 5.0 Hz, 1 H), 0.92 (d, J = 6.9 Hz, 

1.2 H), 0.37 (d, J = 6.9 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 143.3, 143.2, 139.1, 138.3, 

134.9, 134.6, 129.7, 129.6, 129.5, 128.3, 128.2, 127.5, 127.4, 126.3, 126.1, 68.3, 64.4, 

47.5, 47.4, 42.1, 37.7, 37.2, 36.8, 31.5, 31.2, 21.5, 18.5, 14.4; IR (film) 2954, 1338, 1157 

cm-1; MS (ESI+) 330.01524 (330.1522 calcd for C19H23NO2S, M + H+). 

 

(±)-(2S,3S)-2-Benzyl-3-phenyl-1-tosylpyrrolidine (2-6d). The general procedure was 

employed for the reaction of phenyl trifluoromethanesulfonate (40 µL, 0.24 mmol) with 4-

methyl-N-(3-phenylpent-4-en-1-yl)benzenesulfonamide (2-5e) (63 mg, 0.20 mmol) in 2 
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mL benzotrifluoride using RuPhos (4.7 mg, 5 mol %) as the ligand. This procedure 

afforded 40 mg (51%) of the title compound as a white solid, m.p. 160–162 °C. This 

compound was found to exist as an 8:1 mixture of diastereomers by 1H NMR analysis; 

data are for the major isomer. 1H NMR (500 MHz, CDCl3) δ 7.78 (d, J = 8.5 Hz, 2 H), 

7.38–7.27 (m, 6 H), 7.25–7.20 (m, 1 H), 7.15–7.04 (m, 3 H), 6.58 (d, J = 7.0 Hz, 2 H), 

3.91 (ddd, J = 7.1, 6.0, 3.2 Hz, 1 H), 3.54 (ddd, J = 11.8, 7.2, 5.1 Hz, 1 H), 3.19 (m, 2 H), 

3.10–2.99 (m, 2 H), 2.46 (s, 3 H), 1.90–1.78 (m, 1 H), 1.45 (dq, J = 12.6, 7.7 Hz, 1 H); 13C 

NMR (100 MHz, CDCl3) δ 143.5, 141.7, 137.4, 134.9, 130.4, 129.7, 128.5, 128.3, 127.5, 

126.9, 126.5, 126.4, 67.9, 49.1, 48.1, 40.6, 32.3, 21.6; IR (film) 2926, 1339, 1159 cm-1; 

MS (ESI+) 392.1683 (392.1679 calcd for C24H25NO2S, M + H+). 

 

2-Benzyl-4-methyl-1-tosylpyrrolidine (2-6e). The general procedure was employed for 

the reaction of phenyl trifluoromethanesulfonate (49 µL, 0.30 mmol) with 4-methyl-N-(2-

methylpent-4-en-1-yl)benzenesulfonamide (2-5b) (63.3 mg, 0.25 mmol). This procedure 

afforded 60 mg (73%) of the title compound as a white solid, m.p. 115–117 °C. This 

compound was found to exist as a 1.8:1 mix of diastereomers by 1H NMR analysis; data 

are for the mixture. 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.0 Hz, 3 H), 7.33–7.18 (m, 

10.5 H), 3.84 (dddd, J = 10.1, 8.5, 3.6, 2.0 Hz, 0.5 H), 3.75 (tdd, J = 9.3, 6.9, 3.7 Hz, 1 

H), 3.59–3.52 (m, 1.5 H), 3.45 (dd, J = 13.2, 3.7 Hz, 1 H), 3.26 (dd, J = 13.3, 3.4 Hz, 0.4 

H), 2.84–2.71 (m, 2.5 H), 2.56 (t, J = 9.4 Hz, 0.5 H), 2.43 (s, 4.7 H), 2.22–2.08 (m, 0.4 H), 

1.84–1.77 (m, 1 H), 1.72 (ddt, J = 12.6, 6.1, 1.2 Hz, 0.5 H), 1.58–1.39 (m, 1 H), 1.26–1.18 
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(m, 1.4 H), 1.06–1.0 (m, 0.5 H), 0.83 (d, J = 6.5 Hz, 3 H), 0.80 (d, J = 6.5 Hz, 1.5 H); 13C 

(125 MHz, CDCl3) δ 143.3, 138.6, 138.3, 135.2, 134.3, 129.7, 129.6, 128.4, 128.3, 127.6, 

127.4, 126.4, 126.3, 62.4, 61.7, 56.3, 55.9, 43.0, 42.9, 40.1, 37.6, 32.5, 31.2, 21.5, 16.9, 

16.5; IR (film) 2926, 1341, 1156 cm-1; MS (ESI+) 331.0523 (331.0522 calcd for 

C19H23NO2S, M + H+). 

 

2-Benzyl-1-tosylindoline (2-6f). The general procedure was employed for the reaction 

of phenyl trifluoromethanesulfonate (49 µL, 0.30 mmol), with N-(2-allylphenyl)-4-

methylbenzenesulfonamide (2-5f) (71.8 mg, 0.25 mmol). This procedure afforded 82 mg 

(87%) of the title compound as a white solid, m.p. 124−126 °C. Spectroscopic data for 

the compound are consistent with those previously reported.42 1H NMR (500 MHz, CDCl3) 

δ 7.67 (d, J = 8.0 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.34–7.27 (m, 2 H), 7.26–7.20 (m, 4 

H), 7.15 (d, J = 8.0 Hz, 2 H), 7.01 (d, J = 3.5 Hz, 2 H), 4.45 (ddt, J = 11.1, 6.7, 4.7 Hz, 1 

H), 3.35 (dd, J = 13.4, 4.3 Hz, 1 H), 2.78 (dd, J = 13.4, 10.2 Hz, 1 H), 2.59 (d, J = 5.5 Hz, 

2 H), 2.33 (s, 3 H). 

 

2-Benzyl-2-methyl-1-tosylindoline (2-6g). The general procedure was employed for the 

reaction of phenyl trifluoromethanesulfonate (49 µL, 0.30 mmol), with 4-methyl-N-[2-(2-

methylallyl)phenyl]benzenesulfonamide (2-5g) (75.3 mg, 0.25 mmol). This procedure 
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afforded 28 mg (30%) of the title compound as a white solid, m.p. 50–52 °C. 1H NMR (500 

MHz, CDCl3) δ 7.81 (d, J = 8.5 Hz, 2 H), 7.51 (d, J = 8.2 Hz, 1 H), 7.26–7.20 (m, 7 H), 

7.14–7.07 (m, 1 H), 7.00 (dd, J = 7.4, 1.3 Hz, 1 H), 6.89 (td, J = 7.4, 1.0 Hz, 1 H), 3.40 (d, 

J = 13.2 Hz, 1 H), 3.21 (t, J = 13.0 Hz, 2 H), 2.65 (d, J = 16.0 Hz, 1 H), 2.19 (s, 3 H), 1.68 

(s, 3 H); 13C NMR (125 MHz, CDCl3) δ 143.4, 142.3, 139.4, 136.7, 130.8, 129.6, 12834, 

128.0, 127.5, 126.6, 124.7, 122.7, 114.2, 73.1, 46.4, 41.8, 25.9, 21.5; IR (film) 2923, 1343, 

1160 cm-1; MS (ESI+) 378.1524 (378.1522 calcd for C23H23NO2S, M + H+). 

 

2-(Naphthalen-1-ylmethyl)-1-tosylpyrrolidine (2-6h). The general procedure was 

employed for the reaction of 1-napthyl trifluoromethanesulfonate (59 µL, 0.30 mmol), with 

4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a) (60 mg, 0.25 mmol). This 

procedure afforded 61 mg (67%) of the title compound as a white solid, m.p. 139–140 °C. 

1H NMR (500 MHz, CDCl3) δ 8.48 (d, J = 8.5 Hz, 1 H), 7.87 (d, J = 8.2 Hz, 1 H), 7.78–

7.74 (m, 3 H), 7.65 (ddd, J = 8.2, 6.7, 1.3 Hz, 1 H), 7.57–7.50 (m, 1 H), 7.38 (t, J = 7.6 

Hz, 1 H), 7.29–7.26 (m, 3 H), 4.00 (ddd, J = 9.4, 6.3, 3.3 Hz, 2 H), 3.56 (ddd, J = 10.5, 

7.0, 4.0 Hz, 1 H), 3.16 (td, J = 9.2, 6.8 Hz, 1 H), 2.92 (dd, J = 14.0, 11.6 Hz, 1 H), 2.39 (s, 

3 H), 1.95−1.85 (m, 1 H), 1.67 (ddt, J = 13.2, 6.7, 3.6 Hz, 1 H), 1.56–1.52 (m, 1 H), 1.25–

1.19 (m, 1 H); 13C NMR (125 MHz, CDCl3) δ 143.3, 134.9, 134.5, 133.9, 132.2, 129.7, 

128.7, 127.7, 127.5, 127.4, 126.3, 125.8, 125.4, 124.5, 60.4, 49.3, 40.6, 29.9, 23.8, 21.5; 

IR (film) 2943, 1340, 1156 cm-1; MS (ESI+) 366.1525 (366.1522 calcd for C22H23NO2S, M 

+ H+). 
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4-[(1-Tosylpyrrolidin-2-yl)methyl]benzonitrile (2-6i). The general procedure was 

employed for the reaction of 4-cyanophenyl trifluoromethanesulfonate (60.2 mg, 0.24 

mmol) with 4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a) (59.8 mg, 0.25 mmol) 

in 2 mL of benzotrifluoride. This procedure afforded 42 mg (61%) of the title compound 

as a white solid, m.p. 110–112 °C. 1H NMR (500 MHz, CDCl3) δ 7.73 (d, J = 8.0 Hz, 2 H), 

7.59 (d, J = 8.0 Hz, 2 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 3.83–3.79 

(m, 1 H), 3.36–3.31 (m, 1 H), 3.22 (dd, J = 13.4, 3.6 Hz, 1 H), 3.15–3.10 (m, 1 H), 2.91 

(dd, J = 13.3, 8.8 Hz, 1 H), 2.43 (s, 3 H), 1.58–1.43 (m, 4 H); 13C NMR (125 MHz, CDCl3) 

δ 143.9, 143.6, 134.3, 132.2, 130.5, 129.8, 127.5, 118.9, 110.4, 60.9, 49.2, 42.7, 30.0, 

23.8, 21.5; IR (film) 2955, 1338, 1158 cm-1; MS (ESI+) 341.1323 (341.1318 calcd for 

C19H20N2O2S, M + H+). 

 

2-(4-Chlorobenzyl)-1-tosylpyrrolidine (2-6j). The general procedure was employed for 

the reaction of 4-chlorophenyl trifluoromethanesulfonate (62.5 mg, 0.24 mmol) with 4-

methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a) (47.8 mg, 0.20 mmol). This 

procedure afforded 46 mg (67%) of the title compound as a white solid, m.p. 95−96 °C. 

Spectroscopic data for the compound are consistent with those previously reported.44 1H 
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NMR (700 MHz, CDCl3) δ 7.74 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.26 (d, J = 

8.0 Hz, 2 H), 7.18 (d, J = 8.1 Hz, 2 H), 3.78 (tt, J = 7.5, 3.5 Hz, 1 H), 3.36–3.34 (m, 1 H), 

3.17–3.10 (m, 2 H), 2.79 (dd, J = 13.4, 9.1 Hz, 1 H), 2.43 (s, 3 H), 1.61–1.55 (m, 2 H), 

1.47–1.44 (m, 2 H). 

 

2-(4-Methoxybenzyl)-1-tosylpyrrolidine (2-6k). The general procedure was employed 

for the reaction of 4-methoxyphenyl trifluoromethanesulfonate (61.4 mg, 0.24 mmol) with 

4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a) (59.8 mg, 0.25 mmol) in 2 mL of 

benzotrifluoride. This procedure afforded 43 mg (62%) of the title compound as a pale 

yellow solid, m.p. 98–100 °C. 1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 2 H), 7.31 

(d, J = 8.0 Hz, 2 H), 7.16 (d, J = 8.5 Hz, 2 H), 6.84 (d, J = 8.5 Hz, 2 H), 3.80–3.75 (m, 1 

H), 3.79 (s, 3H), 3.39–3.33 (m, 1 H), 3.17–3.12 (m, 2 H), 2.72 (dd, J = 13.5, 9.5 Hz, 1 H), 

2.42 (s, 3 H), 1.62–1.58 (m, 2 H), 1.47–1.40 (m, 2 H); 13C NMR δ 158.2, 143.3, 134.8, 

130.6, 130.5, 129.6, 127.5, 113.8, 61.7, 55.2, 19.2, 41.7, 29.8, 23.8, 21.5; IR (film) 2952, 

1340, 1156 cm-1; MS (ESI+) 346.1771 (346.1471 calcd for C19H23NO3S, M + H+). 

 

Phenyl-{4-[(1-tosylpyrrolidin-2-yl)methyl]phenyl}methanone (2-6l). The general 

procedure was employed for the reaction of 4-benzoylphenyl trifluoromethanesulfonate 
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(99 mg, 0.30 mmol) with 4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (2-5a) (59.8 

mg, 0.25 mmol) in 2 mL of benzotrifluoride. This procedure afforded 66 mg (63%) of the 

title compound as a white solid, m.p. 44–46 °C. 1H NMR (500 MHz, CDCl3) δ 7.80–7.75 

(m, 6 H), 7.61–7.57 (m, 1 H), 7.50–7.47 (m, 2 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 

7.5 Hz, 2 H), 3.90–3.84 (m, 1 H), 3.42–3.35 (m, 1 H), 3.31 (dd, J = 13.3, 3.6 Hz, 1 H), 

3.18–3.14 (m, 1 H), 2.89 (dd, J = 13.3, 9.3 Hz, 1 H), 2.43 (s, 3 H), 1.66–1.61 (m, 2 H), 

1.54–1.42 (m, 2 H); 13C NMR (125 MHz, CDCl3) δ 143.5, 137.7, 135.8, 134.5, 132.3, 

130.3, 130.0, 129.7, 129.6, 128.3,127.5, 61.2, 49.2, 42.7, 30.0, 23.8, 21.5; IR (film) 2928, 

1653, 1340, 1156 cm-1; MS (ESI+) 420.1635 (420.1628 calcd for C25H25NO3S, M + H+). 

 

2-(4-Methoxybenzyl)-4-methyl-1-tosyl-4-[(trimethylsilyl)oxy]pyrrolidine (2-10). The 

general procedure was employed for the reaction of 4-methoxyphenyl 

trifluoromethanesulfonate (54 µL, 0.30 mmol), with (±)-4-methyl-N-{2-methyl-2-

[(trimethylsilyl)oxy]pent-4-en-1- yl}benzenesulfonamide[2] (85.4 mg, 0.25 mmol). This 

procedure afforded 92 mg (82%) of the title compound as a viscous oil. This compound 

was found to exist as a 1:1 mixture of diastereomers by 1H NMR analysis; data are for 

the mixture. 1H NMR (500 MHz, CDCl3) δ 7.79–7.74 (m, 4 H), 7.31 (d, J = 7.7 Hz, 4 H), 

7.16–7.13 (m, 4 H), 6.89–6.80 (m, 4 H), 3.80–3.75 (m, 1 H), 3.79 (s, 6 H), 3.49–3.38 (m, 

3 H), 3.33 (d, J = 3.8 Hz, 1 H), 3.22 (d, J = 11.3 Hz, 1 H), 3.12 (d, J = 10.5 Hz, 1 H), 2.97 

(dd, J = 13.1, 10.4 Hz, 1 H), 2.87 (dd, J = 13.6, 9.1 Hz, 1 H), 2.42 (s, 6 H), 1.86–1.69 (m, 

2 H), 1.61–1.50 (m, 1 H), 1.49–1.39 (m, 1 H), 1.25–1.19 (m, 1 H), 1.24 (s, 3 H), 1.02 (s, 
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3 H), 0.12 (s, 9 H), –0.23 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 158.1, 143.4, 143.1, 

135.0, 130.8, 130.6, 130.2, 129.6, 129.5, 128.0, 127.7, 127.5, 114.0, 113.7, 78.3, 77.5, 

63.9, 61.9, 61.2, 61.1, 55.2, 46.2, 44.6, 41.4, 40.7, 26.1, 25.2, 21.5, 2.1, 1.9; IR (film) 

2954, 1512,1340, 1248, 1157 cm-1; MS (ESI+) 448.1976 (448.1972 calcd for 

C23H33NO4SSi, M + H+). 

 

1-(2-Benzylpyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (2-9a). The general procedure 

was employed for the reaction of phenyl trilfuoromethanesulfonate (40 µL, 0.24 mmol) 

with 2,2,2- trifluoro-N-(pent-4-en-1-yl)acetamide (2-8a) (36.2 mg, 0.20 mmol) in 2 mL 

benzotrifluoride for 13 hours. This procedure afforded 33 mg (64%) of the title compound 

as a colorless oil. This compound was found to exist as a 6:1 mixture of rotamers via 1 H 

NMR; data are for the major rotamer. Spectroscopic data for the compound are consistent 

with those previously reported.[43] 1H NMR (500 MHz, CDCl3) δ 7.32–7.21 (m, 2 H), 7.23–

7.10 (m, 3 H), 4.37–4.32 (m, 1 H), 3.70– 3.41 (m, 2 H), 3.1 (dd, J = 13.1, 3.4 Hz, 1 H), 

2.67–2.55 (m, 1 H), 1.98–1.70 (m, 4 H). 

 

1-(2-Benzylindolin-1-yl)-2,2,2-trifluoroethan-1-one (2-9b). The general procedure was 

employed for the reaction of phenyl trifluoromethanesulfonate (78 µL, 0.48 mmol) with N-

(2-allylphenyl)-2,2,2-trifluoroacetamide (2-8e) (91.7 mg, 0.4 mmol) in 2 mL of 



46 
 

benzotrifluoride for 15 hours. This procedure afforded 89 mg (73%) of the title compound 

as a white solid, m.p. 66– 67 °C. 1H NMR (500 MHz, CDCl3) δ 8.14 (d, J = 8.1 Hz, 1 H), 

7.35–7.26 (m, 5 H), 7.21–7.18 (m, 3 H), 4.86 (t, J = 10 Hz, 1 H), 3.19–3.12 (m, 2 H), 2.89 

(d, J = 15.7 Hz, 1 H), 2.67 (dd, J = 13.4, 11.1 Hz, 1 H); 13C NMR (125 MHz, CDCl3) δ 

154.3, 154.0, 140.8, 136.3, 130.9, 129.4, 128.8, 127.8, 127.1, 126.2, 125.4, 119.0, 116.4 

(q, J = 285.4 Hz), 61.8, 40.8, 33.2; IR (film) 1690, 1146 cm-1; MS (ESI+) 306.1097 

(306.1100 calcd for C17H14F3NO M + H+). 

 

1-(2-Benzyl-5-phenylpyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (2-9c). The general 

procedure was employed for the reaction of phenyl trifluoromethanesulfonate (49 µL, 0.30 

mmol) with 2,2,2-trifluoro-N-(1-phenylpent-4-en-1-yl)acetamide (2-8c) (64.3 mg, 0.25 

mmol) in 1.25 mL benzotrifluoride. This procedure afforded 73 mg (88%) of the title 

compound as a colorless oil. This compound was found to exist as a mixture of rotamers 

and as a 2:1 mixture of diastereomers via 1 H NMR analysis; data are for the mixture. 1H 

NMR (500 MHz, CDCl3) δ 7.40–7.04 (m, 15 H), 5.33–5.27 (m, 1.55 H), 5.11 (t, J = 9.0 

Hz, 1 H), 4.65 (td, J = 8.9, 2.9 Hz, 0.41 H), 4.47 (ddd, J = 10.9, 7.2, 2.7 Hz, 1 H), 4.34 

(ddt, J = 10.6, 7.6, 3.8 Hz, 1 H), 3.77 (dd, J = 12.5, 3.1 Hz, 1 H), 3.32 (dd, J = 13.1, 3.0 

Hz, 0.35 H), 3.26 (dd, J = 13.3, 3.0 Hz, 1 H), 3.11 (dd, J = 13.5, 3.0 Hz, 0.50 H), 2.76 (t, 

J = 12.5 Hz, 1 H), 2.73–2.64 (m, 1.50 H), 2.53–2.44 (m, 1 H), 2.24–2.20 (m, 1.50 H), 

2.14–2.02 (m, 2.30 H), 1.97–1.57 (m, 5.80 H); 13C NMR (100 MHz, CDCl3) δ 157.6, 157.3, 

156.4, 156.0, 143.3, 141.5, 141.4, 138.3, 138.2, 137.4, 129.5, 129.2, 129.1, 128.8, 128.7, 

128.6, 128.5, 127.4, 127.3, 127.0, 126.7, 126.6, 125.4, 125.3, 124.9, 124.7, 116.5 (q, 
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286.3 Hz), 116.1 (q, 286.3 Hz), 64.0, 63.4, 62.9, 62.6, 62.3, 61.2, 41.0, 40.0, 37.3, 35.0, 

33.7, 31.7, 28.8, 27.7, 23.7; IR (film) 2951, 1684, 1145 cm-1; MS (ESI+) 334.1411 

(334.1413 calcd for C19H18F3NO, M + H+). 

 

1-(2-Benzyl-4-methylpyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (2-9d). The general 

procedure was employed for the reaction of phenyl trifluoromethanesulfonate (146 µL, 

0.90 mmol) with 2,2,2-trifluoro-N-(2-methylpent-4-en-1-yl)acetamide (2-8b) (146 mg, 0.75 

mmol) in 1.5 mL benzotrifluoride for 18 hours. This procedure afforded 135.5 mg (67%) 

of the title compound as a pale yellow oil. This compound was found to exist as a mixture 

of rotamers and as a 1.3:1 mixture of diastereomers via 1H NMR analysis; data are for 

the mixture. 1H NMR (500 MHz CDCl3) δ 7.34–7.15 (m, 9 H), 4.42 (t, J = 8.8 Hz, 0.8 H), 

4.35–4.39 (m, 1 H), 3.85–3.82 (m, 1 H), 3.78–3.72 (m, 0.8 H), 3.36 (dd, J = 13.1, 3.3 Hz, 

1 H), 3.22–3.14 (m, 1.7 H), 3.02 (dd, J = 13.3, 3.4 Hz, 0.1 H), 2.78–2.66 (m, 2 H), 2.66–

2.61 (m, 1 H), 2.34−2.27 (m, 0.8 H), 2.15–2.06 (m, 2 H), 1.97 (dd, J = 12.7, 6.3 Hz, 0.2 

H), 1.89 (ddd, J = 12.8, 6.2, 2.4 Hz, 0.9 H), 1.47 (ddd, J = S19 12.6, 10.0, 8.1 Hz, 1 H), 

1.38–1.24 (m, 1 H), 1.10 (d, J = 6.5 Hz, 0.6 H), 1.02–0.99 (m, 5.5 H); 13C NMR (125 MHz, 

CDCl3) δ 155.7, 155.6, 155.4, 155.3, 138.0, 137.4, 129.6, 129.5, 129.2, 128.8, 128.5, 

128.4, 126.9, 126.6, 126.5, 116.3 (q, J = 286.4 Hz), 116.2 (q, J = 286.3 Hz), 60.9, 60.7, 

54.4, 54.2, 53.8, 40.9, 38.9, 38.4, 38.1, 37.7, 37.6, 35.7, 33.3, 31.6, 31.1, 28.3, 18.0, 17.4, 

16.4; IR (film) 2954, 1686, 1144 cm-1; MS (ESI+) 272.1255 (272.1257 calcd for 

C14H16F3NO, M + H+). 
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(±)-(2S,3S)-1-(2-Benzyl-3-phenylpyrrolidin-1-yl)-2,2,2-trifluoroethan-1-one (2-9e). 

The general procedure was employed, using 4 mol % Pd(OAc)2 and 10 mol % CPhos, for 

the reaction of phenyl trifluoromethanesulfonate (146 µL, 0.90 mmol) with 2,2,2-trifluoro-

N-(3-phenylpent-4-en-1-yl)acetamide (2-8d) (192.8 mg, 0.75 mmol) in 1.5 mL 

benzotrifluoride for 24 hours. This procedure afforded 143.2 mg (57%) of the title 

compound as a pale yellow oil. This compound was found to exist as a 7:1 mixture of 

diastereomers by 1H NMR analysis; data are for the major diastereomer. 1H NMR (500 

MHz, CDCl3) δ 7.40–7.18 (m, 8 H), 7.11 (d, J = 7.5 Hz, 2 H), 4.52 (ddd, J = 7.9, 5.9, 3.2 

Hz, 1 H), 3.85–3.81 (m, 1 H), 3.36–3.32 (m, 1 H), 3.23 (q, J = 6.7 Hz, 1 H), 3.14 (dd, J = 

13.7, 7.3 Hz, 1 H), 3.02 (dd, J = 13.7, 3.2 Hz, 1 H), 2.24–2.17 (m, 1 H), 2.02–1.94 (m, 1 

H); 13C NMR (125 MHz, CDCl3) δ 155.7, 155.4, 141.4, 136.8, 129.9, 128.8, 128.5, 127.1, 

127.0, 126.8, 116.3 (q, J = 285.3 Hz), 66.2, 46.7, 45.6, 36.3, 32.9; IR (film) 2928, 1685, 

1143 cm-1; MS (ESI+) 334.1416 (334.1413 calcd for C19H18F3NO, M + H+). 

General Procedure for Pd-Catalyzed Carboamination Reactions of Aryl Bromides. 

An oven dried test tube equipped with a magnetic stirbar and a rubber septum was cooled 

under a stream of nitrogen and charged with Pd(OAc)2 (2 mol %), RuPhos (5 mol %), 

LiOTf (2 equiv) and NaOtBu (2 equiv). The tube was purged with nitrogen and then a 

solution of the aryl bromide (2 equiv) in PhCF3 (1 mL) was added and the resulting mixture 

was stirred at rt for 1 min. A solution of the N-protected amine substrate (1 equiv) in PhCF3 

(1.5 mL) was added, and the mixture was heated to 100 ºC for 15 h. The mixture was 
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then cooled to rt, saturated aq NH4Cl (2 mL) was added, the organic layer was removed, 

and the aqueous layer was extracted with dichloromethane (4 x 2 mL). The combined 

organic layers were dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. 

The crude product was then purified via flash chromatography. 

 

2-Benzyl-1-tosylpyrrolidine (2-6a). General procedure 2 was employed for the reaction 

of bromobenzene (79 mg, 0.5 mmol) with 4-methyl-N-(pent-4-en-1-

yl)benzenesulfonamide (2-5a) (60 mg, 0.25 mmol). This procedure afforded 57 mg (72%) 

of the title compound as a white solid. Spectroscopic data for the compound were identical 

to those reported above.34 

 

2-(4-Chlorobenzyl)-1-tosylpyrrolidine (2-6j). General procedure 2 was employed for 

the reaction of 4-bromochlorobenzene (95.7 mg, 0.5 mmol) with 4-methyl-N-(pent-4-en-

1-yl)benzenesulfonamide (2-5a) (60 mg, 0.25 mmol). This procedure afforded 53 mg 

(61%) of the title compound as a white solid. Spectroscopic data for the compound were 

identical to those reported above.34 
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2-(4-Methoxybenzyl)-1-tosylpyrrolidine (2-6k). General procedure 2 was employed for 

the reaction of 4-bromoanisole (93.5 mg, 0.5 mmol) with 4-methyl-N-(pent-4-en-1-

yl)benzenesulfonamide (2-5a) (60 mg, 0.25 mmol). This procedure afforded 48 mg (56%) 

of the title compound as a white solid. Spectroscopic data for the compound were identical 

to those reported above. 

Conversion of 11 to 12 

 

(±)-(1S,4S)-8-methoxy-1-methyl-3-tosyl-2,3,4,5-tetrahydro-1H-1,4- 

methanobenzo[d]azepine (2-12). A flame-dried flask was cooled under a stream of 

nitrogen and charged with aluminum chloride (149 mg, 1.12 mmol) and dichloromethane 

(1 mL). The reaction mixture was then cooled to 0 °C and a solution of 2-(4-

methoxybenzyl)-4-methyl-1-tosyl-4-[(trimethylsilyl)oxy]pyrrolidine (2-11) (50 mg, 0.11 

mmol) in dichloromethane (1 mL) was slowly added. The reaction mixture was warmed 

to rt and stirred overnight, then was poured into a saturated aqueous solution of sodium 

bicarbonate (2 mL). The mixture was transferred to a separatory funnel, the layers were 

separated, and the aqueous phase was extracted with dichlormethane (2 x 2 mL). The 

combined organic phases were dried over Na2SO4, filtered, and concentrated in vacuo to 

afford a yellow oil. The crude product was purified via flash chromatography on silica gel 

to afford 17 mg (42%) of the title compound as a pale yellow solid, mp 137−139 °C. 

Spectroscopic data for the compound are consistent with those previously reported.[44] 
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1H NMR (400 MHz, CDCl3), δ 7.70 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 6.97 (d, 

J = 8.4 Hz, 1 H), 6.78 (d, J = 2.5 Hz, 1 H), 6.72 (dd, J = 8.3, 2.6 Hz, 1 H), 4.41–4.35 (m, 

1 H), 3.78 (s, 3 H), 3.40 (dd, J = 8.7, 1.2 Hz, 1 H), 3.11 (d, J = 16.6 Hz, 1 H), 3.02 (d, J = 

8.6 Hz, 1 H), 2.93 (dd, J = 16.5, 2.8 Hz, 1 H), 2.42 (s, 3 H), 1.79 (d, J = 11.5 Hz, 1 H), 

1.50–1.38 (m, 4 H). 

Deuterium Labeling Experiments 

 

(E)-Tert-butyl (pent-4-en-1-yl-5-d)carbamate (2-13). A flame dried flask was cooled 

under a stream of nitrogen and charged with (E)-2-(pent-4-en-1-yl-5-d)isoindoline-1,3-

dione45 (0.96 g, 3.6 mmol) and ethanol (40 mmol). Hydrazine hydrate (198 µL, 7.2 mmol) 

was then added, and the reaction was heated to reflux for 24 hours. The reaction was 

then allowed to cool to rt, then diethyl ether (100 mL) was added and a white precipitate 

formed. The mixture was then charged with Boc anhydride (2.34 g, 10.7 mmol), and the 

reaction was stirred at rt overnight. The reaction was then concentrated in vacuo, and the 

aqueous layer was extracted with diethyl ether (2 x 50 mL). The combined organic layers 

were dried over Na2SO4, filtered, and concentrated in vacuo to afford a yellow oil. The 

crude product was purified via flash column chromatography on silica gel to afford 67 mg 

(10%) of the title compound as a pale yellow oil with 80% deuterium incorporation as 

judged by 1H NMR analysis. Spectroscopic data for the compound are consistent with 

those previously reported.45 1H NMR (400 MHz, CDCl3) δ 5.84– 5.77 (m, 1 H), 5.05–4.97 
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(m, 1 H), 4.52 (s, br, 1 H), 3.13 (q, J = 5.6 Hz, 2 H), 2.08 (q, J = 7.2 Hz, 2 H), 1.62–1.54 

(m, 2 H), 1.45 (s, 9 H). 

 

(E)-4-Methyl-N-(pent-4-en-1-yl-5-d)benzenesulfonamide (2-15). A flame-dried flask 

was cooled under a stream of nitrogen and charged with (E)-2-(pent-4-en-1-yl-5-

d)isoindoline-1,3-dione45 (0.400 g, 1.5 mmol) and ethanol (30 mL). Hydrazine hydrate 

(294 µL, 6.0 mol) was then added, and the reaction was heated to reflux for 24 hours. 

The reaction was allowed to cool to rt, then diethyl ether (80 mL) was added and a white 

precipitate formed. p-Toluenesulfonyl chloride (0.343 g, 1.8 mmol) and triethylamine (251 

µL, 1.8 mmol) were then added, and the reaction mixture was stirred at rt for 5 h. The 

reaction was then quenched with 2 M HCl (20 mL), the mixture was transferred to a 

separatory funnel, and the layers were separated. The aqueous layer was extracted with 

diethyl ether (30 mL), and then the combined organic layers were dried over Na2SO4, 

filtered, and concentrated in vacuo. The crude product was purified via flash 

chromatography on silica gel to afford 75 mg (21%) of the title compound as a colorless 

oil with 80% deuterium incorporation as judged by 1H NMR analysis. Spectroscopic data 

for the compound are consistent with those previously reported.33 1H NMR (400 MHz, 

CDCl3) δ 7.74 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 5.74–5.68 (m, 1 H), 4.99–

4.94 (m, 1 H), 4.33 (s, br, 1 H), 2.96 (q, J = 6.8 Hz, 2 H), 2.43 (s, 3 H), 2.06 (q, J = 7.2 

Hz, 2 H), 2.08–2.02 (m, 2 H). 
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(1’S,2R)-N-Boc-2-[1’d-phenylmethyl]pyrrolidine (2-14).32 An oven dried test tube 

equipped with a magnetic stirbar was cooled under a stream of nitrogen and charged with 

Pd(OAc)2 (2 mol%), DPEPhos (5 mol%), and NaOtBu (1.4 equiv). The tube was purged 

with nitrogen and then a solution of bromobenzene (0.68 mg, 0.43 mmol) in toluene (1 

mL) was added, and the solution stirred at rt for 1 minute. A solution of (E)-tert-butyl (pent-

4-en-1-yl-5-d)carbamate (2-13) (0.67 mg, 0.36 mmol) in toluene (1.5 mL) was added, and 

the solution was heated to 90 °C with stirring for 15 h. The reaction mixture was cooled 

to rt and saturated aq NH4Cl (2 mL) was added. The layers were separated, and the 

aqueous layer was then extracted with dichloromethane (4 x 2 mL). The organic layers 

were combined, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The 

crude product was then purified via flash column chromatography on silica gel to afford 

67.3 mg (71%) of the title compound as a pale yellow oil. Spectroscopic data for the 

compound are consistent with those previously reported.32 1H NMR (500 MHz, C6D5CD3, 

100 ºC) δ 7.13–6.98 (m, 5 H), 4.00–3.94 (m, 1 H), 3.32–3.23 (m, 1 H), 3.17–3.04 (m, 2 

H), 1.50–1.30 (m, 13 H). 

 

(1’R,2R)-N-Tosyl-2-[1’d-phenylmethyl]pyrrolidine (2-16). The general procedure was 

employed for the reaction of phenyl trifluoromethanesulfonate (39 µL, 0.24 mmol) with 

(E)-4-methyl-N-(pent-4-en-1-yl-5-d)benzenesulfonamide (2-15) (48 mg, 0.20 mmol) in 2 
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mL of benzotrifluoride for 15 hours. This procedure afforded 48.4 mg (76%) of the title 

compound as a white solid, mp 91−92 °C. Spectroscopic data for the compound are 

consistent with those previously reported.34 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.0 

Hz, 2 H), 7.30 (dd, J = 10.3, 7.9 Hz, 4 H), 7.28–7.19 (m, 3 H), 3.84−3.78 (m, 1 H), 3.44–

3.36 (m, 1 H), 3.13 (dt, J = 9.8, 7.1 Hz, 1 H), 2.80–2.70 (m, 1 H), 2.42 (s, 3 H), 1.70–1.59 

(m, 2 H), 1.52–1.38 (m, 2 H). 

Confirmation of change in stereochemistry. In order to further confirm the change in 

the stereochemical outcome of the carboamination of 2-12 to 2-13 vs. 2-14 to 2-15, a 

sample of product 2-13 was transformed to 2-S7, the C1’ epimer of 2-15 via cleavage of 

the boc group followed by N-tosylation as described below. 

N

Ts

Ph

D

 

(1’S,2R)-N-Tosyl-2-[1’d-phenylmethyl]pyrrolidine (2-S7). A flame dried vial was 

cooled under a stream of nitrogen and charged with (1’S,2R)-N-boc-2-[1’d-

phenylmethyl]pyrrolidine (2-14) (67.3 mg, 0.26 mmol). Dichloromethane (0.5 mL) and 

trifluoroacetic acid (0.5 mL) were then added, and the reaction mixture was stirred at rt 

for 2 h. The reaction mixture was concentrated in vacuo, then toluene (1 mL) was added 

and the mixture was concentrated again. This dilution/concentration sequence was 

repeated two additional times to facilitate azeotropic removal of the trifluoroacetic acid. 

The resulting crude oil was dissolved in dichloromethane (1 mL) and K2CO3 was added. 

After stirring for 15 minutes, the mixture was filtered and concentrated in vacuo to afford 

a brown oil that was dissolved in dichloromethane and treated with aqueous NH4OH until 



55 
 

a pH of >12 was reached. The layers were separated, and the aqueous layer was 

extracted with dichloromethane (2 x 5 mL). The organic layer was dried, filtered and 

concentrated in vacuo to afford a brown oil. The oil was then converted to the N-tosyl 

pyrrolidine using a procedure analogous to that reported above for 2-5c to afford 60 mg 

(63%) of the title compound as a white solid, mp 91−93 °C. Spectroscopic data for the 

compound are consistent with those previously reported.34 1H NMR (500 MHz, CDCl3) δ 

7.76 (d, J = 8.0 Hz, 2 H), 7.35–7.26 (m, 4 H), 7.25–7.18 (m, 3 H), 3.82 (dt, J = 6.9, 3.2 

Hz, 1 H), 3.42–3.37 (m, 1 H), 3.27–3.24 (m, 1 H), 3.13 (qd, J = 7.2, 3.5 Hz, 1 H), 2.43 (s, 

3 H), 1.63 (qt, J = 14.7, 9.1 Hz, 2 H), 1.50−1.40 (m, 2 H). 
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Chapter 3 

Synthesis of Cyclic Guanidines Bearing N-Arylsulfonyl and N-Cyano 

Protecting Groups via Pd-Catalyzed Alkene Carboamination Reactions 

 

3-1 Introduction 

The synthesis of cyclic guanidines has attracted considerable attention due to the 

presence of cyclic guanidine subunits in a variety of biologically active natural 

products.46,47 Many recent approaches to the construction of these motifs have focused 

on the use of metal catalysts to effect formation of carbon–nitrogen bonds.48,49 However, 

aside from our prior studies in the area,50,51 no existing methods effect formation of a C–

N bond, a C–C bond, and the ring in a single transformation. 

3-2 Previous Efforts Toward Cyclic Guanidines 

Our group previously described a new approach to the preparation of cyclic 

guanidines via Pd-catalyzed alkene carboamination reactions between PMP-protected N-

allylguanidines 3-1 and aryl bromides (Eq 3-1).50 These transformations afforded the 

desired cyclic guanidines (e.g., 3-2) in good chemical yield. However, efforts to cleave 

the PMP-protecting groups were unsuccessful. We have also reported a related series of 

Pd-catalyzed alkyne carboamination reactions of tosyl-protected N-propargyl 

guanidines 3-3, which also proceed in good yield under appropriate conditions to afford 

2-aminoimidazoles such as 3-4 (Eq 3-2), and the N-tosyl group proved to be readily 

cleavable.51 However, the conditions that provided high yields in reactions of N-
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propargylguanidines did not work with analogous N-allylguanidines; efforts to couple 3-

5 with 4-methoxyphenyl triflate afforded little or none of the desired product. In this letter 

we describe a significant expansion in the scope of this method that allows for 

transformation of substrates bearing cleavable N-arylsulfonyl or N-cyano groups. 

 

3-3 Optimization Studies 

In order to develop Pd-catalyzed carboamination reactions of N-allylguanidines 

bearing cleavable protecting groups, we elected to explore the reactivity of two different 

substrates, 3-6a and 3-7a, which contain benzyl groups on two nitrogen atoms and either 

a cyano or tosyl group on the third. Our prior studies had indicated it should be possible 

to cleave the N-tosyl group from the products, and N-cyano groups can be cleaved from 

guanidines via treatment with strong acids. Moreover, the N-cyanoguanidines appeared 

to be particularly attractive products to target, as many N-cyanoguanidines have 

interesting biological activities.52 
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Our initial optimization studies were focused on the coupling of 3-6a and 3-7a with 

bromobenzene. As shown in Table 3-1, the coupling of 3-6a afforded good yields of 3-

8a using a number of different phosphine ligands under conditions that have provided 

good results in many other alkene carboamination reactions.53 Optimal yields were 

obtained with the biaryl phosphine XPhos (entry 4). However, efforts to employ these 

conditions for the coupling of 3-7a with bromobenzene were not successful, as the 

desired product 3-9a was generated in low yield (25%) along with a complex mixture of 

side products (entry 5). Fortunately, simply employing reaction conditions that previously 

provided optimal results with N-tosyl N-propargyl guanidine 3-3 (aryl triflate in place of 

aryl bromide, Pd(OAc)2 as a palladium source, LiOtBu as a base, and PhCF3 as a solvent) 

afforded the desired product 3-9a in 92% yield (entry 7). 

Table 3-1. Optimization Studies.[a] 
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3-4 Scope 

We then explored the scope of the Pd-catalyzed carboamination reactions of N-

cyano and N-tosylguanidine substrates. As shown in Table 3-2, the transformations are 

effective with a range of different aryl halide coupling partners, including electron-rich, 

and -poor derivatives. The reaction of 3-7a with o-methylphenyl triflate also proceeded in 

good yield, but ca. 10% of an inseparable impurity resulting from competing Heck 

arylation of the alkene was also generated (entry 7). In most instances comparable yields 

were obtained when either 3-6 or 3-7 were coupled with the same aryl bromide/triflate 

(entries 1–2, 3–4, 8–9, 11–12, and 15–16). The reactions were amenable to the 

construction of both five- and six-membered cyclic guanidines, and substrates 3-

6b and 3-7b bearing a methyl group at the internal alkene carbon were also efficiently 

converted to the desired products. 
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Table 3-2. Scope of Carboamination of N-Protected Guanidines. 
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Surprisingly, the diastereoselectivity obtained in reactions of substrates bearing a 

substituent adjacent to the N atom was quite low (Scheme 3-1, 3-8k–3-8m and 3-9h–3-

9j, 1.5:1 to 3:1 dr).54 This is in stark contrast to results obtained in analogous reactions 

of N-allylureas55 and N-allylsulfamides,56 which typically proceed with ca. 8:1 to >20:1 dr. 

In addition, although we were gratified to find that substrates bearing an internal alkene 

were transformed to 3-8n and 3-9k–3-9l, which result from net anti-addition to the alkene, 

with good to excellent diastereoselectivity,57 the stereochemistry of 3-8n was rather 

surprising. Our prior studies on reactions of sulfamides, ureas, and PMP-protected 

guanidines58 suggested that use of an aryl bromide in these guanidine carboamination 

reactions would lead to syn-addition to the double bond, whereas use of an aryl triflate 

was expected to favor anti-addition (as observed).56 
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Table 3-3. Diastereoselectivity Studies. 
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3-5 Mechanistic Studies via Deuterium Labelling 

Given the surprising results of these experiments, we further explored syn- vs anti-

addition pathways in transformations of deuterated substrates 3-10–3-11. As shown 

in Eq. 3-4–3-6, the coupling of 3-10 with bromobenzene afforded anti-addition product 3-

13 in 58% yield and 9:1 dr. The reaction of 3-11 with phenyl triflate to yield 3-14 also 

proceeded via anti-addition to the double bond, but with >20:1 dr. In principle the lower 

selectivity obtained with 3-10 could result either from competing anti- vs syn-

aminopalladation pathways in the catalytic cycle (3-11a) or from partial epimerization of 

the benzylic stereocenter via reversible β-hydride elimination processes that occur after 

the aminopalladation step.59 To address this question we examined the reactivity of 

substrate 3-12 and discovered its coupling with bromobenzene proceeds in 16:1 dr. Since 

the intermediate alkylpalladium complex derived from 3-12 cannot undergo β-hydride 

elimination, this result suggests that much of the minor diastereomer formed in the 

reaction of 3-10 is generated via β-hydride elimination side reactions. 
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The results of these experiments suggest the mechanism of the carboamination 

reactions proceeds as shown in Scheme 3-2. Oxidative addition of the aryl halide or 

triflate to the Pd(0) catalyst affords 3-16. Coordination of the pendant alkene to the metal 

(3-17) followed by anti-aminopalladation and deprotonation then generates 

alkylpalladium complex 3-18. Reductive elimination of 3-18 affords the observed major 

stereoisomer 3-13 or 3-14. The minor stereoisomer is formed from competing β-hydride 

elimination side reactions of 3-18.59 The anti-heteropalladation mechanism is likely 

responsible for the modest diastereoselectivities observed for 3-8k–3-8m and 3-9h–3-9j, 

as the transition state for anti-heteropalladation is less organized than that for a syn-

heteropalladation process.60 
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Scheme 3-1. Mechanism of Reaction. 

 

3-6 Protecting Group Cleavage 

To further demonstrate the utility of this method we briefly explored the cleavage 

of the N-cyano or N-tosyl protecting groups from the guanidine products. As shown 

in Eq. 3-7, treatment of 3-7f with concentrated HCl led to clean deprotection of the N-

cyano group to afford a 95% yield of 3-19. However, efforts to cleave the N-tosyl group 

from 3-9f with either acids or reducing agents did not provide satisfactory results. The 

detosylated product was obtained in low yield due to competing cleavage of one or 

both N-benzyl groups (Eq. 3-8). 
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Prior studies have shown that electron-rich arylsulfonyl groups are more readily 

cleaved from guanidines than tosyl groups.61 As such we prepared Mtr-protected 

guanidine substrate 3-20 (Mtr = 4-methoxy-2,3,6-trimethylbenzenesulfonyl) and 

subjected it to our standard reaction conditions to afford guanidine 3-21 in 95% yield 

(Scheme 3-3). Treatment of 3-21 with methanesulfonic acid and trifluoroacetic acid in the 

presence of thioanisole led to cleavage of the N-Mtr group and one N-benzyl group to 

afford 3-22 in 47% yield. 

Scheme 3-2. Synthesis/Deprotection of N-Mtr Guanidine 3-20. 

 Due to our difficulties with cleanly removing only the N-arylsulfonyl group from 

cyclic guanidines bearing N-benzyl groups, we examined the preparation and 

deprotection of a cyclic N-tosyl guanidine bearing methyl groups on the other two nitrogen 

atoms. As shown in Scheme 3-3, the Pd-catalyzed coupling of 3-23 with 4-

bromobenzophenone afforded cyclic guanidine 3-24 in 69% yield. We were gratified to 
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find that cleavage of the N-tosyl group from 3-24 proceeded smoothly to provide a 70% 

yield of 3-25. 

Scheme 3-3. Synthesis/Deprotection of N-Ts Guanidine 3-24. 

 

3-7 Conclusion 

In conclusion, we have developed a new approach to the synthesis of five- and 

six-membered cyclic guanidines bearing cleavable N-sulfonyl or N-cyano protecting 

groups. The Pd-catalyzed carboamination reactions proceed in generally good chemical 

yields and provide products resulting from anti-addition to the alkene. Future studies will 

be directed toward improving diastereoselectivities in these reactions. 

3-8 Note from the Author 

This thesis chapter represents work that has been previously published in a peer-

reviewed journal, which has been reproduced or adapted here with permission from the 

authors. 

3-9 Experimental 

General: All reactions were carried out under a nitrogen atmosphere in flame-dried 

glassware. Tris(dibenzylideneacetone)dipalladium(0) and palladium(II) acetate were 

purchased from Strem Chemical Co. and used without purification, and C-Phos and X-
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Phos were purchased from Sigma-Aldrich Co. and was used without further purification. 

Aryl triflates were prepared according to a procedure published by Frantz and 

coworkers,62 except the products were purified by column chromatography. Bulk 

quantities of lithium tert-butoxide and sodium tert-butoxide were stored in nitrogen-filled 

glove box and small amounts were removed shortly before use. Toluene, THF, 

dichloromethane and diethyl ether were purified using a GlassContour solvent purification 

system. Structural and stereochemical assignments were made on the basis of 2-D 

COSY, and NOESY experiments. Ratios of diastereomers were determined by 1H NMR 

analysis. Yields refer to isolated yields of compounds estimated to be ≥95% pure as 

determined by 1H NMR analysis unless otherwise noted.  

 

Preparation and Characterization of Substrates 

 

Methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1). A flame dried flask was cooled 

under a stream of nitrogen and charged with dimethyl cyanocarbonimidodithioate (2 g, 

13.6 mmol) and ethanol (40 mL). Benzylamine (2.2 mL, 20.6 mmol) was then added via 

syringe, and the solution was heated to reflux with stirring for 2 h. The solution was then 

cooled to rt, a stream of nitrogen was blown over the solution for 20 min, and then the 

solution was placed in the freezer overnight. The white precipitate that had formed was 

then isolated via filtration using a fritted glass funnel to yield 2.61g (94%) of the desired 

product as a white solid. 1H NMR (400 MHz, CDCl3)  7.417.23 (m, 5 H), 6.60 (s, br, 1 

H), 4.50 (s, br, 2 H), 2.48 (s, br, 3 H). 



69 
 

 

Dimethyl tosylcarbonimidodithioate (3-S2). A flame dried flask was cooled under a 

stream of nitrogen and charged with 4-methylbenzenesulfonamide (25.68 g, 150 mmol), 

carbon disulfide (14.2 mL, 240 mmol), and DMF (200 mL). The mixture was cooled to 0 

°C in an ice bath, and then a solution of KOH (19.9 g, 354 mmol) in water (60 mL) was 

added dropwise at a rate sufficiently slow that the reaction temperature remained below 

10 °C at all times. The reaction mixture was then stirred at 0 °C for 30 min, and then 

methyl iodide (21.7 mL, 348 mmol) was added dropwise at a rate sufficiently slow that the 

reaction temperature remained below 10 °C at all times. The reaction mixture was then 

warmed to rt and stirred for 30 min. Water was then added (150 mL), and the white 

precipitate that had formed was then isolated via filtration using a fritted glass funnel. The 

white solid was washed with water followed by ethanol, then was dried in vacuo to afford 

31.27 g (75%) of the title compound as a white solid. 1H NMR (400 MHz, CDCl3)  7.87 

(d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.1 Hz, 2 H), 2.53 (s, 6 H), 2.43 (s, 3 H). 

 

Methyl N-benzyl-N'-tosylcarbamimidothioate (3-S3). A flame dried flask was cooled 

under a stream of nitrogen and charged with dimethyl tosylcarbonimidodithioate (3-S2) 

(2.00 g, 7.26 mmol) and ethanol (40 mL). Benzylamine (1.2 mL, 10.89 mmol) was then 

added slowly, and the reaction was then heated to reflux with stirring for 2 h. The solution 

was then cooled to rt, a stream of nitrogen was blown over the solution for 20 min, and 
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then the solution was placed in the freezer overnight. The white precipitate that had 

formed was then isolated via filtration using a fritted glass funnel to yield 2.19 g (90%) of 

the title compound as a white solid. 1H NMR (400 MHz, CDCl3)  8.50 (s, br, 1 H), 7.79 

(d, J = 8.0 Hz, 2 H), 7.417.31 (m, 3 H), 7.317.17 (m, 4 H), 4.48 (d, J = 5.9 Hz, 2 H), 

2.42 (s, 3 H), 2.38 (s, 3 H). 

 

N-Benzylbut-3-en-2-ylamine (3-S4). A flame dried flask was cooled under a stream of 

nitrogen and charged with N-(but-3-en-2-yl)benzamide63 (1.32 g, 7.53 mmol) in diethyl 

ether (30 mL). The solution was cooled on an ice bath, and a solution of LiAlH4 (30 mL, 

30 mmol, 1 M in THF) was added slowly. The reaction mixture was then heated to reflux 

with stirring overnight. The mixture was then cooled in an ice bath, and water (7.53 mL) 

was slowly added followed by 1 M NaOH (7.5 mL). The miture was then transferred to a 

separatory funnel and extracted with diethyl ether (3 x 10 mL). The organic laywers were 

combined, dried, filtered, and concentrated in vacuo to afford 1.2 g (99%) of the title 

compound as a pale yellow oil. 1H NMR (400 MHz, CDCl3)  7.387.29 (m, 4 H), 

7.287.21 (m, 1 H), 5.805.64 (m, 1 H), 5.195.02 (m, 2 H), 3.80 (d, J = 13.1 Hz, 1 H), 

3.68 (d, J = 13.1 Hz, 1 H), 3.283.16 (m, 1 H), 1.50 (s, br, 1 H), 1.18 (d, J = 6.5 Hz, 3 H). 
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N-Benzyl-2-methylprop-2-en-1-ylamine (3-S5). A flame dried flask was cooled under a 

stream of nitrogen and charged with benzylamine (10.9 mL, 100.0 mmol) and potassium 

carbonate (4.15 g, 30.0 mmol), then cooled on an ice bath. 3-bromo-2-methylprop-1-ene 

(3.38 g, 25.0 mmol) was then added slowly, and the resulting mixture was heated to 65 

°C with stirring overnight. The reaction mixture was then cooled to rt and filtered through 

celite. The celite was rinsed with acetone, and the solution was concentrated in vacuo. 

The crude product was then purified via flash column chromatography on silica gel (ethyl 

acetate:hexanes = 1:4) to afford 3.00 g (75%) of the title compound as a pale yellow oil. 

1H NMR (400 MHz, CDCl3)  7.407.30 (m, 4 H), 7.307.21 (m, 1 H), 4.944.82 (m, 2 H), 

3.78 (s, 2 H), 3.20 (s, 2 H), 1.78 (s, 3 H). 

 

2-Allylpyrrolidinium trifluoroacetate (3-S6). This compound was synthesized by 

modifying procedure by published by Dieter, et al.64 A flame dried flask was cooled under 

a stream of nitrogen and charged with N-Boc pyrrolidine (3.40 g, 20.0 mmol), TMEDA 

(3.6 mL, 24.0 mmol), and diethyl ether (80 mL). The solution was cooled to –78 °C and 

s-BuLi (20 mL, 1.4 M in cyclohexane) was added slowly dropwise. The reaction mixture 

was stirred at –78 °C for 2 h, then a solution of zinc chloride (3.81 g, 28 mmol) in THF (30 

mL) was added slowly. The mixture was stirred at –78 °C for 1.5 h, and then a solution of 

copper cyanide (2.15 g, 24.0 mmol) and lithium chloride (1.7 g, 40.0 mmol) in THF (60 

mL) was added slowly. The mixture was stirred at –78 °C for 1.5 h, and then allyl bromide 



72 
 

(5.2 mL, 60 mmol) was added slowly. The cooling bath was removed and the mixture was 

allowed to stir at rt overnight. The reaction was then quenched with aqueous ammonium 

hydroxide (60 mL), and the mixture was stirred at rt for 5 h. The mixture was transferred 

to a separatory funnel, the layers were separated, and the aqueous layer was extracted 

with diethyl ether (2 x 60 mL). The combined organic layers were washed with brine, 

dried, filtered, and concentrated in vacuo. The crude product was purified via flash 

chromatography on silica gel to afford N-Boc 2-allylpyrrolidine. This material was then 

dissolved in dichloromethane (23 mL) and the resulting solution was cooled to 0 °C in an 

ice bath. Trifluoroacetic acid (22.5 mL, 293 mmol) was then added slowly, and the mixture 

was stirred at rt for 3 h. The mixture was then concentrated and residual trifluoroacetic 

acid was then removed by adding toluene (10 mL) and then concentrating the resulting 

solution (this was repeated four times) to afford 3.2 g (97%) of the title compound as a 

yellow oil. 1H NMR (400 MHz, CDCl3)  8.88 (s, br, 2 H), 5.825.68 (m, 1 H), 5.295.17 

(m, 2 H), 3.693.61 (m, 1 H), 3.413.31 (m, 2 H), 2.642.40 (m, 2 H), 2.291.96 (m, 3 H), 

1.821.74 (m, 1 H). 

 

tert-Butyl (1-phenylbut-3-en-1-yl)carbamate (S7). The title compound was prepared by 

modifying a procedure published by Veenstra et al.65  A flame dried flask was cooled under 

a stream of nitrogen and charged with dichloromethane (50 mL), benzaldehyde (2.00 g, 

18.78 mmol), allyl trimethylsilane (3.0 mL, 18.78 mmol), and tert-butyl carbamate (2.20 g, 

18.78 mmol). The solution was then cooled to 0 °C in an ice bath, and BF3·EtO2 (1.40 

mL, 11.27 mmol) was added slowly. The resulting mixture was stirred at 0 °C for 30 min, 
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and was then warmed to rt and stirred for 30 min. The reaction was then quenched with 

saturated aqueous NaHCO3 (30 mL), and transferred to a separatory funnel. The layers 

were separated, the aqueous layer was extracted with dichloromethane (25 mL), and then 

the combined organic layers were dried, filtered, and concentrated in vacuo to afford a 

white solid. The crude product was purified via flash column chromatography on silica gel 

(ethyl acetate:hexanes = 1:4) to afford 1.66 g (36%) of the title compound as a white solid. 

1H NMR (400 MHz, CDCl3)  7.407.18 (m, 5 H), 5.735.62 (m, 1 H), 5.195.02 (m, 2 H), 

4.86 (s, br, 1 H), 2.52 (s, br, 2 H), 1.41 (s, br, 9 H). 

 

N-Benzyl-1-phenylbut-3-en-1-ylamine (3-S8). A flame dried flask was cooled under a 

stream of nitrogen and charge with tert-butyl (1-phenylbut-3-en-1-yl)carbamate (3-S7) 

(1.66 g, 6.7 mmol) and dichloromethane (10 mL). The resulting solution was cooled to 0 

°C then trifluoroacetic acid (10.3 mL, 134 mmol) was added slowly. The mixture was 

warmed to rt and stirred for 3 h. The mixture was then concentrated and residual 

trifluoroacetic acid was then removed by adding toluene (10 mL) and then concentrating 

the resulting solution (this was repeated three times) The resulting crude material was 

dissolved in THF (10 mL), then potassium carbonate (1.85 g, 13.4 mmol) and benzyl 

bromide (0.8 mL, 6.7 mmol) were added. The resulting mixture was heated to 50 °C 

overnight, then was cooled to rt and filtered through celite. The celite was rinsed with 

acetone, and the solution was concentrated in vacuo. The crude product was purified via 

flash column chromatography on silica gel (ethyl acetate:hexanes = 1:4) to afford 0.853 

g (54%) of the title compound as a pale yellow oil. 1H NMR (400 MHz, CDCl3)  7.407.13 
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(m, 10 H), 5.795.63 (m, 1 H), 5.145.01 (m, 2 H), 3.733.59 (m, 2 H), 3.51 (d, J = 13.3 

Hz, 1 H), 2.482.33 (m, 2 H), 1.73 (s, br, 1 H). 

 

(E)-N-Benzyl-3-phenylprop-2-en-1-ylamine (3-S9). A flame dried flask was cooled 

under a stream of nitrogen and charged with benzylamine (8.7 mL, 80.0 mmol) and 

potassium carbonate (3.32 g, 24.0 mmol). The mixture was cooled to 0 °C and (E)-(3-

bromoprop-1-en-1-yl)benzene (3.93 g, 20.0 mmol) was then added slowly. The mixture 

was then warmed to rt and stirred overnight. The mixture was filtered through celite. The 

celite was rinsed with acetone, and the solution was concentrated in vacuo. The crude 

product was purified via flash column chromatography on silica gel (ethyl acetate:hexanes 

= 1:4) to afford 1.30 g (38%) of the title compound as a yellow oil. 1H NMR (400 MHz, 

CDCl3)  7.487.16 (m, 10 H), 6.54 (d, J = 16.0 Hz, 1 H), 6.386.28 (m, 2 H), 3.85 (s, 3 

H), 3.45 (dd, J = 6.3, 1.5 Hz, 2 H). 

 

1-Allyl-1,3-dibenzyl-2-cyanoguanidine (3-6a). A round bottom flask was charged with 

methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.93 g, 4.53 mmol), ethanol (45 

mL), and mercuric oxide (1.47 g, 6.80 mmol), then purged with nitrogen. Triethylamine 

(2.5 mL, 18.12 mmol) was added followed by N-benzylprop-2-en-1-ylamine (1.00 g, 6.80 

mmol). The reaction mixture was then stirred at rt for 72 h. The mixture was filtered 

through celite. The celite was rinsed with acetone, and the solution was concentrated in 
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vacuo. The crude product was purified via flash column chromatography on silica gel 

(ethyl acetate:hexanes 4:6) to yield 1.00 g (72%) of the title compound as a clear, viscous 

oil. 1H NMR (400 MHz, CDCl3)  7.397.27 (m, 6 H), 7.237.18 (m, 4 H), 5.815.71 (m, 1 

H), 5.285.08 (m, 3 H), 4.72 (d, J = 5.3 Hz, 2 H), 4.58 (s, 2 H), 3.94 (dt, J = 5.6, 1.6 Hz, 2 

H); 13C NMR (125 MHz, CDCl3)  159.0, 137.0, 135.8, 132.1, 129.0, 128.9, 28.1, 127.7, 

127.3, 118.5, 117.2, 52.2, 51.5, 47.7; IR (film) 3255, 2162, 1536 cm-1; MS (ESI+) 

305.1758 (305.1761 calcd for C19H20N4, M + H+). 

 

1,3-Dibenzyl-2-cyano-1-(2-methylallyl)guanidine (3-6b). The title compound was 

prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.825 g, 4.0 mmol), 

ethanol (40 mL), mercuric oxide (1.30 g, 6.0 mmol), triethylamine (2.2 mL, 16.0 mmol), 

and N-benzyl-2-methylprop-2-en-1-ylamine (3-S5) (0.972 g, 6.0 mmol) using a procedure 

analogous to that described above for the synthesis of 3-6a. This procedure afforded 

0.589 g (46%) of the title compound as a clear, viscous oil. 1H NMR (400 MHz, CDCl3)  

7.387.26 (m, 6 H), 7.247.20 (m, 4 H), 5.28 (t, J = 5.4 Hz, 1 H), 4.94 (s, 1 H), 4.79 (s, 1 

H), 4.74 (d, J = 5.4 Hz, 2 H), 4.60 (s, 2 H), 3.80 (s, 2 H), 1.65 (s, 3 H); 13C NMR (125 MHz, 

CDCl3)  159.2, 139.6, 137.1, 135.9, 128.9, 128.1, 128.0, 127.7, 127.5, 117.2, 112.9, 

54.2, 52.5, 47.7, 19.8; IR (film) 3268, 2164, 1539 cm-1; MS (ESI+) 319.1915 (319.1917 

calcd for C20H22N4, M + H+). 
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1,3-Dibenzyl-1-(but-3-en-1-yl)-2-cyanoguanidine (3-6c). The title compound was 

prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.75 g, 3.65 mol), 

ethanol (35 mL), mercuric oxide (1.187 g, 5.5 mmol), triethylamine (2.0 mL, 14.6 mmol) 

and N-benzylbut-3-en-1-ylamine (1.147 g, 7.1 mmol) using a procedure analogous to that 

described above for the synthesis of 3-6a. This procedure afforded 0.82 g (71%) of the 

title compound as a pale yellow solid, m.p. 92–93 °C. 1H NMR (400 MHz, CDCl3)  

7.397.22 (m, 6 H), 7.187.07 (m, 4 H), 5.73 (ddt, J = 17.1, 10.2, 6.9 Hz, 1 H), 5.134.96 

(m, 3 H), 4.67 (d, J = 5.3 Hz, 2 H), 4.51 (s, 2 H), 3.48 (t, J = 7.2 Hz, 2 H), 2.392.32 (m, 

2 H); 13C NMR (125 MHz, CDCl3)  158.8, 137.1, 135.6, 134.3, 129.2, 128.9, 128.1, 128.0, 

127.7, 126.7, 117.9, 52.7, 49.5, 47.7, 32.4; IR (film) 3256, 2161, 1536 cm-1; MS (ESI+) 

319.1919 (319.1917 calcd for C20H22N4, M + H+). 

N
H

N

N

Bn Bn

CN

 

1,3-Dibenzyl-1-(but-3-en-2-yl)-2-cyanoguanidine (3-6d). The title compound was 

prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.888 g, 4.53 mmol), 

ethanol (40 mL), mercuric oxide (1.40 g, 6.5 mmol), triethylamine (2.4 mL, 17.3 mmol) 

and N-benzylbut-3-en-2-ylamine (3-S4) (0.837 g, 5.2 mmol) using a procedure analogous 

to that described above for the synthesis of 3-6a. This procedure afforded 0.316 g (23%) 
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of an off white solid, m.p. 104–105 °C. 1H NMR (500 MHz, CDCl3)  7.367.27 (m, 3 H), 

7.267.19 (m, 3 H), 7.187.16 (m, 2 H), 6.976.95 (m, 2 H), 5.925.86 (m, 1 H), 5.255.15 

(m, 2 H), 5.115.09 (m, 1 H), 4.97 (d, J = 5.3 Hz, 1 H), 4.704.58 (m, 2 H), 4.464.28 (m, 

2 H),1.31 (d, J = 6.5 Hz, 3 H); 13C NMR (100 MHz, CDCl3)  158.7, 137.5, 136.6, 136.3, 

129.2, 128.8, 128.0, 127.9, 127.7, 126.4, 117.3, 117.2, 55.1, 48.4, 47.8, 16.6; IR (film) 

3265, 2160, 1533 cm-1; MS (ESI+) 319.1920 (319.1917 calcd for C20H22N4, M + H+). 

 

1,3-Dibenzyl-2-cyano-1-(1-phenylbut-3-en-1-yl)guanidine (3-6e). The title compound 

was prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.616 g, 3.0 

mmol), ethanol (30 mL), mercuric oxide (0.975 g, 4.5 mmol), triethylamine (1.7 mL, 12 

mmol), and N-benzyl-1-phenylbut-3-en-1-ylamine (3-S8) (0.853 g, 3.6 mmol) using a 

procedure analogous to that described above for the synthesis of 3-6a. This procedure 

afforded 0.40 g (34%) of the title compound as a clear, viscous oil. 1H NMR (400 MHz, 

CDCl3)  7.457.27 (m, 5 H), 7.257.13 (m, 6 H), 6.85 (d, J = 6.8 Hz, 2 H), 6.78 (d, J = 

6.4 Hz, 2 H), 6.03 (t, J = 7.8 Hz, 1 H), 5.925.82 (m, 1 H), 5.245.08 (m, 2 H), 4.75 (t, J 

= 4.9 Hz, 1 H), 4.714.52 (m, 2 H), 4.32 (d, J = 16.9 Hz, 1 H), 4.16 (d, J = 17.0 Hz, 1 H), 

2.76 (t, J = 6.8 Hz, 2 H); 13C NMR (125 MHz, CDCl3)  158.8, 138.3, 136.4, 135.6, 134.2, 

129.2, 128.9, 128.8, 128.3, 128.2, 128.1, 127.9, 127.8, 126.5, 118.3, 117.3, 59.9, 47.9, 

47.8, 35.3; IR (film) 3263, 2163, 1541 cm-1; MS (ESI+) 395.2229 (395.2230 calcd for 

C26H26N4, M + H+). 
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2-Allyl-N-benzyl-N'-cyanopyrrolidine-1-carboximidamide (3-6f). The title compound 

was prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (1.112 g, 5.4 

mmol), ethanol (55 mL), mercuric oxide (1.75 g, 8.1 mmol), triethylamine (3.8 mL, 27 

mmol), and 2-allylpyrrolidinium trifluoroacetate (3-S6) (1.46 g, 6.5 mmol) using a 

procedure analogous to that described above for the synthesis of 3-6a. This procedure 

afforded 0.628 g (43%) of the title compound as a clear, viscous oil. 1H NMR (500 MHz, 

CDCl3)  7.387.24 (m, 5 H), 5.785.64 (m, 1 H), 5.16 (t, J = 5.6 Hz, 1 H), 5.105.00 (m, 

2 H), 4.684.51 (m, 2 H), 4.284.24 (m, 1 H), 3.513.43 (m, 2 H), 2.502.46 (m, 1 H), 

2.16 (dt, J = 14.1, 8.3 Hz, 1 H), 2.021.82 (m, 3 H), 1.791.74 (m, 1 H); 13C NMR 

(125 MHz, CDCl3)  156.0, 137.8, 133.7, 128.8, 127.9, 127.8, 118.3, 117.9, 58.1, 48.4, 

46.9, 37.8, 29.6, 23.4; IR (film) 3252, 2156, 1527 cm-1; MS (ESI+) 269.1760 (269.1761 

calcd for C16H20N4, M + H+). 

N
H

N

N

Bn Bn

CN

Ph  

1,3-dibenzyl-1-cinnamyl-2-cyanoguanidine (3-6g). The title compound was prepared 

from methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.60 g, 2.90 mmol), ethanol 

(30 mL), mercuric oxide (0.94 g, 4.35 mmol), triethylamine (1.6 mL, 11.60 mmol), and (E)-
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N-benzyl-3-phenylprop-2-en-1-ylamine (3-S9) (0.61 g, 3.5 mmol) using a procedure 

analogous to that described above for the synthesis of 3-6a. This procedure afforded 

0.438 g (40%) of the title compound as a pale yellow solid, m.p. 74–77 °C. 1H NMR (400 

MHz, CDCl3)  7.407.05 (m, 15 H), 6.38 (d, J = 16.4 Hz, 1 H), 6.08 (dt, J = 16.0, 6.1 Hz, 

1 H), 5.38 (t, J = 5.4 Hz, 1 H), 4.70 (d, J = 5.3 Hz, 2 H), 4.60 (s, 2 H), 4.09 (d, J = 6.4 Hz, 

2 H); 13C NMR (100MHz, CDCl3)  159.0, 137.1, 135.8, 135.7, 129.0, 128.9, 128.7, 128.2, 

128.1, 128.0, 127.8, 127.3, 126.5, 123.1, 117.3, 52.2, 51.2, 47.6; IR (film) 3257, 2164, 

1542 cm-1; MS (ESI+) 381.2072 (381.2074 calcd for C25H24N4, M + H+). 

 

N-{[Allyl(benzyl)amino](benzylamino)methylene}-4-methylbenzenesulfonamide (3-

7a). The title compound was prepared from methyl N-benzyl-N'-tosylcarbamimidothioate 

(3-S3) (1.06 g, 3.17 mmol), ethanol (30 mL), mercuric oxide (1.03 g, 4.75 mmol), 

triethylamine (1.8 mL, 12.68 mmol), and N-benzylprop-2-en-1-ylamine (0.70 g, 4.75 

mmol) using a procedure analogous to that described above for the synthesis of 3-6a 

except with a reaction time of 48 h. This procedure afforded 1.06 g (77%) of the title 

compound as a white solid, m.p. 9192 °C. 1H NMR (500 MHz, CDCl3)  7.62 (d, J = 8.0 

Hz, 2 H), 7.347.22 (m, 6 H), 7.207.08 (m, 6 H), 6.99 (t, J = 5.7 Hz, 1 H), 5.74 (ddt, J = 

16.4, 9.8, 5.8 Hz, 1 H), 5.245.05 (m, 2 H), 4.48 (s, 2 H), 4.39 (d, J = 5.7 Hz, 2 H), 3.82 

(d, J = 5.7 Hz, 2 H), 2.39 (s, 3 H); 13C NMR (125 MHz, CDCl3)  159.9, 141.7, 141.0, 

136.9, 136.4, 132.4, 129.1, 128.9, 128.7, 128.0, 127.6, 127.6, 127.4, 126.1, 118.9, 51.9, 
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51.8, 49.7, 21.4; IR (film) 3320, 1563 cm-1; MS (ESI+) 434.1894 (434.1897 calcd for 

C25H27N3O2S, M + H+). 

 

N-{[Benzyl(2-methylallyl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (3-7b). The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (3-S3) (1.30 g, 3.88 mmol), ethanol (30 mL), mercuric 

oxide (1.26 g, 5.82 mmol), triethylamine (2.2 mL, 15.70 mmol), and N-benzyl-2-

methylprop-2-en-1-ylamine (3-S5) (0.75 g, 4.65 mmol) using a procedure analogous to 

that described above for the synthesis of 3-6a except with a reaction time of 48 h. This 

procedure afforded 0.78 g (45%) of the title compound as a white solid, m.p. 115117 °C. 

1H NMR (500 MHz, CDCl3)  7.62 (d, J = 8.0 Hz, 2 H), 7.357.21 (m, 6 H), 7.197.05 (m, 

6 H), 6.98 (t, J = 5.8 Hz, 1 H), 4.92 (s, 1 H), 4.79 (s, 1 H), 4.48 (s, 2 H), 4.42 (d, J = 5.8 

Hz, 2 H), 3.71 (s, 2 H), 2.39 (s, 3 H), 1.57 (s, 3 H); 13C NMR (125 MHz, CDCl3) 160.1, 

141.6, 141.1, 140.0, 137.0, 136.5, 129.1, 128.9, 128.7, 128.0, 127.8, 127.6, 127.3, 126.1, 

113.4, 54.5, 51.8, 49.7, 21.4, 20.0; IR (film) 3316, 1559 cm-1; MS (ESI+) 448.2048 

(448.2053 calcd for C26H29N3O2S, M + H+). 
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N-{[Benzyl(but-3-en-1-yl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (3-7c). The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (3-S3) (1.13 g, 3.37 mmol), ethanol (30 mL), mercuric 

oxide (1.10 g, 5.09 mmol), triethylamine (1.9 mL, 13.84 mmol) and N-benzylbut-3-en-1-

ylamine (0.77 g, 5.09 mmol) using a procedure analogous to that described above for the 

synthesis of 3-6a except with a reaction time of 48 h. This procedure afforded 1.39 g 

(91%) of the title compound as a white solid, m.p. 123124 °C. 1H NMR (500 MHz, CDCl3) 

 7.60 (d, J = 8.0 Hz, 2 H), 7.367.22 (m, 7 H), 7.217.09 (m, 7 H), 7.06 (t, J = 5.7 Hz, 1 

H), 5.55 (ddt, J = 17.1, 10.2, 6.8 Hz, 1 H), 5.014.86 (m, 2 H), 4.47 (s, 2 H), 4.36 (d, J = 

5.7 Hz, 2 H), 3.323.20 (m, 2 H), 2.39 (s, 3 H), 2.232.19 (m, 2 H); 13C NMR (125 MHz, 

CDCl3) 160.1, 141.7, 140.9, 136.8, 136.3, 134.5, 129.1, 128.9, 128.8, 128.0, 127.7, 127.4, 

127.3, 126.1, 117.3, 53.0, 49.9, 48.5, 32.0, 21.4; IR (film) 3313, 1560 cm-1; MS (ESI+) 

448.2049 (448.2053 calcd for C26H29N3O2S, M + H+). 

 

N-{[Benzyl(but-3-en-2-yl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (3-7d). The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (3-S3) (1.018 g, 3.05 mmol), ethanol (30 mL), 
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mercuric oxide (0.991 g, 4.58 mmol), triethyl amine (1.7 mL, 12.2 mmol), and N-

benzylbut-3-en-2-ylamine (3-S4) (0.590 g, 3.66 mmol) using a procedure analogous to 

that described above for the synthesis of 3-6a except with a reaction time of 48 h. This 

procedure afforded 1.21 g (89%) of the title compound as an off white solid, m.p. 69–71 

°C. 1H NMR (400 MHz, CDCl3)  7.337.27 (m, 2 H), 7.277.11 (m, 6 H), 7.107.02 (m, 

2 H), 6.97 (dd, J = 7.9, 1.9 Hz, 4 H), 6.87 (t, J = 5.7 Hz, 1 H), 5.955.86 (m, 1 H), 5.245.11 

(m, 2 H), 4.554.50 (m, 1 H), 4.38 (t, J = 5.5 Hz, 2 H), 4.31 (s, 2 H), 2.33 (s, 3 H), 1.30 (d, 

J = 6.8 Hz, 3 H); 13C NMR (100 MHz, CDCl3)  159.8, 141.4, 140.6, 138.0, 137.5, 136.7, 

129.0, 128.8, 128.5, 127.9, 127.5, 127.0, 126.8, 126.0, 117.3, 57.4, 49.6, 47.4, 21.4, 16.8; 

IR (film) 3320, 1557 cm-1; MS (ESI+) 448.2056 (448.2053 calcd for C26H29N3O2S, M + 

H+). 

 

N-{[Benzyl(1-phenylbut-3-en-1-yl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (3-7e). The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (3-S3) (1.390 g, 3.9 mmol), ethanol (39 mL), mercuric 

oxide (1.26 g, 5.8 mmol), triethylamine (2.1 mL, 15 mmol), and N-benzyl-1-phenylbut-3-

en-1-ylamine (3-S8) (1.100 g, 4.6 mmol) using a procedure analogous to that described 

above for the synthesis of 3-6a except with a reaction time of 96 h. This procedure 

afforded 1.46 g (71%) of the title compound as a white solid, m.p. 117–118 °C. 1H NMR 

(400 MHz, CDCl3)  7.567.49 (m, 2 H), 7.337.17 (m, 8 H), 7.177.05 (m, 5 H), 
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7.006.93 (m, 2 H), 6.926.85 (m, 2 H), 6.48 (t, J = 5.4 Hz, 1 H), 5.58 (ddt, J = 16.9, 10.3, 

6.7 Hz, 1 H), 5.35 (t, J = 7.7 Hz, 1 H), 5.084.94 (m, 2 H), 4.534.40 (m, 2 H), 4.30 (d, J 

= 16.3 Hz, 1 H), 4.12 (d, J = 16.3 Hz, 1 H), 2.812.62 (m, 2 H), 2.35 (s, 3 H); 13C NMR 

(100 MHz, CDCl3)  159.1, 141.4, 141.3, 138.0, 136.8, 136.6, 129.0, 128.8, 128.7, 128.6, 

128.2, 128.1, 127.9, 127.7, 127.3, 126.7, 126.0, 118.1, 61.9, 49.9, 48.1, 35.6, 21.4; IR 

(film) 3335, 1495 cm-1; MS (ESI+) 524.2367 (524.2366 calcd for C32H33N3O2S, M + H+). 

 

2-Allyl-N-benzyl-N'-tosylpyrrolidine-1-carboximidamide (3-7f). The title compound 

was prepared from methyl N-benzyl-N'-tosylcarbamimidothioate (3-S3) (1.60 g, 4.78 

mmol), ethanol (40 mL), mercuric oxide (1.50 g, 6.92 mmol), triethylamine (3.3 mL, 23.42 

mmol) and 2-allylpyrrolidinium trifluoroacetate (3-S6) (7.0 mmol) using a procedure 

analogous to that described above for the synthesis of 3-6a except with a reaction time 

of 48 h. This procedure afforded 0.89 g (48%) of the title compound as a white solid, m.p. 

76–78 °C. 1H NMR (500 MHz, CDCl3)  7.66 (d, 8.0 Hz, 2 H), 7.387.28 (m, 3 H), 

7.247.13 (m, 4 H), 5.44 (ddt, J = 17.3, 10.2, 7.2 Hz, 1 H), 4.87 (dd, J = 10.3, 2.1 Hz, 1 

H), 4.74 (dd, J = 17.1, 1.6 Hz, 1 H), 4.364.18 (m, 3 H), 3.443.38 (m, 1 H), 3.363.30 

(m, 1 H), 2.38 (s, 3 H), 2.202.08 (m, 1 H), 2.031.91 (m, 2 H), 1.88 (dtt, J = 12.2, 6.0, 

2.7 Hz, 1 H), 1.73 (dtt, J = 12.0, 10.2, 7.3 Hz, 1 H), 1.571.49 (m, 1 H); 13C NMR (125 

MHz, CDCl3) 157.7, 141.7, 141.1, 137.1, 133.8, 129.1, 128.9, 128.0, 127.5, 126.2, 117.6, 
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58.4, 51.1, 49.0, 38.1, 29.6, 25.2, 21.4; IR (film) 3314, 1560 cm-1; MS (ESI+) 398.1892 

(398.1897 calcd for C22H27N3O2S, M + H+). 

 

N-{[Benzyl(cinnamyl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (3-7g). The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (3-S3) (0.65 g, 1.94 mmol), ethanol (30 mL), mercuric 

oxide (0.65 g, 3.00 mmol), triethylamine (1.1 mL, 7.95 mmol), and (E)-N-benzyl-3-

phenylprop-2-en-1-ylamine (3-S9) (0.70 g, 3.14 mmol) using a procedure analogous to 

that described above for the synthesis of 3-6a except with a reaction time of 48 h. This 

procedure afforded 0.35 g (33%) of the title compound as a white solid, m.p. 120–121 °C. 

1H NMR (500 MHz, CDCl3)  7.65 (d, J = 8.1 Hz, 2 H), 7.357.20 (m, 12 H), 7.177.11 

(m, 5 H), 7.09 (t, J = 5.8 Hz, 1 H), 6.33 (d, J = 15.9 Hz, 1 H), 6.05 (dt, J = 15.9, 6.3 Hz, 1 

H), 4.52 (s, 2 H), 4.41 (d, J = 5.8 Hz, 2 H), 3.98 (d, J = 6.3, 1.4 Hz, 2 H), 2.38 (s, 3 H); 13C 

NMR (125 MHz, CDCl3) 160.0, 141.7, 141.0, 136.8, 136.3, 136.0, 134.0, 129.1, 128.9, 

128.8, 128.6, 128.1, 128.1, 128.0, 127.7, 127.5, 127.4, 126.5, 126.1, 123.6, 52.2, 51.5, 

49.8, 21.5; IR (film) 3314, 1564 cm-1; MS (ESI+) 510.2205 (510.2210 calcd for 

C31H31N3O2S, M + H+). 
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4-methoxy-2,3,6-trimethylbenzenesulfonamide (3-S10). A round bottom flask 

equipped was charged with ammonia in ethanol (10 mL, 20 mmol) and cooled on an ice 

bath. A solution of 4-methoxy-2,3,6-trimethylbenzenesulfonyl chloride (2.48 g, 10 mmol) 

in ethanol (10 mL) was added, followed by triethylamine (1.4 mL, 10 mmol). The reaction 

was allowed to warm to rt and stir for 6 hours. Concentration of the reaction mixture in 

vacuo afforded the crude product that was purified via flash column chromatography to 

yield 1.26 g (55%) of the desired product as a tan solid. 

 

Dimethyl [(4-methoxy-2,3,6-trimethylphenyl)sulfonyl]carbonimidodithioate (3-S11). 

A flame dried flask was cooled under a stream of nitrogen and charged with 4-methoxy-

2,3,6-trimethylbenzenesulfonamide (3-S10) (1.26 g, 5.5 mmol), carbon disulfide (0.5 mL, 

8.8 mmol), and DMF (10 mL). The solution was then cooled on an ice bath. A solution of 

potassium hydroxide (0.73 g, 13 mmol) in water (5 mL) was added dropwise, and the 

reaction was stirred at 0 °C for 30 minutes. Iodidomethane (0.8 mL, 13 mmol) was added 

dropwise, and then the reaction was allowed to warm to rt and stirred for 30 minutes. 

Water (10 mL) was then added, and a light yellow solid precipitated from solution. The 

solid was isolated to afford 1.1 g (60%) of the desired product. 
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Methyl (E)-N-benzyl-N'-[(4-methoxy-2,3,6-trimethylphenyl)sulfonyl] 

carbamimidothioate (3-S12). A flame dried flask was cooled under a stream of nitrogen 

and charged with Dimethyl {(4-methoxy-2,3,6-

trimethylphenyl)sulfonyl}carbonimidodithioate (3-S11) (1.1 g, 3.3 mmol) in ethanol (20 

mL). Benzylamine (0.55 mL, 4.95 mmol) was added slowly, and the reaction was then 

heated to reflux with stirring for 2 h. The solution was then cooled to rt, a stream of 

nitrogen was blown over the solution for 20 min, and then the solution was placed in the 

freezer overnight. The white precipitate that had formed was then isolated via filtration 

using a fritted glass funnel to yield 1.04 g (80%) of the title compound as a light tan solid. 

 

(E)-N-{[benzyl(but-3-en-1-yl)amino][benzylamino]methylene}-4-methoxy-2,3,6-

trimethylbenzenesulfonamide (3-20). A round bottom flask was charged with Methyl 

(E)-N-benzyl-N'-[(4-methoxy-2,3,6-trimethylphenyl)sulfonyl]carbamimidothioate (3-S12) 

(1.04 g, 2.65 mmol), ethanol (26 mL), and mercuric oxide (0.86 g, 3.97 mmol), then 

purged with nitrogen. Triethylamine (1.5 mL, 10.6 mmol) was added followed by N-

benzylbut-3-en-1-ylamine (0.64 g, 3.97 mmol). The reaction mixture was then stirred at rt 

for 72 h. The mixture was filtered through celite. The celite was rinsed with acetone, and 

the solution was concentrated in vacuo. The crude product was purified via flash column 
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chromatography on silica gel (ethyl acetate:hexanes = 3:7) to yield 0.62 g (46%) of the 

title compound as a light tan solid, m.p. 9699 °C. 1H NMR (400 MHz, CDCl3)  7.34–

7.24 (m, 6 H), 7.18–7.13 (m, 2 H), 7.11–7.03 (m, 2 H), 7.00 (t, J = 6.0 Hz, 1 H), 6.50 (s, 1 

H), 5.60–5.51 (m, 1 H), 4.98–4.90 (m, 2 H), 4.47 (s, 3 H), 4.34 (d, J = 6.0 Hz, 2 H), 3.84 

(s, 3 H), 3.25–3.15 (m, 2 H), 2.59 (s, 3 H), 2.57 (s, 3 H), 2.24 (q, J = 7.3 Hz, 2 H), 2.11 (s, 

3 H); 13C NMR (125 MHz, CDCl3)  160.1, 158.4, 138.6, 136.9, 136.7, 136.5, 134.5, 133.7, 

128.8, 128.7, 127.9, 127.6, 127.3, 127.2, 124.7, 117.2, 111.7, 55.4, 52.6, 49.8, 48.2, 31.8, 

24.0, 18.5, 11.9; IR (film) 3316, 1560, 1118 cm-1; MS (ESI+) 506.2474 (506.2472 calcd 

for C29H35N3O3S, M + H+). 

 

Methyl tosylcarbonochloridoimidothioate (3-S13). A flame dried flask was cooled 

under a stream of nitrogen and charged with dimethyl tosylcarbonimidodithioate (3-S2) 

(4.00 g, 14.4 mmol) and dichloromethane (50 mL). Sulfonyl chloride (2.4 mL, 28.8 mmol) 

was added dropwise, and the reaction was refluxed for 3 hours. After cooling to rt, the 

reaction mixture was concentrated, and the crude product was purified via flash column 

chromatography (EtOAc/Hexanes) to afford 2.63 g (69%) of the title compound. 1H NMR 

(CDCl3, 400 MHz)  7.86 (d, J = 8.1 Hz, 2 H), 7.33 (d, J = 8.2 Hz, 2 H), 2.45 (s, 3 H), 2.43 

(s, 3 H). 
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Methyl-N-allyl-N-methyl-N'-tosylcarbamimidothioate (3-S14). A flame dried flask was 

cooled under a stream of nitrogen, charged with methyl tosylcarbonochloridoimidothioate 

(3-S13) (1.5 g, 5.69 mmol) and acetonitrile (38 mL), and cooled on an ice bath. Triethyl 

amine (0.95 mL, 6.83 mmol) was added dropwise, followed by dropwise addition of N-

allylmethylamine in 9.5 mL acetonitrile. The reactionw as allowed to stir at rt for 48 h, then 

concentrated. The crude product was purified via flash column chromatography on silica 

gel (EtOAc:Hexanes = 30:70) to afford 1.568 g (92%) of the title compound as a yellow 

oil. 1H (400 MHz, CDCl3)  7.73 (d, J = 7.8 Hz, 2 H), 7.17 (d, J = 7.8 Hz, 2 H), 5.61–5.70 

(m, 1 H), 5.16 (dd, J = 10.3, 1.2 Hz, 1 H), 5.09 (dd, J = 17.1, 1.2 Hz, 1 H), 4.08 (d, J = 5.6 

Hz, 2 H), 3.07 (s, 3 H), 2.45 (s, 3 H), 2.31 (s, 3 H). 

 

N-{[Allyl(methyl)amino](methylamino)methylene}-4-methylbenzenesulfonamide (3-

23). A round bottom flask was charged with Methyl-N-allyl-N-methyl-N'-

tosylcarbamimidothioate (3-S14) (1.57 g, 5.25 mmol), ethanol (50 mL), and mercuric 

oxide (1.71 g, 7.88 mmol), then purged with nitrogen. Triethylamine (2.9 mL, 21 mmol) 

was added followed by methylamine (3.15 mL, 6.3 mmol) as a 2 M solution in methanol. 

The reaction mixture was then stirred at rt for 72 h. The mixture was filtered through celite. 
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The celite was rinsed with acetone, and the solution was concentrated in vacuo. The 

crude product was purified via flash column chromatography on silica gel (ethyl 

acetate:hexanes = 40:60) to yield 1.15 g (78%) of the title compound as a white solid, 

m.p. 63–65 °C. 1H NMR (400 MHz, CDCl3)  7.74 (d, J = 8.0 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 

2 H), 5.79–5.71 (m, 1 H), 5.20–5.13 (m, 2 H), 3.81 (d, J = 5.6 Hz, 2 H), 2.82 (s, 3 H), 2.80 

(d, J = 5.2 Hz, 3 H), 2.37 (s, 3 H); 13C NMR (100 MHz, CDCl3)  161.4, 141.8, 141.2, 

132.5, 129.2, 125.9, 118.4, 53.9, 36.7, 32.4, 21.4; IR (film) 3356.1, 1590.3 cm-1; MS 

(ESI+) 282.1271 (282.1271 calcd for C13H19N3O2S, M + H+). 

Preparation and Characterization of Products 

General Procedure A for Pd-Catalyzed Carboamination Reactions of Aryl 

Bromides. A flame dried Schlenk tube equipped with a magnetic stirbar was cooled 

under a stream of nitrogen and charged with Pd2(dba)3 (1 mol%), XPhos or CPhos (4 

mol%), and NaOtBu (2 equiv). The tube was purged with nitrogen and then a solution of 

the aryl bromide (1.5 equiv) in toluene was added, and the resulting solution was stirred 

at rt for 1 min. A solution of the N-protected guanidine substrate (1 equiv) in toluene (0.1 

M) was added, and the solution was heated to 90 °C with stirring until the starting material 

had been consumed as judged by TLC or 1H NMR analysis of the reaction mixture (ca 1 

h). The mixture was then cooled to rt and saturated aqueous NH4Cl (1 mL) was added. 

The resulting mixture was then extracted with ethyl acetate (3 x 2 mL), and the combined 

organic layers were filtered through a plug of silica gel. The organic layer was then 

concentrated in vacuo, and the crude product was purified via flash column 

chromatography on silica gel (methanol:dichloromethane = 1:99). 
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General Procedure B for Pd-Catalyzed Carboamination Reactions of Aryl Triflates. 

A flame dried Schlenk tube equipped with a magnetic stirbar was cooled under a stream 

of nitrogen and charged with Pd(OAc)2 (2 mol%), CPhos (4 mol%), and LiOtBu (2 equiv). 

The tube was purged with nitrogen and then a solution of the aryl triflate (1.5 equiv) in 

PhCF3 was added, and the resulting solution was stirred at rt for 1 min. A solution of the 

N-protected guanidine substrate (1 equiv) in CF3Ph (0.2 M) was added, and the solution 

was heated to 100 ºC with stirring until the starting material had been consumed as judged 

by TLC or 1H NMR analysis of the reaction mixture (ca 2 h). The mixture was then cooled 

to rt and saturated aqueous NH4Cl (1 mL) was added. The resulting mixture was then 

extracted with ethyl acetate (3 x 2 mL), and the combined organic layers were filtered 

through a plug of silica gel. The organic layer was then concentrated in vacuo, and the 

crude product was purified via flash column chromatography on silica gel 

(methanol:dichloromethane = 1:99). 

 

N-(1,3,4-Tribenzylimidazolidin-2-ylidene)cyanamide (3-8a). The general procedure A 

was employed for the coupling of bromobenzene (47 mg, 0.30 mmol) with 1-allyl-1,3-

dibenzyl-2-cyanoguanidine (3-6a) (61 mg, 0.20 mmol). This procedure afforded 65 mg 

(86%) of the title compound as a white, viscous oil. 1H NMR (400 MHz, CDCl3)  

7.427.25 (m, 8 H), 7.257.15 (m, 5 H), 6.90 (dd, J = 7.3, 2.1 Hz, 2 H), 5.36 (d, J = 15.6 
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Hz, 1 H), 4.744.56 (m, 2 H), 4.19 (d, J = 15.6 Hz, 1 H), 3.70 (tdd, J = 9.1 Hz, 6.2 Hz, 4.4 

Hz, 1 H), 3.20 (t, J = 9.6 Hz, 1 H), 3.042.93 (m, 2 H), 2.54 (dd, J = 13.6 Hz, 8.8 Hz, 1 H); 

13C NMR (125 MHz, CDCl3)  158.2, 135.7, 135.4, 135.3, 129.0, 128.9, 128.2, 128.1, 

128.1, 128.0, 127.2, 116.5, 55.8, 49.5, 49.4, 47.3, 38.2 (one carbon signal is absent due 

to incidental equivalence); IR (film) 2171, 1595 cm-1; MS (ESI+) 381.2074 (381.2074 

calcd for C25H24N4, M + H+). 

 

N-[1,3-Dibenzyl-4-(4-chlorobenzyl)imidazolidin-2-ylidene]cyanamide (3-8b). The 

general procedure A was employed for the coupling of of 4-bromochlorobenzene (57.4 

mg, 0.30 mmol) with 1-allyl-1,3-dibenzyl-2-cyanoguanidine (3-6a) (61 mg, 0.20 mmol). 

This procedure afforded 68 mg (82%) of the title compound as a pale yellow, foamy solid, 

m.p. 158–160 °C. 1H NMR (400 MHz, CDCl3)  7.437.25 (m, 8 H), 7.187.15 (m, 4 H), 

6.80 (d, J = 8.1 Hz, 2 H), 5.35 (d, J = 15.5 Hz, 1 H), 4.76 (d, J = 15.2 Hz, 1 H), 4.52 (d, J 

= 15.2 Hz, 1 H), 4.19 (d, J = 15.6 Hz, 1 H), 3.703.65 (m, 1 H), 3.20 (t, J = 9.6 Hz, 1 H), 

2.962.88 (m, 2 H), 2.53 (dd, J = 13.7, 8.5, 1 H); 13C NMR (125 MHz, CDCl3)  158.1, 

135.5, 135.2, 133.7, 133.2, 130.4, 129.0, 128.9, 128.2, 128.1, 128.0, 116.3, 55.4, 49.4, 

49.2, 47.3, 37.3 (two carbon signals are absent due to incidental equivalence); IR (film) 

2162, 1599 cm-1; MS (ESI+) 415.1681 (415.1684 calcd for C25H23ClN4, M + H+). 
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N-[1,3-Dibenzyl-4-(4-methoxybenzyl)imidazolidin-2-ylidene]cyanamide (3-8c). The 

general procedure A was employed for the coupling of 4-bromoansole (56.1 mg, 0.30 

mmol) with 1-allyl-1,3-dibenzyl-2-cyanoguanidine (3-6a) (61 mg, 0.20 mmol). This 

procedure afforded 70 mg (85%) of the title compound as a pale yellow solid, m.p. 98–

100 °C. 1H NMR (500 MHz, CDCl3)  7.417.27 (m, 8 H), 7.227.16 (m, 2 H), 6.866.80 

(m, 2 H), 6.806.74 (m, 2 H), 5.37 (d, J = 15.6 Hz, 1 H), 4.72 (d, J = 15.2 Hz, 1 H), 4.60 

(d, J = 15.3 Hz, 1 H), 4.21 (d, J = 15.6 Hz, 1 H), 3.77 (s, 3 H), 3.723.65 (m, 1 H), 3.21 (t, 

J = 9.6 Hz, 1 H), 3.00 (dd, J = 9.8, 6.3 Hz, 1 H), 2.92 (dd, J = 13.8, 4.4 Hz, 1 H), 2.52 (dd, 

J = 13.8, 8.6 Hz, 1 H); 13C NMR (125 MHz, CDCl3)  158.6, 156.7, 136.4, 136.2, 130.0, 

128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 117.8, 114.3, 56.2, 55.3, 54.4, 53.7, 42.8, 37.4, 

24.9 (one carbon signal is absent due to incidental equivalence); IR (film) 2170, 1595 cm-

1; MS (ESI+) 411.2179 (411.2179 calcd for C26H26N4O, M + H+). 

 

N-(1,3,4-Tribenzyl-4-methylimidazolidin-2-ylidene)cyanamide (3-8d). The general 

procedure A was employed for the coupling of bromobenzene (35.3 mg, 0.225 mmol) with 

1,3-dibenzyl-2-cyano-1-(2-methylallyl)guanidine (3-6b) (47.8 mg, 0.15 mmol). This 

procedure afforded 52 mg (88%) of the title compound as an off-white solid, m.p. 92–94 
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°C. 1H NMR (400 MHz, CDCl3)  7.397.30 (m, 7 H), 7.307.23 (m, 4 H), 7.20 (dd, J = 

7.7, 1.8 Hz, 2 H), 6.946.87 (m, 2 H), 5.01 (d, J = 16.2 Hz, 1 H), 4.694.55 (m, 2 H), 4.40 

(d, J = 16.2 Hz, 1 H), 3.30 (d, J = 9.8 Hz, 1 H), 2.92 (d, J = 9.8 Hz, 1 H), 2.77 (d, J = 13.6 

Hz, 1 H), 2.59 (d, J = 13.6 Hz, 1 H), 1.16 (s, 3 H); 13C NMR (100 MHz, CDCl3)  157.5, 

138.2, 135.4, 135.0, 129.9, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 

127.7, 127.5, 127.4, 127.3, 116.4, 62.4, 55.7, 49.4, 44.7, 43.5, 24.5; IR (film) 2167, 

1593 cm-1; MS (ESI+) 395.2227 (395.2230 calcd for C26H26N4, M + H+). 

 

N-{1,3-Dibenzyl-4-[4-(tert-butyl)benzyl]-4-methylimidazolidin-2-ylidene}cyanamide 

(3-8e). The general procedure A was employed for the coupling of 1-bromo-4-tert-

butylbenzene (48 mg, 0.225 mmol) with 1,3-dibenzyl-2-cyano-1-(2-methylallyl)guanidine 

(3-6b) (47.8 mg, 0.15 mmol). This procedure afforded 58 mg (86%) of the title compound 

as a yellow solid, m.p. 142–144 °C. 1H NMR (400 MHz, CDCl3)  7.387.27 (m, 7 H), 

7.257.20 (m, 5 H), 6.82 (d, J = 8 Hz, 2 H), 4.97 (d, J = 16.2 Hz, 1 H), 4.704.54 (m, 2 

H), 4.42 (d, J = 16.2 Hz, 1 H), 3.30 (d, J = 9.8 Hz, 1 H), 2.90 (d, J = 9.8 Hz, 1 H), 2.71 (d, 

J = 13.5 Hz, 1 H), 2.58 (d, J = 13.6 Hz, 1 H), 1.30 (s, 9 H), 1.15 (s, 3 H); 13C NMR 

(100 MHz, CDCl3)  157.5, 150.2, 138.2, 135.5, 131.9, 130.0, 128.8, 128.6, 128.4, 128.0, 

127.5, 127.4, 125.4, 116.4, 62.5, 55.7, 49.4, 44.7, 43.0, 34.5, 31.3, 24.2; IR (film) 2170, 

1593 cm-1; MS (ESI+) 451.2854 (451.2856 calcd for C30H34N4, M + H+). 
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N-(1,3,4-Tribenzyltetrahydropyrimidin-2-[1H]-ylidene)cyanamide (3-8f). The general 

procedure A was employed for the coupling of bromobenzene (35.3 mg, 0.225 mmol) with 

1,3-dibenzyl-1-(but-3-en-1-yl)-2-cyanoguanidine (3-6c) (47.8 mg, 0.15 mmol). This 

procedure afforded 58 mg (98%) of the title compound as a pale yellow solid, m.p. 87–89 

°C. 1H NMR (500 MHz, CDCl3)  7.417.20 (m, 13 H), 7.006.93 (m, 2 H), 5.43 (d, J = 

15.2 Hz, 1 H), 5.15 (d, J = 15.0 Hz, 1 H), 4.65 (d, J = 15.0 Hz, 1 H), 4.03 (d, J = 15.2 Hz, 

1 H), 3.483.43 (m, 1 H), 3.603.12 (m, 2 h), 2.76 (dd, J = 13.6, 6.5 Hz, 1 H), 2.50 (dd, J 

= 13.5, 8.2 Hz, 1 H), 1.711.60 (m, 2 H); 13C NMR (100 MHz, CDCl3)  156.7, 136.8, 

136.3, 136.1, 129.0, 128.9, 128.8, 128.8, 128.3, 128.2, 128.1, 128.0, 127.0, 117.8, 56.1, 

54.4, 53.7, 42.7, 38.2, 24.8; IR (film) 2165, 1526 cm-1; MS (ESI+) 395.2231 (395.2230 

calcd for C26H26N4, M + H+). 

 

N-[1,3-Dibenzyl-4-(4-methoxybenzyl)tetrahydropyrimidin-2-[1H]-

ylidene]cyanamide (3-8g). The general procedure A was employed for the coupling of 

4-bromoanisole (42.1 mg, 0.225 mmol) with 1,3-dibenzyl-1-(but-3-en-1-yl)-2-

cyanoguanidine (3-6c) (47.8 mg, 0.15 mmol). This procedure afforded 60 mg (94%) of 

the title compound as a pale yellow solid, m.p. 43–46 °C. 1H NMR (400 MHz, CDCl3)  

7.427.21 (m, 11 H), 6.936.77 (m, 4 H), 5.43 (d, J = 15.3 Hz, 1 H), 5.14 (d, J = 15.0 Hz, 
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1 H), 4.63 (d, J = 15.1 Hz, 1 H), 4.02 (d, J = 15.3 Hz, 1 H), 3.78 (s, 3 H), 3.453.35 (m, 1 

H), 3.293.11 (m, 2 H), 2.69 (dd, J = 13.7, 6.6 Hz, 1 H), 2.46 (dd, J = 13.7, 7.9 Hz, 1 H), 

1.671.62 (m, 2 H); 13C NMR (125 MHz, CDCl3)  158.6, 156.7, 136.4, 136.2, 130.0, 

128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 117.8, 114.3, 56.2, 55.3, 54.4, 53.7, 42.8, 37.4, 

24.9 (one carbon signal is absent due to incidental equivalence); IR (film) 2164, 1511 cm-

1; MS (ESI+) 425.2337 (425.2336 calcd for C27H28N4O, M + H+). 

 

N-[4-(4-Benzoylbenzyl)-1,3-dibenzyltetrahydropyrimidin-2-[1H]-ylidene]cyanamide 

(3-8h). The general procedure A was employed for the coupling of 4-

bromobenzophenone (78.3 mg, 0.30 mmol) with 1,3-dibenzyl-1-(but-3-en-1-yl)-2-

cyanoguanidine (3-6c) (63.7 mg, 0.20 mmol). This procedure afforded 80.5 mg (81%) of 

the title compound as a pale yellow solid, m.p. 53–56 °C. 1H NMR (400 MHz, CDCl3)  

7.807.70 (m, 4 H), 7.637.56 (m, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.447.23 (m, 9 H), 7.07 

(d, J = 8.0 Hz, 2 H), 5.41 (d, J = 15.2 Hz, 1 H), 5.17 (d, J = 15.0 Hz, 1 H), 4.64 (d, J = 15.0 

Hz, 1 H), 4.13 (d, J = 15.3 Hz, 1 H), 3.553.45 (m, 1 H), 3.313.15 (m, 2 H), 2.83 (dd, J 

= 13.5, 6.4 Hz, 1 H), 2.59 (dd, J = 13.5, 8.2 Hz, 1 H), 1.791.46 (m, 2 H); 13C NMR 

(100 MHz, CDCl3)  196.1, 156.8, 141.6, 137.4, 136.4, 136.1, 136.0, 132.5, 130.7, 129.9, 

129.0, 128.9, 128.8, 128.3, 128.2, 128.1, 117.6, 55.8, 54.4, 53.9, 42.7, 38.2, 25.0 (one 

carbon signal is absent due to incidental equivalence); IR (film) 2164, 1523 cm-1; MS 

(ESI+) 499.2490 (499.2490 calcd for C33H30N4O, M + H+). 
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N-[4-(Benzo[d][1,3]dioxol-5-ylmethyl]-1,3-dibenzyltetrahydropyrimidin-2-[1H]-

ylidene)cyanamide (3-8i). The general procedure A was employed for the coupling of 1-

bromo-3,4-(methylenedioxy)benzene (45.2 mg, 0.225 mmol) with 1,3-dibenzyl-1-(but-3-

en-1-yl)-2-cyanoguanidine (3-6c) (47.8 mg, 0.15 mmol). This procedure afforded 64 mg 

(97%) of the title compound as a pale yellow, viscous oil. 1H NMR (500 MHz, CDCl3)  

7.427.26 (m, 10 H), 6.756.68 (m, 1 H), 6.39 (d, J = 6.9 Hz, 2 H), 5.93 (s, 2 H), 5.40 (d, 

J = 15.2 Hz, 1 H), 5.16 (d, J = 15.0 Hz, 1 H), 4.64 (d, J = 15.0 Hz, 1 H), 4.12 (d, J = 15.2 

Hz, 1 H), 3.39 (ddt, J = 8.4, 6.1, 4.2 Hz, 1 H), 3.273.11 (m, 2 H), 2.66 (dd, J = 13.7, 6.4 

Hz, 1 H), 2.39 (dd, J = 13.7, 8.4 Hz, 1 H), 1.681.62 (m, 2 H); 13C NMR (125 MHz, CDCl3) 

 156.7, 147.9, 146.6, 136.3, 136.2, 130.4, 128.9, 128.3, 128.2, 128.1, 128.0, 122.0, 

117.7, 109.1, 108.6, 101.1, 56.2, 54.5, 53.7, 42.8, 37.9, 24.6; IR (film) 2162, 1525 cm-1; 

MS (ESI+) 439.2124 (439.2129 calcd for C27H26N4O2, M + H+). 

 

(E)-N-{1,3-Dibenzyl-4-[3-(4-methoxyphenyl)allyl]tetrahydropyrimidin-2-[1H]-

ylidene}cyanamide (3-8j). The general procedure A was employed for the coupling of 

(E)-1-(2-bromovinyl)-4-methoxybenzene (47.9 mg, 0.225 mmol) with 1,3-dibenzyl-1-(but-

3-en-1-yl)-2-cyanoguanidine (3-6c) (47.8 mg, 0.15 mmol). This procedure afforded 64 mg 
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(95%) of the title compound as a pale yellow, viscous oil. 1H NMR (500 MHz, CDCl3)  

7.407.28 (m, 10 H), 7.257.20 (m, 2 H), 6.866.81 (m, 2 H), 6.22 (d, J = 15.7 Hz, 1 H), 

5.865.76 (m, 1 H), 5.51 (d, J = 15.3 Hz, 1 H), 5.09 (d, J = 15.0 Hz, 1 H), 4.67 (d, J = 15.1 

Hz, 1 H), 4.36 (d, J = 15.3 Hz, 1 H), 3.80 (s, 3 H), 3.393.35 (m, 1 H), 3.213.13 (m, 2 H), 

2.422.37 (m, 1 H), 2.252.14 (m, 1 H), 1.831.68 (m, 2 H); 13C NMR (125 MHz, CDCl3) 

 159.3, 157.0, 136.5, 136.2, 133.4, 129.4, 128.9, 128.8, 128.3, 128.1, 128.0, 127.9, 

127.3, 117.8, 55.3, 54.8, 54.4, 53.5, 24.7, 35.5, 25.2; IR (film) 2933, 2164, 1510 cm-1; MS 

(ESI+) 451.2490 (451.2492 calcd for C29H30N4O, M + H+). 

NN

N

Bn Bn

CN

 

N-(1,3,4-Tribenzyl-5-methylimidazolidin-2-ylidene)cyanamide (3-8k). The general 

procedure A was employed for the coupling of bromobenzene (47.1 mg, 0.30 mmol) with 

1,3-dibenzyl-1-(but-3-en-2-yl)-2-cyanoguanidine (3-6d) (63.7 mg, 0.20 mmol). This 

procedure afforded 56 mg (71%) of the title compound as a pale yellow, viscous oil. This 

compound was obtained as a 1.5:1 mixture of diastereomers as judged by 1H NMR 

analysis. Data are for the mixture. 1H NMR (400 MHz, CDCl3)  7.427.17 (m, 24 H), 7.11 

(dd, J = 7.4,2.0 Hz, 2 H), 7.077.01 (m, 2 H), 6.866.79 (m, 2 H), 5.41 (d, J = 15.5 Hz, 1 

H), 5.395.32 (m, 2 H), 5.24 (d, J = 15.4 Hz, 1 H), 4.194.03 (M, 3 H), 3.883.74 (m, 2 

H), 3.603.46 (m, 1 H), 3.263.13 (m, 1 H), 3.00 (dd, J = 14.2, 6.7 Hz, 1 H), 2.87 (dd, J = 

13.6, 4.3 Hz, 1 H), 2.76 (dd, J = 14.2, 7.9 Hz, 1 H), 2.42 (dd, J = 13.6, 7.9 Hz, 1 H), 1.14 

(d, J = 6.6 Hz, 3 H), 0.76 (d, J = 5.9 Hz, 3 H); 13C NMR (125 MHz, CDCl3)  158.6, 157.6, 
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136.7, 136.0, 135.8, 135.7, 135.3, 129.2, 129.0, 128.9, 128.8, 128.2, 128.1, 128.1, 128.0, 

127.9, 127.9, 127.82, 127.8, 127.0, 116.8, 116.5, 63.2, 59.6, 55.3, 54.4, 47.7, 47.4, 46.8, 

46.2, 38.2, 33.7, 18.6, 12.3; IR (film) 2171, 1592 cm-1; MS (ESI+) 395.2228 (395.2230 

calcd for C26H26N4, M + H+). 

 

N-(1,3,4-Tribenzyl-6-phenyltetrahydropyrimidin-2-[1H]-ylidene)cyanamide (3-8l). 

The general procedure A was employed for the coupling of bromobenzene (35.3 mg, 

0.225 mmmol) with 1,3-dibenzyl-2-cyano-1-(1-phenylbut-3-en-1-yl)guanidine (3-6e) (59.2 

mg, 0.15 mmol). This procedure afforded 60 mg (85%) of the title compound as a pale 

yellow solid, m.p. 68–75 °C. This compound was obtained as a 1.7:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the mixture. 1H NMR (400 

MHz, CDCl3)  7.487.25 (m, 10 H), 7.257.11 (m, 6 H), 6.906.84 (d, J = 6.8 Hz, 2 H), 

6.686.60 (m, 2 H), 5.855.67 (m, 3 H), 5.36 (d, J = 14.9 Hz, 1 H), 4.554.40 (m, 2 H), 

4.34 (dd, J = 11.4, 6.6 Hz, 1 H), 3.97 (d, J = 15.7 Hz, 1 H), 3.85 (t, J = 15.4 Hz, 1 H), 3.57 

(dq, J = 10.2, 5.1 Hz, 1 H), 3.36 (dp, J = 11.0, 3.8 Hz, 1 H), 2.58 (dd, J = 13.5, 7.6 Hz, 1 

H), 2.392.33 (m, 2 H), 2.061.92 (m, 3 H), 1.88 (ddd, J = 14.0, 6.7, 3.1 Hz, 1 H), 1.67 

(ddd, J = 14.0, 11.4, 4.6 Hz, 1 H); 13C NMR (100 MHz, CDCl3)  158.3, 157.3, 139.6, 

139.5, 137.0, 136.9, 136.6, 136.0, 135.8, 129.4, 129.3, 129.2, 129.0, 128.91, 128.86, 

128.84, 128.77, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 127.84, 127.78, 127.7, 127.4, 

127.0, 126.83, 126.80, 126.3, 117.8, 117.1, 58.2, 56.6, 56.5, 55.2, 54.2, 52.1, 51.8, 51.5, 
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38.3, 36.1, 33.2; IR (film) 2165, 1515 cm-1; MS (ESI+) 471.2542 (471.2543 calcd for 

C32H30N4, M + H+). 

 

N-(2,3-Dibenzylhexahydropyrrolo[1,2-c]pyrimidin-1-[2H]-ylidene)cyanamide (3-

8m). The general procedure A was employed for the coupling of bromobenzene (47.1 

mg, 0.30 mmol) with 2-allyl-N-benzyl-N'-cyanopyrrolidine-1-carboximidamide (3-6f) (58.0 

mg, 0.22 mmol). This procedure afforded 72 mg (97%) of the title compound as a pale 

yellow solid, m.p. 52–55 °C. This compound was obtained as a 2:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the mixture. 1H NMR (500 

MHz, CDCl3)  7.427.17 (m, 7 H), 7.097.05 (m, 1 H), 6.976.91 (m, 2 H), 5.535.44 (m, 

2 H), 4.444.32 (m, 2 H), 4.154.13 (m, 2 H), 3.95 (td, J = 10.4, 7.4 Hz, 1 H), 3.753.66 

(m, 2 H), 3.53 (dtd, J = 10.1, 5.0, 1.6 Hz, 1 H), 3.443.35 (m, 3 H), 3.24 (dd, J = 13.2, 3.9 

Hz, 1 H), 3.12 (dd, J = 13.8, 4.8 Hz, 1 H), 2.62 (dd, J = 13.7, 9.9 Hz, 1 H), 2.43 (dd, J = 

13.2, 9.6 Hz, 1 H), 2.14 (dtd, J = 12.1, 6.2, 2.2 Hz, 1 H), 2.112.06 (m, 2 H), 1.981.82 

(m, 2 H), 1.53 (dq, J = 13.1, 6.8 Hz, 1 H), 1.501.42 (m, 1 H), 1.37 (dt, J = 13.3, 11.2 Hz, 

1 H), 1.301.17 (m, 1 H); 13C NMR (125 MHz, CDCl3)  157.9, 154.1, 137.3, 137.0, 136.9, 

136.8, 129.0, 128.9, 128.8, 128.7, 128.6, 127.9, 127.8, 127.7, 127.6, 127.0, 126.9, 118.4, 

55.4, 55.2, 54.8, 54.0, 51.2, 50.9, 49.1, 49.0, 39.8, 38.9, 35.3, 32.4, 31.5, 29.1, 23.8, 23.3; 

IR (film) 2163, 1512 cm-1; MS (ESI+) 345.2072 (345.2074 calcd for C22H24N4, M + H+). 
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(4S,4’R)-N-{1,3-dibenzyl-4-[(4-chlorophenyl)(phenyl)methyl]imidazolidin-2-

ylidene}cyanamide (3-8n). The general procedure A was employed for the coupling of 

4-bromochlorobenzene (43 mg, 0.225 mmol) with 1,3-dibenzyl-1-cinnamyl-2-

cyanoguanidine (3-6g) (57.1 mg, 0.15 mmol). This procedure afforded 18 mg (24%) of 

the title compound as a pale yellow solid, m.p. 59–63 °C. This compound was obtained 

as a >20:1 mixture of diastereomers as judged by 1H NMR analysis; data are for the major 

diastereomer. 1H NMR (400 MHz, CDCl3)  7.347.26 (m, 9 H), 7.227.17 (m, 2 H), 

7.177.07 (m, 4 H), 7.056.98 (m, 2 H), 6.936.86 (m, 2 H), 5.27 (d, J = 16.0 Hz, 1 H), 

4.654.49 (m, 2 H), 4.224.17 (m, 1 H), 4.03 (d, J = 7.9 Hz, 1 H), 3.45 (t, J = 9.9 Hz 1 H), 

3.32 (d, J = 16.0 Hz, 1 H), 3.01 (dd, J = 10.2, 4.3 Hz, 1 H); 13C NMR (125 MHz, CDCl3)  

158.9, 139.7, 138.1, 135.9, 135.1, 133.3, 129.6, 129.2, 129.0, 128.9, 128.4, 128.1, 128.1, 

128.0, 127.8, 127.7, 116.4, 57.6, 54.2, 49.2, 49.1, 48.4 (one carbon signal is absent due 

to incidental equivalence); IR (film) 2172, 1598 cm-1; MS (ESI+) 491.1992 (491.1997 

calcd for C31H27ClN4, M + H+). 

 

4-Methyl-N-(1,3,4-tribenzylimidazolidin-2-ylidene)benzenesulfonamide (3-9a). The 

general procedure B was employed for the coupling of phenyl trifluoromethanesulfonate 
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(101.8 mg, 0.45 mmol) with N-{[allyl(benzyl)amino][benzylamino]methylene}-4-

methylbenzenesulfonamide (3-7a) (134.3 mg, 0.30 mmol). This procedure afforded 140 

mg (92%) of the title compound as a pale yellow solid, m.p. 102–104 °C. 1H NMR (400 

MHz, CDCl3)  7.917.83 (m, 2 H), 7.397.28 (m, 6 H), 7.287.14 (m, 9 H), 6.896.81 (m, 

2 H), 5.29 (d, J = 15.3 Hz, 1 H), 4.77 (d, J = 15.1 Hz, 1 H), 4.53 (d, J = 15.1 Hz, 1 H), 4.17 

(d, J = 15.3 Hz, 1 H), 3.713.65 (m, 1 H), 3.23 (t, J = 9.9 Hz, 1 H), 3.032.89 (m, 2 H), 

2.51 (dd, J = 13.6, 8.8 Hz, 1 H), 2.36 (s, 3 H); 13C NMR (125 MHz, CDCl3)  156.2, 142.9, 

141.1, 136.0, 135.5, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.3, 128.2, 127.9, 127.8, 

127.0, 125.8, 55.5, 50.8, 48.8, 48.7, 38.3, 21.4; IR (film) 2922, 1562 cm-1; MS (ESI+) 

510.2204 (510.2210 calcd for C31H31N3O2S, M + H+). 

 

N-[1,3-Dibenzyl-4-(4-chlorobenzyl)imidazolidin-2-ylidene]-4-

methylbenzenesulfonamide (3-9b). The general procedure B was employed for the 

coupling of 4-chlorophenyl trifluoromethanesulfonate (78.2 mg, 0.30 mmol) with N-

{[allyl(benzyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7a) (86.7 

mg, 0.20 mmol). This procedure afforded 76.2 mg (70%) of the title compound as a pale 

yellow solid, m.p. 151–153 °C. 1H NMR (400 MHz, CDCl3)  7.85 (d, J = 8.4 Hz, 2 H), 

7.397.10 (m, 14 H), 6.89 (d, J = 8.4 Hz, 2 H), 5.33 (d, J = 15.4 Hz, 1 H), 4.80 (d, J = 15.0 

Hz, 1 H), 4.40 (d, J = 15.0 Hz, 1 H), 4.19 (d, J = 15.4 Hz, 1 H), 3.65 (tt, J = 9.5, 4.8 Hz, 1 

H), 3.23 (t, J = 9.9 Hz, 1 H), 2.93 (dd, J = 10.3, 5.1 Hz, 1 H), 2.83 (dd, J = 13.7, 4.5 Hz, 1 

H), 2.53 (dd, J = 13.7, 8.1 Hz, 1 H), 2.36 (s, 3 H); 13C NMR (100 MHz, CDCl3)  156.1, 
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142.8, 141.2, 135.8, 135.5, 133.7, 133.0, 130.6, 129.0, 128.9, 128.7, 128.2, 128.0, 127.9, 

125.8, 55.1, 50.5, 49.0, 48.3, 37.4, 21.3 (two carbon signals are absent due to incidental 

equivalence); IR (film) 2923, 1561 cm-1; MS (ESI+) 544.1814 (544.1820 calcd for 

C31H30ClN3O2S, M + H+). 

 

N-[1,3-Dibenzyl-4-(naphthalen-2-ylmethyl)imidazolidin-2-ylidene]-4-

methylbenzenesulfonamide (3-9c). The general procedure B was employed for the 

coupling of naphthalen-2-yl trifluoromethanesulfonate (139 mg, 0.50 mmol) with N-

{[allyl(benzyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7a) 

(145.7 mg, 0.34 mmol). This procedure afforded 151.6 mg (80%) of the title compound 

as a pale yellow solid, m.p. 149–152 °C. 1H NMR (400 MHz, CDCl3)  7.86 (d, J = 8.4 Hz, 

2 H), 7.827.75 (m, 1 H), 7.69 (dd, J = 9.0, 2.6 Hz, 2 H), 7.487.43 (m, 2 H), 7.407.30 

(m, 3 H), 7.07.19 (m, 6 H), 7.17 (d, J = 8.0 Hz, 2 H), 7.147.08 (m, 2 H), 6.98 (dd, J = 

8.4, 1.7 Hz, 1 H), 5.34 (d, J = 15.4 Hz, 1 H), 4.83 (d, J = 15.0 Hz, 1 H), 4.42 (d, J = 15.1 

Hz, 1 H), 4.26 (d, J = 15.4 Hz, 1 H), 3.78 (tt, J = 9.3, 4.7 Hz, 1 H), 3.22 (t, J = 9.9 Hz, 1 

H), 3.212.99 (m, 2 H), 2.68 (dd, J = 13.6, 8.7 Hz, 1 H), 2.35 (s, 3 H); 13C NMR (100 MHz, 

CDCl3)  156.2, 142.9, 141.1, 136.0, 135.7, 133.3, 132.8, 132.3, 128.9, 129.0, 128.9, 

128.7, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 127.5, 127.1, 126.3, 125.9, 125.8, 

55.3, 50.6, 48.8, 48.4, 38.2, 21.3; IR (film) 2921, 1559 cm-1; MS (ESI+) 560.2358 

(560.2366 calcd for C35H33N3O2S, M + H+). 
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N-[1,3-dibenzyl-4-(2-methylbenzyl)imidazolidin-2-ylidene]-4-

methylbenzenesulfonamide (3-9d). The general procedure B was employed for the 

coupling of o-tolyl trifluoromethanesulfonate (108.1 mg, 0.45 mmol) with N-

{[allyl(benzyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7a) (130 

mg, 0.30 mmol). This procedure afforded 122 mg of the title compound as a pale yellow 

solid, m.p. 130–133 °C. 1H NMR (400 MHz, CDCl3)  7.87 (d, J = 8 Hz, 2 H), 7.35–7.24 

(m, 8 H), 7.18 (d, J = 7.6 Hz, 4 H), 7.09–6.97 (m, 3 H), 6.64 (d, J = 7.6 Hz, 1 H), 5.26 (d, 

J = 15.2 Hz, 1 H), 4.90 (d, J = 14.8 Hz, 1 H), 4.51 (d, J = 15.2 Hz, 1 H), 4.09 (d, J = 15.2 

Hz, 1 H), 3.65 (tt, 9.6, 4.9 Hz, 1 H), 3.21 (t, 9.8 Hz, 1 H), 3.00 (m, 2 H), 2.42 (dd, J = 13.6, 

9.6 Hz, 1 H), 2.34 (s, 3 H), 1.95 (s, 3 H); 13C NMR (100 MHz, CDCl3)  156.2, 142.9, 

141.2, 136.3, 136.0, 135.9, 134.0, 130.6, 130.0, 129.0, 128.8, 128.5, 128.2, 128.0, 127.9, 

127.1, 126.2, 125.8, 54.1, 50..8, 48.9, 48.8, 36.0, 21.4, 19.2 (one carbon signal is absent 

due to incidental equivalence); IR (film) 2922, 1562 cm-1; MS (ESI+) 524.2365 (524.2366 

calcd for C32H33N3O2S, M + H+). 

 

4-Methyl-N-(1,3,4-tribenzyl-4-methylimidazolidin-2-ylidene)benzenesulfonamide (3-

9e). The general procedure B was employed for the coupling of phenyl 
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trifluoromethanesulfonate (67.9 mg, 0.30 mmol) with N-{[benzyl(2-

methylallyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7b) (89.5 

mg, 0.20) except using 1 mL benzotrifluoride (0.1 M) as solvent. This procedure afforded 

89.8 mg (86%) of the title compound as a pale yellow solid, m.p. 129–131 °C. 1H NMR 

(500 MHz, CDCl3)  7.73 (d, J = 7.9 Hz, 2 H), 7.39–7.31 (m, 5 H), 7.31–7.15 (m, 8 H), 

7.11 (d, J = 7.9 Hz, 2 H), 6.74 (dd, J = 7.3, 1.9 Hz, 2 H), 5.02 (d, J = 14.8 Hz, 1 H), 4.75 

(d, J = 16.0 Hz, 1 H), 4.64 (d, J = 14.9 Hz, 1 H), 4.31 (d, J = 16.0 Hz, 1 H), 3.32 (d, J = 

10.3 Hz, 1 H), 2.93 (d, J = 10.3 Hz, 1 H), 2.61 (q, J = 13.4 Hz, 2 H), 2.33 (s, 3 H), 1.11 (s, 

3 H); 13C NMR (125 MHz, CDCl3)  155.5, 142.8, 141.0, 138.3, 133.0, 135.1, 130.1, 129.0, 

128.9, 128.8, 128.5, 128.4, 127.9, 127.4, 27.2, 127.1, 125.8, 61.0, 55.1, 51.7, 45.0, 43.4, 

24.0, 21.3; IR (film) 2927, 1564 cm-1; MS (ESI+) 524.2362 (524.2366 calcd for 

C32H33N3O2S, M + H+). 

 

4-Methyl-N-[1,3,4-tribenzyltetrahydropyrimidin-2(1H)-ylidene]benzenesulfonamide 

(3-9f). The general procedure B was employed for the coupling of phenyl 

trifluoromethanesulfonate (101.8 mg, 0.45 mmol) with N-[(benzyl(but-3-en-1-

yl)amino](benzylamino)methylene)-4-methylbenzenesulfonamide (3-7c) (134.3 mg, 0.30 

mmol). This procedure afforded 133.2 mg (85%) of the title compound as a pale yellow 

solid, m.p. 141–143 °C. 1H NMR (400 MHz, CDCl3)  7.79 (d, J = 8.4 Hz, 2 H), 7.407.16 

(m, 11 H), 7.12 (dd, J = 7.5, 1.9 Hz, 2 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.94 (d, J = 8.4 Hz, 2 

H), 5.40 (d, J = 15.2 Hz, 1 H), 5.19 (d, J = 14.8 Hz, 1 H), 4.52 (d, J = 14.8 Hz, 1 H), 3.95 
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(d, J = 15.2 Hz, 1 h), 3.483.37 (m, 1 H), 3.233.11 (m, 2 H), 2.91 (dd, J = 13.6, 6.2 Hz, 

1 H), 2.48 (dd, J = 13.6, 8.8 Hz, 1 H), 2.27 (s, 3 H), 1.671.47 (m, 2 H); 13C NMR 

(100 MHz, CDCl3)  155.1, 143.5, 140.5, 137.0, 136.3, 136.2, 129.0, 128.9, 128.8, 128.7, 

128.6, 128.5, 128.2, 128.0, 127.8, 126.9, 125.5, 56.1, 54.9, 54.3, 42.2, 38.0, 24.4, 21.3; 

IR (film) 3028, 1537 cm-1; MS (ESI+) 524.2360 (524.2366 calcd for C32H33N3O2S, M + 

H+). 

 

N-[4-(4-Benzoylbenzyl)-1,3-dibenzyltetrahydropyrimidin-2-[1H]-ylidene]-4-

methylbenzenesulfonamide (3-9g). The general procedure B was employed for the 

coupling of 4-benzoylphenyl trifluoromethanesulfonate (148.6 mg, 0.45 mmol) with N-

[(benzyl(but-3-en-1-yl)amino](benzylamino)methylene)-4-methylbenzenesulfonamide 

(7c) (134.3 mg, 0.30 mmol). This procedure afforded 183.0 mg (96%) of the title 

compound as a pale yellow solid, m.p. 70–73 °C. 1H NMR (400 MHz, CDCl3)  7.847.76 

(m, 2 H), 7.767.65 (m, 4 H), 7.56 (t, J = 7.7 Hz, 2 H), 7.397.20 (m, 8 H), 7.197.11 (m, 

2 H), 7.07 (dd, J = 8.3, 2.6 Hz, 4 H), 5.41 (d, J = 15.1 Hz, 1 H), 5.15 (d, J = 14.8 Hz, 1 H), 

4.50 (d, J = 14.8 Hz, 1 H), 4.01 (d, J = 15.2 Hz, 1 H), 3.513.41 (m, 1 H), 3.253.10 (m, 

2 H), 2.98 (dd, J = 13.6, 6.3 Hz, 1 H), 2.56 (dd, J = 13.5, 8.5 Hz, 1 H), 2.26 (s, 3 H), 

1.711.49 (m, 2 H); 13C NMR (100 MHz, CDCl3)  196.1, 155.2, 143.4, 141.9, 140.7, 

137.4, 136.3, 136.2, 136.1, 132.5, 130.6, 129., 129.0, 128.9, 128.8, 128.5, 128.3, 128.2, 

128.1, 128.0, 125.5, 56.0, 54.7, 54.6, 42.1, 38.1, 24.7, 21.3; IR (film) 2922, 1536 cm-1; 

MS (ESI+) 628.2622 (628.2628 calcd for C39H37N3O3S, M + H+). 
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N-[1,3-Dibenzyl-4-(4-chlorobenzyl)-5-methylimidazolidin-2-ylidene]-4-

methylbenzenesulfonamide (3-9h). The general procedure B was employed for the 

coupling of 4-chlorophenyl trifluoromethanesulfonate (117.3 mg, 0.45 mmol) with N-

{[benzyl(but-3-en-2-yl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide 

(7d) (134.3 mg, 0.30 mmol). This procedure afforded 106 mg (63%) of the title compound 

as a pale yellow solid, m.p. 47–50 °C. This compound was obtained as a 3:1 mixture of 

diastereomers as judged by 1H NMR analysis; 1H data are for the major diastereomer, 

13C data are for the mixture. 1H NMR (400 MHz, C6D6)  8.21 (d, J = 8.4 Hz, 2 H), 7.15–

7.05 (m, 6 H), 7.04–6.98 (m, 4 H), 6.94–6.90 (m, 2 H), 6.80–6.75 (m, 2 H), 6.37 (d, J = 

8.4 Hz, 2 H), 5.72 (d, J = 15.6 Hz, 1 H), 5.29 (d, J = 15.3 Hz, 1 H), 3.85 (d, J = 15.4 Hz, 1 

H), 3.69 (d, J = 15.3 Hz, 1 H), 2.79 (dt, J = 7.6, 4.4 Hz, 1 H), 2.71 (qd, J = 6.2, 3.7 Hz, 1 

H), 2.40 (dd, J = 14.0, 7.8 Hz, 1 H), 2.18–1.96 (m, 1 H), 1.82 (s, 3 H), 0.33 (d, J = 6.3 Hz, 

3 H); 13C NMR (125 MHz, CDCl3)  157.1, 155.1, 143.0, 141.2, 141.1, 136.2, 136.0, 135.9, 

135.8, 135.4, 133.8, 132.9, 132.8, 130.8, 130.6, 129.1, 129.0, 128.9, 128.9, 128.9, 128.8, 

128.7, 128.7, 128.5, 128.3, 128.1, 128.1, 128.0, 127.9, 127.8, 125.8, 125.7, 62.3, 59.3, 

54.2, 53.6, 20.4, 19.3, 47.8, 47.0, 37.2, 33.5, 21.4, 18.6, 12.4; IR (film) 2924, 1557 cm-1; 

MS (ESI+) 558.1977 (558.1977 calcd for C32H32ClN3O2S, M + H+). 
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4-Methyl-N-[1,3,4-tribenzyl-6-phenyltetrahydropyrimidin-2(1H)-

ylidene]enzenesulfonamide (3-9i). The general procedure B was employed for the 

coupling of phenyl trifluoromethanesulfonate (101.8 mg, 0.45 mmol) with N-{[benzyl(1-

phenylbut-3-en-1-yl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-

7e) (157 mg, 0.30 mmol). This procedure afforded 150.7 mg (84%) of the title compound 

as a pale yellow solid, m.p. 76–80 °C. This compound was obtained as a 2:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the mixture. 1H NMR (500 

MHz, CDCl3)  7.917.87 (m, 4 H), 7.517.14 (m, 33 H), 7.147.03 (m, 7 H), 6.906.84 

(m, 2 H), 6.536.43 (m, 2 H), 5.89 (d, J = 15.3 Hz, 1 H), 5.84 (d, J = 14.8 Hz, 1 H), 5.71 

(d, J = 15.4 Hz 1 H), 5.23 (d, J = 15.0 Hz, 1 H), 4.47 (dd, J = 6.4, 4.5 Hz, 1 H), 4.27 (dd, 

J = 11.7, 6.7 Hz, 1 H), 4.09 (d, J = 15.5 Hz, 1 H), 3.98 (d, J = 14.8 Hz, 1 H), 3.92 (d, J = 

15.3 Hz, 1 H), 3.83 (d, J = 15.0 Hz, 1 H), 3.533.43 (m, 1 H), 3.36 (tq, J = 7.6, 4.1, 3.5 

Hz, 1 H), 3.00 (dd, J = 13.6, 4.6 Hz, 1 H), 2.74 (dd, J = 13.5, 7.2 Hz, 1 H), 2.43 (dd, J = 

13.6, 8.2 Hz, 1 H), 2.37 (s, 3 H), 2.33-2.28 (m, 1 H), 2.27 (s, 3 H), 1.95 (dt, J = 14.1, 4.2 

Hz, 1 H), 1.861.78 (m, 2 H), 1.711.62 (m, 1 H); 13C NMR (125 MHz, CDCl3)  156.9, 

155.6, 143.7, 143.4, 140.7, 139.2, 137.0, 136.8, 136.6, 136.0, 135.99, 129.4, 129.3, 

129.2, 129.1, 129.0, 128.94, 128.87, 128.85, 128.79, 128.71, 128.6, 128.5, 128.3, 128.1, 

128.0, 127.9, 127.8, 127.7, 127.0, 126.9, 126.8, 126.7, 125.6, 56.8, 56.4, 55.2, 54.5, 54.4, 

54.0, 52.7, 38.1, 36.0, 31.4, 21.4, 21.3; IR (film)  cm-1; MS (ESI+) 600.2673 (600.2679 

calcd for C38H37N3O2S, M + H+). 
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N-[2,3-Dibenzylhexahydropyrrolo(1,2-c)pyrimidin-1(2H)-ylidene]4-

methylbenzenesulfonamide (3-9j). The general procedure B was employed for the 

coupling of phenyl trifluoromethanesulfonate (101.8 mg, 0.45 mmol) with 2-allyl-N-benzyl-

N'-tosylpyrrolidine-1-carboximidamide (3-7f) (119.3 mg, 0.30 mmol). This procedure 

afforded 141 mg (99%) of the title compound as a pale yellow solid, m.p. 55–57 °C. This 

compound was obtained as a 2:1 mixture of diastereomers as judged by 1H NMR 

analysis; data are for the mixture. 1H NMR (400 MHz, CDCl3)  7.797.73 (m, 4 H), 

7.407.17 (m, 15 H), 7.177.09 (m, 5 H), 7.097.03 (m, 1 H), 6.936.87 (m, 3 H), 5.34 (d, 

J = 15.6 Hz, 1 H), 5.15 (d, J = 15.3 Hz, 1 H), 4.25 (d, J = 15.6 Hz, 1 H), 4.214.06 (m, 2 

H), 4.01 (dt, J = 11.8, 7.2 Hz, 1 H), 3.883.68 (m, 2 H), 3.553.45 (m, 1 H), 3.403.28 (m, 

2 H), 3.10 (dd, J = 13.7, 5.3 Hz, 1 H), 2.65 (dd, J = 13.7, 9.5 Hz, 1 H), 2.442.35 (m, 1 

H), 2.33 (s, 6 H), 2.252.16 (m, 1 H), 2.162.06 (m, 1 H), 2.031.72 (m, 8 H), 1.631.47 

(m, 2 H), 1.40 (q, J = 12.3, 11.9 Hz, 1 H), 1.20 (td, J = 12.9, 5.4 Hz, 1 H); 13C NMR 

(100 MHz, CDCl3)  154.2, 144.1, 143.7, 140.6, 140.3, 137.2, 137.0, 136.9, 129.1, 128.9, 

128.89, 128.87, 128.79, 128.65, 128.6, 127.9, 127.8, 127.63, 127.6, 127.0, 126.8, 125.5, 

125.4, 55.2, 55.0, 54.5, 53.6, 51.5, 51.48, 51.5, 51.2, 39.7, 39.1, 35.5, 32.5, 31.5, 28.8, 

23.1, 23.08, 21.3; IR (film) 2922, 1538 cm-1; MS (ESI+) 474.2204 (474.2210 calcd for 

C28H31N3O2S, M + H+). 
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(4S,4’R)-N-{1,3-Dibenzyl-4-[(4-chlorophenyl)(phenyl)methyl]imidazolidin-2-

ylidene}-4-methylbenzenesulfonamide (3-9k). The general procedure B was employed 

for the coupling of 4-chlorophenyltrifluoromethanesulfonate (78.2 mg, 0.30 mmol) with N-

{-[benzyl(cinnamyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7g) 

(101.9 mg, 0.20 mmol). This procedure afforded 94 mg (76%) of the title compound as a 

pale yellow solid, m.p. 70–75 °C. This compound was obtained as a >20:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the major diastereomer. 1H 

NMR (500 MHz, CDCl3)  7.867.80 (m, 2 H), 7.377.23 (m, 9 H), 7.207.05 (m, 8 H), 

7.036.96 (m, 2 H), 6.916.83 (m, 2 H), 5.23 (d, J = 15.7 H, 1 H), 4.69 (d, J = 15.0 Hz, 1 

H), 4.34 (d, J = 15.0 Hz, 1 H), 4.15-4.10 (m, 1 H), 3.96 (d, J = 8 Hz, 1 H), 3.44 (t, J = 10.1 

Hz, 1 H), 3.32 (d, J = 15.7 Hz, 1 H), 2.96 (dd, J = 10.6, 3.6 Hz, 1 H), 2.34 (s, 3 H); 13C 

NMR (125 MHz, CDCl3)  156.8, 142.8, 141.2, 139.8, 138.1, 136.3, 135.5, 133.1, 129.9, 

129.0, 128.8, 128.7, 128.6, 128.3, 127.9, 127.8, 127.6, 125.8, 57.3, 54.1, 50.4, 50.3, 48.3, 

21.4; IR (film) 2922, 1564 cm-1; MS (ESI+) 620.2128 (620.2133 calcd for C37H34ClN3O2S, 

M + H+). 
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(4S,4’R)-N-(1,3-Dibenzyl-4-[(4-methoxyphenyl)(phenyl)methyl]imidazolidin-2-

ylidene)-4-methylbenzenesulfonamide (3-9l). The general procedure B was employed 

for the coupling of 4-methoxyphenyltrifluoromethanesulfonate (77 mg, 0.30 mmol) with N-

{-[benzyl(cinnamyl)amino][benzylamino]methylene}-4-methylbenzenesulfonamide (3-7g) 

(101.9 mg, 0.20 mmol). This procedure afforded 101 mg (82%) of the title compound as 

a pale yellow solid, m.p. 65–69 °C. This compound was obtained as a 10:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the major diastereomer. 1H 

NMR (500 MHz, CDCl3)  7.83 (d, J = 8.3 Hz, 2 H), 7.35–7.20 (m, 9 H), 7.20–7.08 (m, 6 

H), 7.00–6.94 (m, 2 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.73 (d, J = 8.8 Hz, 2 H), 5.17 (d, J = 16 

Hz, 1 H), 4.64 (d, J = 15 Hz, 1 H), 4.44 (d, J = 15.0 Hz, 1 H), 4.10 (ddd, J = 9.6, 8.3, 3.6 

Hz, 1 H), 3.91 (d, J = 8.5 Hz, 1 H), 3.74 (s, 3 H), 3.42 (t, J = 10 Hz, 1 H), 3.2 (d, J = 15.5 

Hz, 1 H), 2.99 (dd, J = 10.6, 3.7 Hz, 1 H), 2.34 (s, 3 H); 13C NMR (100 MHz, CDCl3)  

158.5, 17.0, 142.9, 141.1, 140.7, 136.5, 135.7, 131.8, 129.4, 128.9, 128.8, 128.7, 128.6, 

128.5, 128.3, 127.9, 127.8, 127.7, 127.3, 125.8, 114.1, 57.6, 55.2, 54.4, 50.4, 50.2, 48.7, 

21.3; IR (film) 3027, 2248, 1561 cm-1; MS (ESI+) 616.2624 (616.2628 calcd for 

C38H37N3O3S, M + H+). 
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(Z)-4-methoxy-2,3,6-trimethyl-N-[1,3,4-tribenzyltetrahydropyrimidin-2(1H)-

ylidene]benzenesulfonamide (3-21). The general procedure B was employed for the 

coupling of phenyltrifluoromethanesulfonate (68 mg, 0.30 mmol) with (E)-N-[{benzyl(but-

3-en-1-yl)amino}{benzylamino}methylene]-4-methoxy-2,3,6-

trimethylbenzenesulfonamide (3-20) (101.1 mg, 0.20 mmol). This procedure afforded 110 

mg (95%) of the title compound as a pale yellow solid, m.p. 62–65 °C. 1H NMR (500 MHz, 

CDCl3)  7.40–7.17 (m, 11 H), 7.12 (d, J = 6.5 Hz, 2 H), 6.95 (d, J = 6.5 Hz, 2 H), 6.41 (s, 

1 H), 5.34 (d, J = 15.1 Hz, 1 H), 5.05 (d, J = 14.8 Hz, 1 H), 4.55 (d, J = 14.8 Hz, 1 H), 4.06 

(d, J = 15.2 Hz, 1 H), 3.75 (s, 3 H), 3.50–3.37 (m, 1 H), 3.25–3.14 (m, 2 H), 2.96 (dd, J = 

13.6, 5.8 Hz, 1 H), 2.73 (s, 3 H), 2.67 (s, 3 H), 2.50 (dd, J = 13.6, 9.1 Hz, 1 H), 2.06 (s, 3 

H), 1.68–1.50 (m, 2 H); 13C NMR (125 MHz, CDCl3)  157.4, 155.0, 137.4, 137.1, 137.0, 

136.7, 136.5, 135.0, 129.0, 128.8, 128.6, 128.5, 125.4, 128.1, 127.8, 127.7, 126.9, 124.2, 

111.5, 55.8, 55.3, 55.1, 54.4, 42.2, 38.1, 24.4, 24.2, 18.5, 11.9; IR (film) 2936, 1494, 1113 

cm-1; MS (ESI+) 582.283 (582.2785 calcd for C35H39N3O3S, M + H+). 

 

N-[4-(4-Benzoylbenzyl)-1,3-dimethylimidazolidin-2-ylidene]-4-

methylbenzenesulfonamide (3-24). The general procedure B was employed for the 
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coupling of 4-benzoylphenyl trifluoromethanesulfonate (148.6 mg, 0.45 mmol) with N-

{[allyl(methyl)amino](methylamino)methylene}-4-methylbenzenesulfonamide (3-23) (84.4 

mg, 0.3 mmol). This procedure afforded 96 mg (69%) of the title compound as a pale 

yellow solid, m.p. 53–56 °C. 1H NMR (400 MHz, CDCl3)  7.82 (d, J = 8.4 Hz, 2 H), 7.78–

7.76 (m, 4 H), 7.60–7.57 (m, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.29 (d, J = 8.4 Hz, 2 H), 7.20 

(d, J = 8.0 Hz, 2 H), 3.95–3.85 (m, 1 H), 3.51 (t, J = 9.7 Hz, 1 H), 3.19–3.13 (m, 2 H), 3.05 

(s, 3 H), 2.95 (s, 3 H), 2.92–2.80 (m, 1 H), 2.37 (s, 3 H); 13C NMR (100 MHz, CDCl3)  

196.1, 157.1, 142.9, 141.2, 140.5, 137.4, 136.6, 132.5, 130.6, 129.9, 129.2, 128.9, 128.3, 

125.7, 59.4, 52.8, 38.7, 34.4, 33.2, 21.4; IR (film) 2922.5, 1652.6, 1568.5 cm-1; MS (ESI+) 

462.1848 (462.1846 calcd for C26H27N3O3S, M + H+). 

Deprotection of Cyclic Guanidine Products 

 

1,3,4-Tribenzyltetrahydropyrimidin-2(1H)-imine hydrochloride (3-19). A scintillation 

vial containing N-[1,3,4-tribenzyltetrahydropyrimidin-2(1H)-ylidene]cyanamide (3-7f) (57 

mg, 0.145 mmol) was charged with a stir bar and purged with nitrogen. Concentrated 

hydrochloric acid (1.5 mL) was added via syringe, and the mixture was heated to 90 °C 

overnight. The reaction mixture was then cooled to rt, and was extracted with 

dichloromethane (3 x 3 mL). The combined organic layers were washed with saturated 

aqueous sodium bicarbonate then dried, filtered, and concentrated in vacuo to afford the 

title compound as a light brown foam (95%), m.p. 48–52 °C. 1H NMR (400 MHz, CDCl3) 

 7.417.12 (m, 13 H), 6.98 (d, J = 7.2 Hz, 2 H), 6.30 (s, br, 2 H), 5.27 (d, J = 16.0 Hz, 1 
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H), 5.05 (d, J = 15.9 Hz, 1 H), 4.54 (d, J = 15.9 Hz, 1 H), 4.12 (d, J = 16.0 Hz, 1 H), 

3.503.39 (m, 1 H), 3.363.29 (m, 1 H), 3.183.12 (m, 1 H), 2.93 (dd, J = 13.5, 5.6 Hz, 1 

H), 2.57 (dd, J = 13.5, 9.2 Hz, 1 H), 1.831.75 (m, 1 H), 1.671.61 (m, 1 H); 13C NMR 

(100 MHz, CDCl3)  155.9, 137.5, 137.0, 136.8, 129.0, 128.8, 128.7, 127.6, 127.58, 

127.55, 126.8, 56.0, 54.2, 52.9, 24.6, 38.2, 24.8 (two carbon signals are absent due to 

incidental equivalence); IR (film) 3062, 1572 cm-1; MS (ESI+) 370.2277 (370.2278 calcd 

for C32H33N3O2S, M + H+). 

 

1,4-Dibenzyltetrahydropyrimidin-2(1H)-imine 2,2,2-trifluoroacetate (3-22). A sample 

of (Z)-4-methoxy-2,3,6-trimethyl-N-[1,3,4-tribenzyltetrahydropyrimidin-2(1H)-

ylidene]benzenesulfonamide (3-21) (53 mg, 0.092 mmol) was dissolved in trifluoroacetic 

acid (5 mL). Methanesulfonic acid (0.27 mL, 4.2 mmol) was added slowly, followed by 

thioanisole (65 μL, 0.55 mmol). The reaction solution was stirred at 50 °C for 24 hours. 

After cooling to rt the trifluoroacetic acid was azeotroped off with toluene (3 x 5 mL). The 

crude material was dissolved in DCM (10 mL) and washed with sat. sodium bicarbonate 

solution. The organic layer was dried, filtered, and concentrated in vacuo to afford crude 

product. Purification via flash column chromatography afforded 17 mg (47%) of the 

desired product as a tan, viscous oil. 1H NMR (500 MHz, CDCl3)  8.82 (s, 1 H), 7.39 (s, 

2 H), 7.37–7.27 (m, 5 H), 7.26–7.13 (m, 5 H), 4.75–4.52 (m, 2 H), 3.65–3.60 (m, 1 H), 

3.29–3.20 (m, 2 H), 3.14 (dd, J = 13.5, 4.3 Hz, 1 H), 2.70 (dd, J = 13.5, 9.3 Hz, 1 H), 2.05 

(s, br, 1 H), 1.86–1.82 (m, 1 H), 1.66–1.60 (m, 1 H); 13C NMR (125 MHz, CDCl3)  154.3, 
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136.0, 134.1, 129.4, 129.2, 128.7, 128.4, 127.4, 127.0, 53.3, 50.5, 44.9, 41.2, 25.4; IR 

(film) 3144, 1630, 1593 cm-1; MS (ESI+) 280.1817 (280.1808 calcd for C18H21N3, M + H+). 

 

{4-[(2-Imino-1,3-dimethylimidazolidin-4-yl)methyl]phenyl}(phenyl)methanone 

hydrochloride (3-25). A sample of N-[4-(4-benzoylbenzyl)-1,3-dimethylimidazolidin-2-

ylidene]-4-methylbenzenesulfonamide (3-24) (95 mg, 0.206 mmol) was dissolved in 

trifluoroacetic acid (13 mL). Methanesulfonic acid (0.6 mL, 9.5 mmol) was added slowly, 

followed by thioanisole (146 μL, 1.24 mmol). The reaction solution was stirred at rt for 16 

hours. The trifluoroacetic acid was azeotroped off with toluene (3 x 5 mL). The crude 

material was dissolved in DCM (10 mL) and washed with HCl (6 M), followed by sat. 

sodium bicarbonate solution. The organic layer was dried, filtered, and concentrated in 

vacuo to afford crude product. Purification via flash column chromatography 

(methanol:dichloromethane = 9:91) afforded 50 mg (70%) of the desired product as a tan 

solid, m.p. 252–255 °C. 1H NMR (400 MHz, CD3OD)  7.76–7.72 (m, 4 H), 7.65–7.62 (m, 

1 H), 7.52 (t, J = 7.6 Hz, 2 H), 7.43 (d, J = 7.9 Hz, 2 H), 4.20–4.12 (m, 1 H), 3.64 (t, J = 

9.6 Hz, 1 H), 3.37 (dd, J = 9.8, 6.0 Hz, 1 H), 3.29 (s, 3 H), 3.21 (dd, J = 13.7, 4.4 Hz, 1 

H), 3.01 (s, 3 H), 2.96 (dd, J = 13.6, 7.8 Hz, 1 H), 2.81 (s, 3 H); 13C NMR (125 MHz, 

CD3OD)  196.6, 158.1, 141.1, 137.4, 136.3, 132.5, 130.1, 129.5, 129.3, 128.1, 59.9, 

52.5, 37.0, 30.7, 29.8; IR (film) 3376, 1684 cm-1; MS (ESI+) 308.1760 (308.1757 calcd for 

C19H21N3O, M + H+). 
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Assignment of relative stereochemistry for 9h 

The relative stereochemistry of 3-9h was assigned using COSY and 1D NOESY analysis. 

The coupling found in the 1D NOESY can be seen below.  
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Synthesis of deuterated substrates and products 

 

(Z)-N-benzylprop-2-en-3-d-1-amine (3-S13): A flame dried flask was cooled under a 

stream of nitrogen and charged with N-benzylprop-2-en-1-ylamine (1.00 g, 6.84 mmol) 

and diethyl ether (12 mL). The solution was cooled to -42 °C, and then n-butyl lithium 

(8.2 mmol, 2.5 M) was added slowly. After 30 minutes tert-butyl lithium (15 mmol, 1.7 M) 

was added slowly. After stirring at -42 °C for 30 minutes the reaction was transferred to 

A B 
C D E 
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an ice-water bath and allowed to stir for 1 hour. The reaction was then cooled to -78 °C, 

and deuterium oxide was added (2.5 mL, 136.8 mmol). After stirring overnight the reaction 

was cooled on an ice-water bath, and then quenched with water (15 mL). The mixture 

was extracted with diethyl ether (2 x 20 mL) and separated. The combined organic layers 

were then dried, filtered, and evaporated. The crude product was purified via flash column 

chromatography on silica gel (ethyl acetate/hexanes) to afford 0.568 g (56%) of the title 

compound as a pale yellow oil, with 84% deuterium incorporation as determined by 1H 

NMR. 1H NMR (400 MHz, CDCl3)  7.31 (d, J = 4.5 Hz, 4 H), 7.27.18 (m, 1 H), 6.035.79 

(m, 1 H), 5.225.15 (m, 1 H), 5.125.06 (m, 1 H), 3.78 (s, 3 H), 3.27 (d, 6 Hz, 2 H). 

 

(Z)-N-benzyl-2-methylprop-2-en-3-d-1-amine (3-S14). A flame dried flask was cooled 

under a stream of nitrogen and charged with N-benzylbut-3-en-2-ylamine (3-S5) (1.00 g, 

6.62 mmol) and diethyl ether (13 mL). The solution was cooled to -42 °C, and then n-butyl 

lithium (7.95 mmol, 2.5 M) was added slowly. After 30 minutes tert-butyl lithium (14.59 

mmol, 1.7 M) was added slowly. After stirring at -42 °C for 30 minutes the reaction was 

transferred to an ice-water bath and allowed to stir for 1 hour. The reaction was then 

cooled to -78 °C, and deuterium oxide was added (2.4 mL, 132.4 mmol). After stirring 

overnight the reaction was cooled on an ice-water bath, and then quenched with water 

(15 mL). The mixture was extracted with diethyl ether (2 x 20 mL) and separated. The 

combined organic layers were then dried, filtered, and evaporated. The crude product 

was purified via flash column chromatography on silica gel (ethyl acetate/hexanes) to 

afford 0.60 g (56%) of the title compound as a pale yellow oil, with 83% deuterium 
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incorporation as determined by 1H NMR. 1H NMR (CDCl3)  7.39–7.28 (m, 4 H), 7.28–

7.18 (m, 1 H), 4.90 (s, 1 H), 4.84 (s, 1 H), 3.76 (s, 2 H), 3.18 (s, 2 H), 1.76 (s, 3 H). 

 

1-[(Z)-allyl-3-d]-1,3-dibenzyl-2-cyanoguanidine (3-10). A round bottom flask was 

charged with methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.196 g, 0.96 mmol), 

ethanol (10 mL), and mercuric oxide (0.312 g, 1.44 mmol), then purged with nitrogen. 

Triethylamine (0.5 mL, 3.84 mmol) was added followed by (Z)-N-benzylprop-2-en-3-d-1-

amine (S13) (0.170 g, 1.15 mmol). The reaction mixture was then stirred at rt for 72 h. 

The mixture was filtered through celite. The celite was rinsed with acetone, and the 

solution was concentrated in vacuo. The crude product was purified via flash column 

chromatography on silica gel (ethyl acetate/hexanes to yield 0.153 g (52%) of the title 

compound as a clear, viscous oil. 1H NMR (400 MHz, CDCl3)  7.417.28 (m, 6 H), 7.24-

7.18 (m, 4 H), 5.805.72 (m, 1 H), 5.23 (d, J = 10.4 Hz, 1 H), 5.15 (d, J = 17.2 Hz, 1 H), 

4.98 (br, 1 H), 4.74 (d, J = 5.2 Hz, 2 H), 4.58 (s, 2 H), 3.95 (d, J = 5.2 Hz, 2 H); 13C NMR 

(100 MHz, CDCl3)  159.0, 137.1, 135.8, 129.0, 128.9, 128.0, 127.9, 127.7, 127.3, 118.2 

(t, J = 23.5 Hz, 117.2, 52.2, 51.4, 47.5; IR (film) 3249, 2162, 1536 cm-1; MS (ESI+) 

306.1827 (306.1823 calcd for C19H19DN4, M + H+). 
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N-{[(Z)-allyl-3-d](benzyl)amino}-benzylaminomethylene-4-

methylbenzenesulfonamide (3-11). A round bottom flask was charged with dimethyl 

tosylcarbonimidodithioate (3-S3) (0.569 g, 1.70 mmol), ethanol (17 mL), and mercuric 

oxide (0.548 g, 2.53 mmol), then purged with nitrogen. Triethylamine (0.95 mL, 

6.75 mmol) was added followed by (Z)-N-benzylprop-2-en-3-d-1-amine (3-S13) (0.300 g, 

2.0 mmol). The reaction mixture was then stirred at rt for 72 h. The mixture was filtered 

through celite. The celite was rinsed with acetone, and the solution was concentrated in 

vacuo. The crude product was purified via flash column chromatography on silica gel 

(ethyl acetate/hexanes) to yield 0.363 g (49%) of the title compound as a white solid, m.p. 

79–81 °C. 1H NMR (400 MHz, CDCl3)  7.59 (d, J = 8.4 Hz, 2 H), 7.337.20 (m, 6 H), 

7.187.06 (m, 6 H), 6.96 (br, 1 H), 5.755.67 (m, 1 H), 5.16 (d, J = 10.4 Hz, 1 H), 5.08 (d, 

J = 17.3 Hz, 1 H), 4.47 (s, 2 H), 4.37 (d, J = 5.9  Hz, 2 H), 2.37 (s, 3 H); 13C NMR (100 MHz, 

CDCl3)  159.9, 141.7, 141.0, 136.9, 136.4, 132.3, 129.1, 128.9, 128.7, 128.0, 127.61, 

127.6, 127.58, 127.4, 126.0, 118.6 (t, J = 25 Hz), 51.8, 51.75, 49.7; IR (film) 3322, 1564 

cm-1; MS (ESI+) 435.1965 (435.1960 calcd for C25H26DN3O2S, M + H+). 
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1,3-dibenzyl-2-cyano-1-[(Z)-2-methylallyl-3-d]guanidine (3-12). A round bottom flask 

was charged with methyl N-benzyl-N'-cyanocarbamimidothioate (3-S1) (0.60 g, 2.91 

mmol), ethanol (30 mL), and mercuric oxide (0.95 g, 4.37 mmol), then purged with 

nitrogen. Triethylamine (1.6 mL, 11.64 mmol) was added followed by (Z)-N-benzyl-2-

methylprop-2-en-3-d-1-amine (3-S14) (0.57 g, 3.49 mmol). The reaction mixture was then 

stirred at rt for 72 h. The mixture was filtered through celite. The celite was rinsed with 

acetone, and the solution was concentrated in vacuo. The crude product was purified via 

flash column chromatography on silica gel (ethyl acetate/hexanes) to yield 0.39 g (42%) 

of the title compound as a clear, viscous oil. 1H NMR (400 MHz, CDCl3)  7.38–7.24 (m, 

6 H), 7.24–7.18 (m, 4 H), 5.09 (s, br, 1 H), 4.93 (s, 1 H), 4.80 (s, 1 H), 4.77 (d, J = 5.3 Hz, 

2 H), 4.60 (s, 2 H), 3.80 (s, 2 H), 1.65 (s, 3 H); 13C NMR (125 MHz, CDCl3)  159.2, 139.5, 

137.1, 135.9, 129.0, 128.9, 128.8, 128.1, 128.0, 127.7, 127.5, 117.1, 112.6 (t, J = 33.1 

Hz), 54.2, 52.5, 47.7, 19.8; IR (film) 3256, 2162, 1539 cm-1; MS (ESI+) 320.1986 

(320.1980 calcd for C20H21DN4, M + H+). 

 

N-{(±)-1,3-dibenzyl-4-[(±)-phenylmethyl-d]imidazolidin-2-ylidene}cyanamide (3-13). 

The general procedure A was employed for the coupling of bromobenzene (35.3 mg, 
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0.225 mmol) with 1-((Z)-allyl-3-d)-1,3-dibenzyl-2-cyanoguanidine (3-10) (45.8 mg, 0.15 

mmol). This procedure afforded 33.3 mg (58%) of the title compound as a white, viscous 

oil. This compound was obtained as a 9:1 mixture of diastereomers as judged by 1H NMR 

analysis; data are for the mixture.  1H NMR (400 MHz, CDCl3)  7.397.25 (m, 8 H), 

7.257.15 (m, 5 H), 6.956.84 (m, 2 H), 5.36 (d, J = 15.6 Hz, 1 H), 4.794.51 (m, 2 H), 

4.19 (d, J = 15.6 Hz, 1 H), 3.783.60 (m, 1 H), 3.19 (t, J = 9.6 Hz, 1 H), 3.052.90 (m, 2 

H), 2.54 (dd, J = 13.4, 8.8 Hz, 1 H); 13C NMR (100 MHz, CDCl3)  158.2, 135.7, 135.34 

135.2, 129.1, 129.0, 128.88, 128.82 128.2, 128.13, 128.11, 128.0, 127.2, 116.5, 55.8, 

49.5, 47.3, 38.2, 37.8 (t, J = 19.3 Hz); IR (film) 2169, 1596 cm-1; MS (ESI+) 382.2132 

(382.2136 calcd for C25H23DN4, M + H+). 

 

N-{(±)-1,3-dibenzyl-4-[(±)-phenylmethyl-d]imidazolidin-2-ylidene}-4-

methylbenzenesulfonamide (3-14). The general procedure B was empoyed for the 

coupling of phenyl trifluoromethanesulfonate (101.8 mg, 0.45 mmol) with N-{[(Z)-allyl-3-

d](benzyl)amino}-benzylaminomethylene-4-methylbenzenesulfonamide (3-11) (134.3 

mg, 0.30 mmol). This procedure afforded 140 mg (92%) of the title compound as a pale 

yellow solid, m.p. 106108 °C. This compound was obtained as a >20:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the mixture. 1H NMR (400 

MHz, CDCl3)  7.84 (d, J = 8.4 Hz, 2 H), 7.367.26 (m, 5 H), 7.257.14 (m, 10 H), 

6.876.80 (m, 2 H), 5.27 (d, J = 15.3 Hz, 1 H), 4.75 (d, J = 15.0 Hz, 1 H), 4.51 (d, J = 15.1 
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Hz, 1 H), 4.15 (d, J = 15.4 Hz, 1 H), 3.64 (dt, 9.7, 4.9 Hz, 1 H), 3.20 (t, J = 9.9 Hz, 1 H), 

3.022.85 (m, 2 H), 2.49 (dd, J = 13.8, 8.3 Hz, 1 H), 2.34 (s, 3 H); 13C NMR (100 MHz, 

CDCl3)  156.2, 143.0, 141.1, 135.9, 135.7, 135.5, 129.2, 128.9, 128.8, 128.74, 128.72, 

128.3, 128.27, 127.9, 127.8, 127.0, 125.8, 55.4, 50.8, 48.76, 48.71, 37.9 (t, J = 19 Hz); 

IR (film) 1563 cm-1, MS (ESI+) 511.2271 (511.2273 calcd for C31H30DN3O2S, M + H+). 

NN

N
CN

Bn Bn

D  

N-[(4S)-1,3-dibenzyl-4-methyl-4-(phenylmethyl-d)imidazolidin-2-

ylidene]cyanamide (3-15). The general procedure A was employed for the coupling of 

bromobenzene (35.3 mg, 0.225 mmol) with 1,3-dibenzyl-2-cyano-1-[(Z)-2-methylallyl-3-

d]guanidine (3-12) (64 mg, 0.2 mmol). This procedure afforded 63 mg (80%) of the title 

compound as a white, viscous oil. This compound was obtained as a 15.5:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the mixture. 1H NMR (CDCl3) 

 7.39–7.30 (m, 6 H), 7.28–7.22 (m, 4 H), 7.20 (dd, J = 7.7, 1.8 Hz, 2 H), 6.93–6.86 (m, 2 

H), 5.00 (d, J = 16.2 Hz, 1 H), 4.69–4.52 (m, 2 H), 4.41 (d, J = 16.2 Hz, 1 H), 3.29 (d, J = 

9.8 Hz, 1 H), 2.91 (d, J = 9.8 Hz, 1 H), 2.77 (d, J = 13.7 Hz, 1 H), 2.59 (d, J = 12.2 Hz, 1 

H), 1.16 (s, 3 H); 13C NMR (125 MHz, CDCl3)  157.4, 138.2, 135.4, 135.0, 129.9, 128.9, 

128.8, 128.7, 128.6, 128.4, 128.0, 127.5, 127.4, 127.3, 62.3, 55.6, 49.4, 44.7, 43.5, 43.2 

(t, J = 20 Hz), 24.5; IR (film) 2167, 1593 cm-1; MS (ESI+) 396.2300 (296.2293 calcd for 

C26H25DN4, M + H+). 
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Computational Details 

All geometries were optimized using the spin-restricted B3LYP[66] density functional and 

the 6-31G* basis set. All density functional calculations were performed using 

Spartan’14[67]. The calculations are meant to be used for qualitative purposes only.
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Deuterium Labeling Studies  

NN

N
CN

Bn

H

Ph

H
H

Ph

H H

13     

In order to determine the relative stereochemical configuration of the deuterium labelled 

compounds 3-13 and 3-14, the hypothesized ground state energy conformations shown 

above were used in conjunction with 1D 1H nOe analysis of the all-proteo analogs of these 

compounds. The key nOe signals are shown below. 
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The configuration of the deuterated products was then assigned by examining which 

signal was absent from the 1H NMR. 
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Assignment of Stereochemistry for 3-8n, 3-9k, and 3-9l. 

The stereochemistry for compound 3-9l was determined through use of 1D 1H nOe 

analysis. The key nOe signals are shown below. The stereochemistry for compounds 3-

8n and 3-9k were assumed based on the results for compound 3-9l. 

 

A 
B C 

D 
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Chapter 4 

Palladium-Catalyzed Couplings of N-Allyl Guanidine 

Substrates with Amine Electrophiles to Synthesize Amino- 

Substituted Cyclic Guanidines 

4-1 Introduction 

Diamamination reactions have become increasingly sought after in synthetic 

chemistry, as the 1,2-diamine moiety is prevalent in a wide variety of biologically active 

and pharmaceutically interesting scaffolds (Scheme 4-1).68  

Scheme 4-1. Biologically Active Compounds Containing Cyclic Guanidines and/or 

1,2-Diamines. 
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Furthermore, the cyclic guanidine motif is an attractive synthetic target, as it is present in 

a number of biologically active natural products including antiobiotics, protein kinase 

inhibitors, and neurotoxins.69 Having just recently published a method to construct cyclic 

guanidines via a carboamination reaction, wherein N-allyl guanidine substrates were 

coupled with aryl halides or aryl triflates to concurrently form the C-C bond, the C-N bond, 

and the ring in the same reaction,70 we hypothesized that an analogous transformation 

could be utilized with O-benzoyl protected amine electrophiles in a variation on a 1,2-

diamination reaction (Eq. 4-1). 

 

 

 The oxidative addition of a palladium catalyst into the N-O bond of a benzoyl-

protected amine electrophile has been previously established in the literature for the C-H 

activation of sp3 C-H bonds in substrates bearing pendant amide directing groups.new71 

Furthermore, the use of these electrophiles in alkene difunctionalization reactions has 

been established by the Wang group, who has successfully reacted amide substrates 

bearing pendant alkenes with the aforementioned O-benzoyl protected amine 

electrophiles in the presence of a Cu(II) catalyst to accomplish 1,2-diaminations (Eq. 4-2 

and 4-3).new72 
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Although the efforts by Wang and coworkers to afford the cyclized amide product (Eq. 4-

3) were successful, the reaction afforded the deuterated product in a 1:1 mixture of 

diastereomers. We hypothesize that our proposed palladium catalyzed transformation 

shown in Eq. 4-1 provides an opportunity for diastereoselective addition across the alkene 

functionality. Furthermore, the guanidine and urea substrates used in our methodology 

provide a complementary scope to the established results from the Wang group. 

4-2 Optimization Studies 

To test this hypothesis we examined the Pd-catalyzed coupling of 4-1 with 

morpholino benzoate (Table 4-1) to afford cyclic guanidine product 4-2. A series of 

phosphine ligands was surveyed, as we have seen success with a variety of phosphine 

ligands (both monodentate and bidentate) in our previous carboamination studies.7,73 As 

can be seen from Table 4-1, electron poor aryl phosphine ligands, such as P(C6F5) 

afforded the desired product in modest yields, and the P(3,5-CF3C6H3)3 ligand afforded 

the desired product 4-2 in an 80% NMR yield. With this knowledge in hand we 

hypothesized that the biaryl, Buchwald-type ligand JackiePhos would be an ideal ligand 

to effect the desired transformation due to the fact that and we have utilized Buchwald-
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type ligands in carboamination reactions with success in the past,73 as well as the fact 

that this ligand contains two (3,5-CF3C6H3) aryl groups, similar to our initial hit. 

Gratifyingly, the use of JackiePhos as the ligand afforded 4-2 in a 95% NMR yield, and a 

decrease in the equivalents of amine electrophile used did not cause a decrease in the 

observed NMR yield. 

 

Table 4-1. Optimization Studies. 
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4-3 Scope 

We then explored the scope of the Pd-catalyzed coupling reactions of N-cyano 

and N-tosylguanidine substrates with OBz-protected amine electrohpiles. As shown 

in Table 4-2, these transformations are effective with morpholino benzoate, as well as 

piperidinyl and piperizinyl benzoate derivatives. 

Table 4-2. Electrophile Scope with N-Cyano and N-Tosyl Guanidine Substrates.[a] 

 

NN

N
CN

Bn Bn

N O

NN

N
CN

Bn Bn

N

4-3a 91% 4-3b 92%

NN

N
Ts

Bn Bn

N O

NN

N
Ts

Bn Bn

N

4-4a 86% 4-4b 77%

NN

N
CN

Bn Bn

N N

4-3c 61%

Boc

N

N

N
H

Bn Bn
BzO NR1R2

Pd(acac)2 (4 mol%)
JackiePhos (16 mol%)

Cs2CO3 (2 equiv.)

1,4-dioxane (0.1 M),
100 °C, 16 h

NN

N

Bn

NR1R2

Bn

P P

[a] Conditions: 1.0 equiv. of 4-1 or 4-2, 3 equiv. of R1-Br, 2.0 equiv. of Cs2CO3, Pd(acac)2 (4
mol%), JackiePhos (16 mol%), 1,4-dioxane (0.1 M), 100 °C, 16 h. Reactions were conducted
on a 0.1 mmol scale.

4-1 P = CN, 4-2 P = Ts 4-3 P = CN, 4-4 P = Ts

 

We also explored the coupling of N-allyl urea substrate 4-5 with the previously 

determined conditions (Table 4-3). Comparable yields were obtained when 4-5 was 

coupled with the same BzONR1R2 electrophile as 4-1. 

 

 



137 
 

Table 4-3. Electrophile Scope with Urea Substrate 4-5.[a] 

 

As was the case with our previously described couplings of N-cyano and N-

tosylguanidine substrates with aryl halide and aryl triflate electrophiles, the observed 

diastereoselectivity for these reactions was quite low (2:1–4:1). 

Table 4-4. Diastereoselectivity Studies.[a] 
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4-4 Mechanistic Studies via Deuterium Labelling 

The low diastereoselectivity observed for these reactions led us to explore syn- 

vs anti-addition pathways in transformations of deuterated substrates 4-13–4-15. As 

shown in Eq. 2-5, the coupling of 4-13 with morpholino benzoate afforded anti-addition 

product 4-16 in 67% yield and 3:1 dr. The reaction of urea substrate 4-14 with morpholino 

benzoate also proceeded via anti-addition with a 3:1 dr.  Furthermore, the reaction of N-

tosyl substrate 4-15 with morpholino benzoate to yield 4-18 also proceeded via anti-

addition to the double bond, but with 6:1 dr. The low diastereomeric ratios observed for 

these experiments may be a result of slow reductive elimination of the palladium complex 

to form the C(sp3)-N(sp3) bond.74 To test this hypothesis, substrate 4-15 was coupled 

with piperidin-1-yl benzoate to afforded deuterium-labelled product 4-19. This reaction 

proceeded via anti-addition with a 7.3:1 dr. Based on these results, we cannot make any 

conclusions about the effect of the electronics of the amine electrophile on the 

diastereoselectivity of the coupling reaction. 
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4-5 Conclusion 

In conclusion, we have developed a new approach to the coupling of guanidine 

substrates with amine electrophiles in a modular alkene diamination. This reaction 

simultaneously creates a ring system, and two C-N bonds from two distinct nitrogen 

sources. The Pd-catalyzed coupling reactions proceed in generally good chemical yields 

and provide products resulting from anti-addition to the alkene. Furthermore, these 

reactions improved upon existing methodology by accomplishing the alkene 

functionalization with some, albeit limited, diastereoselectivity. Also, the C-N bond forming 
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reductive elimination step is accomplished in the presence of β-hydrogens, which cannot 

be said for other methodologies that utilize these O-benzoyl protected amine 

electrophiles.71 Future studies will be directed toward improving diastereoselectivities in 

these reactions and improving the scope of the coupling reaction. 

4-6 Experimental 

General: All reactions were carried out under a nitrogen atmosphere in flame-dried 

glassware. Tris(dibenzylideneacetone)dipalladium(0) and palladium(II) acetate were 

purchased from Strem Chemical Co. and used without purification, and C-Phos and X-

Phos were purchased from Sigma-Aldrich Co. and was used without further purification. 

Aryl triflates were prepared according to a procedure published by Frantz and 

coworkers,62 except the products were purified by column chromatography. Bulk 

quantities of lithium tert-butoxide and sodium tert-butoxide were stored in nitrogen-filled 

glove box and small amounts were removed shortly before use. Toluene, THF, 

dichloromethane and diethyl ether were purified using a GlassContour solvent purification 

system. Structural and stereochemical assignments were made on the basis of 2-D 

COSY, and NOESY experiments. Ratios of diastereomers were determined by 1H NMR 

analysis. Yields refer to isolated yields of compounds estimated to be ≥95% pure as 

determined by 1H NMR analysis unless otherwise noted.  

 

Preparation and Characterization of Substrates 

 

Methyl N-benzyl-N'-cyanocarbamimidothioate (4-S1). A flame dried flask was cooled 

under a stream of nitrogen and charged with dimethyl cyanocarbonimidodithioate (2 g, 
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13.6 mmol) and ethanol (40 mL). Benzylamine (2.2 mL, 20.6 mmol) was then added via 

syringe, and the solution was heated to reflux with stirring for 2 h. The solution was then 

cooled to rt, a stream of nitrogen was blown over the solution for 20 min, and then the 

solution was placed in the freezer overnight. The white precipitate that had formed was 

then isolated via filtration using a fritted glass funnel to yield 2.61g (94%) of the desired 

product as a white solid. 1H NMR (400 MHz, CDCl3)  7.417.23 (m, 5 H), 6.60 (s, br, 1 

H), 4.50 (s, br, 2 H), 2.48 (s, br, 3 H). 

 

 

Dimethyl tosylcarbonimidodithioate (4-S2). A flame dried flask was cooled under a 

stream of nitrogen and charged with 4-methylbenzenesulfonamide (25.68 g, 150 mmol), 

carbon disulfide (14.2 mL, 240 mmol), and DMF (200 mL). The mixture was cooled to 0 

°C in an ice bath, and then a solution of KOH (19.9 g, 354 mmol) in water (60 mL) was 

added dropwise at a rate sufficiently slow that the reaction temperature remained below 

10 °C at all times. The reaction mixture was then stirred at 0 °C for 30 min, and then 

methyl iodide (21.7 mL, 348 mmol) was added dropwise at a rate sufficiently slow that the 

reaction temperature remained below 10 °C at all times. The reaction mixture was then 

warmed to rt and stirred for 30 min. Water was then added (150 mL), and the white 

precipitate that had formed was then isolated via filtration using a fritted glass funnel. The 

white solid was washed with water followed by ethanol, then was dried in vacuo to afford 

31.27 g (75%) of the title compound as a white solid. 1H NMR (400 MHz, CDCl3)  7.87 

(d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.1 Hz, 2 H), 2.53 (s, 6 H), 2.43 (s, 3 H). 
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Methyl N-benzyl-N'-tosylcarbamimidothioate (4-S3). A flame dried flask was cooled 

under a stream of nitrogen and charged with dimethyl tosylcarbonimidodithioate (4-S2) 

(2.00 g, 7.26 mmol) and ethanol (40 mL). Benzylamine (1.2 mL, 10.89 mmol) was then 

added slowly, and the reaction was then heated to reflux with stirring for 2 h. The solution 

was then cooled to rt, a stream of nitrogen was blown over the solution for 20 min, and 

then the solution was placed in the freezer overnight. The white precipitate that had 

formed was then isolated via filtration using a fritted glass funnel to yield 2.19 g (90%) of 

the title compound as a white solid. 1H NMR (400 MHz, CDCl3)  8.50 (s, br, 1 H), 7.79 

(d, J = 8.0 Hz, 2 H), 7.417.31 (m, 3 H), 7.317.17 (m, 4 H), 4.48 (d, J = 5.9 Hz, 2 H), 

2.42 (s, 3 H), 2.38 (s, 3 H). 

 

 
N-Benzylbut-3-en-2-ylamine (4-S4). A flame dried flask was cooled under a stream of 

nitrogen and charged with N-(but-3-en-2-yl)benzamide63 (1.32 g, 7.53 mmol) in diethyl 

ether (30 mL). The solution was cooled on an ice bath, and a solution of LiAlH4 (30 mL, 

30 mmol, 1 M in THF) was added slowly. The reaction mixture was then heated to reflux 

with stirring overnight. The mixture was then cooled in an ice bath, and water (7.53 mL) 

was slowly added followed by 1 M NaOH (7.5 mL). The miture was then transferred to a 

separatory funnel and extracted with diethyl ether (3 x 10 mL). The organic laywers were 

combined, dried, filtered, and concentrated in vacuo to afford 1.2 g (99%) of the title 
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compound as a pale yellow oil. 1H NMR (400 MHz, CDCl3)  7.387.29 (m, 4 H), 

7.287.21 (m, 1 H), 5.805.64 (m, 1 H), 5.195.02 (m, 2 H), 3.80 (d, J = 13.1 Hz, 1 H), 

3.68 (d, J = 13.1 Hz, 1 H), 3.283.16 (m, 1 H), 1.50 (s, br, 1 H), 1.18 (d, J = 6.5 Hz, 3 H). 

 

 

1-Allyl-1,3-dibenzyl-2-cyanoguanidine (4-1).70 A round bottom flask was charged with 

methyl N-benzyl-N'-cyanocarbamimidothioate (4-S1) (0.93 g, 4.53 mmol), ethanol (45 

mL), and mercuric oxide (1.47 g, 6.80 mmol), then purged with nitrogen. Triethylamine 

(2.5 mL, 18.12 mmol) was added followed by N-benzylprop-2-en-1-ylamine (1.00 g, 6.80 

mmol). The reaction mixture was then stirred at rt for 72 h. The mixture was filtered 

through celite. The celite was rinsed with acetone, and the solution was concentrated in 

vacuo. The crude product was purified via flash column chromatography on silica gel 

(ethyl acetate:hexanes 4:6) to yield 1.00 g (72%) of the title compound as a clear, viscous 

oil. 1H NMR (400 MHz, CDCl3)  7.397.27 (m, 6 H), 7.237.18 (m, 4 H), 5.815.71 (m, 1 

H), 5.285.08 (m, 3 H), 4.72 (d, J = 5.3 Hz, 2 H), 4.58 (s, 2 H), 3.94 (dt, J = 5.6, 1.6 Hz, 2 

H). 

 

N
H

N

N

Bn Bn

CN

 

1,3-Dibenzyl-1-(but-3-en-2-yl)-2-cyanoguanidine (4-7).70 The title compound was 

prepared from methyl N-benzyl-N'-cyanocarbamimidothioate (4-S1) (0.888 g, 4.53 mmol), 
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ethanol (40 mL), mercuric oxide (1.40 g, 6.5 mmol), triethylamine (2.4 mL, 17.3 mmol) 

and N-benzylbut-3-en-2-ylamine (4-S4) (0.837 g, 5.2 mmol) using a procedure analogous 

to that described above for the synthesis of 4-1. This procedure afforded 0.316 g (23%) 

of an off white solid, m.p. 104–105 °C. 1H NMR (500 MHz, CDCl3)  7.367.27 (m, 3 H), 

7.267.19 (m, 3 H), 7.187.16 (m, 2 H), 6.976.95 (m, 2 H), 5.925.86 (m, 1 H), 5.255.15 

(m, 2 H), 5.115.09 (m, 1 H), 4.97 (d, J = 5.3 Hz, 1 H), 4.704.58 (m, 2 H), 4.464.28 (m, 

2 H),1.31 (d, J = 6.5 Hz, 3 H). 

 

 
N-{[Allyl(benzyl)amino](benzylamino)methylene}-4-methylbenzenesulfonamide (4-

2).70 The title compound was prepared from methyl N-benzyl-N'-tosylcarbamimidothioate 

(4-S3) (1.06 g, 3.17 mmol), ethanol (30 mL), mercuric oxide (1.03 g, 4.75 mmol), 

triethylamine (1.8 mL, 12.68 mmol), and N-benzylprop-2-en-1-ylamine (0.70 g, 4.75 

mmol) using a procedure analogous to that described above for the synthesis of 4-1 

except with a reaction time of 48 h. This procedure afforded 1.06 g (77%) of the title 

compound as a white solid, m.p. 9192 °C. 1H NMR (500 MHz, CDCl3)  7.62 (d, J = 8.0 

Hz, 2 H), 7.347.22 (m, 6 H), 7.207.08 (m, 6 H), 6.99 (t, J = 5.7 Hz, 1 H), 5.74 (ddt, J = 

16.4, 9.8, 5.8 Hz, 1 H), 5.245.05 (m, 2 H), 4.48 (s, 2 H), 4.39 (d, J = 5.7 Hz, 2 H), 3.82 

(d, J = 5.7 Hz, 2 H), 2.39 (s, 3 H). 
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N-{[Benzyl(but-3-en-2-yl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (4-8).70 The title compound was prepared from methyl N-

benzyl-N'-tosylcarbamimidothioate (4-S3) (1.018 g, 3.05 mmol), ethanol (30 mL), 

mercuric oxide (0.991 g, 4.58 mmol), triethyl amine (1.7 mL, 12.2 mmol), and N-

benzylbut-3-en-2-ylamine (4-S4) (0.590 g, 3.66 mmol) using a procedure analogous to 

that described above for the synthesis of 4-1 except with a reaction time of 48 h. This 

procedure afforded 1.21 g (89%) of the title compound as an off white solid, m.p. 69–71 

°C. 1H NMR (400 MHz, CDCl3)  7.337.27 (m, 2 H), 7.277.11 (m, 6 H), 7.107.02 (m, 

2 H), 6.97 (dd, J = 7.9, 1.9 Hz, 4 H), 6.87 (t, J = 5.7 Hz, 1 H), 5.955.86 (m, 1 H), 5.245.11 

(m, 2 H), 4.554.50 (m, 1 H), 4.38 (t, J = 5.5 Hz, 2 H), 4.31 (s, 2 H), 2.33 (s, 3 H), 1.30 (d, 

J = 6.8 Hz, 3 H). 

 

 

1-allyl-1-benzyl-3-(4-nitrophenyl)urea (4-5). A flame dried flask was cooled under a 

stream of nitrogen and charged with p-nitrophenyl isocyanate (0.500 g, 3.05 mmol) in 

DCM (3 mL). N-benzylprop-2-en-1-ylamine (0.450 g, 3.05 mmol) was then added, and 

the reaction stirred at rt overnight. The reaction mixture was then concentrated en vacuo, 

and the crude product was purified via flash column chromatography on silica gel to afford 

0.845 g (90%) of the title compound as a yellow solid, m.p. 1H NMR (500 MHz, CDCl3)  
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8.16–8.13 (m, 2 H), 7.47–7.43 (m, 2 H), 7.41–7.37 (m, 2 H), 7.35–7.31 (m, 3 H), 6.79 (br 

s, 1 H), 5.93–5.84 (m, 1 H), 5.38–5.34 (m, 2 H), 4.61 (s, 2 H), 4.01 (d, J = 5 Hz, 2 H); 13C 

NMR (100 MHz, CDCl3)  154.7, 145.3, 142.5, 136.8, 133.4, 129.0, 128.0, 127.5, 125.0, 

118.3, 118.0, 50.8, 50.2; IR (film) 3332, 1654 cm-1; MS (ESI+) 312.1345 (312.1343 calcd 

for C17H17N3O3, M + H+). 

 

1-Benzyl-1-(but-3-en-2-yl)-3-(4-nitrophenyl)urea (4-9): A flame dried flask was cooled 

under a stream of nitrogen and charged with p-nitrophenyl isocyanate (0.356 g, 2.17 

mmol) in DCM (2.2 mL). N-benzylbut-3-en-2-amine (0.350 g, 2.17 mmol) was then added, 

and the reaction stirred at rt overnight. The reaction mixture was then concentrated en 

vacuo, and the crude product was purified via flash column chromatography on silica gel 

to afford 0.563 g (80%) of the title compound as a yellow solid, m.p. 90–92 °C. 1H NMR 

(400 MHz, CDCl3)  8.06 (d, J = 7.2 Hz, 2 H), 7.42–7.28 (m, 7 H), 6.74 (br s, 1 H), 6.03–

5.95 (m, 1 H), 5.32–5.27 (m, 2 H), 4.95 (br s, 1 H), 4.56 (d, J = 16.8 Hz, 1 H), 4.39 (d, J = 

17.2 Hz, 1 H), 1.35 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3)  154.8, 145.2, 142.4, 

138.7, 137.2, 127.3, 128.2, 126.8, 124.9, 118.2, 116.9, 52.8, 47.8, 16.5; IR (film) 3384, 

1653; MS (ESI+) 326.1502 (326.1499 calcd for C18H19N3O3, M + H+). 

 

 

Morpholino benzoate (4-S5).73 A flame dried 100 mL flask was cooled under a stream 

of nitrogen and charged with morphiline (1.0 g, 11.5 mmol) in THF (34 mL), and then 
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Na2HPO4 (8.149 g, 57.4 mmol). Benzoyl peroxide (2.969 g, 12.3 mmol) in THF (12 mL) 

was then added slowly, and the reaction as refluxed overnight. Once the reaction had 

cooled to rt it was filtered through celite, and then concentrated. The crude product was 

then purified via flash column chromatography on silica gel (EtOAc:Hexanes = 15:85) to 

yield 1.28 g (54%) of the product as a white solid, m.p. 81–83 °C. 1H NMR (400 MHz, 

CDCl3)  7.99 (d, J = 8.4 Hz, 2 H), 7.56 (t, J = 7.2 Hz, 1 H), 7.41 (t, J = 7.2 H, 2 H), 3.98–

3.82 (m, 4 H), 3.45 (d, J = 10 Hz, 2 H), 3.08–3.00 (m, 2 H). 

 

 
Piperidin-1-yl benzoate (4-S6).73 A flame dried 100 mL flask was cooled under a stream 

of nitrogen and charged with piperidine (1.25 g, 14.7 mmol) in THF (35 mL), and then 

Na2HPO4 (9.39 g, 66.2 mmol). Benzoyl peroxide (3.91 g, 16.2 mmol) in THF (15 mL) was 

then added slowly, and the reaction as refluxed overnight. Once the reaction had cooled 

to rt it was filtered through celite, and then concentrated. The crude product was then 

purified via flash column chromatography on silica gel (EtOAc:Hexanes = 15:85) to yield 

2.06 g (68%) of the product as a white solid, m.p. 62–64 °C. 1H NMR (400 MHz, CDCl3) 

 7.99 (d, J = 8.4 Hz, 2 H), 7.56 (t, J = 7.2 Hz, 1 H), 7.41 (t, J = 7.2 H, 2 H), 3.54–3.45 (m, 

2 H), 2.80–2.71 (m, 2 H), 1.83–1.77 (m, 4 H), 1.65 (br s, 1H), 1.28–1.26 (m, 1H). 

 

 

tert-Butyl 4-(benzoyloxy)piperazine-1-carboxylate (4-S7). A flame dried flask was 

cooled under a stream of nitrogen and charged with 1-Boc-piperizine (2.328 g, 12.5 mmol) 

in THF (30 mL), and then Na2HPO4 (8.873 g, 62.5 mmol). Benzoyl peroxide (3.33 g, 13.75 
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mmol) in THF (10 mL) was then added slowly, and the reaction as refluxed overnight. 

Once the reaction had cooled to rt it was filtered through celite, and then concentrated. 

The crude product was then purified via flash column chromatography on silica gel 

(EtOAc:Hexanes = 15:85) to yield 2.50 g (65%) of the product as a white solid, m.p. 104–

106 °C. 1H NMR (400 MHz, CDCl3)  7.98 (d, J = 7.2 Hz, 2 H), 7.56 (t, J = 7.2 Hz, 1 H), 

7.43 (d, J = 7.6 Hz, 1 H), 4.02 (br s, 2 H), 3.44–3.25 (m, 4 H), 2.90 (br s, 2 H), 1.40 (s, 9 

H). 

 

Preparation and Characterization of Products 

 

General Procedure A for Pd-Catalyzed Carboamination Reactions of Aryl 

Bromides. A flame dried Schlenk tube equipped with a magnetic stirbar was cooled 

under a stream of nitrogen and charged with Pd(OAc)2 (4 mol%), JackiePhos (16 mol%), 

OBz-protected amine electrophile (3 equiv.), and Cs2CO3 (2 equiv). The tube was purged 

with nitrogen and then a solution of the  N-protected guanidine or urea substrate (1 equiv) 

in 1,4-dioxane (0.1 M) was added, and the solution was heated to 100 °C with stirring 

until the starting material had been consumed as judged by TLC or 1H NMR analysis of 

the reaction mixture (ca 16 h). The mixture was then cooled to rt and diluted with diethyl 

ether (2 mL). The resulting mixture was then filtered through cotton, and this procedure 

was repeated once more. The solution was then concentrated in vacuo, and the crude 

product was purified via flash column chromatography on silica gel 

(methanol:dichloromethane = 1:99). 
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N-(1,3-dibenzyl-4-(morpholinomethyl)imidazolidin-2-ylidene)cyanamide (4-3a). The 

general procedure was followed for the coupling of 1-allyl-1,3-dibenzyl-2-cyanoguanidine 

(4-1) (30.4 mg, 0.1 mmol) with morpholino benzoate (4-S5) (62.2 mg, 0.3 mmol). This 

procedure afforded 36 mg (92%) of the title compound as a tan, viscous oil. 1H NMR (500 

MHz, C6H6)  7.29–6.95 (m, 10 H), 5.24 (d, J = 15.5 Hz, 1 H), 4.56–4.46 (m, 2 H) 4.05 (d, 

J = 15.5 Hz, 1 H), 3.33–3.24 (m, 4 H), 3.01 (m, 1 H), 2.64 (appt, J = 9.5 Hz, 1 H), 2.52 

(dd, J = 9.6, 7.1 Hz, 1 H), 1.87 (dd, J = 12.8, 5.6 Hz, 1 H), 1.77–1.66 (m, 4 H), 1.53 (dd, 

J = 12.8. 6.9 Hz, 1 H); 13C NMR (125 MHz, CDCl3)  158.4, 135.9, 135.4, 128.9, 128.8, 

128.2, 128.1, 128.0, 127.9, 116.5, 66.7, 61.0, 54.1, 51.9, 49.5, 49.3, 47.8; IR (film) 2919, 

2171, 1596 cm-1; MS (ESI+) 390.2292 (390.2288 calcd for C23H27N5O, M + H+). 

 

 

 

N-(1,3-dibenzyl-4-(piperidin-1-ylmethyl)imidazolidin-2-ylidene)cyanamide (4-3b). 

The general procedure was followed for the coupling of 1-allyl-1,3-dibenzyl-2-

cyanoguanidine (4-1) (30.4 mg, 0.1 mmol) with piperidin-1-yl benzoate (4-S6) (61.5 mg, 

0.3 mmol). This procedure afforded 36 mg (93%) of the title compound as a tan, viscous 

oil. 1H NMR (500 MHz, C6H6)  7.26 (d, J = 7.5 Hz, 2 H), 7.17–7.03 (m, 8 H), 5.31 (d, J = 

16 Hz, 1 H), 4.51 (s, 2 H), 4.12 (d, J = 15.4 Hz, 1 H), 3.10 (dt, J = 13.1, 6.6 Hz, 1 H), 2.66 
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(t, J = 9.5 Hz, 1 H), 2.57 (dd, J = 9.6, 7.1 Hz, 1 H), 1.97 (dd, J = 12.7, 5.6 Hz, 1 H), 1.83 

(br s, 4 H), 1.61 (dd, J = 12.8, 7.1 Hz, 1 H), 1.24 (h, J = 5.6 Hz, 4 H), 1.15 (q, J = 5.8 Hz, 

2 H). 13C NMR (100 MHz, C6H6)  158.3, 136.8, 136.0, 128.6, 128.5, 128.4, 128.3, 115.9, 

61.2, 54.8, 51.9, 49.1, 47.4, 25.8, 24.0; IR (film) 2933, 2171, 1595 cm-1; MS (ESI+) 

388.2496 (388.496 calcd for C24H29N5, M + H+). 

 

 

tert-Butyl 4-((1,3-dibenzyl-2-(cyanoimino)imidazolidin-4-yl)methyl)piperazine-1-

carboxylate (4-3c). The general procedure was followed for the coupling of 1-allyl-1,3-

dibenzyl-2-cyanoguanidine (4-1) (30.4 mg, 0.1 mmol) with tert-butyl 4-

(benzoyloxy)piperazine-1-carboxylate (4-S7) (91.9 mg, 0.3 mmol). This procedure 

afforded 30 mg (61%) of the title comound as a pale yellow, viscous oil. 1H NMR (400 

MHz, CDCl3)  7.50–7.11 (m, 10 H), 5.28 (d, J = 15.6 Hz, 1 H), 4.83–4.61 (m, 2 H), 4.33 

(d, J = 15.6 Hz, 1 H), 3.58 (dt, J = 12.4, 6.3 Hz, 1 H), 3.38 (t, J = 9.7 Hz, 1 H), 3.28 (br s, 

4 H), 3.09 (dd, J = 9.8, 6.5 Hz, 1 H), 2.49 (dd, J = 12.9, 5.6 Hz, 1 H), 2.29–2.13 (m, 5H), 

1.42 (s, 9 H); 13C NMR (125 MHz, CDCl3)  158.3, 154.5, 135.8, 135., 128.8, 128.2, 128.0, 

127.9, 127.8, 116.4, 79.7, 60.6, 53.4, 51.9, 49.4, 49.2, 47.7; IR (film) 2927, 2170, 1685, 

1595 cm-1; MS (ESI+) 489.2970 (489.2973 calcd for C28H36N6O2, M + H+). 

 

NN

N

Bn Bn

CN

N O
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N-((4R,5R)-1,3-dibenzyl-4-methyl-5-(morpholinomethyl)imidazolidin-2-

ylidene)cyanamide (4-10a). The general procedure was followed for the coupling of 1,3-

dibenzyl-1-(but-3-en-2-yl)-2-cyanoguanidine (4-7) (31.8 mg, 0.1 mmol) with morpholino 

benzoate (4-S5) (62.1 mg, 0.3 mmol). This procedure afforded 32.3 mg (80%) of the title 

compound as a tan, viscous oil. This compound was obtained as a 3:1 mixture of 

diastereomers as judged by 1H NMR analysis; 1H NMR data are for the major 

diastereomer, 13C NMR data are for the mixture. 1H NMR (400 MHz, C6H6)  7.22–7.17 

(m, 5 H), 7.15–7.02 (m, 5 H), 5.42 (d, J = 15.5 Hz, 1 H), 5.35 (d, J = 15.5 Hz, 1 H), 4.07 

(d, J = 16.0 Hz, 1 H), 3.85 (d, J = 16.0 Hz, 1 H), 3.33–3.27 (m, 4 H), 2.92 (p, J = 6.5 Hz, 

1 H), 2.72 (q, J = 6.0 Hz, 1 H), 1.84 (dd, J = 13.0 Hz, 6 Hz, 1 H), 1.80–1.72 (m, 4 H), 1.50 

(dd, J = 13.0, 6.5 Hz, 1 H), 0.57 (d, J = 5.2 Hz, 3 H); 13C NMR (125 MHz, CDCl3)  158.0, 

136.0, 135.8, 128.9, 128.8, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7, 116.7, 66.8, 66.7, 

60.7, 59.2, 56.7, 55.1, 54.3, 54.1, 54.0, 53.9, 47.8, 47.7, 56.8, 56.2, 18.6, 12.0; IR (film) 

2925, 2170, 1591 cm-1; MS (ESI+) 404.2446 (404.2445 cacld for C24H29N5O, M + H+). 

 

NN

N

Bn Bn

CN

N
 

N-((4R,5R)-1,3-dibenzyl-4-methyl-5-(piperidin-1-ylmethyl)imidazolidin-2-

ylidene)cyanamide (4-10b). The general procedure was followed for the coupling of 1,3-

dibenzyl-1-(but-3-en-2-yl)-2-cyanoguanidine (4-7) (31.8 mg, 0.1 mmol) with piperidin-1-yl 

benzoate (4-S6) (61.5 mg, 0.3 mmol). This procedure afforded 31 mg (76%) of the title 

compound as a tan, viscous oil. This compound was obtained as a 3:1 mixture of 

diastereomers as judged by 1H NMR analysis; 1H NMR data are for the major 
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diastereomer. 1H NMR (400 MHz, CDCl3)  7.26 (d, J = 6.8 Hz, 2 H), 7.15–7.00 (m, 8 H), 

5.45 (d, J = 15.6 Hz, 1 H), 5.30 (d, J = 15.6 Hz, 1 H), 4.11 (d, J = 15.2 Hz, 1 H), 3.83 (d, 

J = 15.6 Hz, 1 H), 2.96–2.90 (m, 1 H), 2.79 (q, J = 6.0 Hz, 1 H), 1.91 (dd, J = 13.4, 4.8 

Hz, 1 H), 1.83 (br s, 4 H), 1.55 (dd, J = 12.4 Hz, 6.4 Hz, 1 H), 1.20 (br s, 4 H), 1.18–1.12 

(m, 2 H), 0.57 (d, J = 6 Hz, 3 H); 13C NMR (125 MHz, C6H6)  158.1, 137.1 136.7, 136.5, 

136.4, 128.6, 128.56, 128.51, 128.3, 128.2, 128.1, 128.0, 127.8, 127.6, 116.0, 60.9, 59.3, 

56.4, 55.3, 54.8, 54.6, 54.5, 53.6, 47.4, 47.2, 46.5, 45.9, 25.8, 25.7, 24.1, 24.0, 17.8, 11.3; 

IR (film) 2933, 2173, 1585 cm-1; MS (ESI+) 402.2650 (402.2652 calcd for C25H31N5, M + 

H+). 

 

 

N-(1,3-dibenzyl-4-(morpholinomethyl)imidazolidin-2-ylidene)-4-

methylbenzenesulfonamide (4-4a). The general procedure was followed for the 

coupling of N-{[allyl(benzyl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (XX) (43.3 mg, 0.1 mmol) with morpholino benzoate (4-S5) 

(62.2 mg, 0.3 mmol). This procedure afforded 42.5 mg (82%) of the title compound as a 

tan, viscous oil. 1H NMR (500 MHz, C6H6)  8.27 (d, J = 8.1 Hz, 2 H), 7.29 (d, J = 7 Hz, 4 

H), 7.19–7.09 (m, 4 H), 7.05 (td, J = 7.3, 4.8 Hz, 2 H), 6.82 (d, J = 7.9 Hz, 2 H), 5.48 (d, 

J = 15.3 Hz, 1 H), 4.84 (d, J = 15.0 Hz, 1 H), 4.68 (d, J = 15.0 Hz, 1 H), 4.15 (d, J = 15.3 

Hz, 1 H), 3.37–3.30 (m, 4 H), 3.14–3.07 (m, 1 H), 2.76 (t, J = 9.7 Hz, 1 H), 2.67 (dd, J = 

9.8, 6.4 Hz, 1 H), 1.91 (dd, J = 12.5, 5 Hz, 1 H), 1.89 (s, 3 H), 1.86–1.83 (m, 2 H), 1.79–

1.74 (m, 2 H), 1.67 (dd, J = 12.8, 6.9 Hz, 1 H); 13C NMR (125 MHz, CDCl3)  156.5, 142.9, 
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141.1, 136.2, 135.8, 129.0, 128.8, 128.7, 128.4, 128.1, 127.9, 127.8, 125.8, 66.7, 60.7, 

54.1, 51.7, 50.8, 49.1, 48.7, 21.3;  iR (film) 2921, 1559 cm-1;  MS (ESI+) 519.2422 

(519.2424 calcd for C29H34N4O3S, M + H+). 

 

N-(1,3-dibenzyl-4-(piperidin-1-ylmethyl)imidazolidin-2-ylidene)-4-

methylbenzenesulfonamide (4-4b). The general procedure was followed for the 

coupling of N-{[Allyl(benzyl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (43.3 mg, 0.1 mmol) with piperidin-1-yl benzoate (4-S6) (61.5 

mg, 0.3 mmol). This procedure afforded 39 mg (76%) of the title compound as a tan, 

viscous oil. 1H NMR (400 MHz, C6H6)  8.26 (d, J = 8.0 Hz, 2 H), 7.34–7.27 (m, 4 H), 

7.14–6.96 (m, 6 H), 6.81 (d, J = 8.0 Hz, 2 H), 5.46 (d, J = 15.2 Hz, 1 H), 4.82 (d, J = 15.0 

Hz, 1 H), 4.70 (d, J = 15.0 Hz, 1 H), 4.22 (d, J = 15.3 Hz, 1 H), 3.22–3.14 (m, 1 H), 2.79 

(t, J = 9.7 Hz, 1 H), 2.70 (dd, J = 9.8, 6.3 Hz, 1 H), 2.04 (dd, J = 12.8, 5.5 Hz, 1 H), 1.89 

(s, 3H), 1.88–1.83 (m, 4 H), 1.73 (dd, J = 12.8, 7.1 Hz, 1 H), 1.23 (br s, 4 H), 1.17–1.12 

(m, 2 H); 13C NMR (100 MHz, C6H6)  156.2, 144.3, 140.4, 137.1, 136.4, 128.8, 128.6, 

128.5, 128.45, 128.41, 127.4 126.2, 61.1, 54.8, 51.7, 50.8, 48.8, 48.7, 25.8, 24.0, 20.7; 

IR (film) 2932, 1578 cm-1; MS (ESI+) 517.2633 (517.2632 calcd for C30H36N4O2S, M + 

H+). 
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N-((4R,5R)-1,3-dibenzyl-4-methyl-5-(morpholinomethyl)imidazolidin-2-ylidene)-4-

methylbenzenesulfonamide (4-11). The general procedure was followed for the 

coupling of N-{[benzyl(but-3-en-2-yl)amino](benzylamino)methylene}-4-

methylbenzenesulfonamide (4-8) (44.8 mg, 0.1 mmol) with morpholino benzoate (4-S5) 

(62.2 mg, 0.3 mmol). This procedure afforded 46 mg (86%) of the title compound as a 

tan, viscous oil. This compound was obtained as a 3:1 mixture of diastereomers as judged 

by 1H NMR analysis; 1H NMRdata are for the major diastereomer. 1H NMR (400 MHz, 

CDCl3)  7.81 (d, J = 8.4 Hz, 2 H), 7.32–7.11 (m, 12 H), 5.34–5.22 (m, 2 H), 4.23 (d, J = 

15.2 Hz, 1 H), 4.07 (d, J = 15.2 Hz, 1 H), 3.55–3.50 (m, 4 H), 3.31–3.27 (m, 1 H), 3.00 (q, 

J =  4.8 Hz, 1 H), 2.37–2.32 (m, 1 H), 2.23–2.13 (m, 4 H), 2.04 (dd, J = 12.8, 7.6 Hz, 1 

H), 0.98 (d, J = 6.8 Hz, 3 H); 13C NMR (125 MHz, C6H6)  155.6, 144.2, 140.5, 136.9, 

136.7, 128.8, 128.5, 128.48, 128.45, 128.3, 126.2, 66.4, 60.0, 58.8, 54.2, 54.0, 49.1, 48.0, 

20.7, 18.2; IR (film) 2925, 1559 cm-1; MS (ESI+) 533.2580 (533.2581 calcd for 

C30H36N4O3S, M + H+). 

 

 

1-benzyl-4-(morpholinomethyl)-3-(4-nitrophenyl)imidazolidin-2-one (4-6a). The 

general procedure was followed for the coupling of 1-allyl-1-benzyl-3-(4-nitrophenyl)urea 

(31.1 mg, 0.1 mmol) with morpholino benzoate (4-S5) (62.2 mg, 0.3 mmol). This 
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procedure afforded 46 mg (86%) of the title compound as a yellow solid. 1H NMR (400 

MHz, C6H6)   8.04 (d, J = 9.3 Hz, 2 H), 7.59 (d, J = 9.3 Hz, 2 H), 7.15–7.02 (m, 5 H), 4.30 

–4.19 m, 2 H), 3.44–3.34 (m, 4 H), 2.85 (dd, J = 8.9, 2.8 Hz, 1 H), 2.75 (t, J = 8.7 Hz, 1 

H), 1.98 (dd, J = 13.0, 3.1 Hz, 1 H), 1.97–1.88 (m, 2 H), 1.83–1.75 (m, 2 H), 1.71 (dd, J = 

13.0, 9.3 Hz, 1 H); 13C NMR (125 MHz, C6H6)  155.8, 145.0, 142.0, 136.6, 128.6, 128.2, 

127.9, 124.6, 116.8, 66.4, 58.7, 53.8, 50.0, 47.5, 45.3; IR (film) 2921, 1709 cm-1; MS 

(ESI+) 397.1868 (397.1870 calcd for C21H24N4O4, M + H+). 

 

 

1-benzyl-3-(4-nitrophenyl)-4-(piperidin-1-ylmethyl)imidazolidin-2-one (4-6b). The 

general procedure was followed for the coupling of 1-allyl-1-benzyl-3-(4-nitrophenyl)urea 

(31.1 mg, 0.1 mmol) with piperidin-1-yl benzoate (4-S6) (61.5 mg, 0.3 mmol). This 

procedure afforded 32.2 mg (82%) of the title compound as a yellow solid. 1H NMR (400 

MHz, CDCl3)  8.18 (d, J = 9.3 Hz, 2 H), 7.75 (d, J = 9.3 Hz, 2 H), 7.41–7.26 (m, 5 H), 

4.50–4.45 (m, 2 H), 4.30 (t, J = 8.8 Hz, 1 H), 3.46 (t, J = 8.8 Hz, 1 H), 3.33 (dd, J = 9.2, 

2.8 Hz, 1 H), 2.54 (dd, J = 13.0, 3.2 Hz, 1 H), 2.43 (br s, 2 H), 2.37–2.20 (m, 3 H), 1.52–

1.45 (m, 4 H), 1.40–1.35 (m, 2 H); 13C NMR (100 MHz, CDCl3)  156.5, 145.5, 141.8, 

136.2, 128.8, 128.2, 127.7, 124.9, 117.1, 59.8, 55.3, 51.4, 47.8, 46.2, 25.9, 23.9; IR (film) 

2932, 1710 cm-1; MS (ESI+) 395.2074 (395.2078 calcd for C22H26N4O3, M + H+). 
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tert-Butyl 4-((1-benzyl-3-(4-nitrophenyl)-2-oxoimidazolidin-4-yl)methyl)piperazine-

1-carboxylate (4-6c). The general procedure was followed for the coupling of 1-allyl-1-

benzyl-3-(4-nitrophenyl)urea (31.1 mg, 0.1 mmol) with tert-butyl 4-

(benzoyloxy)piperazine-1-carboxylate (4-S7) (91.9 mg, 0.3 mmol). This procedure 

afforded 21 mg (42%) of the title compound as a yellow solid, m.p. 65–68 °C. 1H NMR 

(500 MHz, C6H6)  8.04 (d, J = 9.1 Hz, 2 H), 7.57 (d, J = 9.0 Hz, 2 H), 7.14–7.03 (m, 5 H), 

4.28–4.18(m, 2 H), 3.41–3.35 (m, 1 H), 3.22 (br s, 4 H), 2.79 (dd, J = 8.9, 2.7 Hz, 1 H), 

2.71 (t, J = 8.7 Hz, 1 H), 1.91–1.83 (m, 3 H), 1.81–1.72 (m, 2 H), 1.67 (dd, J = 13.1, 9.2 

Hz, 1 H), 1.46 (s, 9 H); 13C NMR (125 MHz, C6H6)  155.8, 154.0, 145.0, 142.0, 136.6, 

128.6, 128.2, 127.9, 124.6, 116.7, 79.1, 58.2, 53.1, 50.2, 47.5, 45.2, 28.1, 28.0; IR (film) 

2927, 1693 cm-1; MS (ESI+) 496.2548 (496.2554 calcd for C26H33N5O5, M + H+). 

 

 

1-Benzyl-5-methyl-4-(morpholinomethyl)-3-(4-nitrophenyl)imidazolidin-2-one (4-

12): The general procedure was followed for the coupling of 1-benzyl-1-(but-3-en-2-yl)-3-

(4-nitrophenyl)urea (32.5 mg, 0.1 mmol) with tert-butyl 4-(benzoyloxy)piperazine-1-

carboxylate (4-S7) (91.9 mg, 0.3 mmol). This procedure afforded 13 mg (34%) of the title 

compound as a viscous yellow oil. This compound was obtained as a 2:1 mixture of 

diastereomers as judged by 1H NMR analysis; data are for the major diastereomer. 1H 
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NMR (400 MHz, CDCl3)  8.20 (m, 2 H), 7.12 (m, 2 H), 7.37–7.24 (m, 5 H), 4.93 (d, J = 

15.2 Hz, 1 H), 4.06 (d, J = 15.2 Hz, 1 H), 3.89–3.86 (m, 1 H), 3.57–3.51 (m, 5 H), 2.55–

2.36 (m, 4 H), 2.29–2.23 (m, 2 H), 1.25 (d, J = 6 Hz, 3 H); 13C NMR (125 MHz, CDCl3)  

157.1, 155.6, 1445.5, 145.3, 142.3, 141.9, 136.7, 136.4, 128.8, 128.7, 128.2, 128.1, 

127.8, 127.7, 125.0, 124.7, 118.9, 117.3, 66.9, 66.7, 58.8, 58.7, 55.5, 54.2, 54.0, 53.7, 

51.9, 51.1, 45.1, 45.0, 18.9, 13.0; IR (film) 2923, 1708; MS (ESI+) 411.2027 (411.2027 

calcd for C22H26N4O4, M + H+). 

 

Synthesis of deuterated substrates and products 

 

(Z)-N-benzylprop-2-en-3-d-1-amine (4-S8). A flame dried flask was cooled under a 

stream of nitrogen and charged with N-benzylprop-2-en-1-ylamine (1.00 g, 6.84 mmol) 

and diethyl ether (12 mL). The solution was cooled to -42 °C, and then n-butyl lithium 

(8.2 mmol, 2.5 M) was added slowly. After 30 minutes tert-butyl lithium (15 mmol, 1.7 M) 

was added slowly. After stirring at -42 °C for 30 minutes the reaction was transferred to 

an ice-water bath and allowed to stir for 1 hour. The reaction was then cooled to -78 °C, 

and deuterium oxide was added (2.5 mL, 136.8 mmol). After stirring overnight the reaction 

was cooled on an ice-water bath, and then quenched with water (15 mL). The mixture 

was extracted with diethyl ether (2 x 20 mL) and separated. The combined organic layers 

were then dried, filtered, and evaporated. The crude product was purified via flash column 

chromatography on silica gel (ethyl acetate/hexanes) to afford 0.568 g (56%) of the title 

compound as a pale yellow oil, with 84% deuterium incorporation as determined by 1H 
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NMR. 1H NMR (400 MHz, CDCl3)  7.31 (d, J = 4.5 Hz, 4 H), 7.27.18 (m, 1 H), 6.035.79 

(m, 1 H), 5.225.15 (m, 1 H), 5.125.06 (m, 1 H), 3.78 (s, 3 H), 3.27 (d, 6 Hz, 2 H). 

 

 

1-[(Z)-allyl-3-d]-1,3-dibenzyl-2-cyanoguanidine (4-13).73 A round bottom flask was 

charged with methyl N-benzyl-N'-cyanocarbamimidothioate (4-S1) (0.196 g, 0.96 mmol), 

ethanol (10 mL), and mercuric oxide (0.312 g, 1.44 mmol), then purged with nitrogen. 

Triethylamine (0.5 mL, 3.84 mmol) was added followed by (Z)-N-benzylprop-2-en-3-d-1-

amine (4-S8) (0.170 g, 1.15 mmol). The reaction mixture was then stirred at rt for 72 h. 

The mixture was filtered through celite. The celite was rinsed with acetone, and the 

solution was concentrated in vacuo. The crude product was purified via flash column 

chromatography on silica gel (ethyl acetate/hexanes to yield 0.153 g (52%) of the title 

compound as a clear, viscous oil. 1H NMR (400 MHz, CDCl3)  7.417.28 (m, 6 H), 7.24-

7.18 (m, 4 H), 5.805.72 (m, 1 H), 5.23 (d, J = 10.4 Hz, 1 H), 5.15 (d, J = 17.2 Hz, 1 H), 

4.98 (br, 1 H), 4.74 (d, J = 5.2 Hz, 2 H), 4.58 (s, 2 H), 3.95 (d, J = 5.2 Hz, 2 H); 13C NMR 

(100 MHz, CDCl3)  159.0, 137.1, 135.8, 129.0, 128.9, 128.0, 127.9, 127.7, 127.3, 118.2 

(t, J = 23.5 Hz, 117.2, 52.2, 51.4, 47.5; IR (film) 3249, 2162, 1536 cm-1; MS (ESI+) 

306.1827 (306.1823 calcd for C19H19DN4, M + H+). 
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N-{[(Z)-allyl-3-d](benzyl)amino}-benzylaminomethylene-4-

methylbenzenesulfonamide (4-15).73 A round bottom flask was charged with dimethyl 

tosylcarbonimidodithioate (4-S3) (0.569 g, 1.70 mmol), ethanol (17 mL), and mercuric 

oxide (0.548 g, 2.53 mmol), then purged with nitrogen. Triethylamine (0.95 mL, 

6.75 mmol) was added followed by (Z)-N-benzylprop-2-en-3-d-1-amine (4-S8) (0.300 g, 

2.0 mmol). The reaction mixture was then stirred at rt for 72 h. The mixture was filtered 

through celite. The celite was rinsed with acetone, and the solution was concentrated in 

vacuo. The crude product was purified via flash column chromatography on silica gel 

(ethyl acetate/hexanes) to yield 0.363 g (49%) of the title compound as a white solid, m.p. 

79–81 °C. 1H NMR (400 MHz, CDCl3)  7.59 (d, J = 8.4 Hz, 2 H), 7.337.20 (m, 6 H), 

7.187.06 (m, 6 H), 6.96 (br, 1 H), 5.755.67 (m, 1 H), 5.16 (d, J = 10.4 Hz, 1 H), 5.08 (d, 

J = 17.3 Hz, 1 H), 4.47 (s, 2 H), 4.37 (d, J = 5.9  Hz, 2 H), 2.37 (s, 3 H); 13C NMR (100 MHz, 

CDCl3)  159.9, 141.7, 141.0, 136.9, 136.4, 132.3, 129.1, 128.9, 128.7, 128.0, 127.61, 

127.6, 127.58, 127.4, 126.0, 118.6 (t, J = 25 Hz), 51.8, 51.75, 49.7; IR (film) 3322, 1564 

cm-1; MS (ESI+) 435.1965 (435.1960 calcd for C25H26DN3O2S, M + H+). 
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(Z)-1-(allyl-3-d)-1-benzyl-3-(4-nitrophenyl)urea (4-14). A flame dried flask was cooled 

under a stream of nitrogen and charged with p-nitrophenyl isocyanate (0.244 g, 1.48 

mmol) in DCM (1.5 mL). (Z)-N-benzylprop-2-en-3-d-1-amine (4-S8) (0.220 mg, 1.48 

mmol) was then added, and the reaction stirred at rt overnight. The reaction mixture was 

then concentrated en vacuo, and the crude product was purified via flash column 

chromatography on silica gel to afford 0.245 g (53%) of the title compound as a yellow 

solid, m.p. 108–110 °C. 1H NMR (400 MHz, CDCl3)  7.89 (d, J = 9.2 Hz, 2 H), 7.12–7.04 

(m, 7 H), 6.17 (s, 1 H), 5.37–5.30 (m, 1 H), 4.83–4.76 (m, 2 H), 4.17 (s, 2 H), 3.34 (d, J = 

4.8 Hz, 2 H); 13C NMR (125 MHz, CDCl3)  154.8, 145.3, 142.5, 136.9, 133.3, 129.1, 

128.0, 127.5, 125.0, 118.3, 117.8 (t, J = 23.6 Hz), 50.9, 50.2; IR (film) 3346, 1652 cm-1; 

MS (ESI+) 313.1405 (313.1405 calcd for C17H16N3O3, M + H+). 

 

 

N-((S)-1,3-dibenzyl-4-((R)-morpholinomethyl-d)imidazolidin-2-ylidene)cyanamide 

(4-16). The general procedure was followed for the coupling of 1-[(Z)-allyl-3-d]-1,3-

dibenzyl-2-cyanoguanidine (4-13) (30.5 mg, 0.1 mmol) with morpholino benzoate (4-S5) 

(62.2 mg, 0.3 mmol). This procedure afforded 26 mg (67%) of the title compound as a 

tan, viscous oil. This compound was obtained as a 3:1 mixture of diastereomers as judged 

by 1H NMR analysis; data are for the mixture. 1H NMR (500 MHz, C6H6)  7.17–7.12 (m, 

4 H), 7.11–6.98 (m, 6 H), 5.25 (d, J = 15.5 Hz, 1 H), 4.52 (q, J = 15.1 Hz, 2 H), 4.08–4.02 

(m, 1 H), 3.29 (br s, 4 H), 3.01 (q, J = 7.4 Hz, 1 H), 2.65 (dd, J = 11.5, 7.3 Hz, 1 H), 2.54 
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(q, J = 8.2 Hz, 1 H), 1.89–1.84 (m, 1 H), 1.78–1.68 (m, 4 H), 1.58–1.51 (m, 1 H); 13C NMR 

(125 MHz, CDCl3)  158.4, 135.9, 135.4, 128.9, 128.8, 128.2, 128.1, 128.0, 127.9, 66.7, 

60.5 (t, J = 21.9 Hz), 54.0, 51.8, 49.5, 49.3, 47.8; IR (film) 2924, 2169, 1583 cm-1; MS 

(ESI+) 391.2355 (391.2351 calcd for C23H26DN5O, M + H+). 

 

 

(S)-1-benzyl-4-((R)-morpholinomethyl-d)-3-(4-nitrophenyl)imidazolidin-2-one (4-

17). The general procedure was followed for the coupling of (Z)-1-(allyl-3-d)-1-benzyl-3-

phenylurea (4-14) (31.2 mg, 0.1 mmol) with with morpholino benzoate (4-S5) (62.2 mg, 

0.3 mmol). This procedure afforded 28 mg (70%) of the title compound as a yellow . This 

compound was obtained as a 5.7:1 mixture of diastereomers as judged by 1H NMR 

analysis; data are for the mixture. 1H NMR (400 MHz, C6H6)  8.04 (d, J = 9.3 Hz, 2 H), 

7.61 (d, J = 9.3 2 H), 7.14–7.02 (m, 5 H), 4.31–4.19 (m, 2 H), 3.52–3.24 (m, 5 H), 2.85 

(dd, J = 8.9, 2.8 Hz, 1 H), 2.75 (t, J = 8.7 Hz, 1 H), 1.95–1.88 (m, 3 H), 1.83–1.79 (m, 2 

H), 1.72 (dd, J = 13.7, 9.3 Hz, 1 H); 13C NMR (125 MHz, CDCl3)  156.4, 145.2, 142.0, 

136.1, 128.8, 128.3, 127.9, 124.9, 117.4, 66.7, 58.9 (t, J = 19.0 Hz), 54.2, 50.8, 47.8, 

45.9; IR (film) 2922, 1710 cm-1; MS (ESI+) 398.1929 (398.1933 calcd for C21H23DN4O4, 

M + H+). 
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N-((S)-1,3-dibenzyl-4-((R)-morpholinomethyl-d)imidazolidin-2-ylidene)-4-

methylbenzenesulfonamide (4-18). The general procedure was followed for the 

coupling of N-{[(Z)-allyl-3-d](benzyl)amino}-benzylaminomethylene-4-

methylbenzenesulfonamide (4-15) (43.5 mg, 0.1 mmol) with morpholino benzoate (4-S5) 

(62.2 mg, 0.3 mmol). This procedure afforded 39 mg (75%) of the title compound as a 

tan, viscous oil. This compound was obtained as a 6:1 mixture of diastereomers as judged 

by 1H NMR analysis; data are for the mixture. 1H NMR (400 MHz, C6H6)  8.26 (d, J = 8.2 

Hz, 2 H), 7.28 (d, J = 6.8 Hz, 4 H), 7.20–6.98 (m, 6 H), 6.81 (d, J = 8.1 Hz, 2 H), 5.47 (d, 

J = 15.4 Hz, 1 H), 4.83 (d, J = 15.0 Hz, 1 H), 4.66 (d, J = 14.9 Hz, 1 H), 4.12 (d, J = 15.3 

Hz, 1 H), 3.33 (br s, 4 H), 3.15–3.05 (m, 1 H), 2.75 (t, J = 9.7 Hz, 1 H), 2.66 (d, J = 7.3 

Hz, 1 H), 1.92–1.87 (m, 4 H), 1.84–1.70 (m, 4 H), 1.77–1.72 (m, 1 H); 13C NMR (125 MHz, 

CDCl3)  156.5, 142.9, 141.2, 136.1, 135.7, 129.9, 128.8, 128.7, 128.6, 128.4, 128.1, 

127.9, 127.8, 125.8, 66.7, 60.2 (t, J = 19 Hz), 54.1, 51.6, 50.8, 49.0, 48.7, 21.4; IR (film) 

2922, 1559 cm-1; MS (ESI+) 520.2482 (520.2487 cacld for C29H33DN4O3S, M + H+). 

 

 

N-((S)-1,3-dibenzyl-4-((R)-piperidin-1-ylmethyl-d)imidazolidin-2-ylidene)-4-

methylbenzenesulfonamide (4-19).The general procedure was followed for the 
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coupling of N-{[(Z)-allyl-3-d](benzyl)amino}-benzylaminomethylene-4-

methylbenzenesulfonamide (4-15) (43.5 mg, 0.1 mmol) with piperidin-1-yl benzoate (4-

S6) (61.5 mg, 0.3 mmol). This procedure afforded 40 mg (77%) of the title compound as 

a tan, viscous oil. This compound was obtained as a mixture of diastereomers as judged 

by 1H NMR analysis; data are for the mixture. 1H NMR (500 MHz, C6H6)  8.26 (d, J = 8.0 

Hz, 2 H), 7.33 (d, J = 7.5 Hz, 2 H), 7.28 (d, J = 7.5 Hz, 2 H), 7.15–7.07 (m, 4 H), 7.05–

7.00 (m, 2 H), 6.82 (d, J = 8 Hz, 2 H), 5.46 (d, J = 15 Hz, 1 H), 4.82 (d, J = 14.5 Hz, 1 H), 

4.65 (d, J = 15.5 Hz, 1 H), 4.22 (d, J = 15 Hz, 1 H), 3.19 (q, J = 9.5 Hz, 1 H), 2.80 (t, J = 

9.5 Hz, 1 H), 2.72 (dd, J = 16.5 Hz, 6.5 Hz, 1 H), 2.05–2.00 (m, 1 H), 1.89 (s, 3 H), 1.86 

(br s, 4 H), 1.76–1.71 (m, 1 H); 13C NMR (125 MHz, C6H6)  156.2, 144.3, 140.4, 137.1, 

136.5, 128.8, 128.6, 128.7, 128.6, 128.5, 128.4, 127.5, 126.2, 60.7 (t, J = 22 Hz), 54.8, 

51.7, 50.8, 48.8, 48.7, 25.8, 24.1, 20.7; IR (film) 2931, 1559 cm-1; MS (ESI+) 518.2692 

(518.2695 calcd for C30H35DN4O2S, M + H+). 
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