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ABSTRACT

This dissertation presents a suite of mathematical formulations and numerical

methods for modeling the interactions between solid mechanics and chemistry in

multi-phase materials. In all cases, the treatments rely on the free energy of the

system, which potentially includes the strain energy, the chemical free energy, and

the interfacial energy. Variational methods are applied to the free energy functionals

to derive equilibrium conditions for mechanics and to identify constraints on kinetic

laws for chemistry. The applications of this class of variational methods include

evolving material configurations associated with phase changes, both diffusive (e.g.

oxidation) and non-diffusive (e.g. martensitic transformations). Motivated by the

need to represent multi-well, oscillatory, free energy densities, a study is presented

comparing spline and polynomial forms for these functions. An alternative approach

to phase-field dynamics for finding a minimum energy state is demonstrated, with

Mg alloy precipitates as an example. It involves learning the free energy surface as a

function of key geometric features with machine learning techniques, which are then

used to predict a minimum energy state. This collection of mathematical formulations

and numerical methods is aimed at explorations of the physics underlying observed

phenomena in multi-phase materials, with potential use in materials’ design.

xi



CHAPTER I

Introduction

The modeling of materials physics plays a key role, together with physical experi-

mentation and observation, in understanding the driving mechanisms behind material

phenomena. As these driving forces are more clearly understood, mathematical and

numerical models can turn from replicating what is currently seen to predicting what

might be possible given an alternative set of inputs. The construction of these models

generally depends on the nature of the underlying mechanisms and the scales on which

they occur. This dissertation considers the interplay between the solid mechanics and

chemical composition of materials on the continuum scale. While the formulations

and methods are applicable to a wide range of materials, to fix ideas they are in most

cases presented in the context of a specific material or material phenomena.

1.1 Material phenomena

Three types of material phenomena are considered in the dissertation: martensitic

transformations, titanium oxidation, and formation of precipitates in Mg-Rare Earth

alloys.

Martensitic transformations are diffusionless, lattice-distorting phase transitions

[7, 8, 9, 10, 11, 12]. The transformation from austenite to martensite in steel is,

perhaps, the most well-known example and has been utilized for millenia [7]. In the
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comparatively recent past, reversible martensitic transformations have been found

to be responsible for the shape-memory effect in certain alloys [7, 8, 9, 10, 11]. The

applications of shape-memory alloys are varied, including use in actuators and medical

and dental devices and implants. Diffusion-driven martensitic phase transformations

occur in lithium-ion manganese oxide batteries [12]. In many of these examples, the

underlying change in crystal lattice is from cubic to tetragonal, although several other

transition types occur (e.g. cubic to orthorhombic, cubic to monoclinic) [7, 9, 10].

While titanium and titanium alloys are widely used materials, titanium oxides

have also been proposed as useful materials in multiple applications, including medical

implants [13, 14] and batteries [15]. The diffusion of oxygen in titanium alloys has

also been explored for its hardening effects [16]. Titanium oxidizes to form a variety of

oxides, including rutile [17, 18, 19], anatase TiO2, and rock salt TiO [20, 21, 22, 23].

At low partial pressures of oxygen, ordered TiO1/6, TiO1/3, and TiO1/2 suboxides

can also form [1]. In addition to these oxides, a region of solid solution HCP TiOx

can exist below the oxide layer with compositions as high as x = 1/2 [24, 25]. As

with other metals, oxidation can introduce voids that could negatively effect the

material properties. There are multiple possible mechanisms driving the voiding

process, including vacancy condensation and the effect of oxide stresses [26, 27].

Magnesium is an attractive structural material due to its low density (two thirds

the density of aluminum and one quarter the density steel) and abundance in the

Earth’s crust [28, 29, 30, 31]. Poor mechanical properties such as yield strength,

formability, creep resistance, and corrosion resistance, even in many alloys, limit its

current use. Precipitation and age hardening in magnesium alloys play key roles in

the improvement of material properties. Many studies and computational models

have focused on understanding the properties of these precipitates, including those of

promising Mg-Rare Earth alloys [32, 33, 34, 5, 35, 31, 3, 36, 37, 2].
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1.2 Methodology

The difference in crystal structure between adjacent phases, whether it be between

martensitic variants, oxide and metal, or precipitate and solid-solution phases, is a

key element in the interactions between solid mechanics and chemistry. The effects

of the mismatch in crystal structure are treated in a continuum setting in the formu-

lations and methods presented in this dissertation. These continuum methods rely

on material parameters describing the structure and free energy of each phase. This

information can be predicted using atomistic methods such as first-principles statisti-

cal mechanics and density functional theory (DFT) [31, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48]. The numerical examples presented in the following chapters repeatedly

rely on reported parameters determined through such methods.

Within the continuum setting, the solid mechanics are defined using a standard

displacement field. Even when dynamics are introduced to model chemical diffusion,

the solid mechanics are considered quasi-static. Where the chemical composition is

variable, a (scalar) composition field is introduced. A variable crystal lattice can be

represented using various methods. If completely dependent on the composition, no

additional fields are needed. Otherwise, it is possible to introduce order parameters,

such as those used in Allen-Cahn formulations, to identify regions of distinct crystal

lattices [49]. It is also possible, as introduced in Chapters 2 and 3, to represent the

crystal structure with a second kinematic (vector) field.

Each of the material examples in the previous section involve multiple phases with

either coherent or incoherent interfaces. There are several possible ways to model the

phase interfaces depending on the coherency of the interface and whether dynamics

are included. An incoherent interface modeled in a dynamic setting can be represented

using the level set method, where the zero level set of a field represents the sharp

interface [50, 51]. The interface motion is governed by a specified interface velocity

and partial differential equation. This method is used in Chapter 2. Evolving coherent

3



interfaces are represented in phase field methods using the Allen-Cahn and/or Cahn-

Hilliard by a rapid but continuous change in a composition or order parameter field

[52, 49]. The location and thickness of these diffuse interfaces are controlled by

nonconvexities and gradient terms in the free energy function. Chapters 3, 4, and 5

demonstrate these phase field methods. When the location of a coherent interface is

fixed and known, a signed distance function can be approximated near the interface

and used to smoothly transition from the material parameters of one phase to those

of another. This method is used in Chapter 5.

1.3 The free energy

A proper expression for the free energy of a substance is considered a fundamental

equation from which all thermodynamic properties of the substance can be derived.

Material properties such as heat capacity and compressiblity, as well as information

about phase stability, are related to second derivatives. The first derivatives of the

free energy are used to define equilibrium conditions [53].

When a system is at a stable equilibrium, the free energy is at a minimum. Ex-

tremization of a function is accomplished by setting the first derivative equal to zero.

The free energy is, in general, a functional rather than a function; that is, its value

“depends upon the entire course or path of one or more functions rather than on

a number of discrete variable,” as is the case with all integrals and derivatives [54].

The method for minimizing a functional is provided by variational calculus. This

is done by setting what is termed the first variation equal to zero, giving the weak

form of the equilibrium conditions. From the first variation, the related variational

derivative and the partial differential equation in strong form can be derived [55].

This method of defining a free energy functional and setting the first variation to be

zero is used throughout this dissertation for deriving the equilibrium conditions of

solid mechanics.
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The variational derivative also plays a role in modeling the dynamics when at

nonequilibrium with respect to concentration of a species within a body. The varia-

tional derivative of the Gibbs free energy with respect to concentration is the chem-

ical potential. A commonly used phenomenological law defines the flux in chemical

diffusion to be proportional to the gradient of the chemical potential [53]. Chem-

ical diffusion can be modeled by combining this definition of the flux, J , with the

conservation equation ∂c/∂t = −∇ · J . When the free energy and, hence, the chemi-

cal potential include gradient terms representing interfacial energy, this becomes the

Cahn-Hilliard equation. The Cahn-Hilliard and the related Allen-Cahn equations are

phase field models, which are able to model the time evolution of materials with

multiple, concurrent phases [52, 49]. They are defined such that the free energy of

the system decreases over time, eventually reaching equilibrium when appropriate

boundary conditions are applied. Phase-field models are used in Chapters 3 through

5.

The problem of finding the energy minimizing state can also be considered as an

optimization problem. For cases where a variable field or function can be represented

by a set of discrete variables, traditional optimization techniques can be used. For

situations where it is possible to evaluate the total free energy but impractical to

calculate gradients, derivative-free optimization methods can be used [56]. These

include, for example, genetic algorithms, simulated annealing, and surrogate-based

optimization methods. Surrogate-based methods involve using a low-order or surro-

gate model to represent the objective function, i.e the free energy [57]. The surrogate

model provides computationally efficient approximations to the gradient that can

be used in the traditional gradient methods, such as gradient descent. Regression

machine learning methods, such as Deep Neural Networks (DNN), can be used effec-

tively as surrogate models in minimization problems, as demonstrated in Chapter 5

[58, 59, 60].
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1.4 Goals and outline

The overarching goals of this dissertation are to provide additional methods and a

mathematical framework that will allow for the testing of materials science hypotheses

in a computational setting and provide guidance in the planning of experiments and

designing of materials. Specific goals include the following:

• Demonstrate a mathematical framework that allows the methodical inclusion of

multiple types of displacement or deformation (e.g. motion of phase boundaries,

changes in crystal structure) and chemical species (see Chapters II and III).

• Allow for the use of realistic free energy data in a way that is computationally

efficient (see Chapter IV).

• Use machine learning techniques to improve computation time in certain phase-

field problems (see Chapter V).

An outline of the dissertation is as follows. Chapter II describes the treatment of

evolving configurations in solids. The governing equations are found within a varia-

tional framework by allowing fluctuations in both the current and material configura-

tions of the system. These equations include the standard Euler-Lagrange equations

for nonlinear elasticity, as well as additional “configurational” equations. These con-

figurational equations are applied in two specific cases, both describing phases changes

in absence of chemical diffusion. The first is the migration of a sharp interface be-

tween two material phases, where the kinetic law is suggested by the configurational

equations. This example is implemented numerically using the level set method.

The second case describes changes in microstructure that occur throughout the body,

resulting in multiple phases separated by diffuse interfaces. Martensitic transforma-

tions are an example of this type of phase change, in which cubic crystal structures

morph into tetragonal structures. This is implemented using isogeometric analysis
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(IGA) and gradient elasticity, due to the non-convexity of the free energy function

describing the change in crystal structure.

In Chapter III, chemical diffusion is combined with the configurational treatment

of Chapter II by incorporating the Cahn-Hilliard equation. It is used in describing

the oxidation of titanium, where the underlying crystal structure evolves due to the

interactions between chemical diffusion (oxygen and titanium) and mechanics (ex-

pansion of the oxide). An energy well representing voids is incorporated within the

free energy function to induce vacancy condensation, and a phase field computation

demonstrates the resulting void formation.

The method of mathematically representing the free energy of a single variable is

considered in Chapter IV. This is done through a study comparing cubic splines and

Redlich-Kister polynomials in fitting chemical potential data, which is integrated to

find the free energy density function. For chemical potential data describing a system

with multiple regions of phase separation, the cubic splines give a more accurate

representation of the data compared to the traditional Redlich-Kister polynomials.

Furthermore, when used in a Cahn-Hilliard phase field computation, the cubic spline

provides a speed up of nearly an order of magnitude in computation time when

compared to a high order polynomial of comparable fidelity.

Chapter V presents an alternate method of finding low energy material configu-

rations using a surrogate based optimization method based on deep neural networks.

This is done in the context of precipitates in magnesium alloys. Points on the free

energy surface, consisting of strain, chemical, and interfacial energies, are computed.

A deep neural network is trained to predict the total energy based on the precip-

itate geometry and composition. Precipitate shapes that minimize this energy can

be quickly found using the neural network’s surface, thus predicting the low energy,

equilibrium precipitate shape. Additional computations focused at and near the ini-

tial estimated minimum are used to improve the estimate. This method is compared

7



with commonly used phase field methods, and the possible interactions between the

two kinds of models are discussed.

Chapter VI summarizes and concludes the dissertation.

8



CHAPTER II

A variational treatment of material configurations

with application to interface motion and

microstructural evolution

This chapter presents a variational treatment of evolving configurations in solids1.

Of interest are problems in which a kinematic field can be identified, which describes

the essential aspects of the material’s configuration, while another distinct field, the

displacement, furnishes the kinematics necessary for representing the nonlinear elastic

response. Such a separation is possible upon a suitable definition of configurations

for the cases at hand. A series of mathematical steps can then follow: The total

free energy can then be written as a functional of both the configurational and the

displacement fields. With it, one can seek equilibrium states that render the free

energy stationary with respect to both fields. The corresponding Euler-Lagrange

equations governing the configurational and displacement fields can be solved. The

motivation from physics comes of asking whether a solid under load can seek to reach

equilibrium by varying some configurational degree of freedom that can be identified

as being distinct from the displacement field.

1This chapter is based on the following paper: G. Teichert, S. Rudraraju, K. Garikipati, 2017. A
variational treatment of material configurations with application to interface motion and microstruc-
tural evolution, Journal of the Mechanics and Physics of Solids 99, 338–356.
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The somewhat abstract arguments laid out above have relevance to crystalline

solids that undergo phase transformations coupled with elastic deformation: In a

classical continuum setting, the elastic deformation is obtained from the displace-

ment, which is the only kinematic field. No phenomena are sought to be modeled,

other than the mapping of the reference to current placements. In this setting, the

reference and material placements coincide, and most importantly, they are fixed. In

contrast stands any phenomenon in which, the material configuration evolves from

a reference material configuration, and can be represented, on a physical basis, by a

configurational field that is distinct from the displacement field. Here, the focus is on

two specific examples: (a) In a multi-phase solid where phase change occurs at inter-

phase interfaces, the configurational field would represent interface migration. The

phase, and therefore the crystal structure at a material point will change if the inter-

face migrates through that point. This causes a change in the material configuration

of the point. Since the crystal structure (material configuration) changes across the

mathematically sharp interface, the latter is incoherent. (b) Alternately, in a multi-

phase solid, the crystal structure may change smoothly from one phase to another

over an interface that has finite width, rather than being mathematically sharp. In

this case also, the material configuration evolves with the crystal structure. Clearly,

this would be a case of coherent interphase interfaces. Here too, the configurational

field would represent the crystal structure at any point in the solid as a map from

some well-defined, reference material configuration.

In each of cases a and b, with the evolved material configuration determined as

above, the displacement field can be defined as the point-to-point map from this

configuration to the current/deformed placement that lies in the spatial manifold.

An elastic deformation can then be identified from this displacement field.

With two distinct kinematic fields thus identified, the response of the solid can be

described by parameterizing the free energy functional in terms of these two fields.
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The imposition of equilibrium as the conditions of stationarity under variations on

the configurational and displacement fields reveals two sets of Euler-Lagrange equa-

tions. As expected, one set contains the standard partial differential equations of

elasticity. The second set is novel, and consists of partial differential equations and

accompanying boundary conditions that involve the conventional elastic stress, the

Eshelby stress, as well as a distinct configurational stress.

The treatment of a configurational force, distinct from standard, Newtonian, forces

acting on imperfections in a crystal lattice was given by Eshelby [61], building off work

from the late nineteenth century [62, 63]. The last two decades have seen a resurgence

in the literature on configurational forces. Some of the theoretical underpinnings can

be found in references— [64, 65, 66, 67, 68] and [69]. Applications have also been

developed, such as to finite element discretization [70], to the dynamics of defects

[71], to spatial and material covariant balance laws [72] for modeling elastic inclusions

[73], and to fracture mechanics [74]. Configurational force equations can be derived

in the setting of classical balance laws, or, with appropriate assumptions, within

a variational framework. Gurtin [64] regards configurational forces as fundamental

quantities in continuum physics, analogous to standard forces. On that premise, he

regards configurational balance laws as the corresponding, fundamental laws that

must exist in order to govern these forces. This has led to a debate on whether

new physics is posited by the introduction of configurational forces [68, 75]. The

work presented here lies within a variational setting, and circumvents this debate by

relying on the (perhaps) more accepted notion of equilibrium to arrive at balance

laws as Euler-Lagrange equations of free energy functionals. The resulting partial

differential equation for configurational equilibrium also arises in the work by Gurtin

[64] and Maugin [68], where it has been called the fully material equilibrium equation.

The problem of configurational changes taking place at a sharp, migrating in-

terface between two solid material phases is considered first. It is shown that the
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variational method produces a partial differential equation of configurational equilib-

rium in addition to the standard partial differential equation of elasticity. Assuming

satisfaction of quasi-static elastic equilibrium, the partial differential equation for

configurational equilibrium is identically satisfied everywhere except on the interface

itself. There, it takes the form of a jump condition, which also vanishes if equilib-

rium is satisfied at the interface. However, it is of interest to consider solids that are

far from equilibrium, and therefore have migrating interfaces. Then, the second law

of thermodynamics provides guidance for choosing a sufficient form for the interface

velocity. The well-known and widely-used level set method [50] is adopted to track

the interface’s motion based on this velocity. Just a few of a vast number of level

set applications are listed here: Barth & Sethian [51] modeled an isotropic etching

process with a constant velocity and a directional etching process with a velocity

dependent on the interface orientation. Macklin & Lowengrub [76] modeled tumor

growth with a curvature dependent velocity. The interface velocity in oxidation prob-

lems [77, 78], [79] is based on material composition. Finally, it is of interest to note

that Kalpakides & Arvanotakis [80] used a velocity based on configurational forces to

model ferroelastic materials, although it is arrived at differently than in the present

work.

The next problem considered is that of smoothly varying configurational changes

in crystal structure that occur over interfaces of finite width. The smoothness implies

that the configurational change extends over finite sub-volumes and transforms the

crystal structure from the parent to the daughter phases. Therefore, it is in con-

trast to the case of phase transformation only at a migrating sharp interface. The

configurational change of the crystal structure over the volume suggests that there

is a contribution to the free energy density function, which is associated with this

configurational field. The variational treatment based on stationarity of the free en-

ergy functional leads to a partial differential equation for configurational balance that
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holds throughout the volume of the crystalline solid. There is therefore a fundamental

difference in the form of the governing equations from that for phase changes that

occur only at a sharp interface. The variational setup, however, is similar in both

problems. Such a consideration of configurational change that occurs over the volume

of a material was attempted, albeit in a limited manner, by Garikipati et al. [81] in

the context of remodeling in biology. Since the parent and daughter crystal struc-

tures are equilibrium structures under suitable conditions, the free energy density

function must exhibit local minima in configurational tangent space corresponding to

these structures. The free energy density function is therefore non-convex and admits

microstructures, thus placing the problem in a class that has spawned a rich mathe-

matical literature [82, 83, 10]. It also is well-known that the non-convex free energy

density functions must be enhanced by terms that penalize gradients in the tangent

maps of the configurational variables for mathematical well-posedness and physically

meaningful solutions [84]. Such considerations were accounted for by Rudraraju ad

co-workers [85, 86], who treated non-convex free energy density-driven microstruc-

ture formation in nonlinear gradient elasticity following Toupin [87]. This treatment

is extended to the configurational field in this communication.

Our treatment begins with consideration of the problem where the configurational

change is restricted to a sharp interface in Section 2.1, and then moves on to the

problem of smoothly varying configurational change over a diffuse interface in Section

2.2. The treatment is illustrated by numerical examples in both sections. Concluding

remarks appear in Section 2.3.

2.1 Configurational change restricted to a sharp interface

Consider a body that is an open set Ω ⊂ R3 with two open subsets, Ωα and Ωβ

consisting of phases α and β, respectively, that meet at a sharp interface Γ ⊂ Ω. Here

Γ is a 2-manifold that can be constructed as a mapping Γ : R2 7→ R3 (see Figure 2.1).
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Figure 2.1: Kinematics of the configurational changes and elastic deformations with
a sharp interface.

Let

Ω = Ωα ∪ Ωβ

Γ = ∂Ωα ∩ ∂Ωβ

∂Ω = ∂Ωα ∪ ∂Ωβ \ Γ (2.1)

The traditional traction boundary, where external, standard tractions can be imposed,

is denoted by ∂ΩS
T , while the traction-like boundary related to changes in material

configuration is ∂ΩM
T . This description is of the body in some material configuration.

It is supposed that the body has arrived at the above configuration by undergoing

a phase transformation from the reference material configuration Ω0, characterized

by motion of the interface from its reference configuration Γ0 to Γ in configurational

space. The reference material configurations of Ωα and Ωβ are, respectively, Ωα0 and

Ωβ0 . The point-to-point map κ is from the reference material configuration Ω0 onto
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the evolved material configuration Ω.

X = κ(X0) = X0 +U (2.2)

χ =
∂κ

∂X0 = 1+
∂U

∂X0 (2.3)

Here, X0 and X are the reference and evolved values of the configurational field.

The field U will be referred to as the configurational displacement, since it describes

the change in material configuration through the evolution of the phases and their

interface.

The elastic deformation of the body is described in the standard manner based

on the mapping φ : Ω 7→ Ωt, defined as:

x = φ(X) = X + u (2.4)

where u is the standard displacement field. The elastic deformation gradient is then

defined as

F =
∂φ

∂X0

∂X0

∂X
=

∂φ

∂X
= 1+

∂u

∂X
(2.5)

These variables can also be written in terms of X0, as follows:

x = φ(κ(X0)) = X0 +U + u (2.6)

F =

(
1+

∂U

∂X0 +
∂u

∂X0

)(
1+

∂U

∂X0

)−1

(2.7)

It is important to note the distinctions between the configurational map, κ and the

deformation map φ, their respective tangent maps χ and F , and the associated

configurational and standard displacement fields U and u.

The Gibbs free energy of the system is given by the following functional defined

over Ω, where ψα(F ,X) and ψβ(F ,X) are the strain energy density functions for
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the two phases:

Π[u;U ] =

∫
Ωα

ψα(F ,X) dV +

∫
Ωβ

ψβ(F ,X) dV

−
∫
Ω

f(X) · u dV −
∫
∂ΩS

T

T · u dS (2.8)

A change of variables is performed to define the functional over Ω0, noting that

constancy of the traction loading during configurational change implies that TdS =

T 0dS0:

Π[u;U ] =

∫
Ωα0

ψα(F ,κ(X0)) detχ dV0 +

∫
Ωβ0

ψβ(F ,κ(X0)) detχ dV0

−
∫
Ω0

f(κ(X0)) · u detχ dV0 −
∫

∂ΩS
T0

T 0 · u dS0 (2.9)

2.1.1 Variational formulation

Variations are considered on the configurational displacement, U ε := U + εW ,

and on the standard displacement, uε := u + εw. The first variation is computed

using the functional defined over the fixed, reference material configuration Ω0. A

complete derivation is presented in A. Note that the two integrals
∫

Ωα
ψα and

∫
Ωβ
ψβ

are expressed with a single integral
∫

Ω
ψ.

d

dε
Π[uε;U ε]

∣∣∣∣
ε=0

=
d

dε

{∫
Ω0

ψ(F ε,κε(X0)) detχε dV0

−
∫
Ω0

f(κε(X0)) · uε detχε dV0

−
∫

∂ΩS
T0

T 0 · uε dS0

}∣∣∣∣
ε=0

(2.10)
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At equilibrium, the first variation of the Gibbs free energy is zero: [dΠ/dε]ε=0 =

0. The first variations of F and detχ are derived from equations (2.7) and (2.3),

respectively:

dF ε

dε
=

[
∂w

∂X0 + (1− F ε)
∂W

∂X0

]
χε−1 (2.11)

d detχε

dε
= 1 :

(
∂W

∂X0χ
ε−1

)
detχε (2.12)

Substituting (2.11) and (2.12) into (2.10) defining the first Piola-Kirchhoff stress

as ∂ψ/∂F = P , and using dκε/dε = W and duε/dε = w gives

0 =

∫
Ω0

P :

(
∂w

∂X0χ
−1

)
detχ dV0 −

∫
Ω0

(f ·w) detχ dV0

+

∫
Ω0

(P − (f · u)1+ E) :

(
∂W

∂X0χ
−1

)
detχ dV0

+

∫
Ω0

(
∂ψ

∂κ
− u · ∂f

∂κ

)
·W detχ dV0 −

∫
∂ΩS

T0

T 0 ·w dS0 (2.13)

Following a number of previous authors [65, 66, 64] the term E := ψ1 − F TP is

recognized as the Eshelby stress tensor. This weak form is now rewritten on Ω:

0 =

∫
Ω

P :
∂w

∂X
dV −

∫
Ω

(f ·w) dV

+

∫
Ω

(P − (f · u)1+ E) :
∂W

∂X
dV

+

∫
Ω

(
∂ψ

∂X
− u · ∂f

∂X

)
·W dV −

∫
∂ΩS

T

T ·w dS (2.14)

The strong form is derived from the weak form using standard variational arguments.

In equation (2.14) discontinuities are allowed at the phase interface in all fields except

W and w. The corresponding strong form consists of the two following sets of
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equations. The first set (2.15a - 2.15c) represents the standard governing partial

differential equations and boundary conditions of nonlinear elasticity, now extended

to include an interface Γ. The second set of equations (2.15d - 2.15f) has been

simplified under the assumption that the preceding equations of nonlinear elasticity

are satisfied. The operator ∇· is used here to refer to the divergence with respect

to X. Note that N is the unit normal to the boundary of the body, and NΓ is the

normal to the interface.

PN − T = 0 on ∂ΩS
T (2.15a)

[[PNΓ]] = 0 on Γ (2.15b)

∇ · P + f = 0 in Ω (2.15c)

(E + P − (f · u)1)N = 0 on ∂ΩM
T (2.15d)

[[ (E − (f · u)1)NΓ]] = 0 on Γ (2.15e)

∇ · E − ∂ψ

∂X
− F Tf = 0 in Ω (2.15f)

Note that equation (2.15f) corresponds exactly to the partial differential equation

derived in [64] and [68]. This reduces further, using coordinate notation for clarity,

with lower case indices for objects defined on Ωt and upper case indices for objects

defined on Ω.

(ψδIJ − FiIPiJ),J −
∂ψ

∂XI

− FiIfi = 0

∂ψ

∂FiJ
FiJ,I +

∂ψ

∂XI

− FiI,JPiJ − FiIPiJ,J −
∂ψ

∂XI

− FiIfi = 0

PiJFiJ,I − FiI,JPiJ − FiIPiJ,J − FiIfi = 0 (2.16)

Using the relation FiI,J = FiJ,I and PiJ,J = −fi from equation (2.15c), this equation

vanishes identically. Thus, if the standard governing partial differential equation for
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nonlinear elasticity, PiJ,J + fi = 0 in Ω is satisfied, the corresponding configurational

partial differential equation EIJ,J − ∂ψ
∂XI
− FiIfi = 0 in Ω is trivially satisfied.

2.1.2 Interfacial energy

Interfacial energy can be included by adding the integral

ΠΓ =

∫
Γ

ψΓ dS (2.17)

to the free energy functional Π, where ψΓ is the interfacial free energy density. As-

suming ψΓ is a constant, the first variation of this integral is

δΠΓ

δU
·W =

∫
Γ

−2ψΓH
(
W ·NΓ

)
dS

−
∮
∂Γ

ψΓW ·
(
N × T Γ

)
(NΓ ·N )T Γ · dr (2.18)

where H is the mean curvature of Γ. This term would affect equation (2.15e) and

add a condition over ∂Γ, resulting in the following:

(
[[E − (f · u)1]]− 2ψΓH1

)
NΓ = 0 on Γ (2.19a)

ψΓNΓ ·N = 0 on ∂ΓT (2.19b)

A full derivation is included in B.

2.1.3 Nonequilibrium with respect to material evolution

Suppose that the body is at equilibrium everywhere except with respect to configu-

rational evolution of the interface, Γ. Then, as the foregoing treatment demonstrates,
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the first variation of the free energy reduces to

δΠ

δU
·W =

∫
Γ

W ·
[(

[[E − (f · u)1]]− 2ψΓH1
)
NΓ
]

dS (2.20)

The field W represents variation of the interface. In a rate formulation, this would

be replaced by the interface velocity V Γ.

Π̇ =

∫
Γ

V Γ ·
[(

[[E − (f · u)1]]− 2ψΓH1
)
NΓ
]

dS (2.21)

The interface velocity can be defined by

V Γ = −M
[(

[[E − (f · u)1]]− 2ψΓH1
)
NΓ
]

(2.22)

with M a positive definite tensor to ensure decrease in free energy (Π̇ ≤ 0), thus

satisfying the second law of thermodynamics. The presence of H in the interface

velocity makes this a general curvature driven flow.

2.1.4 Numerical treatment

The level set method is used for movement of the sharp interface in the case of

nonequilibrium with respect to material evolution. All partial differential equations

are solved using the finite element method.

2.1.4.1 Level set method

In the level set method, the interface is represented by the zero contour or level set

of a scalar field, Φ(X, t) [50]. The evolution of Φ (and the zero level set) is governed

by the following partial differential equation:

∂Φ

∂t
= −v|∇Φ| (2.23)
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where the scalar v is the advection velocity (i.e. the normal component of the level

set velocity). The behavior of the level set evolution is improved when Φ is a signed

distance function. Replacing v with ve helps to maintain this property, where ve is

the extensional velocity, defined as the advection velocity at the closest point on the

zero level set. This “closest point” generally does not coincide with a node or an

integration point. Additionally, the field Φ is periodically reinitialized as a signed

distance function based on the current location of the zero level set. The method of

reinitialization used here involves solving the Eikonal equation |∇Φ| = 1, using the

following partial differential equation [88] with additional constraints on Φ to reduce

spurious movement of the zero level set:

∂Φ

∂t̂
= sgn(Φ0)(1− |∇Φ|)

Φ0(X) = Φ(X, 0) (2.24)

Note that t̂ is a time-like parameter introduced only to allow relaxation of Φ to a

signed distance function during reinitialization.

2.1.4.2 Finite element methods

Both the level set equation and the Eikonal equation used in reinitialization

are solved using finite element methods. To reduce spatial oscillations common to

advection-diffusion equations, the streamline upwind/Petrov-Galerkin (SUPG) weak

form is used [89]:

w̃ = w + τ
v · ∇w
|v|∫

Ω

w̃
∂Φ

∂t
dV = −

∫
Ω

w̃ve|∇Φ| dV (2.25)
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Since the value of Φ is only needed near the zero level set, the level set equation is only

solved within a narrow band about the zero level set. The elastic, finite deformation

of the body is modeled using the Bubnov-Galerkin weak form. The elasticity problem

is solved over the entire domain using the field Φ to determine material properties at

each integration point.

2.1.5 Numerical simulation

Figure 2.2: An example problem of sharp interface motion driven by displacement
controlled, uniaxial tension.

Figures 2.2 - 2.5 present the plane strain computation of a two-phase material

with a migrating sharp interface, under vanishing body force and zero interfacial

energy. The initial phase distribution is as shown in Figure 2.2, with a compliant

phase (Young’s modulus E = 20 GPa) surrounded by a stiffer phase (E = 30 GPa).

All other material properties and the chemical free energy density are taken to be

the same for both phases. The body is subjected to displacement controlled, uniaxial

tension. At each time step, the interface motion is modeled via the level set equation,

and the current elastic deformation is found based on the updated interface location.

The zero level set velocity is found using equation 2.22. A time step of .001 s was
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used, with M equal to the isotropic tensor multiplied by 2e-8 m3/(Ns). The problem

was allowed to evolve for 7000 time steps.

(a): Time step = 1 (b): Time step = 50 (c): Time step = 250

(d): Time step = 1000 (e): Time step = 4000 (f): Time step = 7000

Figure 2.3: Evolution of the sharp interface in the evolved reference configuration Ω
over time. The interface is represented by the zero level set (red line) and is updated
over a narrow band enclosing the zero level set (colored elements). The velocity
vectors of the level sets are shown, but nearly vanish at later times, and are therefore
not discernible in (c–f).

Figure 2.3 shows the evolution of the zero level set as the interface moves in the

evolved reference configuration Ω, driven by the jump in the Eshelby stress tensor.

the dynamics of the problem slow down after about 4000 time steps, or 4 s. The time

scale of the problem is consistent with the interface velocity, which is initially about

5 m/s, and the size of the domain. It is shown in Figure 2.4 that after 7000 time

steps, all of the level set velocity vectors are nearly tangential to the level set. As a

result, there is little movement normal to the zero level set. This is due to a large

reduction in the jump in stress across the interface; there is still, however, a jump in

the strain energy density.
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Figure 2.4: After 7000 time steps, the level set velocity vectors are all nearly tangential
to the level sets (velocity vectors scaled 3x).

(a): Time step = 1 (b): Time step = 7000

Figure 2.5: Evolution of elastic deformation due to the change in material configura-
tion (10x displacement shown).

The elastic deformation on the top and bottom edges of the body can be seen

in Figure 2.5, which is in the current, deformed configuration Ωt. Initially, that

deformation is greatest in the middle, due to the concentration of the compliant

phase in the center. However, the interface evolves in such a way that the elastic

deformation along the edges becomes nearly uniform after 7000 time steps.

2.2 Configurational change over a volume; diffuse interfaces

The case of a solid that can undergo phase changes throughout the volume is

treated in this section, considering again equilibrium with respect to both the con-

figurational and standard displacements. As discussed in the Introduction, the ma-

terial’s configuration, represented by the crystal structure, varies smoothly between

parent and daughter phases, thus creating diffuse interfaces between the phases (see

Figure 2.6). In this case, the invertible map κ and its gradient, χ = ∂κ/∂X0, model

the distortion of the crystal structure associated with the phase change. The mapping
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Figure 2.6: Kinematics of the configurational changes and elastic deformations caus-
ing a diffuse interface.

φ̄ and gradient F̄ are introduced, giving the final placement of the body via config-

urational and standard displacements from the reference material configuration:

x = φ̄(X0) = X0 + ū (2.26)

F̄ =
∂φ̄

∂X0 = 1+
∂ū

∂X0 (2.27)

The deformation map φ and deformation gradient F model standard elastic deforma-

tion relative to the evolved material configuration (distorted crystal structure) and

are as defined previously.

2.2.1 The cubic to tetragonal transformation

To fix ideas, a diffusionless cubic to tetragonal transformation is considered here

such as occurs in some martensitic transformations [7, 9, 10], although these methods

have wider applicability to any smooth change in crystal structure. In the reference
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material configuration, the solid is stable in the cubic crystal structure at high tem-

perature. The free energy density function has a single well in this phase. A rapid

quench is assumed to render the cubic phase unstable to a configurational change by

distortion into tetragonal phase. Three such tetragonal variants are possible, and the

solid is stable in any of these structures, implying that they are local minima of the

free energy density. Furthermore the configurational change between one tetragonal

variant and another is smooth, and these variants are separated by diffuse inter-

faces. In this phase, therefore, the solid’s free energy density is a smooth, non-convex

function of χ with three minima corresponding to the three stable and equivalent

tetragonal variants (Figure 2.7). A two-dimensional version of these configurational

changes is the square to rectangle transformation (Figure 2.8), which serves well to fix

ideas. The first numerical example in Section 2.2.4 will also return to two dimensions.

While free energy functions with wells of equal depth are used as examples, there is

nothing in this formulation that requires that the depths be equal.

Figure 2.7: Tetragonal variants and free energy density contours in 3D. The axis, η2

and η3, are reparametrized strains.

2.2.2 Free energy density functions

The free energy density function associated with the configurational changes de-

scribed above is ψM = ψ̂M(X0,χ,∇0χ). The operator ∇0 is used to refer to deriva-
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Figure 2.8: Tetragonal variants and free energy density schematic in 2D.

tives with respective to X0 for brevity in notation. This function allows for inho-

mogeneity via X0 and, as discussed in Section 2.2.1, is dependent on the tangent

map of the configurational field χ. Since ψM is non-convex in the tetragonal phase,

it allows the development of microstructures formed by laminae of the tetragonal

variants, as discussed extensively in the literature. See [82, 83, 10] for a background

discussion. As is also well-known, these microstructures can develop with arbitrary

fineness unless the diffuse interfaces between sub-regions of a single variant are pe-

nalized. This is done by inclusion of a dependence on ∇0χ for regularization [84, 85].

This ensures physically meaningful solutions and mathematical well-posedness. The

free energy density function for the standard elastic deformation relative to Ω is

ψS = ψS(X,F ,χ), where X = κ(X0). Similar to ψM, the elastic free energy de-

pends on X and the elastic deformation gradient F . Anisotropic elastic response can

be incorporated if ψS is made to depend on χ: The local value of χ determines the

tetragonal variant arising as a result of the configurational change, and therefore sets

the anisotropy of response due to elastic deformation relative to this evolved material

configuration, Ω. The free energy of the system is then modeled with the following

27



Gibbs free energy functional (Figure 2.9):

Π[ū;U ] =

∫
Ω0

[
ψM(X0,χ,∇0χ) + ψS(X,F ,χ) detχ

]
dV0

−
∫
Ω0

f 0 · ū dV0 −
∫

∂ΩS
T0

T 0 · ū dS0 (2.28)

Attention should be drawn to the definition of quantities relative to the reference

material configuration, Ω0, extending to the work terms of the body force and traction.

This seems natural because κ corresponds to distortion of the crystal structure, and

φ is further motion relative to the distorted crystal. Therefore, the distributed forces

are dual to the total displacement ū = U + u.

X0

X

x

(X0)
(X)

F 

Evolved Material

Configuration, 

Current Deformed

Configuration, t

Reference Material

Configuration, 0

(X0)

F = 
∂

∂X0

ψM

f( )
g(F)

ψE

Figure 2.9: Schematic of the kinematics and free energy associated with evolution of
the configuration and elastic deformation.

2.2.3 Variational formulation

Equilibrium conditions are again found by setting the first variation of the Gibbs

free energy to vanish. Variations are condsidered on the configurational displacement,
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U ε := U+εW , and the total displacement, ūε := ū+εw̄. Then, equilibrium requires

d

dε
Π[ūε;U ε]

∣∣∣∣
ε=0

=
d

dε

{∫
Ω0

ψM(X0,χε,∇0χε) dV0

+

∫
Ω0

ψS(Xε,F ε,χε) detχε dV0

−
∫
Ω0

f 0 · ūε dV0 −
∫

∂ΩS
T0

T 0 · ūε dS0

}∣∣∣∣
ε=0

= 0 (2.29)

The earlier results concerning the first variations of F and detχ are applied.

Additional terms D := ∂ψM/∂χ, B := ∂ψM/∂∇0χ and Jχ := detχ are defined.

The resulting weak form is the following:

0 =

∫
Ω0

B
...∇0∇0W dV0 +

∫
Ω0

Jχ
∂ψS

∂X
·W dV0

+

∫
Ω0

[
D + Jχ

(
Eχ−T +

∂ψS

∂χ

)]
: ∇0W dV0

+

∫
Ω0

Jχ
(
Pχ−T

)
: ∇0w̄ dV0 −

∫
Ω0

f 0 · w̄ dV0 −
∫

∂ΩS
T0

T 0 · w̄ dS0 (2.30)

Here, D is a configurational stress that is distinct from the Eshelby stress E , and

B represents a higher order configurational stress. Deriving the strong form from

this weak form involves several additional terms due to the dependence on ∇0χ, as

described in [85]. The normal and surface gradient operators, ∇n and ∇s, are used,

where

∇nψ = ∇0ψ ·N 0 (2.31)

∇sψ = ∇0ψ − (∇nψ)N 0 (2.32)
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Also, b = −∇sN 0 = bT is the second fundamental form of the smooth parts of the

boundary, ∂Ω0. The term N C = Ξ ×N 0 is defined, where Ξ is the unit tangent to

the smooth curve C0 that forms an edge between subsets ∂Ω+
0 and ∂Ω−0 of the smooth

boundary surfaces ∂Ω0. If N C
+

is the outward unit normal to C0 from ∂Ω+
0 and N C

−

is the outward unit normal to C0 from ∂Ω−0 , then the term [[B :
(
N C ⊗N 0

)
]]C := B :(

N C
+ ⊗N 0

)
+B :

(
N C

− ⊗N 0
)

is defined. Applying the appropriate integration

by parts and standard variational arguments leads to the following strong form.

JχPχ
−TN 0 − T 0 = 0 on ∂ΩM

T0
(2.33a)

∇0 ·
(
JχPχ

−T)+ f 0 = 0 in Ω0 (2.33b)

[[B :
(
N C ⊗N 0

)
]]C = 0 on CM

T0
(2.33c)

B :
(
N 0 ⊗N 0

)
= 0 on ∂ΩS

T0
(2.33d)

DN 0 + Jχ

(
Eχ−T +

∂ψS

∂χ

)
N 0 −C = 0 on ∂ΩS

T0
(2.33e)

∇0 ·
(
D + Jχ

∂ψS

∂χ

)
+ F Tf 0 −∇0∇0B = 0 in Ω0 (2.33f)

where, using coordinate notation for clarity,

CI = ∇nBIγζN
0
ζN

0
γ + 2∇s

γBIγζN
0
ζ

+BIγζ∇s
γN

0
ζ − (bξξN

0
γN

0
ζ − bγζ)BIγζ (2.34)

Details of the above derivations of weak and strong forms appear in C.
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2.2.4 Numerical simulations

The following double well, free energy density function is used to represent the

two-dimensional, square to rectangle transformation:

Θ = 1
2
(χTχ− 1) (2.35)

η1 = Θ11 + Θ22, η2 = Θ11 −Θ22, η6 = Θ12 (2.36)

ψM =
d

s2

(
η2

1 + η2
6

)
− 2d

s2
η2

2 +
d

s4
η4

2 +
l2d

s2
|∇0η2|2 (2.37)

where the energy wells lie at η2 = ±s with a depth of −d. Additionally, attention

should be drawn to the last term in Equation (2.37), which is the gradient free

energy contribution that regularizes the non-convex free energy density as discussed

in Section 2.2.2. Using standard dimensional arguments this term has been scaled by

a length parameter l, where 1/l2 is the ratio of standard to strain gradient moduli.

For the three-dimensional case, the following reparameterized strain space is used:

η1 =
1√
3

(Θ11 + Θ22 + Θ33), η2 =
1√
2

(Θ11 −Θ22),

η3 =
1√
6

(Θ11 + Θ22 − 2Θ33), η4 =
√

2Θ23 =
√

2Θ32,

η5 =
√

2Θ13 =
√

2Θ31, η6 =
√

2Θ12 =
√

2Θ21 (2.38)

The corresponding free energy density function has three wells located at (
√

3
2
s, 1

2
s),

(−
√

3
2
s, 1

2
s), and (0, s) in (η2, η3) space with a depth of −d.

ψM =
3d

2s2

(
η2

1 + η2
4 + η2

5 + η2
6

)
− 3d

2s2
(η2

2 + η2
3) +

3d

2s4

(
η2

2 + η2
3

)2

+
d

s3
η3

(
η2

3 − 3η2
2

)
+

3l2d

2s2

(
|∇0η2|2 + |∇0η3|2

)
(2.39)

Note the regularizing gradient free energy in the last two terms of Equation (2.39).
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An anisotropic St. Venant-Kirchhoff model is used for the elastic deformation,

ψS = 1
2
E : C(χ) : E (2.40)

where

C(χ) =
3∑
I=1

αI(χ)M I ⊗M I +
3∑

J,K=1
J 6=K

βJK(χ)MJ ⊗MK

+ 2µ(I−
3∑
I=1

M I ⊗M I) (2.41)

with E = 1
2
(F TF − 1), M I = eI ⊗ eI , βJK = βKJ , and Iijkl = 1

2
(δikδjl + δilδjk). Let

αI(χ) = αΛI(χ), where ΛI =
√∑3

i=1 χ
2
iI is the distortion of the crystal structure

in the eI direction due to the configurational change. Also, let βJK = β. Since

∂ΛI/∂χ = Λ−1
I χM I , this results in

∂ψS

∂χ
=

1

2

3∑
I=1

α

ΛI

χM IM
2
II (2.42)

2.2.4.1 Anisotropy induced by a configurational change in crystal struc-

ture

Changes in the material configuration are considered that correspond to an evo-

lution from a cubic crystal structure to three tetragonal crystal structures (in 3D),

each oriented along one of the coordinate axes. The resulting anisotropy is reflected

in the standard elastic deformation fields and the associated stresses. To demonstrate

this effect, two unit cubes are considered, each initially with a cubic crystal structure.

Through Dirichlet boundary conditions on the configurational domain, one cube is

forced into a tetragonal crystal structure oriented along e1 and the other cube into

an e2-oriented tetragonal structure. Both cubes are also subjected to simple uniaxial

tension along e1 through applied Dirichlet conditions on the standard displacement.
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The distinct stress plots of Figure 2.10 show the resulting anisotropy. The three well

free energy function was used for ψM and αI(χ) = α(5ΛI(χ) − 4) to accentuate the

anisotropy. The anisotropic tetragonal crystal structures in the two cases also pro-

duce distinct lateral deformation. Figure 2.11 compares the two computations, and

the second case shows significantly less displacement in the e2 direction due to the

e2-oriented tetragonal structure.
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Figure 2.10: The e1-oriented tetragonal crystal structure leads to higher stresses
than the e2-oriented tetragonal structure when subjected to simple uniaxial tension
along e1. This demonstrates the differences in evolved anisotropy induced by the
configurational changes in the two cases depicted on the left.

2.2.5 Microstructure formation by evolution of the material configuration

Figure 2.12 demonstrates a 2D plane strain problem wherein the material config-

uration evolves to distort the crystal structure from the the square to the rectangle.

The beam is rapidly quenched from a high temperature causing the initially stable

square structure to become unstable as the configuration-dependent component of

the free energy function, ψM, changes from convex to double-welled. The beam is

then loaded in bending. The double-welled free energy renders the rectangular vari-

ants stable, and strain accommodation of the inhomogeneous configuration results in
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deformation with

e1-oriented tetragonal

crystal structure

deformation with

e2-oriented tetragonal

crystal structure

0.008660

0

-0.008660

η2

e1

e2

e3

Figure 2.11: Computational results are compared for simple uniaxial tension along
e1. The color contour plots of η2 display the tetragonal variants, whose corresponding
wells are located at (

√
3/200, 1/200), (−

√
3/200, 1/200), and (0,−0.01) in (η2, η3)

space. The distortion has been scaled by 20× the elastic deformation. The results on
the right show less deformation in the e2 direction due to the anisotropy induced by
the e2-oriented tetragonal crystal structure, compared to the case on the left.

the microstructure shown. The parameter values used in equations 2.37 and 2.40 are

s = 0.1, d = 1, l = 0.1 and µ = 1 × 10−1, β = 1 × 10−1, α = 2 × 10−1, respectively.

Contours of η2 appear in the plots, where η2 = ±0.1 locates the wells corresponding

to the two rectangular variants, and η2 = 0 is the square structure, which exists only

in the interfaces between variants in this evolved material configuration. The fineness

of the microstructure in the computations is determined by the gradient length scale

parameter l. The configurational displacement U at x1 = 10 was specified as 0.5ū.

Figure 2.13 demonstrates the corresponding problem in 3D, where “plane strain

boundary conditions” have been applied on the faces perpendicular to e3. The strain

energy density function ψM allows for three tetragonal variants, but only two variants

are seen due to the plane strain boundary conditions. The parameter values used in

equations 2.37 and 2.40 are s = 0.1, d = 1, l = 0.25 and µ = 1× 10−1, β = 1× 10−1,

α = 2 × 10−1, respectively. Contours of η2 appear in the plots, where the three

tetragonal variants are located at (
√

3/20, 1/20), (−
√

3/20, 1/20), and (0,−0.1) in

(η2, η3) space. Again, the configurational displacement U at x1 = 10 was specified as
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Figure 2.12: Simulation of 2D beam bending and the resulting material microstruc-
ture. The configurational displacement U was specified to be 0.5ū at X2 = 10.
Contours of η2 are plotted where the values ±0.1 locate the well corresponding to the
two rectangular variants. The top plot is deformed by the configurational displace-
ment and the bottom plot by the total displacement. The displacement for both plots
is scaled by a factor of 10×.

0.5ū. Note that a larger length scale parameter was used in the 3D problem, resulting

in a coarser microstructure than the 2D bending problem.

The results of these computations compare well with those obtained by [85]. How-

ever, in that work no configurational fields were identified. The entire problem was

posed as a problem of elasticity relative to a high-symmetry (cubic or square) refer-

ence crystal. For a state where in the high-symmetry structure became unstable (by

quenching, for instance) elastic deformation carried in the crystal structure into sta-

ble tetragonal states. The merits of the treatment presented here are that they allow

us to separate out the configurational evolution as distinct from elastic deformation.

This is particularly useful in describing anisotropy, as shown in Section 2.2.4.1.
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Figure 2.13: Simulation of 3D beam bending with plane strain boundary conditions
and the resulting material microstructure. Contours of η2 are plotted where the val-
ues ±0.0866 correspond to two of the three tetragonal variants. Only two variants are
seen because of the plane strain boundary conditions. The top plot is deformed by the
configurational displacement and the bottom plot by the total displacement. The dis-
placement for both plots is scaled by a factor of 10×. A larger length scale parameter
was used in the 3D problem than the 2D, resulting in a coarser microstructure.

2.3 Concluding remarks

This chapter has considered the modeling of materials with multiple solid phases

within a continuum setting by separating the kinematics associated with the material

evolution into a newly-identified configurational field, and the standard displacement

field. This applies to interfacial phases changes maintaining a sharp interface and

to volume phase changes resulting in multiple diffuse interfaces. By noting that the
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free energy density can be extended to depend on both these kinematic fields, equi-

librium conditions associated with the configurational evolution have been obtained,

separately from those that hold for the standard displacement field.

This separation of the deformation field into a configurational field in the mate-

rial space and a standard spatial displacement field allows this framework to model a

wide class of materials physics problems involving formation and movement of phase

boundaries. In the context of crystalline materials, phase boundaries may occur due

to nucleation and growth mechanisms, like those seen during precipitate evolution

and formation of grain boundaries, or through phase transformations like martensitic

transformations and twin-formation in HCP metals. All these phenomena involve

sharp or diffused phase boundaries driven by interface kinetics or volumetric phase

transformations. The framework presented here provides an overarching theoreti-

cal basis for representing the evolution of both sharp and diffuse phase boundaries.

Notably, it also furnishes a variational basis for obtaining the governing partial dif-

ferential equations.

This chapter has presented a preliminary exploration of phase transformations

restricted to migrating sharp interfaces, such as arise at incoherent interphases, as well

as phase transformations that occur throughout the volume of a material, resulting in

diffuse interphase interfaces. It has been shown that evolving elastic anisotropy due

to the phase changes that distort the crystal structure from a parent to a daughter

phase can be captured through a dependence of the free energy density function and

of the conventional elastic moduli on the tangent map of the configurational field.

Additionally, this formulation is able to reproduce the results previously obtained

with a treatment of all deformation relative to a high symmetry reference crystal.

Irreversibilities of crystallographic slip associated with the material evolution can

be represented by imposing a further elasto-plastic decomposition on the tangent map

of the configurational field χ = χEχP, where χE models the elastic distortion of the
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crystal structure and χP models the crystallographic slip. Additionally, the com-

mon kinematic and variational underpinnings to the treatment of sharp and diffuse

interfaces suggests the potential for modeling the evolution within a material from

coherent (diffuse) to incoherent (sharp) interphase interfaces. The treatment intro-

duced in this communication therefore has potential for modeling a wide array of

phase transformations while clearly exposing the underlying configurational changes.

That these configurational fields can be as diverse as that corresponding to interface

motion in a non-crystalline material as well as crystal distortion is notable.
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CHAPTER III

Phase-field description of voiding during oxidation

and an application of evolving configurations

Void formation has been widely observed during the surface oxidation of some

metals [90, 26, 91, 27, 92, 93, 94]. Excess voiding along the interface can lead to

delamination of the oxide layer. There are multiple possible mechanisms driving

the voiding process, including vacancy condensation and the effect of oxide stresses

[26, 91, 27, 92, 94]. Vacancy condensation describes the creation of vacancies due to

selective fast transport of the metal and their subsequent coalescence. The growth

and expansion of the oxide on the surface can also create tensile stresses in the metal

or within various suboxides, which can further create or expand voids.

The oxidation process can be modeled with phase-field methods using the Cahn-

Hilliard equation [52], although this method represents all interfaces as diffuse. This

method depends on a free energy surface, with local minima representing stable ma-

terial phases. Voiding can be incorporated by introducing a well in the free energy

surface at low concentrations of oxygen and metal, representing a low energy state

achieved by the coalescence of vacancies. The example case taken here is the oxida-

tion of titanium, although the method can be applied to other metals. An additional

description and example of the Cahn-Hilliard equation in oxygen diffusion is found

in Chapter IV.
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The effect of oxide stresses can be incorporated by including finite-strain solid

mechanics, with deformations due the change in the crystal structure and elasticity.

This is presented as an application and extension of the method presented in Chapter

II.

3.1 Vacancy condensation and phase-field

Phase-field models based on the Cahn-Hilliard equation are well-suited to model-

ing the physics of diffusion and the formation of distinct phases with coherent inter-

faces. As such, the Cahn-Hilliard description cannot capture the influence of sharp,

incoherent interfaces that arise in oxidation. It may, however, be sufficient to explore

the role of vacancy condensation in void formation.

The initial model neglects any oxide expansion or effects of mechanics and fo-

cuses on the mechanism of vacancies coalescing to form voids as the titanium diffuses

out to the surface. The proposed method models the concentrations of oxygen and

titanium as scalar fields, considering vacancies to exist where the concentration of

titanium is less than one. Thus, a free energy surface was constructed as a function

of concentration of titanium, cTi, and concentration of oxygen, cO, both relative to

some reference titanium crystal (see Figure 3.1). The surface has three wells: pure Ti

(cTi = 1, cO = 0), titanium dioxide (cTi = 1, cO = 2), and void (cTi = 0.1, cO = 0.2).

The oxide well is significantly deeper than the other two wells to induce oxide growth.

This free energy density function is given by the following:

f(cTi, cO) =
[
(cTi − 1)2 + c2

O

] [
(cTi − 1)2 + (cO − 2)2

]
×
[
(cTi − 0.1)2 + (cO − 0.2)2

]
− 0.1cO

(3.1)

Introducing isotropic gradient energy terms as well gives the following Gibbs free
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Figure 3.1: The three-well free energy surface and contour plot for titanium, oxide,
and void.

energy functional:

Π[cTi, cO] =

∫
Ω

[
f(cTi, cO) +

κ

2
(∇cTi · ∇cTi +∇cO · ∇cO)

]
dV (3.2)

The chemical potentials of oxygen, µO, and titanium, µTi, are equal to the varia-

tional derivative of the Gibbs free energy with respect to their concentrations, where

X can be replaced by O or Ti:

µX =
∂f

∂cX
− κ∇2cX (3.3)

The flux for each species written in terms of the gradient of the chemical potential

and combined with the conservation law. The resulting Cahn-Hilliard equation can

then be written in strong form:

∂cX
∂t

= −∇ · (−MX∇µX) (3.4)

Eq. (3.3) can be substituted into Eq. (3.4), resulting in a PDE that is fourth-order

in space. Alternatively, it can be solved using a mixed method, in which the chemical

potential is also considered a variable field. This consists of simultaneously solving

two equations (Eqs. (3.3) and (3.4)) that are each second-order PDEs.
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(a): Initial condition (b): Void formation

Figure 3.2: The diffusion of titanium out through the grain boundary causes a void
to form.

The corresponding weak form of the equations is used to simultaneously solve the

four equations (with X = O and X = Ti) using the finite element method:

∫
Ω

(
w
∂cX
∂t

+∇w · (MX∇µX)

)
dV =

∫
∂Ω

J ·N dS (3.5)

∫
Ω

(
w

(
µX −

∂f

∂cX

)
+∇w · (κ∇cX)

)
dV = 0 (3.6)

assuming ∇cX ·N = 0 on the boundary.

The phase-field model is given an initial field with regions representing gaseous

oxygen, oxide, and titanium (see Figure 3.2). A vertical, high diffusion path for

titanium through the oxide at x = 0.25 represents a grain boundary. In the model,

as the titanium diffuses rapidly out to oxidize at the surface, a void forms where the

grain boundary meets the titanium.

3.2 Mechanics and evolving configurations

The mechanics can be introduced in a setting similar to Chapter II, with multiple

configurations representing different aspects of the deformation. Some intermediate
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Figure 3.3: Schematic of the kinematics and configurations associated with oxidation.
The white configurations represent the purely mathematical decomposition of the
deformation into parts representing contraction or expansion due to titanium and
oxygen diffusion.

configurations, however, may be incompatible, without a continuous mapping be-

tween the two. In these cases, a second displacement field is not applicable, and the

deformation gradient can be defined using other means, such as a dependence on the

composition. As an example, the treatment shown here includes both incompatible

and compatible configurations.

The lattice parameters of a metallic oxide can be much larger than those of the

metal itself. For example, the Pilling-Bedworth ratio (the ratio of the volume of the

oxide to the volume of the corresponding metal) has been reported as 1.95 for TiO2

[95]. This expansion due to oxidation can be represented by the tensor FO. This

model also considers the diffusion of titanium atoms and the resulting vacancies. The

outdiffusion of titanium from a region could cause a contraction relative to some base

titanium crystal, represented by F Ti. These deformation tensors, on their own, may

be incompatible, and a third deformation gradient, F E, representing elasticity should

be introduced to maintain a continuous crystal with no discontinuities. Then the
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total deformation gradient is modeled as F = F EFOF Ti. The elastic deformation

could be divided into two compatible parts: the first representing only the elasticity

required by the change in crystal structure, and the second to model any additional

elastic deformation caused by boundary conditions. This would be most useful if

different strain energy density functions applied in the two cases. Using notation

introduced previously, the deformation due to change in crystal structure would be

χ := χEχOχTi and the additional, standard deformation would be represented by

F . The associated configurations are shown in Figure 3.3. It is important to note

that, although the arrows in the figure suggest a sequence in the configurations, this

is purely a mathematical decomposition representing different aspects of the physics.

All configurations, other than the reference configuration, are updated simultaneously

at each time step.

The free energy functional, including gradient terms required by the phase field

model, is as follows:

Π[ū;u; cTi; cO] =

∫
Ω0

[
ψM(X0,χE, cTi, cO) + ψS(X,F , cTi, cO) detχ

]
dV0

+

∫
Ω0

[
f(cTi, cO) +

κ

2
(∇cTi · ∇cTi +∇cO · ∇cO)

]
dV0

−
∫
Ω0

f 0 · ū dV0 −
∫

∂ΩS
T0

T 0 · ū dS0

(3.7)

where ψM is the strain energy due to change in crystal structure, ψS is the strain

energy due to standard elastic deformation, and f is the chemical free energy.

The resulting strong form is

(detχ)P Sχ−TN 0 − T 0 = 0 on ∂ΩS
T0

(3.8a)
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Div
(
detχP Sχ−T

)
+ f 0 = 0 in Ω0 (3.8b)(

PM
(
χOχTi

)−T
+ Eχ−T

)
N 0 = 0 on ∂ΩM

T0
(3.8c)

Div
(

detχ
(
PM

(
χOχTi

)−T
+ Eχ−T

))
− detχ

∂ψS

∂X
= 0 in Ω0 (3.8d)

The chemical potentials µTi and µO, used in the Cahn-Hilliard equation, are found

from their respective variational derivatives of the free energy. If the forms taken are

χTi = λTi(cTi)1 and χO = λO(cTi, cO)1, the expressions for the chemical potentials

become:

µTi = −PM :
(
χE
(
λTi

,cTi
λO + λO

,cTi
λTi
) (
λOλTi

)−1
)

+ ψM
,cTi

+ ψS
,cTi

detχ+ f,cTi
− κ∇2cTi

(3.9a)

µO = −PM :
(
λO
,cO
χE(λO)−1

)
+ ψM

,cO
+ ψS

,cO
detχ+ f,cO − κ∇2cO (3.9b)

These expressions for the chemical potentials, along with the Cahn-Hilliard equa-

tion and mechanics equations of equilibrium form a model of the effect of vacancy

condensation and oxide stresses on void formation.

3.3 Alternate description for including mechanics

An alternate method can be used to include the mechanics in the oxidation prob-

lem that more closely follows the description of Section 2.2 (see Figure 3.4). This can

be done by combining the free energy density function described in Section 3.1 with

a dependence on the deformation gradient χ corresponding to changes in the crystal

structure.

For the same stoichiometric composition, multiple crystal structures can occur in

titanium oxide. Although rutile TiO2 is the most common, anatase and brookite TiO2

crystal structures can also form, where rutile and anatase are both tetragonal and
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Figure 3.4: Schematic of the kinematics and configurations associated with oxidation.

brookite is orthorhombic [96]. These and other expansions and distortions compared

to the based Ti crystal can be incorporated in the free energy density function f .

Pure Ti can be represented in f by a minimum at cTi = 1, cO = 0, and η = 0,

where η corresponds to the reparametrized strain space from Section 2.2.4. The well

for void corresponds to a contraction of the crystal structure. The single well at

titanium dioxide (cTi = 1, cO = 2) in Eq. (3.1) is expanded into multiple energy wells

corresponding to the crystal structures of rutile, anatase and brookite. Although each

of these phases form at the same stoichiometry, given by cTi and cO, there is a further

strain instability causing the phases to decompose into three equivalent tetragonals

for rutile and anatase and six equivalent orthorhombics for brookite. Each of these

structures can be represented by a well in the free energy landscape. Additional

suboxides can also be included.

The free energy functional, including gradient terms required for regularization

and the phase-field model, then becomes:
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Π[ū;u; cTi; cO] =

∫
Ω0

[
f(X0,χ,∇0χ, cTi, cO) + ψS(X,F ,χ) detχ

]
dV0

+

∫
Ω0

κ

2
(∇cTi · ∇cTi +∇cO · ∇cO) dV0

−
∫
Ω0

f 0 · ū dV0 −
∫

∂ΩS
T0

T 0 · ū dS0

(3.10)

The resulting equilibrium conditions correspond to those in Section 2.2.3. The

chemical potentials for titanium and oxygen can still be represented by Eq. (3.3),

although the derivative ∂f/∂cX will now have dependencies on the stress. Due to the

strain gradient terms included for regularization, isogeometric analysis (IGA) would

be a more appropriate solution approach than the mixed method used in Section 3.1.

3.4 Concluding remarks

The mechanisms behind the formation of voids in surface oxides potentially include

vacancy condensation and the effect of oxide stresses. It is possible to represent

the tendency of vacancies to coalesce into voids as a low energy state in the free

energy landscape. A phase-field model using such an energy landscape, together with

fast-diffusion paths representing oxide grain boundaries, did show the formation and

growth of a void at the oxide-metal interface.

The equations representing the effects of oxide stress on the formation and evo-

lution of voids were presented in the framework of evolving material configurations

originally introduced in Chapter II. The description of configurations is used to define

the total free energy. Variational methods then provide equilibrium conditions for the

mechanics and the chemical potentials for the Cahn-Hilliard dynamics. These final

equations provide a voiding model that incorporates both vacancy condensation and
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oxide stresses.
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CHAPTER IV

A comparison of Redlich-Kister polynomial and

cubic spline representations of the chemical

potential in phase field computations

Expressions for the free energy of a system, found by applying the appropriate

Legendre transformation, “are regarded as fundamental equations because all ther-

modynamic properties of a substance can be evaluated” from them1 [53]. The fun-

damental importance of the free energy has been seen in previous chapters. Their

first derivatives define equilibrium conditions. Properties such as heat capacity, ther-

mal expansivity, and compressibility are related to second derivatives. Additionally,

regions of phase separation are captured by nonconvexities in the free energy [53].

The free energy often cannot, however, be measured directly. State variables asso-

ciated with a derivative of the free energy, such as the chemical potential, can be

measured or calculated then integrated to find the free energy [97]. For example, the

chemical potential could be found using partial pressure measurements [98]. First-

principles statistical mechanics methods can also be used to calculate free energies

[40, 41, 42, 43, 45, 46, 47, 31].

1This chapter is based on the following paper: G. Teichert, H. Gunda, S. Rudraraju, A. Natarajan,
B. Puchala, K. Garikipati, A. Van der Ven, 2017. A comparison of Redlich-Kister polynomial and
cubic spline representations of the chemical potential in phase field computations, Computational
Materials Science 128, 127–139.
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Once free energy data is obtained, there is a need to represent it mathematically.

Although the free energy density functions in previous chapters have been relatively

simple, the free energy for actual materials may be much more complex, including

rapid fluctuations in the free energy relative to changes in composition. A commonly

used polynomial expansion is that introduced by Redlich and Kister [99]. While other

polynomial expansions can also be used, “mathematically, the choice of basis (for a

finite-dimensional space) makes no difference” according to Dahlquist and Björck

[100]. It is known that sampling data at Chebyshev points significantly improves a

polynomial interpolation, where the function passes through every data point. How-

ever, fitting to measured or calculated free energies generally involves many data

points, making a least squares fit more appropriate than a polynomial interpolation.

Chebyshev points are, therefore, not necessary [100]. Because of the mathematical

equivalence of the various polynomial expansions (Redlich-Kister expansion, Legendre

polynomial series, simple power series, etc.) [101, 102], the effectiveness of a poly-

nomial expansion can be assessed by considering one basis set. Even so, Dahlquist

and Björck point out that some functions are “not at all suited for approximation by

one polynomial over the entire interval. One would get a much better result using

approximation with piecewise polynomials” [100].

In this chapter, the use of the Redlich-Kister polynomials is compared with cubic

splines (piecewise cubic polynomials with C2 global continuity; i.e. continuous second

derivatives) in fitting free energy data. This is done in the context of phase field

modeling using the Cahn-Hilliard equation [103]. One physical phenomenon that this

model captures is spinodal decomposition, where a material separates into two distinct

phases. Spinodal decomposition arises when the free energy is concave with respect to

composition resulting in a negative thermodynamic factor that causes uphill diffusion.

Capturing this physics in a phase field model requires an accurate representation of

the free energy and its higher order derivatives. It is shown here that there are cases
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where even low-order splines are much more effective at representing the physics

of the problem than are global polynomials, especially within the spinodal regions.

Furthermore, the high polynomial degree sometimes required by the Redlich-Kister

expansions significantly increases computation time.

4.1 Model system: oxygen dissolved in HCP Ti

Data for the Ti-O system was used to explore the effect of using different math-

ematical representations of the free energy. Dissolved oxygen fills octahedral inter-

stitial sites in HCP Ti, creating TiOx with stoichiometric compositions as high as

x = 1/2 without significantly changing the crystal structure [25]. First-principles sta-

tistical mechanics methods can be used to predict the dependence of the free energy

on composition. Results using these techniques have shown that within the range

0 < x ≤ 1/2 and at low temperatures, stable phases can occur at compositions of

x = 1/6, x = 1/3, and x = 1/2 [104].

The oxygen chemical potential is equal to the derivative of the free energy accord-

ing to

µ =

(
∂g

∂x

)
T,P

(4.1)

where g is the Gibbs free energy per Ti atom and x is the number of O atoms per

Ti atom. The free energy can be determined from measured or calculated chemical

potential data be integrating with respect to oxygen concentration x.

The chemical potential data obtained for use in this chapter was created using

the CASM software package [45, 105, 46] and VASP plane-wave DFT code [106, 107].

Chemical potential data was calculated for both 1800 K and 800 K and integrated

to find the free energy, as shown in Figure 4.1 [1]. The disordered solid solution is

stable at 1800 K, resulting in a convex free energy curve. Multiple ordered suboxides

are stable at 800 K, resulting a nonconvex free energy. Each ordered phase can
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Figure 4.1: The calculated oxygen chemical potentials and free energies at 1800 K
and 800 K used in this chapter [1].

be represented by an order parameter ηi, where etai is nonzero when its associated

phase exists and zero otherwise. The free energy can then be written as a function of

concentration and order parameters g(x, η1, . . . , ηn). The free energies in Figure 4.1

can be considered as the curves that minimize g(x, η1, . . . , ηn) with respect to ηi.

4.2 Different free energy representations

The ability of a truncated Redlich-Kister series and a spline fit to faithfully repre-

sent the free energies of TiOx are compared. The high temperature free energy curve

corresponding to a solid solution is considered first. The low temperature free energy

poses more challenges due to the presence of several two-phase regions where the free

energy is concave.

4.2.1 Methodology

The free energy is here expressed as

g(x) = kBT [x log(x) + (1− x) log(1− x)] + ∆g(x) (4.2)
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where the first term corresponds to an ideal solution entropy and ∆g(x) is an excess

free energy representing a deviation from thermodynamic ideality. As usual kB is

Boltzmann’s constant and natural logarithms are used. The inclusion of an ideal

solution entropy term is especially useful in describing the free energy in the dilute

limits (i.e. x → 0 and x → 1) where alloys behave as ideal solutions and where the

excess free energy goes to zero. With the above free energy expression, the oxygen

chemical potential in TiOx then becomes

µ(x) = kBT log

(
x

1− x

)
+ ∆µ(x) (4.3)

where ∆µ(x) is the derivative with respect to x of ∆g(x). The ideal solution term

captures the logarithmic divergences in the chemical potential µ in the dilute limits

(x→ 0 and x→ 1).

The ability of a Redlich-Kister polynomial series and splines in fitting calculated

values for the excess free energy ∆g is compared below. Since the free energy is often

found by first measuring or computing the chemical potential and then integrating,

∆µ is fit to the difference between the chemical potential data and the logarithmic

term kBT log(x/(1− x)).

4.2.1.1 Redlich-Kister polynomial series

Consider a R-K polynomial expansion for the function ∆g(x) of the following

form:

∆g(x) = g0 + g1x+ x(1− x)
n∑
k=0

Lk(2x− 1)k (4.4)
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Then the function ∆µ used in the curve fitting of the chemical potential has the form:

∆µ = g1 +
n∑
k=0

Lk[2kx(1− x)− (2x− 1)2](2x− 1)k−1 (4.5)

The coefficients Lk can be found by a least squares method.

The TiOx chemical potential data for compositions from x = 0 to x = 1/2 was

used. To avoid the noise where the data is steepest near x = 0 and x = 1/2, only

data between 0.001 and 0.499 is used to fit the function.

4.2.1.2 Splines

A spline is a piecewise polynomial with a specified order of continuity at the

subdomain junctions. The endpoints of each subdomain are called knots or breaks.

Quoting verbatim from [100], a more formal definition is as follows:

Definition IV.1. A spline function s(x) of order k ≥ 1 (degree k− 1 ≥ 0), on a grid

∆ = {a = x0 < x1 < · · · < xm = b}

of distinct knots is a real function s with the following properties:

(a) For x ∈ [xi, xi+1],i = 0 : m− 1, s(x) is a polynomial of degree < k.

(b) For k = 1, s(x) is a piecewise constant function. For k ≥ 2, s(x) and its first

k − 2 derivatives are continuous on [a, b], i.e. s(x) ∈ Ck−2[a, b]

Note that the order of the spline is equal to the degree of the polynomial plus one.

For example, cubic splines (order = 4) are piecewise cubic polynomials that are C2

continuous across all knots (see Figure 4.2). Splines are able to capture local features

due to the local nature of piecewise polynomials. The continuity conditions at the

knots maintain a specified global continuity across the entire function. These local
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Figure 4.2: An example cubic spline, defined as a piecewise cubic polyno-
mial over three subdomains. The function values at the four knots are
{(0, 0), (1, 3), (3, 3), (4,−12)}. Note that the first and second derivatives are con-
tinuous at the knots.

and global characteristics of splines make them an important and often ideal tool in

function interpolation and fitting.

There are multiple ways of representing splines. The simplest form is as a standard

piecewise polynomial, where a standard polynomial is given for each subdomain.

There is nothing in this structure that guarantees that the function is, in fact, a

spline; the polynomial coefficients must be chosen to ensure the necessary continuity

across knots. Splines may also be written as a linear combination of B-splines (short

for basis splines). A B-spline of order k at knot i will be denoted by Ni,k, and let τi

be the location of knot i. Additional knots may be added at the endpoints, called

exterior knots. The original set of knots will be called interior knots. The B-spline

Ni,k is strictly positive on the interval (τi, τi+k) and zero outside the interval. Given

m + 1 interior knots, B-splines have the summation property
∑

iNi,k(x) = 1, for

x ∈ [τ0, τm] [100]. B-splines can be represented using the following Cox-de Boor
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recurrence relation [108]:

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x
τi+k − τi+1

Ni+1,k−1(x) (4.6)

Ni,1(x) =


1 τi ≤ x < τi+1

0 otherwise

(4.7)

A spline function s(x) of order k with m + 1 interior knots can be represented as a

linear combination of B-splines:

s(x) =
m−1∑

i=−k+1

ciNi,k (4.8)

where ci are the appropriate B-spline coefficients. The piecewise polynomial repre-

sentation is

s(x) =
m−1∑
i=0

Pi,k

Pi,k =


k−1∑
j=0

Di,j(x− τi)k−1−j τi ≤ x < τi+1

0 otherwise

(4.9)

where {Di,0, . . . , Di,k−1} are the coefficients for the polynomial in subdomain i.

In the case of spline interpolation, each given data point becomes a knot in the

spline function. For n given data points, there are n knots and n−1 subdomains. For

a spline of order k, there are k polynomial coefficients within each subdomain, for a

total of k(n−1) unknowns for the entire spline. The function value at each subdomain

endpoint is specified, giving 2(n − 1) constraints. This gives at least C0 continuity

across the function. Specifying continuity of order m at each subdomain junction

adds m(n− 2) total constraints, for a total of 2(n− 1) +m(n− 2) constraints. Since

the number of constraints must be less than or equal to the number of unknowns,

then function interpolation using kth order splines allows Ck−2. The interpolation
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is performed by solving for the unknown with these constraints. This interpolation

process can be done using splines written as a linear combination of B-splines or using

the simple piecewise polynomial representation.

Where many data points are given, as in this study, it is useful to perform a spline

fit instead of a spline interpolation. This allows fewer knots in the spline than data

points, which can smooth out noise in the data and simplify the evaluation of the

function. The curve fit can be done using a least square spline approximation. The

B-spline representation of a spline allows us to express the least squares problem as

follows:

min
~c

n∑
j=1

(
m−1∑

i=−k+1

ciNi,k(xj)− fj

)2

(4.10)

where ~c is the vector of coefficients, k is the B-spline order, m + 1 is the number of

interior knots, and (xj, fj) is the jth data point [100].

Cubic splines are used to fit ∆µ in the chemical potential function. A spline fit, as

opposed to a spline interpolation, is used to smooth out the noise from the data and

simplify the representation and evaluation of the function. The Octave splinefit

function takes as input the data points and allows us to specify the location of the

knots in the spline fit. It performs a least squares fit to the given data using B-

splines. However, this function returns the spline’s coefficients for the simple piecewise

polynomial form shown in Eq. (4.9). This set of coefficients can then be evaluated

for a given value of x in Octave using the ppval function or manually as standard

piecewise polynomials.

To accurately capture local features of the data while minimizing the number of

knots, regions where the data are changing rapidly are first identified. In the final

spline fit, a higher density of knots are used in those regions. To do this, a cubic spline

is first fit to the data with knots at relatively small intervals of 0.005 to approximate
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Figure 4.3: A degree three R-K polynomial provides a sufficient fit to the chemical
potential for titanium oxide at 1800 K, as does a cubic spline.

∆µ. This initial spline fit of ∆µ is used to approximate ∆µ′′(x), and any region

where |∆µ′′(x)| > 600 is identified as a region with rapidly changing data. For the

final fit, knots are specified at intervals of 0.004 within the regions of rapidly changing

data and at intervals of 0.03 outside those regions. This allows all the physics to be

captured while reducing the number of knots. The function splinefit is used with

this new set of knots to fit the data and update the spline representation of ∆µ.

4.2.2 Results

4.2.2.1 Data with no spinodal regions

At 1800 K, the titanium oxide system has a simple free energy landscape with no

spinodals, and a degree three R-K polynomial expansion gives a sufficient fit of the

chemical potential, as does the cubic spline. The chemical potential data and curve

fit are shown in the left plot of Figure 4.3. The center plot shows the derivative of

the chemical potential fit and the numerically differentiated data. This is also the

second derivative of the free energy with respect to composition, which shows where

the free energy curve is concave or convex. When the second derivative of the free

energy is negative, the free energy is concave and represents a two-phase region. The

numerical derivative was taken by first smoothing the data with a running average to
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Figure 4.4: A degree three R-K polynomial with the term log(x/(1 − x)) fails to
capture the divergent behavior in the chemical potential at x = 1/2 for titanium
oxide at 800 K.

remove some of the noise, then performing a central difference derivative. The plot

on the right shows the free energy found by integrating the curve fit and data. It is

plotted with respect to the end members at x = 0 and x = 1/2. A cubic spline fit of

the data is also presented. Note that the cubic spline, while it also fits the data well,

does not give a significantly better representation of this set of data.

4.2.2.2 Data with three spinodal regions

At 800 K, the HCP form of TiOx exhibits three spinodal regions. To accurately

capture this physics, the function representing the free energy must have three cor-

responding concave regions. Fewer data points were calculated with the variance

constrained Monte Carlo within these spinodal regions. They were weighted 10× to

help capture the spinodals with the polynomial function. The data are fitted with a

degree three R-K polynomial as before. The data and fit are plotted in Figure 4.4

along with their corresponding derivatives and free energy. Note that the chemical

potential data was smoothed before computing the numerical data to reduce the ef-

fects of noise. Also, as in all plots in this work, the free energies are plotted with

respect to the end members at x = 0 and x = 1/2.

The data diverge due to an ordering at x = 1/2, but the equation used here does
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Figure 4.5: The term log(2x/(1 − 2x)) is able to capture the divergent behavior in
the chemical potential for titanium oxide at 800 K.

not capture this divergence. The divergent behavior of the system can be represented

by scaling the logarithmic term. This gives us the modified form

µ(x) = kBT log

(
2x

1− 2x

)
+ ∆µ(x) (4.11)

to model the chemical potential curve over the domain [0, 1/2]. This corresponds to

a free energy density of

g(x) = 1
2
kBT [2x log(2x) + (1− 2x) log(1− 2x)] + ∆g(x) (4.12)

For consistency, the Redlich-Kister polynomial is also rescaled to the same domain of

[0, 1/2].

∆µ(x) is now fit to the difference between the chemical potential data and kBT log(2x/(1−

2x)). The resulting fit is shown in Figure 4.5. Note that the divergence of the data

at x = 1/2 is now represented in the curve fit. It is clear, however, that a degree

three R-K polynomial cannot represent the spinodal regions. Polynomials of higher

degree are used to fit the chemical potential and are plotted in Figure 4.6. The curve

fit represents a spinodal region wherever the derivative of the chemical potential is

negative, meaning the free energy is concave (see the center plots of Figure 4.6). Us-
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Figure 4.6: R-K polynomials of degree 5, 9, 15, and 21 are used to fit the chemical
potential data. The corresponding numerical and analytical derivatives are plotted.
The free energy is found from the chemical potential integral and is with respect to
end members at x = 0 and x = 1/2. Only the degree 21 polynomial captures all three
spinodals.
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Figure 4.7: The chemical potential data is fit using a cubic spline with 25 knots. The
corresponding numerical and analytical derivatives are plotted. The free energy is
found from the chemical potential integral and is with respect to end members at
x = 0 and x = 1/2. The spline accurately represents all three spinodals.

ing the curve fit methods described here, the degree 21 polynomial capture all three

spinodals. The degree 15 polynomial represents only two (the first and third), and it
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nearly produces a spurious spinodal at composition 0.05. The polynomial of degree

nine captures one (the first spinodal), and degree five polynomial does not capture

any spinodal regions. Clearly, to accurately represent all three spinodals with a R-K

polynomial, a polynomial of high degree must be used.

A cubic spline was also used to fit ∆µ. Compare these results, shown in Figure

4.7, with the previous R-K polynomial fits. The spline clearly captures all three two-

phase regions. This is done with minimal spurious oscillations in the derivative of

the chemical potential and no spurious spinodal regions (see the center plot of Figure

4.7).

4.3 Phase field computations

This section explores the effect of the functional form chosen for the free energy

fit on phase field simulations. Simulations of the diffusion of oxygen in HCP TiOx

were performed using free energy data fitted by various Redlich-Kister polynomial

expansions and a cubic spline.

When in an oxygen rich environment, titanium will form such oxides as rutile

[17, 18, 19], anatase TiO2, and rock salt TiO [20, 21, 22, 23]. Additionally, due to

the high solubility of oxygen in HCP titanium, a diffusion zone with lower concentra-

tions of oxygen can exist below the oxide layer [24]. It has been shown that at low

partial pressures, the relatively oxygen-rich oxides can become unstable, causing the

oxygen to dissolve further within the titanium [16]. At these lower concentrations,

a solid solution of HCP TiOx forms, along with ordered TiO1/6, TiO1/3, and TiO1/2

suboxides.

The solid solution TiOx and the suboxides share the same HCP Ti sublattice. This

allows the system to be well represented by a combined Cahn-Hilliard and Allen-Cahn

description [103, 49, 109]. The free energy of the solid can be expressed as a function
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of oxygen concentration x, order parameters η1, . . . , ηp, and their gradients:

Π =

∫
V

dr

Ω

(
g(x, η1, . . . , ηp) +

∑
i,j

κij
∂x

∂ri

∂x

∂rj
+
∑
α,β

∑
i,j

Γαβij
∂ηα

∂ri

∂ηβ

∂rj

)
(4.13)

where Ω is the volume of TiOx per Ti atom, and the terms κij and Γαβij are gradient

energy coefficients. Note that x is a conserved variable while the order parameters

are nonconserved variables.

The long-range diffusion of oxygen is modeled with the Cahn-Hilliard equation,

where the oxygen flux J is related to the gradient of the oxygen chemical potential

µ by the Onsager transport coefficient L [110], according to

J = −L∇µ (4.14)

Combining this expression with the continuity equation gives the Cahn-Hilliard equa-

tion for the time evolution of oxygen concentration c = x/Ω:

∂c

∂t
= −∇J (4.15)

The oxygen chemical potential is equal to the variational derivative of the total free

energy with respect to oxygen concentration:

µ =
δΠ

δx
(4.16)

The Cahn-Hilliard equation is sufficient on its own to model the HCP solid solution

TiOx. However, an Allen-Cahn description is needed to capture the ordered suboxides

that become stable at 800 K. The Allen-Cahn equation describing the evolution of
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order paraemeter ηi has the form [109]

∂ηi
∂t

= −
∑
j

Mij
δΠ

δηj
(4.17)

where Mij is a kinetic coefficient.

Since the ordering processes modeled by the Allen-Cahn equation involve only

short-range diffusion, they will reach a local minimum much faster than the long-range

diffusion processes represented by Cahn-Hilliard. The order parameters relax quickly

to values that minimize the free energy based on the local value of the concentration.

This suggests an effective Cahn-Hilliard description, where the order parameters are

written as functions of the local concentration, i.e. ηi(x(r)). The homogeneous free

energy g can then be written solely as a function of x, and the gradients of the order

parameters can be written in terms of ∇x. Eq. 4.13 then simplifies to the following

form:

Π =

∫
V

dr

Ω

(
g(x) +

∑
i,j

κ̃ij
∂x

∂ri

∂x

∂rj

)
(4.18)

where the gradient energy coefficients κ̃ij depend on κij, Γαβij , and ∂ηi/∂x.

The corresponding equation for the chemical potential is found by taking the

variational derivative of the free energy in Eq. 4.18 with respect to the concentration,

yielding the following:

µ =
1

Ω

[
∂g

∂x
− 2

∑
i,j

κ̃ij
∂2x

∂ri∂rj

]
(4.19)

where ∂g/∂x = m̄u is the homogeneous chemcial potential defined in Eq. 4.3.

Considering the case where κ̃ij = (κ̂/2)δij simplifies this equation further:

µ =
1

Ω

(
µ̄− κ̂∇2x

)
(4.20)

By inserting this equation for the chemical potential into Eq. (4.14) and (4.15), the
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result is the following Cahn-Hilliard equation:

∂x

∂t
= ∇ ·

[
L∇

(
µ̄− κ̂∇2x

)]
(4.21)

The parameter κ̂ and the average homogeneous chemical potential give a length scale

for the interface ∼
√
κ̂/|µ̄avg|. Substituting the expression for the homogeneous

chemical potential in Eq. (4.11) gives the following:

∂x

∂t
= ∇ ·

[
L∇

(
kBT log

(
2x

1− 2x

)
+ ∆µ− κ̂∇2x

)]
(4.22)

The corresponding boundary conditions are

∇x · ~n = 0,

L∇µ · ~n = ~J,

(4.23)

where the first boundary condition results from assuming equilibrium at the boundary,

and the second represents an influx ~J at the boundary.

Because the cubic spline representation of the excess chemical potential is central

to this study, the spline function is inserted into Eq. (4.22). The final form for the

local Cahn-Hilliard equation, using the piecewise polynomial spline representation

from equation (4.9) for ∆µ, is given by

∂x

∂t
= ∇ ·

[
L∇

(
kBT log

(
2x

1− 2x

)
+

m−1∑
i=0

Pi,4 − κ̂∇2x

)]
(4.24)

where the piecewise cubic polynomials Pi,4(x) are given by

Pi,4 =


3∑
j=0

Di,j(x− τi)3−j τi ≤ x < τi+1

0 otherwise

(4.25)
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The polynomial coefficients Di,j used in the computations presented here were ob-

tained using the Octave splinefit function.

As described previously, the spline function can also be expressed as a linear

combination of B-splines, following Eq. (4.8). This alternative form gives the following

Cahn-Hilliard equation:

∂x

∂t
= ∇ ·

[
L∇

(
kBT log

(
2x

1− 2x

)
+

m−1∑
i=−3

ciNi,k(x))− κ̂∇2x

)]
(4.26)

In addition to the phase field computations using a cubic spline fit for the excess

chemical potential, simulations were also performed using the Redlich-Kister polyno-

mial representation. A comparison of the resulting composition profiles, total energy,

and computation times is presented here.

The code used solves the weak form of the Cahn-Hilliard equation with Isogeo-

metric Analysis (IGA), which is a mesh-based numerical method that uses NURBS

(Non-Uniform Rational B-Splines) as basis functions [111, 112]. The code was imple-

mented using the PetIGA library [113].

4.3.1 Composition profiles

To demonstrate the effect of the curve fits from the previous section, 2D simula-

tions were performed of the diffusion of oxygen within metallic Ti at 800K. The data

for the excess chemical potential was fit with the cubic spline fit shown in Figure 4.7

and the R-K polynomial fits of degree 15 and 21 shown in Figure 4.6. The domain

was [0, 1]× [0, 1]µm with a 1× 500 element mesh. Initial conditions were a uniform

composition gradient between x = 0.005 at r2 = 0 and x = 0.495 at r2 = 1. Zero flux

boundary conditions were applied. The average value of the homogeneous chemical

potential is µ̄avg = −0.634. The value κ̂ = 2.5e− 4 is used, which gives a length scale

of about 0.02 µm. This is well resolved by the element length of 0.002 µm in the r2
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Figure 4.8: Simulation results show the effect of the curve fit on the composition
profile. The bottom row of plots show the 2D simulation results after 100 s, colored
according to the composition. The top row of plots show the composition profile
found along the dotted line in the corresponding 2D plot. The middle row shows the
derivative of the homogeneous free energy with respect to composition, dµ̄/dx. The
phase interfaces (spinodals) captured by the respective chemical potential curve fits
occur where dµ̄/dx is negative, and they are marked by the circle, square, and plus
sign. Note that the degree 15 polynomial missed the middle spinodal, causing that
interface to be smoothed out.

direction.

Figure 4.8 shows the composition profile after 100 s for the three simulations,

as well as the derivative of the homogeneous component of the chemical potential

with respect to composition, dµ̄/dx. Recall that the two-phase regions correspond

to the concave regions of the free energy, which is identified by a negative value
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Figure 4.9: The time progression of total energy for a cubic spline fit is compared to
polynomials of degree 5, 9, 15, and 21. Initial conditions were a uniform composition
gradient of [0, 0.49] per micrometer over a 1 × 500 element mesh. The results show
1000 time steps of 10 s using a constant mobility of 9× 10−6 µm2/s.

for dµ̄/dx. While the 800K data has three spinodal regions between x = 0 and

x = 0.5, recall from Figure 4.6 that the degree 15 R-K polynomial does not capture

the middle two-phase region. The effect of this is seen in Figure 4.8. Note that the

cubic spline and the degree 21 polynomial have a well-defined interface near r2 = 0.6,

but this interface is smoothed out when using the degree 15 polynomial. Additionally,

because a constant mobility L is used, every oscillation in the excess chemical potential

function is reflected in the composition profile. Some of these oscillations are in the

data itself; others result from the curve fit and can appear to be interfaces. However,

even when it is difficult to identify the spinodal regions from the composition profile

alone, the derivative of the homogeneous chemical potential clearly represents what

is a true two-phase region.
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4.3.2 Total free energy as a measure of accuracy

The accuracy of the free energy representations is compared by evaluating the

time evolution of their total free energies, F, given by Eq. (4.18). Two-dimensional

simulations with the same conditions described previously ran for 1000 time steps

of 10 s each, using a constant mobility of 9 × 10−6 µm2/s. A thickness of 1µm was

used in the calculation of total energy. These results are compared to the simulation

that used the cubic spline fit, which is considered to most accurately represent the

chemical potential of the physical system (see Figure 4.9). One would expect a good

fit of the chemical potential to compute a total energy that matches the energy when

using the spline fit.

The zero flux boundary conditions, together with the initial uniform composition

gradient, result in a composition profile that gradually approaches a uniform com-

position of x = 0.25 in each simulation. The degree five R-K polynomial clearly

overestimates the magnitude of the total free energy. To a lesser degree, the degree

nine order polynomial underestimates the magnitude of the total free energy. This

is consistent with the computed homogeneous free energy curves shown in Figure

(4.6), where the degree 5 polynomial fit for the excess chemical potential results in

a free energy curve significantly lower than the reference curve. The degree 9 R-K

polynomial is slightly above the reference. The other two R-K polynomial fits and

the spline fit match the reference free energy curve relatively well, which is reflected

in the simulation results of Figure 4.9.

4.3.3 Assembly time

The effect on computation time of using the cubic spline as opposed the degree

21 polynomial was explored. Evaluation of the chemical potential and its derivatives

takes place when the residual and Jacobian are evaluated and assembled in the phase

field code. The additional terms in the degree 21 polynomial relative to the cubic
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spline incur a significant increase in the number of floating point operations in the

computation. To quantify this effect, 3D simulations of oxygen diffusion in metallic

Ti were performed on a cube of length 2µm with a 100×100×100 element mesh using

160 processors. Zero flux boundary conditions were applied, with initial conditions of

a uniform composition gradient between x = 0.001 at r1 = 0 and x = 0.499 at r1 = 2.

Wall times for assembly of the residual and the Jacobian for the first time step

are shown in Table 4.1. There is a significant difference in the assembly times, with

the polynomial fit taking more that 15 times as long to evaluate and assemble the

residual and about 5 times as long for the Jacobian. This difference in computation

time continues long after the first time step. The wall times, averaged over each

time step, are plotted in Figure 4.10 for the first 100 time steps. The wall times for

both simulations remain essentially constant over that time, with the residual and

Jacobian taking about five and 15 times longer, respectively, when using the degree

21 polynomial instead of the cubic spline.

Note that for a system where a polynomial of lower degree provides a sufficient

fit, the difference in wall time would decrease. For example, if the oxgyen diffusion

in titanium at 1800K were simulated, as in Figure 4.3, a cubic polynomial would

sufficiently represent the excess chemical potential, and there would be no decrease

in computation time from using a cubic spline instead. However, for a complex free

energy landscape, such as present in the diffusion of oxygen in Ti at 800K, the decrease

in computation time achieved by using a cubic spline as opposed to a polynomial of

high degree is significant.

4.4 Concluding remarks

Redlich-Kister polynomials have commonly been used to represent free energy

functions. The global nature of the these polynomials often prevents them from

capturing local phenomena. Spline functions present an effective alternative for rep-
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Table 4.1: Comparison of wall times for residual and Jacobian assembly with cubic
spline and degree 21 R-K polynomial fit for the first time step.

Newton Residual time (s) Jacobian time (s)
iteration Polynomial Spline Polynomial Spline

0 21.0 1.37 1230 249
1 21.0 1.40 1240 249
2 20.9 1.32 1230 249
3 21.3 1.34 1230 249
4 20.9 1.32 1240 250
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Figure 4.10: The residual and Jacobian assembly wall times, averaged over each time
step, for 100 time steps.

resenting chemical potential and free energy data. Splines are piecewise polynomials

with a specified order of continuity across the entire domain. Because of their piece-

wise structure, they are able to accurately represent local features of the data. The

inherent constraints prescribing that the spline and a certain number of its deriva-

tives be continuous across all subdomain junctions give splines an order of global

continuity. These local and global properties make splines an important tool in curve

fitting.

For a simple landscape, the R-K polynomial sufficiently models the chemical po-

tential with a low polynomial degree. This is demonstrated by the high temperature

data for diffusion of oxygen in metallic Ti, where a cubic R-K polynomial gave a

sufficient representation of the excess chemical potential. This contrasts, however,

71



with more complex cases involving multiple regions of phase separation, where much

higher polynomial degrees are needed when using the R-K polynomials. At the lower

temperature of 800K, for example, the diffusion of oxygen in Ti produces three spin-

odal regions, and the R-K expansion requires a polynomial degree of around 20 to

represent all three. These polynomials of high degree add complexity and can intro-

duce spurious oscillations, but polynomials of lower degree potentially miss significant

physics, such as the two-phase regions corresponding to a negative curvature of the

free energy. Splines, however, are able to represent the fitted data and the associated

physics with high accuracy while using a low degree.

To demonstrate the effect of the function type used to fit the excess chemical

potential, phase field computations were performed of the diffusion of oxygen in tita-

nium using a cubic spline fit and R-K polynomial fits of multiple degrees. Because the

Allen-Cahn equations reach a minimum more rapidly than the Cahn-Hilliard equa-

tion, our phase field model is based on an effective Cahn-Hilliard equation. Using

this model, the performance of a cubic spline fit was compared to the R-K polyno-

mial fits in three ways. First, it is observed that, for this example, R-K polynomials

of degree less than 21 fail to represent all three well-defined phase interfaces, while

the cubic spline does. The effect of the function on the evolution of the total free

energy of the system as it relaxes toward a homogeneous composition was studied,

and it was found that the degree five and, to a lesser extent, the degree nine R-K

polynomials misrepresent the magnitude of the total free energy. These two studies

demonstrate that a degree 21 R-K polynomial gives a sufficient representation of the

excess chemical potential for this particular data. An additional comparision was

made of the computation time for the assembly of the residual and Jacobian using

the cubic spline and the degree 21 R-K polynomial. The computation with the cubic

spline evaluated and assembled the residual with a speedup of 15× and the Jacobian

with a speedup of 5× relative to the computation using the degree 21 polynomial.
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The ability of the cubic spline to capture all of the local physics of the system while

minimizing spurious oscillations and computation time makes it a valuable tool in

representing chemical potential and free energy functions.
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CHAPTER V

Machine learning for predicting equilibrium

precipitate morphology, and a comparison with

the phase-field method

Magnesium alloys are attractive structural materials for multiple reasons. Magne-

sium has a low density compared to other commonly used structural metals, having

two thirds the density of aluminum and one quarter the density of steel. It is an

abundant material, making up 2.7% of the Earth’s cruSt. Its specific heat and melt-

ing point make it ideal for casting methods [28, 29, 30, 31]. Its current use is limited

by poor mechanical properties such as yield strength, formability, creep resistance,

and corrosion resistance, even in many alloys. The improvement of material proper-

ties in Mg alloys depends in large part on precipitation and age hardening. This has

been the focus of many studies and computational models, some of them focusing

on promising Mg-Rare Earth alloys [32, 33, 34, 5, 35, 31, 3, 36, 37, 2]. This chapter

presents a new approach to computational studies of precipitation, with Mg-RE alloys

as a case study to develop the methods.

As shown in previous chapters, phase-field models such as those based on the

Cahn-Hilliard or Allen-Cahn equations [52, 49] provide an effective framework for

modeling the dynamics of material phase evolution. The effects of solid mechanics and
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chemistry can be captured in the free energy functional so that their interactions will

then be reflected in the variational derivatives used in both the phase-field equations

and the Euler-Lagrange equations for mechanics. Phase-field models have been used

repeatedly in studies of precipitate morphology [114, 115, 34, 5, 35, 36, 37]. The ability

of phase-field methods to accommodate very general precipitate shapes is one of the

strengths of this approach. The computations can, however, be time consuming due

to the inherently serial nature of time-stepping schemes used in dynamic problems.

Furthermore, as is well-known phase field dynamics can get stuck in local minima, and

basins, or evolve slowly over very gradually descending free energy landscapes. Most

phase field computations thererfore never reach equilibrium [116]. For these reasons

it may be desirable to consider approaches of traversing the free energy landscape,

or perhaps combine other approaches with phase field dynamics to mitigate these

challenges.

Alternative methods that are natively better suited to explore the dynamics in

parallel can be used to rapidly estimate equilibrium precipitate shapes. One method

proposed and demonstrated in this chapter is to treat the prediction of equilibrium

precipitate shape as an optimization problem, in which the energy is minimized over

a set of potential geometries, subject to certain constraints (e.g. for a given volume).

Such a problem can be made simpler through a change in how the precipitate shape

is represented. The precipitate geometry in phase-field methods is often represented

by a scalar field, which when discretized can easily lead to hundreds of thousands

or millions of unknowns. The precipitate can instead be defined by many fewer

parameters, such as the aspect ratios and volume of an ellipsoid or coefficients in

a parametric representation of a surface. These geometric parameters become the

variables in the optimization process.

If the free energy is an analytical function based solely on the shape parame-

ters, standard gradient-based optimization methods may be applied. When finite
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strain mechanics is included, there generally is not an analytical function relating

the shape to the total strain energy. The values of the total energy will need to be

numerically computed for a given set of shape parameters. In this or similar cases,

derivative-free methods can be used [56]. Some examples of derivative-free optimiza-

tion methods are genetic algorithms, simulated annealing, branch-and-bound search,

and surrogate-based methods. Surrogate-based optimization methods use a surrogate

model to approximate the objective function using data points over a given domain

[57]. The surrogate model is used to find an approximate minimum, after which new

data points are obtained and the model is updated. The process is repeated until

specified stopping criteria are met. Machine learning regression methods, includ-

ing Deep Neural Networks (DNN), have been as surrogate models in derivative-free

optimization [58, 59, 60].

This chapter first demonstrates the use of Deep Neural Networks within a surrogate-

model optimization framework to estimate the equilibrium shape of Mg-Y precipitates

(see Figure 5.1). A phase-field approach is then described, and the resulting shape

and computation time are compared with the DNN method. The DNN method is

shown to be faster, but it lacks both the generality of shape type and the effect of

dynamics and growth that exist in the phase-field method. Therefore, additional al-

gorithms are discussed that combine the strengths of both methods, using phase-field

for shape definition and dynamic effects and the DNN surrogate model optimization

for improved computation time. An expanded role of machine learning in precipitate

geometry prediction is also discussed.

5.1 DNN based shape prediction

This section describes the methodology for predicting the equilibrium shape of a

Mg-Y precipitate for a given volume, using a DNN-based optimization routine. The

corresponding results are reported.
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Figure 5.1: HAADF-STEM image of a MgY β′ precipitate aged at 200◦ C (used by
permission) [2].

5.1.1 Surrogate-based optimization

The basic approach in surrogate-based optimization methods is described by Vu

ad co-workers [57] and is given by the following algorithm (quoting verbatim):

1. Phase 1 (design): Let k := 0. Select and evaluate a set S0 of starting points.

2. While some given stopping criteria are not met:

(a) Phase 2 (model): From the data {(x, f(x)) |x ∈ Sk}, construct a surrogate

model sk(·) that approximates the black-box function.

(b) Phase 3 (search): Use sk(·) to search for a new point to evaluate. Evaluate

the new chosen point, update the data set Sk. Assign k := k + 1.

Phase 1 consists of sampling data points from the domain of the chosen variables.

There are two important requirements for a good sampling (again quoting verbatim)

[57]:

1. Space-fill: The design points should be uniformly spread over the entire design

space.
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2. Noncollapse: Two design points should not share any coordinate value if we do

not know a priori which dimensions are important.

One commonly used noncollapsing method is Latin hypercube sampling [117], which

can also be made space-filling. Another method that is both space-filling and non-

collapsing is based on Sobol sequences [118, 119, 120]. Sobol sequences consist of

n-dimensional points in a unit domain where the first m points are well-distributed

for any m and no point projections are coincident. Using a Sobol sequence allows ad-

ditional points to be continually added to an initial set of well-distributed points while

maintaining the space-filling property of the updated set. Such a sequence was first

suggested by Sobol [118] in the context of numerical integrals, but it has since been

adopted in optimization schemes. The data points used in the current method are

determined by the Sobol sequence. A description of the Direct Numerical Simulation

(DNS) used to find the energy data points is given in Section 5.1.2.

Phase 2 involves the construction of the surrogate model. As mentioned previously,

this work uses a Deep Neural Network for the surrogate model. This is done using

the TensorFlow machine learning library [121] and is described in Section 5.1.3.

Phase 3, the search phase, can use a wide range of optimization techniques to

minimize the surrogate model. Assuming the computation of gradients using the

surrogate model is reasonable, standard gradient methods can be used. Since the

TensorFlow library has implemented several variations of gradient descent for use in

training the DNN weights, one of these gradient descent methods is also used here

to minimize the energy as represented by the surrogate model. Multiple new data

points are computed based on this minimum, and the dataset is updated accordingly.

5.1.2 Energy data from Direct Numerical Simulation (DNS)

The equilibrium precipitate shapes in this first work are assumed to depend on

the strain energy and the interfacial energy. This total energy, given by the following
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integral, is minimized for a given precipitate volume:

Π =

∫
Ω

ψ dV +

∫
Γ

γ(n) dS (5.1)

where ψ is the strain energy density and γ(n) is the orientation-dependent interfacial

energy. The bulk chemical free energy, along with compositions and composition-

dependent parameters, could also be included.

5.1.2.1 Strain energy

The strain energy of the precipitates was modeled with finite strain, continuum

elasticity using the finite element method. The C++ code uses the deal.II finite

element library [122]. The predefined precipitate surface is represented by the zero

contour of a function, F (x, y, z), or as a parametric surface, r(φ, θ). A structured

finite element mesh was used that had been locally refined at the precipitate interface

using hanging nodes. The jump in material parameters at the precipitate-matrix in-

terface were smoothed linearly over multiple elements, representing a diffuse interface.

The displacement field is driven by the eigenstrain, resulting from the lattice pa-

rameter mismatch between the precipitate and the matrix. The value of the misfit

strain is dependent on the composition of the precipitate [3]. The Mg-Y β′ precipi-

tate has a composition of Mg7Y, corresponding to cY = 0.125 (see Table 5.1). The

eigenstrain is applied within the precipitate using the multiplicative decomposition

of the deformation gradient, F = F eF λ, where F e is due to elasticity and F λ is due

to the eigenstrain.

The precipitate is embedded in a cube with a volume 6.4 × 104 times greater

than that of the precipitate, and normal displacements on the boundary of the cube

are constrained to be zero. A standard St. Venant-Kirchhoff strain energy density

function is used, ψ(E) = 1
2
E : C : E, which is numerically integrated over the entire
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Table 5.1: Deformation gradient representing the eigenstrain in the Mg-Y β′ precipi-
tate [3].

cY = 0.125
F11 1.0307
F22 1.0196
F33 0.9998

Table 5.2: Elasticity constants used for the Mg matrix [4] and the β′ precipitate
(calculated by AR Natarajan, unpublished data) (GPa).

Mg β′

C1111 62.6 78.8
C2222 62.6 62.9
C3333 64.9 65.6
C1122 26.0 24.6
C2233 20.9 19.9
C3311 20.9 23.1
C1212 18.3 11.9
C2323 13.3 11.6
C3131 13.3 8.46

domain to find the total strain energy. The elasticity constants used for the Mg

matrix were calculated and reported by [4]. The elasticity constants for the matrix

correspond with experimental data, although no such experimental data is available

for the precipitate material. The elasticity constants used for the precipitate were

also calculated using first principles methods (see Table 5.2).

The precipitate shape family was based on images of Mg-Y β′ precipitates (see,

for example, Figure 5.1) and is represented using the following function:

F (x, y, z) =
x4

a4
+
y4

b4
+
z4

c4
− 1 (5.2)

where a, b,and c are the semi-axis lengths (see Figure 5.2). The interface can also be
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Figure 5.2: Example from the shape family used to represent the Mg-Y precipitate,
with a = 6, b = 10, and c = 34.

expressed as a parametric surface on the domain φ ∈ [0, π), θ ∈ [0, 2π):

x = a sign(cos θ)| sinφ cos θ|1/2 (5.3)

y = b sign(sin θ)| sinφ sin θ|1/2 (5.4)

z = c sign(cosφ)| cosφ|1/2 (5.5)

The volume is given by the following integral:

V = 2abc

π/2∫
0

π/2∫
0

(cosφ)3/2

(sin θ cos θ)1/2
dφdθ (5.6)

≈ 6.481987abc (5.7)

5.1.2.2 Interfacial energy

The interfacial energy per unit area at a point on the surface of the precipitate

is dependent on the orientation of the surface normal. This anisotropic interfacial
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Table 5.3: Interfacial energy between a β′ Mg-Y precipitate and the Mg matrix [5].

Crystallographic Interfacial
plane energy (J/m2)
(100) 0.03016
(010) 0.00436
(001) 0.02776

energy, γ, and the unit normal, n, are used to find the interfacial energy per unit area.

The total interfacial energy, ΠΓ, is found by numerically integrating this expression

over the parametric surface of the precipitate:

ΠΓ =

π∫
0

2π∫
0

n · γn
∥∥∥∥∂r∂θ × ∂r

∂φ

∥∥∥∥ dθdφ (5.8)

where r is the position vector 〈x, y, z〉 and γ is a diagonal matrix with the (100),

(010), and (001) interfacial energies on the diagonals. The interfacial energy, γ, for

β′ precipitates in Mg-Y was calculated and reported by Liu et al [5]. These values

are shown in Table 5.3.

5.1.3 Deep Neural Network (DNN)

A neural network takes a set of inputs or “features” and maps them to a set of

output or “target” values. It can be used for regression or classification problems.

It is defined by multiple layers of units or “neurons”, their associated weights, and

activation functions (see Figure 5.3) [123, 124, 125, 126]. The input and output layers

consist of the values of the input and output variables, with one or more hidden layers

between the input and output layers. The number of layers and the number of units

within each layer are called hyperparameters and define the neural network. A DNN

has multiple hidden layers. The value of each unit within a given layer is computed

based on the unit values and weights in the previous layer and the unit’s activation

function. Sigmoid functions have often been used as activation functions, although
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Figure 5.3: Schematic of a fully connected DNN.

rectified linear units (ReLU), defined by the function g(x) = max(x, 0), are commonly

used as well. The activation value of unit j in layer i, denoted here by aji , is calculated

by the following equations:

aji = g(zji−1) (5.9)

zji−1 = θ0
j,i−1 +

∑
k

θkj,i−1a
k
i−1 (5.10)

where g(x) is the activation function, ai−1 is the vector of activation values for the

previous layer, θj,i−1 is the vector of weights, and θ0
j,i−1 is a bias value. When used

for regression, activation functions are used to evaluate the activation values in the

hidden layers, but not in the output layer. For example, if a single layer were used,

the output value for regression would be given by y = z1
m = θT1,mam + θ0

1,m.

Training the DNN involves optimizing the weights and bias values to minimize a

cost or loss function for a set of training data. The mean squared error (MSE) is a
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commonly used loss function:

E =
1

N

∑
I

EI (5.11)

EI =
(
yI − ytrainI

)2
(5.12)

where E is the MSE, N is the number of points in the training set, yI is the DNN

predicted target value for data point I, and ytrainI is the given target value of data

point I. The weights and biases are often optimized using stochastic gradient descent

or one of its variants. The gradient descent method finds a minimum by taking steps

from a starting point in the direction given by the negative gradient, which is the

direction of steepest descent. Evaluating the gradient can be computationally time

consuming due to large numbers of data points in the training set. Stochastic gradient

descent bypasses this difficulty by evaluating an average gradient based on a small

set of example data points and updating the weights accordingly. This process is

repeated for many different small sets from the training data until some stopping

criteria is met (e.g. the loss function stops decreasing) [125].

The gradients of the error with respect to the weights are found using the back-

propagation algorithm, which is derived using the chain rule. It makes use of the

terms δji := ∂EI/∂z
j
i and consists of the following steps: [123]:

1. Evaluate the DNN for a given data point and store the values zji (forward

propagation).

2. Evaluate the terms δjm for the output units, given by

δjm = g′(zjm)
∂EI
∂yj

(5.13)
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3. Back-propagate the values of δji through each layer, using the equation

δji = g′(zji )
∑
k

θjk,i+1δ
k
i+1 (5.14)

4. Evaluate the desired derivative using

∂EI
∂θkj,i

= δji a
k
i (5.15)

These gradients are then used with stochastic gradient descent to optimize the DNN

weights.

A fully connected, deep neural network with ReLU activation functions is used

for the surrogate model for the energy. The DNNRegressor model with AdagradOp-

timizer from the open source software library TensorFlow is used to create and train

the neural network. The DNNRegressor model is defined by the number of hidden

layers in the neural network and the number of units or neurons in each layer. The

optimization function AdagradOptimzer requires a learning rate. The values of these

hyperparameters (learning rate, number of hidden layers, number of units per layer)

were determined through a random search [127].

Given a set of data, multiples sets of hyperparameters are created for comparison.

These values are randomly selected over the following intervals:

• learning rate, log-uniformly between 1e-4 and 0.1

• number of hidden layers, uniformly between 8 and 15

• units per layer, uniformly between 5 and 120

The data are randomly split into 75% training data and 25% validation data. A deep

neural network defined by each set of hyperparameters is trained with the training

data for 15,000 iterations of the optimizer. The L2-norm of the error between the
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predicted and actual values for the validation data is computed. The hyperparameter

set that produced the lowest error is then used to define the neural network for the

current set of data.

5.1.4 Workflow and algorithm

A description of the algorithm used is described here, expanding on the basic

algorithm from Section 5.1.1.

1. Values for the geometric features are chosen according to the Sobol sequence

from a specified range of potential values, and the finite element computations

are submitted to the HPC cluster. New jobs are immediately submitted upon

completion of current jobs, so that a steady number of jobs are continually

running in parallel with the training of the DNN. This develops a skeleton of

the energy surface as a function of the chosen features.

2. Once a minimum number of DNS data are available, an initial set of hyperpa-

rameters is selected from 30 random hyperparameter sets. The following steps

are then iterated over until a stopping criteria is met:

(a) The five previous best hyperparameter sets are compared with five new,

random hyperparameter sets to choose the hyperparameters for the current

set of DNS data.

(b) The DNS data is sorted according to the energy, and a set of 100 data

points with the lowest energy are chosen for training.

(c) A DNN is trained with the resulting data.

(d) The energy as predicted by the DNN is minimized with respect to the

geometry features. The result is a prediction for the equilibrium precipitate

shape. This minimization is done using the AdagradOptimizer function in

TensorFlow.
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(e) 75 additional elasticity computations with geometry feature values near

the current minimum are submitted to the HPC cluster, waiting for all

but five to complete before proceeding. The range of geometry features

used in new computations is exponentially tightened around the minimum

as the iterations continue.

5.1.5 Simulation

The simulation workflow was executed on the ConFlux High Performance Com-

puting (HPC) cluster at the University of Michigan. The ConFlux cluster includes

43 IBM Power8 CPU “Firestone” compute nodes with 20 physical cores (80 virtual

cores) each and seventeen additional Power8 CPU “Minsky” nodes that each host four

NVIDIA Pascal GPUs. All compute nodes and storage are connected using 100 Gb/s

InfiniBand fabric. The workflow, machine learning, and optimization routines were

implemented in Python and executed on the Minsky nodes, allowing the TensorFlow

library to utilize the GPUs during machine learning and optimization. The DNS

energy data were computed using a C++ finite element code on the Firestone nodes

using 20 virtual cores for each computation. The high-speed interconnects enabled

rapid transfer of the DNS data from the compute nodes to the GPUs performing the

machine learning.

The equilibrium shape was found for a precipitate with a volume of 8,000 nm3

and the shape family described in Section 5.1.2.1. The geometry features used were

the log of the aspect ratios, i.e. ln(a/b) and ln(c/b). The precipitate was centered in

a cube with side lengths of 800 nm to remove any boundary effects on the elasticity.

The mesh was locally refined at the precipitate interface with element length of 0.26

nm. The thickness of the diffuse interface was 2 nm.
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5.2 Phase-field model

The aging process for a single β′ precipitate in Mg–10 wt.% Y (Mg–2.95 at.%

Y) at 200◦ C was simulated using a phase field model. The crystal structure was

described by an order parameter, η, where η = 0 corresponds to α-Mg, η = 1 to

the ordered β′ precipitate. Values of η between 0 and 1 define the diffuse interface.

The composition of Y is described by a composition field variable, c. Finite strain

effects were also considered, so a displacement vector field, u, was also included in

the model. The Kim-Kim-Suzuki (KKS) model was used, in which the two phases in

the diffuse interface are considered to have the same chemical potential rather than

the same composition [128]. The form of the equations used here closely follows that

of Ji et al. [35].

The Gibbs free energy is defined by the following integral:

Π[c, η,u] =

∫
Ω

(f(c, η) + fgrad(∇η) + ψ(F e(η,F ), η)) dV −
∫
∂ΩT

T · u dS (5.16)

where f(c, η) is the local chemical free energy density, fgrad(c, η) is the gradient energy

term, and ψ(F e(η,F ), η) is the strain energy density.

5.2.1 Local free energy

The local chemical free energy density includes the bulk chemical free energy

and the Landau free energy describing the structure change. The bulk chemical free

energy is written in terms of the chemical free energies of the α and β′ phases and

the function h(η), where h(0) = 1, h(1) = 1, and h′(0) = h′(1) = 0. The Landau free
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Table 5.4: Coefficients in the chemical free energy density for the Mg-Y solid solution
at 200◦ C (kJ mol−1) [6].

GMg -16.564
GY -21.561
L0 -20.016
L1 -2.836

energy has wells at η = 0 and η = 1.

f(c, η) = fα(cα) (1− h(η)) + fβ
′
(cβ

′
)h(η) + ωfLandau(η) (5.17)

h(η) = 3η2 − 2η3 (5.18)

fLandau(η) = η2 − 2η3 + η4 (5.19)

The full form of the chemical free energy of the Mg-Y solid solution is given by

the following function [6, 5]:

fα(cα) = (1− cα)GMg + cαGY + cα(1− cα)(L0 + L1(1− 2cα))

+RT ((1− cα) log(1− cα) + cα log(cα))

(5.20)

where the values for the coefficients at 200◦ C are given in Table 5.4. The chemical

free energy of the β′ precipitate is written such that a common tangent exists at

fα(0.01) and fβ
′
(0.125) [5]. The functions fα(cα) and fβ

′
(cβ

′
) can approximated as

quadratic functions of the following form:

fα(cα) = Aα(cα − cα0 )2 +Bα (5.21)

fβ
′
(cβ

′
) = Aβ

′
(cβ

′ − cβ
′

0 )2 +Bβ′ (5.22)

where the parameters are given in Table 5.5.

The following constraint equations act to maintain the equal chemical potential
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Table 5.5: Parameters in the quadratic chemical free energy density descriptions.

Aα 6.2999 nN/nm2

Bα -1.6062 nN/nm2

cα0 0.2635
Aβ
′

704.23 nN/nm2

Bβ′ -1.5725 nN/nm2

cβ
′

0 0.1273

condition and define the values cα and cβ
′
:

c = (1− h(η))cα + h(η)cβ
′

(5.23)

∂f

∂c
=
∂fα

∂cα
=
∂fβ

′

∂cβ′
(5.24)

Equations (5.21)-(5.24) can be used to find the following expressions for cα and cβ
′
:

cα =
Aβ
′
[
c− cβ

′

0 h(η)
]

+ Aαcα0h(η)

Aαh(η) + Aβ′(1− h(η))
(5.25)

cβ
′
=
Aα [c− cα0 (1− h(η))] + Aβ

′
cβ
′

0 (1− h(η))

Aαh(η) + Aβ′(1− h(η))
(5.26)

5.2.2 Gradient energy

An anisotropic gradient energy term is used, where the second order tensor κ is

related to the anisotropic interfacial energy:

fgrad(∇η) =
1

2
∇η · κ∇η (5.27)

The components of κ can be related to the barrier height ω, the interface thickness

(2λ), and the interfacial energy γ:

γij =

√
κijω

3
√

2
(5.28)

2λ = 2.2

√
2κij
ω

(5.29)
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This study used the following values for κ and ω:

κ =


0.08225 0 0

0 0.001743 0

0 0 0.06968

 , ω = 0.199056 (5.30)

5.2.3 Strain energy

The strain energy is modeled using a St. Venant-Kirchhoff model. The elasticity

constants are modeled as being dependent on the order parameter to represent the

difference in elasticity between the two phases. The strain energy is driven by a strain

mismatch between the crystal structures of the phases. The stress-free transforma-

tion tensor of the β′ precipitate F β′ and the order parameter are used to determine

the misfit strain, represented by F λ. A multiplicative decomposition of the total

deformation gradient into the parts due to elasticity and the misfit strain is used:

ψ(F e(η,F ), η) =
1

2
E : (Cα(1− h(η) +C

β′h(η)) : E (5.31)

E =
1

2

(
F eTF e − 1

)
(5.32)

F e(η,F ) = FF λ−1
(η) (5.33)

F λ(η) = 1(1− h(η)) + F β′h(η) (5.34)

5.2.4 Phase-field and equilibrium equations

The phase field dynamics following the KKS model are modeled with the diffusion

and Allen-Cahn equations, of the following forms [49]:

∂c

∂t
= −∇ · (−M∇µc) (5.35)

∂η

∂t
= −Lµη (5.36)
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where M is the mobility and L is the kinetic coefficient. The chemical potentials

µc = δΠ/δc and µη = δΠ/δη are found using standard variational methods, giving

the following expressions when assuming ∇η · κn = 0:

µc =
∂fα

∂c
(1− h(η)) +

∂fβ
′

∂c
h(η) (5.37)

µη =
[
fβ
′ − fα − µc(cβ

′ − cα)
] ∂h
∂η
−∇η · κ∇η + ω

∂fLandau
∂η

+
∂ψ

∂η
(5.38)

where

∂ψ

∂η
=

(
1

2
E : (Cβ′ −Cα) : E − P :

(
F e(F β′ − 1)F g−1

)) ∂h

∂η
(5.39)

Using the definition µ̄η := µη +∇ · (κ∇η), the corresponding weak forms are the

following (assuming M and L to be uniform and constant):

∫
Ω

(
w
∂c

∂t
+∇w · (M∇µc)

)
dV +

∫
∂Ω

wJ · n dS = 0 (5.40)

∫
Ω

(
w

(
∂η

∂t
+ Lµ̄η

)
+ L∇w · (κ∇η)

)
dV = 0 (5.41)

where the flux is defined by J := −M∇µc.

The equilibrium conditions for mechanics are found by setting the first variation

of the free energy functional with respect to the displacement equal to zero. This

gives the following weak form:

∫
Ω

∇w :
(
PF λ−T

)
dV =

∫
∂ΩT

w · T dS (5.42)
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with the corresponding strong form:

Div
(
PF λ−T

)
= 0 in Ω (5.43)(

PF λ−T
)
N − T = 0 on ∂ΩT (5.44)

5.2.5 Simulation

The phase-field and equilibrium equations were solved simultaneously using the

finite element method and implemented in C++ using the deal.II library. A backward

Euler time stepping scheme was used for the phase-field dynamics. The code was run

in parallel on 160 cores over ten compute nodes. A single, spherical precipitate at

about one-half the volume of interest was used as an initial condition. This was

allowed to evolve and grow until reaching a volume of 8,000 nm3. The same domain

and a similar mesh refinement were used as in Section 5.1.5.

5.3 Results

At a volume of 8,000 nm3, the DNS-DNN method predicted aspect ratios of a/b ≈

0.60 and c/b ≈ 3.4, which corresponds to dimensions 10.1 nm × 16.9 nm × 57.9

nm. The results from the phase-field method show aspect ratios of a/b ≈ 0.69 and

c/b ≈ 2.5, which corresponds to 14.0 nm × 20.2 nm × 49.6 nm. Figures 5.4 and

5.5 show the predicted shapes using the two methods using 2D slices of the 3D

simulations.

The convergence of the DNS-DNN based optimization method is shown in Figure

5.6. This plot shows the decrease in the L2-norm of the error of the feature vector

[ln(a/b) ln(c/b)]T, where the DNS data point giving the lowest overall energy is taken

as the true minimum. After six iterations, the percent error for ln(a/b) was 0.0255%

and for ln(c/b) was 0.00624% . The computation time elapsed after six iterations was
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(a): DNS-DNN method (b): Phase-field method

Figure 5.4: Precipitate simulation results showing the xy-plane at z = 0. The pre-
cipitate is colored red and the solid-solution is blue.

(a): DNS-DNN method (b): Phase-field method

Figure 5.5: Precipitate simulation results showing the yz-plane at x = 0. The pre-
cipitate is colored red and the solid-solution is blue.
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Figure 5.6: Convergence of the DNN based optimization scheme based on the L2-norm
of the error of the feature vector [ln(a/b) ln(c/b)]T.

Table 5.6: Computation time for the DNS-DNN optimzation and phase-field methods.

DNS-DNN Phase-field
Computation time (sec) 12832 91037

Iterations/time steps 6 75
Avg. iteration/step time (sec) 2139 1214

12832 sec (3.56 hrs).

The precipitate modeled with the phase-field method grew to 8,000 nm3 after 78

time steps, with a computation time of 91037 sec (25.3 hr), or about 7 times as long

as the DNS-DNN based method. Computation times are compared in Table 5.6.

5.4 Discussion

As expected, the DNS-DNN method of predicting the precipitate shape is sig-

nificantly faster than the phase-field method, due to the time-dependent nature of

the phase-field equations. However, this advantage comes at the price of simplify-

ing the shape description. The result is that while, in general, the dimensions and

shapes are comparable, particularly in the xy-plane shown in Figure 5.4, the yz-plane

in Figure 5.5 shows noticeable differences. Phase-field’s ability to represent a wide
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range of shapes is one great advantage. This advantage is particularly important if

there is little or no experimental data on a precipitate’s shape. While the DNS-DNN

method could be improved by using a more general shape description with a higher

number of parameters, it is possible to use the DNS-DNN and phase field methods

together to take advantage of both of their strengths. The following algorithms are

some suggestions.

5.4.1 Geometry-informed DNS-DNN algorithm

Use the phase-field method to determine the shape family to be used in the DNS-

DNN method. Multiple 2D simulations or a coarse 3D simulation could be sufficient to

identify an appropriate shape family, while keeping the phase-field computation time

to a minimum. This more accurate shape family is then be used with the DNS-DNN

method as described in Section 5.1.4.

5.4.2 Geometry-informed phase-field algorithm

Use a generic shape family with the DNS-DNN method to predict an equilibrium

shape. Use this shape as the initial condition in the phase field model. The phase-

field model will refine this to a more accurate precipitate shape. The computation

time required for the phase-field dynamics should be significantly reduced by having

an initial condition that is near the equilibrium condition. This algorithm could be

combined with the previous algorithm when necessary.

5.4.3 DNS-DNN algorithm with composition and volume features

Another reason for discrepancies in the results is due to the fact that the precipi-

tate in the phase-field simulation is far from equilibrium with respect to bulk chemical

free energy, causing the precipitate to continue to grow. A single equilibrium precip-

itate would be orders of magnitude larger than 8,000 nm3 for the domain size and
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average concentration of Y used here. However, in an actual system there would be

many more precipitates, leading relatively smaller equilibrium sizes. Including these

additional precipitates in the simulation or simply decreasing the domain size would

be possible ways to ensure that the precipitates reach a near equilibrium state at a

realistic size. If seeking equilibrium with respect to bulk chemical free energy as well

as strain and interfacial energies, the following method can be used:

Use the DNS-DNN method as previously described, but seek an equilibrium shape

for a given average concentration cavg rather than a given volume. The precipitate

volume V β′ and precipitate composition cβ
′

are included as features to be optimized,

and the bulk chemical free energy is included in the total energy. The total energy

would then be as follows:

Π = fβ
′
(cβ

′
)Vβ′ + fα(cα)(VΩ − Vβ′) +

∫
Ω

ψ dV +

∫
Γ

γ(n) dS (5.45)

The dependence of the misfit strain or other parameters on the composition could be

included as well. The concentration of Y in the α-Mg matrix, cα, is calculated using

the total domain volume VΩ:

cα =
cavgVΩ

VΩ − Vβ′
(5.46)

5.4.4 An expanded role for machine learning

Machine learning can play a larger role than simply using a DNN as a surrogate

model for the total energy. The simulations and algorithms described to this point

in the chapter have dealt with finding the precipitate shape for a given material.

These methods can be applied to compute precipitate shape data for a wide range of

material types. With sufficient data, a DNN can then be trained to directly predict

the precipitate shape (rather than the energy) based on material parameters such
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as elasticity constants for the precipitate and the matrix, interfacial energies, and

misfit strain values. A classification DNN might predict the shape family while a

regression DNN predicts the corresponding parameter values. This would include a

large number of features, which in turn requires an enormous number of data points.

For the 24 features mentioned here (18 elasticity constants, 3 interfacial energies, 3

components of the misfit strain), two data points in each dimension would result in

over 16 million data points. Three data points in each dimension is over 282 billion.

Due to the curse of dimensionality, the number of features would initially be smaller

and increase over time as additional data are computed or observed. Such a tool

would become increasingly valuable in the design of materials as the dataset grows

and training progesses.

5.5 Concluding remarks

Precipitation in Mg alloys is a key element in improving their material properties

and expanding the potential applications of Mg alloys. The ability to predict precip-

itate morphology can be a valuable tool in designing alloys. The phase-field method

is well-suited to modeling the dynamics of precipitate growth and evolution and in-

corporating the effects of elasticity. Its inhibiting factor is its time dependence. This

chapter has demonstrated the use of a DNN-based optimization method using DNS

data as a way to remove the dependence on inherently serial time-stepping schemes.

It was compared to a phase-field model using diffusion, Allen-Cahn, and equilibirum,

finite-strain elasticity.

While the DNS-DNN method gives comparable results to the phase-field method

for the example in this chapter, it is restricted by the chosen shape family. Multiple

additional algorithms were suggested to use the DNS-DNN and phase-field methods

together to mitigate the effects of time-dependence in phase-field and the restrictive

shape family in the DNS-DNN method. The combination of methods has the poten-
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tial to predict more accurate precipitate shapes with relatively shorter computation

times.

99



CHAPTER VI

Conclusion

The purpose of the methods presented in this dissertation is to provide additional

mathematical and computational tools to study physical phenomena in materials with

multiple phases. Although these methods can be applied generally, they have been

explained in the setting of specific material phenomena. These include the diffusion-

less phase changes of martensitic transformations, the multiple ordered phases in the

oxidation of titanium, and the morphology of β′ Mg-Y precipitates. The free energy

of each system plays a central role in the framework and methods presented, including

in the derivation of Euler-Lagrange equations of equilibrium, the definition of chemi-

cal potentials used in phase-field dynamics, and the DNN-based energy minimization

algorithms.

The goal to provide a framework incorporating displacements associated with

phase changes along with standard deformations and chemical diffusion was treated

in Chapters II and III. This framework relies on a configurational description of these

displacement fields and their associated free energy. Variational methods are used to

find the equilibrium equations and define chemical potentials. This framework can

be applied in other material system involving displacements or deformations caused

by phase changes.

The need to represent free energy data in a manner that is both accurate and

100



computationally efficient was explored in Chapter IV. Cubic splines are shown to

be effective in capturing rapid fluctuations in free energy data while maintaining low

computation times in comparison to high-order global polynomials.

Algorithms to predict precipitate morphology, based on machine learning methods,

were discussed in Chapter V. The benefit of these methods lies in the potential re-

duction in computational time compared with using phase-field dynamics alone. The

interactions between the DNN-based optimization routine and the phase-field model

play a key role in these algorithms. Due to the influence of precipitate morphology on

material properties, these methods can provide a tool in planning experiments and

designing metal alloys.

This dissertation suggests several avenues for future work, including the following:

1. The framework described in Chapter II described both sharp and diffuse inter-

faces. This framework could potentially be extended to describe the transition

that occurs as coherent interfaces become incoherent.

2. Chapter III presented a model for voiding that incorporated mechanics and

Cahn-Hilliard dynamics to model vacancy condensation and the effects of oxide

stresses. The implementation of this model will require the ideas described in

Section 3.3 for the free energy surface to be represented mathematically. It

may be possible to represent such a surface qualitatively with combinations of

basic global functions. Representation of a more realistic free energy surface,

however, may require more advanced function types. This leads into the next

item.

3. The free energy data used in Chapter IV was dependent on a single variable. The

free energy can, however, depend on many more variables. The mathematical

representation of realistic free energy data as a function of multiple variable is

an area of interest. Potential function types include non-uniform rational basis
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splines (NURBS) and DNN representations.

4. Multiple algorithms combining the DNS-DNN method and phase-field dynamics

were presented in Chapter V. The implementation of these algorithms require

only slight modifications to the computations presented.

5. The implementation of machine learning to directly predict precipitate morphol-

ogy based on a wide range of material parameters would be a valuable tool in

materials’ design. Such an implementation will involve an ongoing series of com-

putations to create a large dataset of material parameters and their associated

precipitate shape. The free energies, elasticity constants, kinetic parameters,

etc. that will be needed for a large set of materials will be supplied by connect-

ing to statistical mechanics and DFT-based codes. These codes will also apply

machine learning wrappers, allowing the prediction of desired parameters for a

given material. The software can be made available, allowing for collaboration

in the creation of data and refinement of the models. The continual addition of

data will require ongoing training of the machine learning methods used.
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APPENDIX A

Variational formulation for the sharp interface

problem

Consider variations on the configurational displacement, U ε := U + εW , and on

the Newtonian displacement, uε := u + εw. The first variation is found using the

functional defined over Ω0. At equilibrium, the first variation of the Gibbs free energy

is zero.
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d

dε
Π[uε;U ε]

∣∣∣∣
ε=0

=
d

dε

{∫
Ω0

ψ(F ε,κε(X0)) detχε dV0

−
∫
Ω0

(κε(X0)) · uε detχε dV0

−
∫

∂ΩS
T0

T 0 · uε dS0

}∣∣∣∣
ε=0

=

{∫
Ω0

[
∂ψ

∂F
:
dF ε

dε
+
∂ψ

∂κ
· dκ

ε

dε

]
detχ dV0

+

∫
Ω0

ψ
d

dε
detχε dV0 −

∫
Ω0

·u d

dε
detχε dV0

−
∫
Ω0

(
·du

ε

dε
+ u · ∂

∂κ
· dκ

ε

dε

)
detχ dV0

−
∫

∂ΩS
T0

T 0 · du
ε

dε
dS0

}∣∣∣∣
ε=0

= 0 (A.1)

Consider the first variation of F , recalling equation (2.7):

dF ε

∂ε
=

(
∂w

∂X0 +
∂W

∂X0

)
χε−1

−
(
1+

∂uε

∂X0 +
∂U ε

∂X0

)
χε−1 ∂W

∂X0χ
ε−1

=

(
∂w

∂X0 +
∂W

∂X0

)
χε−1 − F ε ∂W

∂X0χ
ε−1

=

[
∂w

∂X0 + (1− F ε)
∂W

∂X0

]
χε−1 (A.2)
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Now consider the first variation of detχ, recalling equation (2.3):

d detχε

dε
=
∂ detχε

∂χε
:
dχε

dε

= detχεχε−T :
∂W

∂X0

= 1 :

(
∂W

∂X0χ
ε−1

)
detχε (A.3)

Substituting (A.2) and (A.3) into (A.1) and using the relations ∂ψ/∂F = P ,

dκε/dε = W , and duε/dε = w gives

0 =

∫
Ω0

[
P :

[
∂w

∂X0χ
−1 + (1− F )

∂W

∂X0χ
−1

]
+
∂ψ

∂κ
·W

]
detχ dV0

+

∫
Ω0

(ψ − ·u)1 :

(
∂W

∂X0χ
−1

)
detχ dV0

−
∫
Ω0

(
·w + u · ∂

∂κ
·W

)
detχ dV0 −

∫
∂ΩS

T0

T 0 ·w dS0 (A.4)

Terms are grouped according to w, W , and their gradients.

0 =

∫
Ω0

P :

(
∂w

∂X0χ
−1

)
detχ dV0

−
∫
Ω0

(·w) detχ dV0 −
∫

∂ΩS
T0

T 0 ·w dS0

+

∫
Ω0

(P − (·u)1+ E) :

(
∂W

∂X0χ
−1

)
detχ dV0

+

∫
Ω0

(
∂ψ

∂κ
−
(
∂

∂κ

)T
u

)
·W detχ dV0 (A.5)

Note that E := ψ1 − F TP is the Eshelby stress tensor. The integrals are now
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converted back to the Ω domain.

0 =

∫
Ω

P :
∂w

∂X
dV

−
∫
Ω

(·w) dV −
∫

∂ΩS
T

T ·w dS

+

∫
Ω

(P − (·u)1+ E) :
∂W

∂X
dV

+

∫
Ω

(
∂ψ

∂X
−
(

∂

∂X

)T
u

)
·W dV (A.6)

Integration by parts is now performed, recognizing the potential jump terms at the

interface of phases α and β. The operator ∇· is used here to refer to the divergence

with respect to X. Note that N is the unit normal to the boundary of the body, and

NΓ is the normal to the interface.

0 =

∫
Ω

[∇ · (wTP )−w · (∇ · P+)] dV −
∫

∂ΩS
T

T ·w dS

+

∫
Ω

∇ ·
[
W T (P − (·u)1+ E)

]
dV

−
∫
Ω

W ·

[
∇ · (P − (·u)1+ E)− ∂ψ

∂X
+

(
∂

∂X

)T
u

]
dV

=

∫
∂ΩS

T

w · (PN − T ) dS −
∫
Ω

w · (∇ · P+) dV

+

∫
Γ

[[w · PNΓ]] dS +

∫
Γ

[[W · (P − (·u)1+ E)NΓ]] dS

+

∫
∂ΩM

T

W · [P − (·u)1+ E ]N dS

−
∫
Ω

W ·

[
∇ · (P − (·u)1+ E)− ∂ψ

∂X
+

(
∂

∂X

)T
u

]
dV (A.7)
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By allowing only continuous fields W and w, the equation is simplified further.

0 =

∫
∂ΩS

T

w · (PN − T ) dS −
∫
Ω

w · (∇ · P+) dV

+

∫
Γ

w · [[PNΓ]] dS +

∫
Γ

W · [[ (P − (·u)1+ E)NΓ]] dS

+

∫
∂ΩM

T

W · [P − (·u)1+ E ]N dS

−
∫
Ω

W ·

[
∇ · (P − (·u)1+ E)− ∂ψ

∂X
+

(
∂

∂X

)T
u

]
dV (A.8)

The corresponding strong form for the sharp interface problem consists of the two

following sets of equations. The second set of equations (A.9d - A.9f) has been

simplified under the assumption that the first set of equations (A.9a - A.9c) is satisfied.

PN − T = 0 on ∂ΩS
T (A.9a)

[[PNΓ]] = 0 on Γ (A.9b)

∇ · P+ = 0 in Ω (A.9c)

(E + P − (·u)1)N = 0 on ∂ΩM
T (A.9d)

[[ (E − (·u)1)NΓ]] = 0 on Γ (A.9e)

∇ · E − ∂ψ

∂X
− F T = 0 in Ω (A.9f)

Consider the following simplification of equation (A.9f):

0 = ∇ · (E − (·u)1)−− ∂ψ

∂X
+

(
∂

∂X

)T

u

= ∇ · E −
(

∂

∂X

)T
u−

(
∂u

∂X
+ 1

)T
− ∂ψ

∂X
+

(
∂

∂X

)T

u

= ∇ · E − ∂ψ

∂X
− F T (A.10)
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APPENDIX B

First variation of constant interfacial energy

The mean curvature-driven term in Equation (2.19a) and the additional boundary

condition (2.19b) can be obtained by considering pure curvature-driven motion. The

ojbective is to minimize the interface energy

ΠΓ =

∫
Γ

ψΓ dS (B.1)

with respect to the interface Γ, where ψΓ is a constant. To do so, find Γ such that

the first variation of Π is zero. The interface Γ is defined by the parameterization

r(u, v), where u and v are defined over the domain T . The surface r(u, v) is varied

by εW to allow variations of the interface location. To avoid integration over a

varying surface, a change of variables is performed. Let Γ0 be a surface defined by

the parameterization r0(u, v) where r0, r, and rε are related as follows:

r(u, v) = r0(u, v) +U (r0(u, v)) (B.2)

rε(u, v) = r0(u, v) +U (r0(u, v)) + εW (r0(u, v)) (B.3)
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Then it can be written

∫
Γ

ψΓ dS =

∫
T

ψΓ |r,u × r,v| dudv (B.4)

The first variation is

d

dε
ΠΓε
∣∣
ε=0

=
d

dε


∫
Γε

ψΓ dSε

∣∣∣ε=0

=
d

dε


∫
T

ψΓ
∣∣rε,u × rε,v∣∣ dudv

∣∣∣ε=0

=

∫
T

ψΓ
d
dε

(
rε,u × rε,v

) ∣∣
ε=0
· (r,u × r,v)

|r,u × r,v|
dudv

=

∫
T

ψΓ d
dε

(
rε,u × rε,v

) ∣∣
ε=0
·NΓ dudv (B.5)

From equation (B.3), comes the result

d
dε
rε
∣∣
ε=0

= W (B.6)

Substituting this result gives

d

dε
ΠΓε
∣∣
ε=0

=

∫
T

ψΓ(W ,u × r,v + r,u ×W ,v) ·NΓ dudv

=

∫
T

ψΓ[((∇W )r,u)× r,v − ((∇W )r,v)× r,u] ·NΓ dudv (B.7)
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Continuing in coordinate notation for clarity, this becomes

d

dε
ΠΓε
∣∣
ε=0

=

∫
T

ψΓ∂`(Wj) (r`,urk,v − r`,vrk,u) εijkNΓ
i dudv

=

∫
T

ψΓ∂`(Wj) (δ`mδkn − δ`nδkm) rm,urn,vεijkN
Γ
i dudv

=

∫
T

ψΓ∂`(Wj)εp`kεpmnrm,urn,vεijkN
Γ
i dudv (B.8)

Note that

εpmnrm,urn,v = (r,u × r,v)p

= NΓ
p |ru × rv| (B.9)

Using this result lets us write the integral over Γ.

d

dε
ΠΓε
∣∣
ε=0

=

∫
T

ψΓ∂`(Wj)εp`kεijkN
Γ
i N

Γ
p |ru × rv| dudv

=

∫
Γ

ψΓ∂`(Wj)εp`kεijkN
Γ
i N

Γ
p dS

=

∫
Γ

ψΓ
[
∂`(N

Γ
i Wjεijk)− ∂`(NΓ

i )Wjεijk
]
εp`kN

Γ
p dS

=

∫
Γ

ψΓ[∂`(N
Γ
i Wjεijk)εp`kN

Γ
p − ∂`(NΓ

i )Wj(δipδj` − δi`δjp)NΓ
p ] dS

=

∫
Γ

ψΓ[∂`(N
Γ
i Wjεijk)εp`kN

Γ
p − ∂j(NΓ

i )NΓ
i Wj + ∂i(N

Γ
i )WjN

Γ
j ] dS (B.10)

The term ∂j(N
Γ
i )NΓ

i reduces to zero since NΓ
i N

Γ
i = 1. The result can be expressed

in direct notation.
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d

dε
ΠΓε
∣∣
ε=0

=

∫
Γ

ψΓ
[
∇×

(
NΓ ×W

)
+
(
∇ ·NΓ

)
W
]
·NΓ dS (B.11)

Stoke’s theorem is applied to the first term and use ∇ ·NΓ = −2H , where H is the

mean curvature.

d

dε
ΠΓε
∣∣
ε=0

=

∫
Γ

−2ψΓH
(
W ·NΓ

)
dS +

∮
∂Γ

ψΓ(NΓ ×W ) · dr (B.12)

At equilibrium, the first variation of the total energy is zero, giving the following

result.

0 =

∫
Γ

−2ψΓH
(
W ·NΓ

)
dS +

∮
∂Γ

ψΓ(NΓ ×W ) · dr (B.13)

If there is a full Dirichlet condition on the boundary of Γ then W = 0 on ∂Γ and

the line integral is equal to zero. This gives the result

0 =

∫
Γ

−2ψΓH
(
W ·NΓ

)
dS (B.14)

The other possible condition is to allow the boundary of the interface Γ to move

within the boundary ∂Ω. This corresponds to U ·N = W ·N = 0, where N is the

outward unit normal to ∂Ω. A boundary with this condition is designated as ∂ΓT . On

such boundaries, W can be expressed using the orthonormal basis {N ,T Γ,N×T Γ},

where T Γ is the unit tangent vector to ∂Γ. The result is

W = W TT Γ +WN×T (N × T Γ
)

(B.15)
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which satisfies the condition W · N = 0. Substitute this expression into the line

integral:

∮
∂Γ

ψΓ(NΓ ×W ) · dr =

∮
∂Γ

ψΓ
[
NΓ ×

[
W TT Γ +WN×T (N × T Γ

)]]
· dr (B.16)

Since T Γ and dr have the same orientation, (NΓ × T Γ) · dr = 0. The identity

a× (b× c) = b(a · c)− c(a · b) is used.

∮
∂Γ

ψΓ(NΓ ×W ) · dr =

∮
∂Γ

ψΓWN×T [N (NΓ · T Γ)− T Γ(NΓ ·N )
]
· dr

= −
∮
∂Γ

ψΓWN×T (NΓ ·N )T Γ · dr (B.17)

since NΓ and T Γ are orthogonal. Finally, the relation WN×T = W ·
(
N × T Γ

)
is

used and substitute into equation (B.13) to get the complete condition for equilibrium

with respect to interfacial energy.

0 =

∫
Γ

−2ψΓH
(
W ·NΓ

)
dS −

∮
∂Γ

ψΓW ·
(
N × T Γ

)
(NΓ ·N )T Γ · dr (B.18)

Note that T Γ · dr and N × T Γ are always nonzero, so the following strong form is

obtained:

−2ψΓH = 0 in Γ (B.19a)

ψΓNΓ ·N = 0 on ∂ΓT (B.19b)

If the interfacial energy is nonzero, this requires zero mean curvature within the inter-

face and that the interface is perpendicular to the boundary of the body where they

meet. If the interfacial energy ψΓ provides only one contribution to the driving force

on Γ, as in Section 2.1.2, then the left hand-side of Equation (B.19a) is the corre-
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sponding contribution to Equation (2.19a), while (B.19b) is the additional boundary

condition (2.19b).

114



APPENDIX C

Variational formulation for the diffuse interface

problem

Let U ε := U + εW and ūε := ū+ εw̄. Then, recalling equation 2.28, equilibrium

requires the following:

d

dε
Π[ūε;U ε]

∣∣∣∣
ε=0

=
d

dε

{∫
Ω0

ψM(X0,χε,∇0χε) dV0

+

∫
Ω0

ψS(Xε,F ε,χε) detχε dV0

−
∫
Ω0

f 0 · ūε dV0 −
∫

∂ΩS
T0

T 0 · ūε dS0

}∣∣∣∣
ε=0

= 0 (C.1)
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Then

0 =

∫
Ω0

(
∂ψM

∂χ
:

dχε

dε

∣∣∣∣
ε=0

+
∂ψM

∂∇0χ

...
d∇0χε

dε

∣∣∣∣
ε=0

)
dV0

+

∫
Ω0

(
∂ψS

∂X
· dX

ε

dε

∣∣∣∣
ε=0

+
∂ψS

∂F
:
dF ε

dε

∣∣∣∣
ε=0

)
detχ dV0

+

∫
Ω0

(
∂ψS

∂χ
:
dχε

dε

∣∣∣∣
ε=0

detχ+ ψSd detχε

dε

∣∣∣∣
ε=0

)
dV0

−
∫
Ω0

f 0 · w̄ dV0 −
∫

∂ΩS
T0

T 0 · w̄ dS0 (C.2)

The earlier results concerning the first variations of F and detχ are applied. The

following terms are also defined B := ∂ψM/∂∇0χ and Jχ := detχ. The result is

0 =

∫
Ω0

(
∂ψM

∂χ
: ∇0W +B

...∇0∇0W

)
dV0

+

∫
Ω0

(
∂ψS

∂X
·W + P :

[(
∇0w̄ − F∇0W

)
χ−1

])
Jχ dV0

+

∫
Ω0

[
∂ψS

∂χ
: ∇0W + ψS

1 :
(
∇0Wχ−1

)]
Jχ dV0

−
∫
Ω0

f 0 · w̄ dV0 −
∫

∂ΩS
T0

T 0 · w̄ dS0 (C.3)

Terms are grouped by w̄, W , and their gradients and use the Eshelby stress

tensor, E := ψS
1− F TP . The resulting weak form is as follows:

0 =

∫
Ω0

B
...∇0∇0W dV0 +

∫
Ω0

Jχ
∂ψS

∂X
·W dV0

+

∫
Ω0

[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
: ∇0W dV0

+

∫
Ω0

Jχ
(
Pχ−T

)
: ∇0w̄ dV0 −

∫
Ω0

f 0 · w̄ dV0 −
∫

∂ΩS
T0

T 0 · w̄ dS0 (C.4)
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Applying integration by parts gives the following result.

0 =

∫
Ω0

B
...∇0∇0W dV0

+

∫
∂ΩM

T0

W ·
[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
N 0 dS0

−
∫
Ω0

W ·
(
∇0 ·

[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
− Jχ

∂ψS

∂X

)
dV0

+

∫
∂ΩS

T0

w̄ ·
(
JχPχ

−TN 0 − T 0
)

dS0

−
∫
Ω0

w̄ ·
[
∇0 ·

(
JχPχ

−T )+ f 0
]

dV0 (C.5)

Deriving the strong form from this weak form involves several additional terms

due to the dependence on ∇0χ, as described in (author?) [85]. The normal and

surface gradient operators, ∇n and ∇s, are used, where

∇nψ = ∇0ψ ·N 0 (C.6)

∇sψ = ∇0ψ − (∇nψ)N 0 (C.7)

Also, b = −∇sN 0 = bT is the second fundamental form of the smooth parts of

the boundary, ∂Ω0 and NE = Ξ ×N 0, where Ξ is the unit tangent to the smooth

curve C0 that forms an edge between subsets ∂Ω+
0 and ∂Ω−0 of the smooth boundary

surfaces ∂Ω0. If N C
+

is the outward unit normal to C0 from ∂Ω+
0 and N C

−
is the

outward unit normal to C0 from ∂Ω−0 , then the expression [[B :
(
N C ⊗N 0

)
]]C := B :
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(
N C

+ ⊗N 0
)

+B :
(
N C

− ⊗N 0
)

is defined. The following can then be written:

∫
Ω0

B
...∇0∇0W dV0 =

∫
Ω0

W · ∇0∇0B dV0 −
∫
∂Ω0

W ·C dS0

+

∫
C0

W · [[B : (N C ⊗N 0]]C dL0

+

∫
∂Ω0

∇nW ·B :
(
N 0 ⊗N 0

)
dS0 (C.8)

where, using coordinate notation for clarity,

CI = ∇nBIγζN
0
ζN

0
γ + 2∇s

γBIγζN
0
ζ

+BIγζ∇s
γN

0
ζ − (bξξN

0
γN

0
ζ − bγζ)BIγζ (C.9)

Applying this result to equation C.5 gives the following:

0 =

∫
Ω0

W · ∇0∇0B dV0 +

∫
C0

W · [[B :
(
N C ⊗N 0

)
]]C dL0

−
∫

∂ΩM
T0

W ·C dS0 +

∫
∂ΩM

T0

∇nW ·B :
(
N 0 ⊗N 0

)
dS0

+

∫
∂ΩM

T0

W ·
[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
N 0 dS0

−
∫
Ω0

W ·
(
∇0 ·

[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
− Jχ

∂ψS

∂X

)
dV0

+

∫
∂ΩS

T0

w̄ ·
(
JχPχ

−TN 0 − T 0
)

dS0

−
∫
Ω0

w̄ ·
[
∇0 ·

(
JχPχ

−T )+ f 0
]

dV0 (C.10)

Applying the appropriate integration by parts and standard variational arguments
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leads to the following strong form.

JχPχ
−TN 0 − T 0 = 0 on ∂ΩM

T0
(C.11a)

∇0 ·
(
JχPχ

−T )+ f 0 = 0 in Ω0 (C.11b)

[[B :
(
N C ⊗N 0

)
]]C = 0 on CM

T0
(C.11c)

B :
(
N 0 ⊗N 0

)
= 0 on ∂ΩS

T0
(C.11d)

∂ψM

∂χ
N 0 + Jχ

(
Eχ−T +

∂ψS

∂χ

)
N 0 −C = 0 on ∂ΩS

T0
(C.11e)

∇0 ·
[
∂ψM

∂χ
+ Jχ

(
Eχ−T +

∂ψS

∂χ

)]
− Jχ

∂ψS

∂X
−∇0∇0B = 0 in Ω0 (C.11f)

Consider the simplification of equation C.11f, using coordinate notation for clarity:

0 =

[
∂ψM

∂χIα
+ Jχ

(
EIJχ−1

αJ +
∂ψS

∂χIα

)]
,α

− Jχ
∂ψS

∂XI

−BIαβ,αβ

=

(
∂ψM

∂χIα

)
,α

+
(
Jχψ

Sχ−1
αI

)
,α
−
(
JχFiIPiJχ

−1
αJ

)
,α

+

(
Jχ

∂ψS

∂χIα

)
,α

− Jχ
∂ψS

∂XI

−BIαβ,αβ

=

(
∂ψM

∂χIα

)
,α

+ Jχ

(
∂ψS

∂X0
α

+
∂ψS

∂FiJ
FiJ,α

)
χ−1
αI + ψS

(
Jχχ

−1
αI

)
,α

− FiI,α
(
JχPiJχ

−1
αJ

)
− FiI

(
JχPiJχ

−1
αJ

)
,α

+

(
Jχ

∂ψS

∂χIα

)
,α

− Jχ
∂ψS

∂XI

−BIαβ,αβ

=

(
∂ψM

∂χIα

)
,α

+ JχPiJFiJ,I + ψS
(
Jχχ

−1
αI

)
,α

− JχFiI,JPiJ − FiI
(
JχPiJχ

−1
Iα

)
,α

+

(
Jχ

∂ψS

∂χIα

)
,α

−BIαβ,αβ (C.12)
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Consider the term
(
Jχχ

−1
αI

)
,α

and use the relation χJβ,α = χJα,β

(
Jχχ

−1
αI

)
,α

=
∂
(
Jχχ

−1
αI

)
∂χJβ

χJβ,α

=

(
∂Jχ
∂χJβ

χ−1
αI + Jχ

∂χ−1
αI

∂χJβ

)
χJβ,α

=
(
Jχχ

−1
βJχ

−1
αI − Jχχ

−1
αJχ

−1
βI

)
χJβ,α

= 0 (C.13)

Substitute this result, the relation FiI,J = FiJ,I , and equation C.11b into equation

C.12. This gives

(
∂ψM

∂χIα
+ Jχ

∂ψS

∂χIα

)
,α

+ FiIf
0
i −BIαβ,αβ = 0 (C.14)

or, in direct notation,

∇0 ·
(
∂ψM

∂χ
+ Jχ

∂ψS

∂χ

)
+ F Tf 0 −∇0∇0B = 0 (C.15)
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