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ABSTRACT 

Understanding dynamic phenomena in systems powered by thin-film batteries can be 

valuable for proper system modeling, design, and control. Some scenarios, such as repeated, fast 

dynamic loading, may create phenomena at multiple timescales. This could, for example, arise as 

a consequence of driving common microelectromechanical (MEMS) actuators such as 

piezoelectric or electrostatic actuators. One application area for these actuators is microrobotics, 

which is used as a motivating topic throughout this thesis. 

This thesis first looks experimentally at switched capacitive loads on thin-film batteries, 

reporting phenomena such as switching and leakage losses and parasitic capacitance. This data is 

used in development and implementation of calibration and validation of various modeling 

approaches. In this modeling, the fast nature of the switching dynamics and the slow nature of 

the full battery discharge creates a type of multiple timescales problem. To address this, a state 

projection approach is developed and presented. The initial approach uses a perturbing method to 

develop a transition matrix to approximate future system states based on past and current 

changes. This approach captures a full battery discharge with an approximate numerical cost of 

6.3% compared to fully modeling all loading event. The next approach uses direct simulation 

information to reduce overhead in development of the transition matrix reducing numerical cost 

to 0.46% for the scenario presented. An error analysis was performed to understand errors in the 

projection process. This error analysis was used to develop an updating approach that increases 

projection fidelity, further reducing numerical expense to 0.14%. This reduction in numerical 

cost is part of allowing this approach to be used for design purposes. 

Finally, a set of case studies are presented highlighting two topics related to this modeling 

approach. First, existence of a tradeoff between depth of detail needed in modeling and the 

severity of the loading applied is presented. Second, example analysis is presented, 

demonstrating the potential of this modeling approach as a design tool. It is anticipated that 

through greater understanding of and an increased ability to model these types of battery loading 

situations, design of microsystems operating in this fashion can be aided. 
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CHAPTER 1 INTRODUCTION 

Energy and power are key issues in society, with importance from policy to research. There 

is significant effort going into research on energy production, storage, and consumption due to 

their ever-increasing impact in our lives. One specific area that is of critical interest is that of 

battery technologies [1]. Batteries are key components in a variety of systems, from small 

microrobotic applications to large power grid systems. Understanding the specifics of battery use 

in a given system is important in the design, control, and application of both the battery itself and 

the system in which it is used. Additionally, this understanding of the battery use, or specific 

loading of the battery in a given system, can aid in proper selection, implementation and 

adaptation of required models of the battery. The selection of the battery modeling approach is 

dependent on the depth of precision needed, the needed model outputs, and the specifics of the 

loading scenario. For example it is possible for the combination of the battery and associated 

system to have characteristic changes at vastly different timescales, and consideration may need 

to be made as to how to handle these. Another potential issue in properly analyzing these types 

of scenarios is in understanding the inherent error in the modeling for better accuracy or 

computational efficiency. Ultimately a properly developed model of the battery and associated 

system can be used to inform design and implementation. 

This thesis looks at the modeling of a battery subject to dynamic phenomena with very 

different characteristic timescales. A primary focus here are thin-film batteries as might be used 

in microelectromechanical system (MEMS) applications. This introductory chapter will discuss 

briefly the array of existing battery types, with explanation of batteries particularly suited for 

MEMS applications. A basic presentation of battery physics will be given. Since the dynamic 

response of a battery is coupled with the dynamics of the load applied, common MEMS 

actuation loads will be discussed. 

Of particular interest to this work are issues related to modeling of timescale disparities in 

MEMS battery systems, therefore an explanation of timescale issues with modeling will be 

presented. Evidence of these various aspects come together in the driving application behind this 
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work which is a MEMS fabricated microrobot application, and a review of this system will be 

given. The use of term “multiple timescales” throughout this thesis refers to disparate 

characteristic timescales of given dynamic phenomena within a system, for example, fast 

dynamic responses due to e.g. switching loads, and slow changes in accumulated lithium as the 

battery discharges from repeatedly switched loads. Lastly, an outline of the overall thesis with a 

brief description of each chapter, will be presented with a list of contributions of this work. 

1.1 Battery Varieties 

Many dynamical systems use batteries as a form of energy storage, requiring a broad variety 

of batteries where the specifics of the application guide the battery selection and implementation. 

For example, battery form factors range from small coin cell batteries (e.g. those in a hearing 

aid), to prismatic batteries (e.g. cell phone batteries), to cylindrical (e.g. a traditional AA 

battery), to other forms or configurations (e.g. car starter batteries and batteries for electric 

vehicles). Additionally there are a variety of different chemistries and architectures [1].  

Two research thrusts that have seen a significant amount of attention in regards to battery 

research over the last several years are the automotive industry and consumer electronics 

industry. These are driven by several different battery configurations and chemistries. In addition 

to automotive and consumer electronics, many other applications also use battery power. One 

example of another area reliant largely on battery power is autonomous microelectromechanical 

systems (MEMS), having potential application in devices such as medical implants [2] and 

microrobotics [3-5]. However, battery research in this area seems to have received less attention. 

A discussion of potential differences in implementation in MEMS applications as opposed to 

larger devices will be helpful. 

Due to the nature of MEMS systems and fabrication, battery implementation has different 

constraints than larger systems, as such, for MEMS applications there are advantages to thin-film 

and/or solid state batteries. Thin-film batteries are batteries that have active layers deposited as 

thin-films. Although, other solid-state battery configurations may also be advantageous in 

MEMS (such as thick film), and may benefit equally from the techniques described here, they 

are not addressed directly in this work. These batteries are typically configured with a solid thin-

film anode, cathode and electrolyte. This is in contrast to the typical liquid electrolyte used in 

conventional batteries. This results in several advantages for a MEMS setting with respect to 

sealing, ease of miniaturization, safety, and battery life [6, 7]. One drawback of the solid 
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electrolyte, however, is that the ionic conductivity is typically lower than that of traditional liquid 

electrolytes, though this is mitigated by the reduced thickness of the electrolyte layer [7]. 

Additionally, due to the reduced risk of shorting across a solid electrolyte, metallic lithium can 

be used more safely as the negative electrode rather than a carbon based electrode. Several works 

have looked at the fabrication and materials of thin-film batteries, for example [6, 8]. This thesis 

focuses on identifying and modeling certain effects in thin-film lithium batteries that are relevant 

to MEMS devices, as will be explained throughout the text. 

1.2 Battery Physics and Modeling 

A complete description of the fundamental electrochemical equations for batteries is beyond 

this work, but a basic introduction into the key aspects in a thin-film battery configuration will be 

helpful. A typical thin-film battery is composed of three main components: a positive electrode 

(the cathode during discharge), a negative electrode (the anode during discharge), and the 

electrolyte. For illustrative purposes the discharge of a typical thin-film lithium battery will be 

presented. 

On discharge the lithium ions are stored in the negative electrode (anode) and diffuse through 

the electrolyte into the positive electrode (cathode). The potential changes in the battery then 

occur in five main locations: the electrolyte/electrode interfaces, across the electrolyte, and in the 

electrodes themselves. In addition to the potential drops in the battery, lithium concentration 

profiles are also of interest. Determining the modeling approaches of these physics and the 

proper assumptions will depend on the battery chemistry and the battery loading. 

Due to the broad nature of battery research, a variety of different battery-modeling 

approaches have been developed. Two of the most common modeling approaches, equivalent 

circuit and electrochemical, are discussed here. 

Equivalent circuit models are simplified representations of the physics of the battery system 

where these physics are approximated by various electrical circuit components. For example, a 

common simple example is the Randles Model [9] as seen in Figure 1.1. The simplicity and ease 

of solving makes equivalent circuit models a very common and useful approach in many 

applications [10-12]. However, as Li et al. has pointed out, one major disadvantage with these 

types of models is that “it is not easy to directly relate internal physical properties of batteries to 

model prediction.” [13] 
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Figure 1.1 Randles model, a simple equivalent circuit representation of a battery (image in public domain). 

Electrochemical models are based on the basics physics of the electrochemistry of the system 

[14-16]. These models overcome the challenge of relating to physical parameters seen in 

equivalent circuit models; however, this comes at the cost of additional complexity. To reduce 

the complexity of these models many different simplifications have been proposed in a variety of 

different models, for example: constant temperature, constant electrolyte conductivity, negligible 

voltage drop in the negative electrode[14], negligible voltage drop at the negative electrode 

electrolyte interface [15], single particle approximation for porous electrodes [17], and many 

others. 

1.3 MEMS Loading 

In addition to the battery design, loading conditions applied to the battery are critical in 

determining battery behavior. Many studies have looked at effects of batteries subjected to 

constant current [18], pulsed [19], resistive [20], and circuit specific loads [21]. There have also 

been results showing impacts on battery use due to the loading condition [20, 21], with some 

disagreement in the literature [22]. Although these works may look at different scenarios, they 

highlight the importance of understanding loading of battery systems. 

Two key aspects of the battery loading that can be used for categorization are frequency and 

electrical circuit equivalence of the load. In MEMS, many actuation types have maximum 

frequencies in the frequency range (1Hz – 10kHz), see Figure 1.2 modified from [23]. The 

frequencies shown are approximations of maximum frequencies for the various actuation types, 

and highlight that this area constitutes a significant range of MEMS actuation. This mid-

frequency range falls between low speed mechanical devices that would change loading in the 

few Hz or less, and power systems, that typically operate at high frequencies. 

In addition to frequency of actuation, there are different characteristic physics for the 

different types of loads. For example, some actuation is current or power driven, such as thermal 

actuation, or magnetic actuation, whereas others are charge driven, such as, electrostatic 

actuation and piezoelectric actuation. This charge-driven or capacitive nature of the loading seen 
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in some MEMS actuators is rarely the dominant loading condition at other scales. The 

intersection of mid-frequency loading and capacitive or charge driven actuation is characteristic 

of a significant fraction of MEMS devices as highlighted in Figure 1.2. This type of loading is a 

type of periodic loading. 

 

Figure 1.2 Maximum frequency of various MEMS actuation types. Blue highlighted region represents the mid-frequency 

range common in MEMS actuation. Actuation types that create capacitive loads are highlighted in red. Modified and 

used with permission from [23]. 

Fast periodic loading for batteries has been studied in relation to wireless sensing nodes and 

other circuits, but these are primarily experimental works with coin cell batteries, rather than 

thin-film batteries. One exception is work by Salloux et al. [24] driving a piezo stack off a thick 

film polymer battery. Their work focused on experimentally verifying the feasibility of using 

their battery to drive a piezoelectric stack. This is one example of a low voltage battery (12 and 6 

V batteries) being used in a piezoelectric driving configuration. However, the battery used is too 

large for micro applications, but was suggested for use in sensing nodes. Additionally, only 
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limited experimental data is looked at, and understanding of the implications on the battery 

caused by the loading is not addressed. 

1.4 Timescales and Model Reduction 

When combining the internal dynamics of a battery discharge with external dynamics of the 

load, dynamics in different timescales can be present. Throughout this thesis we refer to multiple 

timescale dynamics, to be clear we are discussing dynamic phenomena that have characteristic 

features at different timescales (e.g. μs vs. hours). 

In the context of the current work we are particularly interested in accumulated effects from 

fast dynamic events over long time periods. As discussed, thin-film batteries provide a potential 

power source for MEMS devices, which commonly have actuators that operate with a capacitive 

behavior. The timescale of the dynamics of, for example, piezoelectric MEMS actuation can be 

in the microsecond range with the individual loading events potentially having significant 

dynamic effects, yet the battery discharge can be on the order of hours. These overall 

electrochemical aspects of the battery over its full discharge are a slow accumulation of these 

individual dynamic events, with electrochemical dynamics potentially varying over many orders 

of magnitude longer than the individual events.  

The bulk of this dissertation examines methods for addressing these types of systems. While 

the bridging of timescales has been done in various settings [25-29], certain aspects of the 

dynamics studied here make direct application of some traditional multirate approaches unclear. 

In particular, the following aspects increase the challenge of modeling this type of battery/load 

system: 

1) A Neumann boundary condition exists in the positive electrode 

2) Incremental changes by the fast dynamics drive the slow dynamics 

3) Variable coefficients are present (Diffusion coefficient is dependent on concentration) 

4) Fast dynamic loads may, in some scenarios, not die out before the next occurs depending 

on loading conditions. 

It may be possible to still apply other multiple timescale methods to the problem studied here, 

but we have selected a transition matrix approach that will be describe throughout the work. 

The issue of multirate dynamics can be particularly difficult when coupled with complex 

modeling of the battery itself. This can be aided by using different model reduction techniques. 
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Several reduction methods for battery modeling have been reported, but a few example may be 

instructive. Santhanagopalan looked at two simplified models for porous electrode batteries to 

achieve model reduction for models over 1C discharge [30]. Lower current rates were said to be 

able to be handled with simple models. Kim and Qiao use a hybrid model to take advantage of 

the simplicity of an electrical circuit model but include some of the more complex dynamics of 

the battery in a variable voltage source [31]. Gao et al. uses physical data to set up a variable 

equivalent circuit [32]. Afshar et al. use a mathematical means to converts algebraic differential 

equations to a set of differential equations in part through linearization of the constraint 

equations [33]. In this thesis we are primarily looking at thin-film batteries, and begin with 

including reduction methods outlined by Fabre et al. to use a 1D battery model with constant 

conductivity in the electrolyte [14] and other approximations. 

1.5 MEMS Microrobot Application 

One example of a MEMS system that lies at the intersection of the topics covered by this 

work is piezoelectrically actuated walking microrobots such as those in [34-37]. These mm-sized 

robots are fabricated using microfabrication techniques. Thin-film piezoelectric actuation is used 

to provide motion that mimics natural motion in insects. This example will be used throughout 

the thesis as a basis for loading. The actuation is driven in the Hz-kHz range. One challenge with 

battery power in this application is that using voltages around 12 volts requires a voltage 

conversion. Understanding the implications on the power supply of using batteries in series or 

other voltage conversion circuitry is valuable in making critical design decisions. The design 

decisions can include tradeoff between energy and weight which can be challenging. For 

example, Zhang et al. states that this is still an active area of research in their flying insect-scale 

robot [38], highlighting the value of understanding the effects loading conditions have on battery 

use in microrobotic applications. 

Study of the effects of loading in microrobotic applications typically focuses on the circuit 

side of the load e.g. in the flying microrobot mentioned above [39]. The simple approach 

reported for addressing battery effects due to loading in that same system is to use a degrading 

factor for higher currents to try to capture the losses that occur as stated by Karpelson et. al [40]. 

It was the aim of this thesis to present more rigorous approaches for analyzing battery effects in 

this area to aid in design and future research.  
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1.6 Thesis Overview and Contributions 

This work will look at the intersection of various features that are important players in 

MEMS power systems (battery type, load frequency, load circuitry, and modeling approach). In 

particular this work looks at modeling and simulation of thin-film batteries subjected to repeated 

fast-dynamic loads, particularly capacitive loads. 

This work is composed of four main sections: experimental observations, electrochemical 

modeling including state projection approaches to address desperate timescales, projection 

approach adaptation and error analysis for numerical efficiency, and demonstration/exploration 

of the modeling approach in various scenarios. Each of these sections is in a stand-alone paper 

form and several are published or currently submitted which will be noted in each chapter. The 

papers are presented verbatim including the abstract for ease of access of the various parts. 

Because of this, some information will be redundant, but should give easier accessibility to those 

looking in individual chapters. 

A brief description of each of these sections will be provided here, along with the associated 

contributions. 

1.6.1 Chapter 2: Experimental Phenomena  

The physics of such a complex system as a battery are difficult to fully characterize let alone 

reproduce analytically. Because of this, modeling approaches require simplifications as 

mentioned previously. We are interested in the effects caused by cyclic capacitive loading on 

thin-film batteries. The cyclic loading is often done through some sort of switching mechanism. 

The dynamics of the switching and the load then create a combined effect on the battery. In order 

to understand the various aspects of the switching and load dynamics, in connection with the 

battery dynamics, a suite of experimental tests were run. Through these tests it was possible to 

determine information for guiding the modeling decisions required. This testing also provided 

additional insight into certain aspects of the system that were not previously considered, e.g. 

parasitic capacitance within the order of magnitude of some of the loads was detected in the 

battery system. This work was publish as [41]. The battery used for the data gathered here and 

used throughout the thesis was a Cymbet
TM

 [46] 50μAh battery that, although has a chemistry 

that would likely be applicable for autonomous MEMS, due to packaging and form factor, may 

not be adequate for all applications, but is useful for demonstration here. 
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1.6.2 Chapter 3: Model Implementation 

With a deeper understanding of the physical phenomena that ought to be incorporated into 

our modeling, we built on existing modeling techniques to capture these effects. In part, in order 

to be able to better correlate our model with physical parameters of our system, to allow for 

design specifications for potential future fabrication, we selected an electrochemical modeling 

approach. Other approaches could be used, and may still be advantageous in future simplification 

and applications. However, as a baseline model we used an electrochemical model. 

Our model was based heavily on that presented by Fabre et al. [14] which is similar to the 

works by Danilov et al. [15] and Thomas et al. [16]. Our model incorporated various 

experimentally observed phenomena. Along with development of the model, a parameter 

calibration approach was developed and implemented. 

One key aspect in modeling this system is the differences in timescale. The dynamics of the 

switching, battery recovery and capacitor charging can be on the microsecond scale, however, 

the full discharge of the battery can be on the hour timescale. This disparity of timescales needed 

to be addressed in order to make modeling of the full battery discharge realistic. A projection 

style approach was implemented that used a transition matrix to project the states of the battery 

over several cycles of the load charge/discharge. This work was publish as [42]. 

1.6.3 Chapter 4: Error Analysis and Model Refinement 

The process for creating the transition matrix proved to be numerically expensive when 

performed on limited processor hardware. To improve simulation speed a different transition 

matrix approach was developed that obtained the transition matrix in one step instead of one step 

per state (distributed over processing cores if available). This proved to provide a significant 

decrease in numerical expense. The error of the approach was analyzed and provided key insight 

in implementation of error reduction by targeted updating of the transition explored. This 

allowed detailed understanding of sources of error during state projection. This work is 

submitted and under review [43]. 

1.6.4 Chapter 5: Model Application Case Studies 

The final portion of this thesis is a collection of case studies that demonstrate the application 

of these modeling approaches. There are four main case studies that are presented. First, the 

modeling for the prior chapters will be compared with a simplistic battery model. This model 
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will incorporate the principles of state projection but will use only the capacity transfered from 

the battery as the state. This removes the need to calculate the detailed internal electrochemistry 

of the battery. For the mild loads that have been used it can be seen that this simplistic battery 

model is adequate. The second case study will look at a higher average current load, and here we 

will see that the simplistic battery model begins to deviate significantly from experimental data, 

thus demonstrating the value of the full model over a more simplistic electrochemical model. 

The final two scenarios will explore battery modeling in alternative system configurations. These 

include a scenario with batteries in series and a boost converter circuit. Through these case 

studies we are able to highlight the aspects of these techniques reported in this work in additional 

circuit and battery configurations. 

1.6.5 Contributions 

Among the main contributions of this work are the following: 

1) Experimentally observed characteristics of switching loads on thin-film batteries, 

2) Augmented existing thin-film battery models to explore fast cyclic dynamic loads on 

thin-film batteries, 

3) Addressed modeling of dynamics in these systems with disparate timescales through a 

transition matrix approach, 

4) Addressed numerical cost in transition matrix approach by changing system state 

definitions, 

5) Performed error analysis on projection approach that enabled targeted error reduction, 

6) Provided several scenarios to demonstrate the use of these techniques, and their relation 

to autonomous MEMS systems. 
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CHAPTER 2 EXPERIMENTAL DYNAMICS AND CHARACTERISTICS
1
 

2.1 Abstract 

Piezoelectric actuation has potential advantages in autonomous microsystems due to 

relatively high efficiency and low voltage requirements when deposited as a thin-film.  However, 

the power available to autonomous microsystems may have many restrictions due to electrical 

loading, weight, and size requirements. Modeling of the power sources and loads can be 

beneficial for design and implementation; however, understanding the various associated 

phenomena is important for a valid model. This work examines mid-frequency cycled capacitive 

loading of thin film batteries to simulate application to autonomous micro-robots. Commercial 

50μAh LiCoO2/Lipon thin film batteries were cycled over a frequency range between 100Hz-

10kHz and at two levels of capacitance (1, 10nF). Detailed data was acquired of the dynamics of 

the battery and capacitor voltages during switching. The significance of understanding losses 

from switching and leakage at the micro scale is clearly shown.  The impact of similarity in 

timescales for various dynamics is discussed. Additionally, indications of parasitic capacitance in 

the battery system are seen and discussed. An example implementation of the findings in a 

switching model is presented as well as a simple design application example. 

2.2 Introduction 

Power-sourcing for microscale autonomous applications presents certain challenges due to 

size, weight, and fabrication constraints. One such application is that of walking micro-robotics 

powered by piezoelectric actuation [37]. These actuators are operated at frequencies in the range 

of tens to hundreds of Hz [37, 44]. Switching circuitry is needed, and additionally voltage 

conversion may also be needed which would operate at much higher frequencies [45]. If one 

                                                 
1 © 2016 IEEE. Reprinted, with permission, from Teichert K. and Oldham K., Dynamics and Characteristics of Thin Film Batteries Cycled 

Over Capacitive Load, in proceedings IEEE International Conference on Advanced Intelligent Mechatronics (AIM) July, 2016. Minor edits are 

added for sake of this dissertation. 
In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of the University of 

Michigan's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted 

material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to 
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. 
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were to drive the actuators directly from the power source, the electrical load of thin-film 

piezoelectric actuators can be approximated as a simple capacitor. The combination of the cyclic 

nature of this application with the very dynamic load profile of a charging capacitor requires a 

more thorough look at the power source and the effects of such dynamic loading on an already 

design-constrained component. 

Various types of micro-batteries are discussed in the literature with a variety of different 

chemistries [6, 8]. One that is commercially available is LiCoO2 [46]. Although the exact size 

and form is not the same as would be in a walking robot, these batteries offer a platform to 

explore loading effects on thin film batteries under cyclic capacitive loading conditions. Work 

has been done by others indicating that loading profiles of coin cells affects battery useful 

capacity [20, 47]. There has been some debate over whether pulsed loads are advantageous or 

not [19]. However, information about a pure cyclic capacitive load seems lacking in the 

literature. 

This paper presents experimental results of thin film batteries under cyclic capacitive loading 

to simulate walking micro-robotic actuation. The primary reason for this work was to see if we 

could detect any effects on battery capacity due to switching speed and load characteristics under 

these conditions. Experiments were performed on thin film LiCoO2 batteries. For simplicity, no 

voltage conversion/boost circuitry was used, and potentials were kept at a those supplied by a 

single battery. Insights and conclusions from this study can be used to add to the foundation for 

future design of robot gait, control, and circuitry. 

In addition, these results highlight the timescales of battery, switching, and actuator 

dynamics. In this application, timescales of these three can be very similar causing critical 

interplay between their dynamics. Understanding this characteristic can aid in proper 

implementation of things like model simplifications or refinements. For example, it may not be 

reasonable to assume an ideal power source when the timescale of the changes in the battery 

voltage during switching are similar to the time it takes for switching to occur or for the 

capacitor to show significant charging. 

This testing also demonstrates potential losses that this microscale system can encounter. The 

purpose of this paper was not to determine a better switching approach, or present lower leakage 

current circuits, but rather by using a simple circuit and switching approach to assess the effect 

of capacitive load switching on the battery. The losses that are seen and reported here only 
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highlight the importance of addressing loses especially in microscale switching circuit as 

mentioned by [37, 44]. Additionally, by using a variety of different loading conditions it is 

possible to understand the potential tradeoffs that occur in applications with switched capacitive 

loads. Finally, an example implementation of these findings into a switching model is presented. 

2.3 Experimental 

2.3.1 Setup 

There were three main components of the experimental setup: the battery, circuitry, and data 

acquisition. Cymbet
TM

 50μAh rechargeable batteries were selected for these tests (batteries were 

tested in a packaged configuration, however, only a bare die is currently available) [46]. 

Although exact specifications are not all reported, the information given in the safety 

specifications indicates that these batteries are a thin-film LiCoO2/LiPON  likely in a “Li-Free” 

configuration where the lithium anode is plated on the current collector during the initial 

charging [48]. These batteries offered a viable chemistry for future use in walking micro-robotics 

even if the form factor is currently not suitable. Five individual batteries were used in these tests, 

with multiple tests performed on each battery (not all tests reported here). 

The switching circuitry was implemented on a PCB and included a simple h-bridge switching 

configuration, as shown in Figure 2.1. 

 

Figure 2.1 Switching circuit schematic. Switching performed by an H-bridge with 4 MOSFETS (2 PMOS, 2 NMOS). The 

load was 1 or 10 nF capacitor or 10k, 100k or 1M Ω resistor. Circuit switching design based on [11]. 

The battery was mounted on the PCB using a simple socket for easy replacement. The PCB was 

designed for easy changing of load components (capacitor/resistor). MOSFETs were selected for 

their response times and for their low capacitance (ON Semiconductor PMOS Part# 

NTR1P02T1G: 165pF input capacitance; NMOS Part MGSF1N02LT1G: 125pF input 
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capacitance). A square wave was used to drive the switching and was supplied to the circuit by a 

National Instruments DAQ card (NI USB-6211) controlled through LabVIEW. External power 

was supplied for powering circuit op-amps, an inverter used for mirroring the square wave for 

switching, and a low drop-out regulator used in battery charging. 

Data acquisition was performed by two separate means. The NI DAQ was used to acquire 

low sample-rate data of the battery voltage and the voltage across the load. The DAQ also 

provided triggering signals for the switching control and data capture. Detailed switching 

dynamics of capacitor charge and discharge were captured periodically using an oscilloscope 

(Agilent DSO-X 2024A). LabVIEW was used for the main logic/control platform. Additionally, 

an AC current probe (Tektronix CT-6) was used near the battery terminal to acquire the total 

current leaving the battery. 

2.3.2 Testing Parameters and Approach 

Load type (Capacitor/Resistor), load size, and switching frequency were parameters varied 

between test runs. The load elements used included: 1MΩ, 100kΩ, and 10kΩ resistors and 1nF 

and 10nF capacitor. Effects of other aspects of the setup and experiment are not addressed. 

Testing was conducted approximately as follows: (1) at least thirty minutes rest time for the 

battery, (2) battery charged at constant 4.1V for at least thirty minutes, (3) at least thirty minutes 

rest period to allow the battery to partially equilibrate, (4) cyclic loading until the battery voltage 

dropped below 3.3V (resistive loads were not cycled). 

Voltages of the battery and capacitor were logged as well as current probe measurements. 

The data was analyzed to determine different ways the capacity of the battery was expended. In 

this paper “useful capacity” is either the power consumed by the resistive load, or the amount of 

charge transferred from the battery to the load capacitor (the capacitor represents the actuator, so 

charge stored roughly correlates to actuation). “Leakage current” is the amount of current 

consumed by the circuitry. A relationship of voltage to leakage current was determined by 

replacing the battery in the circuit with a power supply (Keithley 2400 Sourcemeter) and 

monitoring the current flow at various voltages in the on and off states of the switching circuit 

with the load element removed. “Switching loss” is the loss during switching. These were 

determined using data from the current probe and calculated as follows: during switching, the 

current out of the battery minus the amount of current into the capacitor, as indicated by the 

charge, and the leakage current. 
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2.3.3 Limitations 

Current Probe Data: In this test setup an AC current probe was used. To convert these 

readings to DC current, an approximate transfer function of the probe was developed using a 

combination of experimental data and the probe datasheet, and subsequent slope adjustment was 

performed. Because of this, current measurements and switching losses are accurate only to the 

accuracy of the probe model. 

O-scope Data: Some data sets contained corrupted data, where possible this was replaced 

with approximate data using adjacent data. Additionally, some of the current spikes during 

switching were clipped by the O-scope window settings. Also during charging, the capacitor 

voltage would often read higher than the battery voltage, the source of this error was not 

determined, but the discrepancy is shown in the error bars of the figures were necessary. 

DAQ Data: Issues with noise or spurious signals were seen in the data, but overall trends are 

considered correct. 

Charge/Cutoff Voltage: To adjust for some variations in charging and cutoff voltages, a 

correction was made to overall run data to adjust to a common voltage. This correction is seen 

only in the data presented in Figure 2.4F. 

Additional Variation: Variation from battery to battery was not analyzed. Some 

variation/refinements in testing procedures occurred over the set of testing, for example often 

batteries were left overnight before charging or testing. The first run for all batteries was the 

1MΩ run. Charging time for all runs was 30min with the exception of the first run for each 

battery which had a 60 min charge time. 

2.4 Results and Discussions 

The experimental results and discussion are separated into four sections. First, the detailed 

dynamic profile of switching will be presented. Second, comparison and discussion of the losses 

from different scenarios will be shown. Third, a discussion and evidence of parasitic capacitance 

in the battery will be explored. Finally, an overall discussion of the combination of these 

different findings will be given. 

2.4.1 Switching Dynamics Profile 

Figures 2.2 and 2.3  show typical switching profiles for a 10nF and 1nF capacitor load 

respectively. The basic sequence of switching events starts with the battery at rest and the 
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capacitor with zero charge. As the switching circuit begins to switch there is a spike of current 

from the battery as the battery has a momentary connection to ground. The battery voltage is 

pulled down to the switching voltage dictated by the MOSFETs. Once the battery reaches this 

switching voltage there is a slight delay before the capacitor starts to charge. Once the capacitor 

starts to charge, and until it reaches the battery voltage, the charging is approximately linear. 

 

Figure 2.2 Switching dynamic profile for 10nF capacitor. Battery voltage (green), capacitor voltage (blue), and current 

out of the battery (red) are shown during the switching process for a 10nF capacitor. Relative timescales can be seen for 

the battery, switching, and capacitor dynamics. Error bars for the current are the standard deviation of a moving average 

before measurement adjustment not absolute error.  

 

Figure 2.3 Switching dynamic profile for 1nF capacitor. Battery voltage (green), capacitor voltage (blue), and current 

out of the battery (red) are shown during the switching process for a 1nF capacitor. Relative timescales can be seen for 

the battery, switching, and capacitor dynamics. Rolling average error for current during a spike has limited meaning and 

is omitted. 
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This is dictated again by the switching circuit which holds the battery at a set voltage/current. 

After the capacitor has reached the battery voltage it is assumed that switching is complete and 

the capacitor charging and battery rise approximately together. In the figures, switching is 

initiated at time zero as determined by when the current begins to rise. 

These switching dynamics are not particularly novel, but it is critical to notice that charging of 

the capacitor, battery response to the switching, and switching dynamics are all on a similar 

timescale. This is especially true in the 1nF capacitor scenario (Figure 2.3) which is a typical size 

for the actuator capacitance in our walking robot application. This similarity of timescales is 

important in that it the effects of any one aspect cannot be neglected. By recognizing this 

similarity of timescales future modeling approaches can be better informed about the importance 

of simplifications in regards to battery, switching and capacitor dynamics. 

Additionally these results demonstrate aspects of the switching dynamics that may need to be 

considered in future modeling. These other effects include lag in the switching as well as a 

“linear” charging region seen. This linear region is caused by the h-bridge configuration used. 

2.4.2 Capacity Use Distribution 

Various testing scenarios were performed to determine effects capacitor size and cycling 

frequency have on useful battery capacity. A brief comparison of the types of losses seen in this 

work is given in Figure 2.4. Losses at low-power, micro-scale applications can be very high (as 

seen here even up to two to three times larger than the useful capacity in some scenarios). 

Approaches to increase efficiency and reduce loss can be seen in the literature including [49-51] 

and is not the point of this work, rather we want to reiterate that these losses should not be 

disregarded, and the design of the circuitry is important. 

Several general points can be taken from this data: 

1) Leakage and switching losses can account for a substantial portion of the battery capacity 

used on this scale. 

2) There is interplay between the switching speed, load size, and total capacity of the battery 

consumed. 

3) Battery discharge of resistive loading and cycled capacitive loading have similar lifetime 

profiles. However, as seen in Figure 2.2 and 2.3 there are significant dynamics occurring 

at the faster timescale. 
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4) Leakage loss is proportional to total test time, switching loss and useful capacity are 

proportional to number of switches. However, the size of the load, current draw of 

switching and load, and the speed of switching dictate the battery relaxation, and thus the 

overall time. Therefore there is an interdependence of all of these that needs to be 

considered. 

 

Figure 2.4 Capacity and loss distributions for various test runs. The distribution of typical leakage and switching losses 

compared to the useful capacity is shown for (A) 1nF at 100Hz (B)10nF at 100Hz (C) 1MΩ DC (D) 1nF at 10kHz (E) 10nF 

at 10kHz. The data presented in (F) was adjusted to a common starting and cutoff voltage, a few of the tests had multiple 

runs, but only a sample run for each configuration is shown.  (F) is corrected since publication in [41]. 

2.4.3 Parasitic Capacitance 

In all tests there was seen a sharp current spike during the initial switching. It was suspected 

this was due to parasitic capacitance built up in the battery or circuitry that quickly and easily 

discharged when the switching briefly shorted to ground (see Figures 2.2 and 2.3). 

In addition to the current spike, there were other signs of parasitic capacitance. At the end of 

the linear charging region in the 1nF capacitor test shown in Figure 2.3, there is a distinct change 

in slope. The amount of current the battery is able to supply as a function of battery voltage 

should be a smooth function. As the capacitor is charging during the linear portion, the battery is 
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fixed at the switching voltage and thus a set current. It is assumed that the parasitic capacitance is 

held at the battery voltage also. After the switching voltage is reached the battery then has to 

charge the internal parasitic capacitance and the external capacitor. The addition of this parasitic 

capacitance charging causes there to be less current available to charge the external capacitor 

resulting in slower charging and causing an abrupt change in slope in the capacitor charging 

profile. This is somewhat apparent in the 10nF capacitor data as well but the effect is less 

pronounced. 

One additional test was performed to verify the parasitic capacitance. A manual switching 

test was performed where the battery could be hooked directly to a capacitor. The circuit was 

manually closed and the response of the capacitor charge was recorded on the oscilloscope (see 

Figure 2.5). The bandwidth of the o-scope probes was 300MHz with approx. 15pF capacitance in 

the probe. The initial jump in voltage of the capacitor indicates a readily available store of charge 

from the battery. After this initial charge is passed to the capacitor the remaining charging 

follows a more typical profile. The ringing indicates some inductance in the system. 

 

Figure 2.5 Capacitor charge with a manual switch test. The initial jump in voltage indicates a large, readily available 

current source, such as a parasitic capacitance. The ringing is likely from inductance in the system. 

The implications of this parasitic capacitance can be important. With the switching circuit 

used for this testing there is an initial period during the switching where a momentary path to 

ground is formed from the battery. If the current is limited by the internal resistance of the 

battery, losses are kept in check. However, the parasitic capacitance is not checked and thus can 

dump all of the charge stored parasitically to ground very quickly. Each cycle, this may be a 

small amount, but over thousands of cycles, these losses can become significant. Considering 

these losses in the switching design will be important. Additionally, there may be approaches 

that could take advantage of the initial current. 
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From a modeling standpoint, adding the parasitic capacitance will be important in that this 

capacitance may be on the order of magnitude as the actuators themselves. This is seen in the 

percentage of the voltage that is charged in the initial jump in Figure 2.6. This highlights again 

the errors that could arise from improper assumptions/simplifications. Further testing is needed 

to determine if the origin of this capacitance is from the battery and/or packaging. 

2.5 Implications 

2.5.1 Modeling Details 

A basic switching model was developed that incorporates aspects of phenomena discussed 

here. This electrochemical model is adapted from that developed in [14-16] and is based on a 

current balance of the different sections of the battery. Aspects of this testing that are 

incorporated include: time to pull battery to switching voltage, time to begin switching, 

switching voltage, assumed resistance during  switching, and parasitic capacitance. 

Parameters were optimized for fitting of a single charge and discharge profile for a 10nF 

capacitive load. Certain switching characteristics were determined experimentally and the battery 

parameters (including parasitic capacitance) were optimized by fitting data for a single cycle. 

Comparison of the experimental data and model can be seen in Figure 2.6. Continuing work is 

expanding the analytical model and working towards blending the fitting at the micro time scale 

shown here, with full battery discharge curve fitting. 

 

Figure 2.6 Model fitting. Capacitor discharge and charge data is shown for a 10nF 100Hz test. Aspects of this work are 

incorporated into the model to capture various switching and battery dynamics. 
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2.5.2 Systematic Design 

Trends in power usage may also be incorporated into design characteristics of micro-robots or 

other autonomous micro-systems, with substantial influence on feasible operating capabilities.  

To demonstrate how this information might be used, a simple example is shown. In practice, 

such an analysis would be preceded by improvement of switching drive circuits to better 

accommodate battery and switch transient behavior, but the concept below may be instructive. 

A basic system-level analysis of a walking micro-robot can be performed by simplifying the 

basic motion equations.   In this analysis, the goal is to compare the effects of varying the 

number of actuators used in a robot leg, Nact, which for a given robot payload effectively 

exchanges leg speed for range of motion, while varying capacitance of the system. A simple 

hybrid schematic of a robot is shown in Figure 2.7. 

 

Figure 2.7 Robot schematic. A hybrid representation of a half view of a sample micro robot. The electrical diagram 

represents the physical actuators where additional actuators increse the length of the leg. 

To begin, the distance traveled per step for piezoeletrically-driven robot legs can be 

approximated as: 

 𝑑𝑠𝑡𝑒𝑝 = 𝛼
𝑁𝑎𝑐𝑡

𝑘𝑛𝑜𝑚
, (2.1) 

where dstep is step length, α is a proportionality constant that depends on the piezoelectric 

material and actuator design, and knom is the nominal stiffness of an actuator. For this example, 

all actuators are assumed to be 1 nF arranged in a parallel electrical configuration, so the 

capacitances are additive; this is the typical piezoelectric element size for actuators developed by 

the authors and their collaborators, although the typical voltage conversion circuitry is omitted 

here for simplicity. For a given frequency and capacitor size, system efficiency can be determine 
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using a cubic fit for the data based on Figure 2.4F. Choosing f and Nact as our design 

specifications, and assuming that robot payload is selected so that f is near the natural frequency, 

an effective mass of the robot, meff,,can be calculated as: 

 𝑚𝑒𝑓𝑓 ≈
𝑘𝑛𝑜𝑚

𝑁𝑎𝑐𝑡(2𝜋𝑓)2
. (2.2) 

The total distance traveled for the robot modeled in Equations 2.1 and 2.2 is based on the 

charge/step and the number of steps: 

 𝐶𝑡𝑜𝑡 = 𝑁𝑎𝑐𝑡𝐶𝑛𝑜𝑚, (2.3) 

 𝑄𝑐ℎ𝑔 = 𝐶𝑡𝑜𝑡𝑉𝑛𝑜𝑚, (2.4) 

 𝑁𝑠𝑡𝑒𝑝 = η(f, 𝐶𝑡𝑜𝑡) ∗
𝑄𝑏𝑎𝑡𝑡

𝑄𝑐ℎ𝑔
, (2.5) 

 𝑑𝑡𝑜𝑡 = α ∗ η(f, 𝐶𝑡𝑜𝑡) ∗
𝑄𝑏𝑎𝑡𝑡

𝑘𝑛𝑜𝑚𝐶𝑛𝑜𝑚𝑉𝑛𝑜𝑚
, (2.6) 

where Ctot is the total capacitance of the actuators, Cnom is the nominal capacitance of the 

actuator, Qchg is the battery capacity needed to charge the actuator, and Vnom is the nominal 

voltage to which the actuator is charged, Qbatt is the total capacity of the battery, η is an 

efficiency of battery use of the switching/circuitry as a function of f and Cnom, and Nstep and dtot 

are respectively the total steps taken and total distance traveled by the micro-robot on one battery 

charge. 

The robot parameter values that were chosen are given in Table 2.1, and are merely 

representative and not physical, for more information of possible physical values see [34, 37]. 

The percent useful capacity determined earlier was used to determine the portion of the full 

50μAh charge that could be used. It was assumed that batteries were configured in parallel to 

have an average 15 V charge for easier comparison to other data.  

Table 2.1 Listing of parameter values used for example analysis. 

α Cnom knom Qbattery V 

3 mN 1 nF 10 N/m 50 μAh 15 V 

The ideal scenario would be one that offered the farthest travel distance with the greatest 

payload potential. Here we use effective mass as a payload metric. Over the range of 10-1000Hz 

and 1-10 actuators the mass and distance values were normalized using the max value in that 
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range. The tradeoff can be seen in Figure 2.8. It can be seen that in this design space, the highest 

distance traveled gives the lowest payload. The dashed upper plane represents what the distance 

traveled would be if the efficiency were assumed 1 (normalized to the maximum dtot value in the 

design space). 

 

Figure 2.8 Analysis of payload (estimated by effective mass) and total travel for a given frequency and capacitance/Nact. 

Mass and distance are normalized by the max value in the input ranges. The dashed plane represents the total distance 

traveled if efficiency is assumed one and normalized with the dtot max. 

Again, it should be emphasized that this analysis does not take full account of opportunities 

to use battery dynamics to refine switching circuit performance, and considers only abstract leg 

details. In addition, much of the space shown is not physically realizable, chiefly at very high 

operating frequencies corresponding to low robot mass. However, this type of analysis 

demonstrates potential design questions that could be aided by the type of information reported 

here. 

2.6 Conclusion 

We have presented experimental data for cyclic capacitive loading of thin film batteries. The 

interplay between these loads and the batteries can be seen and needs to be accounted for in 

proper modeling of these systems. Important observations include various characteristics such as 

timescales, relative losses, and parasitic capacitance. Additionally, incorporation of these into a 

model of the switching dynamics was shown. Additionally, a sample design problem was given. 

Future work includes the life cycle modeling of a complete battery discharge, and parameter 

fitting for not merely one cycle but the combination of a single cycle and the full discharge 

profile. It is hoped that this work can help to inform modeling and design of gait, control, and 

circuitry of walking micro-robots and power management in autonomous microsystems.



24 

 

CHAPTER 3 INITIAL MODELING APPROACH
2
 

3.1 Abstract 

Previous modeling of thin-film batteries has primarily looked at simple discharge loads. This 

work examines modeling of mid-frequency dynamic loads with large variation in current during 

repetitive loading cycles, a type of loading that is very common in microelectromechanical 

system (MEMS) applications. Here we show an extension of traditional modeling of thin-film 

batteries to account for switching and capacitive loading representing piezoelectric or 

electrostatic microactuation. This model captures behavior at both fast and slow timescales, 

including effects of short-duration, high-current spikes. We show validation of the model and 

introduce a cycle projection scheme that allows for over 94% reduction in numerical calculations 

over a full battery discharge which includes over a million cycles. 

 
Table 3.1 List of symbols for Chapter 3 

Symbol Description Units 

α Charge transfer coefficient  [-] 

δ Normalized concentration perturbation size for transition matrix construction [-] 

ε Normalized concentration perturbation effect [-] 

κ Conductivity [S] 

π Non-dimensional parameter [-] 

φ Coefficient for normalization Varies 

A Area [m2] 
c Concentration [mol m3⁄ ] 
C Capacitance [F] 

D Diffusion coefficient [m2 s⁄ ] 
D0 Nominal diffusion coefficient [m2 s⁄ ] 
F Faraday’s Constant [C mol⁄ ] 
I Current [A] 

ILeak Leakage current through the switching circuitry [A] 

ISwitch Current lost through switching [A] 

i0 Exchange current density electrode/electrolyte interface [𝐴 m2⁄ ] 
L Thickness [m] 

R Universal gas constant [J (mol K)⁄ ] 

                                                 
2 ©The Author(s) 2017. Published by ECS. This chapter, with exception of minor edits, is from Teichert and Oldham, “Modeling Cyclic 

Capacitive Loading of Thin-Film Batteries” Journal of The Electrochemical Society, 164 (2) A360-A369 (2017) and is an open access article 

distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.1141702jes] All rights 
reserved. 
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Symbol Description Units 

Rswitch Approximate resistance in limited path to ground during tcharge-tcomp [Ω] 
T Temperature [K] 

T Transition matrix  

t Time [s] 

tcharge Time at beginning of capacitor charge [s] 

tcomp Time at switching completion [s] 

thold Time at beginning of the delay [s] 

tswitch Time at switch initiation [s] 

U Open circuit potential [V] 

V Voltage [V] 

VBatt Battery Voltage [V] 

VBatt,Nom Nominal battery voltage at full charge (4.1V) [V] 

Vth Switching threshold voltage [V] 

x Spatial coordinate [m] 

y Normalized Li concentration [-] 

   

Sub/Superscript   

+/- Positive negative electrode  

a Anodic  

c Cathodic  

cap Load capacitor  

e Electrolyte   

k Total number of spatial grid points in finite difference  

linear Time during which the load capacitor has an approximate linear charge  

m, i Finite difference spatial grid point  

max Max value possible  

n Cycle number  

p Number of cycles projected  

para Parasitic capacitor  

3.2 Introduction 

Limitations of available power sources, such as batteries, place significant constraints on 

design of engineered systems at many scales, from vehicles to microelectromechanical systems 

(MEMS) [2]. Battery modeling can be used to help navigate these limitations, and many different 

modeling approaches have been developed [14, 52]. This work focuses on adapting existing 

modeling approaches to capture cyclic, capacitive loading (i.e. repeated charging of a load that 

behaves approximately like a capacitor) of thin-film batteries, a loading which is very common 

in, for example, MEMS applications. Additionally, for small-scale systems, all-solid-state 

batteries are an attractive alternative to more traditional liquid electrolyte constructs in that 

sealing of the liquid electrolyte is avoided [6], generally providing better size and assembly 

compatibility with micromachined devices. These solid electrolytes typically have lower ionic 

conductivities, but the effects of this are mitigated by the reduced thickness at which these thin 

films can be deposited [7]. Various studies have looked at the different properties of various 
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battery chemistries and configurations [7, 8, 53-58], which is still a very active area of research. 

However, modeling of cyclic capacitive loads seems to be lacking in the literature. 

Understanding the implications of cyclic loading on batteries is important. There have been 

mixed reports on the broader loading category of intermittent loads on batteries at various scales. 

Several reports have indicated that loading conditions can have substantial effects on the battery 

output ability. Fuller et al. [59] discussed different relaxation phenomena in lithium-ion insertion 

batteries. Feeney et al. [20] recently demonstrated, on a specific primary Li-ion battery, the effect 

of loading conditions on overall battery capacity utilization, using square wave resistive loads. In 

that study, experimental results were used to show that the duty cycle had a significant impact on 

the battery’s usable capacity. In an earlier work from Park et al. [21], experimental results also 

showed that loading conditions have a significant impact on battery usable capacity. Their work 

was based on the load created by a DCDC converter. In contrast, Castillo et al. [22] provides 

experimental observations for intermittent discharge showing no effect for Li-ion rechargeable 

batteries. It should be noted that the conditions, batteries, and loadings are not consistent in these 

studies, but rather highlight the potential difficulty of fully understanding and modeling 

intermittent loading conditions.  

In applications such as MEMS, understanding loading effects on the battery will be important 

in light of small system size, weight, and power targets. MEMS-based micro-robots, for 

example, must operate under very strict power limits and with finite power system payload 

capacity. Often, electrical circuitry for low powered application can also be very inefficient [45], 

requiring additional battery capacity which can come at a premium in the often “footprint 

limited” area of MEMS. Moreover, some of the most common MEMS transduction mechanisms 

(i.e. electrostatic, piezoelectric) act as primarily capacitive loads resulting in high-speed, high-

current intermittent discharge from batteries, which is both less common and less desirable in 

most larger-scale battery applications. Piezoelectrically-actuated walking micro-robots [37, 45], 

give a platform for understanding these types of loading conditions  having mid-range operating  

frequencies (10
1
-10

3 
Hz) and small capacitances (10

-10
-10

-8 
F).  

As stated above, the purpose of this work is to adapt existing modeling approaches to capture 

cyclic, capacitive loading of thin-film batteries. There are several challenges with modeling and 

analyzing this type of loading condition, yet by proper modeling, greater understanding and 

direction can be had in design and control. Recently we experimentally showed effects of 
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switching capacitive loads on voltage profiles of battery outputs [41] (see chapter 2). That work 

highlighted various phenomena related to the loading and circuitry, and presented a brief 

demonstration of one cycle of this modeling approach without modeling details. Here we detail 

the incorporation of key phenomena into a full switching model to capture effects of cyclic 

capacitive loading on thin-film batteries. We choose to use an electrochemical approach to more 

readily correlate between physical properties and the model parameters. This model was based 

heavily on work presented by Fabre et al. [14] and Danilov et al. [15] and more detailed 

descriptions of the electrochemical equations can be found there, as well as prior work by 

Thomas et al. [16] This basic model foundation was then adapted for our loading conditions as 

well as to include switching and other phenomena seen experimentally [41] (see chapter 2). 

Model parameters were found using a fitting optimization approach that was developed to 

correlate the model with experimental data.  

Meanwhile, to model faster timescale dynamics of cycling requires a significant numerical 

cost. A typical battery discharge in our testing could be over a million cycles for some of the 

tests run. In order to show model responses across the full battery discharge, a projection 

approach was developed that allowed for projecting battery states over many cycles to reduce 

numerical modeling costs. By incorporating system characteristics of cyclic capacitive loads on 

thin-film batteries at very different timescales and current levels, this combined modeling and 

simulation approach should enable greater understanding and capabilities in design and control 

of devices operating in this manner. 

3.3 Modeling Development 

3.3.1 Modeling Background and Assumptions 

Two widely used approaches for battery modeling are equivalent circuit modeling, where 

battery responses are modeled using an analogous electrical circuit [12, 52, 60, 61], and physics-

based models [14, 15, 62]. This work is based on physics-based approaches, adapted from solid-

state battery modeling presented by Fabre et al. [14] and Danilov et al. [15]. We expand the use 

of this model to account for and investigate fast dynamics in the electrochemical system. Fabre’s 

model gives a 1-dimesional description of an all solid-state thin-film Li/LiPON/LiyCoO2 battery 

with the following assumptions made to simplify the problem: (1) isothermal behavior with no 

self-heating, (2) Li electrode acts as a perfect conductor with negligible voltage drop, (3) 
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negligible volume changes, and (4) constant electrolyte concentration/conductivity. In this work 

we choose to neglect the voltage drop in the positive electrode. At conditions where constant 

electrolyte conductivity can be approximated it is assumed that the resistive drop in the positive 

electrode will be moderate (e.g. using the conductivity of LiCoO2 in Park et al. [63], and the 

parameters approximated later in this work the positive electrode resistance would be ~3% of 

that of the electrolyte) and can be compensated for in other parameters. Under this assumption 

and in light of the increased simplicity of modeling (reduction of unknowns from 5 to 4), this 

approximation seemed justified. In this paper the loading applied (10nF 100Hz) allows the 

battery significant time to recover between major switch/charging events, at higher frequencies 

or higher average currents both the electrolyte conductivity and the positive electrode resistance 

assumptions (in addition to other limiting assumptions) will likely need to be readdressed. 

Finally, only battery discharge is considered. 

Key equations for the model will be given here; for a more thorough derivation see the 

source literature [14-16]. Notation will be kept similar to the source literature for convenience. 

The coordinate system and battery schematic are shown in Figure 3.1. and remain similar to 

Fabre et al. [14], where the boundary of the negative electrode/electrolyte is set as zero (𝑥 = 0). 

Voltages are defined as: 𝑉0 = 0, the voltage of the negative electrode which is set as a reference; 

𝑉1, the voltage on the electrolyte side of the negative electrode/electrolyte interface; 𝑉2, the 

voltage on the electrolyte side of the positive electrode/electrolyte interface; and 𝑉3, the voltage 

of the positive electrode. 

 

Figure 3.1 Battery schematic. A typical voltage profile for the model is shown on the coordinate system. A theoretical 

concentration profile for the positive electrode is shown also. 

3.3.2 Electrochemical Model Equations 

The model is based on current balance through the battery. Current flows through the 

electrode/electrolyte interfaces are expressed using the Butler-Volmer equation and are defined 

as follows: across the negative electrode/electrolyte interface (𝑥 = 0) 
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𝐼

𝐴
= 𝑖0,− (𝑒𝑥𝑝 (

𝛼𝑎,−𝐹(𝑉0−𝑉1)

𝑅𝑇
) − 𝑒𝑥𝑝 (−

𝛼𝑐,−𝐹(𝑉0−𝑉1)

𝑅𝑇
)) ; (3.1) 

and across the electrolyte/positive electrode interface (𝑥 = 𝐿𝑒) 

 
𝐼

𝐴
= 𝑖0,+ (𝑒𝑥𝑝 (

𝛼𝑎,+𝐹(𝑉3−𝑉2−𝑈)

𝑅𝑇
) − 𝑒𝑥𝑝 (

−𝛼𝑐,+𝐹(𝑉3−𝑉2−𝑈)

𝑅𝑇
)), (3.2) 

where I is the current, A is the cross sectional area, i0 is the exchange current density with 

subscripts (+,-) indicating positive and negative electrodes respectively, α is the charge transfer 

coefficient with subscripts (a,c) denoting anodic and cathodic reactions at the given interface, F 

is Faraday’s constant, R is the gas constant, T is temperature in Kelvin, and U is the open circuit 

potential (derived from a combination of experimental data and datasheet information
27

). 

Diffusion in the LiyCoO2 positive electrode is described as: 

 
𝜕𝑐+

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷+ (

𝑐+

𝑐+,𝑚𝑎𝑥
)
𝜕𝑐+

𝜕𝑥
)   𝑎𝑡 𝐿𝑒 < 𝑥 < 𝐿𝑒 + 𝐿+ (3.3)  

 𝐷+ (
𝑐+

𝑐+,𝑚𝑎𝑥
)  = 𝐷+,0 × 𝐷+,𝑛𝑜𝑟𝑚 (

𝑐+

𝑐+,𝑚𝑎𝑥
) (3.4) 

with 𝑐+(𝑥) the concentration in the positive electrode as a function of 𝑥, the subscript max 

denoting the maximum concentration, 𝐷+,0 the nominal diffusion coefficient, 

𝐷+,𝑛𝑜𝑟𝑚(𝑐+ 𝑐+,𝑚𝑎𝑥⁄ ) concentration dependent function of the normalized diffusion coefficient, 

and 𝐿𝑒 and 𝐿+ the thicknesses of the electrolyte and positive electrode respectively. Boundary 

conditions are given as: 

 
𝜕𝑐+

𝜕𝑥
= 0 𝑎𝑡 𝑥 = 𝐿𝑒 + 𝐿+  (3.5) 

 
𝜕𝑐+

𝜕𝑥
=

𝐼

𝐴𝐹𝐷+
 𝑎𝑡 𝑥 = 𝐿𝑒  (3.6) 

In Fabre et al. [14] the electrolyte concentration and conductivity are approximated as 

constant which is adequate for low current applications. We do the same, though for higher 

average current applications this would likely need to be revisited. The electrolyte resistance is 

defined as: 

 𝑅𝑒 =
𝑉2−𝑉1

𝐼
≈

𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚𝐿𝑒

𝐹𝐷𝑒,0𝑐𝑒𝐴
 (3.7) 
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with 𝐷0,𝑒 the electrolyte diffusion coefficient, 𝑐𝑒 the electrolyte Li concentration, and 𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚 

is the nominal battery voltage (taken as 4.1 V in this work). Equations 3.1-3.3 and 3.7, define the 

system of four equations and four unknowns (i.e. 𝑉1, 𝑉2, 𝑉3, and c+). 

3.3.3 Cyclic Capacitive Load Modeling 

Next, modeling is extended to account for effects of cyclic capacitive loading on thin film 

batteries, primarily through additional load dynamics. Previous solid-state battery analysis has 

focused primarily on other loading conditions such as constant current or voltage, with limited 

information on capacitive loads [24], so to better understand what additional phenomena are 

important to incorporate into a model with capacitive loading, initial experimental work was 

performed. A conceptual representation of this is shown in Figure 3.2. 

 

Figure 3.2 Battery discharge schematic. Switching dynamics have various timescales in these applications. The various 

switching times are represented in the subfigure. 

Experimentally, a simple H-bridge switching circuit was used to cycle a 50μAh battery over 

various capacitive loads. The basic circuit schematic is shown in Figure 3.3. Details of 

experimental setup and findings were reported elsewhere demonstrating the importance of 

consideration of these losses [41] (see chapter 2). Key findings are summarized here. 

 

Figure 3.3 H-bridge switching circuitry for experimental testing. Reprinted with permission [41] (see chapter 2), and 

based on the circuit presented by others [64]. 
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Timescale considerations: It is noted that timescales of the capacitor charging, battery 

dynamics, and switching characteristics can be very similar and therefore may all need to be 

addressed during individual cycle modeling (e.g. the battery cannot be assumed to be a perfect 

power source, and switching cannot be assumed to be instantaneous).  Conversely, changes in 

system aspects such as open circuit potential and diffusion coefficient can occur over time scales 

that are orders-of-magnitude longer (minutes or hours vs. microseconds), which makes 

simulation over the full battery discharge challenging. 

Switching and leakage losses: The switching circuit used to drive the capacitive load was not 

optimized and suffered from substantial losses; however, investigation of those losses was 

instructive, and necessary for comparison of modeling and experimental data. These losses 

included a short period where a limited path to ground was made during switching, while 

switching transistors were only partially charged. Additionally, it appeared that there continued 

to be transient switching losses at least until the switching was nearly completed. As in any 

transistor-based circuit, there was also a voltage dependent leakage current in the system. 

Frequency and size of capacitive loading influenced which type of loss was dominant. 

Switching dynamics and timing: The timing of the switching phenomena was examined to 

provide an accurate load to the battery model. Switching charecteristics and approximate 

equivilent loading for capacitor charging (switch on) and discharging (switch off) are given in 

Figures 3.4 and 3.5. Again for more information on experimental setup and results see our prior 

work [41] (see chapter 2). The main switching events, common in many switching circuits, 

included the following (shown graphically in Figure 3.2):  

1. Switching Initiated (𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡 ≤ 𝑡ℎ𝑜𝑙𝑑): This is characterized by a sharp drop in battery 

voltage as the H-bridge transistors are between equilibrium states creating a limited path 

to ground through the switching circuitry. Battery voltage drops to the threshold voltage 

dictated by the switching components (𝑉𝑡ℎ). This timing was determined separately for on 

and off switching. For general applications, momentary connection to ground can be 

reduced or eliminated with more complex circuit design, though often with a tradeoff of 

greater complexity, larger leakage current, and/or slower response times. Switching circuit 

optimization was not the purpose of this work. For capacitor discharge, the load capacitor 

is considered disconnected from the battery and the voltage is removed. 



32 

 

 

Figure 3.4 Switch timing characteristics and approximate equivalent loading for capacitor charging. The battery is 

represented as a voltage controlled current source with dotted lines representing the voltage signal. 

 

Figure 3.5 Switch timing characteristics and approximate equivalent loading for capacitor discharging. The battery is 

represented as a voltage controlled current source with dotted lines representing the voltage signal. 

2. Switching Delay (𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡 ≤ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒): There is then a short period of time before the 

capacitor begins to charge (switch on/capacitor charge) or the battery begins to recover 

(switch off/capacitor discharge) where there remains a limited path to ground through the 
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switch. During initial switching, a large current spike is observed leaving the battery 

system. This timing was determined separately for on and off switching. 

3. Capacitor Linear Charging (𝑡𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 𝑡 ≤ 𝑡𝑐𝑜𝑚𝑝): For switch on (capacitor charge) only, 

as the capacitor charges the battery is initially voltage limited by the switching transistors 

which causes a constant, or near constant, current into the capacitor. This current gives a 

nearly linear increase in the capacitor voltage that increases until the capacitor reaches the 

threshold. 

4. Switching Complete (𝑡𝑐𝑜𝑚𝑝 ≤ 𝑡): For switch on (capacitor charge), after the capacitor has 

reached the switching threshold voltage for the H-bridge transistors, the switching is 

considered completed and the battery and capacitor voltage increase in a somewhat 

exponential fashion, approximately as would an ideal voltage-resistor-capacitor system. 

For switch off (capacitor discharge), the battery does not need to supply current to the 

capacitor so after the switching delay the battery begins to recover immediately and the 

switching is considered completed. 

Parasitic capacitance: Parasitic capacitance was manifested in several ways in the battery 

system. It was not determined if this was from the battery, or some other source (e.g. packaging 

or electrodes). This capacitance allowed for a small portion of the battery’s charge to be stored in 

a quickly accessible format that was discharged to ground during the switching. This capacitance 

is in the range of the loads applied and has a substantial effect on charging dynamics. 

During the capacitor charging mode of the cycle (switch on, battery discharging), loading on 

the battery includes switching effects, linear/exponential charging of the capacitor, and parasitic 

capacitor charging. Capacitive loading was applied to the model by dictating the battery voltage 

(i.e. capacitor voltage or threshold voltage) for short time steps, and calculating the battery 

response. At each time step in the model, the current available from the battery was determined 

based on the battery voltage, 𝑉𝐵𝑎𝑡𝑡, imposed by the load and the lithium concentration at the 

positive electrode/electrolyte interface. This current is a combination of current lost through 

leakage (𝐼𝑙𝑒𝑎𝑘) and switching (𝐼𝑠𝑤𝑖𝑡𝑐ℎ), as well as current into the load (𝐼𝑐𝑎𝑝) and parasitic 

capacitors (𝐼𝑝𝑎𝑟𝑎), 

 𝐼(𝑡) = 𝑓 (
𝑐+

𝑐+,𝑚𝑎𝑥
 , 𝑉𝐵𝑎𝑡𝑡(𝑡)) = 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝑠𝑤𝑖𝑡𝑐ℎ + 𝐼𝑐𝑎𝑝 + 𝐼𝑝𝑎𝑟𝑎. (3.8) 
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Losses related specifically to the switching events (primarily Iswitch) were seen in two separate 

timeframes of the switching, and different modeling approaches were used for each of the two. 

The first part is for time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡 ≤ 𝑡ℎ𝑜𝑙𝑑 during which the battery has a limited path to 

ground through the switch. The current out of the battery during this time at the given voltages is 

all lost to ground. During this time the parasitic capacitor tracks the battery voltage from the 

battery voltage at the time of switching, VBatt(tswitch), to the switching threshold voltage, Vth, and 

that charge is considered lost to ground as well. The second switching loss period is 𝑡ℎ𝑜𝑙𝑑 ≤ 𝑡 ≤

𝑡𝑐𝑜𝑚𝑝 (only applies to switch on/capacitor charge) where the battery is now charging the 

capacitor. These losses were approximated as a set resistance to ground, Rswitch, in parallel with 

the load capacitor. 

During capacitor discharge mode of the cycle (switch off, battery disconnected), we again 

see the switching effects, but only parasitic capacitor charging occurs as the battery recovers 

from the switch. All loading in the model can be described as an imposed voltage load on the 

battery. The battery voltage (𝑉𝐵𝑎𝑡𝑡) corresponds to 𝑉3 in Equation 3.2 and is equal to the voltage 

on the parasitic capacitor (𝑉𝑝𝑎𝑟𝑎). As the battery recovers, its voltage is dictated by the charge on 

the parasitic and load capacitors. This dependence gives interplay between voltage and current. 

Loading is shown in Equations 3.9 and 3.10. 

𝑉𝐵𝑎𝑡𝑡

𝑉𝑝𝑎𝑟𝑎

=

{
 
 
 

 
 
 

For Switch 𝐎𝐍 and 𝐎𝐅𝐅

𝑉𝐵𝑎𝑡𝑡(𝑡𝑠𝑤𝑖𝑡𝑐ℎ) −
𝑡−𝑡𝑠𝑤𝑖𝑡𝑐ℎ

𝑡ℎ𝑜𝑙𝑑−𝑡𝑠𝑤𝑖𝑡𝑐ℎ
(𝑉𝐵𝑎𝑡𝑡(𝑡𝑠𝑤𝑖𝑡𝑐ℎ) − 𝑉𝑡ℎ), 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡 ≤ 𝑡ℎ𝑜𝑙𝑑

𝑉𝑡ℎ, 𝑡ℎ𝑜𝑙𝑑 < 𝑡 ≤ 𝑡𝑐𝑜𝑚𝑝
For Switch 𝐎𝐍 only

𝑉𝑡ℎ + Δ𝑉𝑐𝑎𝑝 , 𝑡𝑐𝑜𝑚𝑝 < 𝑡

For Switch 𝐎𝐅𝐅 only
𝑉𝑡ℎ + 𝛥𝑉𝑝𝑎𝑟𝑎, 𝑡𝑐𝑜𝑚𝑝 < 𝑡

 (3.9) 

𝑉𝐶𝑎𝑝 =

{
  
 

  
 

For Switch ON Only
0, 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡 ≤ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒

ΔVcap,linear, 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑡 < 𝑡𝑐𝑜𝑚𝑝
ΔVcap, 𝑡𝑐𝑜𝑚𝑝 ≤ 𝑡

For Switch 𝐎𝐅𝐅 Only
0, 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡     

  (3.10) 

Here 𝐶𝑐𝑎𝑝 and 𝐶𝑝𝑎𝑟𝑎 are the capacitances of the load and parasitic capacitors. The subscript 

“linear” refers to the portion of time when the capacitor charges at a near constant rate. The 
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dynamics of the capacitor voltage after it is switched off are not tracked, and approximated as no 

longer connected to the battery. 

3.3.4 Nondimensional Model Parameters 

This system has vastly different timescales and length scales. The timescales will be 

discussed later, but in both length and timescales there are several orders of magnitude variations 

(e.g. thickness of the electrode may be a few microns but surface area is on the order of a cm
2
). 

In order to deal with some of these disparities the model was nondimensionalized (an example of 

electrochemical normalization can be found in Deshpande et al. [65]). This also allows us to 

consolidate parameters resulting in the final nondimensional parameters, π, and coefficients for 

non-dimensionalizing time and capacity, φ1 and φ2, as follows: 

 φ1 =
𝐷+,0

𝐿+
2  [

1

𝑠
] (3.11) 

 φ2 =
2

𝐴×𝐹×𝑐+,𝑚𝑎𝑥×𝐿+
 [
1

𝐴𝑠
]  (3.12) 

 π1 = 𝛼𝑎,+ [] (3.13) 

 π2 =
𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥
 [] (3.14) 

 π3 =
𝐷+,0×𝑐+,𝑚𝑎𝑥×𝐿𝑒

𝐷𝑒,0×𝑐𝑒,𝑚𝑎𝑥×𝐿+
 [] (3.15) 

 π4 = (
2𝑖0+,𝑚𝑎𝑥×𝐿+

𝐹×𝑐+,𝑚𝑎𝑥×𝐷+,0
) (

𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥
)
−𝛼𝑎,+

 [] (3.16) 

 π5 = (
2𝑖0−,𝑚𝑎𝑥×𝐿+

𝐹×𝑐+,𝑚𝑎𝑥×𝐷+,0
) (1 −

𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥
)
𝛼𝑎,−−1

(
𝑐𝑒

𝑐𝑒,𝑚𝑎𝑥
)
−𝛼𝑎,−

 []  (3.17) 

 π6 =
2𝐶𝑝𝑎𝑟𝑎×𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚

𝐹×𝑐+,𝑚𝑎𝑥×𝐴×L+
 [] (3.18) 

 π7 =
2𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚×𝐿+

𝑅𝑠𝑤𝑖𝑡𝑐ℎ×𝐹×𝑐+,𝑚𝑎𝑥×𝐴×𝐷+,0
 []. (3.19) 

Equation 3.11 represents time normalization. Equation 3.12 represents the current 

normalization in the positive electrode. Equations 3.13-3.17 are parameters of the model 

connected with the electrolyte and/or the electrolyte/electrode interactions with 𝐷e,0 the diffusion 

coefficient of the electrolyte and the subscript max for the exchange current density indicating 
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the maximum value. Equations 3.18 and 3.19 are parameters regarding the parasitic capacitance 

and the losses in the switching respectively with 𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚 the nominal charged battery voltage 

(for this work 4.1V). 

3.3.5 Numerical Implementation 

Numerical implementation was done similar to Fabre et al. [14] using the Crank-Nicholson 

approach applied to the Lithium concentration profile in the LiCoO2 (positive electrode) and 

optimization to balance currents. Initial Crank-Nicholson coding was based on methods 

presented by Spender and Ware [66], and adapted heavily for the current work. Care needed to 

be taken for the Neumann boundary conditions in our model. In particular, the large spikes in 

current cause significant changes in the concentration at the boundary between the positive 

electrode and the electrolyte. Because of these sharp gradients a very fine discretization was 

needed near the boundary; however, further in the positive electrode a much coarser grid was 

adequate. To accommodate the boundary and yet save on computational expense a non-uniform 

mesh was used. This was implemented based on the equations in the appendix of Bowen and 

Smith [67]. Time discretization was also varied to capture the areas of faster dynamics with 

greater accuracy. 

3.3.6 Parameter Fitting  

Parameter fitting was implemented to correlate the non-dimensional parameters with 

corresponding experimental data. Fitting was performed using a combination of two types of 

data: a suite of constant current tests and a single charge/discharge cycle of a capacitor (with 

validation over a full battery discharge). Using these two data sets it was anticipated that we 

could fit the fast and slow dynamics of the battery model. The switching fit was performed 

primarily around the area of large dynamic changes. Errors in fitting were determined from 

differences in the voltages, timing, and capacity loss (single cycle), of model and experimental 

data. 

Weighting of different aspects of the calibration process was chosen. A variety of different 

optimization steps were used to target specific parameters. Changes in the concentration 

dependence of the diffusion coefficient were added in the latter parts of the calibration. 

Weighting was chosen with primary priority on switch timing and the voltage before each 

switch. This voltage is key in that it describes the charge transferred to the capacitor, which is 
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one of the most accurately known variables experimentally. The shape of the capacitor charge 

was generally given lower priority in the weighting. This was done in part because of the higher-

order dynamics that seemed to be at play beyond the fitting capabilities of the model that limit 

the possible fit. It is not anticipated that a significantly better fit of the capacitor charging profile 

could be obtained with changing weighting. Low weighting was also given to the highest current 

of the constant current set because model assumptions break down at high currents, while higher 

weighting was often given to the lowest current run. 

Multiple iterations of a direct search method with an adaptive mesh (patternsearch function 

in MATLAB®) were used to perform the optimization. In addition to these parameter fits, 

certain characteristics of the variable diffusion coefficient were also fit to allow the model to 

mimic in part the concentration dependency of the diffusion coefficient that is described in Fabre 

et al. [14] Switching parameter times were determined from averaging experimental data. 

3.3.7 Full Battery Discharge Modeling 

Modeling effects of many cycles of the load is important in understanding full battery 

responses and implications of the loading for desired applications. However, analyzing the load 

effects over time can be challenging due to the differences in timescale. In order to demonstrate 

our model’s use at various stages of the battery discharge we implemented a transition matrix 

projection approach. There may be other approaches that could also be used, such as the method 

of multiple scales. 

The projection approach developed was as follows. Let the dimensionless Lithium 

concentration in the positive electrode be discretized in time and space as: 

 
𝑐+(𝑥,𝑡)

𝑐+,𝑚𝑎𝑥
= 𝑦(𝑥, 𝑡) → 𝑦(𝑚, 𝑛) ≡ 𝑦𝑛

𝑚 (3.20) 

where, k, is the spatial grid point, and n is the cycle number. The full profile vector after a given 

cycle noted as 𝑦̅𝑛. It is then possible to describe the battery in terms of the concentration profile 

changes from cycle to cycle. 

 𝑦̅𝑛+1 = 𝑓(𝑦̅𝑛)  (3.21) 

where f is a function representing the battery dynamics for a given set of parameters such as 

capacitor load size, cycle frequency, etc. If f is approximated as a linear function near the current 

operating point then delta change in concentration per cycle, Δ𝑦̅𝑛+1, can be written as:  
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 Δ𝑦̅𝑛+1 ≡ 𝑦̅𝑛+1 − 𝑦̅𝑛 = 𝑓(𝑦̅𝑛) − 𝑓(𝑦̅𝑛−1) = 𝑔(Δ𝑦̅𝑛) ≈ 𝑻Δ𝑦̅𝑛 (3.22) 

The matrix T is a linearized transition matrix for the delta change in concentration profile of 

the positive electrode during cycle n to the delta change in concentration during cycle n+1. That 

is, we take the delta change in concentration profile, Δ𝑦̅𝑛, as the states of the system for a given 

cycle. We determined T using a perturbation method on Δ𝑦̅𝑛. By perturbing each grid point by 

some 𝛿𝑚, we can determine the change to every other grid point, 𝜀𝑚
𝑖 , where m denotes the grid 

point being perturbed, and i indicates the affected grid point: 

 𝑔

(

 
 
 

[
 
 
 
 
 

Δ𝑦𝑛
1

Δ𝑦𝑛
2

⋮
Δ𝑦𝑛

𝑚 + 𝛿𝑚

⋮
Δ𝑦𝑛

𝑘 ]
 
 
 
 
 

)

 
 
 

=

[
 
 
 
 
 
Δ𝑦𝑛+1

1 + 𝜀𝑚
1

Δ𝑦𝑛+1
2 + 𝜀𝑚

2

⋮
Δ𝑦𝑛+1

𝑚 + 𝜀𝑚
𝑚

⋮
Δ𝑦𝑛+1

𝑘 + 𝜀𝑚
𝑘 ]
 
 
 
 
 

 (3.23) 

Assuming a constant 𝛿𝑚 = 𝛿, we can construct the transition matrix: 

 𝑻 =

[
 
 
 
𝑇1
1 𝑇2

1 ⋯ 𝑇𝑘
1

𝑇1
2 𝑇2

2 ⋯ 𝑇𝑘
2

⋮ ⋮ ⋱ ⋮
𝑇1
𝑘 𝑇2

𝑘 ⋯ 𝑇𝑘
𝑘]
 
 
 

= 𝛿

[
 
 
 
𝜀1
1 𝜀2

1 ⋯ 𝜀𝑘
1

𝜀1
2 𝜀2

2 ⋯ 𝜀𝑘
2

⋮ ⋮ ⋱ ⋮
𝜀1
𝑘 𝜀2

𝑘 ⋯ 𝜀𝑘
𝑘]
 
 
 

. (3.24) 

One further numerical challenge of the electrochemical system noted earlier is that it is 

naturally sequential where the solution for the first step must be solved in order to determine the 

next step. Because of this, we can take little advantage of parallel computing. Determining the 

transition matrix in the manner presented here allows some of the computation (the perturbed 

cycles) to be performed in parallel with ongoing simulation cycles, reducing the sequential 

numerical burden. 

The transition matrix, T, allows us to now project forward the system states, Δ𝑦̅𝑛, p cycles 

into the future, which can be used to determine the concentration profile as: 

 𝑦̅𝑛+𝑝 = 𝑦̅𝑛 + ∑ 𝑻𝒋−1Δ𝑦̅𝑛
𝑝
𝑗=1 . (3.25) 

 It is important to remember that this assumes a linear system. However, this problem has a 

number of nonlinear aspects (e.g. the OCV, electrochemical equations, and variable diffusion 

coefficient). These nonlinearities introduce error that generally increases with projection length 

(i.e., the number of cycles projected using a fixed transition matrix approximation). An approach 
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used in this work to reduce this error was to update the transition matrix before each projection. 

A flowchart of the model and projection process are given in Figure 3.6. 

 

Figure 3.6 Flowchart of cyclic model and projection approach. 
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3.4 Results 

3.4.1 Experimental Data 

Three sets of experimental data were used, two for calibration and parameter fitting, and the 

other for model validation. The first set of calibration data consisted of five different constant 

current tests including 5μA (0.1C), 20μA (0.4C), 50μA (1C), 200μA (4C), and 500μA (10C). 

This constant current data was gathered using a Labview setup with the current regulated by a 

Keithley sourcemeter. Losses and other effects were not considered when collecting this data. 

Switching data was also acquired where a 10nF capacitor was cycled at 100Hz. Experimental 

setup and limitations are reported elsewhere [41] (see chapter 2). The main limitations in the data 

included accuracy in the current data and conversion from AC probe readings to DC values, as 

well as noise and other extraneous effects in the current and voltage measurements. Two sets of 

switching tests were used. The first was used for calibration, and only measurements from a 

single cycle near the beginning of battery discharge were used. The second was used for 

validation of the model, using the full battery discharge data. 

When converting these datasets to overall battery capacities, the constant current data was 

significantly different from the values published in the vendor literature compared to that of the 

switching data. This could be in part due to the differences in setup, or assumptions, or variations 

between tests due to battery/run variations. To correlate the data for model validation purposes, 

the constant current data was scaled using an interpolated capacity of the average current for the 

switching data (15μA). Therefore the data presented here is used primarily for model approach 

validation, and is not necessarily representative of general capabilities of the specific battery type 

that was used. 

All experimental runs charged the battery to ~4.1V and discharged until ~3.3V. These 

voltages in the open circuit potential were approximated as being 0.5 and 1.0 values of the 

normalized lithium concentration in the positive electrode. 

3.4.2 Parameter Fitting/Calibration 

Parameter fitting was used to extract φ1-φ2 and π1-π7 in Equations 3.11-3.19 and select 

points defining the concentration dependent diffusion coefficient. As noted one cycle of a 10nF 

capacitor at 100Hz was used in connection with the constant current data. The area of the battery 

was approximated based on the die size. Switch drop and hold times as well as threshold voltage 
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were averaged from experimental data (but could be taken from a single data set), and are 

constant throughout the full model. 

The final parameter fitting results are given in Figures 3.7-3.9 and Table 3.2. Figure 3.9 

shows the points defining the diffusion coefficient and the degrees of freedom associated in the 

optimization. 

 

Figure 3.7 Constant current profiles and calibrated fits. 

 

Figure 3.8 Switching profile data and calibrated fit. Error bars are based on rolling average and discrepancies between 

battery and capacitor voltage measurements. 
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Figure 3.9 Normalized diffusion coefficient calibration. The blue circles in the profile represent points that were allowed 

to vary within certain limits. The red arrows show the degrees of freedom. The center two points always had the same 

diffusion coefficient value. 

Table 3.3 shows physical parameter values based on the nondimensionalized parameters and two 

assumed parameter values. The fitting of the constant current discharge is very close, with the 

exception of the highest current profile which had low priority in the calibration process. This 

lack of fit is expected in part due to the assumption of constant electrolyte conductivity, which 

assumption may need to be addressed if loadings are used that create currents consistently higher 

than seen in the switching tests presented here. 

Table 3.2 Calibration parameters. References are for one or more of the parameters in the equation. 

Optimized Parameter Initial 

Value 

Final 

Value 

Ref Value Included in Parameter Corresponds to: 

φ1[1 s⁄ ] 4.54e-2 5.24e-2 𝐷0,+ = 0.2 [μm
2 s⁄ ] [14] Time 

φ2 [1 mAs⁄ ] 5.78e-3 4.17e-3 𝑐+,𝑚𝑎𝑥 = 5 × 10−14[mol μm3⁄ ] [14] Positive electrode current and 

capacity 

𝜋1 [-] 0.500 0.525  Electrolyte or 

electrode/electrolyte boundary 𝜋2 [-] 0.180 0.191 𝑐𝑒 = 10.818 × 10−15[mol μm3⁄ ] 
𝑐𝑒,𝑚𝑎𝑥 = 6 × 10−14[mol μm3⁄ ]*[15] 

𝜋3 [-] 0.285 0.285 𝐷𝑒 = 6 × 10
−3[μm2 s⁄ ] 

Based on* [15] 

𝜋4 [-] 9.03e-2 1.68e-2 𝑖0+,𝑚𝑎𝑥 = 4.4 × 10−9[mA μm2⁄ ] [14] 

𝜋5 [-] 0.167 0.281 𝑖0−,𝑚𝑎𝑥 = 1.5 × 10−8[mA μm2⁄ ] [14] 

𝜋6 [-] 5.98e-8 6.03e-8  Parasitic capacitance 

𝜋7 [-] 6.09e-2 7.10e-2  Switching loss 

Averaged Parameter Value Description 

𝑉th 2.112 [V] Switching threshold voltage 

𝑡𝑑𝑟𝑜𝑝,𝑜𝑛 0.124 [μs] Battery voltage drop time, switch on (𝑡𝑠𝑤𝑖𝑡𝑐ℎ − 𝑡ℎ𝑜𝑙𝑑) 

𝑡𝑑𝑒𝑙𝑎𝑦,𝑜𝑛 1.004 [μs] Switch delay time, switch on (𝑡ℎ𝑜𝑙𝑑 − 𝑡𝑐ℎ𝑎𝑟𝑔𝑒) 

𝑡𝑑𝑟𝑜𝑝,𝑜𝑓𝑓  0.521 [μs] Battery voltage drop time, switch off (𝑡𝑠𝑤𝑖𝑡𝑐ℎ − 𝑡ℎ𝑜𝑙𝑑) 

𝑡𝑑𝑒𝑙𝑎𝑦,𝑜𝑓𝑓 0.069 [μs] Switch delay time, switch on (𝑡ℎ𝑜𝑙𝑑 − 𝑡𝑐𝑜𝑚𝑝) 

Additional Parameter   

𝑉𝐵𝑎𝑡𝑡,𝑁𝑜𝑚 4.1 [V] Nominal charged battery voltage 

*Electrolyte parameters initial values were based on LiPO information. [15] 

Thicknesses used in Initial values were approximated as 2.5𝜇𝑚 for the positive electrode and 10𝜇𝑚 for the 

electrolyte. 
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Table 3.3 Calculated parameters. Physical parameters were calculated from the calibration parameters based on two 

assumed values as noted. 

Assumed Parameter Value 

c+,max  5 × 10−14[mol μm3⁄ ] 

αa,− 0.5 

Calculated Parameter Value 

D0,+ 0.428 [μm2 s⁄ ] 

L+ 2.86 [μm] 
i0+,max 2.5 × 10−9[mA μm2⁄ ] 

i0−,max 2.1 × 10−8[mA μm2⁄ ] 

Re 243[Ω] 
Cpara 3.53 [nF] 

Rswitch 4.60 [kΩ] 

 

In the switching fits, it appears that there are higher order dynamics that slow down the 

charging of the capacitor that are not fully captured by the model. This potentially could be from 

the switching circuitry as there could still be residual losses from incomplete switching past the 

time that the battery and capacitor voltages meet. In spite of this, the fast dynamics of the 

switching are able to be reasonably captured with the model and parameters implemented 

through the majority of the battery discharge as will be discussed later with validation. Some of 

the starting parameters for the calibration optimization are based off of LiPO instead of LiPON. 

It is understood that these will have different properties, but for a starting point for the fitting 

optimization it was considered adequate. This fitting approach allows for parameter 

determination using very little high-sample-rate data by being able to base the fit on only one 

on/off cycle of the capacitor. The majority of the fitting data comes from the coarsely sampled 

constant current profile that is much easier to attain. 

It should be noted that the fitting of the parameters proved to be heavily influenced by the 

starting point and optimization approach. Precision experimental data and/or an improved 

calibration approach would be beneficial for more targeted future parameter fitting.  

3.4.3 Validation Modeling Results 

Using the parameters determined in calibration, a full battery discharge was modeled, with a 

cyclic discharge at 100Hz over a 10nF capacitor. This validation data set was a separate test run 

from that used for model fitting and a portion of the capacitor charge of each measured cycle is 

shown in Figure 3.10. The discharge profiles are presented to show the changes in cycle profile 
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over the full battery discharge. The experimental data is adjusted so that the switching of the 

model and each cycle align. Aspects of the switching were incorporated into the model as 

described. The inputs to the model include the calibration data (parameters, switching times, and 

threshold voltage), as well as the initial voltage of the validation data set.  

 

Figure 3.10 Capacitor charge section of the validation data. The battery voltage profile for each measured cycle is shown. 

Each cycle is aligned to correlate switching times for the model and each cycle. Only capacitor charge data is shown and 

voltage error bars are omitted. 

 

Figure 3.11 Model/select validation data comparison. The model shows a slightly faster charge of the capacitor than the 

experimental data, however, the final voltages are very similar. The overall battery life also shows good correlation in this 

scenario. Voltage error bars are omitted on experimental data. 
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Figure 3.12 The profiles of the model/select validation data comparison are shown. The fit shows that fast and slow 

dynamics of the battery are represented by the model. Voltage error bars are omitted. 

This is the voltage of the battery, including any effects of leakage current. Because of leakage 

current in the measurement, the initial concentration is not exactly known but rather is estimated 

from the voltage with the applied leakage current. 

A comparison of the model and validation data current profiles was also performed. 

However, due to limitations in the experimental current data measurement [41] (see chapter 2), 

comparison of the model current profile and validation data current are used only for reference 

and are shown in Figure 3.13. The figure shows the losses in switching and the charge transfer to 

the capacitor, and indicates some of the limitations of the model. It is important to note that in 

Figure 3.13 the leakage current is small enough to not be discernable in the plot, and parasitic 

capacitor current is based for plotting purposes on the change in battery voltage. 

In the full battery discharge model, 300 initial cycles were run before the first projection. 

Additionally, a certain number of cycles were allowed after each projection to allow the model to 

settle before beginning updating the transition matrix. The number of cycles to project was 

determined on a tradeoff between projection size and error. A few additional cycles were used 

before each projection to determine an appropriate projection/error. The full battery discharge 

model data shows reasonable agreement with the experimental data. Figure 3.14 shows a 

comparison between the experimental and modeled discharge based on the number of cycles 

performed. Concentration profiles for the full discharge of the battery are shown in Figure 3.15. 
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Figure 3.13 Current comparison. The initial part of capacitor charging is shown comparing the validation current19 and 

the different components of the model current. Leakage current is small compared to other currents. The large current 

spike is due to the discharge of the parasitic capacitor. Circle and square symbols are to distinguish different profiles. 

(Lower) Detailed split view with different scales. 

 

Figure 3.14 Discharge profiles. The discharge profiles of voltage just before capacitor charge are shown for the model and 

validation datasets. 
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Figure 3.15 Positive electrode concentration profile by cycle. Normalized concentration profiles for the positive electrode 

over the full discharge of the battery. Labels indicate cycle number. 

The small changes in slope of the concentration at the early cycles may indicate that the diffusion 

did not play a large role. This is assumed in part to be why large projections during this portion 

were possible. 

A significant computational decrease was able to be achieved using this projection 

approximation. One measure of this reduction is the ratio of cycles fully modeled to the total 

number of cycles (including projected cycles). The modeled cycles do not include cycles that 

were performed in parallel (updating the transition matrix, and some trial projections), and 

certain assumptions were made for other overhead costs. The overall approximate Full Modeled 

Cycles/All Cycles ratio was to 0.19% after ~0.677 million cycles, and 6% after nearly 1.43 

million cycles, which is nearing the end of the battery discharge. Calculations are based on use of 

a quad core computer for processing. This numerical cost is based heavily on the equipment and 

projection/error algorithm. For example, if more cores were available for processing the 

transition matrix could be updated more quickly, or if more error was allowed larger projections 

could be made, both of which would reduce the numerical cost. Additionally, other approaches 

to numerical reduction are possible. For example, it may be possible to do a hybrid constant 

equivalent current projection (which would likely have greater success where the battery is able 

to recover between switching events like in this work); however, the proposed approach allows 

us to determine a benchmark for future work in full battery discharge modeling. Ultimately the 
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projection is useful here to enable us to see the evolution of the modeled cycle profile over the 

battery discharge and validate the cyclic capacitive discharge model. 

3.5 Conclusion 

Cyclic capacitive loading of solid-state batteries in the mid-frequency range are of 

importance in areas such as MEMS. Here we review the fundamental electrochemical equations 

that define this type of system and the basic model presented by Fabre et al. [14] and Danilov et 

al. [15], and the phenomena discussed in our previous work [41] (see chapter 2).  The underlying 

battery model was found to be suitable for capturing fast dynamics of individual charge cycles 

with some parameter adjustment, provided that all aspects of switching losses and parasitic loads 

were assessed/incorporated.  We provide and demonstrated a hybrid parameter fitting framework 

where limited cyclic data can be used in connection with full discharges at constant current to 

capture fast and slow dynamics of the system. We developed and demonstrated a projection 

approach that can capture cyclic data from a limited number of cycles and project that over many 

cycles to significantly reduce the computational expense of fully modeling these systems. 

Finally, we implement these into a full battery cyclic model. We were able to show changes in 

cycle profiles over time with reasonable fitting of the battery discharge. Further work can be 

done to look at a broader set of loading conditions (capacitance and frequency, particularly 

higher average currents where the battery is not able to settle as much during cycling), as well as 

understanding the limitations of and improving the projection approach described here. Overall 

this work highlights the issues with cyclic capacitive loads, provides a modeling approach to 

describe these systems, and a projection approach allowing tracking of the cyclic profile over a 

battery discharge at reduced numerical cost. 
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CHAPTER 4 MODEL IMPROVEMENTS AND ERROR ANALYSIS
3
 

4.1 Abstract 

Simulating repeating loading events on dynamic systems can be challenging when large 

timescale disparities exist coupled with aperiodic effects. Batteries driving switched/pulsed loads 

represent one such situation. Large timescale disparity can be experienced by solid-state batteries 

driving switching microactuators or microelectronics, due to extremely short transient response 

times of microscale systems relative to some of the battery’s own dynamics.  Projecting state 

changes over a long series of fast-timescale loading events using a transition matrix approach 

was shown previously to significantly reduce numerical expense of simulation compared to full 

modeling. Here we develop an approach for further accelerated simulation of a battery driving a 

microelectromechanical system (MEMS) actuator that quantifies errors and addresses overhead 

expenses in projecting battery states across multiple fast events. This is done with a definition of 

system states that allows efficient transition matrix generation, and an analysis of key errors 

associated with projection. This error analysis enables targeted modification to the transition 

matrix during projection. A case study explores these modeling approaches in a capacitively 

loaded, battery usage scenario of a piezoelectrically-driven microrobot where the proposed 

improvements reduce the numerical cost (function calls) by over 44x from the prior approach. 

Conditions for further simplified modeling are discussed. 

4.2 Introduction 

Thin-film solid-state batteries provide a convenient power source for many small engineered 

systems, particularly microsystems based on integrated circuit and micro-electromechanical 

system (MEMS) technologies. In many such systems, battery loading occurs as repeated short-

duration transient events, such as to drive microactuators or switching electronics in periodic 

operation. Individual loading events may occur over time periods of just a few microseconds, 

given the high bandwidths of associated electrical or electromechanical components, while 

                                                 
3A version of this chapter is submitted to “the Journal of Energy Storage” for review. 
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complete battery discharge may occur over several hours. This vast disparity in timescales can 

make high-fidelity simulation of battery behavior based on physics-based partial differential 

equation models, very challenging. Nonetheless, such simulation can be beneficial for 

understanding influences of system-level design choices (i.e. loading frequency and component 

sizes) on anticipated battery performance or assessing the accuracy of simplified reduced-order 

or equivalent circuit battery models. This paper thus proposes a strategy for efficiently 

simulating repeated transient loading effects on a solid-state battery model using a numerically-

identified state-transition matrix approach, and illustrates how error analysis of the numerical 

method can be used to further improve simulation efficiency and/or accuracy. 

In general, modeling of power/battery systems can be an important tool for improving design 

and control, and has been performed in a variety of ways including electrochemical [14-16] and 

equivalent circuit modeling [32, 52]. Different approaches for model reduction have also been 

attempted to make the system easier to handle. For example, Santhanagopalan et al. [30] 

compares model reduction strategies for lithium-ion batteries with porous electrodes, for full 

discharge cycling; Kim and Qiao [31] present a hybrid model that combines simplicity with 

nonlinear effects with demonstration on a limited number of pulses during discharge; and Afshar 

et al. [33] uses a reduction method to address the boundary conditions transforming them to 

differential equations through linearization. 

In microscale applications, it is also important to understand the usage of battery capacity 

due to the limited payload and footprint available. The effects of intermittent loading on different 

types of batteries have been discussed in the literature with varying opinions [20-22]. 

Additionally, from a computational perspective, merely modeling the individual loading event 

dynamics can be numerically expensive. Fully modeling this problem, when coupled with the 

many loading events (potentially millions), can be impractical. 

One example of intermittent battery loading for MEMS devices, to be the focus of the case 

study in this paper, is that of switched piezoelectric or electrostatic MEMS actuation, both of 

which act as capacitive loads in terms of electrical behavior. This type of loading, especially 

when coupled with power electronics’ dynamics, can have effects on multiple timescales as is 

shown in the conceptual schematics of a microrobot in Figure 4.1 based on work in [34]. The 

authors have previously shown experimentally that useful battery lifetime when driving a 

capacitive load can have complex dependence on details of switching frequency, load 
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capacitance, and various circuit current and switching losses [41] (see chapter 2).  From a 

modeling perspective, the authors have also shown that resulting battery behavior can be 

captured through adaptation of existing thin-film electrochemical models [14, 15] through 

inclusion of additional switching and loading effects [42] (see chapter 3). However, the 

accumulation of repeated individual loads created a dual-timescale problem when analyzing 

battery behavior over a complete discharge. In the earlier work, this was addressed by 

systematically perturbing system states, or changes in Li concentration at discretized points. In 

that manner, a numerical Jacobian or “transition matrix” could be developed describing changes 

in the system states over one fast-dynamic event. That transition matrix then could be used to 

approximate (or “project” over) multiple fast-dynamic events. This permitted simulation of 

battery discharge to be greatly accelerated, but simulation remained extremely computationally 

expensive and dependent on available hardware for parallelizing transition matrix development 

due to the large number of perturbations required.  Furthermore, sources of accumulated error 

between the full model and accelerated simulation were not readily identifiable. 

 

Figure 4.1 MEMS micro-robot [34] switching and actuation schematics. A micro-robot schematic with a simplified 

equivalent circuit overlaid in red on the robot body is shown. A simplistic battery switching schematic, with an H-bridge 

(represented schematically as a simple single-pole double-throw switch) is shown, and similar simplistic switching was 

used in the case study here. A sample battery discharge profile is shown with a representative single capacitor charge 

cycle profile. 

From a numerical methods perspective, the modeling and simulation of systems with 

disparate timescales is known to be challenging. Nonetheless, different approaches can be used 

depending on the specifics of the problem being analyzed. Engstler and Lubich presented an 

extrapolation approach where aspects of the problem are inactivated during portions of the 

extrapolation to reduce computation [25]. Constantinescu and Sandu extended this for 

“extrapolated explicit and implicit compound multirate steps” [26]. Roychowdhury discusses 

analysis of multiple time scale circuits by using different time variables [27]. Edwards shows an 
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example approach with a heat conduction problem of two timescales [28]. A broad discussion on 

the topic of multiple timescales is given in [29]. 

Due to several features common to electrochemical battery modeling, the implementation 

approach of these traditional multi-scale methods may not be directly applicable. These aspects 

include: variable coefficients (seen in the concentration dependency of the diffusion coefficient), 

multiple timescale boundaries (slow evolving open circuit potential and fast switching 

dynamics), Neumann-type boundaries (positive electrode concentration), non-linear algebraic 

constraint of the boundary (exponential form of the Butler-Volmer equations), and the fact that 

the slow dynamics are produced due to accumulation of repeated fast dynamic events.  While 

this does not preclude the possibility of adapting the above methods to the thin-film battery 

simulation problem examined here, this paper focuses on transition matrix methods as introduced 

above. 

Here, we propose the use of intrinsic dynamics and numerical error analysis to model thin-

film solid-state battery behavior over repeated fast timescale loading events in a computationally 

efficient form.  First, we review the basic electrochemical battery model applied in previous 

work. Then, we describe how to directly compute a transition matrix for states of the discretized 

electrochemical model over fast timescale events using lithium concentration as the states of a 

dynamic system.  This substantially reduces overhead in identifying the transition matrix relative 

to past work.  Next, further understanding/improvement of projection of system states is 

achieved through an error analysis performed to decouple sources of error caused by 

approximations of various nonlinear phenomena that influence the state projections. In 

combination with knowledge of the expense of reducing certain error contributions, this allows 

for targeted error reduction. Finally, we demonstrate implementation of these modeling 

approaches in a case study looking at cyclic capacitive loading of a thin-film battery, arranged to 

mimic effects that might be seen in a microrobotic application [34, 36, 64]. The implementation 

of these modeling techniques is able to provide over a 44x reduction in function calls compared 

to our original approach [42] (see chapter 3) and a 99.96% computational reduction over a full 

simulation of the battery discharge, with additional savings possible with more aggressive 

updating and/or optimized time-stepping. 
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4.3 Modeling Approach 

4.3.1 Modeling Nomenclature 

Three main approaches to accelerated simulation of battery discharge are discussed in this 

paper, and will be referred to as follows. The approach from our prior work [42] (see chapter 3) 

that was based on perturbation of states, where the states were defined as changes in 

concentration, will be denoted as the “perturbed state approach.” The current work develops a 

transition matrix that is developed directly from a modeled load and will be denoted as the 

“direct transition matrix approach.” Additional improvements are made by targeted updates 

based on information gathered from the error analysis and this approach will be denoted as the 

“updating transition matrix approach.” 

In our prior work [42] (see chapter 3) we referred to the proposed type of loading as “cyclic 

capacitive” where “cyclic” refers to the repeated switching of a load (e.g. load on/load off), and 

“capacitive” refers to a load that behaves similar to an electrical capacitor. In common battery 

terminology “cycles” or “cyclic” generally refers to the full battery charge and discharge, 

additionally capacity and capacitance are easily confused. To avoid confusion, in this paper we 

will denote a single capacitive loading period (the actuator, represented by a capacitor, is charged 

and then discharged from the battery) as a “cap-cycle.” 

4.3.2 Modeling Background 

The foundation of our modeling approach is based on a one-dimensional electrochemical 

model of a thin-film battery presented in Fabre et al. [14] and others  [15, 16]. This was 

augmented based on the authors’ findings in [41] (see chapter 2) to accommodate repeated cap-

cycles [42] (see chapter 3). A brief overview of the electrochemical equations will be given here. 

For a more through development, approximations, and assumptions, see the prior works [14-16, 

42] (see chapter 3). The essence of the electrochemical model is a combination of the diffusion 

equation and boundary conditions describing the Li in the positive electrode, and a current 

balance through the battery based on the Butler-Volmer equation describing voltage changes at 

the electrolyte boundaries and Ohm's law describing the voltage drop across the electrolyte. This 

formulation is a partial differential equation (PDE) with Neumann boundary conditions, where 

one of those boundary condition is coupled algebraically to the voltage changes in the battery. 



54 

 

The equations were nondimensionalized as noted in [42] (see chapter 3). This gives us a 

nondimensional diffusion equation and boundary conditions for the positive electrode: 

  
∂𝕐+

∂𝕋
=

∂

∂𝕏
(𝔻(𝕐+)

∂𝕐+

∂𝕏
)  (4.1) 

 
∂𝕐+

∂𝕏
= 𝑓1(𝕀)|𝕏 = 0 (4.2) 

 
∂𝕐+

∂𝕏
= 0|𝕏 = 1 (4.3) 

where the double struck charterers (e.g. 𝕐+) symbolize a normalization or nondimensionalized 

value: 𝕋 is time, 𝕐+ is the concentration in the positive electrode, 𝕏 is the spatial variable in the 

positive electrode, 𝔻(𝕐+) is the concentration-dependent diffusion coefficient in the positive 

electrode, and 𝕀 is current which in part describes the positive electrode/electrolyte Neumann 

boundary condition. This current at the boundary needs to be balanced with the current through 

other parts of the battery using the Butler-Volmer equation which relates current and potential 

changes within the battery (electrode/electrolyte interfaces): 

 𝕀 = 𝑓(𝕐e, 𝕐+)[−exp((αa+ − 1) × (𝕍3 − 𝕍2 − 𝕌)) ] (4.4) 

 𝕀 = 𝑔(𝕐e)[exp(αa− × −𝕍1) − exp((αa− − 1)𝕍1) ] (4.5) 

where 𝑓 and 𝑔 are functions of the current state of concentrations of the positive electrode (𝕐+) 

and electrolyte (𝕐e, approximated as constant); αa is the anodic charge transfer coefficient with 

additional subscripts denoting the positive or negative electrode; 𝕍1, 𝕍2, and 𝕍3 are  the voltages 

of the electrolyte at the boundary of the negative electrode, the voltage of the electrolyte at the 

positive electrode boundary, and the voltage of the positive electrode respectively; and 𝕌 is the 

open circuit potential describing the battery potential at equilibrium for a given concentration in 

the positive electrode, and was determined from a combination of supplier data and experimental 

data. A basic schematic of the system setup is given in Figure 4.2. 

These equations were implemented with a combination of optimization and finite difference 

approaches to converge on currents and concentrations in the battery as suggested by Fabre et al. 

[14], with implementation aided by additional numerical method techniques from [67] and [66]. 

Additional approximations included by Fabre, and retained in our model include: no potential 

drop in the negative electrode, constant conductivity in the electrolyte, and no self-heating 

effects. 
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Figure 4.2 Battery model schematic. The one-dimensional battery model is shown with the voltage and spatial locations. 

The corresponding equations are indicated. Adapted from [42] (see chapter 3). 

Additionally we treat the positive electrode as a perfect electrical conductor so no voltage drop 

occurred. For simplicity the diffusion coefficient was based on the concentration of the previous 

time step, removing the time dependency. 

Due to the fast changes that can take place in repeated cap-cycles, it may be necessary to 

discretize with very fine time steps during certain periods in the finite difference approach. 

Numerically, the result of these fast dynamics is an increase in numerical expense for solving a 

single cap-cycle. This becomes problematic when extending the modeling to long periods of 

time, where it is not realistic to perform detailed modeling for all cap-cycles. Therefore an 

approach for taking current system states and being able to project these over many repeated cap-

cycles in the future is of great interest. 

4.3.3 Projection Modeling: Direct Transition Matrix Approach 

Various sets of system quantities can be used as states of a dynamic system. The “perturbed 

state approach” used changes of concentration in the positive electrode (∆𝕐+) as states of the 

system and was presented by the authors with the basic switching model in [42] (see chapter 3). 

This projection approach used perturbation of the concentration changes at each finite difference 

grid point of the positive electrode independently to build a numerical Jacobian or transition 

matrix. One major limitation of this approach was the necessity to perturb the system for each 

grid point. This burden can be reduced through parallel processing. However, it was determined 

that if a change was made to the state definition, then the transition matrix could be developed 

directly from the model without the need of perturbations. Instead of using the change in 

concentration, ∆𝕐+, as the states of the system, the concentrations  themselves, 𝕐+, were used. 

The transition matrix associated with these states then becomes the accumulated finite difference 
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steps during each cap-cycle. This change may seem insignificant, yet as will be seen can have 

important implications for computational efficiency. 

The basic development of the new transition matrix is presented here. The positive electrode 

lithium concentration profile calculated by the finite difference is a function of the current and 

diffusion coefficient. The current dictates the boundary condition and all points are functions of 

the diffusion, which in turn is dependent on the concentration (for simplicity the diffusion 

coefficient was based on the concentration of the previous time step). The finite difference 

approach in concentration used to solve Equations 4.1, 4.2, and 4.3, can be expressed as: 

 𝐀𝑖,𝑛𝕐i,n+1 = 𝐁𝑖,𝑛𝕐i,n + 𝐫𝑖,𝑛| 𝐀, 𝐁 = 𝑓(𝔻) 𝑎𝑛𝑑 𝐫 = 𝑔(𝕀,𝔻)  (4.6) 

where 𝕐i,n is the concentration profile vector in the positive electrode at time step “n” of cap-

cycle “i.” Matrices A and B are functions of the diffusion coefficient and r incorporates the 

boundary conditions for the given time step including the information about the flux (based on 

the electrical current) and the diffusion coefficients at the boundary. 

The implementation of this in practice was done using a combination of information from 

[67] and [66], with the finite difference matrices set up as follows to account for a non-uniform 

mesh. For a 1D mesh of N+1 grid points, let ℎ𝑘 be the distance between grid point k and k+1, 𝔻𝑘 

be the diffusion coefficient of the grid point (based on the concentration from the last time step), 

and 𝜏 the time step size. We can then define: 

 𝑝𝑘 =
ℎ𝑘
2

4ℎ𝑘−1
2  𝔻𝑘−1 +

3ℎ𝑘−1
2 +2ℎ𝑘−1ℎ𝑘−ℎ𝑘

2

4ℎ𝑘−1
2 𝔻𝑘 −

1

4
 𝔻𝑘+1 (4.7) 

 𝑟𝑘 =
1

4
𝔻𝑘−1 +

−ℎ𝑘−1
2 +2ℎ𝑘−1ℎ𝑘+3ℎ𝑘

2

4ℎ𝑘
2 𝔻𝑘 −

ℎ𝑘−1
2

4ℎ𝑘
2 𝔻𝑘+1 (4.8) 

 𝑞𝑘 = −(𝑝𝑘 + 𝑟𝑘) (4.9) 

 𝑠𝑘 =
(ℎ𝑘−1+ℎ𝑘)

2

2𝜏
 (4.10) 

We then can build the inner parts of the A and B matrices from Equation 4.6: 

𝐀(𝑘, 𝑘 − 1) = −𝑝𝑘; 𝐁(𝑘, 𝑘 − 1) = 𝑝𝑘 

 𝐀(𝑘, 𝑘) = 𝑠𝑘 − 𝑝𝑘;  𝐁(𝑘, 𝑘) = 𝑠𝑘 + 𝑝𝑘 (4.11) 

𝐀(𝑘, 𝑘 + 1) = −𝑟𝑘;  𝐁(𝑘, 𝑘 + 1) = 𝑟𝑘 
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Using ghost points we address the diffusion coefficient at the boundaries, 

 𝐶 =
2ℎ1

2

𝜏
 (4.12) 

 𝐀(1,1) = 𝐶 + 2𝔻1, 𝐀(1,2) = −2𝔻1 

 𝐀(𝑁 + 1,𝑁) = −2𝔻𝑁+1, 𝐀(𝑁 + 1,𝑁 + 1) = 𝐶 + 2𝔻𝑁+1 (4.13) 

 B(1,1) = 𝐶 − 2𝔻1, 𝐁(1,2) = 2𝔻1 

 𝐁(𝑁 + 1,𝑁) = 2𝔻𝑁+1, 𝐁(𝑁 + 1,𝑁 + 1) = 𝐶 − 2𝔻𝑁+1 

Finally, to incorporate the Neumann boundary conditions we convert the value to a Dirichlet 

condition for that time step to build the r vector from Equation 4.6, which is zero except the first 

element. 

 𝐫(1) = 𝔻𝑁+1 (4.14) 

With the finite difference matrices formulated we can then incorporate the boundary 

condition information in r with B such that Equation 4.6 is rewritten as: 

 𝕐i,n+1 = 𝐀𝑖,𝑛
−1𝐁𝑖,𝑛

∗ 𝕐i,n| 𝐁
∗ = 𝑓(𝕀,𝔻, 𝕐i,n) (4.15) 

If 𝕀, current, and 𝔻, diffusion coefficient, are known at each time step in a cycle, the matrices 

A and B can be determined directly. Thus, the full cycle transition matrix 𝚽 can be calculated as: 

 𝕐𝑖+1,1 = 𝚽i𝕐𝑖,1 = (∏ 𝑨𝑖,𝑗
−1𝑩𝑖,𝑗

∗𝑛
𝑗=1 )𝕐𝑖,1 (4.16) 

This allows us to create the transition matrix from a single cap-cycle as a composite of all the 

finite difference steps. If we assume that the transition matrix is approximately constant over the 

projection of m cap-cycles, then, as in the perturbed state approach, we have: 

 𝕐𝑖+𝑚,1 = (𝚽𝑖)
𝑚𝕐𝑖,1 (4.17) 

This enables one to use the transition matrix from a single cap-cycle to project over many 

cap-cycles similar to the perturbed state approach. Performing the calculations this way allows us 

to get an approximation of the states throughout the projection without needing to solve the 

algebraic component created by the Butler-Volmer equations, which is a critical source of 

computational complexity in this type of problem. Additionally, depending on hardware, this 

approach can have significant overhead reduction compared to the perturbed state approach. 
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There are two main limitations to this approach. First, as with the prior approach, we assume 

a constant transition matrix over the projection, which in essence approximates no changes in 

cap-cycle current and diffusion coefficients profiles over the projection, as well as certain aspects 

of the boundary concentration information. This assumption will likely be the main limitation in 

size of projection that can be made for a given permissible error, and will have varying effects 

dependent on the nonlinearities and loading of the system. Second, by defining the system states 

as the concentration levels, instead of differential concentration as in our previous work [42] (see 

chapter 3), we may reduce the sensitivity due to numerical round off error. However, loss in 

sensitivity can be outweighed by decreased numerical expense in our current application. 

4.3.4 Error Analysis 

Since a major limiter to the projection size is the error caused by the approximation of a 

constant transition matrix over the full projection, understanding the severity of various 

components of this error provides insight for its mitigation. Therefore, here we performed a 

detailed error analysis of the assumptions related to a constant transition matrix. To frame this 

analysis we need to revisit the formulation of the direct projection transition matrix, 

 𝕐i,n+1 = 𝐀i,n
−1(𝐁i,n 𝕐i,n + 𝐫n) = 𝐀i,n

−1𝐁i,n
∗  𝕐i,n. (4.18) 

In the first part of the equation rn is independent of 𝕐; however, to bring this boundary condition 

information into the transition matrix, rn is incorporated into 𝔹* resulting in 𝔹* necessarily 

becoming coupled with the concentration 𝕐 around the boundary. We can rewrite Equation 4.18 

as 

 𝕐i,n+1 = 𝐀i,n
−1(𝐁i,n + 𝐫n

∗)𝕐i,n | 𝐫 = 𝑓(𝕀i,n, 𝔻i,n, 𝕐i,n) (4.19) 

where r* assumes the dependence on 𝕐 around the boundary. If we assume N finite difference 

steps for one full cap-cycle, we can then express the concentration changes over the entire cap-

cycle as: 

 𝕐i,N+1 = 𝕐i+1,1  (4.20) 

  = 𝐀I,N
−1(𝐁I,N + 𝐫I,N

∗ )…𝐀I,1
−1(𝐁I,1 + 𝐫I,1

∗ )𝕐I,1|𝐀, 𝐁 = 𝑓(𝔻); 𝐫∗ = 𝑓(𝕀,𝔻, 𝕐) 

  = ∏ {𝐀i,N−j
−1 𝐁i,N−j + 𝐀i,N−j

−1 𝐫N−j
∗ }N−1

j=0 𝕐i,1  

  = 𝚽i𝕐𝑖,1 | 𝚽i = 𝑓(𝕀,𝔻, 𝕐) 
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Here we see that the transition matrix 𝚽 is in reality a function of the current profile during 

the cap-cycle, 𝕀, the diffusion coefficient, 𝔻, and the concentration 𝕐 around the boundary. 

Using the projection approaches described previously, 𝚽 is approximated as constant over the 

projection. The error associated with this simplification can be divided into three main 

components. First is error due to changes in the diffusion coefficient in the main bulk of the 

electrode. This is caused by the concentration dependence of the diffusion coefficient and comes 

from errors associated with the A
-1

 and B matrices. Second is error due to the changes in the 

current profile from one cap-cycle to the next. Third is error associated with changes in 

concentration and diffusion at the boundary. This accounts for the diffusion and concentration 

dependency of r*. If we assume that the transition matrix is based on some earlier cap-cycle “O,” 

we can define these errors as follows: 

 𝐄A−1:i,n = 𝐀𝑂,n
−1 − 𝐀i,n

−1 (4.21) 

 𝐄B:i,n = 𝐁𝑂,n − 𝐁i,n 

 𝐄r∗:i,n = 𝐫𝑂,n
∗ − 𝐫i,n

∗  

where 𝐄A−1:i,n is the error or difference between the values of A
-1

 in the current cap-cycle “i” and 

time step “n”, A
-1

 of time step “n” for the earlier cap-cycle “O” on which the projection 

transition matrix is based. Similarly with 𝐄B:i,n and 𝐄r∗:i,n. The error 𝐄r∗:i,n is a combination of 

𝐄𝕀:i,n, the error associated with the change in the current profile, and 𝐄𝔹:i,n, the error associate 

with the boundary concentration and diffusion, 

 𝐄r∗:i,n = 𝐄𝕀:i,n + 𝐄𝔹:i,n (4.22) 

Using this we can generalize and rewrite Equation 4.20 as: 

 𝕐i+1,1 = {𝑓(𝐀𝑂
−1, 𝐁𝑂, 𝐫𝑂

∗) − 𝑓(𝐀𝑂
−1, 𝐁𝑂, 𝐫𝑂

∗ , 𝐄A−1:𝑂 , 𝐄𝐁:𝑂 , 𝐄𝕀:𝑂, 𝐄𝔹:𝑂)}𝕐i,1 (4.23) 

A more thorough formulation of this expression can be done, but does little here to further 

the topic so will not be presented. Details of the findings will be given later. 

4.3.5 Projection Modeling: Updating Transition Matrix Approach 

Ultimately our goal is to be able to model these systems in an accurate, numerically 

reasonable way. The ability to analyze the error and to separate the various components and 

interactions is extremely helpful in determining potential error reduction strategies. If at select 
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steps in the projection we could update the transition matrix with real or approximated values, 

we could potentially lengthen the projection and/or reduce the error. Some key considerations are 

as follows: first, updating 𝔹, 𝔻, and 𝕀 of a step during the projection would in essence be similar 

to running a full model and would essentially eliminate error (and give no numerical savings); 

second, updating 𝕀 is numerically expensive in that we need to calculate the Butler-Volmer 

equations for each time step of the cap-cycle to gather that information, which is likely 

comparable to performing the full model; third, updating 𝔻 and 𝔹, can be done at a lower 

numerical cost because an approximation at each time step can be determined without needing to 

solve the algebraic aspects of the Butler-Volmer equations. Using these considerations and 

outcomes from the error analysis we implemented a transition matrix updating method where 

key aspects of the transition matrix are adjusted at certain points in the projection. 

4.4 Case Study: Thin-film Battery Loading 

With a modeling approach fully developed, it is instructive to see this technique 

demonstrated in a case study. As mentioned previously, one problem of interest for this type of 

modeling is loading of thin-film batteries with repeated capacitive loads, such as what could be 

seen in certain microrobot applications [34, 36, 68]. For example, walking gaits for a 

piezoelectric microrobot requires repeated charging of piezoelectric actuators that behave 

electrically as capacitive loads. The modeling incorporated findings based on a simplistic 

switching approach from the authors’ in [41] (see chapter 2) to accommodate repeated cap-

cycles and the perturbed state approach in [42] (see chapter 3). This application can see fast 

current and voltage changes at times, necessitating fine discretization during certain time periods 

in the finite difference approach. Using the approaches mentioned here for taking current system 

states of the battery and being able to project these over many repeated cap-cycles in the future is 

of great importance. For a given permissible error in projection, projection lengths will need to 

be shorter later in the battery discharge as non-linearities increase, as seen in part in the battery 

discharge profile sketch in Figure 4.1. For this case study, permissible errors were set and simple 

algorithms implemented to determine projection size. 

It is worth noting also that the given load scenario of the case study in this and prior 

modeling work by the authors is a light load and it has been determined that simpler underlying 

battery models could be used with equal validity. However, the electrochemical model presented 

here gives a broader range of applicability than simpler models do (such sceneries have been 
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identified) and allows for more direct parameter correlation, such that the modeling concepts and 

approaches presented are considered valid and useful. Some minor issues with the model 

implementation were addressed for the two new approaches presented here, and the current 

implementation shows some limitations at times when the battery has low loads on the order of 

the leakage current of the circuit that cause some numerical oscillations, but these issues are 

minor. 

4.4.1 Experimental Data Acquisition 

Experimental testing was performed previously, for calibration and validation, to simulate a 

load profile similar to a cycled piezoelectric actuator, using a standard capacitor (constant current 

discharges were also used in calibration). The batteries used for experimental testing were 

50μAh thin-film lithium batteries from Cymbet
TM

 [46]. These batteries had a chemistry that 

would potential be suitable for microrobotic applications, although form factor and other aspects 

of off-the shelf batteries is not currently compatible. It appears that these may be “Li-free” 

batteries, meaning the lithium negative electrode is likely plated on the current collector during 

the first charging of the battery rather than an ideal lithium source, yet our modeling still appears 

adequate. Model calibration and initial results were published in [42] (see chapter 3). Detailed 

description of the limitations in the data is given in [41, 42] (see chapters 2 and 3), however four 

main general points will be noted. First, the current measurement for the cycled tests was 

measured with an AC probe and converted to a DC reading with accuracy limited by the 

conversion approach. Second, substantial noise and extraneous effects in the cycled data had to 

be addressed. Third, the testing was performed with multiple batteries, so some variability was 

introduced. Fourth, constant current data used for calibration, which reported lower capacities 

then the published data sheet, was linearly scaled to correspond with those of the calibration 

switching data set based on an equivalent current in attempt to account for differences in dataset 

acquisition/assumptions and ultimately to align assumed comparable capacity usage [42] (see 

chapter 3). It is unclear why the constant current data would be further from the published data 

values when it was taken with a more straightforward measurement approach. Because of these 

limitations, the data here is used more for model approach validation rather than for use as 

precise experimental result presentation. Representative profiles of the switching dynamics will 

be shown later. 
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4.4.2 Direct Transition Matrix Approach 

From the validation dataset, the starting voltage is input into the model as an initial condition 

(all other information comes from the calibration). This starting voltage measurement is 

influenced by the leakage current, and is accounted for in the model as before [42] (see chapter 

3). An algorithm was developed to determine projection size based on permissible errors. 

Projections ranged from 100-40,000 cap-cycles, with more aggressive projection possible. A 

certain number of fully simulated cap-cycles after each projection were generally added to allow 

the model to settle. Projections began after the 200th cap-cycle, where projections began after the 

300th cap-cycle in the perturbed state approach. 

The overall discharge profile of the battery validation dataset [42] (see chapter 3) and the 

direct transition matrix approach are shown in Figure 4.3 and show good agreement.  

 

Figure 4.3 Model and validation data comparison full battery discharge. Validation data is averaged unlike that shown 

in [42] (see chapter 3). 

In addition to the overall battery discharge profile, comparison was made between 

experimental data and the direct transition matrix approach for detailed profiles of the capacitor 

charge. Two sample charge profiles are given with the overall discharge profile in Figure 4.4 to 

represent the fit of the model and validation data over time. This fitting of the individual cycles is 

comparable to the perturbed state approach. 

4.4.3 Error Quantification 

Quantification of errors caused by approximations during projection is desirable for targeting 

modeling improvements. 
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Figure 4.4 (Left) Model and validation data comparison of a detailed capacitor charge profile. Error bars show error 

from rolling average and from discrepancy between battery and capacitor voltage readings. (Right) The validation and 

model data are presented with just key features showing the fit in select cycles and over the full battery discharge. Error 

bars are omitted from the experimental data. 

One simplistic method of error quantification is through performing comparison between full 

modeling of a series of cap-cycles and an associated projection over the same series. This 

preliminary error quantification was performed for three separate series in the modeled battery 

discharge that represent three key regimes. The first series begins near cap-cycle 200 of the 

discharge, where non-linear affects are low. The second series begins near 1e6 cap-cycles, which 

still has low nonlinearities in the open circuit potential profile but is in the range where diffusion 

coefficients are changing. The final series begins near 1.4e6 cap-cycles. Here, there are 

significant nonlinearities and the error grows quickly with projection size. Each of these three 

series were fully simulated for 1,000 cap-cycles, and a corresponding projection was also 

calculated over the same period. 

Two aspects of the error seen between the fully simulated cap-cycles and the projected cap-

cycles are of interest. First is the boundary condition 𝕐+(0), the normalized lithium concentration 

at the positive electrode/electrolyte boundary, which is approximated to range from 0.5 if a 

battery is fully charged to 1V/V and 1 at fully discharged. This boundary influences the voltage 

of the electrode as well as indicates when the battery is fully discharged. Second is the integrated 

area of the lithium concentration profile in the positive electrode. This is an expression of the 

amount of capacity used, and conversely, the amount of capacity left in the battery. The lithium 

profiles across the positive electrode at the beginning of the three projections are shown in 



64 

 

Figure 4.5. For faster switching (higher average current) and for lower diffusion coefficients, the 

profiles would show more variation across the electrode. 

For each of the three series, the error over the 1,000 cap-cycles was calculated as the 

difference between the normalized lithium concentration in the positive electrode, 𝕐+(0), of the 

direct projection method and the fully simulated series results (i.e. no projections over the 1,000 

cap-cycles). 

 

Figure 4.5 Lithium profile in the positive electrode at the beginning of the three projections for error analysis. 

This error was then normalized by the change in concentration of cap-cycle 200. This means 

that the errors presented indicate approximately the fraction of the change seen in one regularly 

modeled cap-cycle. The errors per cap-cycle are given in Figure 4.6. 

It can be seen that the error for the boundary concentration is quite low for series 1, yet is 

much higher for series 2 and 3 where there are significant nonlinearities. However, for the 

integrated concentration the errors are more similar, and the first series actually showing slightly 

more error than the others. These plots suggest that understanding of the error contributions over 

time could potentially improve the accuracy of the projection, and/or allow for larger projections 

or decreased numerical expense. 

In light of this, a more thorough error analysis was performed, as described in Section 4.3.4. 

The key feature of the error is that the different components contribute to the combined error at 

different times and in different ways. To further understand these different components we 

selected a reference cap-cycle near the beginning of the full battery discharge (10th cap-cycle) as 

a base. Using notation from Equations 4.18 and 4.23, we can develop the A and B* matrices for 

all the steps in this base cap-cycle. These matrices combined can form the base transition matrix.  
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Figure 4.6 (Left) Integrated concentration error per cap-cycle for three separate projections. (Right) Boundary 

concentration error per cap-cycle for three separate projections. 

In order to compare different components of the error, we adjusted these base A and B* 

matrices in several ways for each cap-cycle modeled. It should be noted that the cap-cycles 

modeled in this error analysis are a large subset of the cap-cycles fully modeled during the direct 

transition matrix approach. For each cap-cycle analyzed we used the concentration profile 

determined in the direct transition matrix approach, previously presented, as the beginning 

concentration for the cap-cycle. Then the changes associated with that cap-cycle were calculated 

in the following way: First, the concentrations were calculated solely using the base matrices 

(Base). Second, these base matrices were adjusted to account for diffusion coefficient difference 

in the bulk of the positive electrode, thus removing that error component (𝔻). Third, the base 

matrices were adjusted to account for the current profile difference, thus removing that error 

component (𝕀). It should be noted that the current profiles used to update the matrices were from 

those stored during the full modeling, as these are not readily available without fully modeling 

the cap-cycle. Fourth, the base matrices were adjusted to account for boundary concentration and 

diffusion differences, thus removing that error component (𝔹). Combinations of these 

adjustments were also performed. Because the discretization in time for each cap-cycle was not 

necessarily equal from cap-cycle to cap-cycle, linear approximations of some values were made 

when applying data from one cap-cycle to another. Finally these were compared to the fully 

modeled cap-cycle obtained when running a full direct transition matrix approach. The error then 

became the difference between the concentration profile change in the fully modeled cap-cycle 

and the profile developed using the base and augmented matrices. The error between each 
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approach and the fully modeled cap-cycle was normalized by the change in concentration of the 

200th cap-cycle, as before. Boundary and total integration concentration errors are presented in 

Figure 4.7. Upper plots of Figure 4.7 show the normalized error. The middle two plots show a  

 

Figure 4.7 Error analysis results. Errors associated with using information from the base (10th) cap-cycle to calculate the 

concentration change for the given cap-cycle compared to the full modeling of that cap-cycle. (Left) Error in the 

boundary concentration. (Right) Error in total integrated concentration. (Top) Error for the given scenarios normalized 

by the change in concentration of the 200th cap-cycle. (Middle) Ratio of the error for each scenario compared to the 

maximum absolute error of any scenarios for the given cap-cycle. (Bottom-Right) The boundary diffusion coefficient and 

voltage, given for references to see the nonlinearities introduced. 
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ratio of the error for each adjustment approach compared to the maximum absolute error seen in 

any of the adjustment approaches (including no adjustment, or the base transition matrix) for the 

given cap-cycle. Finally, in the bottom right the boundary diffusion coefficient and voltage are 

given for reference to help visualize nonlinearities being introduced into the system. 

The overall error plots (top two plots) give an understanding that the magnitude of the 

boundary error is significantly larger than that of the total concentration error. Although not 

distinguishable in this plot, this is true for earlier loading events, but at a smaller magnitude 

difference. Additionally, it is striking that the total concentration error has a nearly linear rise 

compared to the non-linear boundary error. Finally, the total concentration error seems little 

affected by the changing diffusion coefficient and more affected by the voltage profile, whereas 

the boundary seems affected by both. This last point compliments the determination of which 

updating method gives the greatest improvement. For both types of error the best results are 

when updating is done for all three components, however if only updating two of the three, the 

best updating approach is different for the boundary or total concentration error (total 

concentration is benefited by the updating 𝕀 and 𝔹, and boundary concentration is benefited most 

by updating the 𝔹 and 𝔻). Combining these we can state that the total concentration error is most 

affected by changes in the electrical aspects of the system, that is current and voltage. Whereas 

the boundary concentration error is more affected by changes in the diffusion and boundary 

concentration. However, if we were to switch those, the effect of updating only 𝕀 and 𝔹 has a 

much more adverse effect on the boundary concentration than updating only 𝔹 and 𝔻 has on the 

total integrated concentration. Understanding this can allow error reduction in a more systematic 

way. 

For comparison, the same approach was used for a reduced number of cap-cycles for a 1kHz 

10nF loading, and the plots of the normalized error are shown in the bottom plots of Figure 4.8. 

It can be seen that very similar error occurs at this elevated loading. 

4.4.4 Updating Transition Matrix Approach 

Using the information gathered from the error analysis we implemented a transition matrix 

updating method. For each projection, at five points during the projection the transition matrix 

was updated using current approximations of 𝔻 and 𝔹. The numerical cost for the combined five 

updates was equivalent to about one regular function call or cap-cycle. 
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Figure 4.8 Error analysis plots for (Top) 100Hz 10nF for comparison (Bottom) 1kHz 10nF load. Errors associated with 

using information from the base (10th) cap-cycle to calculate the concentration change for the given cap-cycle compared 

to the full modeling of that cap-cycle. (Left) Error in the boundary concentration. (Right) Error in total integrated 

concentration. Error for the given scenarios are normalized by the change in concentration of the 200th cap-cycle. 

4.4.5 Approach Comparison 

The overall discharge profile of the battery validation dataset and the perturbed state 

approach [42] (see chapter 3) is compared to the two projection approaches presented here and is 

shown in Figure 4.9. It can be seen that there is close agreement with all approaches. 
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Figure 4.9 Comparison of the updating transition matrix approach with the direct transition matrix approach, 

experimental data and the perturbed state approach in [42] (see chapter 3). Validation data is averaged unlike that shown 

in [42] (see chapter 3). 

To compare the numerical costs between the perturbed state approach and the approaches 

reported here it is useful to look at the number of cap-cycles fully modeled (or equivalent 

function calls) compared to the total number of cap-cycles modeled (including projections). To 

perform this calculation, certain approximations had to be made as to how to deal with overhead 

and parallel processing. It is understood that this is not a perfect comparison between the three 

approaches in that the some variations existed between the methods (e.g. number of cap-cycles 

before projections began, parallel processing, overhead, and allowed error algorithm variation), 

but the comparison is still considered instructive. 

For the given hardware and permissible error algorithms used, the direct approach had a 

numerical cost of 0.08% (equivalent function calls/total cap-cycles) after ~0.74 million cap-

cycles and 0.46% after ~1.43 million cap-cycles where the updating approach was only 0.14% 

after ~1.43 million cap-cycles. This may be compared to our previous approach, the perturbed 

state approach, with states of differential concentration [42] (see chapter 3), which reported a 

cost of 0.19% after ~0.677 million cycles, and 6% after ~1.43 million cycles. A comparison of 

the three projection transition matrix approaches is given in Table 4.1 where the numerical 

expenses are compared with representative times. It is acknowledged that costs will vary 

depending on hardware, assumptions of overhead etc., and with acceptable error algorithms, 

however, these findings highlight potential gains for the direct and updating approaches. Times 

were based strictly off of an approximate 3 sec per function call which is a reasonable 

approximation for demonstration. The length of this function call is important to highlight for 



70 

 

two reasons. First, the time stepping approach within each cycle was not optimized and 

improvement could be made in future work in the time required. Second, even with significant 

improvements in function call time, due to the large number of total cap-cycles per test, any 

appreciable function call time will likely necessitate model reduction methods. A final note is 

that the computation time for the updating transition matrix approach in this modeling scenario, 

was less than the experimental run-time, thus suggesting potential pseudo-real time applications.  

Table 4.1 Computational Expense for Various Projection Approaches 

Transition 

Matrix  

Approach 

Total  

Loading 

Events 

Function 

Calls 

Approx. 

Function 

Time [hr] 

Numerical 

Cost 

Perturbed 1.430e6 90510 75.4 6.3% 

Direct 1.430e6 6558 5.5 0.46% 

Updating 1.430e6 2038 1.7 0.14% 

4.5 Conclusions 

Prior work by the authors aimed at exploring the potential of modeling systems with repeated 

capacitive loading, in particular for MEMS applications. This prior work combined switching 

and battery dynamics to explore the effects of this type of loading on a potential battery system. 

However, numerical expense of one capacitive load event (cap-cycle) was significantly 

numerically intensive to preclude reasonable modeling of the proposed full system. Therefore, a 

projection approach was presented in that work to reduce this expense by projecting system 

states over large series of consecutive cap-cycles. This perturbed state approach greatly reduced 

the numerical expense, however, significant expense was still required. 

This work adapts and expands the perturbed state approach in two significant ways. The first 

(denoted as the direct approach in the text) is in a fundamental redefinition of the states of the 

system. By defining the states of the system to be concentration values rather than differential 

concentrations, the transition matrix is developed directly from the model, eliminating the need 

for state perturbations. This in turn reduces the numerical overhead while achieving very similar 

results to the perturbed state approach. 

The second improvement is based on information from an error analysis of the projection. By 

understanding various components and sources of error in the projection, based on 

approximations inherent in the transition matrix, an error reduction strategy was developed and 

implemented. This approach periodically updated diffusion coefficient values and boundary 

diffusion coefficient and concentration values during projections based on the direct transition 
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matrix approach. The numerical expense of updating can be significantly cheaper than running a 

full model due to the fact that the algebraic relationships of the Butler-Volmer equations do not 

have to be resolved. This approach, with the simplistic implementation presented here, has 

modest gains over the direct approach, however, greater improvements are undoubtedly 

achievable.  

A case study was run to demonstrate the implementation of these projection approaches and 

significant reduction in numerical expense was seen. Although for the given loading conditions 

in the scenario presented, more simplistic base models of the battery could be used, the presented 

modeling approach can be used in a broader range of loading cases, has more direct correlation 

with physical parameters, and should be able to be adapted for even more extreme loading 

conditions than currently suited for. Additionally, this methods presented should be applicable to 

more complex battery dynamics and/or areas beyond the current electrochemical example. 
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CHAPTER 5 SIMULATION TECHNIQUE CASE STUDIES 

5.1 Abstract 

Implementation of battery models can vary depending on loading scenario. Recent work by 

the authors’ presents modeling and simulation techniques based on repeated fast dynamic 

loading of thin-film batteries. These techniques were developed to address timescale issues with 

modeling these types of loads. To compliment that work, here we explore various aspects of 

these modeling techniques through a series of case studies. These scenarios explore different 

battery and load configurations to demonstrate and highlight aspects of these techniques. 

5.2 Introduction 

Battery modeling and simulation are key aids in design and control of many battery based 

systems. Various aspects of battery modeling have been explored in the literature [52, 69]. 

Recent work by the authors has focused on modeling of thin-film batteries subjected to repeated 

fast-dynamic loads [42, 43] (see chapters 3 and 4). In particular, the battery loading examined 

was tailored to mimic repeated capacitive loading as seen in common microelectromechanical 

systems (MEMS) actuators (e.g. piezoelectric). These types of loads can be seen in applications 

such as the walking microfabricated robots reported in [34, 36, 68]. 

The basics of the model builds on thin-film battery modeling reported by Fabre et al. [14], 

and is extended to include switching dynamics and parasitic capacitance as seen experimentally 

in authors’ prior work [41] (see chapter 2). The modeling also accounts for dynamics involved in 

the battery/load interaction. These combined dynamics exhibited characteristics on disparate 

timescales, e.g. switching dynamics on the order of microseconds and full battery discharge on 

the order of hours. These modeling techniques allowed for detailed modeling of individual load 

events while capturing changes over long stretches of repeated loading events. This bridging of 

timescales was accomplished by using a transition matrix approach that approximated system 

state changes over many loading events. 
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The development of these modeling techniques was done to allow more informed design and 

control of capacitively loaded systems based on battery power. With the model framework in 

place, this work uses these modeling techniques in a variety of design “case studies.” These case 

studies explore different modeling aspects that will be important when determining reasonable 

modeling implementation, and demonstrate example microrobot power system design 

implementation. 

There are two main aspects of model implementation that are addressed. First we look at 

loadings where simplistic modeling can be adequate instead of a more detailed electrochemical 

model. In our original work, for simplicity, we used a fairly light load for the model 

demonstration and validation. However, at such low loads more simplistic electrochemical 

modeling may often be adequate. Throughout this paper we will refer to the model developed in 

our prior work, with detailed electrochemical expressions, as the “detailed model.” In the first 

case study we revisit this original light loading and compare our original detailed model with a 

simplistic model that will be described. The second case study then looks at a heavier battery 

load where the simplistic model begins to degrade. Again the detailed and simple models are 

compared. These first two scenarios demonstrate the need at higher average current loading for 

more detailed, or at least, augmentation of simple modeling techniques.  

The last two case studies look at various design configurations for higher voltage operation. 

The third case study compares batteries in series used to directly charge a capacitor. Only a 

single loss source in the switching is implemented (others can be easily added), and this is used 

to determine energy transfer to a load capacitor based on the number of batteries in series. Again 

the detailed and simple models are run for comparison. The final case study then looks at 

batteries in parallel or batteries with greater surface area. This battery is modeled with a boost 

converter circuit. The combination of case studies three and four demonstrate how circuit design 

can be aided by these modeling techniques to determine the most effective voltage transforming 

approach. Together all these scenarios allow for a view of different applications of the modeling 

techniques developed, in a context comparable to microrobotic applications. 

It is important to note that battery model reduction or enhancement can likely be done at a 

variety of levels in the case studies presented; however, the simple and detailed models presented 

do give a broad range of modeling. Additionally, there are additional advantages to direct 

electrochemical modeling in terms of fabrication design of the battery. 
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5.2.1 Nomenclature 

A brief description of the nomenclature in this paper will be important. There are two main 

modeling approaches used in this paper. The first is the “detailed model” that corresponds to the 

detailed electrochemical model and projection approach presented in our prior work [42, 43] (see 

chapters 3 and 4). A brief overview of this model will be given. The other modeling approach 

will be referred to as the “simple model.” This model approximates the electrochemical 

dynamics in the battery in a very simplistic way. The basics of this model will also be explained 

in the text. 

The battery load of interest in this and prior work focuses on repeated fast-dynamic loading 

of thin-film batteries. In particular we are interested in repeated capacitive loads (mimicking that 

caused by switched piezoelectric or electrostatic actuators). In this case a “load event” is one 

charge and discharge of the load capacitor or actuator and will be referred to as a “cap-cycle.” In 

prior work this was sometimes referred to as just cycles, but to remove confusion with battery 

discharge cycles we will use “cap-cycle.” 

5.3 Modeling Background 

We will give a brief overview of the modeling approach, both the basic electrochemical 

model and the projection approach used to bridge repeated cap-cycles. The basic electrochemical 

model was based heavily on the work by Fabre et. al [14] which is similar to, and refers to, the 

work in [15, 16]. The particular model presentation here is taken from the our prior work [43], 

and a more complete description can be found there. The model represents a 1D lithium thin-film 

battery model with the spatial coordinate measured through the battery layers. The current 

balance in the battery is coupled with the electrochemical processes to determine the battery 

output. The diffusion of lithium in the positive electrode can be written: 

  
∂𝕐+

∂𝕋
=

∂

∂𝕏
(𝔻(𝕐+)

∂𝕐+

∂𝕏
)  (5.1) 

 
∂𝕐+

∂𝕏
= 𝑓1(𝕀)|𝕏 = 0 (5.2) 

 
∂𝕐+

∂𝕏
= 0|𝕏 = 1 (5.3) 

where the double struck letters are nondimensional values: 𝕐+, lithium concentration profile in 

the positive electrode, 𝕋, time, 𝕏, spatial coordinate in the positive electrode, and 𝕀, current in 



75 

 

the battery. The positive electrode/electrolyte interface boundary condition is represented by the 

function f1, and is current dependent. 

Using the Butler-Volmer equation the internal voltages, 𝕍, and the open circuit potential 

(OCV), 𝕌, are related to currents at the positive electrode/electrolyte boundary by, 

 𝕀 = 𝑓(𝕐e, 𝕐+)[−exp((αa+ − 1) × (𝕍3 − 𝕍2 − 𝕌)) ] (5.4) 

and the negative electrode electrolyte boundary by, 

 𝕀 = 𝑔(𝕐e)[exp(αa− × −𝕍1) − exp((αa− − 1)𝕍1) ] (5.5) 

where f and g represent functions of the concentrations in the positive electrode and electrolyte, 

and α the charge transfer coefficient with subscripts denoting the positive or negative electrode. 

The internal currents are balanced with the boundary current. We approximate a constant 

resistance across the electrolyte, and zero voltage drops in the electrodes. For other details of the 

model see the prior work. 

This model was shown to capture battery discharge dynamics for the chosen load reasonably 

[42] (see chapter 3). It will be important to note that, if the average current output of the battery 

is sufficiently small, concentration gradients in the positive electrode remain small. In that case 

the boundary concentration corresponds relatively well to the concentration throughout the 

electrode. In essence then, for low current loads it is possible to describe the concentration 

profile with a single number rather than a full profile. This can reduce the battery model to a 

variable voltage source (based on the OCV) and an internal resistance. However, as currents 

increase this simple model begins to fail and more involved modeling is needed. Using more 

developed models allows for greater scope of applicability but with the cost of complexity. 

With the electrochemical modeling setup, we then incorporate losses and switching effects, as 

well as parasitic capacitance as seen in prior experimental work [41] (see chapter 2). The nature 

of the fast, cyclic loading creates dynamics at a very short timescale. However, fully modeling 

each cap-cycle is numerically expensive and this expense is compounded when analyzing over 

the long time period of the battery discharge. To help address this we presented a state projection 

modeling technique where system states (lithium concentration information) can be predicted 

over many cap-cycles. This is done through a transition matrix which represents the changes 

from one cap-cycle. If we approximate a near constant transition matrix, we can use this 

transition matrix to predict future states with reasonable accuracy [42, 43] (see chapters 3 and 4). 
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This can be described by letting Φi be the transition matrix of the concentration profile of 

cycle i to cycle i+1. We can then write the relationship: 

 𝕐𝑖+1 = 𝚽i𝕐𝑖. (5.6) 

Approximating a constant transition matrix over m cycles we then have: 

 𝕐𝑖+𝑚 = (𝚽𝑖)
𝑚𝕐𝑖. (5.7) 

In this way we can model individual cap-cycles periodically and approximate changes in 

between. This modeling framework is presented and validated in our prior work [42, 43] (see 

chapters 3 and 4). Projection sizes are limited by the nonlinearities of the system.  

5.4 Limitations 

Before we explore applications of these techniques it should be noted that there are some 

limitations to the modeling and experimental data that have been addressed with our prior work: 

 Limitations with the experimental data for calibration and validation are discussed in 

[41, 42] (see chapters 2 and 3). Because of these issues, the experimental data 

presented is used for modeling demonstration purposes rather than experimental 

result presentation. 

 Limitations with the modeling approaches are discussed in [42, 43] (see chapters 3 

and 4). 

 Some algorithms such as those used for determining cap-cycle projection size and 

error may vary between case studies. 

 Some modeling runs were aided by parallel processing. 

5.5 Case Studies 

For modeling of batteries with repeated fast dynamic loads, the projection concept described 

can be useful to reduce numerical costs. As stated above, in this paper we will explore two 

aspects of model implementation through a series of case studies. The order of these case studies 

is made to begin with demonstrating how average current impacts the need for detailed 

electrochemical modeling, or if more simplistic modeling is adequate. To do this we will first 

develop a simple battery model and describe calibration for the parameters. The first case study 

demonstrates a loading where the simple model adequately captures the dynamics, whereas the 

second case study presents more extreme load where the detailed model works well, but our 
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simple model has significant deviation. After addressing current loading, the third and fourth 

case studies explore different design characteristics that can be captured through this modeling. 

The third approximates batteries in series to achieve higher load voltages, as well as showing 

targeted analysis of a particular switching loss. The fourth approximates batteries in parallel and 

examines a different load circuit, boost converter. 

5.5.1 Simple Model Formulation and Calibration 

For mild average current loads on batteries, a reasonable approximation of the 

electrochemistry is a simple variable voltage source, based on the OCV, and an internal 

resistance. This model approximates the electrochemistry in a very simplistic way, yet can be 

adequate for low average current loads where the lithium concentration profile in the positive 

electrode remains fairly uniform. 

To calibrate this “simple model,” we used the same calibration method as used for the 

detailed model reported in [42] (see chapter 3). This combined fitting of complete battery 

discharges at several current levels and fast dynamic fitting of a single early cap-cycle. These 

two datasets were chosen to help fit both slow and fast dynamic responses in the battery. The 

parameters fit for the simple model were internal resistance, a parameter for losses in the 

switching, and the battery parasitic capacitance. The overall capacity of the battery was taken 

from the detailed model calibration. 

Using this method we obtained comparable detailed and simple models. The calibration 

fitting of the detailed model from [42] (see chapter 3) and simple model are shown in Figure 5.1 

and Figure 5.2. Figure 5.1 shows fitting of constant current profiles for various current levels. 

Both models have difficulties matching initial voltage drops at very high currents, but for 

currents at least up to 1C (perhaps beyond) the detailed model is still able to capture these 

voltage drops where the simple model degrades earlier. 

Additionally, there is no mechanism to capture lost capacity at higher currents in the simple 

model, so all current levels produce the same output capacity, whereas the detailed model fitting 

matches capacities reasonable well at least up to 4C discharge rates. It is important to 

acknowledge there are various levels of modeling for batteries, and other modeling approaches 

categorized between the two presented here definitely exist. 
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Figure 5.1 Calibration fitting constant current. (Left) Calibration fitting from detailed model calibration modified from 

[42] (see chapter 3). (Right) Simple model calibration fitting. 

 

Figure 5.2 Calibration fitting constant current. (Left) Calibration fitting from detailed model calibration modified from 

[42] (see chapter 3). (Right) Simple model calibration fitting. 

However, here we present these particular examples for demonstration of the modeling 

techniques mentioned, and the contrast the simple model selected gives is considered adequate. 
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Future work can be done to explore model reduction of the detailed model that could optimize 

numerical expense. 

In addition to constant current profiles fitting, calibration also included a set of cap-cycle 

charge/discharge dynamics as shown in Figure 5.2. Due to the reduced number of fitting 

parameters in the simple model it is not possible to fit the fast dynamics and the voltage drops in 

the constant current runs as well as the detailed model. For the calibration of the simple model 

here, higher priority was given to the constant current fitting, but other weightings could be done. 

The simple electrochemical model, although reducing numerical expense, does not inherently 

eliminate the timescale issues discussed. These are addressed in a similar manner to the detailed 

model, where system states are projected over many cap-cycles. However, with the simple 

model, instead of having the system states represented by the lithium concentration information 

in the positive electrode, needing to be solved using the diffusion equation, the Butler-Volmer 

equation, and the electrolyte ionic resistance, the states of the simple model come down to a 

single state, capacity, and the transition matrix equivalent is the capacity loss per cap-cycle. 

Assuming this capacity loss per cap-cycle from the battery as constant over some period, we can 

then project over many cap-cycles the loss in the same way the transition matrix is used for the 

detailed model. Using the calibrated parameters and projection method for the simple model we 

can now examine the four case studies. 

5.5.2 Case Study 1: Capacitive Load, Low Current 

As stated there are two main objectives for presenting these case studies. Through this first 

case study we see how simplistic models can be used with particular loads with similar fidelity to 

more detailed modeling. In our prior work we used a light average current to demonstrate and 

validate the modeling techniques described above [42, 43] (see chapters 3 and 4). The electrical 

configuration was a capacitor loaded directly from the battery through a switching circuit. The 

losses in the circuit were not optimized physically, but were captured in the model. For 

demonstration we used a switching frequency of 100Hz and a load capacitor of 10nF, which 

resulted in an average modeled current of about 15.2μA or 0.3C. This type of load was used to 

imitate a capacitive load that might be seen in MEMS actuation and microrobotic settings, 

although the battery modeled would be too large physically for the robot in the current 

configuration. This loading worked well for the demonstration of the projection approaches 

developed; however, it was not sufficient to demonstrate the range of the detailed 
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electrochemical model involved. To illustrate this we present the battery discharge profile from 

[42] (see chapter 3) in Figure 5.3.  

This shows validation data and model data as voltages at the beginning of various cap-cycles 

throughout the battery discharge. In addition the simple battery model was run with the same 

load and significantly reduced numerical expense. 

As can be seen in the figure there is reasonable good fit for both models. The detailed model 

shows an error of approximately 1.4% in the overall number of cycles possible from the battery, 

and the simple model is also only approximately 3.4% error. However, the energy transferred to 

the capacitor had a more significant difference being around 9.2% different between the detailed 

and simple models. Here we can see that although the detailed model can capture the discharge 

profile of the battery, a more numerically economical way is to use the simple model. 

 

Figure 5.3 Battery discharge profile for detailed and simple models 10nF capacitor cycled at 100Hz. Adapted from [42] 

(see chapter 3). 

5.5.3 Case Study 2: Capacitive Load, High Current 

Case 1 raises the question: “When, if ever, is more detailed modeling needed?” The answer is 

in part demonstrated through the second case study. Here we have a loading condition very 

similar to case 1; however, the loading frequency is increased by an order of magnitude, from 

100Hz to 1kHz. This consequently raises the average current seen by the battery. The battery 

discharge profile is presented in Figure 5.4. Here we see that at this elevated average current load 

(69μA or 1.4C based on the detailed model) the detailed model still adequately captures the 

overall discharge of the battery with an approximate error of 1.7%, and the simple model begins 

to deviate significantly with an approximate error of 10.9%. Energy transferred to the capacitor 

differed by over 17% between the two models. It should be noted here that although the detailed 
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model matches well for this loading, there are approximations in it that will break down at even 

higher loads. The model could likely then be adapted to address those limitations, but probably at 

the cost of greater complexity. 

 

Figure 5.4 Battery discharge profile for the detailed and simple models for a 10nF capacitor cycled at 1kHz. 

5.5.4 Case Study 3: Batteries in Series 

Having demonstrated that detailed modeling differs from the simplistic model at higher 

average current levels, we now can use the detailed model to demonstrate potential design 

analysis approaches that would be unobtainable with our presented simple model. For the third 

case study we analyze batteries in series to obtain higher voltages, as needed in the microrobotic 

application mentioned above. 

The load setup in similar to before; however, we concentrate our analysis on one type of 

switching loss (a loss of the parasitic charge for each cap-charge and cap-discharge switch) and 

remove the majority of other losses from the switching circuit (e.g. leakage) as well as set the 

switching threshold voltage to zero. For complete analysis the additional losses can be 

incorporated. 

In an ideal series configuration of batteries (stack), each battery experiences the same voltage 

drop and current flow. In actuality there can be variations and imperfections in individual 

batteries causing imbalances in the stack. This will depend on the individual batteries used and 

how they degrade over time. An example where this had a critical effect was in experimental 

testing by Jones and Akridge who reported a series of five thin-film batteries that showed only 

70% cathode efficiency, which they supposed was due to a marginal cell in the stack [70]. For 

the present analysis these variation effects are neglected. 
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If we take n batteries in series, the total voltage of the stack will be nVB, where VB is the 

voltage of a single battery, and this stack voltage will be equal to the voltage on the load 

capacitor VCL, neglecting line and switch resistances. Each battery in the stack experiences the 

same current flow iB which is equal to the current into the load capacitor iCL. Putting these 

together we see that: 

 𝑖𝐵 = 𝑖𝐶𝐿 = 𝐶𝐿
𝑑𝑉𝐶𝐿

𝑑𝑡
= 𝐶𝐿

𝑑(𝑛𝑉𝐵)

𝑑𝑡
= 𝑛𝐶𝐿

𝑑𝑉𝐵

𝑑𝑡
 (5.8) 

and therefore we can mimic the stack current flow to a capacitor by modeling one battery loaded 

with a capacitor with capacitance proportional to the number of batteries in the original stack as 

shown schematically in Figure 5.5. Using this approach we are able to merely adjust the load 

capacitor size in the model to approximate different series configurations. 

 

Figure 5.5 Schematic representation of approximating batteries in series. 

After each simulation we can adjust the voltage data appropriately to get the stack voltages. In 

determining energy transferred from the battery stack to the load capacitor we need to look at the 

associated equation and perform similar steps as before: 

 𝐸𝐵→𝐶𝐿 =
1

2
𝐶𝐿𝑉𝐶𝐿

2 =
1

2
𝐶𝐿(𝑛𝑉𝐵)

2 = 𝑛 (
1

2
𝑛𝐶𝐿(𝑉𝐵)

2) (5.9) 

with 𝐸𝐵→𝐶𝐿  as the energy transferred from the battery stack to the load capacitor. Thus we see 

that when calculating the energy transfer we need to multiple the energy calculated by the battery 

model, by the number of batteries in the stack to get the total energy. One final consideration that 

needs to be taken is for the parasitic capacitance. Since it, like the load capacitor, will be charged 

to a higher voltage we would need to multiple the parasitic capacitance by the number of 

batteries in the stack. However, the parasitic capacitance of each battery is in series so the total is 

divided by the number of batteries, and in the end these two factors offset. 
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This process was applied and the detailed model was run for a single battery and two, three, 

and four batteries in series. The battery discharges curves are shown in Figure 5.6. These behave 

similarly to what would be expected, however, it would also be of interest to know the energy 

transferred to the capacitor in each configuration. In Figure 5.7 we show the energy transferred 

to the load capacitor. The energy is normalized to the energy transferred in the single battery 

configuration. Both the total energy from the stack, and a per battery energy are shown. 

 

Figure 5.6 Battery discharge curves for batteries in series. (Left) individual battery discharge profiles. (Right) Stack 

discharge profile. 

 

Figure 5.7 Energy transferred to load capacitor in various series configurations. 

It can be seen that more energy per battery is delivered as the number of batteries increases. 

This is likely due in part to the loss that we included in our modeling of the parasitic capacitance. 

Because the parasitic capacitances are in series yet are charged to higher voltages, the energy lost 
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remains constant per switch regardless of the number of batteries. As the number of batteries 

increases this becomes smaller and smaller compared to the charging loss. Figure 5.8 shows the 

entire battery discharge curve again with a comparison to the simple model. 

 

Figure 5.8 Two batteries in series discharge profile with detailed and simple models for a 10nF capacitor cycled at 1kHz. 

5.5.5 Case Study 4: Batteries in Parallel, Boost Converter 

The final case study that we present is an idealized parallel configuration. Just as with 

batteries in series, a marginal cell in a parallel configuration has adverse effects on overall 

performance; however, again these would be based on the individual batteries used and are not 

considered here. Ideally treating batteries in parallel is comparable to simulation of batteries with 

increased active surface area. Therefore, these effects might be able to be accomplished using 3D 

structures or perhaps nanomaterials or treatments [7, 71]. 

The parallel configuration allows us to achieve higher current draws from the battery pack. 

We couple this with a boost converter circuit to achieve elevated voltages comparable to the 

series configuration. The implementation of the circuit is not ideal in that a very low duty cycle 

and low boost frequency was used to keep the current draw and numerical expenses reasonable. 

The circuit is shown in Figure 5.9 and is one way to achieve these higher voltages. 

 

Figure 5.9 Boost converter schematic 
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Another notable example would be a switched capacitor circuit. The components variables 

shown are the inductor, L, inductor resistance, RL, auxiliary capacitor and resistance, CAux and 

RAux, boost capacitor, CBoost, and actuator capacitance CActuator, with the values selected shown in 

Table 5.1. The losses then that are modeled are losses from charging the actuator from the boost 

capacitor, losses in the battery, losses in the diode, and other losses associated with the load 

capacitor. Additionally minor resistive losses in the inductor, switch, and auxiliary capacitor are 

modeled. The majority of the switching losses were not modeled, both in the boost converter, 

and in the actuation circuit, but could be added for a full analysis. 

Table 5.1 Boost converter circuit parameters 

Component Value 

Inductor (L) 90μH 

Inductor Resistance (RL) 1Ω 

Auxiliary Capacitor (CAux) 100nF 

Auxiliary Resistor (RAux) 1Ω 

Boost Capacitor (CBoost) 100nF 

Duty Cycle 0.97% 

Boost Switching Frequency 20kHz 

Actuator Capacitance (CActuator) 10nF 

Actuator Switching Frequency 1kHz 

Diode Is 1e-14A 

 

The simulation was started with the boost and auxiliary capacitors charged to minimize 

transience. A similar approach was used with this simulation as with the prior simulations. A 

complete cycle of the actuator charge was simulated (this incorporated 20 switching cycles of the 

boost convertor). At this time the charge needed to charge the actuator was reduced from the 

boost capacitor thus dropping equalizing their voltages. This can be written as: 

𝑉𝐶𝐵𝑜𝑜𝑠𝑡
+ = 𝑉𝐶𝐵𝑜𝑜𝑠𝑡

− (
𝐶𝐵𝑜𝑜𝑠𝑡

𝐶𝐵𝑜𝑜𝑠𝑡 + 𝐶𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟
) 

where 𝑉𝐶𝐵𝑜𝑜𝑠𝑡
+  is the boost capacitor voltage after actuator charge, 𝑉𝐶𝐵𝑜𝑜𝑠𝑡

−  is before actuator 

charge and 𝐶𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 is the actuator capacitance. Each actuator charging cycle is comparable to 

the cap-cycles from previous modeling. This requires more numerical expense in that 20 boost 

converter switches must be modeled for a cap-cycle and thus to develop the transition matrix. 

Ways to address this expense will be discussed later. 
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Both detailed and simple battery models were loaded with the boost converter circuit. A 

combination of Matlab script and Simulink were used for the boost converter simulation. All 

other simulations previously were run solely in Matlab. The battery discharge profiles are shown 

in Figure 5.10. Additionally, the energy losses were determined and are shown in Figure 5.11. 

This figure also shows how energy losses are distributed among various sources, including losses 

in the diode, losses in the battery, and energy used in capacitor charging. Also noted is a 

mismatch between cumulative energy calculated, denoted as modeling error. 

 

Figure 5.10 Boost converter circuit battery discharge profile with detailed and simple models. 

 

Figure 5.11 Energy losses and allocations from battery driven boost converter circuit. (Energy normalization was 

adjusted to correlate with those from Case 3). 
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The overall energies did not match exactly, likely due to modeling implementation (such as 

backward difference used in integration in the Simulink model), and this is noted in the plot. One 

source of error was in modeling of the inductor, which did not show 0 energy loss. Energy to the 

actuator as noted is the energy transferred to the actuator from the boost capacitor. Other losses 

of note are those associated with the boost capacitor, diode and internal battery losses. 

This scenario is instructive for several reasons. First, it demonstrates another circuit loading 

being analyzed using these modeling techniques besides the switching load first used. Second, 

this lays a foundation for additional work in dual projection applications. The numerical expense 

of doing all 20 switches of the boost converter is significant in this scenario. For ideal settings, 

the boost converter would likely switch many more times than 20 between each actuation event. 

If a similar projection approach could be used across boost cycles as is used across actuation 

cycles, then potentially significant gains could be made. Third, although the comparison between 

case study three and four is not perfect it allows us to hypothetically compare the number of 

actuation cycles between different battery configurations for elevated voltages. If the data 

presented here was considered to capture adequately the losses, then we could conclude the boost 

converter had superior performance as seen in Figure 5.12. Using this, it would be possible to 

have a more extensive understanding of tradeoffs in design such as added weight of the inductor 

compared to the increased number of actuation cycles. 

 

Figure 5.12 Comparison of energy distribution in case studies 3 and 4. (Energy normalization was adjusted for case 4 to 

correlate with those from Case 3). Dashed red lines show approximate comparisons between the plots. (Right) Cp denotes 

the parasitic capacitance. An additional minor switching loss that was incorporated is shown as energy loss in switch 

drop. 



88 

 

5.5.6 Case Study Comparison 

A brief comparison of the different case studies is informative. In Table 5.2 we show 

function call times for each of case study. This time is based on a dual core computer, but 

highlights the expense difference between models. The large time for the detailed model in case 

study 4 is due in part to the increased data storage required by the boost converter cycles. Overall 

simulation time will depend on parallel implementations and hardware. Additionally, average 

currents are shown. It should be noted that validation data was only shown up to the detailed 

model current in case study 2 and further validation is needed to properly verify model accuracy 

for the higher currents in other scenarios. 

Table 5.2 Function call and average current comparisons across case studies. 

 Case Study 1 

100Hz 1nF 

Case Study 2 

1kHz 1nF 

Case Study 3 

x2 Battery Series 

Case Study 4 

Boost Converter 

 Simple Detailed Simple Detailed Simple Detailed Simple Detailed 

Function Call 

Time [s] 
1.6 7.2 1.3 5.1 1.1 4.2 1.2 51.2 

Average 

Current [μA] 
16.2 15.2 73.8 69 117.5 109.1 176.1 175.4 

 

5.6 Conclusions 

Here we have explored several key case studies implementing previously developed 

modeling techniques. These scenarios have demonstrated detailed modeling under certain 

loading conditions. Additionally, we have seen how various battery configurations can be 

analyzed, capturing fine details over long periods of time. Finally we have seen how different 

circuits might be implemented. Using these case studies as a template, these modeling techniques 

can be used as design tools. Further work could be done to understand the level of modeling 

needed at various current levels, but here we focused on presenting implementation of these 

specific techniques. Future work could also be to look at hybrid models that incorporate the 

projection approach but that take advantage of model simplifications where possible. Additional 

if higher currents are further explored, additional model validation and potentially adaptation 

will be needed. 



89 

 

CHAPTER 6 CONCLUSIONS 

6.1 Summary 

In this thesis we have explored many aspects and effects of fast, repeated, dynamic loads on 

thin-film batteries. These loads have specific application in MEMS microrobotics, but it is hoped 

that these methods would be useful beyond that area. 

In Chapter 2 we presented experimental findings showing how repeated capacitive loads on 

thin-film batteries, coupled with the switching dynamics and losses, caused marked changes in 

battery discharge over a range of different loading parameters. Additionally, we observed 

parasitic capacitance effects in the battery, although the exact source was not determined. A 

Cymbet
TM

 [46] 50μAh battery was used for these tests. 

In Chapter 3 we used these experimental results to model the dynamics over complete battery 

discharge for a set loading condition. In order to do this we needed to address issues of 

timescales. The switching dynamics were extremely fast, on the order of microseconds, where 

the full discharge of the battery was on the order of hours. This disparity was bridged using a 

transition matrix approach. This transition matrix was developed to describe the changes in 

battery states (lithium concentration information) for a single capacitive load or cap-cycle. Using 

the approximation that over a certain number of cap-cycles this transition matrix was constant, 

system states could be predicted several cap-cycles into the future. This approach was able to 

achieve significant numerical cost reduction over full modeling. 

In Chapter 4 we built on the model presented in Chapter 3. This was done in two significant 

ways. First, a different system state definition was chosen that allowed direct development of the 

transition matrix (the approach in Chapter 3 required perturbation of each state, which could 

prove to be a significant numerical expense depending on computing hardware). Second, an error 

analysis was performed of the projection approximations. In this way we were able to determine 

the extent of certain sources of error and adjust the projection approach of the system states to 

reduce this error. 
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In Chapter 5 we explored several case studies that helped in understanding and 

demonstrating these modeling techniques. In particular we addressed average current levels and 

how at higher average currents, simple modeling begins to degrade. We also demonstrated 

implementation of these approaches in a battery series configuration as well as a boost converter 

circuit loading. Each scenario enabled better understanding of the modeling implementation. 

6.2 Implications 

In regards to the microrobotics application discussed throughout this thesis, there are several 

aspects of the work presented that give insight on potential design decisions. One will be 

highlighted here as an example. Chapter 2 provided key insights into losses and parasitics. 

Coupling these with the case studies in Chapter 5 suggest that care needs to be taken in regards 

to these losses. One particular aspect is the losses associated with charging of a capacitor that 

come into play not only in the charging of the actuator, but also in charging of the parasitic 

capacitance. For example, in the boost converter, the battery voltage is steadier than in the 

switching capacitors (where the battery voltage is pulled down to the switching threshold voltage 

each switch) so the parasitic capacitor does not need to be constantly charged, whereas if the 

battery voltage has a significant range each loading event then the parasitic capacitance is 

constantly being charged and discharged. If this charge is lost in switching, then this issue is 

amplified. This could be addressed by having a more constant loading on the battery that 

distributes the loading to the battery through circuitry. Further investigation of the source of the 

parasitic capacitance may be needed to determine if other approaches can reduce this loss. This 

may be a limiting factor in the ability to apply pulsed loads that create significant voltage 

changes across the battery, at least if significant parasitics exist.  

6.3 Contributions 

This information together is hoped to help further research in areas such as MEMS 

microrobotics where battery energy is premium due to size and weight requirements. The 

modeling techniques presented here should be tools that can aid in this research. 

The main contributions from this work include:  

1) Experimentally observed of characteristics of switching loads on thin-film batteries, 

2) Augmented existing thin-film battery models to explore fast cyclic dynamic loads on 

thin-film batteries, 
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3) Addressed modeling of dynamics in these systems with disparate timescales through a 

transition matrix approach, 

4) Addressed numerical cost in transition matrix approach by changing system state 

definitions, 

5) Performed error analysis on projection approach that enabled targeted error reduction, 

6) Provided several scenarios to demonstrate the use of these techniques, and their relation 

to autonomous MEMS systems. 

Additionally in the course of this work there have been several lessons learned that would be 

good to document 

1) Modeling Nondimensionalization: In modeling these battery systems, we chose to 

nondimensionalized the problem. This became valuable for a variety of reasons. First, the 

difference in scale were more readily handled (cross-sectional areas in cm
2 

and 

thicknesses in μm). Second, calibration and fitting was able to be done with slightly 

fewer parameters. Third, comparison between scenarios can become easier as you work 

from a common benchmark. However, nondimensionalization does have the drawback 

that the numbers lose familiarity (such as 4V on a battery). 

2) Comparison Measurements. As with any study, the key measurement for comparison is 

important. Throughout this work, we have used primarily the number of cap-cycles the 

battery was able to perform as a figure of merit. However, other values may have been 

more insightful such as energy, as introduced in Chapter 5. 

3) Multiple Timescales: The way we use the term multiple timescales throughout this thesis 

may not be strictly traditional. If fast dynamic event are occurring with no time between, 

then the timescale may very well be just the fast one. However, accumulated effects from 

individual loads have long term changes, and is where we consider the multiple 

timescales. 

4) State Definitions: When projecting states over multiple loading events, the definition of 

the states is important. In this work we used mainly information about the lithium 

concentration profile. In general we would use the voltages of the battery before the 

projection, with the new concentrations, for continued modeling after the projection. In 

reality the voltages of the battery should likely be considered states as well and 

potentially other aspects of the model. In Chapter 4 we address this in part by updating 
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the voltages during the projection occasionally. Further work looking at this could be 

done. This ties closely with the issue of circuit states. With the switched charging of a 

capacitor, the capacitor was fully discharged before charging again. This allowed for a set 

loading condition after each cap-cycle. However, with a circuit like the boost converter, 

the circuit states may not be as easy to approximate, and may need to be projected 

forward just as the battery states are. In Chapter 5 we minimized this by using a full 

actuator charge/discharge for one “cap-cycle,” and started the circuit in a preloaded state. 

Additionally, the inductor loading was not ideal for actual implementation, but chosen to 

aid in model demonstration. Issues like these would be important to address for further 

understanding of the potential for these techniques. 

5) Relaxing Effects of Batteries: One issue that had to be addressed is that even after a 

capacitor is “fully” charged by the battery and the next switching cycle has not happened, 

there is still a voltage rise in the battery as the lithium in the electrode diffuses to an 

equilibrium (which likely would not happen before the next loading in a realistic setting). 

6) Model Order: One issue that was encountered with the boost converter modeling is in the 

order and differentiation approach of the battery and circuit. The battery model was a 

second order Crank-Nicholson approach, but the circuit was a backwards differentiation. 

In the future, this could be improved for accuracy. This ties into the need for proper 

meshing of the models, in time and space, both of which likely will be non-uniform to 

improve numerical performance. 

6.4 Future Work 

6.4.1 Reduced/Hybrid Models 

The modeling approach presented in this thesis uses a fairly detailed electrochemical model 

to determine the lithium concentration profile in the positive electrode. This modeling detail 

comes with numerical cost. Future work needs to be done to properly determine when this depth 

of modeling is needed and when more simplistic models can be used. Conversely there are 

certain assumptions in this model that may need to be addressed if even higher current levels are 

desired (e.g. zero potential drop in the positive electrode and constant electrolyte conductivity). 

It is likely that a combination of approaches will give the best numerical cost results. That is, 

it may be that occasional detailed modeling with a high fidelity model is needed during periods 
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of high nonlinearities, but for other portions, or in between times, a simpler model could be used. 

In a sense the projection method presented here is in fact a hybrid model, and additional 

combinations of such approaches may be advantageous. 

6.4.2 Microrobotic Applications 

The primary purpose for this research was for help in determining the design and drive 

parameters for microrobotics. A framework is laid with the modeling presented that could be 

used to address design decisions for such microrobots, a few examples will be illustrative. First, 

we have shown in Chapter 5 how different drive circuits can be analyzed to determine the most 

efficient drive circuit when utilization of the battery is considered. This could be implemented 

with a variety of different scenarios, and with detailed losses incorporated. Studies could be done 

that would investigate both different circuits as well as different configurations of a given circuit. 

From this, one could gain understanding how the battery model affects circuit design decisions.  

Additionally, the locomotion parameters such as gait could also be explored. Some work would 

need to be done to determine consistent comparison standards between the results. 

 

6.4.3 Dual Projection 

As was discussed in Chapter 5, occasionally there are more than two timescales, such as in 

the boost converter. In that situation there were multiple switches in the boost converter for each 

actuator charge. If the projection approach could be applied over multiple switches in the boost 

converter, and over multiple actuator switches, potentially significant savings could be made. 

One issue that would likely need to be addressed is the circuit states over the projections. If at the 

end of each cycle the circuit comes back to a known state then starting the next cycle after the 

projection can be approximated fairly easily, however, if the circuit also has states that are 

changing, then these need to be resolved in some way. One solution would be in projecting the 

circuit states in parallel with the battery states. 

6.4.4 Other Applications and Model Improvements 

These techniques may also be able to be applied to other systems beyond what has been 

looked at in this thesis. This may include other applications where fast dynamic loads cause 

incremental changes to the system. Since the projected states are based off of the diffusion 
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equation, other systems based on the diffusion or heat equations with dynamic boundary 

conditions may be good candidates. 

Additional work ought to be done to understand numerical errors in this model, as well as 

optimization of meshing. Improving the calibration approach would also be advantageous, 

especially if parameter extraction is to be done. It would also be informative to compare the 

calibration against known battery parameters, as the actual parameters of the batteries in this 

work were not precisely known. This may lead to adaptations to the model and or calibration to 

better fit specified physical data. Further investigation of the parasitic capacitance will also be 

important. Determination of the sources (e.g. battery, packaging, circuit, etc.) and magnitudes of 

these parasitics will aid in future design decisions. Ultimately, determination of the depth of 

modeling required to achieve the needed precision for the given task will decide those situations 

in which the modeling presented here is best in the form presented, or if alternative modeling and 

adaptations will be advantageous. 
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