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ABSTRACT

It is often challenging to specify queries against a relational database since SQL requires its

users to know the exact schema of the database, the roles of various entities in a query, and

the precise join paths to be followed. On the other hand, keyword search is unable to express

many desired query semantics.

In the real world, people ask questions in natural language, such as English. Theoreti-

cally, natural language interfaces for databases (NLIDBs) have many advantages over other

widely accepted query interfaces (keyword-based search, form-based interface, and visual

query builder). For example, a typical NLIDB would enable naive users to specify complex,

ad-hoc query intent without training. Not surprisingly, an NLIDB is regarded by many as the

ultimate goal. Despite these advantages, in real world applications, NLIDBs have not been

widely adopted.

In this dissertation, we investigate the construction of NLIDBs, specifically from the

following three aspects:

1. A natural language query is inherently ambiguous and some ambiguities may be too

hard for computers to resolve. Can a system collaborate with users to achieve satisfac-

tory reliability without burdening the user too much?

2. The interpretation process can be considered as a mapping from a natural language

query to the correct point in the semantic coverage of the NLIDB. Can the mapping

process get easier by carefully defining the semantic coverage?

3. Can an NLIDB work when no training examples are available, collect the user behavior

data as the training examples and improve itself from real usage?

viii



In this dissertation, we provide affirmative answers to the above questions in the form of

new query mechanism designed, techniques provided and systems constructed.
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CHAPTER 1

Introduction

This dissertation studies the problem of building natural language interfaces to databases
(NLIDBs), with a focus on relational databases. In this chapter, we begin with the motivation
to study NLIDBs by presenting a short comparison of NLIDB with other kinds of query
systems. We follow with some of our observations of the challenges in constructing NLIDBs
and provide our general strategies. Finally, we conclude with the novelties and an outline on
the work presented in the rest of the dissertation.

1.1 Why NLIDB?

Querying data in relational databases is often challenging. SQL is the standard query lan-
guage for relational databases. While expressive and powerful, SQL is too difficult for
users without technical training. Even for users with expertise in database programming
languages, it can be challenging because it requires that users know the exact schema of the
database, the roles of various entities in a query, and the precise join paths to be followed.
This difficulty is exacerbated by normalization, a process that is central to relational database
design, which brings benefits including saved space and avoided update anomalies, at the
cost of spreading data across several relations and thus making the database schema more
complex. As the database user base is shifting towards non-experts, designing user-friendly
query interfaces will be a more important goal in database community.

Designing an interface for naive users1 to query a database is not an easy task. First,
users may tend to express complex query semantics when interacting with databases since
they know databases are more than collections of documents and there are structures inside
databases that can be used to answer their queries. Second, users expect precise and complete
answers from database queries, which means anything less than perfect precision and recall

1In this dissertation, the only characteristic for naive users is that they are not familiar with programming
languages. Note that naive users may be scientists in other area who are in need to query complex scientific
databases.
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Figure 1.1: An Overview of Different Query Methods.

will have to be explained to the user. These needs make designing such an interface, or even
just a query mechanism, hard.

In the real world, people ask questions in natural language, such as English. Not surpris-
ingly, a natural language interface is regarded by many as the ultimate goal for a database
query interface, and many NLIDBs have been built towards this goal [5, 69, 51, 61, 47, 26,
57, 54, 70]. NLIDBs have many advantages over other widely accepted query interfaces
(keyword-based search, form-based interface, and visual query builder). For example, a
typical NLIDB would enable naive users to specify complex, ad-hoc query intent without

training. In contrast, flat-structured keywords are often insufficient to convey complex query
intent, form-based interfaces can be used only when queries are predictable and limited to
the encoded logic, and visual query builders still requires extensive schema knowledge of
the user. A summarization of different query mechanisms is shown in Figure 1.12.

2In this dissertation, we divide query systems into two categories: (a) standard query systems, in which the
semantic meaning of each query is formally defined, and (b) heuristic query systems, in which queries have
ambiguities and the goal for the system is to infer the user intent. Obviously, NLIDB is in the second category.

2



1.2 Challenges & Strategies

Despite these advantages, NLIDBs have not been adopted widely in real world applications.
In the remaining parts of this section, we discuss some of our observations for the possible
challenges and provide our general strategies.

1.2.1 Interactive Communications

NLIDBs normally adopt the query mechanism of one answer for one question, with limited
backup answers or explanations. But an NLIDB is a heuristic query system, in which its
queries do not have formally defined semantic meanings. The goal for an NLIDB is to infer
the user intent and this task is regarded by many as an “AI complete problem”. Therefore,
we cannot reasonably expect an NLIDB to be perfect. Users may be provided with a wrong
answer due to the system incorrectly understanding or handling the query. The system does
not help users detect such error and sometimes it is impossible for users to verify the answer
by themselves. Even if the user does realize that the answer is wrong, there is little guidance
on what to do. The only option available to the user is to rephrase the query and hope that
the system now understands it better.

We observe that when humans communicate with one another in natural language, the
query-response cycle is not as rigid as in a traditional database system. If a human is asked a
query that she does not understand, she will seek clarification. She may do so by asking spe-
cific questions back, so that the question-asker understands the point of potential confusion.
She may also do so by stating explicitly how she interpreted the query.

Drawing inspiration from this natural human behavior, we design the query mecha-
nism to facilitate collaboration between the system and the user in processing natural lan-
guage queries. First, the system explains how it interprets a query, from each ambiguous
word/phrase to the meaning of the whole sentence. These explanations enable the user to
verify the answer and to be aware where the system misinterprets her query. Second, for
each ambiguous part, we provide multiple likely interpretations for the user to choose from.
Since it is often easier for users to recognize an expression rather than to compose it, we
believe this query mechanism can achieve satisfactory reliability without burdening the user
too much. To support such a query mechanism, we design a query tree structure to repre-
sent the interpretation of a natural language query from the databases perspective. A query
tree can be explained to the user for verification, and once verified, will almost always be
correctly translated to SQL. We also provide a modular architecture to support such a query
mechanism, in which each component can be designed and improved independently.

3



1.2.2 Semantic Coverage as weighted SQL Templates

When using NLIDBs, naive users tend to use informal expressions and prefer brevity to
grammatical correctness, which makes the query interpretation harder. We find that humans
can often easily understand an ambiguous natural language query, even in the cases when it
is severely underspecified. We believe that the main reason is that humans have an intuitive
understanding of which interpretation is more reasonable than others. Specifically, common
sense, previous experiences, and domain knowledge serve as resources for our brains to de-
velop such intuitions. We find that in database applications, query log, underlying schema
structure and data distribution can serve as valuable resources to obtain “similar intuitions”.
These resources make the problem of constructing an NLIDB different from its general prob-
lem of building a semantic parser. We explore the possibility in configuring NLIDBs with
such intuitions, in a generic manner independent of domains, to resolve the ambiguities in
natural language queries.

Specifically, we model the semantic coverage of an NLIDB as a set of weighted SQL tem-
plates, in which the weight describes the likelihood of each template to be queried. Such set
of weighted SQL templates are generated by analyzing all kinds of resources that are avail-
able. Then the problem of interpreting an natural language query is modeled as a mapping
problem, from the natural language query to the SQL templates in the semantic coverage.
In the mapping, the SQL templates with high weights are preferred. By taking the weights
into account, the precision and recall of the mapping are fundamentally enhanced. We fur-
ther propose a framework for NLIDBs comprising two main parts: an offline part, which
is responsible for generating the weighted semantic coverage, and an online part, which is
responsible for mapping online natural language queries to the query logics.

1.2.3 Managing the Variants of NLQ Expressions

Given the rich varieties of natural language expressions and the huge gap between a natural
language query and its corresponding SQL query, many natural language queries are hard to
interpret correctly based only on schema mapping. We observe that although the potential
number of different expressions might be large, the expressions that are likely to be fre-
quently used by real users are often in limited numbers of groups, in which the expression
in each group are only different in stop words, word order or synonyms. That means, for a
query logic with a few different natural language expressions previously recorded, each new
natural language expression describing the same query logic should be, in most cases, very
similar to at least one of the previous expressions.

As such, in our system, we would like to benefit from training examples to manage the

4



variants of the natural language expressions. Specifically, we present metrics to detect the
similarity between natural language expressions. The metrics we provided are hyperparame-
ter free, which means they can be used even in the cases when the training examples are very
limited. At the cold start stage, we use generic metrics without hyperparameters to evaluate
the similarity between an NLQ and a SQL template.

To collect the training data, we adopt the interactive communications in our first work.
Top mapped SQL templates with value instantiations are explained for the user to choose
from. Once the user make a choice, NLQ paired with the chosen SQL template is collected,
which serves as the prefect training set to improve the system.

1.3 Key Contributions & Dissertation Outline

The dissertation studies the challenges in constructing NLIDBs. To ensure reliability, our
system explains to the user how her query is interpreted step by step for verification. The
whole process is in natural language to make it understandable for naive users. When am-
biguities exist, our system will return the user multiple interpretations with explanations for
the user to choose from, which solves the ambiguities interactively with the user. Each time
when a user makes a choice and confirm the interpretation, a training example is collected
from the usage.

We design a template-based NLIDB, which models the semantic coverage of an NLIDB
as a set of weighted SQL templates. The weight of a SQL template indicates whether the
query logic is semantically meaningful and likely to be frequently queried, which provides
important evidence for solving ambiguities. The semantic coverage is generated by analyz-
ing different kinds of resources like the SQL query log, specifications from domain experts,
schema structure and the data distribution of the database, which can provide evidence for
solving ambiguities but are not often investigated in previous literatures.

With the semantic coverage that are carefully defined, the interpretation of a natural lan-
guage is simplified to a mapping problem, from the natural language query to the desired
SQL template in the semantic coverage. By this design, even in the cases when some mis-
takes exist in the intermediate results like wrong linguistic parse tree generated, the system
still has a large chance to map it to the correct SQL template. In the cold start stage when no
training examples are available, the mapping is mainly based on schema mapping techniques
that can be used across different domains. Though the collection of training examples in us-
age, the system utilizes the training examples to improve the ranking. The learning strategy
is hyperparameter free, which are very suitable for the cases when training examples are
limited.

5



The rest of the dissertation is organized as follows. Chapter 2 discusses the construction
of an interactive NLIDB. In Chapter 3, we define the semantic coverage of an NLIDB and
provide a template-based solution for interpreting natural language queries. In Chapter 4, we
propose the strategy to improve the system from the training examples collected. Chapter 5
elaborates on related work. Finally, Chapter 6 concludes the dissertation.
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CHAPTER 2

Constructing an Interactive Interface for
Relational Databases

2.1 Introduction

Traditionally, research work in querying data from relational databases often follows one of
two paths: the structured query approach and the keyword-based approach. Both approaches
have their advantages and disadvantages. The structured query approach, while expressive
and powerful, is not easy for naive users. The keyword-based approach is very friendly
to use, but cannot express complex query intent accurately. In contrast, natural language
has both advantages to a large extent: even naive users are able to express complex query
intent in natural language. Thus supporting natural language queries is often regarded as the
ultimate goal for a database query interface.

However, progress has been slow, even as general natural language processing systems
have improved over the years. The fundamental problem is that understanding natural lan-
guage is hard. People may use slang words, technical terms, and dialect-specific phrasing,
none of which may be known to the system. Even without these, natural language is in-
herently ambiguous. Even in human-to-human interaction, there are miscommunications.
Therefore, we cannot reasonably expect an NLIDB to be perfect. Therefore, users may be
provided with a wrong answer due to the system incorrectly understanding or handling the
query. The system does not help user detect such error and sometimes it is impossible for
users to verify the answer by themselves. So a user cannot be sure that the answer provided
is really the answer to the question asked. Moreover, even if the user does realize that the
answer is wrong, there is little guidance on what to do. The only option available to the user
is to rephrase the query and hope that the system now understands it better.

When humans communicate with one another in natural language, the query-response
cycle is not as rigid as in a traditional database system. If a human is asked a query that
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Figure 2.1: A Simplified Schema for Microsoft Academic Search and Sample Queries.

she does not understand, she will seek clarification. She may do so by asking specific ques-
tions back, so that the question-asker understands the point of potential confusion. She may
also do so by stating explicitly how she interpreted the query. Drawing inspiration from this
natural human behavior, we design the query mechanism to facilitate collaboration between
the system and the user in processing natural language queries. First, the system explains
how it interprets a query, from each ambiguous word/phrase to the meaning of the whole
sentence. These explanations enable the user to verify the answer and to be aware where
the system misinterprets her query. Second, for each ambiguous part, we provide multiple
likely interpretations for the user to choose from. Since it is often easier for users to recog-
nize an expression rather than to compose it, we believe this query mechanism can achieve
satisfactory reliability without burdening the user too much.

A question that then arises is how should a system represent and communicate its query
interpretation to the user. SQL is too difficult for most non-technical humans. We need a
representation that is both “human understandable” and “RDBMS understandable”. In this
chapter, we present a data structure, called Query Tree, to meet this goal. As an intermediate
between a linguistic parse tree and a SQL statement, a query tree is easier to explain to the
user than a SQL statement. Also, given a query tree verified by the user, the system will
almost always be able to translate it into a correct SQL statement.

Putting the above ideas together, we propose an NLIDB comprising three main compo-
nents: a first component that transforms a natural language query to a query tree, a second
component that verifies the transformation interactively with the user, and a third component
that translates the query tree into a SQL statement. We have constructed such an NLIDB,
and we call it a NaLIR (Natural Language Interface to Relational databases).
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The intellectual contributions of this chapter are as follows:

1. Interactive Query Mechanism. We design an interaction mechanism for NLIDBs to
enable users to ask complex queries and have them interpreted correctly, with a little
interaction help.

2. Query Tree. We design a query tree structure to represent the interpretation of a natural
language query from the database’s perspective. A query tree can be explained to the
user for verification, and once verified, will almost always be correctly translated to
SQL.

3. System Architecture. We provide a modular architecture to support such a query mech-
anism, in which each component can be designed, and improved, independently. We
develop a working software system called NaLIR, instantiating this architecture. We
discuss the basic ideas in designing heuristic functions for each component and de-
scribe the specific choices made in our system.

4. User Study. We demonstrate, through carefully designed user studies, that NaLIR is
usable in practice, on which even naive users are able to handle quite complex ad-hoc
query tasks.

The remaining parts of the paper are organized as follows. We discuss the query mecha-
nism in Section 2.2. The system architecture of our system is described in Section 2.3. Given
a query, we show how to interpret each its words/phrases in Section 2.4 and infer the seman-
tic meaning of the whole query (represented by a query tree) in Section 2.5. We discuss how
our system translates a query tree to a SQL statement in Section 2.6. In Section 2.7, our
system is evaluated experimentally. In Section 2.8, we summary the chapter.

2.2 Query Mechanism

Keyword search systems are popular and effective in at least some domains, such as for
document search. As we think about the architecture of an NLIDB, it is worthwhile to draw
inspiration from search engines, and how they infer user intent from limited information.
First, given a query, a search engine returns a list of results, rather than a single result.
This is central to providing acceptable recall. Second, users are able to verify whether a
result is correct (useful) by reading the abstract/content. Third, these results are well ranked,
to minimize user burden to verify potential answers. These strategies work very well in
search engines. However, due to some fundamental differences between search engines
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Figure 2.2: System Architecture for NaLIR.
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and NLIDBs, as we will discuss next, this query mechanism cannot be directly applied to
NLIDBs.

First, users are often able to verify the results from a search engine by just reading the
results. However, the results returned by an NLIDB cannot usually explain themselves. For
example, suppose a user submits Query 1 in Figure 2.1 to an NLIDB and gets an answer
“5”. How could she verify whether the system understands her query and returns to her the
correct answer? To facilitate this, an NLIDB should provide explanations for the result at
least in terms of how the query is processed.

Second, unlike search engines, users tend to express sophisticated query logics to an
NLIDB and expect perfect results. That requires the NLIDB to fix all the ambiguities and
get a perfect interpretation for the query from the perspective of both linguistics and the given
database. However, natural language queries are often inherently ambiguous and sometimes,
some of the ambiguities are too “hard” for systems to fix with confidence. Consider Query 1
in Figure 2.1 again, the user specifies the word “publication”, while in a real world bibliog-
raphy database, the information of publications may be stored in many tables, say, article,
book, incollection, phdThesis, journal, proceedings and so forth. The system itself cannot be
expected to figure out which ones of these should be considered as publications. Even if the
included items are all unambiguous, when natural language queries have complex structures
with modifier attachments, aggregations, comparisons, quantifiers, and conjunctions, it may
contain several ambiguities that cannot be fixed by the system with confidence, from the in-
terpretation of an ambiguous phrase to the relationship between words/phrases. The number
of possible interpretations grows exponentially with the number of unfixed ambiguities. As
a result, there may be hundreds of candidate interpretations for a complex natural language
query, of which only one is correct. Since these interpretations are often similar to each
other in semantics, it is very hard to develop an effective ranking function for them. As a
result, if the system simply returns a list of hundreds of answers, the users will be frustrated
in verifying them.

Given the above two observations, instead of explaining the query results, we explain
the query interpretation process, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each “hard” ambiguity, we provide
multiple interpretations for the user to choose from. In such a way, even for a rather complex
natural language query, verifications for 3-4 ambiguities is enough, in which each verification
is just making choices from several options.

The ambiguities in processing a natural language query are not often independent of
each other. The resolution of some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole sentence depends on how each of
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its words/phrases is interpreted. So the disambiguation process and the verification process
should be organized in a few steps. In our system, we organize them in three steps, as we
will discuss in detail in the next section. In each step, for a “hard” ambiguity, we generate
multiple interpretations for it and, at the same time, use the best interpretation as the default
choice to process later steps. Each time a user changes a choice, our system immediately
reprocesses all the ambiguities in later steps and updates the query results.

2.3 System Overview

Figure 2.2 depicts the architecture of NaLIR1. The entire system we have implemented con-
sists of three main parts: the query interpretation part, interactive communicator and query
tree translator. The query interpretation part, which includes parse tree node mapper (Sec-
tion 2.4) and structure adjustor (Section 2.5), is responsible for interpreting the natural lan-
guage query and representing the interpretation as a query tree. The interactive communica-

tor is responsible for communicating with the user to ensure that the interpretation process is
correct. The query tree, possibly verified by the user, will be translated into a SQL statement
in the query tree translator (Section 2.6) and then evaluated against an RDBMS.

Dependency Parser. The first obstacle in translating a natural language query into a
SQL query is to understand the natural language query linguistically. In our system, we use
the Stanford Parser [24] to generate a linguistic parse tree from the natural language query.
The linguistic parse trees in our system are dependency parse trees, in which each node is
a word/phrase specified by the user while each edge is a linguistic dependency relationship
between two words/phrases. The simplified linguistic parse tree of Query 2 in Figure 2.1 is
shown in Figure 2.3 (a).

Parse Tree Node Mapper. The parse tree node mapper identifies the nodes in the lin-
guistic parse tree that can be mapped to SQL components and tokenizes them into different
tokens. In the mapping process, some nodes may fail in mapping to any SQL component.
In this case, our system generates a warning to the user, telling her that these nodes do not
directly contribute in interpreting her query. Also, some nodes may have multiple mappings,
which causes ambiguities in interpreting these nodes. For each such node, the parse tree
node mapper outputs the best mapping to the parse tree structure adjustor by default and
reports all candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node mapping (possibly with interactive com-
munications with the user), we assume that each node is understood by our system. The next

1In the current implementation, we use MySQL as the RDBMS, and Stanford NLP Parser [24] as the
dependency natural language parser.
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step is to correctly understand the tree structure from the database’s perspective. However,
this is not easy since the linguistic parse tree might be incorrect, out of the semantic coverage
of our system or ambiguous from the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate interpretations (query trees) for
it. In particular, we adjust the structure of the parse tree in two steps. In the first step, we
reformulate the nodes in the parse tree to make it fall in the syntactic coverage of our system
(valid parse tree). If there are multiple candidate valid parse trees for the query, we choose
the best one as default input for the second step and report top k of them to the interactive
communicator. In the second step, the chosen (or default) valid parse tree is analyzed seman-
tically and implicit nodes are inserted to make it more semantically reasonable. This process
is also under the supervision of the user. After inserting implicit nodes, we obtain the exact
interpretation, represented as a query tree, for the query.

Interactive Communicator. In case the system possibly misunderstands the user, the
interactive communicator explains how her query is processed. In our system, interactive
communications are organized in three steps, which verify the intermediate results in the
parse tree node mapping, parse tree structure reformulation, and implicit node insertion,
respectively. For each ambiguous part, we generate a multiple choice selection panel, in
which each choice corresponds to a different interpretation. Each time a user changes a
choice, our system immediately reprocesses all the ambiguities in later steps.

Example 1 Consider the linguistic parse tree T in Figure 2.3(a). In the first step, the parse

tree node mapper generates the best mapping for each node (represented asM and shown in

Figure 2.3 (b)) and reports to the user that the node “VLDB” maps to “VLDB conference”

and “VLDB Journal” in the database and that our system has chosen “VLDB conference”

as the default mapping. According to M , in the second step, the parse tree adjustor refor-

mulates the structure of T and generates the top k valid parse trees {TM
i }, in which TM

1

(Figure 2.3 (c)) is the best. The interactive communicator explains each of the k valid parse

trees in natural language for the user to choose from. For example, TM
1 is explained as

“return the authors, where the papers of the author in VLDB after 2000 is more than Bob”.

In the third step, TM
1 is fully instantiated in the parse tree structure adjustor by inserting

implicit nodes (shown in Figure 2.3 (d)). The result query tree TM
11 is explained to the user as

“return the authors, where the number of papers of the author in VLDB after 2000 is more

than the number of paper of Bob in VLDB after 2000.”, in which the underline part can be

canceled by the user. When the user changes the mapping strategy M to M ′, our system will

immediately useM ′ to reprocess the second and third steps. Similarly, if the user choose TM
i

instead of TM
1 as the best valid parse tree, our system will fully instantiate TM

i in the third

step and update the interactions.
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Figure 2.3: (a) A Simplified Linguistic Parse Tree from the Stanford Parser. (b) A Mapping
Strategy for the Nodes in the Parse Tree. (c) A Valid Parse Tree. (d) A Query Tree after
Inserting Implicit Nodes.

Query Tree Translator. Given the query tree verified by the user, the translator uti-
lizes its structure to generate appropriate structure in the SQL expression and completes the
foreign-key-primary-key (FK-PK) join paths. The result SQL statement may contain ag-
gregate functions, multi-level subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement against an RDBMS and returns
the query results back to the user.

2.4 Parse Tree Node Interpretation

To understand the linguistic parse tree from the database’s perspective, we first need to iden-
tify the parse tree nodes (words/phrases) that can be mapped to SQL components. Such
nodes can be further divided into different types as shown in Figure 2.4, according to the
type of SQL components they mapped to. The identification of select node, operator node,
function node, quantifier node and logic node is independent of the database being queried.
In NaLIR, enumerated sets of phrases are served as the real world “knowledge base” to
identify these five types of nodes.

In contrast, name nodes and value nodes correspond to the meta-data and data, respec-
tively, which entirely depend on the database being queried. Often, the words and phrases
specified by the user are not exactly the same as the meta-data/data in the database. In Sec-
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Figure 2.4: Different Types of Nodes in the Tokenization.

tion 2.4.2, we map these parse tree nodes to the meta-data/data in the database based on
the similarity evaluation between them. Ambiguity exists when a parse tree node has mul-
tiple candidate mappings. In such a case, our system returns multiple candidate mappings
for the user to choose from. In Section 2.4.3, we provide strategies to facilitate the user in
recognizing the desired mappings from possibly many candidate mappings. Before that, in
Section 2.4.1, we define the model we assume for the rest of the paper.

2.4.1 Data Model

In this chapter, a relation schema is defined asRi(Ai
1,Ai

2,...,A
i
ki), which consists of a relation

name n(Ri) and a set of attribute schemas {Ai
j|1 ≤ j ≤ ki}. A relation schema Ri has

one (or a set of) attribute schema as its primary key Ri .PK for identifying the tuples. A
database schema D is a set of relation schemas {Ri|1 ≤ i ≤ n}. Both relation schemas and
attribute schemas are called schema elements. When populated with data, a database schema
generates a database and each attribute Aj is populated with values Vals(Aj ). In natural
language queries, naive users often informally refer to a tuple by specifying the value of one
(or a set of) specific attribute. For example, naive users tend to refer to a paper by specifying
its title. To capture this intuition, for a relation schema, we may use one (or a set of) attribute
Ri .PA as its primary attribute to identify tuples informally.

The Schema Graph G(V,E) is a directed graph for a database schema D. V consists of
two kinds of nodes: relation nodes and attribute nodes, corresponding to relation schemas
and attribute schemas inD, respectively. Likewise, there are two types of edges inE: projec-

tion edges and foreign-key-primary-key (FK-PK) join edges. A projection edge starts from a
relation schema Ri to each of its attribute schema Ai

1, A
i
2, ..., A

i
ki , while a FK-PK join edge

goes from a foreign key to a primary key when there is a FK-PK relationship between them.
For each edge e in E, we assign a weight w(e), with a value between 0 and 1, where a larger
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weight indicates a stronger connection. A simplified version of the schema graph for the
Microsoft Academic Search database is shown in Figure 2.1, in which some nodes/edges are
omitted.

A join path p is a list of schema elements, in which for every two adjacent schema
elements vi and vj , (vi, vj) or (vj, vi) exists in E. The weight of p is defined as w(p) =

Πei∈p(w(ei)). In this chapter, join paths containing the following pattern, p← f → p where
f is a foreign key and p is a primary key, are considered as invalid join paths.

2.4.2 Candidate Mappings

In a reasonable design of database schema, the names of schema elements should be mean-
ingful and human-legible. Therefore, when the label of a parse tree node and the name of a
schema element are similar in meaning or spelling, they are likely to correspond to the same
real world object. To capture this intuition, we use the WUP similarity function [82], denoted
as Simw, which is based on the Wordnet to evaluate the similarity between words/phrases
in meaning. In addition, we adopt the square root of the Jaccard Coefficient between the
q-gram sets of words/phrases, denoted as Simq, to evaluate their similarity in spelling [83].
Let l(n) be the label of node n and n(v) be the name of a schema element v. The name
similarity function between l(n) and n(v) is defined as follows:

Simn(l(n), n(v)) = MAX

{
Simw(l(n), n(v))

Simq(l(n), n(v))

When their similarity is above a predefined threshold τ , we say that v is a candidate
mapped schema element of n. Also, users may not be able to specify the exact values in the
database. In our system, we use Simq to evaluate the similarity between the label of a parse
tree node and a value. A value is a candidate mapped value of the parse tree node, if their
similarity is above τ .

Definition 1 (NV Node) A parse tree node, which has at least one candidate mapped

schema element or candidate mapped value, is an NV node.

Since a database often stores meta-data/data closely related to one another, many schema
elements/values may be similar to one another, both in meaning and spelling. As a result,
multiple candidate mappings may be returned, of which only a subset is correct. For ex-
ample, in Figure 2.3 (a), the node “VLDB” may have multiple candidate mappings in the
database of Microsoft Academic Search, say, VLDB, VLDB workshops, VLDB PhD work-
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shop, PVLDB and VLDB Journal. In this case, it is very hard for the system to figure out
which subset of the candidate mappings the user means.

We deal with this kind of ambiguity interactively with the user. For each ambiguous node,
we return multiple of its candidate mappings for the user to choose from. To facilitate the
user in recognizing the desired mappings from possibly many candidate mappings, we show
candidate mappings hierarchically. In the first level, we show its top k1 candidate mapped
schema elements or the schema elements containing candidate mapped values. Then, under
each of the k1 schema elements, we show the top k2 candidate mapped values. Users are free
to choose a subset of the candidate mapping set as the final mappings. Note that all the final
mappings must be of the same type, either in schema element or value. When all the final
mappings are schema elements, the node is tokenized as a name node. Otherwise, it will be
tokenized as a value node.

Given the vocabulary restriction of the system, some parse tree nodes may fail in mapping
to any type of tokens. Also, some words cannot be directly expressed by SQL components.
In such a case, a warning is generated, showing the user a list of nodes that do not directly
contribute in interpreting the query. Our system deletes each such node from the parse tree
and move all its children to its parent.

2.4.3 Default Mapping Strategy

To facilitate user choice, for each node, we would like to choose a mapping as the default
mapping, which the user can simply accept in many cases.

A simple solution is to choose the mapping with the highest similarity. But sometimes,
we can utilize the structure of the sentence, as reflected in the parse tree, to enhance the
quality of the default mapping generation. Consider the query “return all conferences in the
database area”. The node “database” maps to both the value “database” under Domain.name
and the value “database” under Keyword.keyword. Since the node “area” is the parent of
the node “database” in the parse tree and maps to Domain with high similarity, the node
“database” is more likely to refer to a domain name rather than a keyword. Our intuition is
that when NV nodes are closer to each other in the parse tree, which means they are more
relevant to each other, they should map to schema elements/values more relevant to each
other in the database. The mutual relevance between schema elements is formally defined as
follows:

Definition 2 (Relevance between two Schema Elements) Given two schema elements v1
and v2 in the database, p(v1, v2) be the join path connecting v1 and v2 with the highest

weight. The weight of p(v1, v2) is defined as the mutual relevance between v1 and v2.
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When we choose the default mappings for NV nodes, we consider both the similarity in
the mappings and the mutual relevance between each pair of NV nodes. We define the score
of a mapping strategy below. The mapping strategy with the highest score is returned as the
default mapping strategy.

Definition 3 (Score of a Mapping Strategy) Let M be a mapping strategy, in which each

NV node ni maps to the schema element vni
. Let {ancestor(ni, nj)} be the set of all NV

pairs where ni is an ancestor of nj and no NV node exists between ni and nj in the parse

tree. The score of M is defined as follows:

Π{anc(ni,nj)}(Sim(ni, vni
) ∗ w(p(vi, vj)) ∗ Sim(nj, vnj

))

2.5 Parse Tree Structure Adjustment

Given the correct mapping strategy, each node in the linguistic parse tree can be perfectly
understood by our system. In this section, we infer the relationship between the nodes in the
linguistic parse tree from the database’s perspective and then understand the whole query.
However, three obstacles lie in the way of reaching this goal.

First, the linguistic parse tree generated from an off-the-shelf parser may be incorrect.
Natural language sentences describing complex query logics often have complex structures
with modifier attachments, aggregations, comparisons, quantifiers, and conjunctions. As a
result, the performance of an off-the-shelf parser is often unsatisfactory for such sentences.
For example, the linguistic parse tree shown in Figure 2.3 (a) is a simplified output of the
Stanford Dependency Parser, which incorrectly attaches “VLDB” to “Bob”.

Second, the structure of the linguistic parse tree does not directly reflect the relationship
between the nodes from the database’s perspective. Consider the following three sentence
fragments: (a) author who has more than 50 papers, (b) author who has more papers than
Bob, and (c) author whose papers are more than Bob. The linguistic parse structures of these
three sentence fragments are very different while their semantic meanings are similar from
the database’s perspective (describing the papers of the author are more than Bob/50). We
need to make such relationships explicit and represent them properly.

Third, natural language sentences often contain elliptical expressions. As a result, even
though we understand the relationship between all the explicit words or phrases, the sen-
tence may still be ambiguous before the elliptical part is completed. Take the parse tree in
Figure 2.3 (c) as an example. Although the relationship between each pair of nodes is clear,
it still has multiple possible interpretations.
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In this section, we describe the construction of the Parse Tree Structure Adjustor in de-
tail, which is in charge of correcting the possible errors in the linguistic parse tree, making
the relationships between existing nodes understandable from the database’s perspective, in-
serting implicit nodes to the parse tree, and finally obtaining the exact interpretation for the
whole query. When ambiguities exist, the parse tree structure adjustor will generate multiple
candidate interpretations for the user to choose from.

2.5.1 Query Tree

Since our system is designed to be a query interface that translates natural language queries
into SQL statements, the semantic coverage of our system is essentially constrained by the
expressiveness of SQL. So, given a database, we represent our semantic coverage as a subset
of parse trees, in which each such parse tree explicitly corresponds to a SQL statement and
all such parse trees could cover all possible SQL statements (with some constraints). We call
such parse trees as Query Trees. As such, interpreting a natural language query (currently
represented by a linguistic parse tree and the mapping for each its node) is indeed the process
of mapping the query to its corresponding query tree in the semantic coverage.

We defined in Figure 2.5 the grammar of the parse trees that are syntactically valid in
our system (all terminals are different types of nodes defined in Figure 2.4.). Query trees are
the syntactically valid parse trees whose semantic meanings are reasonable, which will be
discussed in Section 2.5.3, or approved by the user. Given the three obstacles in interpreting
a linguistic parse tree, as we have discussed before, there is often a big gap between the
linguistic parse tree and its corresponding query tree, which makes the mapping between
them difficult. In our system, we take the following two strategies to make the mapping
process accurate.

1" Q"$>"(SClause)(ComplexCondi6on)�"
2" SClause"$>"SELECT"+"GNP"

3" ComplexCondi6on"$>"ON"+"(leASubtree�rightSubtree)"
4" leASubtree"$>"GNP"
5" rightSubtree"$>"GNP|VN|MIN|MAX"
6" GNP"$>"(FN"+"GNP)"|"NP"
7" NP"$>"NN"+"(NN)�(Condi6on)�"

8" condi6on"$>"VN"|"(ON"+"VN)"
+ represents"a"parent$child"rela6onship"
� represents"a"sibling"rela6onship"

Figure 2.5: Grammar of Valid Parse Trees.
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First, our system explains a query tree in natural language, which enables the user to ver-
ify it. Query trees are intermediates between natural language sentences and SQL statements.
Thus the translation from a query tree to a natural language sentence is quite straightforward,
compared to that from a SQL statement [42].

Second, given a natural language query, our system will generate multiple candidate
query trees for it, which can significantly enhance the probability that one of them is correct.
The problem is that, when the query is complex, there may be many candidate query trees,
which are similar to each other. To show the user more candidate query trees without burden-
ing them too much in verifying them, we do the mapping in two rounds and communicate
with the user after each round. In the first round, we return the top k parse trees, which are
syntactically valid according to the grammar defined and can be obtained by only reformu-
lating the nodes in the parse tree. Each such parse tree represents a rough interpretation for
the query and we call them valid parse trees. In the second round, implicit nodes (if there
is any) are inserted to the chosen (or default) valid parse tree to generate its exact interpre-
tation. Our system inserts implicit nodes one by one under the supervision of the user. In
such a way, suppose that there are k′ possible implicit nodes in each of the k valid parse
tree, the user only needs to verify k valid parse trees and k′ query trees instead of all k ∗ 2k′

candidate query trees. Figure 2.3 (c) shows a valid parse tree generated in the first round,
while this valid parse tree is full-fledged to the query tree in Figure 2.3 (d) after inserting
implicit nodes.

2.5.2 Parse Tree Reformulation

In this section, given a linguistic parse tree, we reformulate it in multiple ways and generate
its top k rough interpretations. To simplify the tree reformulation process, each logic node
or quantifier node is merged with its parent. For example, in the parse tree of Query 3 in
Figure 2.1, which is shown in Figure 2.7 (a), the quantifier node “each” is merged with its
parent “area”.

The basic idea in the algorithm is to use subtree move operations to edit the parse tree
until it is syntactically valid according to the grammar we defined. The resulting algorithm
is shown in Figure 2.6. Each time, we use the function adjust(tree) to generate all the
possible parse trees in one subtree move operation (line 6)2. Since the number of possible
parse trees grows exponentially with the number of edits, the whole process would be slow.
To accelerate the process, our algorithm evaluates each new generated parse tree and filter
out bad parse trees directly (line 11 - 12). Also, we hash each parse tree into a number and

2There is an exception for the tree adjustment, in which a node “=” can be inserted to the Root node and the
resulting parse tree will be directly added to the priority queue without evaluation.
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store all the hashed numbers in a hash table (line 10). By checking the hash table (line 8), we
can make sure that each parse tree will be processed at most once. We also set a parameter
t as the maximum number of edits approved (line 8). Our system records all the valid parse
trees appeared in the reformulation process (line 13 - 14) and returns the top k of them for
the user to choose from (line 15 - 16). Since our algorithm stops after t edits and retains a
parse tree only if it is no worse than its corresponding parse tree before the last edit (line 8),
some valid parse trees may be omitted.

Algorithm*1:*QueryTreeGen(parseTree)�
1:--results-��;-HT+���
�2:--PriorityQueue.push(parseTree)!
-3:--HT.add(h(tree))�

���4:--while-PriorityQueue-≠�do*
-5:-----tree-=-PriorityQueue.pop()+-�

���6:-----treeList+=+adjust(tree)�
7:-----for*all-tree’-�-treeList-do!
8:---------if-tree’+not+exists+in+HT+&&-tree’.edit-<-t-then**
9:--------------tree’.edit-=-tree.edit+1;--
10:------------HT.add(h(tree’));**
11:------------if-evaluate(tree’)+>=+evaluate(tree)+then!
12:-----------------PriorityQueue.add(tree’)*
13:-�����-----if-tree’-is-valid�
14:------------��-���results.add(tree’)�
15:-rank(results)-
16:-Return-results�

Figure 2.6: Parse Tree Reformulation Algorithm.

To filter out bad parse trees in the reformulating process and rank the result parse trees,
we evaluate whether a parse tree is desirable from three aspects.

First, a good parse tree should be valid according to the grammar defined in Figure 2.5.
We count the number of parse tree nodes that violate the grammar. The fewer invalid nodes
in a parse tree, the better the parse tree is. For example, the parse tree in Figure 2.3 (a) has
four invalid nodes, which are “paper”, “more”, “Bob” and “VLDB”. Similarly, the parse tree
in Figure 2.7 (a) has three invalid nodes: “citation”, “most” and “total”.

Second, the mappings between the parse tree nodes and the schema elements in the
database can help to infer the desired structure of a parse tree. For example, in the parse
tree shown in Figure 2.3 (a), the node “VLDB” is attached to the node “Bob”, which is an
incorrect modifier attachment. In the parse tree node mapper, we have mapped the node
“VLDB” to Conference.name, “Bob” to Author.name and “paper” to Publication. As dis-
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Figure 2.7: (a) A Simplified Linguistic Parse Tree for Query 3 in Figure 2.1. (b) A Valid
Parse Tree. (c) A Query Tree after Inserting Implicit Nodes.

cussed in Section 2.4.3, in the database, Conference.name is more relevant to Publication
than to Author.name. So the parse tree, which attaches “VLDB” to “paper”, seems more
reasonable than the parse tree attaches “VLDB” to “Bob”. We capture such intuition by
formally defining the score of a parse tree.

Definition 4 (Score of a Parse Tree) Let T be a parse tree, in which each NV node nti maps

to the schema element vi. Let {valid(nti, ntj)} be the set of all the NV pairs where nti is an

ancestor of ntj and no NV node exists between nti and ntj . Given the relevance w(p(vi, vj))

between vi and vi, the score of T is defined as follows:

score(T ) = Π{valid(nti,ntj)}(w(p(vi, vj)))

Third, the parse tree should be similar to the original linguistic parse tree, which is mea-
sured by the number of the subtree move operations used in the transformation.

When ranking the all the generated parse trees (line 15 in Figure 2.6), our system takes
all the three factors into account. However, in the tree adjustment process (line 11), to reduce
the cases when the adjustments stop in local optima, we only consider the first two factors,
in which the first factor dominates the evaluation.

2.5.3 Implicit Nodes Insertion

Natural language sentences often contain elliptical expressions, which make some nodes in
their parse trees implicit. In this section, for a rough interpretation, which is represented by a
valid parse tree, we obtain its exact interpretation by detecting and inserting implicit nodes.

In our system, implicit nodes mainly exist in complex conditions, which correspond to
the conditions involving aggregations, nestings, and non-FKPK join constraints. As can be
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derived from Figure 2.5, the semantic meaning of a complex condition is its comparison
operator node operating on its left and right subtrees. When implicit nodes exist, such syn-
tactically valid conditions are very likely to be semantically “unreasonable”. We will first use
two examples to illustrate the concept of “unreasonable” conditions and then provide rules to
detect and insert the implicit nodes, and finally make “unreasonable” conditions reasonable.

Consider two syntactically valid parse trees, whose semantic meanings are “return all
the organizations, where the number of papers by the organization is more than the number
of authors in IBM” and “return all the authors, where the number of papers by the author
in VLDB is more than the number of papers in ICDE”. The first parse tree compares the
number of papers with the number of organizations, which sounds unreasonable in meaning.
The second parse tree seems better, but compares the number of papers by an author in a
conference with all the papers in another conference, which is also a little weird. To detect
such unreasonable query logics, we define the concept of core node.

Definition 5 (Core Node) Given a complex condition, its left (resp. right) core node is the

name node that occurs in its left (right) subtree with no name node as ancestor.

Inspired from [97], given a complex condition, we believe that its left core node and
right core node are the concepts that are actually compared. So they should have the same
type (map to the same schema element in the database). When they are in different types,
we believe that the actual right core node, which is of the same type as the left core node, is
implicit. Consider the first query we described above. The left core node is “paper” while the
right core node is “author”. By inserting an implicit node “paper” as its new right core node,
the semantic meaning of the parse tree is changed to “return all the organizations, where the
number of papers by the organization is more than the number of papers by the authors in
IBM”, which is much more reasonable. For the example in Figure 2.7, the implicit right core
node “citations1” in Figure 2.7 (c) is inserted in the same way. A special case is that when
the right subtree contains only one number, there is no implicit node in the right subtree
although the right core node is empty. For example, in the condition “more than 50 papers”,
the right subtree contains only one number “50” without any implicit node.

The name nodes in a left subtree are always related to the name nodes under the “SE-
LECT” node. Take the parse tree in Figure 2.7 (b) as an example. The nodes “conference”
and “area” are related to the nodes “citations” and “paper”. In our system, we connect them
by duplicating the name nodes under the “SELECT” node and inserting them to left subtree.
Each of the nodes inserted in this step is considered as the same entity with its original node
and marked “outside” for the translation in Section 2.6.

Furthermore, the constraints for the left core node and the right core node should be
consistent. Consider the parse tree in Figure 2.3 (c). Its complex condition compares the
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number of papers by an author in VLDB after 2000 with the number of all the papers by
Bob (in any year on any conference or journal), which is unfair. As such, the constraints of
“in VLDB” and “after 2000” should be added to the right subtree. To capture this intuition,
we map each NV node under the left core node to at most one NV node under the right core
node. Two nodes can be mapped only when they correspond to the same schema element in
the database. When a node has no map, our system will add an implicit node to the other
side to make them match with each other. Note that the nodes duplicated from “outside”
nodes are also marked “outside” and are considered corresponding to the same entity with
the original nodes.

The last kind of implicit node is the function node. In our system, we consider two cases
where function nodes may be implicit. First, the function node “count” is often implicit
in the natural language sentences. Consider the parse tree in Figure 2.3 (c). The node
“paper” is the left child of node “more” and it maps to the relation “Publication”, which
is not a number attribute. The comparison between papers is unreasonable without a “count”
function. Second, the function nodes operating on the left core node should also operate on
the right core node. Figure 2.7 (c) shows an example for this case. We see that the function
node “total” operates on the left core node “citations” but does not operate on the right core
node “citations1”. Our system detects such implicit function node and insert “total4” to the
right core node.

In our system, the detection and insertion of implicit nodes is just an inference of the
semantic meaning for a query, which cannot guarantee the accuracy. As such, the whole
process is done under the supervision of the user.

2.6 SQL Generation

Given a full-fledged query tree, we show in this section how to generate its corresponding
SQL expression.

In the translation, a schema element mapped by an NV node may have multiple represen-
tations in the SQL statement, say the schema element itself, its relation, its primary attribute
and its primary key. For each occurrence, only one of these representations is adopted ac-
cording to the context. Take the node “conference” in Figure 2.7 (c) as an example. When it
is added to the FROM clause, it actually refers to the relation Conference. When we return
it to the user as the final result, we actually return its primary attribute, which is Confer-
ence.name. For simplicity, we use the expression “the schema element mapped by node
‘conference’” in all cases, in which the specific representation can be obtained from the
context.

24



2.6.1 Basic Translation

In the cases when the query tree does not contain function nodes or quantifier nodes, which
means the target SQL query will not have aggregate functions or subqueries, the translation
is quite straightforward. The schema element mapped by the NV node under the SELECT
node is added to the SELECT clause. Each value node (together with its operation node if
specified) is translated to a selection condition and added to the WHERE clause. Finally, a
FK-PK join path is generated, according to the schema graph, to connect each NV node and
its neighbors. Such an FK-PK join path is translated into a series of FK-PK join conditions
and all the schema elements in the FK-PK join path are added to the FROM clause.

Example 2 Consider the query tree shown in Figure 2.7 (c). Here we omit its complex con-

dition. The schema element Conference.name, which is mapped by the node “conference”,

is added to the SELECT clause. To connect the mapped schema elements Conference and

Domain, a FK-PK join path from Conference to Domain through ConferenceDomain

is generated, which will be translated to the FK-PK conditions shown in line 16-17 in Fig-

ure 2.8.

2.6.2 Blocks and Subqueries

When the query tree contains function nodes or quantifier nodes, the target SQL statements
will contain subqueries. In our system, we use the concept of block to clarify the scope of
each target subquery.

Definition 6 (Block) A block is a subtree rooted at the select node, a name node that is

marked “all” or “any”, or a function node. The block rooted at the select node is the

main block, which will be translated to the main query. Other blocks will be translated to

subqueries. When the root of a block b1 is the parent of the root of another block b2, we say

that b1 is the direct outer block of b2 and b2 is a direct inner block of b1. The main block is

the direct outer block of all the blocks that do not have other outer blocks.

Given a query tree comprising multiple blocks, we translate one block at a time, starting
from the innermost block, so that any correlated variables and other context is already set
when outer blocks are processed.

Example 3 The query tree shown in Figure 2.7 (c) consists of four blocks: b1 rooted at

node “return”, b2 rooted at node “total”, b3 rooted at node “most”, and b4 rooted at node

“total4”. b1 is the main block, which is the direct outer block of b2 and b3. b3 is the direct
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1.#Block#2:#SELECT#SUM(Publica8on.cita8on_num)#as#sum_cita8on,###
#2.# # #Conference.cid,#Domain.did#

#��3.########����FROM#Publica8on,#Conference,#Domain,#ConferenceDomain#
#4.# ##�WHERE#Publica8on.cid#=#Conference.cid#
#5. # #AND#Conference.cid#=#ConferenceDomain.cid#
#6.# # #AND#ConferenceDomain.did#=#Domain.did#
#7.# ##�GROUP#BY#Conference.cid,#Domain.did#

8.#Block#3:#SELECT#MAX(block4.sum_cita8on)#as#max_cita8on,##
#9.# # #block4.cid,#block4.did#
#10. ####FROM#(CONTENT#OF#BLOCK4)#as#block4#
#11. ####GROUP#BY#block4.did#

12.Block#1:#SELECT#Conference.name,#Domain.name#
#13. #####FROM#Conference,#Domain,#ConferenceDomain#
#14. # #(CONTENT#OF#BLOCK2)#as#block2#
#15. # #(CONTENT#OF#BLOCK3)#as#block3#
#16. #####WHERE#Conference.cid#=#ConferenceDomain.cid#
17.# # #AND#ConferenceDomain.did#=#Domain.did#
18.# # #AND#block2.cita8on_num#=#block3.max_cita8on#
19. # #AND#Conference.cid#=#block2.cid#
20.# # #AND#Conference.cid#=#block3.cid#
21. # #AND#Domain.did#=#block2.did#
22.# # #AND#Domain.did#=#block3.did#

Figure 2.8: Translated SQL Statement for the Query Tree in Figure 2.7 (c).

outer block of b4. For this query tree, our system will first translate b2 and b4, then translate

b3 and finally translate the main block b1.

For each single block, the major part of its translation is the same as the basic transla-
tion as we have described. In addition, some SQL fragments must be added to specify the
relationship between these blocks.

First, for a block, each of its direct inner blocks is included in the FROM clause as a
subquery. Second, each complex condition is translated as a non-FKPK join condition in the
main query. Third, each of the name nodes that is marked “outside” refers to the same entity
as its original node in the main block. Each of such relationships is translated to a condition
in the main query.

Example 4 Consider the query tree in Figure 2.7 (c), whose target SQL statement is shown

in Figure 2.8 (the block b4 is omitted since it is almost the same as b2). In the query tree,

b4 is included by b2 while b2 and b3 are included by b1 as direct inner blocks. Thus their

corresponding subqueries are added to the FROM clause of their direct outer blocks (line 10
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and line 14 - 15). The complex condition rooted at node “=” is translated to the condition

in line 18. The nodes “conference2”, “area2”, “conference3” and “area3” are marked

“outside” in the implicit node insertion, which means they correspond to the same entity as

the nodes “conference” and “area” in the main block. These relationships are translated to

the conditions in line 19 - 22.

Finally, we need to determine the scope of each aggregate function and quantifier (all,
any). The scope of each quantifier is rather obvious, which is the whole block rooted at
the name node marked with that quantifier. In contrast, when multiple aggregate functions
exist in one query, especially when they occur in different levels of blocks, the scope of
each aggregate function is not straightforward. In our system, we call the name node that
are marked with “each” or “outside” as grouping nodes. Each aggregate function operates
on the grouping nodes that (a) haven’t been operated on by other aggregate functions in its
inner blocks, and (b) do not have grouping nodes that meet condition (a) as ancestors. Once
a grouping node is operated on by an aggregate function, it is disabled (since it has been
aggregated). Each time we determine the scope of an aggregate function, we just add all the
grouping nodes that still work. Take the query tree in Figure 2.7 (c) as an example. When
determining the scope of total4, both the grouping nodes conference3 and area3 work and
are added to the GROUP BY clause (the same as line 7). After this aggregation, conference3
is disabled since it has been operated on by total4. When determining the scope of most,
only area3 still works, which will be added to the GROUP BY clause (line 11) and disabled
afterwards.

2.7 Experiments

We implemented NaLIR as a stand-alone interface that can work on top of any RDBMS. In
our implementation, we used MySQL as the RDBMS and the Stanford Natural Language
Parser [24] as the dependency parser. For each ambiguity, we limited to 5 the number of
interpretations for the user to choose from.

2.7.1 User Interface

Figure 2.9 shows a screenshot of NaLIR. When a new query is submitted from the client,
the server processes it and returns the results. If NaLIR is uncertain in understanding some
words/phrases, it adopts the best mapping as default and lists the others for the user to choose
form. Also, when NaliR is uncertain in understanding the query intent behind the whole
sentence, it lists multiple interpretations. To facilitate the user in recognizing her query
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intent, NaLIR shows interpretations hierarchically, in which each cluster/interpretation is an
approximate/accurate natural language description. Each time when a user makes a choice,
NaLIR immediately updates its interpretations, evaluates the best interpretation and updates
the results.

2.7.2 Measurement

The motivation of our system is to enable non-technical users to compose logically complex
queries over relational databases and get perfect query results. So, there are two crucial
aspects we must evaluate: the quality of the returned results (effectiveness) and whether our
system is easy to use for non-technical users (usability).

Effectiveness. Evaluating the effectiveness of NaLIR is a challenging task. The objective
in NaLIR is to allow users to represent SQL statements using natural language. Traditional
IR metrics like recall and precision would not work very well since they will always be
100% if the translated SQL statement is correct and near 0% in many times when it is not.
So, the effectiveness of our system was evaluated as the percentage of the queries that were
perfectly answered by our system. (Note that this is a stiff metric, in that we get zero credit
if the output SQL query is not perfect, even if the answer set has a high overlap with the
desired answer). Since the situations where users accept imperfect/wrong answers would
cause severe reliability problems, for the cases when the answers were wrong, we recorded
whether the users were able to recognize such failures, whether from the answers themselves
or from the explanations generated by our system. Also, for the failure queries, we analyzed
the specific reasons that caused such failures.

Usability. For the correctly processed queries, we recorded the actual time taken by the
participants. In addition, we evaluated our system subjectively by asking each participant to
fill out a post-experiment questionnaire.

2.7.3 Experiments Design

The experiment was a user study, in which participants were asked to finish the query tasks
we designed for them.

Data Set and Comparisons. We used the data set of Microsoft Academic Search (MAS).
Its simplified schema graph and summary statistics are shown in Figure 2.1 and Figure 2.10,
respectively. We choosed this data set because it comes with an interesting set of (supported)
queries, as we will discuss next.

We compared our system with the faceted interface of the MAS website. The website
has a carefully designed ranking system and interface. By clicking through the site, a user
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Figure 2.9: Query Interface of NaLIR
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Rela%on( #tuples( Rela%on( #tuples(

Publica(on+ 2.45+M+ Author+ 1.25+M+

cite+ 20.3+M+ Domain+ 24+

Conference+ 2.9+K+ Journal+ 1.1+K+

Organiza(ons+ 11+K+ Keywords+ 37+K+

Figure 2.10: Statistics for MAS Database.

Easy:&Return&all&the&conferences&in&database&area.&&&&&&&
Medium:&Return&the&number&of&papers&in&each&database&conference.&&&&&&&
Hard:&Return&the&author&who&has&the&most&publica;ons&in&database&area.&&&&&&
�

Figure 2.11: Sample Queries in Different Complexity.

is able to get answers to many quite complex queries. We enumerated all query logics that
are “directly supported” by the MAS website and can be accomplished by SQL statements.
“Directly supported” means that the answer of the query can be obtained in a single webpage
(or a series of continuous webpages) without further processing. For example, to answer the
query “return the number of conferences in each area”, the user has to look at 24 webpages, in
which each webpage corresponds to the answer in an area. Thus this query is not considered
to be directly supported by the MAS website. However, the query,QD, “return the number of
conferences in the Database area” is a directly supported query. Queries that refer to the same
relations and attributes but different values, are considered to have the same query logic.
Thus, query QD has the same query logic as the query “return the number of conferences in
the Graphics area”. Through exhaustive enumeration, we obtained a set of 196 query logics.

We marked the complexity of each query according to the levels of aggregation/nesting
in its corresponding SQL statement. Sample queries with different complexity are shown
in Figure 2.11. In the query set, the number of easy/medium/hard queries are 63/68/65,
respectively.

The MAS website is expressly designed to support these 196 query logics, and the user
can click through the site to get to a results page, entering only values of constants into
search boxes as needed along the way. We used this as the baseline for our comparison. In
other words, how did natural language direction compare with click through, for the queries
supported by the latter. (Note that an NLIDB supports many different queries beyond just
these 196, while the website does not. We restricted our comparison to just the queries
supported by the website).

A central innovation in NaLIR is the user interaction as part of query interpretation. To
understand the benefit of such interaction, we also experimented with a version of NaLIR in
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which the interactive communicator was disabled, and the system always chose the default
(most likely) option.

Participants. 14 participants were recruited with flyers posted on a university campus.
A questionnaire indicated that all participants were familiar with keyword search interfaces
(e.g. Google) and faceted search interfaces (e.g. Amazon), but had little knowledge of formal
query languages (e.g. SQL). Furthermore, they were fluent in both English and Chinese.

Procedures. We evenly divided the query set into 28 task groups, in which the
easy/medium/hard tasks were evenly divided into each task group. This experiment was a
within-subject design. Each participant randomly took three groups of tasks and completed
three experimental blocks. In the first (resp. second) experimental block, each participant
used our system without (with) the Interactive Communicator to accomplish the tasks in her
first (second) task group. Then in the third experimental block, each participant used the
MAS interface to do her third task group. For each task group, the participants started with
sample query tasks, in order to get familiar with each interface.

For our system, it is hard to convey the query task to the participants since any English
description would cause bias in the task. To overcome this, we described each query task in
Chinese and asked users to compose English query sentences. Since English and Chinese
are in entirely different language families, we believe this kind of design can minimize such
bias. To alleviate participants’ frustration and fatigue from repeated failures, a time limit of
three minutes was set for each single query task.

2.7.4 Results and Analysis

Effectiveness. Figure 2.12 compares the effectiveness of our system (with or without the
interactive communicator) with the MAS website. As we can see, when the interactive com-
municator was disabled, the effectiveness of our system decreased significantly when the
query tasks became more complex. Out of the 32 failures, the participants only detected 7
of them. Actually, most of undetected wrong answers were aggregated results, which were
impossible to verify without further explanation. In other undetected failures, the partici-
pants accepted wrong answers mainly because they were not familiar with what they were
querying. In the 7 detected failures, although the participants were aware of the failure, they
were not able to correctly reformulate the queries in the time constraint. (In 5 of the detected
failures, the participants detected the failure only because the query results were empty sets).
The situation got much better when the interactive communicator was involved. The users
were able to handle 88 out of the 98 query tasks. For the 10 failed tasks, they only accepted
4 wrong answers, which was caused by the ambiguous (natural language) explanations gen-
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with%Interac,on� without%Interac,on� MAS�

Simple:� 34/34� 26/32� 20/33�

Medium:� 34/34� 23/34� 18/32�

Hard:� 20/30� 15/32� 18/33�

Figure 2.12: Effectiveness.

Mapper� Reformula,on� Inser,on� Transla,on�

w/o3Interac,on� 15� 19� 0� 0�

with3Interac,on� 0� 10� 0� 0�

Figure 2.13: Failures in each Component.

erated from our system. In contrast, the participants were only able to accomplish 56 out of
the 98 tasks using the MAS website, although all the correct answers could be found. In the
failure cases, the participants were simply not able to find the right webpages, which often
required several clicks from the initial search results.

Figure 2.13 shows the statistics of the specific components that cause the failures. We
can see that our system could always correctly detect and insert the implicit parse tree nodes,
even without interactive communications with the user. Also, when the query tree was cor-
rectly generated, our system translated it to the correct SQL statement. When the interactive
communicator was enabled, the accuracy in the parse tree node mapper improved signifi-
cantly, which means for each the ambiguous parse tree node, the parse tree node mapper
could at least generate one correct mapping in the top 5 candidate mappings, and most im-
portantly, the participants were able to recognize the correct mapping from others. The
accuracy in parse tree structure reformulation was also improved when the participants were
free to choose from the top 5 candidate valid parse trees. However, when the queries were
complex, the number of possible valid parse trees was huge. As a result, the top 5 guessed
interpretations could not always include the correct one.

Usability. The average time needed for the successfully accomplished query tasks is
shown in Figure 2.14. When the interactive communicator was disabled, the only thing
a participant could do was to read the query task description, understand the query task,
translate the query task from Chinese to English and submit the query. So most of the
query tasks were done in 50 seconds. When the interactive communicator was enabled, the
participants were able to read the explanations, choose interpretations, reformulate the query
according to the warnings, and decide to whether to accept the query results.

It is worth noting that, using our system (with interactive communicator), there was no

32



with%Interac,on� without%Interac,on� MAS�

Simple:� 48� 34� 49�

Medium:� 70� 42� 67�

Hard:� 103� 51� 74�

Figure 2.14: Average Time Cost (s).

instance where the participant became frustrated with the natural language interface and
abandoned his/her query task within the time constraint. However, in 9 of the query tasks,
participants decided to stop the experiment due to frustration with the MAS website. Ac-
cording to the questionnaire results, the users felt that MAS website was good for browsing
data but not well-designed for conducting specific query tasks. They felt NaLIR can handle
simple/medium query tasks very well but they encountered difficulties for some of the hard
queries. In contrast, the MAS website was not sensitive to the complexity of query tasks.
Generally, they welcomed the idea of an interactive natural language query interface, and
found our system easy to use. The average level of satisfaction with our system was 5, 5
and 3.8 for easy, medium, and hard query tasks, respectively, on a scale of 1 to 5, where 5
denotes extremely easy to use.

2.8 Summary

We have described an interactive natural language query interface for relational databases.
Given a natural language query, our system first translates it to a SQL statement and then
evaluates it against an RDBMS. To achieve high reliability, our system explains to the user
how her query is actually processed. When ambiguities exist, for each ambiguity, our system
generates multiple likely interpretations for the user to choose from, which resolves ambi-
guities interactively with the user. The query mechanism described in this chapter has been
implemented, and actual user experience gathered. Using our system, even naive users are
able to accomplish logically complex query tasks, in which the target SQL statements include
comparison predicates, conjunctions, quantifications, multi-level aggregations, nestings, and
various types of joins, among other things.
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CHAPTER 3

A Template-based Interface for Relational
Databases

3.1 Introduction

Typically, an NLIDB has a semantic coverage, which consists of the supported query logics.
To answer a natural language query correctly, first, the semantic coverage must be expressive
enough to cover the desired query interpretation, and second, the system must be able to map
the query to the correct point in the semantic coverage. The two requirements are not easy to
satisfy at the same time since the difficulty of the mapping increases with the expressiveness
of the semantic coverage.

First, the semantic coverage of a useful NLIDB is often required to be wide. Actually, in
the scenario when the semantic coverage is narrow and predictable, form-based interfaces,
faceted interfaces and WIMP (windows, icons, menus and pointers) interfaces are often pre-
ferred [61]. So, the real value of an NLIDB is its support for various types of complex queries
over structurally complex databases. Based on this observation, some NLIDB systems try
to define their semantic coverage as all the syntactically correct SQL queries (or XQueries)
over the queried database [51, 47]. We notice that most syntactically correct queries are
unnecessary in that they will almost never be queried by users. However, supporting them
makes the mapping task much more difficult.

Second, natural language queries are inherently ambiguous. Even a grammatically cor-
rect natural language sentence may contain ambiguities, from the perspective of both natural
language processing and database schema matching. Since the number of candidate interpre-
tations grows exponentially with the number of ambiguities, the system’s semantic coverage
often contains multiple candidate interpretations. In such cases, it requires considerable in-
telligence to figure out which one is desired.
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Figure 3.1: Simplified Schema Graph for Microsoft Academic Search

Example 5 Consider the query “show me the citations of “Constructing an NLIDB...” that

are not written by its authors” on the schema graph shown in Figure 3.1. Many ambiguities

exist. First, the paper has a set of authors and each citation has a set of authors. It is not

clear whether the query requires these two sets to be completely non-overlapping or different

in at least one author. Second, two join paths exist when joining the two papers on the schema

graph: (a) paper1 ← citing ↔ cited → paper2, in which paper2 is the reference, and (b)

paper1 ← cited↔ citing → paper2, in which paper2 is the citation. It is not easy to figure

out which one is desired. Due to these ambiguities, the NL query can correspond to many

SQL statements with semantics that are different, leading to different query results.

Moreover, naive users often use informal expressions and prefer brevity to logical preci-
sion.

Example 6 The query “authors who have 100 papers” usually means “authors who have

greater than or equal to 100 papers”. The greater than operator in the desired output query

is nowhere in the input natural language expression: it has to be deduced from common

sense and domain knowledge.

Even though these ambiguities and shortenings are hard for a computer to resolve, we
humans can usually tell which interpretation is correct since we can quickly disqualify most
other interpretations as unlikely, according to our intuition and common sense. In this chap-
ter, we would like to enable NLIDBs to have this kind of “intuition” by supporting query
logics selectively. For example, for a bibliographic database, we would expect to support
“which authors have more than 20 papers in SIGMOD?”, but not necessarily to support
“which papers have less than 2 authors in Stanford University?”, even if these two queries
are similar in syntax. The latter query is perfectly legal, and easily expressed in SQL. How-
ever, based on our domain knowledge and common sense, we can believe that it is an unlikely
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query. As humans, when we hear a query like this, our brains go through an error correc-
tion process: Did I hear correctly? Could she have meant something else? Is there some
other more sensible way I could interpret her question? We would like to have our system
implement the corresponding skepticism. Similar ideas have previously been suggested, in
the context of keyword queries [64].

Most natural language query systems generate multiple possible interpretations and use
some kind of ranking or scoring mechanism to choose between them. Typically, this scor-
ing is based only on the relevance of each candidate interpretation of the natural language
query. In contrast, consider search engines, where a keyword query may have many relevant
webpages. In most search systems, the ranking considers both relevance (e.g. using TF-IDF)
and the importance of webpages (e.g. estimated using PageRank), as it achieves much higher
precision and recall compared to ranking that is based solely on relevance [14]. Inspired by
this observation, we model the semantic coverage of an NLIDB as a set of weighted SQL

templates, in which the weight describes the likelihood of each template to be queried. Then,
when ranking the candidate interpretations (templates) for a natural language query, we con-
sider the weights of the interpretations as well as the relevance between the query and the
interpretations.

The next immediate question is how to acquire these templates and learn the weights.
In most systems, the query log records the queries issued by actual users. If a fairly large
query log is available, then we can assume that the frequency with which any query logic
appears in the query log reflects the probability of a future query being posed with the same
logic. That is, the query log is a representative sample of the distribution of queries. Based
on this idea, we can analyze the query log and define the concept of popularity for each SQL
template as an estimate of its likelihood to be queried.

Ideally, when we have a large enough SQL query log, it is straightforward to define the
popularity for each SQL template based on its frequency. However, in many real applica-
tions, the query log may not be enough to cover all necessary SQL templates. If the query log
is only in natural language, then cost considerations may dictate that only a few queries are
manually translated into SQL templates. Even if all SQL templates are covered, the query
distribution, may not reflect the true distribution one would observe with an infinite (theoret-
ical) query log. DBAs often have a good idea about the domain and typical user interest and
are able to distinguish whether a template should or should not be supported based on their
expertise. But it is not realistic to expect DBAs to enumerate all the SQL templates as each
template requires time and effort to create.

To address these problems, we provide a strategy to augment the available resources such
as query logs and specifications from DBAs. In our strategy, the existing SQL templates

36



are extended and a PageRank inspired mathematical model is developed for smoothing the
popularity of each template.

Besides mapping to the desired SQL template, the ambiguities at entity level also need
to be resolved. The identification for an entity used in natural language scenarios and that
stored in the database are often different. In a database, keys are defined to uniquely identify
entities, while in natural language scenarios, these identifications are often based on attribute
values. However, attribute values stored in the database can be very similar, particularly
when they are text strings, and users may not able to specify the exact value for the entity.
We observe that in real world applications, important entities are more likely to be queried
(e.g. authors with many papers, papers with many citations, and so forth). So we formally
define the importance for the entities and take it into account for disambiguation at entity
level.

Putting the above ideas together, we propose a framework for NLIDBs comprising two
main parts: an offline part, which is responsible for generating weighted SQL templates
by analyzing DBA input and the query log, and an online part, which is responsible for
translating natural language queries into SQL queries, by mapping and instantiating the SQL
templates. We have constructed such an NLIDB, and we call it TBNaLIR (Template-Based
Natural Language Interface to Relational databases).

The intellectual contributions of this paper are as follows:

1. Weighted SQL Templates. We provide a generic method to model the semantic cov-
erage of an NLIDB as a set of weighted SQL templates, in which each SQL template
represents a set of SQL queries that differ only in values of constants and the weight
of the template describes the likelihood of its being queried.

2. System Architecture. We provide a modular architecture for constructing NLIDBs,
which consists of an offline part and an online part, in which each component can be
designed, and improved, independently. We develop a working software system called
TBNaLIR, which instantiates this architecture.

3. Smoothing Model for Template Popularity. We develop a simple probabilistic model,
based on the behavior of a random user, to augment the available resources like query
log and DBAs. Based on this model, we compute popularities for SQL templates,
which better reflect the likelihood of each SQL template to be queried, even when the
resources are limited.

4. Mapping Strategy. We present an effective mapping strategy to map a natural language
query to the SQL templates. The mapping strategy considers not only the relevance
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between the query and the templates, but also the popularity of the templates.

The remaining parts of the paper are organized as follows. In Section 4.2, we define
the SQL template and overview our system architecture. We extend the semantic coverage
of NLIDB in Section 3.3 and computes its popularity in Section 3.4. Section 3.5 discusses
the online processing of a natural language query. In Section 4.6, our system is evaluated
experimentally. In Section 4.7, we draw conclusions and point to future work.

3.2 Overview

The input to our system is a natural language query whose semantic meaning may involve
comparisons, aggregations, various types of joins and nestings, among other things. The se-

mantic coverage of our system is defined as a set of weighted SQL templates. In this chapter,
each template is weighted by popularity, which describes the likelihood of a template being
queried. Given a natural language query, by mapping it to the correct SQL template, our
system translates the natural language query into the desired SQL statement and evaluates it
against an RDBMS.

In this section, we first introduce SQL templates and then describe the system architec-
ture.

3.2.1 SQL Template

Two queries are said to have the same query logic if they have the same SQL structure (SQL
keywords, relations, attributes, aggregation functions, operators, nestings), even though con-
stants in the query have different values. A SQL template is used to represent such a query
logic by replacing the specific values in the SQL statement with slots. For example, the SQL
template of “papers published after 2007 in VLDB” is shown in Figure 3.2.

!
SELECT����
FROM!publica2on,!conference!
WHERE!publica2on.cid!=!conference.cid!!

!����AND!conference.cid!=![ID]%AND!publica2on.year!>![INTEGER]%

Figure 3.2: Sample SQL Template.

While the values of constants can be ignored in defining templates, it is important to
distinguish between related operators. For example, the SQL templates describing “authors
with > x papers”, “authors with = x papers”, and “authors with < x papers” are considered
as three different templates, since they have very different likelihoods of being queried. The
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Figure 3.3: System Architecture for TBNaLIR.
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first template is likely to be queried much more frequently than the other two. As such, it is
unfair to define one big template to cover the three and mark all of them as high quality query
logics. Similarly, SQL templates with different operators, quantifiers, aggregation functions,
or logic keywords (AND, OR) should be considered as different SQL templates.

3.2.2 Problem Definition

The problem we attempt to address is to translate a natural language query (NLQ) to a SQL
statement. In recent works, this problem is often modeled as a semantic parsing problem
or machine translation problem, in which the translator is learned from a considerable num-
ber of (NLQ, SQL) pairs [26, 57, 54, 70]. However, unlike typical semantic parsing or
machine translation problems, the underlying schema of different databases often differs,
which means the training set for one NLIDB cannot be applied to another NLIDB. As a
result, in real database applications, a good training set is often not available. That makes
the configuration of an NLIDB hard, even if the learning strategy may work in theory. [99]
focuses on the generation of training examples, but it still requires a set of natural language
queries, which is often not available for relational databases.

Furthermore, unlike the general problem of semantic parsing or machine translation, an
NLIDB has many unique resources for resolving ambiguities, like the underlying schema
structure, the query log, the distribution of the data, the configuration from the DBA, and so
forth. The fact that more resources can be taken into account often means higher dimensions
of input, which exacerbates the shortage of training examples for a learning-based system.
Instead, we observe that the essence of taking usage of these resources is that they reflect
the likelihood of different query logic to be asked. Therefore, our solution is to capture this
information about NLIDB structure and domain in the form of SQL templates.

Example 7 Consider Example 15 where the two ambiguities mentioned would make up four

different interpretations, which corresponds to four SQL templates. By checking the query

log (if there is a fairly large one), it is very likely that the SQL template corresponding to the

correct interpretation appears much more frequently than the other three. This information

obtained from the query log could serve as a strong evidence for solving these ambigui-

ties. Similarly, other resources such as the underlying data distribution can also serve as

evidences for resolving some ambiguities. For example, consider the second ambiguity in

Example 15 of generating join paths between two papers. When examining the data distri-

bution of the underlying database, we could find that the number of references of a paper

ranges from 0 to several hundred, while the number of citations of a paper ranges from 0 to

tens of thousands. The distribution of the latter has a much larger entropy, which means a
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query on that is more informative. This evidence could also help us to resolve some of the

ambiguities.

The semantic coverage of an NLIDB is the set of all questions that it can support. It may
be possible to state natural language queries outside the semantic coverage, but the system
would not be capable of answering these. We model the semantic coverage of an NLIDB as
a set of weighted SQL templates, in which the weights represent the likelihood of each SQL
template to be queried. Given this representation, the problem of understanding an NLQ is
naturally modeled as a mapping problem, which tries to map the NLQ to its corresponding
SQL template. The mapping is based on the both the relevance between the NLQ and the
SQL template, and the weight of the SQL template.

The system is naturally divided into two parts. The offline part obtains the weighted SQL
templates from available resources, including user logs and DBA directives. The goal is to
make the SQL templates cover most of the likely NLQs and the weights to faithfully reflect
their likelihood to be queried. The online part maps the input NLQ to the SQL templates.
The goal is to improve the ranking to make the desired interpretation rank higher.

3.2.3 System Architecture

Figure 3.3 depicts the architecture of our system. It consists of two main components: an
offline part and an online part.

3.2.3.1 Offline Part

The offline part, which consists of Template Generator and Popularity Estimator, is respon-
sible for generating the weighted SQL templates as the semantic coverage from available
resources.

Template Generator The template generator first transforms each SQL statement in the
query log or specified by DBAs into a SQL template. This set of SQL templates forms the
initial semantic coverage. Given the fact that these resources may be limited or biased, the
initial semantic coverage may not be able to cover all (or most of) the likely queries. To deal
with this problem, the template generator extends the initial semantic coverage by generating
new SQL templates. This expanded set of SQL templates serves as a superset of the final
semantic coverage of our system.

Popularity Estimator As will be discussed in detail in Section 3.3, the SQL templates are
not independent of one another. Templates that share common structures are considered to
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be relevant to each other. The Popularity Estimator uses this relevance relationship and a
probabilistic model inspired from Pagerank to smooth the weight for each SQL template.
The weight for each SQL template is defined as its popularity, which captures the following
intuitions: (1) templates appear frequently in the query log tend to have high popularity, (2)
templates relevant to many popular templates tend to be popular, and (3) If a SQL template is
specified by an DBA that should (not) be supported, its weight and the weights of its relevant
templates should increase (decrease). Finally, the SQL templates with high popularity are
selected to form the semantic coverage of the NLIDB.

Interface for DBA The interface for DBA helps DBAs to manage the semantic coverage
in a semi-automatic manner. The command of adding a new important SQL template may
finally result in adding a series of SQL templates that are missing, while the command of
deleting an existing popular template may decrease the weights of many its relevant SQL
templates. It helps the DBAs do the modifications interactively, in which a few iterations
would improve the semantic coverage a lot.

3.2.3.2 Online Part

The online part, which mainly consists of Tokenizer and Template Mapper, is responsible
for mapping the natural language query to the correct SQL template and generating the SQL
statement.

Syntactic Parser The first obstacle in translating a natural language query into a SQL
query is to understand the natural language query linguistically. In our system, we use the
Stanford Parser [24] to generate a linguistic parse tree from the natural language query. The
linguistic parse trees in our system are dependency parse trees, in which each node is a
word/phrase specified by the user while each edge is a linguistic dependency relationship
between two words/phrases. We use dependency parser since it is regarded more stable for
relation detection by capturing long-distance dependency [63].

Tokenizer In a dependency parse tree, each node is a single word. The tokenizer identifies
the sets of nodes in the linguistic parse tree that can be mapped to database elements (SQL
keyword, schema elements and values in the database). In this process, a set of words may
be merged into a phrase, which should be taken as a whole to form a single token. Given the
fact that important database elements are more likely to be queried, the mapping is based on
the importance of elements, in addition to the similarity between phrases and the database
elements.
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Template Mapper The next step is to understand the relationship between the tokens and
interpret the whole query. In the template mapper, a natural language query is interpreted by
finding its corresponding SQL template. Specifically, our system ranks SQL templates based
on both their popularity and their relevance to the input query. The top SQL templates are
instantiated and explained to the user. The one chosen by the user (or the top one by default)
is evaluated against the RDBMS.

Interface for End Users To deal with the possibility that the system possibly misunder-
stands the user, our system explains to the user how her query is processed. Specifically,
interactive communications are organized in two steps, which verify the intermediate re-
sults of the tokenizer and the template mapper, respectively. For each ambiguity, our system
generates a multiple choice selection panel, in which each choice corresponds to an inter-
pretation. Each time a user changes a choice, our system immediately updates the results in
later steps.

3.3 Template Generation

We notice that the syntactically valid SQL templates actually form an open set, in which most
templates are not semantically meaningful and will almost never be queried by real users.
Our goal is to develop enough SQL templates to cover all reasonable queries while ensuring
that there are not too many unnecessary SQL templates. We develop these templates based
on the query log and the specifications from the DBAs using a three-step process as follows:

1. Initialization: Obtain the initial SQL templates that directly appear in the query log
or specified by DBAs.

2. Extension: Extending the initial semantic coverage by generating new SQL templates.

3. Refinement: Compute the popularity of the SQL templates and choose top ones as the
final semantic coverage.

In this section, we discuss the first two steps. The refinement step will be described in the
next section.

The initialization step is quite straightforward, according to the definition of SQL tem-
plate. Given the fact that the queries in the query log may be limited or biased, not only can
we be off on the frequencies of SQL templates that occur, it is also possible that we entirely
miss templates that do occur in practice but happened not to be present in our small sample.
This danger is exacerbated by our need to distinguish between operators and query structures
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at fine granularity, which increases the number of SQL templates we need to support. Sim-
ilarly, it is usually easy for an expert DBA to fast design some likely query templates, but it
is very hard to be complete and make sure not to miss any likely query templates. So, in the
extension step, the initial semantic coverage, whether obtained from query log or DBA, is
extended by adding new SQL templates.

We define an SPJA template to be a SQL template that uses only selections, projections,
FKPK (foreign-key-primary-key) joins and aggregations (including Group By and Having
clauses). We first describe how SPJA templates are generated in the next several paragraphs,
and then extend complex templates later in this section.

Example 8 Given the simplified schema shown in Figure 3.1, the SQL template for the query

in Example 15 is a complex (non-SPJA) template, which involves subquery with a NOT IN

clause. The query in Example 6 can be expressed by an SPJA template.

We start from the generation of SPJA templates. A similar problem arises in schema-
based keyword search [37, 58, 31, 48]. However, we cannot simply adopt their method
since too many SQL templates would be generated, in which most of them are semantically
meaningless, especially when aggregations are considered.

Example 9 Given a simple join path, paper - citing - cited - paper, many SQL templates can

be generated. Here we choose two of them as examples, which correpsond to “papers with

more than 1000 citations” and “papers with more than 1000 references”, respectively. As

humans with experiences in querying bibliographic databases, we could easily tell that the

first one is much more likely to be queried than the second one. But how can we provide the

system with such intuition?

Here we take into account the underlying data distribution to distinguish semantically
meaningful SQL templates from others. In Example 9, we observe that the number of cita-
tions for each paper ranges from zero to tens of thousands, while the number of references
in each paper ranges from zero to several hundreds at most. Obviously, the former distribu-
tion is much more dispersed than the latter. In information theory, the entropy of the former
would be higher, which means a query on that is more informative. We adopt the concept
of entropy from information theory to estimate whether an SPJA template is semantically
meaningful.

Definition 7 (Fanout Set) Let R be all the schema elements returned, J be the FKPK join

network at schema level, {ri} be the combination set of the tuples of R, jr be the join net-

works corresponding to J at tuple level that contains the tuple combination r. The fanout

set of the SQL template is defined as M = {|jr| | r ∈ {ri}}.
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Given the fanout set M , let {m} be its distinct values and fm be the relative frequency of
m. The entropy of M is computed as follows:

E(M) = −
∑
m∈M

fm · log fm (3.1)

The entropy is then normalized to a number between 0 and 1, and a threshold is used to filter
out the templates with low fanout entropies.

Given this concept, the system is automatically configured with a rough intuition of
which SQL templates are more likely to be queried. For example, when generating the
SQL templates containing two authors, the system is able to figure out that “the authors who
coauthored with Bob” is more semantically meaningful than “the authors who are in the
same organization as Bob”, while “the authors who are in the same research domain with
Bob” is essentially meaningless.

For complex templates, it is difficult to construct the special structures (non-FKPK joins,
set operations, nestings) from scratch. Instead, we generate new complex templates only
by modifying the complex templates that directly appear in the query log. Specifically, we
modify the SPJ parts of complex templates by adding/deleting constraints. Consider the SQL
template mentioned in Example 15 again. Given the SQL template of “show me the citations
of ‘Constructing an NLIDB...’ that are not written by its authors”, we are able to generate the
SQL templates like “show me the citations of ‘Constructing an NLIDB...’ that are published

in VLDB and are not written by its authors” by modifying its SPJ parts.
Additionally, we also allow DBA to specify templates that should NOT occur. This

expert input can occasionally be valuable: for example, if the small query log has some
idiosyncratic queries that are better ignored, or to guide our template set extension method
described above by limiting some templates. These templates are simply recorded with a
negative appearance at this stage. The weight will be smoothed in the next stage, described
in the next section.

3.4 Popularity

Ideally we would like to have a sufficiently long query log that records the querying behavior
of actual users. In this case, we can assume that the log includes all the necessary SQL
templates with frequency proportional to the real distribution, and the appearance frequency
of a SQL template can be used directly to reflect its chances to be queried again.

In practice, the resources available are often limited, and may be artificially derived as
discussed above. In this case, we must worry about the query log not being a good represen-
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tative sample of the entire distribution. In this section, we provide strategies to smooth the
weights for the SQL templates, which makes them reflect their likelihood of being queried,
even in the cases when the resources are limited.

3.4.1 Template Relevance

A central observation on which we base our smoothing model is that the SQL templates are
not independent of one another. As such, if a template is considered important and has a
high weight (e.g. appears frequently in the query log), other templates it ncludes, or those
include it, should also be given some credit. We call such other templates relevant to the
target template.

Example 10 Consider the SQL templates show in Figure 3.4. Intuitively, if T1 appears

frequently in the query log, T2 should also be assigned some weight. Similarly, if T3 is

specified by an DBA as one that should not be supported, the weight of T4 should also be

reduced.

T1:"authors"who"have"more"than"10"papers"in"SIGMOD"
T2:"authors"who"have"more"than"10"papers"
T3:"paper"with"more"than"5"authors"
T4:"paper"with"more"than"5"authors"in"Stanford"
T5:"authors"who"have"collaborated"more"than"10"papers"with"Bob"
"
"
"
"
"

Figure 3.4: Pairs of Relevant Queries.

To capture this observation, two intuitions need to be quantified: (a) how to evaluate the
relevance between two templates and (b) how to smooth the weights by transferring them
from one template to its relevant templates.

In our system, two SQL templates are considered relevant only when the graph represen-
tation of one template contains/is contained by the other1. Let T1 and T2 be two SQL tem-
plates. In the cases when T1 contains T2, we define the relevance between them as (1

2
)(

|T1 |
|T2 | ),

in which |T | is the size (total number of nodes and edges) of template T . This definition is
based on the observation that the larger subgraph T2 is of T1, the more relevant they should
be.

This is a rather rigid definition for relevance since only containing/contained relationship
is taken into account. Indeed, the definition of the relevance between two templates is some-
what subjective, and the specific definition is not material for the rest of our framework. So

1Theoretically, the subgraph isomorphism problem is NP-complete [19], with running time that is expo-
nential in the number of the graph nodes with the same label. In the graphs representing SQL templates, the
number of such nodes is typically very small and the efficiency is not a problem.
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a different choice of relevance function can easily be substituted. However, we point out that
similarity through substitution is a bad idea, since that is precisely the type of difference we
are trying to tease out, as indicated by the many examples we presented above. Inclusion, on
the other hand, is a much stronger relationship.

As will be discussed in detail in the next section, we put all the SQL templates into a
graph, in which two templates are connected by an edge if they are relevant to each other. A
strategy inspired from PageRank is used to smooth the weights of SQL templates. Using this
strategy, the weight of a SQL template can be transferred to another SQL template indirectly,
even if they are not directly relevant.

Example 11 Consider the SQL templates show in Figure 3.4. T1 is relevant to T2 since

the graph representation of T1 contains T2. Similarly, T5 is relevant to T2. If T1 appears

frequently in the query log, some of its weight can be transferred to T5 through T2.

3.4.2 Popularity of SQL Templates

In this subsection, we smooth the weight of templates based on following three intuitions:

1. A SQL template that appears frequently in the query log should be assigned a high
weight.

2. A SQL template that shows high relevance with many important (high weight) SQL
templates should also be assigned a high weight.

3. If a SQL template is specified by an DBA that should (not) be supported, its weight
and the weights of its relevant templates should increase (decrease).

To capture the first two intuitions, we develop a random user query model inspired by
PageRank, in which we pretend that after the user composes a SQL query, she is likely to
randomly compose a series of follow up queries, each of which is related to the last query.
Of course, we do not expect that real users will actually issue queries in this fashion. In fact,
the order in which queries are issued is not of relevance for our purposes. Rather, what we
want to do is to add queries to the limited query log that are relevant to the queries already in
the log. This random follow up query model accomplishes this addition in a principled way.

Here, based on the relevance between SQL templates, we put all the SQL templates into
one Relevance Graph.

Definition 8 (Relevance Graph) The relevance graph G(V,E) is an undirected graph, in

which each node Ti in V is a SQL template. There is an edge (Ti, Tj) in E, if Ti and Tj are
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related. A weight w(Ti, Tj) is set for each edge (Ti, Tj) to reflect the relevance between Ti
and Tj .

In the random querying model, we assume there is a “random user” who composes her
first SQL query by randomly choosing one SQL query in the query log. Then she keeps on
composing a series of SQL queries, in which each SQL query is “related” to the last query
she composed. Eventually, she gets bored and starts on another SQL query in the query log
and composes another series of SQL queries. In this process, the probability that the random
user submits the queries in a SQL template is defined as the popularity of that SQL template.

Suppose that after the random user composes a query in template Ti, the user has the
probability of c to compose a follow up query and has the probability of 1 − c to get bored
and start to choose a new SQL query in the query log. If she composes a follow up query,
the likelihood of a SQL template Tj to be queried is proportional to the relevance between Ti
and Tj . On the other hand, if she gets bored and choose another query in the query log, the
likelihood of a SQL template Tj to be queried is proportional to its appearance frequency in
the query log.

In formal notation, let G = (V,E) be the relevance graph and L be the query log, in
which a SQL template T appears l(T ) times. l(T ) is 0 if T never appears in the query log.
Let Ti and Tj be two SQL templates and w(Ti, Tj) be the relevance between them in G.
w(Ti, Tj) is 0 if Ti is not related to Tj . The probability that the user will query Tj after
querying Ti is:

P (Tj|Ti) = c
|w(Ti, Tj)|

|
∑

Tk∈V w(Ti, Tk)|
+ (1− c) l(Tj)

|L|

Given the probability a SQL template Tj to be queried after the SQL template Ti, we
define the template graph to compute the popularity for each SQL template.

Definition 9 (Template Graph) The template graph GT (V,E) is a directed graph in which

each node Ti in V is a SQL template. There is an edge (Ti, Tj) in E, if Ti and Tj are relevant

or Tj appears in the query log. Specifically, each edge (Ti, Tj) is weighted by P (Tj|Ti).

Given the template graph, the computation of the popularity is quite straightforward, and
very similar to the computation of PageRank for web pages. Let Popularity be the vector
of the popularities for each SQL template in the expanded semantic coverage. Popularity
is initialized according to the appearance frequency of each SQL template in the query log.
Let GT (V,E) be the template graph, represented by an adjacency matrix. By multiplying
Popularity withGT (V,E) for a few rounds until its value converges, the popularity for each
SQL template can be obtained. We then normalize each entry in Popularity into a number
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between 0 and 1 by first adding it to 1, then taking its binary logarithm, and finally dividing
it by the maximum value in the vector.

When taking the specifications from the DBAs into account, l(Tj) is modified accord-
ingly. When the DBA specify that Tj should (not) be in the semantic coverage, we modify
l(Tj) by adding (subtracting) a big number. As such, when running the PageRank algorithm,
a positive l(Tj) could help Tj to absorb these weights from all the templates in the graph and
distribute the weights to Tj’s relevant templates. In a similar manner, a negative l(Tj) could
absorb weights from Tj’s relevant templates and distribute these weights to all the templates
in the graph.

3.5 Online Query Interpretation

Given an online natural language query represented by a dependency parse tree, we first
interpret each of its words and phrases by mapping them to the database elements (SQL
keywords, schema elements and database values). Then, the whole query is interpreted by
finding its corresponding SQL templates from among those generated in the offline part.

3.5.1 Element Mapping and Tokenization

We first identify the parse tree nodes (words/phrases) that can be mapped to database el-
ements. Such nodes can be further divided into different types as shown in Figure 3.5,
according to the type of database elements they mapped to. The identification of select node,
operator node, function node, quantifier node and logic node is independent of the database
being queried. Following [51, 47], we enumerate sets of phrases as the database independent
lexicon to identify these five types of nodes.

Node%Type% Corresponding%SQL%Component%

Select&Node&(SN)& SQL&keyword:&SELECT&

Operator&Node&(ON)& an&operator,&e.g.&=,&<=,&!=,&contains&

FuncDon&Node&(FN)& an&aggregaDon&funcDon,&e.g.,&AVG&

Name&Node&(NN)& a&relaDon&name&or&aJribute&name&

Value&Node&(VN)& a&value&under&an&aJribute&

QuanDfier&Node&(QN)& ALL,&ANY,&EACH&

Logic&Node&(LN)& AND,&OR,&NOT&

Figure 3.5: Types of Nodes.
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In contrast, name nodes and value nodes correspond to the schema elements and tuples
in the underlying database, respectively. Often, the words/phrases specified by the user are
not exactly the same as the ones stored in the database. In previous literature, the mapping
is typically based only on the similarity between the words/phrases, with possible thesaurus
expansion, and the schema elements/tuples in the database. However, one should expect that
important schema elements/tuples are more likely to be queried. For example, an author
name specified by the user may have multiple mappings in a bibliography database. The
important ones (with many papers with many citations) are more likely to be the one in the
user’s mind. In this chapter, we formally capture this intuition and define the importance for
the schema elements and tuples in the database.

Definition 10 (Tuple Importance) Represent the given database as a directed data graph,

in which each node is a tuple in the database and each edge is a foreign-key-primary-key

(FKPK) relationship between two tuples2. The unnormalized importance of each tuple is

defined as log2(pagerank), in which pagerank is its pagerank [65].

Definition 11 (Schema Element Importance) Let S be the semantic coverage generated

in the offline part of our system. The unnormalized importance of each schema element is

defined as (
∑

T Popularity(T )), in which T iterates over all the SQL templates in S that

contain the schema element.

The importance of each tuple (resp. schema element) is then normalized to a number
between 0 and 1 by dividing it by the maximum importance of any tuple (resp. schema
element) in the database.

In this chapter, we map the nodes to the schema elements and tuples based on both
similarity and importance. Let n be a word or a phrase and v be a schema element or a tuple.
The goodness of the mapping between them is scored as follows:

Score(n, v) = Similarity(n, v) + Importance(v)

Specifically, the similarity between a node and a schema element is defined as the max of
their semantic similarity (WUP similarity [82] based on wordnet) and their spelling similarity
(square root of the coefficient of their q-gram sets [83]). The similarity between a node and
a tuple considers only their spelling similarity, for efficiency reasons.

For each node, the best mapping is set as the default interpretation for the node, but
the user is shown the top k mappings as alternatives to choose from. Given the vocabulary

2To avoid the situation that the importance gets ”trapped” in tuples with no outgoing links, we add both a
PK-FK edge and an FK-PK edge in the data graph to represent an FKPK relationship in the database.
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restriction of the system, some parse tree nodes may fail in mapping to any type of tokens.
In such a case, a warning is generated, showing the user a list of nodes that do not directly
contribute in interpreting the query. Our system deletes each such node from the parse tree
and moves all its children to its parent.

3.5.2 Template Mapping

In this section, we interpret the whole query by mapping it to the SQL templates generated
in the offline part. Given a natural language query NLQ , represented by a tokenized parse
tree, its mapping score to a SQL template T is define as:

Score(NLQ , T ) = Relevance(NLQ , T ) + Popularity(T )

Specifically, Popularity(T ) is the popularity defined in Section 3.4.2.
Relevance(NLQ , T ) is the relevance between NLQ and T . Given the fact that NLQ

is represented by a tokenized parse tree, in which trivial nodes have been deleted after the
tokenization, most of the information specified in NLQ should be contained by T , if it is
relevant to NLQ . Reciprocally, one would think most of the information in T should also
be contained in NLQ . However, natural language queries tend to be brief and often leave
out things that “can be understood”. Furthermore, natural language queries typically do not
include schema-specific constructs such as FK-PK join paths, which are often by-products of
normalization. So, in the reciprocal direction, we expect that most of the major information
in T should also be contained in NLQ , according to a definition of major that we provide in
the next paragraph. Putting these ideas together, NLQ is considered relevant to T if (a) the
information in NLQ is contained by T , and (b) the major information in T is specified in
NLQ . In particular, we define their relevance as follows:

|Info(NLQ) ∩ Info(T )|
|Info(NLQ)|

∗ |MInfo(NLQ) ∩MInfo(T )|
|MInfo(T )|

We define Info(NLQ) as the set of (parent, child) relationship in NLQ . Info(T ) as
the set of (nodei, nodej) in T , in which nodei, nodej are referred nodes in NLQ that are
directed related. In this chapter, referred nodes are the nodes in T that are referred to by
the query NLQ . Directly related means there is a path between nodei and nodej , which is
not interrupted by other referred nodes. MInfo(NLQ) is the set of nodes in NLQ , while
MInfo(T ) is all the major nodes in the SQL template T . The major nodes are the nodes
whose information is important and unlikely to be omitted by the user. For example, MAX

is a major node, which is not likely to be omitted by the user, while COUNT is not a major
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Rela%on( #tuples( Rela%on( #tuples(

Publica(on+ 2.45+M+ Author+ 1.25+M+

cite+ 20.3+M+ writes+ 6.02+M+

Conference+ 2.9+K+ Journal+ 1.1+K+

Organiza(ons+ 11+K+ Keywords+ 37+K+

Figure 3.6: Statistics for MAS.

node, since it is often implicit in the user’s query. We enumerate the set of major nodes,
which serves as the knowledge base that can be used independent of domains.

3.6 Experiments

In our system, the quality of the semantic coverage, which is automatically generated in the
offline part, directly affects the behavior of the online part. As such, we first evaluate the
offline part separately and then show the benefits it brings for the online part.

Dataset. The dataset we use is Microsoft Academic Search (MAS), whose simplified
schema graph is shown in Figure 3.1. Some summary statistics of its major relations are
shown in Figure 3.6.

3.6.1 Offline Part

The goal of the offline part is to generate a high quality semantic coverage, in which most
of the necessary query logics are covered, while including as few additional (unnecessary)
query logics as possible. Adopting standard terminology from information retrieval, we
would like to create a set of query templates that has very high recall (coverage is good)
and acceptable precision (not too many unnecessary templates in the set). Since, practically
speaking, our direct concern is with the size of the set created, we report this size directly,
rather than the precision that it is roughly proportional to.

Test Set (Gold Standard). To evaluate the recall of a semantic coverage, we need a
gold standard. The old version interface of MAS dataset was a carefully designed faceted
interface. By clicking through the site, a user is able to get answers to many quite complex
queries. We enumerated all query logics that are directly supported by the MAS website and
obtained a set of 196 SQL templates. We noticed that the semantic coverage of the MAS
website was constrained by the overall design of the interface. As a result, some likely query
logics are not supported because they would require a redesign of the interface and impact
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the overall visual effect. Also, it is possible that some unnecessary query logics are sup-
ported just because they are more compatible with interface. This is a common limitation of
forms-based interfaces, faceted interfaces and WIMP (windows, icons, menus and pointers)
interfaces. To address these shortcomings, we asked five domain experts, who often do aca-
demic searches and have a good sense of which questions would be frequently asked over
a bibliographic database, to modify this set of query logics, deleting unnecessary ones and
adding new ones as needed. In this process, we accepted a modification only when it had
the agreement of all five experts. The final test set Qgold we obtained is composed of 160
SQL templates, of which 105 were supported by the MAS website. We use this as the gold
standard to evaluate the auto-generated semantic coverage.

Query Log. Unfortunately, MAS does not make its query log public. Therefore, we
created our own (small) query log from 20 PhD students majoring in computer science or
information science. All of them have the need to do academic searches and are interested
in answers to complex queries over the MAS dataset. Each of them was asked to specify 15
SQL queries (we offered technical help with SQL as needed, but were careful not to suggest
query interpretations or semantics). Thus we obtained a query log comprising 300 queries.
This query log covers 109 out of the 160 SQL templates in Qgold.

Semantic Coverage Extension. We extend this query log by generating additional SQL
templates. The SQL templates generated in this process actually form an open set. So we
stop when the number of SQL templates reaches 1000. In this process, when preferring the
extensions with high normalized entropies, the top 1000 SQL templates covers 154 out of the
160 SQL templates in Qgold. We compare with the baseline strategy used in [92, 31], which
measures the queribility of a query logic by the length of the join path. When preferring
the extensions with short join paths, the top 1000 SQL templates only include 133 SQL
templates in Qgold.

Popularity Estimation. As discussed, except when the query log is fairly large, the
frequency of each SQL template appears in the query log may not be a good representative
for the entire distribution, especially in the cases when many of the necessary SQL tem-
plates are automatically generated. So we smooth the popularity for the SQL templates in
the semantic coverage. After the popularity is smoothed, 152 SQL templates out of the 154
SQL templates in the semantic coverage are ranked in the top 300, which means the neces-
sary SQL templates generally gain high popularities in the smoothing. Remember that our
system could also augment the information provided from the DBAs. In the cases when a
DBA is allowed to modify the automatically generated semantic coverage, the top 300 SQL
templates could cover the entire gold standard test set after only two key SQL templates are
added. The detailed results are shown in Figure 3.7, where the x axis denotes the size of
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(total number of SQL templates in) the semantic coverage and y axis is the number of the
SQL templates in Qgold that are covered.
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Figure 3.7: Quality of the Semantic Coverage.

Initial Templates provided by Domain Experts. When there is no query log available,
a domain expert (such as the DBA) could specify the initial SQL templates. We note that it
is difficult for a domain expert to be complete in their specification of all required templates,
while it is not difficult for the expert to specify several popular templates. Therefore, exten-
sion and smoothing is expected to make a big difference. To evaluate this, we asked a domain
expert, who often does academic searches and has a good intuition of which questions are
often asked in a bibliographic database, but was not involved in the creation of Qgold, to
examine the database schema and specify the initial SQL templates. We got an initial set
comprising 50 distinct SQL templates, of which 48 of were in Qgold. After the SQL template
extension, 155 SQL templates in Qgold were covered in the top 1000 SQL templates. After
smoothing the weights, all 155 SQL templates were ranked in the top 300 SQL templates.
Detailed results are shown in Figure 3.7.

3.6.2 Online Part

We implemented the online part of our system as a stand-alone interface that can work on
top of any RDBMS. In our current implementation, we used MySQL as the RDBMS and the
Stanford Parser [24] as the dependency parser.

The online part of our system translates natural language queries into SQL statements.
The aspect we must evaluate is the precision in the translation. We notice that this precision
depends on the specific expressions used in describing the queries. Even for describing
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the same query, the natural language expressions used by naive users are often different
from those specified by technical users: naive users tend to use informal expressions and
prefer brevity to grammatical correctness and logical precision. So, we designed user study
experiments for the online part, in which non-technical participants are recruited to specify
queries in their preferred natural wording.

Participants. Sixteen Participants were recruited with flyers posted on a university cam-
pus. A questionnaire indicated that all participants were familiar with keyword search in-
terfaces (e.g. Google), but had little knowledge of formal query languages (e.g. SQL).
Furthermore, they were fluent in both English and Chinese. For our experiments, it is hard to
convey the query task to the participants since any English description would cause bias in
the task. To overcome this, we described each query task in Chinese and asked users to com-
pose English query sentences. Since English and Chinese are in entirely different language
families and we believe this kind of design can minimize such bias.

Query Task Design and Procedures. As mentioned in Section 3.6.1, the curated MAS
query setQgold we used in the offline part consists of the query logics that regarded by domain
experts as necessary. Moreover, Qgold contains various kinds of complex queries, in which
110, 52, 53, 34 queries contain aggregations, long join paths with length ≥ 5, subqueries,
and multilevel of subqueries, respectively. As such, we useQgold to test the online part of our
system. We transform each of the query logics into a query task and evenly divide the query
tasks into 16 task groups, in which each task group contains 10 query tasks. Each participant
randomly takes one task group and completes it though our system. For each task group, the
participants start with sample query tasks, in order to get familiar with each interface.

Our system is designed to be robust. Even in the cases when the users input is just some
keywords, for example, “author paper most”, our system is still very likely to interpret it
as “author with the most papers” rather than “paper with the most authors”, since the SQL
template of the former has a higher popularity. As such, at the beginning of each query task,
users are encouraged to specify their queries in the way they like. The initial expression for
each query task is recorded for comparative experiment, since any reformulation would be
affected by the feedback of our system.

Measurement. We evaluate effectiveness of the top 1 interpretation returned as |MP |
|MT | , in

which |MT | is the total number of queries and |MP | is the number of queries that can be
directly translated to the correct SQL statements. Remember that, when ambiguity exists,
our system also returns alternative interpretations for the user to choose from. As such, we
also evaluate the effectiveness of the top 5 interpretations returned as |MR|

|MT | , in which MR

is the number of queries in which one of the candidate interpretations returned is correct.
Specifically, our system returns the user at most five candidate interpretations.
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Top$1$Result� Top$5$Results�

(a)$Ini(al� 69� 93�

(b)$Extended� 74� 104�

(c)$Smoothed� 93� 127�

(d)$DBA$Affected� 101� 135�

(e)$Ini(alized$by$DBA� 92� 130�

NaLIR� 84� 101�

Figure 3.8: Experimental Results for the Online Mapping.

Comparisons. Our system models the natural language interpretation problem as a map-
ping problem, which maps the natual language query to the SQL templates in our semantic
coverage. As such, for a query task, if its corresponding SQL statement is not in the seman-
tic coverage, the online part of our system can never handle it correctly. As mentioned, the
semantic coverage of our system is first extended and then refined based on the popularity
computed generated. Also, it can be modified by the DBAs in a semi-automatic way. So in
the comparative experiment, we test our system on five semantic coverages, which are (a)
the initial semantic coverage that consists of the SQL templates directly appear in the query
log, (b) the extended semantic coverage, in which additional SQL templates are generated
but the weights are not smoothed, (c) the refined semantic coverage, in which the weights of
SQL templates are smoothed and popular ones are selected as the semantic coverage, (d) the
semantic coverage that are affected by the DBA after only two edits, and (e) the semantic
coverage that is generated from the initial SQL templates provided by the DBA. We also
compare our system with NaLIR [47], a generic NLIDB whose semantic coverage is the
syntactically valid SQL statements (under some syntactical constraints).

The experimental results are shown in Figure 3.8. In experiment (a), we use query log
L mentioned in Section 3.6.1 as the semantic coverage directly. The weight of each SQL
template is set as its appearing frequency with simple normalization by first adding one and
then taking the log. This semantic coverage only covers 109 out of the 160 queries in the test
set, which heavily limits the performance of the online part. In experiment (b), the semantic
coverage is extended from L, which contains 1000 SQL templates and covers 154 queries
of the testing set, in which new added SQL templates are all considered as appearing once.
The performance improves but is still limited, since the unnecessary SQL templates disturb
the mapping. In experiment (c), the mapping improves a lot after the semantic coverage
is refined, which contains 300 SQL templates and covers 152 queries of the testing set.
In this process, the popularity of each SQL template is computed and the SQL templates
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with low popularity are filtered out. In experiment (d), as mentioned in Section 3.6.1, after
adding two key SQL templates, the semantic coverage covers all the test queries and the
performance further improves. In experiment (e), the semantic coverage is generated from
the SQL templates provided by the DBA, which behaves similar to that generated from a
query log.

3.7 Summary

In this chapter, we provide a generic method to model the semantic coverage of an NLIDB
as a set of weighted SQL templates, in which each SQL template represents a set of SQL
queries in the same logic while the weight describes the likelihood of each SQL template to
be queried. Given a natural language query, by mapping it to the correct SQL template in
the semantic coverage, the query can be translated into the desired SQL statement, which
may include comparison predicates, conjunctions, quantifications, multi-level aggregations,
nestings, and various types of joins, among other things. We develop a simple probabilistic
model for the behavior of a random user, and use this to augment the available query log.
Based on this model, we compute the popularity for SQL templates, which better reflects
the likelihood of each SQL template to be queried, even when the queries in the query log
are limited or biased. We provide a modular architecture for constructing NLIDBs, which
consists of an offline part and an online part, in which each component can be designed, and
improved, independently. The framework described in this chapter has been implemented,
and actual user experience gathered. Using our system, a small sized query log is enough to
generate the necessary SQL templates, and even naive users are able to accomplish logically
complex query tasks against our system.
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CHAPTER 4

Interpreting Natural Language Queries over
Databases

4.1 Introduction

A central challenge in building an NLIDB is the huge variability in natural language expres-
sions: there are many ways to say the same thing, with differences possibly not only in the
specific words used but even in the structure of the sentences. In consequence, it is unlikely
that a simple rule-based translator can handle this huge variation. This sort of variability in
natural language has been a central challenge in semantic parsing and machine translation for
many years. Recently, deep learning has generated much enthusiasm as being able to learn

these hidden structures. In recent works along these lines, understanding a natural language
query is often modeled as a semantic parsing problem or machine translation problem, in
which the translator is learned from (NLQ,SQL) pairs of training examples [26, 57, 54, 70].
In this strategy, the potential output forms an open set, which covers all the possible semantic
meaning representations that are syntactically valid. In addition, the expressions describing
the same query logic can be various. As a result, a considerable number of training exam-
ples are needed. While obtaining such training data may be challenging, it can at least be
considered, for a specific database schema of interest. But unlike typical semantic parsing
or machine translation problems, the underlying schema of different databases often differs,
which means the training set for one NLIDB cannot be applied to another NLIDB. As a
result, in real database applications, enough training data is virtually impossible to collect.
Furthermore, any learned translator will work only until the next schema update, after which
additional training is required.

Example 12 Given a bibliographic database with schema shown in Figure 4.1, “authors

with h-index over 30” and “authors who have more than 30 papers, in which each of these
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Figure 4.1: Schema Graph for MAS

papers have more than 30 citations” are two expressions for the SQL template in Figure 4.3.

Example 13 When users using natural language interfaces, some of them would prefer

brevity and specify queries like “who have more papers in SIGMOD than Feifei Li”. Others

might be aware that they are interacting with computers and try to specify a more completed

query on purpose like “show me the authors, in which the number of papers on SIGMOD by

the author is more the number of papers on SIGMOD by Feifei Li”. Both of these expressions

might be hard for most NLIDB to process since the first one has many ambiguities while the

second one is too long for most parser to parse correctly.

We observe that, given a database, the potential queries are often predictable, since the
questions that can be answered are constrained by the schema and the data of the database.
As such, the system does not need to support any query beyond that scope. In fact, even from
out of this set of questions that could be asked, the ones that are actually asked constitute only
a small fraction. This observation has been used to better interpret keyword queries in [64],
and has even been considered in the context of NLIDB in [71]. In other words, we can
model the semantic coverage of an NLIDB as a set of SQL templates. Thus, the NL query
translation problem becomes one of matching a query to its corresponding SQL template. If
we follow traditional NLIDB design, this matching is performed through a set of mapping
rules, with the corresponding difficulties in dealing with structural variance. Our idea, in this
paper, is to avoid having the system understand every detail of the natural language query
and compose the SQL statement from the ground. Rather, we perform a coarse matching
to find the relevant SQL templates. Where multiple matching SQL templates are found, we
resort to user feedback to help choose the correct one.

While coarse matching can handle some amount of variability in natural language query
expression, by itself it may not be sufficient to address radically re-structured possible natural
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language query expressions. One way to address this problem is exploit a log of previously
issued natural language queries. If we can find a similar query that was issued previously,
then we can follow in its footsteps to find the correct matching SQL template. This method
actually turns out very well in practice, because the many variants of natural language queries
usually cluster nicely, with queries within a cluster differing primarily in choice of synonyms
and in the occurrence of extra stop words.

The immediate next question is how to capture the similarity between natural language
expressions. Early works like TF-IDF dealt with word occurrence frequencies in a principled
way but did not capture the similarity between individual synonyms. Recent works attempt to
learn a latent low-dimensional representation of sentences [45] from a generic corpus. This
strategy may work well in document matching. However, in our situation, all the natural
language queries are focused on a narrow domain (the underlying database). Sentences with
different semantic meanings might be embedded very close to each other. Other metrics
with hyperparameters, which try to capture the complex structure of natural language, may
be hard to configure, given the difficulty of gathering enough training data on the querying
domain.

As such, the metrics we present are hyperparameter free, which means they can be used
even in the cases when the training examples are very limited. Specifically, our approach
leverages the recent results of word2vec [60], in which vector representation for each word
using a neural network language model. After the word embedding, semantically similar
words are close to each other in the space. Leveraging this idea, we represent each word
as a low-dimensional vector and model each sentence as a collection of low dimensional
vectors. The distance between two sentences can then be computed as the minimum cost
of transforming this representation of one sentence to a corresponding representation of the
other sentence.

In determining the cost of such transformation, the influence of common words (and
possibly even stop words) could be the same as that of distinctive meaningful words. To
deal with this problem, we borrow ideas from TF-IDF in the distance computation of word
vectors. Thereby, expressions that differ only in stop words, word order or synonyms can be
found to be close to each other.

All of the above can work if we have a good log of past user queries. However, no
such log may be available when the system is initially deployed. At the cold start stage, we
use generic metrics to capture the similarity between a natural language query and a SQL
template1, and has to rely upon user feedback to make good choices. After collecting some

1The SQL templates can be manually generated by domain experts. In the cases when a history of SQL
queries is available, the SQL templates can be automatically generated by analyzing the SQL history. In
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expressions, our system maps the new query to the SQL template based on the previous
expressions of that template. To collect the training data, we design an interactive communi-
cator for the NLIDB. Highly ranked SQL templates with value instantiations are explained
for the user to choose from. Once the user make a choice, NLQ paired with the chosen
SQL template is collected, which serves as the prefect training set to improve the system.
The choice action performed by the user serves as implicit verification of the interpretation.
As such, we could assume that most of the training examples collected in this process are
correct. In some extreme cases, a small part of the training examples collected might be
incorrect matching pairs, which will disturb the mapping for the future similar queries. As
will be discussed, our system prefers to rank a SQL template higher if it is associated with
more previous NLQs showing high similarity with the new query. In such design, the desired
SQL template are likely to be mapped, as long as most of the relevant training examples are
correct.

Besides finding the desired template, the slots in the template must be instantiated cor-
rectly to generate the correct SQL statement. As such, the ambiguities at entity level need
also to be fixed. The identification for an entity used in natural language scenarios and stored
in a database are often different. In a database, keys are defined to distinguish entities from
each other while in natural language scenarios, the identifications are often the text values.
However, text values stored in the database may be very similar or even exactly the same,
even if they are corresponding to different entities. Consider Example 13 again. There might
be more than one author in the database named Feifei Li and have papers in SIGMOD. The
system needs to figure out which one is the desired from the user. In our system, we model
the database as a data graph. The nodes that are connected by many paths are considered
strongly connected. When disambiguating the entities, we prefer to choose the combination
that is strongly connected to each other, in which the context in both the NLQ and the data
graph are taken into account.

Putting the ideas together, we propose a framework for building NLIDBs. The NLIDBs
constructed could work even in the cases when no training data is available. It collects the
training data through real usage and benefits from it accordingly. The intellectual contribu-
tions of this paper are as follows:

1. The problem of natural language interpretation is modeled as finding its corresponding
SQL template and instantiating the template. We present a generic metric to evaluate
the relevance between NLQ and SQL template, which could work even in the cases
when no training examples are available.

database applications, a set of SQL queries is often cheaper to get than a set of (NLQ, SQL) pairs. As such,
there are many cases when a SQL history is available but a log of (NLQ, SQL) pairs is not available.
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2. We present metrics that are hyperparameter free, which could effectively detect the
similarity between natural language expressions describing the same query logic, even
in the cases when the training examples are limited.

3. We provide strategies for matching the entities mentioned in the NLQ to that stored
in the database, in which the matching considers the context of both the NLQ and the
data structure of the database.

4. Interactive communications are designed, in which multiple interpretations with expla-
nations are returned for the user to choose from. This design could improve the recall
and reliability of the NLIDB and most importantly, the user behavior data it collects
could be used as training data to improve the performance of the system.

The remaining parts of the paper are organized as follows. In Section 4.2, we overview
our strategy in disambiguation of natural language queries. Section 4.3 discusses the map-
ping from an NLQ to the SQL templates. We provide methods to resolve the ambiguities at
entity level in Section 4.4. The system architecute is presented in Section 4.5. In Section 4.6,
our system is evaluated experimentally. In Section 4.7, we draw conclusions.

4.2 Preliminaries

The input to our system is a natural language query whose semantic meaning may involve
comparisons, aggregations, various types of joins and nestings, among other things. The
semantic coverage of our system is a set of predefined SQL templates. Given a natural
language query, by mapping it to the correct SQL template and instantiating the values, our
system translates the natural language query into the desired SQL statement and evaluates it
against an RDBMS. In this section, we first overview our solution and then define the SQL
template.

4.2.1 Semantic Coverage

The problem we attempt to address is to translate a natural language query (NLQ) to a SQL
statement. This problem would be difficult if it is modeled as a semantic parsing problem
or machine translation problem, like most previous works did. The fundamental problem is
that natural language queries are inherently ambiguous. Even a grammatically correct natural
language sentence may contain ambiguities, from both the perspective of natural language
processing and the perspective of database schema matching. Moreover, naive users often

62



use informal expressions and prefer brevity to logical precision. These challenges make it
difficult to understand the query and compose the correct SQL statement from the scratch.

Example 14 Consider a simple query “papers with 5000 citations” on the database shown

in Figure 4.1. Many ambiguities exist. For example, in this query, “5000 citations” is more

likely to mean “more than 5000 citations”. Also, when generating the join path between

“paper” and “citation”, it is hard to figure out the direction of “citing” and “cited”, in

which one of them means citation while the other means reference. Due to these ambiguities,

the query can correspond to four SQL statements with semantics that are different, leading

to different query results.

In our strategy, we would like to simplify the problem. First, given a database, we do
not need to understand any natural language query beyond the scope of the information
that can be provided by the database. Second, we only need to support the query logics
that are semantically meaningful, which are only a very small subset of syntactically valid
ones. Consider the Example 14 again. All the four interpretations are syntactically valid but
only the correct interpretation out of the four interpretations are semantically meaningful,
since users are not likely to query a paper with an exact number of citation or a paper with
more than a number of references. By not supporting the unnecessary query logics, many
ambiguities are removed naturally. Based on this observation, the task of interpreting a
natural language query would be much easier if the system is designed to support only the
necessary query logics that are likely to be frequently asked. As such, in our system, we
would like to define the semantic coverage of an NLIDB as a set of necessary SQL templates,
which can either be enumerated by experts or learned from a query log of SQL queries.
Then the task of natural language interpretation is simplified to recognizing the desired SQL
template and filling the slots in the template.

4.2.2 SQL Template

Two queries are said to have the same SQL template if they have the same SQL struc-
ture (SQL keywords, relations, attributes, aggregation functions, operators, nestings), even
though constants in the query have different values. A SQL template is used to represent
such SQL queries by replacing the specific values in the SQL statement with slots. In some
cases, two SQL templates may have exactly the same query logic. In such cases, these SQL
templates are merged, in which each original SQL template serves as an expression of the
template and the one that can be evaluated most efficiently over an RDBMS is considered as
the default expression of the template.
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Example 15 The SQL template corresponding to “authors who have more than 30 papers,

in which each of these papers have more than 30 citations” is shown in Figure 4.3. This SQL

template may have other expressions. For example, the part corresponding to the “citation

of each paper” can be written as a subquery, which has the exactly the same query logic but

evaluated less efficiently. As such, the expression shown in Figure 4.3 is used as the default

expression for the SQL template.

!
SELECT!p1.���
FROM!publica4on!p1,!cite!c,!publica4on!p2!
WHERE!p1.pid!=!c.ci4ng!AND!c.cited!=!p2.pid!AND!p2.pid!=![ID]%

!����AND!p1.pid!NOT!IN!!
!!������(SELECT!w1.pid!FROM!writes!w1,!author!a,!writes!w2!
!������WHERE!w1.aid!=!a.aid!and!w2.aid!=!a.aid!and!w2.pid!=!p2.pid)!

!
SELECT!a.name,!COUNT(p.pid)!!
FROM!author!a,!writes!w,!publica4on!p!!
WHERE!a.aid!=!w.aid!AND!w.pid!=!p.pid!AND!p.cita4on_count!>!#NUM!!
GROUP!BY!a.aid!!
HAVING!COUNT(p.pid)!>!#NUM!!
ORDER!BY!COUNT(p.pid)!DESC!

Figure 4.2: A Sample SQL Template.

So the question is how to map the input natural language query to the SQL templates.
Search engines also deal with a mapping problem, which maps a set of keywords to doc-
uments, and receive great industry success. As we think about mapping from a natural
language query to the SQL templates, it is worthwhile to draw inspiration from search en-
gines, and to see how they do the ranking. At the early stage of search engines, the mapping
is mainly based on metrics combined of relevance (e.g. using TF-IDF) and the importance
of webpages (e.g. estimated using PageRank) [65]. After collecting training examples in
the form of (keywords, page clicked), the ranking is improved with learning to rank frame-
works [56]. In our system, we adopts this general design, we start from using metrics to
evaluate the relevance between a natural language query and SQL templates. After training
examples are collected, the mapping is improved accordingly.

Training Example. The training examples are in the form of pairs of (NLQ,SQL). In
preprocessing, a SQL query is transformed to SQL template. Similarly, the natural language
query is also preprocessed to a natural language template by replacing the values with slots.
For example, the natural language query “citations for ‘constructing an NLIDB’ by others”
is preprocessed to “citations for $publication by others”.

4.3 Query Mapping

In this section, we interpret the whole query by mapping it to the SQL templates. Given
a natural language query NLQ and a SQL template T , we measure the relevance between
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them based on two intuitions. First, if the information specified in NLQ and T heavily
overlap, it is likely that T is the desired SQL template of NLQ . This kind of relevance
could be measured even in the cases when there are no training examples available. This
intuition will be quantified in Section 4.3.1. Second, if a previous query NLQ ′ paired with T
exist in the training set and the new coming NLQ shows high similarity with query NLQ ′,
it is very likely that NLQ should be mapped to T . Measurements are provided to evaluate
the similarity between the natural language queries in Section 4.3.2. In Section 4.3.3, we
map the natural language query to the templates based on both the SQL expression and the
training examples.

4.3.1 Information Overlap

After the tokenization, which will be discussed in detail in the next section, the natural
language query is represented as a set of the mapped SQL components. Given the fact
that trivial nodes are not considered, most of the information specified in NLQ should be
contained by the SQL template T , if it is relevant to NLQ. Reciprocally, one would think
most of the information in T should also be contained in NLQ. However, natural language
queries tend to be brief and often leave out things that “can be understood”. Furthermore,
natural language queries typically do not include schema-specific constructs such as FK-PK
join paths, which are often by-products of normalization. So, in the reciprocal direction, we
expect that most of the major information in T should also be contained in NLQ, according
to a definition of major that we provide in the next paragraph. Putting these ideas together,
NLQ is considered relevant to T if (a) the information in NLQ is contained by T , and (b) the
major information in T is specified in NLQ.

Example 16 For the query of “authors focusing on database usability” on the database in

Figure 4.1, its corresponding SQL template has a join path from “author” to “keyword”

through “write” and “paper”. In this SQL template, “author” is the element that are re-

turned, “keyword” has a value constraint of “database usability”, which means both of them

should be mentioned by the user. In contrast, “write” and “paper” are in the middle of the

join path, which is likely to be omitted in a natural language query.

In our sytem, intuition (a) is captured by computing the ratio of |Info(NLQ) ∩ Info(T )|
and |Info(NLQ)|, in which Info(NLQ) is the set of mapped SQL components of the phrases
in NLQ and Info(T ) is the set of the SQL components in T . This ratio measures how much
proportion of the information specifies in NLQ are also specified in T .

Similarly, the intuition (b) is captured as the ratio of |MInfo(NLQ) ∩MInfo(T )| and
|MInfo(T )|, in which MInfo(NLQ) is the set of nodes in NLQ, while MInfo(T ) is all the
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major nodes in the SQL template T . The major nodes are the nodes whose information is
important and unlikely to be omitted by the user. For example, a schema element that is
returned or has a value constraint is considered as a major node, since it is not likely to be
omitted by the user, while the schema element that serves only as a middle node in the join
path is not considered as a major node, since it is often implicit in the user’s query.

In our system, the information overlap between a natural language query and a SQL
template is defined as the average of the two ratios mentioned above.

4.3.2 Semantic Distance between Queries

To evaluate the similarity between sentences, early works often represent sentences as bags
of words/n-grams or strings, and use metrics like Jaccard Coefficient or edit distance to eval-
uate the similarity between them. The limitation is that in these methods, the semantic sim-
ilarity between different words is not captured. Recently, a stream of researches attempt to
solve this problem by learning a latent low-dimensional representation of sentences and work
well in document matching [45]. However, in our situation, all the natural language queries
are describing some query logic focusing on a narrow domain (the underlying database).
In such situation, if trained from a generic corpus, the low-dimensional space may not be
able to distinguish the natural language queries with slightly different query logics, in which
natural language queries may too close to each other in the low-dimension space even in
the cases when they correspond to different SQL template. The most straightforward way
is to train the model using the data in the querying domain. However, in most situations, it
is almost impossible to obtain large numbers of training examples over the domain of the
specific querying database.

In this section we introduce new metrics for the distance between natural language sen-
tences. The metrics we designed are hyper-parameter free, which means they can be used
even in the cases when the training examples are very limited. Specifically, our approach
leverages the recent results of word2vec [60], which embeds words to low-dimensional vec-
tors, in which words semantically similarity to each other are close in the space. The authors
demonstrate that semantic relationships are often preserved in vector operations on word
vectors, such as vec(Picasso) - vec(painter) ≈ vec(Einstein) - vec(scientist) and vec(sushi)
- vec(Japan) ≈ vec(bratwurst) - vec(Germany) [60]. Follows [43], our metrics utilize this
property of word2vec embeddings to capture the distance between individual words. We rep-
resent each word as low-dimensional vectors and model sentences as sets of low-dimensional
vectors. The distance between two sentences is defined as the minimum cost of traveling the
words in one sentence to the words in the other sentence.
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Example 17 Consider a natural language query “authors with h-index over 40” (NLQ). It

is very hard to map NLQ to the SQL template shown in Figure 4.3 directly. However, if we

have a training example, which is “whose h-index is larger than 35” (NLQ ′) paired with

the SQL template in Figuree 4.3, capturing the similarity between NLQ and NLQ ′ could

help the system to understand NLQ . We adopt the basic idea in [43]. All words of both

queries are embedded into a word2vec space. The distance between the two documents is

the minimum cumulative distance that all words in NLQ need to travel to exactly match

NLQ ′.
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Figure 4.3: Word to Vector Embedding.

The major problem in the Word Mover’s Distance provided in [43] is that common words
and rare words have the same impact in the distance evaluation. Intuitively, the fact that a
very rare word in one sentence cannot find similar words in the other sentence should cause a
large distance for the two sentences. In contrast, if two sentences only differ in the semantic
of some common words (or even stop words), they should not be assigned a large distance.
As such, we take the term frequency-inverse document frequency (TF-IDF) of each word
into account, in which the influence of rare words is augmented while influence of common
words is reduced.

Word Travel Cost Our goal is to incorporate the semantic similarity between individual
word pairs (e.g. coauthor and collaborator) into the distance metric between two query
sentences. One such measure of word distance is naturally provided by their Euclidean
distance in the word embedding space. More precisely, the semantic distance between word
w and word w′ becomes ||vec(w) − vec(w′)||. In addition, when traveling one word to
another word, the cost is defined as tfidf (w) ∗ ||vec(w)− vec(w ′)||.
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Word Travel Cost from Sentence to Sentence The travel cost from one word to another
is a natural building block to create a distance between two sentences. Let NLQ and NLQ ′

be two natural language sentences. The word travel cost from NLQ to NLQ ′ is defined as
the minimum cumulative cost required to travel each word in NLQ to the words in NLQ ′.

Sentence Travel Distance Given two natural language queries NLQ and NLQ′, the
sentence travel distance between them is defined as the average of the word travel cost
from NLQ to NLQ ′ and the word travel cost from NLQ ′ to NLQ . We denote it as
Travel(NLQ ,NLQ ′).

4.3.3 Template Mapping

As mentioned in Section 4.2.2, a query logic may be expressed in different SQL expressions.
In such cases, the SQL templates with the same query logic are merged into one SQL tem-
plate, in which each original SQL template serves as an SQL expression of the template.
Also, given a set of training examples, there might be multiple natural language expressions
corresponding to the same SQL template. As such, in our system, a SQL template is asso-
ciated with m SQL expressions and n natural language expressions, in which m is at least 0
and n grows with the gathering of training examples for that template. Here we denote all
the know expressions (including SQL expressions and natural language expressions) for the
template T as Expression(T ).

When specified in natural language, the same query logic might have very different ex-
pressions. As such, when deciding whether a natural language query NLQ should be mapped
to a SQL template T , the fact that NLQ shows high similarity with some expressions in
Expression(T ) often means a lot. In contrast, the fact that NLQ shows low similarity
with some expressions in Expression(T ) does not mean that they should not match. So,
when evaluating the probability of matching NLQ with T , we focusing only on the old ex-
pressions showing high similarity with NLQ and see how many of them are coming from
Expression(T ).

In our system, an natural language (resp. SQL) expression is considered to describe the
same query logic with the natural language query NLQ when their distance (resp. simi-
larity) is below (resp. above) a threshold. Based on this assumption, the probability that
NLQ should be mapped to T can be computed as the ratio of the number of expressions in
Expression(T ) showing high similarity with NLQ over the number of expressions of all
the templates showing high similarity with NLQ .
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Phrase'Type' Corresponding'SQL'Component'

Select&Phrase&& �SQL&keyword:&SELECT&

Operator&Phrase& an&operator,&e.g.&=,&<=,&!=,&contains&

FuncCon&Phrase& an&aggregaCon&funcCon,&e.g.,&AVG&

Name&Phrase&& a&relaCon&name&or&aJribute&name&

Value&Phrase& a&value&under&an&aJribute&

QuanCfier&Phrase& ALL,&ANY,&EACH&

Logic&Phrase& AND,&OR,&NOT&

Figure 4.4: Different Types of Phrases.

4.4 Entity Disambiguation

Given an online natural language query, before finding its corresponding SQL templates in
the semantic coverage, we first interpret its words/phrases by mapping them to the database
elements (SQL keywords, schema elements and database values). Such phrases can be fur-
ther divided into different types as shown in Figure 4.4, according to the type of database el-
ements they mapped to. The identification of select phrase, operator phrase, function phrase,
quantifier phrase and logic phrase is independent of the database being queried. Follow-
ing [51, 47], we enumerate sets of phrases as the database independent lexicon to identify
these five types of phrases.

In this process, the major challenge is the matching between the entities mentioned in
natural language query and that stored in the database. The problem comes from the fact that
the identification for an entity in a natural language description and that stored in a database
are often different. In natural language query, users often mention an entity by its names,
while in databases, keys are defined to distinguish entities from each other. Often, the users
are not able to specify the exact name of the entity that stored in the database (e.g. the title of
a paper). Also, many different entities in the database may have similar or even exactly the
same names (e.g. names of authors). As a result, approximate matching is necessary but the
matching considering only spelling is not enough. The system must figure out which entity
is the desired one, given the phrases specified by the user and that stored in the database.

We notice that there may be more than one entity specified in the natural language query.
In that case, the fact that they are mentioned in one query means they are related to each
other. When matching them with the entities in the database, we prefer to choose the mapped
entities are also strongly “related” in the database. Also, we notice that the important entities
are often more likely to be queried. So when we would also like to capture the importance
of entities in the mapping.
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Example 18 Consider the query in Example 13. There are many authors in the database

named Feifei Li and several conferences/journals have names contained SIGMOD. If one of

the Feifei Li has many papers in one of the conferences/journals, it is very likely that this

combination would be the desired one.

In this section, we capture the intuitions of “related” and “importance” in a unified way.
To facilitate that, the database is modeled as data graph.

Definition 12 (Data Graph) The data graph is a undirected graph, G = (V,E) with node

set V and edge set E, where nodes in V are tuples in the database. There exists an edge

between node v1 and node v2 if their corresponding relations have a foreign key to primary

key relationship, and the foreign key of v1 equals to the primary key of v2.

Example 19 Consider the bibliographic database in Figure 4.1 again. The whole database

is modeled as a data graph, in which each publication, author, organization, conference,

journal, keyword and domain is modeled as a node. There are too many kinds of edges in

the database and we take the edges related to a publication as an example. There is an edge

between a publication and its authors, its published journal or conference, its keywords, its

references and its citations.

Definition 13 (Match) Let k be an entity phrase specified in the natural language query, m

be a tuple in the database, and sim(k,m) be a similarity metric between k and m. Given

a threshold τ , m is called a match of k when sim(k,m) ≥ τ . We use Mkto denote all the

matches of k.

Definition 14 (Match Combination) Let K = {k1, ..., kn} be the n entity phrases specified

in the natural language query, Mki be the set of all the matches of ki, the set of match

combination MK is defined as {mk1, ..., mkn | mki ∈ Mki ∧ 1 ≤ i ≤ n} is called a match

combination of K.

In the query mentioned in Example 13, Feifei Li and SIGMOD are the two entity phrases.
Suppose that the Professor Feifei Li in University of Utah and the Professor Fei-fei Li in
Stanford University are the two matches of entity phrase Feifei Li, and the SIGMOD con-
ference and SIGMOD Record are the two matches of the entity phrase SIGMOD. These two
ambiguities would make up four match combinations.

Definition 15 (Joining Network of Tuples (JNT)) Let G(V,E) be the data graph, K be

the set of entity phrases and mK be a match combination of K. J(V ′, E ′) is called a Joining

Network of Tuples (JNT) of mP when J(V ′, E ′) is an acyclic subgraph of G(V,E) and V ′

contains all the tuples in mP , and each end node is in mP .
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Figure 4.5: Number of Subgraphs by each Entity Combination
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Figure 4.6: System Architecture.

Definition 16 (Combination Appearance) Given a match combination M and a join path

length threshold L, the size of the JNTs of M within length L is defined as its match com-

bination appearance. We denote it as A(M).

Consider again the query in Example 13 and the database in Figure 4.1. If the length
threshold for the join path is set as 2, then the number of papers by each match combination
of Feifei Li and SIGMOD is the combination appearance.

Given the concept of combination appearance for each match combination, the proba-
bility that a combination M is the desired combination is computed as the ratio between
the combination appearance of M and the total combination appearances of all the match
combinations. We denote this ratio as P (M).

Example 20 Consider the Example 18 again. Assume that the number of papers by each

Feifei Li in SIGMOD conference/Record is the number shown in Figure 4.5, in which each

number is the combination appearance if we set the length threshold as 2. Then the probabil-

ity that Feifei Li mentioned is the Professor in Utah and SIGMOD corresponds to SIGMOD

Conference is 12/15 = 0.75. The probability of other combinations can be computed in the

same way.
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The final overall matching score for a match combination is defined as follows, in which
M is a match combination, in which an entity phrase ki maps to mki.

P(M ) ∗
n∑

i=1

sim(ki,mki)

When returning the results to the user, we choose the match combination with the highest
connectiveness to the user as the default match for all the entities. Also, for interactive
NLIDBs, it is often useful to return the user alternatives to choose from [47]. In such case,
candidate matches need to be generated individually for each single entity.

Given the concept of combination appearance, we take a step further to compute the
total appearance for each match as the total combination appearance of the combinations
that contains the match. The probability of each match to be the desired one is defined as
the ratio between its appearance and the total appearance of all the match combinations. We
denote the probability as P (m), in which m is the match.

Example 21 Consider Example 21 again. The appearance of the match from Feifei Li to the

professor in Utah is (12+2) = 14 and the probability of this match is 14/15. The probability

of other matches can be computed in the same way.

The overall matching score for a match is defined as P (m) ∗ sim(k,m). For each indi-
vidual entity, we rank its matches based on the overall matching score and returns the top
ones for the users to choose from.

4.5 System Architecture

Figure 4.6 depicts the architecture of our system. The entire system consists of three main
parts: the tokenizer, template mapper, and interactive communicator. The tokenizer is re-
sponsible for resolving the ambiguities at the words/phrases level, while the template map-
per is responsible for returning the top ranked SQL templates for the natural language query.
The interactive communicator is responsible for communicating with the user to ensure that
the interpretation process is correct. It also collects the training data, in which in the form of
(NLQ,SQL) for future use, after the verification of the user.

Tokenizer The tokenizer identifies the sets of nodes in query that can be mapped to
database elements (SQL keyword, schema elements and values in the database). In this
process, a set of words may be merged into a phrase, which should be taken as a whole to
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form a single token. The major challenge in this part is that the identification for an entity in
natural language scenarios is often text values, while in the database, an id is often defined
to distinguish entities from each other. In the database, some text values may similar to each
other or even be exactly the same, and the users may not able specify the exact text values.
As such the identification of entities are often a problem. In the tokenizer of our system, we
prefer to choose the matches that are strongly connected with each other in the data graph,
in the cases when multiple matches exist.

Template Mapper The next step is to understand the whole query. In the template mapper,
a natural language query is interpreted by finding its corresponding SQL template. Specif-
ically, our system provides the metric to evaluate the relevance between a natural language
query and the SQL templates. This metric serves as the major evidence for the mapping in
the cases when no training data is available. After the system obtains the training examples
through the usage, the mapping is improved by considering the relevance between the new
query and previous queries.

Interface for End Users To deal with the possibility that the system may misunderstand
the user, our system explains to the user how her query is processed. Specifically, the inter-
active communicator returns multiple choices with explanations for the user to choose from.
Since the choices are explained, the chosen behavior of the user implies the fact that this
interpretation has been verified. As such, the user behavior in this process, which is in the
form of NLQ and SQL pairs, serves as the prefect training set to improve the system. This
design enables our system to improve itself through real usage.

4.6 Experiments

Given an online natural language query, we first interpret each of its entities by mapping it to
the database values. Then, the whole query is interpreted by finding its corresponding SQL
templates from the semantic coverage. As such, we evaluate the entity disambiguation and
the template mapping in Section 4.6.1 and 4.6.2, respectively.

Dataset. The dataset we use is Microsoft Academic Search (MAS), whose simplified
schema graph is shown in Figure 4.1. Some summary statistics of its major relations are
shown in Figure 4.7.

73



Rela%on( #tuples( Rela%on( #tuples(

Publica(on+ 2.45+M+ Author+ 1.25+M+

cite+ 20.3+M+ writes+ 6.02+M+

Conference+ 2.9+K+ Journal+ 1.1+K+

Organiza(ons+ 11+K+ Keywords+ 37+K+

Figure 4.7: Summary Statistics for MAS Dataset.

4.6.1 Disambiguation at Entity Level

As mentioned, when mapping the phrases specified by the user to the entities stored in the
database, multiple matches might exist and the system need to figure out which ones are
the desired. In our system, two tasks exist. First, we need to find the best combination of
matches for the set of phrases specified in a query. All matches in this combination are used
as the default mapping for each entity. Second, our system is designed as an interactive
system, which returns multiple mappings for each ambiguous entity. As such, we need to
generate a ranked list of matches as alternatives for the user to choose from, which aims to
do the entity matching correctly under the help of the user, even in the cases when the default
combination of matches is wrong. Specifically, we generate 5 alternative matches for each
entity phrase.

Comparisons For the task of generating the best match combination, most previous works
in graph-based keyword search [9, 25, 35] just take the match combination in the shortest
joining network of tuples. Our method takes a step further, which considers the combination
appears most frequently in all the join networks of tuples within a length threshold. In
the experiments, we compare our strategy with that provided in [35], in which the match
combination in the shortest (with lowest weight) joining network of tuples. For the task
of generating alternative matches for each single entity phrase, previous works often rank
the matches based only on the spelling [47]. In contrast, we take both the spelling and the
appearance frequency of each single match into account. We compare our strategy with that
provided in [47] in experiments.

Test Set Unfortunately, MAS does not make its query history public. Therefore, we created
our own test set from 5 PhD students majoring in computer science or information science.
All of them have the need to do academic searches and are familiar with many of the famous
authors, publications, conferences, journals, organizations, organizations, and hot topics in
the subdomain they are focused. Each of them was asked to specify 5 groups of ambiguous
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1.#Papers#by#Peter#Chen#in#Database#area#

2.#Paper#3tled#like#“keyword#search#in#databases”#by#authors#in#CUHK#

3.#Author#named#Mark#Newman#working#on#Social#Network#

Figure 4.8: Samples of Groups of Entities.

entities. In a group, each entity are often not easy to be distinguished by itself but can be
distinguished when all the entities in the group are considered. Sample examples are shown
in Figure 4.8. Thus we obtained a test set comprising 20 groups of entities. The number of
entities mentioned in these 20 groups is 42.

Results The experimental results for entity disambiguation is shown in Figure 4.9. For the
task of generating the best match combination, the strategy of choosing the match combina-
tion in the shortest (with lowest weight) joining network of tuples achieves only a precision
of 11/20. In this strategy, the information in the shortest joining network serves as the only
evidence for the matching, which is not often enough to figure out the desired match ac-
curately. For example, in the first sample group of entities in Figure 4.8, the phrase “Peter
Chen” has multiple matches like the Professor who developed the ER model and the Profes-
sor in University of Michigan focusing on operating systems and distributed systems. Both
of the two professors have publications in the database area, which makes it hard to choose
the correct one using previous approaches2. In contrast, when we do the entity disambigua-
tion, we take all the joining networks of tuples into account. For the first sample group of
entities, the Professor who developed the ER model has a much higher combination appear-
ance with the other entity phrase “database”. As such, our system ranks this combination
higher.

For the individual ranking, our system outperforms the previous strategy significantly.
The reason is that the entities in the test set are all ambiguous ones, in which most of them
have many matches that are very similar or even exactly the same with each other. Also, the
specifications of the entity phrases are not often exactly the same with their corresponding
entities stored in the database. As such, the spelling similarity itself is not enough to provide
a good ranking. In our strategy, the relationships between different entities are considered
to do the disambiguation, even in the cases when we rank the matches for each single entity

2Most graph-based keyword search approaches [9, 25, 35] believe that an edge would carry more informa-
tion if there are less edges emanated from the node containing the foreign key. As such, when generating the
joining networks of tuples, they prefer to choose the joining network comprising with the nodes having less
connections. However, from our experience and experiments, users are often querying the entities with high
connections (famous authors, publications, or conferences). That would make these approaches work even
worse than randomly picking one.
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Previous)Works) New)Approach)

Match)Combina9on) 11/20% 18/20%

Alterna9ve)Matches) 26/42% 42/42%

Figure 4.9: Entity Disambiguation.

phrase. That helps our system to provide the alternatives accurately in the entity disambigua-
tion process.

4.6.2 Template Mapping

In our system, the primary step in interpreting a natural language query is mapping it to its
desired SQL template. Specifically, the mapping can be done when no training examples are
available and can be improved when training examples are collected. In this section, we test
the effectiveness in the mapping and show the benefits brought from the training examples.

Query Task Design To test the effectiveness of the mapping process, we need a set of
query tasks. Ideally, these query tasks should cover most of the query logics that are possible
to be asked over the database. To obtain such a set of query tasks, we examine the old version
interface of MAS dataset. It was a carefully designed faceted interface. By clicking through
the site, a user is able to get answers to many quite complex queries. We enumerated all
query logics that are directly supported by the MAS website and obtained a set of 196 SQL
templates. We noticed that the semantic coverage of the MAS website was constrained by
the overall design of the interface. As a result, some likely query logics are not supported
because they would require a redesign of the interface and impact the overall visual effect.
Also, it is possible that some unnecessary query logics are supported just because they are
more compatible with interface. To address these shortcomings, we asked five domain ex-
perts, who often do academic searches and have a good sense of which questions would be
frequently asked over a bibliographic database, to modify this set of query logics, deleting
unnecessary ones and adding new ones as needed. In this process, we accepted a modifica-
tion only when it had the agreement of all five experts. The final set of query tasks Qgold we
obtained is composed of 160 different query logics (corresponds to different SQL templates).
Specifically, Qgold contains various kinds of complex queries, in which 110, 52, 53, 34 of
their corresponding SQL templates contain aggregations, long join paths with length ≥ 5,
subqueries, and multilevel of subqueries, respectively.
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Training Set and Testing Set The motivation of our system is to enable users to query
the database though natural language. As such, the training set and testing set must be
collected from real users. In the collection process, sixteen participants were recruited with
flyers posted on a university campus. A questionnaire indicated that all participants were
familiar with keyword search interfaces (e.g. Google), but had little knowledge of formal
query languages (e.g. SQL). Furthermore, they were fluent in both English and Chinese.
For our experiments, it is hard to convey the query task to the participants since any English
description would cause bias in the task. To overcome this, we described each query task in
Chinese and asked users to compose English query sentences. Since English and Chinese
are in entirely different language families and we believe this kind of design can minimize
such bias. We transformed each of the query logics into a query task and evenly divided the
query tasks into 16 task groups, in which each task group contained 10 query tasks. Each
participant randomly took 5 task groups and composed the natural language query according
to the Chinese description. After that, we got 800 natural language queries, in which each
query logic in Qgold obtained 5 natural language queries.

For each experiment, we randomly pick one natural language query for each query logic
in Qgold. These 160 natural language queries form the testing set. A subset of the other 640
natural language queries together with their corresponding SQL templates are used as the
training set, according to the number of training examples needed.

Semantic Coverage In our system, the quality of the semantic coverage directly affects
the behavior of the online part. In the experiments, a set of 300 SQL templates are adopted
as the semantic coverage, which is automatically generated and contains all the 160 query
logics in Qgold.

Measurements We evaluate effectiveness of the top 1 mapping as |MP |/|MT |, in which
|MT | is the total number of queries and |MP | is the number of queries that can be mapped
to the correct SQL templates in the top 1 mapping. Remember that our system also returns
alternative SQL templates for the user to choose from. As such, we also evaluate the effec-
tiveness of the top 5 mappings returned as |MR|/|MT |, in whichMR is the number of queries
in which one of the top mappings returned is correct. Specifically, our system returns the user
at most five candidate interpretations.

Results The results are shown in Figure 4.10. |MP | grows from 98 to 121 when train-
ing examples are added. |MR| grows from 134 to 156 with the training examples. We also
compare our system with NaLIR [47] and TBNaLIR. NaLIR is a generic NLIDB whose
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Figure 4.10: Results for Template Mapping.

semantic coverage is the syntactically valid SQL statements (under some syntactical con-
straints). TBNaLIR is a template-based NLIDB, which maps natural language query to the
weighted SQL templates using generic metrics. Specifically, the SQL templates used in TB-
NaLIR are the same as that used in our system. Using NaLIR, the |MP | and |MR| are 84
and 101, respectively. For TBNaLIR, the |MP | and |MR| are 101 and 135, respectively. Our
method outperforms NaLIR and TBNaLIR a lot when training examples are added.

4.7 Conclusion

In this paper, we provide a framework for constructing natural language query interfaces
over relational databases. In the framework, the semantic coverage of an NLIDB is defined
as a set of SQL templates. Given a natural language query, by mapping it to the correct
SQL template in the semantic coverage, the query can be translated into the desired SQL
statement, which may include comparison predicates, conjunctions, quantifications, multi-
level aggregations, nestings, and various types of joins, among other things. In the cases
when no training data is available, the mapping is mainly based on the relevance metrics
between the natural language query and SQL templates. When some training examples are
obtained, learning to rank is adopted to improve the mapping. Our system also provide
the interactions with the user, which collects the user behavior data as the training set and
improve the behavior of our system through the usage.
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CHAPTER 5

Related Work

5.1 Semantic Parsing

The problem of constructing Natural Language Interfaces to DataBases (NLIDB) has been
studied for several decades. Early systems often model the problem as a semantic parsing
problem, in which grammars are either manually specified [5] or learned from training ex-
amples [94, 78, 33, 80]. While quite successful in some specific scenario, the grammars
are hard to scale up, both to other domains and to new natural language expressions, which
limits the impact [55].

In recent years, deep learning methods have achieved great success in machine trans-
lation [29] and question answer matching [77, 32]. This fact inspires researchers to apply
end-to-end frameworks to build NLIDBs [26, 57, 54, 70]. From our experience, three major
challenges exist in adopting end-to-end framework to construct NLIDBs. First, the under-
lying database schema of different NLIDBs often differs, which means the training set used
for one NLIDB cannot be applied to another. As a result, in real applications, it is almost
impossible to collect enough pairs of (NLQ, SQL) for an end-to-end model for the querying
database. Second, as pointed out in [69, 47], reliability is very important in database applica-
tions. Users will be very frustrated if they make wrong decisions only because they believe
in the wrong results from an NLIDB. As such, explanations are often necessary for users
to understand the processing process. However, for deep learning methods, the intermedi-
ate structures are often unexplainable. Third, as discussed in this dissertation, NLIDB has
many unique resources for resolving ambiguities, like the underlying schema structure, the
query log, the distribution of the data, the configuration from the DBA, and so forth. How-
ever, in end-to-end methods, the fact that more resources taken into account often means
higher dimensions of input, which would exacerbate the first problem of lacking training
examples. Considering the above obstacles, we develop a new framework, which model the
natural language query interpretation problem as a mapping problem, from the query to an
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interpretation in the semantic coverage instead of adopting the semantic parsing framework.

5.2 Generic NLIDB

One branch of research works focused on building generic NLIDBs [69, 68, 51, 47] based
on schema mapping techniques and domain-independent grammars covering only the natural
language expressions describing database queries. PRECISE [69, 68] defines a subset of nat-
ural language queries as semantically tractable queries and precisely translates these queries
into corresponding SQL queries. NaLIX [50] defines a domain-independent grammar for
the natural language queries that are semantically expressible by XQuery and parses natural
language queries to XQuery statements according to the grammar. NaLIR [47] is designed
to support complex natural language queries, in which the semantic coverage is defined as all
the syntactically valid SQL statements (with some constraints). By transforming natural lan-
guage queries to the correct points in the semantic coverage in a series steps, the queries can
be translated to the desired SQL statements. In general, existing generic NLIDBs still define
their semantic coverage at the syntax level. In our system, an offline part is used to refine
the semantic coverage, which supports only the query logics that are likely to be queried. By
greatly narrowing down the semantic coverage, the burden in online query interpretation is
reduced.

5.3 Question Answer Systems on Knowledge Base

Compared with NLIDBs, the questions answered by QA systems on knowledge base are
often board but shallow, like “who is Obama’s wife?” and “when Obama got married?”. Most
traditional works on QA-KB fall in one of the three categories: semantic parsing, information
extraction and vector modeling. Semantic parsing, as discussed, generates representations
that are semantically meaningful to computers for the questions over knowledge base [7,
15, 44, 30]. Information extraction, when applied on QA over KB, extracts the entities and
relationships in the questions. The extracted entities and relationships are then mapped to
the subgraphs in the knowledge base to obtain the answers [87]. Vector modeling learns the
mapping strategies between the distributed embeddings for the questions and the distributed
embeddings for the answers [11, 86, 13].

Later, researchers apply deep learning models to QA over knowledge base and achieve
great achievements. CNN is applied to vector modeling [27] and semantic parsing [89].
CNN and LSTM is adopted in information extraction, especially entity and relationship clas-
sification [85, 96, 95]. Recently, Memory Networks and Attention Mechanism is used to
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answering questions over knowledge base [12, 98].
From our understanding, the task of understanding a natural language query over a

database can be divided into two parts, understanding the question and understanding the
database. For QA-KB, the questions are often simple but the topics of the underlying knowl-
edge are very board. In this case, the focus should be on understanding the question since the
understanding of the question itself is relatively easier, which is exactly the strategy adopted
by most of the QA-KB works. In contrast, for relational databases, the questions are often
complex while the topics of the underlying database are often very focused. In such case,
the frequently asked questions are actually predictable. So we focus on understanding the
database first, generating the semantic coverage that covers only the semantically meaningful
query logics.

5.4 Keyword Search over Relational Databases

Keyword search interfaces are widely used by non-experts to specify ad-hoc queries over
relational databases [93]. Two main families of methods are used: schema-based approaches
(e.g. DISCOVER [37]) and graph-based approaches (e.g. BANKS [9]). Schema-based ap-
proaches first translate the keywords into a set of minimal total join networks (MTJN) and
then evaluate them. In graph-based approaches, the database is modeled as a data graph,
in which each node is a tuple [9]. Steiner trees of tuples that contain all the keywords are
constructed directly on the data graph and outputted as results. In both of the two meth-
ods, keyword search is used to search joined entities for the input keywords, not answering
questions directly.

Recently, there is a stream of such research on keyword search [79, 74, 17, 84, 31, 10, 8],
in which, given a set of keywords, instead of finding the data relevant to these keywords,
they try to interpret the query intent behind the keywords in the view of a formal query
language. In particular, some of them extend keywords by supporting aggregation func-
tions [79], Boolean operators [74], query language fragments [10], and so forth. These
works can be considered as a first step toward addressing the challenge of natural language
querying. Our work builds upon this stream of research and supports a richer query mech-
anism that allows us to convey much more complex semantic meaning than a flat collection
of keywords.
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5.5 Other Kinds of User Friendly Interfaces for Databases

5.5.1 Form-based Search

Form-based search is widely used to support fixed query logics. It is especially useful in the
cases when the queries are focused and predictable. Most of the research works on form-
based search focus on how to simplify the process of manually designing forms, while others
try to provide semi-automatic or even automatic strategy for form construction. FoXQ [4] is
a system that helps users build queries incrementally by navigating through layers of forms,
and view results in the same way. EquiX [18] helps users build queries in steps using a form.
These systems provide form-developers visual tools to generate forms manually, but the task
is significantly simpler than traditional form-building tools. Semi-automatic form generation
tools are presented in QURSED [66, 67, 16]. Later, Musiq [38, 39, 40, 41] is proposed to
create forms in a pure automatic manner.

5.5.2 Faceted Search

Faceted search was originally introduced for browsing image and text collections [28, 88, 20,
21, 76]. Recently, there have been efforts on creating a faceted search interface for structured
data [72, 23, 73]. Although the basic faceted interface is a very simple browsing model, the
usability of faceted interface depends highly on the way the facets are chosen or the way
search results are presented [75]. There are many interesting research areas in faceted search,
such as identifying interesting facets and facet values [72, 23, 73], automatic construction of
faceted interface [20, 76, 46], discovering OLAP type of interesting information [81, 6, 23].
Compared with other types of interfaces, faceted search is very useful in the cases when the
query logics need to support is predictable. But it cannot support ad-hoc queries. Also, the
query logics can be supported are often restricted by the overall design of the interface.

5.5.3 Visual Query Builders

Many visual query interfaces have been proposed to assist users in building queries incre-
mentally through visual interfaces by constructing mappings between actions in the user
interface and an existing restricted database language. [1, 2, 3] are widely used visual query
builders that can be plugged on an RDBMS. VQL [62] addresses the design issues involved
with querying complex schema. It introduces graphical primitives that map to textual query
notations, allowing users to specify a query-path across multiple tables, and also express
recursive queries visually. The Polaris System [36] constructs a similar mapping between
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common user interface actions such as zooming and panning, and relational algebra. This
allows users to visualize any standard SQL database using a point and click interface. Gen-
erally speaking, visual query builders are very effective to help experts to fast compose stan-
dard query languages, but they often still require users to understand the schema structure of
the database, which means they are not easy to use for naive users.

5.5.4 Query by Examples

Query-by-Example (QBE) [100, 101] is a well-known work that allowed users to query a
database by creating example tables in the query interface. The table is then translated into
a more structured language, such as SQL, under both the database schema and the result
view. Examples with same value suggest how the relations are joined and which attributes
are projected. While being a friendlier approach to database querying than SQL, QBE does
not perform well with large schema / data scenarios. Furthermore, the user is expected to be
aware of the values of the database prior to the query evaluation.

5.5.5 Schema Free SQL/XQuery

The basic idea of schema-free SQL/XQuery is to allow users to specify query logics in
SQL/XQuery without knowing the schema of the underlying database [52, 53, 49]. The
users can specify queries based on whatever partial knowledge of the schema they have.
If they know the full schema, they can write full SQL/XQuery. If they do not know the
schema at all, they can just specify labeled keywords. Most importantly, they can specify
queries somewhere in between. The system will respect whatever specifications are given
and generate the formal queries.

5.5.6 Schema Summarization

Another approach to solve the complexity of schema is that of schema summarization [90].
The idea is to develop a representation of the underlying complex schema at different levels
of detail. A user unfamiliar with the database would first be shown a high-level schema
summary comprising only a small number of concepts. [91] allows a user to query the
database through the schema summary directly, without the knowledge of the underlying
complex schema and with high result quality and query performance.
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5.6 Search Engines

The framework of the approach in this dissertation is inspired from search engines [14, 65].
Similar to NLIDBs, search engines are heuristic query systems, whose queries do not have
formally defined semantic meanings. The semantic coverage of a search engine is a large
set of webpages. In the early stage of search engines, search engines maps the keywords
to the webpages based on predefined metrics, like the importance of each webpage (e.g.
PageRank) and the relevance between the keywords and each webpage (e.g. tf-idf). After
collecting training data, which is in the form of (keyword, webpage clicked), learning to rank
frameworks are adopted to improve the quality of the mapping [56]. Inspired from search
engines, we model the natural language query interpretation problem as a mapping problem
between the natural language query to a point in the semantic coverage. In this framework,
when no training examples are available, predefined metrics are provided to map the input
query to the SQL templates. It also collects training data through the usage and benefits from
the training data collected to improve its performance.

5.7 Word-embedding & Sentence Embedding

One problem in our system is how to evaluate the similarity between sentences. A stream of
research attempts to solve this problem by learning a latent low-dimensional representation
of sentences and work well in document matching [45]. However, this strategy does not work
well in our situation, since all the questions over an NLIDB are describing some query logic
focusing on a narrow domain (the underlying database). In such situation, if trained from
a generic corpus, the low-dimensional space is not able to distinguish the natural language
queries with slightly different query logics. If trying to train the system from the specific
corpus of the NLIDB, collecting enough training examples is still a problem. So we adopt
the general strategy provided in [43], which only does the embedding at the word/phrase
level. The method we adopted is word2vec [59]. Their model learns a vector representation
for each word using a (shallow) neural network language model. The authors demonstrate
that semantic relationships are often preserved in vector operations on word vectors, such
as vec(Picasso) - vec(painter) ≈ vec(Einstein) - vec(scientist) [60]. Learning the word em-
bedding is entirely unsupervised and it can be computed on the text corpus of interest or be
pre-computed in advance.
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5.8 Entity Matching

The disambiguation at entity level is also a challenge in our system. One of its similar prob-
lem, entity matching, is investigated in the area of data integration and data cleaning [34].
Often, manually crafted or learned rules are applied to detect the entities describing the same
real world entity between structured data. In our system, the entity matching is from the
entities mentioned in natural language query and the entities stored in the database. Similar
problems are dealt with in graph-based keyword search [9, 25, 35], in which the mapped
entities in the shortest joining network of tuples are often considered as the best mapping.
In contrast, we provide a principled strategy to compute the probability for each matching.
Both intuitions and experimental results show the improvements over that used in graph-
based keyword search.

5.9 Query Explanation

A task in our system is to explain the SQL templates for the end users to choose from or
for the DBA to fast review. Previous systems explain SQL queries to users using natural
language descriptions [42] or query visualizations [22, 31, 8]. In our system, we adopt the
strategy used in [42].
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CHAPTER 6

Conclusions and Future Work

Querying data in relational databases is often challenging since SQL is too difficult for naive
users without technical training. Theoretically, an NLIDB would enable naive users to spec-
ify complex, ad-hoc query intent without training. This dissertation studies different issues
involved in constructing NLIDBs.

Chapter 2 describes an interactive natural language query interface for relational
databases. Given a natural language query, our system first translates it to a SQL statement
and then evaluates it against an RDBMS. To achieve high reliability, our system explains to
the user how her query is actually processed. When ambiguities exist, for each ambiguity, our
system generates multiple likely interpretations for the user to choose from, which resolves
ambiguities interactively with the user. The query mechanism described in this chapter has
been implemented, and actual user experience gathered. Using our system, even naive users
are able to accomplish logically complex query tasks, in which the target SQL statements
include comparison predicates, conjunctions, quantifications, multi-level aggregations, nest-
ings, and various types of joins, among other things.

In Chapter 3, we provide a framework for constructing a template-based natural lan-
guage query interfaces for relational databases. In the framework, the semantic coverage of
an NLIDB is defined as a set of weighted SQL templates, in which the weight describes the
likelihood of a SQL template to be queried. Given a natural language query, by mapping it
to the correct SQL template in the semantic coverage, the query can be translated into the
desired SQL statement, which may include comparison predicates, conjunctions, quantifi-
cations, multi-level aggregations, nestings, and various types of joins, among other things.
We provide the principled strategy for automatically generating the semantic coverage from
the query log, according to the random user model we assumed. Also, an effective mapping
strategy, which considers the template weights, as well as the relevance between the query
and the templates, is proposed. The framework described in this chapter has been imple-
mented, and actual user experience gathered. Using our system, a small sized query log is

86



enough to generate the necessary SQL templates, and even naive users are able to accomplish
logically complex query tasks against our system.

Chapter 4 describe a framework of constructing NLIDBs that can be improved through
the usage. Following the previous work, the query interpretation process is modeled as the
mapping from the natural language query to the SQL templates in the semantic coverage. At
the cold start stage when no training examples are available, the mapping is mainly based
on generic metrics without hyperparameters. When some training examples are obtained,
learning to rank is adopted to improve the mapping. Our system also provide the interac-
tions with the user, which collects the user behavior data as the training set and improve the
behavior of our system through the usage. Using our strategy, an NLIDB would work at the
very beginning, collect training data through real usage, and improve itself with training data
is gathered.

In this dissertation, the process of natural language queries is independent of each other.
Actually, search is not often a single-step process. A user may ask follow-up questions based
on the results obtained. It is thus necessary to provide a system to support a sequence of re-
lated queries. In the future, we would like to explore how to support follow-up queries,
thereby allowing users to incrementally focus their query on the information they are inter-
ested in, especially in conversation-like interactions.
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