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ABSTRACT

Global magnetohydrodynamics (MHD) models have been important tools for

space physics research in recent decades. In order to improve the numerical accu-

racy and the physics capability of an MHD mode, a fifth-order accurate finite differ-

ence scheme for hyperbolic equations on block-adaptive curvilinear grids is developed

to improve the accuracy of the Michigan MHD model BATS-R-US. To model ki-

netic phenomena, like magnetic reconnection, BATS-R-US is two-way coupled with a

particle-in-cell (PIC) code iPIC3D to incorporate kinetic physics into a global model.

The two-way coupled model is called magnetohydrodynamics with embedded particle-

in-cell (MHD-EPIC) model. This dissertation research focuses on the development of

the fifth-order scheme and the applications of the MHD-EPIC model.

The fifth-order finite-difference scheme constructs the face fluxes with a mono-

tonicity preserving limiter MP5, and achieves high-order spatial derivatives by a flux

correction step. This scheme is generalized to curvilinear grids with a free-streaming

discretization. For the locally refined mesh, high-order accuracy is also achieved by

careful interpolation of ghost cells near the grid resolution changes. Numerical tests

are presented to demonstrate the accuracy and robustness of the algorithm.

The MHD-EPIC model is applied to study Earth’s dayside magnetopause recon-

nection and Mercury’s magnetotail reconnection. From the Earth simulation, the

generation and evolution of flux transfer events (FTEs) are studied. It is found the

magnetic field signature of FTEs at their early formation stage is similar to a ‘crater

FTE’. After the FTE core field grows to a significant value, it becomes an FTE with

typical flux rope structure. Kinetic phenomena, such as the crescent electron phase

xiii



space distribution, the Larmor electric field, and the lower hybrid drift instability are

identified from the global simulation. The Mercury simulations apply MHD-EPIC

to study the magnetotail reconnection. The properties of the magnetotail flux ropes

agree well with the MESSENGER observations. The reconnection dawn-dusk asym-

metry also arises from the simulations; the reconnection jets are stronger on the dawn

side, which agrees with the MESSENGER observations.
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CHAPTER I

Introduction

This dissertation consists of the development of a high-order scheme, and the

magnetospheric simulations with the magnetohydrodynamics with embedded particle-

in-cell (MHD-EPIC) model. This chapter will present the physics background first,

and then introduce the numerical techniques and model details.

1.1 Solar Wind-Magnetosphere Interaction

As the only star in our solar system, the Sun is the energy source for most space

physics phenomena. The solar wind originating from the solar surface controls the

dynamics of the inner planetary magnetospheres. This section describes the solar

wind and its interaction with Earth’s and Mercury’s magnetospheres.

1.1.1 Solar Wind

The solar wind is a stream of ions and electrons originating from the solar corona,

which is part of the solar upper atmosphere. By observing the motions of comet

tails, Biermann (1951) suggested that the gas continuously flowing outward from

the Sun has a velocity of 500 km/s to 1500 km/s. Parker (1958, 1965) studied the

solar atmosphere with detailed mathematical analyses. He pointed out that a static

equilibrium solution does not exist for the solar atmosphere and the solar wind is
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accelerated to be supersonic by the pressure gradient between the solar corona base

and the interplanetary space. He also predicted that the interplanetary magnetic field

(IMF), one end of which is fixed at the sun, is twisted due to the rotation of the sun.

The twisted structure of IMF is called the Parker spiral. Based on the differences in

the solar wind composition and velocity, the solar wind is classified into two types:

the slow wind with a typical velocity of 300 ∼ 500 km/s and a composition that is

similar to the corona, and the fast wind with a typical velocity of 750 km/s and a

composition that matches the photosphere. At 1 AU, the typical solar wind velocity

is about 400 km/s, density is 7 amu/cm3, proton temperature is 105 K, and magnetic

field strength is about 7 nT (Kivelson and Russell , 1995).

Since the solar wind consists of ions and electrons, which is also called plasma,

these charged particles interact with magnetized planets. The interaction between the

solar wind and planetary intrinsic magnetic fields drives the formation and evolution

of planetary magnetospheres. The magnetospheres of Earth and Mercury are studied

in this dissertation, and their properties are introduced in the following subsections.

1.1.2 Earth’s Magnetosphere

Earth’s intrinsic magnetic field can be approximated by a dipole with field strength

of 31000 nT at the magnetic equator. The structure of the dipole field is reshaped

by the supersonic solar wind. The region that is dominated by the Earth’s intrinsic

magnetic field is the magnetosphere. A cartoon to illustrate the structure of Earth’s

magnetosphere is shown in Figure 1.1.

Since the solar wind is supersonic and also super-Alfvenic with fast magnetosonic

Mach number (Mf ) of 6 ∼ 12 at 1 AU, a bow shock forms before the solar wind

reaches the edge of the magnetosphere. Across the bow shock, the solar wind is

compressed, heated and slowed. Relative to the Earth, the solar wind speed reduces

from super-Alfvenic to sub-Alfvenic so that information can propagate from the edge
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of the magnetosphere to the bow shock. The location of the bow shock depends on

the properties of the solar wind, as well as the size and shape of the obstacle body. For

the Earth’s bow shock, it is about 3RE away from the edge of the magnetosphere near

the Sun-Earth line. Behind the shock, the plasma flow is slowed down but it is still

moving around the Earth. The interface, where the magnetic pressure of the confined

Earth’s dipole field balances the total pressure of the shocked solar wind, is known

as magnetopause. The region between the magnetopause and the bow shock is the

magnetosheath. The magnetic field lines of the dipole are compressed on the dayside,

while they are stretched on the nightside to form the magnetotail. The magnetotail is

divided into two parts by the current sheet: the northern lobe contains magnetic field

lines pointing towards the Earth while the southern lobe magnetic field is pointing

away from the Earth. The structure shown in Figure 1.1 is just the average state of

the magnetosphere. Driven by the varying solar wind, the whole magnetosphere can

change dynamically.

Figure 1.1: The structure of Earth’s magnetosphere (from Eastwood et al. (2015)).

1.1.2.1 Dungey cycle

Dungey (1961) discussed the global magnetospheric convection, and he predicted

the magnetic reconnection at both the dayside magnetopause and the magnetotail.
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This convection model is known as Dungey cycle. Figure 1.2 is a carton showing dif-

ferent phases of a Dungey cycle. The reconnection between the solar wind magnetic

field lines and the dipole field lines at the dayside magnetopause creates open field

lines. One end of the open field lines is connected to the Earth and the other end

is linked to the solar wind. These open field lines form a channel for the solar wind

plasma penetrating into the magnetosphere. Since the open field lines are moving

together with the tailward moving magnetosheath plasma, these field lines are trans-

ported from the dayside to the tailside, and accumulate in the tail. The magnetic

reconnection at the tail closes the open field lines and transports the magnetic flux

back to the dayside. A Dungey cycle takes about 1 hour for Earth.

Figure 1.2: The progression of the Dungey cycle (from Eastwood et al. (2015)).

1.1.2.2 Magnetic Reconnection

During the magnetic reconnection process, the magnetic field lines break and

reconnect. This topology rearrangement process is accompanied with the energy

conversion from magnetic energy to kinetic and thermal energy. The Sweet-Parker

reconnection model (Parker , 1957) has been successfully applied to explain the mag-

netic reconnection in a collisional plasma. However, the plasma in the solar wind or

inside the magnetospheres is collisionless, and the magnetic reconnection described
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by the Sweet-Parker model is not fast enough to match the observation results. Hall

effect, which is caused by the electron-ion velocity difference at the sub-ion gyroradius

scales, probably plays an important role in the reconnection process. A set of simu-

lations have demonstrated that the magnetic reconnection can be fast once the Hall

effect is included in the numerical models (Birn et al., 2001; Ma and Bhattacharjee,

2001; Drake et al., 2008). Evidences that support the occurrence of Hall reconnection

have been observed as well (Nagai et al., 2001; Phan et al., 2007).

Magnetic reconnection has been an important research topic for both the plasma

and space physics communities in the past decades, but a lot of mysteries still need

to be discovered. A few of the magnetosphere related unknown questions are listed

as examples:

• How is the magnetopause reconnection related to other dayside dynamics, such

as flux transfer events (FTEs)? What is the global reconnection rate? How

much solar wind plasma is transferred into the magnetosphere by reconnection?

• How is the magnetic reconnection at the near-Earth magnetotail triggered?

What is the relationship between the near-Earth reconnection and the magne-

tospheric substorm?

The knowledge about the kinetic features of reconnection as well as the global effects

of reconnection are needed to answer these questions.

1.1.2.3 Flux Transfer Events

Flux transfer events (FTEs) are widely considered as a phenomenon related to

dayside non-steady reconnection (Russell and Elphic, 1978). An FTE is a bundle of re-

connected magnetic fluxtubes created at the magnetopause and moving anti-sunward

along the magnetopause. A cartoon showing the structure of FTEs is presented in

Figure 1.3. Such events are characterized by a bipolar variation of the magnetopause
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normal magnetic field BN , and are usually associated with an enhancement of core

field, the magnetic field component along the axial direction of the FTE. An FTE

exhibits a flux-rope structure in three-dimensional space. It has been observed that

the plasma inside an FTE is usually a mixture of magnetospheric and magnetosheath

plasma (Daly et al., 1981), indicating that FTEs are generated by magnetic recon-

nection process. The diameter of an FTE can vary from several ion inertial lengths

(Eastwood et al., 2016) (a few hundred kilometers) to several Earth radii (Rijnbeek

et al., 1984; Hasegawa et al., 2006). In the dawn-dusk direction along the magne-

topause, FTEs can extend over a long distance (Fear et al., 2008). FTEs frequently

occur as a quasi-periodic process, and Rijnbeek et al. (1984) reported that the FTEs

were observed about every 8 minutes during periods of southward magnetosheath

magnetic field.

FTEs have been studied with various global numerical models. Compared to local

simulations, a global model can offer more realistic plasma and magnetic field context.

Fedder et al. (2002) used a global ideal MHD model to study the generation of FTEs.

The typical magnetic field signature is captured by their model, and their simulation

suggests that the FTEs are formed by non-steady reconnection along the separator at

the magnetopause. Raeder (2006) performed a high resolution ideal MHD simulation

with the OpenGGCM model. FTEs formed by multiple X line reconnection with a

tilted dipole field in this study. Dorelli and Bhattacharjee (2009) revisited the FTE

generation mechanism with resistive MHD using the OpenGGCM model, and the

authors argue that the FTEs are generated by flow vortices and the formation of new

X lines is the consequence, rather than the cause of FTE formation. Sibeck et al.

(2008) studied crater FTEs with the BATS-R-US MHD model. All these global sim-

ulations are based on ideal or resistive MHD codes, and the generation of FTEs relies

either on ad hoc resistivity (Dorelli and Bhattacharjee, 2009) or numerical resistivity

(Fedder et al., 2002; Raeder , 2006). Recently, a two-dimensional global magneto-
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spheric hybrid-Vlasov simulation was performed to study the global magnetopause

reconnection rate and the production of FTEs by Hoilijoki et al. (2017).

Typical FTEs are associated with an enhancement of the field strength at the

center of a flux rope. On the other hand, the so-called crater FTEs show more

complicated structure: the center field is surrounded by two ‘trenches’ and the field

strength usually show a dip just at the center (LaBelle et al., 1987; Owen et al., 2008).

The FTEs with enhanced core field are more frequently observed than crater FTEs

(Zhang et al., 2010). The generation mechanism of crater FTEs has been explored

with both numerical simulations (Sibeck et al., 2008) and analytic models (Zhang

et al., 2010). Zhang et al. (2010) proposed that crater FTEs are the initial stage of

typical FTEs based on hundreds of events selected from THEMIS observations. The

structure of the core field can be even more complicated, for example, Eriksson et al.

(2016) found a tripolar core field flux rope at the magnetopause.

1.1.3 Mercury’s Magnetosphere

Mercury is the innermost and also the smallest planet in the solar system. It has a

rocky Earth-like body with radius of RM = 2440 km. Mariner 10 was first spacecraft

launched to fly by Mercury. These flybys provided us the basic knowledge about Mer-

cury’s magnetosphere and its ambient space environment. About 30 years later, the

MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)

spacecraft revisited Mercury, and gave us a chance to have a close look at Mercury’s

magnetosphere. MESSENGER impacted Mercury’s surface on 30 April 2015 after its

four-year orbiting around Mercury. More secrets of Mercury are still waiting to be

discovered by the upcoming dual-spacecraft BepiColombo mission.

Mercury has a relatively small but dynamic magnetosphere due to its weak in-

trinsic magnetic field and the strong ambient solar wind. Its intrinsic magnetic field

can be approximated by a dipole field with equatorial magnetic field strength of
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Figure 1.3: The structure of FTEs under IMF conditions of By > 0 and Bz < 0.
(from Eastwood et al. (2012)).

200 nT, which is about 1/150 of Earth’s equatorial field strength. The center of

the dipole field is offset northward about 0.2RM (Anderson et al., 2011). The solar

wind has already been accelerated to a value close to its asymptotic speed (typically

400 km/s) at Mercury’s orbit of 0.31 ∼ 0.47 AU, and the solar wind density is about

40 amu/cm3, resulting in a dynamic pressure of 11 nPa, which is much larger than

that at Earth. Compared with Earth, the interaction between the weaker intrinsic

magnetic field and higher solar wind dynamic pressure creates the smaller Mercury’s

magnetosphere. Figure 1.4 is a cartoon showing the typical structure of Mercury’s

magnetosphere, which consists of the bow shock, the magnetosheath, the magne-

topause, the cusps, the magnetotail and several boundary layers. The structure of

Mercury’s magnetosphere is similar to that of Earth, but the scales are different. The

averaged subsolar magnetopause distance to the surface is 1.45RM (Winslow et al.,
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2013), and the diameter of the magnetotail is about 5RM . The small size of the

magnetosphere leads to a fast Dungey cycle period of ∼ 2 min (Slavin et al., 2009).

Since the averaged magnetopause location is only 1.45RM away from the Mer-

cury’s surface, Slavin and Holzer (1979) suggested that the Hermaean magnetopause

has a significant chance to be eroded to very low altitude due to the magnetopause

reconnection, so that the solar wind can directly interact with Mercury’s surface.

However, a large proportion of Mercury’s interior is filled with highly conducting ma-

terial (Smith et al., 2012). The induction effect arising from the conducting core can

strengthen Mercury’s intrinsic magnetic field, therefore may prevent the collapse of

the dayside magnetosphere (Hood and Schubert , 1979; Suess and Goldstein, 1979). Jia

et al. (2015) demonstrated that the induction effect of the conducting core does stiffen

the dayside magnetosphere from global MHD simulations. Dayside magnetopause re-

connection erodes the dayside magnetosphere, but the induction effect strengths the

intrinsic magnetic field. These two effects play important roles on dayside magneto-

spheric dynamics. The questions, such as whether the magnetopause can be eroded

to the surface and what is the solar wind conditions that can result in such strong

erosion, still needs to be clarified.

Flux ropes, which are the products of magnetic reconnection, are found in Mer-

cury’s magnetotail. Slavin et al. (2009, 2012) analyzed the flux ropes based on the

magnetic field data from the MESSENGER flybys. These flux ropes moving past

the satellite within 1 ∼ 3 s, which corresponding to diameters of 0.2 ∼ 0.6RM . Di-

Braccio et al. (2015) conducted a detailed statistical survey with about three Earth

years of MESSENGER orbit measurements. This survey shows that the average flux

rope radius is about 345 km (0.14 RM), the core field strength is ∼ 40 nT, and the

average time duration is about 0.74 s. The flux ropes are moving either tailward or

planetward. The planetward moving flux ropes are identified by south-then-north Bz

variations, and the tailward moving flux ropes are identified by north-then-south Bz
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variations. The mean location of the near Mercury neutral line (NMNL) is estimated

to be around −2RM based on the distribution of the tailward and planetward flux

ropes (DiBraccio et al., 2015). Sun et al. (2016) studied the spatial distribution of

the flux ropes and the depolarization fronts, and found both of them occur more

frequently on the dawnside of the magnetotail. This asymmetry implies that the

reconnection prefers to happen on the dawnside, which is opposite to the asymmetry

in Earth’s tail, where the reconnection signatures are more frequently observed on

the duskside (Walsh et al., 2014). The cause of the dawn-dusk asymmetry is still not

clear.

Figure 1.4: The typical structure of Mercury’s magnetosphere (from Slavin et al.
(2009)).
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1.2 Numerical Modeling of Magnetosphere

Magnetohydrodynamics (MHD) models have achieved great success to study global

structures of magnetospheres, such as the location of the bow shocks and the global

response to the solar wind variation. MHD models treat the space plasma as charged

fluid flowing in the electromagnetic field. These models solve equations for plasma

density, velocity, pressure and the magnetic field. For example, the ideal MHD model

treats the plasma as a single fluid and solves the following equations:

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

∂ρu

∂t
+∇ ·

[
ρuu + I

(
p+

1

2µ0

B2

)
− 1

µ0

BB

]
= 0, (1.2)

∂B

∂t
+∇ · (uB−Bu) = 0, (1.3)

∂e

∂t
+∇ ·

[
u

(
e+ p+

1

2µ0

B2

)
− 1

µ0

u ·BB

]
= 0, (1.4)

where ρ, u, p, B are the plasma mass density, velocity, pressure and magnetic field,

respectively, and µ0 is the magnetic permeability. The total energy density is

e =
p

γ − 1
+
ρu2

2
+
B2

2µ0

, (1.5)

where γ is the adiabatic index. The equations above are a set of hyperbolic equations.

They can be rewritten in the following form:

∂U

∂t
+∇ · (F(U)) = 0 (1.6)
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where

U =



ρ

ρu

B

e


(1.7)

and

F(U) =



ρu

ρuu + I
(
p+ 1

2µ0
B2
)
− 1

µ0
BB

uB−Bu

u
(
e+ p+ 1

2µ0
B2
)
− 1

µ0
u ·BB


. (1.8)

Analytic solutions of the ideal MHD equations can only be found for simple initial

conditions and boundary conditions, therefore numerical MHD simulations play an

important role in magnetospheric research. Several MHD models have been developed

to study the three-dimensional (3D) global structure of the magnetosphere, such

as BATS-R-US (Powell et al., 1999; Tóth et al., 2012), LFM (Lyon et al., 2004),

OpenGGCM (Raeder et al., 2001) and GUMICS (Janhunen et al., 2012). In order

to make the numerical simulations as close to the real magnetosphere as possible,

both the numerical accuracy and the physics capability of the MHD models should

be improved. Numerical diffusion is the most important factor that controls the

numerical accuracy for most MHD solvers. Even though the numerical diffusion

is helpful to suppress numerical artifacts, such as overshoots and undershoots near

a discontinuity, it can also suppress the development of physical instabilities, for

example, the Kelvin-Helmholtz instability (KHI) caused by velocity shear. In order to

capture more physics, numerical diffusion should be minimized. High-order accurate

methods can help to achieve this goal since they have less numerical diffusion than

the lower order schemes. A numerical method is said to be kth order if the error is

proportional to the cell size ∆x to the power k. The methods of third-order or higher
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order accuracy are called high-order methods. More about high-order methods will be

discussed later. On the other hand, the scope of applications is limited by the physics

capabilities of MHD models. For example, ideal MHD assumes there is no charge

separation, pressure is isotropic, and the magnetic field is frozen-in with the ion flow,

therefore Langmuir waves, anisotropic pressure, whistler waves would not arise in the

ideal MHD model no matter how small the cell size/time step is or how accurate

the numerical scheme is. To improve the physics capabilities, various extended MHD

models have been developed, such as Hall MHD, multi-species MHD and multi-fluid

MHD. But the kinetic physics is still missing in these models. In order to incorporate

the kinetic physics into an MHD model, one approach is coupling the MHD model

with a kinetic code so that the regions where kinetic effects are important can be

correctly handled by the kinetic code. This idea leads to the development of the

magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC) (Daldorff

et al., 2014).

To improve both the numerical accuracy and the physics capability of the MHD

model BATS-R-US, we developed a fifth-order finite difference method for the MHD

equations and coupled BATS-R-US with a PIC code to resolve the kinetic physics.

Before discussing these numerical improvements, the MHD model BATS-R-US will

be briefly described first.

1.2.1 The BATS-R-US Model

The Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) is a

flexible, highly modular MHD model that is widely used for space physics research.

It is designed to solve a variety of MHD equations, such as ideal MHD, semirela-

tivistic MHD, Hall MHD, multi-species MHD, multi-fluid MHD, etc., on a Cartesian

or curvilinear block adaptive grid. The whole computational domain is divided into

dozens to thousands of blocks. These blocks can be refined or coarsened according
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to regions of interest. Various numerical schemes have been implemented for BATS-

R-US. BATS-R-US uses a second order spatial discretization with total variation

diminishing (TVD) slope limiters (Harten, 1983; van Leer , 1979). Various Godunov-

type flux functions have been implemented, including the Rusanov (Rusanov , 1961),

HLLE (Harten et al., 1983), Artificial Wind (Sokolov et al., 2002), HLLD (Miyoshi

and Kusano, 2005), Roe (Roe, 1981) and Godunov (Godunov et al., 1961) fluxes. Var-

ious time discretization schemes are also available, such as the explicit, point-implicit,

semi-implicit, fully implicit, and part-implicit schemes (Tóth et al., 2012).

1.2.2 High-Order Accurate Methods for Hyperbolic Equations

Figure 1.5: Numerical and exact solution to a Riemann problem with different nu-
merical methods (from LeVeque (1992)).

14



Discontinuities are allowed to develop and exist in the solutions of the hyperbolic

equations. Inappropriate handling of the discontinuities would cause spurious oscil-

lations in a numerical simulation. Examples are shown in Figure 1.5. These artificial

oscillations will finally ruin the simulation results. For a Godunov-type finite volume

method, the cell average values are usually stored and calculated at the cell centers.

A reconstruction procedure is applied to calculate the face values from the cell aver-

ages. Finally a Riemann solver is required to solve the discontinuity problems at the

cell faces. The choice of Riemann solver has great impact on the accuracy of the solu-

tion, but the reconstruction algorithm determines the order of accuracy. Godunov’s

theorem predicted that any second or higher order accurate linear schemes would po-

tentially generate new extrema. To break the constraint of Godunov’s theorem, Van

Leer introduced the Monotonic Upstream-Centered Scheme for Conservation Laws

(MUSCL). MUSCL employs flux limiters to limit the linear reconstruction of the face

values. The MUSCL scheme is second order in the smooth region since the linear

reconstruction produces second order accurate face values.

The second order schemes have achieved great success in the computational fluid

dynamics applications. In the past two decades, high-order schemes (third or higher

order) have drawn considerable attention due to their potential to minimize the

numerical diffusion. A lot of high-order accurate methods have been proposed,

such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory

(ENO) scheme, the weighted essentially non-oscillatory (WENO) scheme, and the

monotonicity-preserving (MP) scheme. High-order schemes usually need more com-

putational resource per stage than the lower order scheme, but they can produce

higher quality results for the same grid resolution. Generally high-order schemes can

provide more accurate results with the same computational cost. our goal is to de-

velop a high-order accurate scheme for BATS-R-US, which solves a variety of systems

of equations. This means that the scheme should not rely on characteristic variables
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and the numerical scheme should not require major modifications to become appli-

cable to a new system of equations. In general, we try to keep the algorithm flexbile

yet relatively simple to make implementation easier. In summary, we are looking for

a scheme with the following properties

• Works on curvilinear block-adaptive grids.

• Oscillation free.

• Obtains correct weak solutions.

• At least 4th-order accurate.

• Requires a small stencil.

• No characteristic decomposition is needed.

• Efficient and simple.

We use the above requirements for selecting the ingredients and design of our high-

order scheme.

The discontinuous Galerkin (DG) method is a way to achieve high-order accuracy.

Significant progress has been made since it was introduced by Reed and Hill (1973) to

solve hyperbolic equations, see Cockburn and Shu (1998, 2001). DG offers flexibility to

achieve high-order accuracy and can be easily extended to complicated geometries, but

it is significantly more complicated than the finite volume (FV) and finite difference

(FD) schemes.

High-order finite volume (FV) and finite difference (FD) methods have been ex-

tensively explored. Harten designed the essentially non-oscillatory (ENO) scheme

(Harten et al., 1987) with 3rd and higher order accuracy, Liu et al. presented the

weighted essentially non-oscillatory (WENO) scheme (Liu et al., 1994) with similar

high-order accuracy. Unfortunately, most ENO and WENO schemes require char-

acteristic decomposition to work well for systems of equations (Shu, 2009; Qiu and
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Shu, 2002). The central WENO (CWENO) scheme by Capdeville (2008) is an ex-

ception, as it works well without characteristic variables, and we have implemented

CWENO as a possible option. An alternative to the ENO/WENO/CWENO type

limiters is the monotonicity-preserving (MP) limiter developed by Suresh and Huynh

(1997). MP schemes have been applied to turbulent simulation by Li and Jaberi

(2012), to astrophysics by Porth et al. (2014); Mignone et al. (2010) and Del Zanna

et al. (2007). It is also combined with WENO as an extra limiter by Balsara and Shu

(2000). The MP schemes are considerably simpler and computationally less expen-

sive than WENO type schemes, and work well without characteristic decomposition.

Comparisons by Li and Jaberi (2012) showed that the MP scheme is competitive

with WENO schemes, and our experience also showed that the fifth order MP5 lim-

iter works as well or better than the 5th order CWENO scheme. We will therefore

use the MP5 limiter as the first ingredient of our scheme. A small modification is

introduced to better maintain positivity of density, pressure etc.

All the schemes described above are finite volume (FV) methods in their originally

published form. They construct face values based on cell-averages. The FV approach

makes conservation of variables straightforward, which is important for obtaining

correct weak solutions. However, the finite volume approach becomes complicated

for two (2D) or three dimensional (3D) simulations, because the face fluxes have to

be integrated over the cell faces with high-order accuracy. Source terms also have to

be integrated in the control volume with a Gaussian quadrature that further increases

computational cost. In addition, constructing proper control volumes for dynamically

adaptive non-Cartesian grids is very complicated.

The finite difference (FD) approach is based on cell point values and it approx-

imates spatial derivatives for each dimension independently, so it can be easily and

inexpensively extended to 2D and 3D. Source terms can be simply evaluated in the

cell centers. Curvilinear grids can be relatively easily accommodated by transforming
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the governing equations and discretizing them with the same FD method in the gen-

eralized coordinates. High-order accuracy can be achieved as long as the coordinate

transformation is smooth. Conservative properties can be ensured if the FD scheme

is written in a flux difference form and the same face fluxes are used to update the

values of neighboring cell centers. This is, unfortunately, not easy to achieve at grid

resolution changes of an adaptive grid beyond second-order accuracy. In practice,

however, the FD scheme can work well even if the conservation properties are not

exact at grid resolution changes. We will demonstrate this through several numerical

tests.

Following the finite difference approach, Shu and Osher (1988, 1989) introduced

the finite difference ENO, and Jiang and Shu (1996) developed the finite difference

WENO schemes. These finite difference methods directly construct face fluxes from

cell center fluxes (FD-Flux). The fluxes of the characteristic variables are used by

Shu (2009); Li and Jaberi (2012); Mignone et al. (2007), but this approach is very

expensive and requires the construction of Roe-matrices that we wish to avoid. The

alternative approach is to use the original fluxes with global Lax-Friedrichs scheme

(Shu, 2009; Porth et al., 2014), which we tried and found to be quite diffusive despite

the formally high-order accuracy. Del Zanna et al. (2003, 2007) suggested an alterna-

tive way to design the high-order finite difference scheme: first construct high-order

accurate but properly limited left and right face values of the primitive variables

(FD-Primitive), calculate the corresponding face fluxes with an arbitrary approxi-

mate Riemann solver and then calculate a high-order spatial derivative using up to

6 face fluxes. This last step can also be regarded as a ‘correction’ of the face fluxes

to ensure that spatial derivatives achieve high order accuracy. This scheme turns out

to be the same as one of the explicit weighted compact nonlinear schemes (WCNS)

introduced by Deng and Zhang (2000). We chose this FD-Primitive approach, but

we modified the flux correction step to maintain the same stencil as the MP5 limiter
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uses. This is an important improvement, because it allows smaller grid blocks with

fewer ghost cells and more flexible grid adaptation.

Generalizing the high-order FD scheme to curvilinear grids is relatively straight-

forward, but satisfying free-stream preservation is still a challenge. The geometric

coefficients, which relate the curvilinear mesh to a computational Cartesian mesh,

are involved in the spatial derivatives of numerical fluxes and generate numerical

errors. If these numerical errors do not cancel each other for a uniform flow, the

errors may accumulate and become non-ignorable, see Visbal and Gaitonde (2002)

and Nonomura et al. (2010). Thomas and Lombard (1979) proposed that evaluating

both geometric coefficients and convection terms with the same interpolation formula

ensures the numerical errors exactly cancel each other and leads to a free-stream

preserving solution. Deng et al. (2011) carefully analyzed how the cancellation works.

We adapt this approach to our particular FD-Primitive discretization with the flux

correction.

The final step is to combine the high-order FD scheme with daptive mesh re-

finement (AMR). This technique was introduced by Berger and Colella (1989) to

capture local details in a computationally efficient manner. Cell based grid adapta-

tion is very difficult to combine with high-order finite difference schemes, but block

and patch based AMR is doable. There has been significant progress to combine

high-order schemes and AMR in recent years. McCorquodale and Colella (2011) im-

plemented a fourth-order finite volume method combined with AMR, where they fill

in the ghost cells by solving a linear least square problem. Shen et al. (2011) devel-

oped the high-order FD-Flux type AMR-WENO scheme, in which they used an odd

refinement ratio to simplify the prolongation and restriction operations. The ADER

(Arbitrary Derivative Riemann Problem) scheme, which only needs one-step temporal

update, is advantageous to AMR meshes, and the finite volume ADER-WENO AMR

scheme has been explored by Balsara et al. (2009) and Dumbser et al. (2013). We
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implement the high-order MP5 finite difference scheme (Chen et al., 2016) into the

Block-Adaptive Tree Library (BATL) (Tóth et al., 2012) which uses the usual factor

of 2 refinement ratio. Thanks to the careful design of the finite difference algorithm,

only three ghost cells are required for the grid blocks. We use a high-order accurate

interpolation method to fill in the ghost cells. For sake of efficiency, the interpolation

is done along carefully selected 1D stencils, so there is no need to solve for general

multi-dimensional interpolation. The interpolations all employ a new general lim-

iter that is based on the principles of the MP limiter, so that there are no spurious

oscillations at resolution changes but the high-order accuracy is still maintained.

1.2.3 Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC)

Model

MHD models are quite efficient for 3D global magnetospheric simulations, but the

physics capability of these models is limited by the assumptions underlying the MHD

equations. Kinetic physics, which goes beyond the Maxwellian particle distribution,

is missing in the MHD models, thus MHD models cannot correctly handle the ki-

netic processes, like magnetic reconnection. On the other hand, particle-in-cell (PIC)

methods have been demonstrated as a powerful tool to study kinetic physics. But

the PIC codes are so computationally expensive that it is still extremely difficult to

do global simulations (Lapenta, 2012; Peng et al., 2015). The MHD-EPIC model was

developed to combine the efficiency of the MHD model and the physics capability of

the PIC code (Daldorff et al., 2014).
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1.2.3.1 Particle-in-Cell Method

The collisionless plasma can be described by the Vlasov-Maxwell system. The

Vlasov equation is:

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B)
∂fs
∂v

= 0, (1.9)

where fs(x,v, t) describes the phase space density of particles of species s with velocity

v near the location x; qs and ms are the particle charge and mass, respectively; E

and B are the electric and magnetic fields. This equation is closed by coupling with

Maxwell equations:

∇ · E =
ρq
ε0
, (1.10)

∇ ·B = 0, (1.11)

∂B

∂t
= −∇× E, (1.12)

1

c2
∂E

∂t
= ∇×B− µ0j, (1.13)

where ρq is the net charge density; the constants ε0, µ0 and c are the electric per-

mittivity, magnetic permeability and speed of light, respectively. The particle-in-cell

(PIC) method is a class of methods solving the Vlasov equation by sampling the phase

space distribution with macro-particles. A macro-particle is a computational particle

representing many physical particles that are close to each other in the phase space.

Most particle-in-cell codes assume the macro-particles have certain shape in space in

order to reduce the numerical collisions Dawson (1983); Birdsall and Langdon (2004).

The cloud-in-cell scheme, which represents a macro-particle with a flat-top function,

is widely used. The motion of the macro-particles is controlled by the electromagnetic
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field:

dxp
dt

= vp, (1.14)

dvp
dt

=
qs
ms

(Ep + vp ×Bp) , (1.15)

where xp and vp are the center position and velocity of a macro-particle; Ep and Bp

are the electric field and magnetic field exerting at the macro-particle. Particle-in-cell

methods trace the trajectories of the macro-particles in the electromagnetic field by

solving Eq. (1.14)-(1.15). The Maxwell equations (Eq. (1.10)-(1.13)) are solved on

a Cartesian grid . The charge density and the currents are interpolated from the

macro-particles to the grid.

Discretization errors are present in all numerical models. In addition to the usual

spatial and temporal truncation errors, the PIC codes also suffer from statistical

errors because randomly chosen macro-particles are used to represent the phase space

distribution fs(x,v, t). The statistical noise is proportional to 1√
N

, where N is the

number of macro-particles in one cell. In order to suppress this noise, dozens to

thousands of macro-particles per cell are used in the simulations, therefore billions or

trillions of macro-particles are usually needed for a 3D or even 2D local simulation.

The numerous macro-particles pose a challenge for computational efficiency.

Most PIC codes solve the equations with an explicit time discretization scheme,

for instance, the leap-frog algorithm is widely used. These explicit PIC codes need to

resolve the Debye length to avoid finite grid instability, and the time step is limited

by the plasma frequency and also the speed of light (Birdsall and Langdon, 2004;

Dawson, 1983; Lapenta, 2012). To relax the stability constraints, implicit particle

methods, which solve the equations with implicit schemes, have been considered for

decades (Mason, 1981; Brackbill and Forslund , 1982; Markidis et al., 2010). The

implicit code is linearly unconditionally stable and larger cell size and time step can
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be used compared with explicit PIC methods. In the MHD-EPIC model, the implicit

code iPIC3D, which is developed by Markidis et al. (2010), is coupled with the MHD

model BATS-R-US to combine the advantages of kinetic models and MHD models.

1.2.3.2 The Two-Way Coupling of an MHD Model with a PIC Code

BATS-R-US and iPIC3D are coupled through the Space Weather Modeling Frame-

work (SWMF) (Tóth et al., 2012). These two models are compiled together to gen-

erate a single executable file. Both models can run simultaneously on specified pro-

cessors and the information exchange is efficiently handled by the Message Passing

Interface (MPI).

The flow of the coupling between BATS-R-US and iPIC3D is shown in Figure 1.6.

At the beginning of the coupling, BATS-R-US sends the information, including den-

sity, velocity, pressure and magnetic field, to iPIC3D. iPIC3D initializes the electric

field based on Ohm’s law. Macro-particles are generated with Maxwellian distribution

according to the fluid information so that iPIC3D and BATS-R-US have consistent

density, velocity and pressure at the same position. After the PIC initialization, the

MHD and PIC models update independently with their own time steps. The coupling

frequency between these two models can be set to a value that is independent of the

MHD or PIC time step. During the coupling, iPIC3D calculates moments of the par-

ticle distribution function, such as the density, velocity and pressure, and overwrites

the MHD cells overlapped with the PIC region. In return the MHD model provides

electromagnetic field as well as particle boundary conditions for iPIC3D. For the par-

ticle boundary, iPIC3D removes the particles in the boundary cells, and re-generates

new particles based on the fluid variables obtained from MHD. Between the two cou-

pling time points, iPIC3D uses the latest information obtained from BATS-R-US as

boundary conditions during each iteration.

BATS-R-US uses Cartesian or curvilinear adaptive grids, and iPIC3D always uses
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2D or 3D uniform Cartesian mesh. Figure 1.7 shows an example of the spatial dis-

cretization of the MHD-EPIC model in 2D, where BATS-R-US uses a cylindrical grid.

The electric field at the boundary nodes with in = 0 or jn = 0 is fixed with values

obtained from MHD as the boundary condition for iPIC3D. Similarly, the magnetic

field at the boundary cells with ic = 0 or jc = 0 is also obtained from MHD. The

plasma density, velocity and pressure at the nodes with ic = 0, 1 and jc = 0, 1 are

also obtained from MHD, and the ghost particles (small red dots in Figure 1.7) are

re-generated based on these fluid values. More details about the coupling algorithm

can be found in Daldorff et al. (2014). In the recent two years, we have improved the

performance and capability of the MHD-EPIC model:

• The PIC part becomes about twice faster after coupling with the latest iPIC3D,

which optimized the particle mover and the message exchange between proces-

sors.

• An adaptive time stepping algorithm is implemented to automatically control

the iPIC3D time step.

• The coupling process is also optimized by reducing the unnecessary information

exchange between BATS-R-US and iPIC3D.

• The multi-species MHD, multi-fluid MHD and the MHD models with separate

electron pressure equation are coupled with iPIC3D.

• Grid alignment is not required anymore.

• Multiple PIC boxes can be used in one computational domain.

1.3 Overview of the Dissertation

This dissertation includes the development of the high-order scheme for BATS-R-

S, and the magnetospheric simulations using the MHD-EPIC model. The fifth-order
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Figure 1.6: The flow of the coupling algorithm.

finite difference scheme is introduced in chapter II. This section starts with describing

the high-order scheme on uniform Cartesian grid. How the high-order accuracy is

achieved on block-adaptive curvilinear mesh is also discussed. Various numerical tests

are provided to demonstrate the accuracy and capability of the fifth-order scheme.

Chapter III presents the 3D MHD-EPIC simulation of Earth’s magnetosphere. The

PIC box is placed on the dayside magnetopause to study the dayside reconnection.

The formation and evolution of the flux transfer events (FTEs) is discussed. The

kinetic features found from the simulation, such as the crescent electron phase space

distribution, the Larmor electric field and the lower hybrid drift instability (LHDI),

are also presented. Chapter IV discusses Mercury’s tail dynamics studied with the

MHD-EPIC model. The simulation results regarding the magnetotail reconnection,

flux ropes and the dawn-dusk asymmetry are discussed.
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Figure 1.7: Spatial discretization of the MHD-EPIC model. The curvilinear black
mesh represents the MHD mesh. The black circles represent the MHD
cell centers. The red lines are the iPIC3D grids. The red dots are the
PIC nodes and the red squares are the PIC cell centers. The dark gray
region is the PIC domain and the light region is the PIC ghost cells. The
small red dots represent the macro-particles.
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CHAPTER II

A Fifth-Order Finite Difference Scheme for

Hyperbolic Equations on Block-Adaptive

Curvilinear Grids

Minimizing numerical diffusion is an important approach to improve numerical

accuracy and capture more physics. The most straightforward way is refining the

grid, which is easy to implement but computationally expensive. Without increasing

computational cost significantly, high order numerical schemes, adaptive mesh refine-

ment and curvilinear grids can all improve accuracy relative to low-order schemes

employed on uniform Cartesian meshes. Combining the benefits of these approaches

can further enhance the accuracy of the code, but it also leads to new challenges.

High order schemes are easiest to realize on uniform grids, while adaptive mesh re-

finement creates non-uniform stencils. Block and patch based adaptive grids have

locally uniform grids that can be large enough to cover stencils required by the high-

order scheme, but grid resolution changes still pose a problem. Curvilinear grids also

introduce additional complexity both for adaptive mesh refinement and for maintain-

ing high order accuracy. This chapter will discuss how we handle these challenges

and design a high order accurate method on a block-adaptive curvilinear mesh.
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2.1 Fifth-Order Finite Difference Scheme on a Uniform Carte-

sian Grid

2.1.1 Governing Equations

We begin to describe the method for a 1D hyperbolic system:

∂U

∂t
+
∂F(U)

∂x
= 0 (2.1)

where U is the vector of conservative variables and F are the fluxes. In the following

part, we will also use primitive variables W. For example, in the case of 1D Euler

equations, U = (ρ, ρu, ρE) and W = (ρ, u, p).

We discretize the equation in a semi-discrete form:

∂Ui

∂t
+

1

∆x
(F̂i+1/2 − F̂i−1/2) = 0 (2.2)

where F̂i+1/2 = F̂(Ui−l, · · · ,Ui+r) is the numerical flux at xi+1/2, the middle point

between xi and xi+1, and the stencil extends from i − l to i + r. The goal is to find

appropriate values of F̂i+1/2 and F̂i−1/2 so that the the spatial difference in (2.2) is

high order accurate. A Runge-Kutta solver can be applied to the time integration.

In this chapter, we use superscript ‘∗’ to represent the exact solution. For example,

U∗ni is the exact conservative values at xi and tn.

2.1.2 Fifth-Order Spatial Derivative

We use the primitive variables W instead of conservative variables U or character-

istic variables for face value interpolation. Interpolation based on primitive variables

is simpler and more efficient compared to characteristic variables, and it is easier to

keep density and pressure positive.

First, we calculate fifth-order accurate face primitive values WL
i+1/2 and WR

i+1/2
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from the cell center values:

WL
i+1/2 = (3Wi−2 − 20Wi−1 + 90Wi + 60Wi+1 − 5Wi+2)/128 (2.3)

WR
i+1/2 = (3Wi+3 − 20Wi+2 + 90Wi+1 + 60Wi − 5Wi−1)/128 (2.4)

The MP5 limiter (Suresh and Huynh, 1997) is used to suppress the unphysical oscil-

lations for the interpolations above. The limited face values are fifth-order accurate

in smooth regions. Three nearby cells at each side are needed for this face value

reconstruction, so three ghost cell layers are required for each block in each direc-

tion. Then, any approximate Riemann solver, like Roe solver, HLL type solver,

Lax-Friedrichs solver, etc., can be employed to calculate face flux Fi+1/2 from UL
i+1/2

and UR
i+1/2. Fi+1/2 is a fifth-order accurate approximation to F∗i+1/2. Based on Fi+1/2,

we can find the numerical fluxes F̂i+1/2 for high-order spatial derivative:

F̂i+1/2 = Fi+1/2 −∆(2)Fi+1/2 + ∆(4)Fi+1/2 (2.5)

where,

∆(2)Fi+1/2 =
1

6
(Fi − 2Fi+1/2 + Fi+1)

∆(4)Fi+1/2 =
1

180
(Fi−1 − 9Fi + 16Fi+1/2 − 9Fi+1 + Fi+2)

(2.6)

The flux correction terms ∆(2)Fi+1/2 and ∆(4)Fi+1/2 are proportional to the second and

fourth spatial derivatives of F at xi+1/2, respectively. For flux correction, Del Zanna

et al. (2007) used face fluxes, Nonomura et al. (2010) employed a combination of face

fluxes and cell centered fluxes to improve the robustness of their scheme, while we

only use cell centered physical fluxes to make the stencil smaller. The original MP

scheme introduced by Suresh and Huynh (1997) is monotonicity-preserving for linear

problems, however, we corrected the face fluxes in (2.5) without limiting and the
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correction will destroy the monotonicity-preserving property. Near discontinuities,

some oscillations are expected, but in practice, as shown by the numerical tests, the

oscillations are small, because the correction terms have small coefficients (2.6). A

limiter could be introduced to suppress the oscillations in the future.

Substituting F̂i+1/2 and F̂i−1/2 into (2.2), a fifth-order accurate spatial derivative

is obtained. To simplify the notation, let operator D represent the spatial derivative

calculation (2.2) as a function of the face centered and cell centered fluxes:

∆F

∆x

∣∣∣∣
xi

=
F̂i+1/2 − F̂i−1/2

∆x
= D(Fi−2,Fi−1,Fi−1/2,Fi+1/2,Fi+1,Fi+2) (2.7)

Operator D will also be used to calculate geometric coefficients of the curvilinear

mesh in section 3.

The scheme described above needs three ghost cell layers on each side, which is

reasonable compared to the TVD schemes, which need two layers.

2.1.3 Error Analysis for Uniform Grids

There are some subtle details related to the errors. Using the linear advection

with velocity +1 as an example, so that F = U = W, then Fi+1/2 = WL
i+1/2 if an

upwind scheme is used. The face flux Fi+1/2 is a fifth-order approximation to F∗i+1/2,

but it is divided by ∆x in (2.7), so it is not obvious if the scheme is indeed fifth-order

accurate. From (2.3), we have:

Fi+1/2 = F∗i+1/2 −
3

256
∆x5

∂5F∗

∂x5

∣∣∣∣
xi+1/2

+O(∆x6)

Fi−1/2 = F∗i−1/2 −
3

256
∆x5

∂5F∗

∂x5

∣∣∣∣
xi−1/2

+O(∆x6)

(2.8)
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so in the finite difference formula

Fi+1/2 − Fi−1/2

∆x
=

F∗i+1/2 − F∗i−1/2 +O(∆x6)

∆x

=
F∗i+1/2 − F∗i−1/2

∆x
+O(∆x5)

(2.9)

the leading error terms cancel if ∂5F∗

∂x5
is continuous. The equation above is only a

second-order approximation to ∂F∗

∂x

∣∣
xi

since

Fi+1/2 − Fi−1/2

∆x
=
∂F∗

∂x

∣∣∣∣
xi

+
∆x2

24
· ∂

3F∗

∂x3

∣∣∣∣
xi

+
∆x4

1920
· ∂

5F∗

∂x5

∣∣∣∣
xi

+O(∆x5) (2.10)

where ∂F∗

∂x

∣∣
xi

, ∂3F∗

∂x3

∣∣∣
xi

and ∂5F∗

∂x5

∣∣∣
xi

are the analytic derivatives at xi. To eliminate the

O(∆x2) and O(∆x4) terms, the flux correction (2.5) is necessary.

2.2 Free-Stream Preservation

In 3D, the hyperbolic system in conservative form is:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.11)

On curvilinear grids using generalized coordinates ξ, η and ζ, this hyperbolic system

can be transformed into

∂Ũ

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= 0 (2.12)
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where

Ũ = U/J

F̃ = ξ̃xF + ξ̃yG + ξ̃zH

G̃ = η̃xF + η̃yG + η̃zH

H̃ = ζ̃xF + ζ̃yG + ζ̃zH

(2.13)

and the subscripts indicate partial derivatives. The inverse Jacobian J−1 is:

J−1 =

∣∣∣∣∂(x, y, z)

∂(ξ, η, ζ)

∣∣∣∣ (2.14)

and ξ̃x...ζ̃z are the transformation metrics, for example, ξ̃x = ξx/J = yηzζ − yζzη.

Physically, F is the flux along the x direction, and ξ̃x projects F to F̃, which is the

flux along the ξ direction. The meaning of G̃ and H̃ are analogous. The inverse

Jacobian 1/J is related to the volume of the cell of the finite volume method.

At the generalized coordinates (ξi, ηj, ζk), the cell center primitive values Wi,j,k are

known at each time step. Applying (2.3) and (2.4) to each variable in each direction,

we can obtain the face values, for example WL,R
i+1/2,j,k. Then an approximate Riemann

solver can obtain the face fluxes F, G and H. The cell center fluxes are obtained from

Wi,j,k. Using the metrics ξ̃x...ζ̃z at both cell centers and cell faces, the fluxes F̃, G̃

and H̃ at the cell centers and faces are obtained from (2.13). Then spatial derivatives

in (2.12) can be calculated through operator D.

Free-streaming preservation requires that a constant state with a constant flow is

maintained with round-off errors only. Let us take an initial condition with all the

variables W and fluxes F, G, H uniform in physical space. Therefore, the spatial

derivatives in (2.12) reduce to the numerical spatial derivatives of geometric coeffi-

cients ξ̃x...ζ̃z. Analytically, the sum of spatial derivatives in (2.12) should be zero.

However, this is not ensured by numerical differences unless some special techniques

32



are used. To keep free-stream preserving, the metrics in (2.13) should be calculated

numerically with the following conservative form (Thomas and Lombard , 1979):

ξ̃x = (yηz)ζ − (yζz)η, ξ̃y = (zηx)ζ − (zζx)η, ξ̃z = (xηy)ζ − (xζy)η

η̃x = (yζz)ξ − (yξz)ζ , η̃y = (zζx)ξ − (zξx)ζ , η̃z = (xζy)ξ − (xξy)ζ

ζ̃x = (yξz)η − (yηz)ξ, ζ̃y = (zξx)η − (zηx)ξ, ζ̃z = (xξy)η − (xηy)ξ

(2.15)

All derivatives in the expressions above should be calculated in the same way and

with at least fifth-order accuracy. We describe the numerical calculation of yη at

cell center (ξi, ηj, ζk) as an example. Similar to the discretization of ∂F
∂x

in (2.7), we

calculate the face value first. Let us denote the interpolation from the cell center

values to a face value as F defined as

yi+1/2 = F(yi−2, yi−1, yi, yi+1, yi+2, yi+3)

=
3

256
(yi−2 + yi+3)−

25

256
(yi−1 + yi+2) +

150

256
(yi + yi+1)

(2.16)

where we only kept subscript i and omitted j and k for sake of simplicity. We use the

same formula for yi−1/2, then the numerical yη at cell center (ξi, ηj, ζk) is obtained as

∆y

∆η

∣∣∣∣
ξi

= D(yi−2, yi−1, yi−1/2, yi+1/2, yi+1, yi+2) (2.17)

Applying (2.16) and (2.17) to all the derivatives in (2.15) gives the cell center numer-

ical coefficients ξ̃x...ζ̃z, whose cell face values can also be obtained with the interpo-

lation formula F (2.16).

The key to reach a free-stream preserving solution is using operator D for both flux

correction (2.5) and geometric coefficient calculation (2.17), and all the face metrics

should be interpolated with the same formula F (2.16), but it is not necessary to

use the same formula as for the face primitive calculation (see (2.3), (2.4)), where

the MP5 limiter is applied. Here we illustrate the statements above in an intuitive
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way, for more details, we refer to Thomas and Lombard (1979); Visbal and Gaitonde

(2002); Jiang et al. (2013). Assume only flux F is non-zero and uniform in space,

then (2.12) reduces to:

Ũt + µF = 0 (2.18)

where

µ = (ξ̃x)ξ + (η̃x)η + (ζ̃x)ζ (2.19)

Here (ξ̃x)ξ results from the derivative of F̃ in the ξ direction that is discretized with the

D operator. The ξ̃x term itself depends on derivatives in the η and ζ directions (see

(2.15)) and these should also be calculated with the same formula so that the spatial

derivative calculation is symmetric. That is why (2.17) should also use operator

D just as (2.7), and all the face geometric coefficients should be calculated using

the same operator F . Similar considerations apply to (η̃x)η and (ζ̃x)ζ . All the three

derivatives in µ involve the same grid points in three dimensions because of symmetry,

and numerical errors introduced by each derivative can cancel each other to make sure

that µ is zero up to rounding error. If a limiter was used in the flux correction in

(2.5), it should be designed carefully so that it does not modify the interpolation and

difference formulas under free-streaming conditions (uniform F, G and H).

2.3 High-Order Scheme for AMR Grid

2.3.1 Limiter for Interpolation

The standard MP5 limiter introduced by Suresh and Huynh (1997) is used for our

face value reconstruction. This limiter tries to control overshoots and undershoots,

and it is monotonicity preserving for linear hyperbolic equations. We also need a
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limiter for interpolations related to AMR. This limiter should be able to control

overshoots and undershoots, but it does not need to be monotonicity preserving. So,

following the ideas of MP5 (Suresh and Huynh, 1997), we introduce a new limiter L,

which is a simplification of MP5, but generalized it to non-equal spaced stencils. We

use this limiter in all the interpolations for high-order ghost cells, grid refinement and

coarsening, but not for face reconstruction. An example of six-point interpolation is

given to illustrate this limiter.

For a set of seven points lying along a line at coordinates x−3 < x−2 < x−1 < x0 <

x1 < x2 < x3, we want to interpolate u0 from the known values u−3, u−2, u−1, u1, u2

and u3. These points are not required to be equally spaced. We first interpolate u0

from the other six points without any limiting and denote this interpolated value as

uorig0 . We also calculate the linear extrapolated values from left (uL0 ) and right (uR0 ),

and the linearly interpolated uM0 (see Figure 2.1):

uL0 =
x−1 − x0
x−1 − x−2

u−2 +
x0 − x−2
x−1 − x−2

u−1 (2.20)

uR0 =
x2 − x0
x2 − x1

u1 +
x0 − x1
x2 − x1

u2 (2.21)

uM0 =
x1 − x0
x1 − x−1

u−1 +
x0 − x−1
x1 − x−1

u1 (2.22)

The median of above three values is:

uMD
0 = median(uL0 , u

R
0 , u

M
0 ). (2.23)

The final interpolated u0 should be located in the interval [umin, umax], where:

umin = min(uMD, u−1, u1) (2.24)

umax = max(uMD, u−1, u1) (2.25)
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Figure 2.1: Illustration of the limiter.

Finally, we get:

u0 = median(uorig, umin, umax) (2.26)

This limiter suppresses overshoots and undershoots while preserving accuracy near

extrema similar to the MP5 limiter (Suresh and Huynh, 1997). For positive quantities,

like density, pressure, etc, the limiter cannot ensure that the interpolated values are

positive, so we use an extra trick to keep positivity: if u0 from (2.26) is negative and

it is positive variable, then replace it with u0 = uM .

Notice that only the nearby four values (two values each side) are used for limiting,

and we notate the limiter as L(u−2, u−1, u
orig, u1, u2), which represents the procedures

from (2.20) to (2.26) including the positivity fix. This limiter is applied to all the

interpolations in this section, and it needs two points on each side. However, for

some interpolations in the following, we only know one point on one side, and only

one extrapolated value uL0 or uR0 can be obtained. For this situation, we assume uMD
0

is this known extrapolated value and do not use (2.23) any more. For example, if x2

and x3 are not known, uR0 can not be calculated and we assume uMD
0 = uL0 .
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2.3.2 High-Order Ghost Cells Calculation

The high-order scheme requires three ghost cell layers, and each block should at

least contain twice as many physical cells than ghost cells in each direction in order

to satisfy the regridding requirement (Tóth et al., 2012). For making the grid truly

adaptive, small size blocks are preferred. So, in this section, we use 6×6 (2D) physical

cells blocks, that contain 12×12 cells including ghost cells, to illustrate our algorithm.

After each iteration, the physical cells are updated to a new time level, while the

ghost cells still contain the values at the previous time stage. When a ghost cell has

the same size as the overlapping physical cell of the neighbor block, such as G1 in

Figure 2.2, it is straightforward to obtain the ghost cell value. If the ghost cell and the

overlapping physical cell are not at the same refinement level, like G2 in Figure 2.2,

we need to interpolate the ghost cell from nearby cells. For pure hyperbolic PDEs,

only face ghost cells are needed to calculate fluxes. But corner ghost cells are useful in

some other circumstances, such as Hall MHD (Tóth et al., 2008) and dynamic AMR.

So high-order corner ghost cells are also calculated.

All the 2D refinement possibilities are shown in Figure 2.3. We calculate ghost

cells based on the following rules:

1) Calculate ghost cells from surrounding physical cells with dimension by dimension

interpolations. Try fifth-order interpolation first, otherwise use fourth-order interpo-

lation.

2) If some ghost cell values can not be interpolated from physical cells, try to use the

ghost cells already interpolated.

3) If several symmetric interpolations are available based on approach 2), use their

average.

A 3D grid contains many more possibilities and interpolations are more compli-

cated. Following the strategies described for 2D, we have also implemented high-order

interpolation for the ghost cells in 3D.
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G1

G2

B1

B3

B2

B4 B5

B6 B7

Figure 2.2: Red lines are block edges, black lines are cell boundaries, and the gray
region represents B3’s ghost cells. Red solid lines represent block edges
in all the figures.

2.3.2.1 High-Order Restriction

High-order restriction is done remotely: we restrict the ghost cells of a coarse

block on its neighbor fine block, then the fine block sends the ghost cell values to the

coarse block.

Case 1 in Figure 2.3 is the simplest situation for high order restriction, where

resolution only changes in one direction. The interpolation procedure is shown in

Figure 2.4. To restrict ghost cells (red circles) of the coarse block, we use dimension

by dimension interpolations: interpolate to the face values (red rectangles) along the

y direction first, then interpolate ghost cells from these face values and the coarse cell

center value (black circle) in the x direction.

Cases 2 and 3 in Figure 2.3 are more complicated. The interpolation procedure

is shown in Figure 2.5. Most ghost cells (red solid circles) are calculated in the same

way as for the simple resolution change (Figure 2.4) using left or upper coarse cells.

Some of these ghost cells can be obtained both ways, so according to our strategy we

use the average of the two interpolations. The corner ghost cell (red dashed circle)
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case 1 case 2 case 3 case 4
x

y

Figure 2.3: Four possibilities of grid resolution change in 2D. Red lines represent block
edges.

can be interpolated on the coarse grid using the coarse physical cells and the already

calculated coarse ghost cell values. This can be done both in the x and y directions,

so again the average is used.

Face ghost cell restriction for case 4 is exactly the same as for case 1. Corner

ghost cell restriction for case 4 is shown in Figure 2.6. Most corner ghost cells (red

solid circles) are also interpolated with the same idea: dimension by dimension in-

terpolation with nearby physical cells. For the corner ghost cell (dashed red circle),

it is not easy to apply dimension by dimension interpolations, and we interpolate it

diagonally from coarse physical cells and already known ghost cells.

The limiter L defined in section 4.1 is applied to all interpolations described in

this section, and also the next subsection 4.2.2.

2.3.2.2 High-order Prolongation

High-order prolongation is done locally: we prolong the fine ghost cells using

coarse and fine physical cell values passed from the neighboring blocks. This means

that the interpolation stencil is restricted to three layers of cells from the surrounding

blocks.

To fill in the ghost cells of the fine blocks, we use dimension by dimension inter-

polations as well. Consider case 1 in Figure 2.3 first, as shown in Figure 2.7. We

interpolate in the y direction to get red circles first, then using these red circles and

fine physical cells (black squares) we obtain the ghost cells (red squares) with inter-
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x

y

Figure 2.4: High-order restriction at simple resolution change (case 1 in Figure 2.3).
Black solid lines and dashed lines represent cell boundaries. The black
solid circle is the coarse block cell center value, and the black squares
are cell centers of the fine block. We first interpolate to the face values
(red rectangles) in the y direction, then use these face values and the
coarse cell center value (black circle) to interpolate in the x direction to
calculate the ghost cells (red circles) of the coarse block. For a 6×6 block
the rightmost two layers of cells (dashed lines) are ghost cells, so we may
not be able to use rightmost two face values (red rectangles). In this case
the rightmost ghost cell (red circle) is interpolated from the available face
values and the limiter is only applied with left extrapolation.
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x

y

Figure 2.5: High-order restriction for cases 2 and 3 in Figure 2.3. Black circles and
squares are physical cells. Red symbols represent ghost cells of the left
and upper coarse blocks. Red solid circles in the black and red boxes
are calculated the same way as at simple resolution changes (Figure 2.4)
with left and upper coarse cells, respectively. For the four points in both
boxes, they can be obtained both ways and we use their average. The
red dashed circle uses the average of the interpolations from the coarse
physical and ghost cells in the x or y directions along the red dashed lines.
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y

x

Figure 2.6: High-order restriction for corner ghost cells of case 4 in Figure 2.3. Black
circles and squares are physical cells. Red symbols represent corner ghost
cells of the coarse block. The red solid circles are calculated from dimen-
sion by dimension interpolations. The red dashed circle is interpolated
diagonally from coarse physical cells and already interpolated coarse ghost
cells.

polation in the x direction. This approach is also applicable to all the fine face ghost

cells of case 2 in Figure 2.3.

Cases 3 and 4 contain more possibilities. Some ghost cells (red squares in Fig-

ure 2.8) can still be filled in with fifth-order values using the dimension by dimension

approach discussed for Figure 2.7. Above the red hexagons in Figure 2.8, there are

fewer coarse ghost cells (black circles). We use 4th order accurate interpolation for

these ghost cells, which needs fewer points in the y direction. The red circles are

obtained with the y direction interpolations, which involves already known ghost

cells.

So far, all the face ghost cells for fine blocks are obtained, but their corner ghost

cells in case 2 and case 4 are still unknown. We calculate the corner ghost cells

remotely. We use case 2 as an example. In case 2, the corner neighbor of the fine

block is a coarse block, whose ghost cells are already fifth-order accurate after high-
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order restriction. It is easy to calculate the ghost cells of the fine block on the coarse

block, and then pass this information to the fine block.

2.3.3 Conservation at Resolution Change

To make the scheme conservative at grid resolution changes, a flux correction

(Berger and Colella, 1989) procedure should be used. However, we do not use this

correction, because it would make the scheme only second-order accurate near reso-

lution changes. As it was analyzed by Shen et al. (2011), the flux difference between

the coarse and fine meshes is O(∆x5), so the error is small for smooth data. As long

as discontinuities do not cross the grid resolutions or move through them quickly,

the weak solution will also be accurate. We demonstrate these statements with the

numerical tests.

2.3.4 High-Order Dynamic AMR

After all the ghost cells have been filled in with high-order accurate data, including

corner ghost cells, it is straightforward to make the mesh refinement and coarsening

also high-order accurate. We simply apply high-order dimension by dimension inter-

polations to every points as needed, and limiter L is also employed. We note that

this procedure is only conservative to truncation error.

2.3.5 Error Analysis for Adaptive Grids

Just as we mentioned in section 2.3, the numerical flux Fi+1/2 is a fifth-order

accurate approximation, see Eq. (2.8). Most of the ghost cells are fifth-order accurate,

which will not change the accuracy of Fi+1/2. Near resolution changes, however, the

face fluxes at i− 1/2 and i+ 1/2 have different coefficients in front of the ∆x5 error

terms, so these fifth-order errors will not cancel in the spatial difference formula (2.9).

Eventhough the ghost cells are fifth-order, the local errors of the finite difference

43



scheme near resolution changes are only fourth-order accurate. If some of the ghost

cells are only fourth-order accurate (see Figure 2.8), the local errors near these cells

are third-order.

As long as the lower order accuracy is restricted to a lower dimensional subspace of

the computational domain, we can still achieve fifth-order accuracy in the L1 norm,

even if the L∞ error is only third-order. Let us consider the 2D mesh, case 4 in

Figure 2.3. For a given fine grid resolution ∆x there are N physical cells and N

is proportional to ∆x−2. The total number of ghost cells along the grid resolution

changes is proportional to ∆x−1, so the number of fourth-order accurate physical

cells near the resolution changes is n4 ∝ ∆x−1. The number of fourth-order accurate

ghost cells at the corners of the grid resolution change is constant, so the number of

third-order physical cells n3 influenced by them is also constant. The L1 error for this

case is then

EL1 =
n3O(∆x3) + n4O(∆x4) + (N − n4 − n3)O(∆x5)

N
= O(∆x5) (2.27)

2.4 Numerical Tests

We solve the Euler equations for density ρ, momentum density ρu, and energy

density e. The pressure is: p = (γ − 1)(ρe − 1
2
ρu2) with γ = 1.4. To keep the

scheme stable and high-order accurate, the strong stability-preserving (SSP) third-

order accurate Runge-Kutta (RK3) scheme (Shu and Osher , 1988) is employed for

time integration. The same time step is used in all grid blocks. The HLLE Riemann

solver (Einfeldt , 1988) is used for all the simulations below.

44



x

y

Figure 2.7: High-order prolongation at simple resolution change (case 1 in Figure 2.3).
Black circles and squares are physical cells. Red squares are ghost cells
of right fine block. We first calculate the face values (red circles) in the
y direction, then use these face values and physical cell values (black
squares) to interpolate ghost cells in the x direction.

x

y

Figure 2.8: High-order prolongation for cases 3 and 4 in Figure 2.3. Red symbols are
ghost cells of the right fine block. Red squares are calculated as ghost cells
at simple resolution change (Figure 2.7). Red hexagons are also calculated
with dimension by dimension interpolations, but the interpolations are
only fourth-order accurate and there may be only one point at one side of
the interpolated point. The red circles are interpolated in the y direction.
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2.4.1 Polynomial Interpolation

To test the accuracy of ghost cells, we set the physical cell values as a fourth-order

polynomial of the coordinates:

f(x, y, z) =x4 + y4 + z4 + x3y + x3z + y3x+ y3z + z3x+ z3y

+ x2y2 + x2z2 + y2z2 + x2yz + xy2z + xyz2
(2.28)

then calculate ghost cells. If the interpolations are fifth-order accurate, the ghost

cells should be the same as analytic values up to rounding errors. All the possible

refinements are tested, and all the ghost cells are proved to be fifth-order except for

the red points in Figure 2.8, which are fourth-order accurate and they can achieve

analytic values up to rounding errors for third-order polynomials.

The same fourth-order polynomial is also used to test the mesh refinement and

coarsening, which are also fifth-order accurate.

2.4.2 2D Acoustic Wave on Refined Cartesian Grid

A smooth but non-linear problem, 2D acoustic wave propagation, is used to test

the accuracy of the high-order FD methods on a locally refined Cartesian grid. The

acoustic wave is generated by a symmetric pressure perturbation, which is given by

a Gaussian profile on the domain (x, y) ∈ [0, 1]2:

p =

 0.6 if d > 0.3

0.6 + 0.1e−(d/0.15)
2

cos6(0.25πd/0.15) if d ≤ 0.3
(2.29)

where d =
√

(x− 0.5)2 + (y − 0.5)2. Note that this function has continuous fifth

derivatives. The other variables are uniform: ρ = 1 and u = 0.

We run this problem on two different locally refined meshes: the center refined

mesh (middle plot of Figure 2.9) and diagonally refined mesh(right panel of Figure
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2.9). To study the convergence, we run the same simulation with different cell sizes,

and calculate the errors at t = 0.2 and list them in Table 2.1. To calculate the error

of each point, the ‘exact’ solution is linearly interpolated from a high resolution (cell

size 1/4800) simulation result. Because the spatial derivative is fifth-order, while the

time integration is only third-order accurate, we use smaller CFL numbers on finer

grids to ensure that the errors are dominated by the spatial discretization errors. The

L1 errors and convergence rates shown in Table 2.1 verify the fifth-order convergence

for both kind of refined meshes. As shown in Figure 2.9, the errors in the coarse cells

are dominating, and errors do not accumulate near resolution changes.

In the diagonally refinement grid (right panel of Figure 2.9), some special ghost

cells of the finer blocks are only fourth-order accurate (see Figure 2.8). These cells

are near the domain center for this acoustic wave simulation, where errors are small

and do not play an important role. To investigate the influence of these fourth-order

ghost cells, we present the following linear advection tests.
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Figure 2.9: Acoustic wave test. Left: density at t = 0.2. Middle and right: density
errors at t = 0.2. The cell size within the black box is 1/96 and outside is
1/48. The refined region is (x, y) ∈ [0.25, 0.75]× [0.25, 0.75] for the middle
plot. For the right plot, the regions (x, y) ∈ [0.25, 0.50]× [0.50, 0.75] and
(x, y) ∈ [0.50, 0.75]× [0.25, 0.50] are refined. CFL = 0.4 is used.
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Table 2.1: 2D acoustic wave: density errors
Middle case in Figure 2.9 Right case in Figure 2.9

cell size CFL L1 error L1 order L1 error L1 order
1/24 or 1/48 0.8 6.95× 10−5 - 1.74× 10−4 -
1/48 or 1/96 0.4 3.26× 10−6 4.41 1.47× 10−5 3.57
1/96 or 1/192 0.2 1.00× 10−7 5.03 5.35× 10−7 4.78
1/192 or 1/384 0.1 3.00× 10−9 5.04 1.70× 10−8 4.98

2.4.3 Advection of a Smooth Density Peak on a Two-Level Grid

2.4.3.1 2D Cartesian Grid

To evaluate the influence of the fourth-order ghost cells, we run a linear advection

problem with a Gaussian wave moving through the region influenced by these ghost

cells. The grids tested are shown in Figure 2.10. For simplicity, we name the refined

mesh in the middle and right panels of Figure 2.10 as refined-mesh-1 and refined-

mesh-2, respectively. The initial condition in the domain (x, y) ∈ [0, 1]2 has density

ρ =

 1 if d > 0.3

1 + 0.1e−(d/0.15)
2

cos6(0.25πd/0.15) if d ≤ 0.3
(2.30)

where d =
√

(x− 0.35)2 + (y − 0.3)2. The velocity ux = uy = 1 and pressure

p = 1 are uniform, so the Euler equations reduce to a linear advection equation. The

density and errors at t = 0.35 are shown in Figure 2.10, and the convergence rates

are also listed in Table 2.2 and Table 2.3.

For the refined-mesh-1, the coarse cells dominate the errors and we cannot see the

influence of the ghost cells near resolution changes. Figure 2.10 shows that the errors

are smooth and the convergence rate is 5 in Table 2.2. This does not mean that the

order of accuracy at grid resolution changes is not important. If we switch to a simple

second-order accurate interpolation for all ghost cells, then the global L1 convergence

rate drops to 2 (as shown in the rightmost column of Table 2.2) eventhough the same
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fifth-order accurate scheme is used otherwise.

The convergence rates of refined-mesh-2 are shown in Table 2.3, which also demon-

strate fifth-order accuracy. Although some ghost cells are only fourth-order accurate

and influence passing points, the errors are still smooth (right panel of Figure 2.10)
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Figure 2.10: Left: density at t = 0.35. Middle and right: density errors at t = 0.35.
The cell size within the black boxes is 1/192 and 1/96 outside. CFL =
0.2 is used. The refined regions are (x, y) ∈ [0.25, 0.50]× [0.50, 0.75] and
(x, y) ∈ [0.50, 0.75]× [0.25, 0.50] for the middle plot. For the right plot,
the regions (x, y) ∈ [0.25, 0.50] × [0.25, 0.50] and (x, y) ∈ [0.50, 0.75] ×
[0.50, 0.75] are refined. We name the refined mesh in the middle and
right as refined-mesh-1 and refined-mesh-2, respectively.

Table 2.2: Errors of smooth advection test with refined-mesh-1 (middle panel of Fig-
ure 2.10).

high-order ghost cells second-order ghost cells
cell sizes CFL L1 error L1 order L1 error L1 order

1/24 & 1/48 0.8 2.02× 10−4 - 3.12× 10−4 -
1/48 & 1/96 0.4 1.28× 10−5 3.98 5.03× 10−5 2.63
1/96 & 1/192 0.2 4.19× 10−7 4.93 1.14× 10−5 2.14
1/192 & 1/384 0.1 1.31× 10−8 5.00 2.82× 10−6 2.02

2.4.3.2 2D Curvilinear Grid

To verify the order of accuracy on a non-Cartesian grid, we redo the advection

test on a refined cylindrical mesh. The simulation domain is part of a cylinder:

r ∈ [1, 10], θ ∈ [0◦, 180◦]. The initial condition is ux = 2, uy = 2, p = 1 and
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Table 2.3: Errors of smooth advection test with refined-mesh-2 (right panel of Fig-
ure 2.10.

cell sizes CFL L1 error L1 order
1/24 & 1/48 0.8 1.29× 10−4 -
1/48 & 1/96 0.4 8.06× 10−6 4.00
1/96 & 1/192 0.2 2.59× 10−7 4.96
1/192 & 1/384 0.1 8.01× 10−9 5.02
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Figure 2.11: Linear advection on cylindrical mesh. The computational domain is
1 < r < 10 and 0◦ < θ < 180◦. The region (r, θ) ∈ [5, 7] × [60◦, 80◦]
indicated by the black box is refined with ∆r = 1/96 and ∆θ = 180◦/432,
while the resolution outside the box is ∆r = 1/48 and ∆θ = 180◦/216.
CFL = 0.2 is used. Left: density at t = 1. Middle: density errors for
high-order ghost cells at t = 1. Right: density errors for second-order
ghost cells at t = 1. Note that their color ranges are different.

ρ =

 1 if d > 3

1 + 0.1e−(d/1.5)
2

cos6(0.25πd/1.5) if d ≤ 3
(2.31)

where d =
√
x2 + (y − 4)2. The density perturbation moves across the corner of

the refined mesh, and the cells along the moving path have aspect ratio about 5. The

results and errors at t = 1 are shown in the left and middle panels of Figure 2.11.

There are no errors in the uniform flow region thanks to the free-stream preserving

discretiazion. The errors around the density peak are are smooth. For comparison, we

also do the simulation with second order accurate ghost cells. In this case the errors

concentrate at the resolution change (right panel). The errors and L1 convergence

rates listed in Table 2.4 verify fifth-order accuracy when the high-order accurate ghost

cells are used.
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Table 2.4: Errors of smooth advection test on a two-level cylindrical mesh (Fig-
ure 2.11).

cell sizes (∆R) CFL L1 error L1 order
1/12 & 1/24 0.8 2.39× 10−5 -
1/24 & 1/48 0.4 9.03× 10−7 4.73
1/48 & 1/96 0.2 2.92× 10−8 4.95
1/96 & 1/192 0.1 9.13× 10−10 5.00

2.4.3.3 3D Grid

A linear advection problem on 3D two-level Cartesian grid is also used to test

accuracy. The center cube (x, y, z) ∈ [0.25, 0.75]3 on the domain (x, y, z) ∈ [0, 1]3 is

refined. The initial condition is ux = uy = uz = 1, p = 1 and

ρ =

 1 if d > 0.3

1 + 0.1e−(d/0.15)
2

cos6(0.25πd/0.15) if d ≤ 0.3
(2.32)

where d =
√

(x− 0.4)2 + (y − 0.3)2 + (z − 0.3). The wave is moving diagonally

and the errors at t = 0.35 are shown in Table 2.5, confirming that the convergence

rate is very close to 5.

Table 2.5: Errors of smooth advection test on a two-level 3D grid
cell sizes CFL L1 error L1 order

1/24 & 1/48 0.8 1.60× 10−5 -
1/48 & 1/96 0.4 8.10× 10−7 4.31
1/96 & 1/192 0.2 2.59× 10−8 4.97
1/192 & 1/384 0.1 8.98× 10−10 4.85

2.4.4 Square Wave Advection on a Two-Level Mesh

The advection of a square wave on refined-mesh-1 (middle panel of Figure 2.10) is

used to test for spurious oscillations near discontinuities and the conservation prop-

erties of the scheme. The grid resolution in 1/192 in the refined regions and 1/96
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elsewhere. Initially, the square wave has density ρ = 2 between x = 0.2 and x = 0.4

and the background has ρ = 1. The velocity is ux = 1 and periodic boundary condi-

tions are applied in both directions.

After one period, at t = 1, a cut of the solution at y ∼ 0.45 is shown in the left

panel Figure 2.12. There are very small under- and overshoots near the discontinuities

because the monotinicity-preserving property of the MP5 limiter is somewhat com-

promised by the high-order flux correction (2.5). The solution obtained on a uniform

grid with cell size 1/96 is almost identical, which shows that the errors introduced

by the grid resolution change are insignificant. This result demonstrates that the

high-order finite difference scheme can resolve the discontinuity very well.

The average density will not change if the scheme is perfectly conservative, which

is the case on the uniform grid. But our scheme is not conservative at grid resolution

changes. The relative average density error is shown in Figure 2.13 for 10 periods.

After the relative errors increase at the first few steps, the perfect square wave is

slightly smoothed and the average density starts to oscillate with a very small am-

plitude as the wave moves through the resolution changes. The average density error

remains very small and it does not accumulate.

2.4.5 Lax’s Shocktube Problem

To prove that the scheme can obtain weak solutions correctly, we run Lax’s shock-

tube problem (Lax , 1954) on a locally refined mesh, which is refined for x ∈ [−2,−1]

and x ∈ [1, 2]. The initial left and right states are

(ρL, uL, pL) = (0.445, 0.698, 3.528)

(ρR, uR, pR) = (0.5, 0, 0.571)

(2.33)

The discontinuity is at x = 0 initially and the results at t = 1.3 are shown in Fig-

ure 2.14, which also includes uniform grid results for comparison. The two simulations

52



0.0 0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

2.5

Figure 2.12: Results of the square wave advection test after one period. Left: the cut
at y ∼ 0.45 from a 2D grid (middle panel of Figure 2.10) is shown. The
cell size is 1/192 for x ∈ [0.5, 0.75] and 1/96 elsewhere. Right: uniform
grid with cell size 1/96. CFL = 0.8 are used for both cases.

give very similar results. Since there is a resolution change at x = 2 in the non-uniform

grid, which is just behind the contact discontinuity, the oscillation of density is more

obvious for the refined mesh. A simulation with much smaller cell sizes, which is not

shown here, confirms that the solution converges to the correct weak solution.

To test how the locally refined curvilinear mesh deals with discontinuities, the

Lax’s problem is also done on the mesh, which is shown in Figure 2.11. It is difficult to

set exact boundaries for this case, so we simply use zero gradient boundary condition

for all boundaries. Initially the discontinuity is at x = 0, and the results at t = 1.3

are shown in Figure 2.15. The simulation is influenced by the non perfect boundaries.

But the middle of the domain has not been affected by t = 1.3, and the shock front

keeps straight even after it moves across the locally refined region. A cut along y = 6

shows that the discontinuities and the rarefaction wave are well resolved (see right

panel of Figure 2.15). These tests verify that the scheme can resolve shocks correctly

and accurately.
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Figure 2.13: The relative error of average density for square wave advection on a
two-level mesh for 10 periods.

2.4.6 Freee-Stream Preservation on Two-Level Curvilinear Grid

To verify the free-stream preservation property in 3D, we do a test on a refined

spherical grid. To avoid singularities at the poles and the center, the computational

domain is (r, φ, θ) ∈ [120, 200] × [0, 2π] × [−π/4, π/4]. The cell size for r > 160 is

∆r = 80/24, ∆φ = 2π/24 and ∆θ = π/12, while for r < 160 the grid is refined by

one level. The initial condition is a uniform flow with ρ = 1, ux = uy = uz = 1 and

p = 1. After 100 steps, the maximum error of all the variables is 2.5 × 10−14, which

is close to the rounding error.

2.4.7 The Shock-Ramp Problem on a 3-Level Dynamically Refined Grid

Shock-ramp problem (Woodward and Colella, 1984) describes a Mach 10 shock

moving at an angle 60◦ into a reflecting wall on the computational domain (x, y) ∈

[0, 4]×[0.1]. The wall is represented by reflecting boundary conditions from x = 1/6 to
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Figure 2.14: Lax’s problem at t = 1.3. Left: uniform grid with cell size 1/12. Right:
cell size for x ∈ [−2,−1] and x ∈ [1, 2] is 1/24, otherwise is 1/12. CFL =
0.8 is used.
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Figure 2.15: Lax’s problem on a 2D locally refined cylindrical mesh. The mesh is
the same as the one shown in Figure 2.11 and CFL = 0.8 is used. Left:
results at t = 1.3. Right: solid lines are numerical solutions along y=6.0,
and dashed lines are exact solutions.

x = 4 at the y = 0 boundary. The inclined shock front goes through (x, y) = (1/6, 0)

initially. In the pre-shock region, the uniform state is

(ρ, ux, uy, p) = (1.4, 0, 0, 1)

while in the post-shock region:

(ρ, ux, uy, p) = (8.0, 7.1447,−4.125, 116.5)

We run this test on a three-level dynamically refined mesh. The base grid has

240 × 60 cells, so the effective resolution is 960 × 240. The mesh is dynamically

refined every time step to capture large density gradients. CFL = 0.8 is used from

the beginning. The density and the AMR grid at t = 0.2 are shown in Figure 2.16.
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Details of the solution are presented in Figure 2.17, which shows that our scheme

resolves the various features, including the K-H instability as well as other high-order

schemes with comparable grid resolution (McCorquodale and Colella, 2011; Li and

Jaberi , 2012; Dumbser et al., 2013; Shen et al., 2011; Balsara et al., 2009).

The efficiency of the fifth-order scheme is compared with the second-order scheme

for this shock-ramp problem (see Table 2.6). The second-order scheme, which employs

the HLLE solver and the generalized Koren’s limiter (Koren, 1993), uses second-

order ghost cells and is combined with a two-stage time integration. For the runs

with 240 × 60 uniform grid on one processor, the fluxes and face values calculations

dominate the simulation cost. The high-order scheme needs about 3 times more

computational time, because 1) it employs the three-stage RK3 to keep both accuracy

and stability, 2) the face value calculation and face flux correction make the scheme

more complicated. The three-level dynamic adaptive grid that has 960×240 effective

resolution is tested on 32 processors, and the high-order scheme also needs about 3

times more time. In addition to face values and fluxes calculations, the ghost cell

filling, block refinement and coarsening also need more computation for the high-

order scheme. The cell center flux calculation uses about 20% of the total computing

time for the uniform grid, and about 10% for the three-level AMR grid.

Table 2.6: Timings for the shock ramp test in seconds. The AMR grid has 4 times
higher effective resolution.

uniform grid on 1 processor three-level AMR on 32 processors
2nd order 5th order 2nd order 5th order

Calculate fluxes 8.38 29.31 2.28 7.66
Calculate center flux – 9.67 – 2.40
Calculate face values 2.70 9.48 0.84 3.58
Filling ghost cells – – 1.25 6.88
Dynamic AMR – – 2.22 4.11
Total 13.76 43.63 7.61 22.42
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Figure 2.16: Shock-ramp problem: density contour at t = 0.2. Black lines show grid
resolution changes. There are 3 levels with refinement ratio 2. The
effective resolution is 960× 240.
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2.5 Summary

In this chapter, a fifth-order accurate finite difference scheme for hyperbolic equa-

tions on block-adaptive curvilinear grids was introduced. Our goal is to solve a variety

of hyperbolic systems of equations, so the scheme does not use characteristic vari-

ables or other equation specific algorithms. Based on a careful evaluation of available

options, we opted for a finite difference discretization with a fifth-order montonicity

preserving limiter, combined with the flux correction introduced by Deng and Zhang

(2000) and Del Zanna et al. (2007) as the base scheme. First, the scheme constructs

fifth-order accurate left and right states at the cell faces. These states are used to

calculate face fluxes with a standard approximate Riemann solver. The face fluxes

are corrected to make sure that the spatial derivatives are fifth-order accurate. As a

novelty, we use cell centered fluxes for the correction step so that the stencil of the

scheme is not increased. The solution is updated by simple finite differences of the

corrected fluxes. Source terms can be easily evaluated at the cell centers. The stencil

of the scheme is only 3 cells on both sides in all dimensions, so 7 cells in 1D, 13

cells in 2D and 19 cells in 3D. This is quite compact compared to typical high-order

accurate finite difference and finite volume methods. We use a third order accurate

Runge-Kutta scheme for time discretization.

Extending the scheme to curvilinear grids is relatively straightforward. The equa-

tions are transformed into a conservative form in generalized coordinates. The geo-

metrical coefficients of the transformation are calculated with the proper discretiza-

tion so that free-stream solution is preserved.

For block-adaptive grids, our scheme requires 3 layers of ghost cells only, which is

only moderately larger than the 2 ghost cell layers required by TVD type schemes.

Due to this, the minimum size of the grid blocks is 6 cells in each direction compared

to 4 cells for the second order scheme. We note that the scheme can be easily adapted

to patch-based AMR grids too as long as the patches have at least 6 cells in every
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dimension. The face and corner ghost cells at resolution changes are interpolated

with consequtive one-dimensional interpolations. Each 1D interpolation step employs

a limiter, which is a simplified version of MP5 but generalized to non-uniform stencil.

The limiter suppresses spurious oscillations near sharp gradients, but the ghost cells

are still filled in with fifth-order (or in some exceptional cases forth-order) accuracy

in smooth regions including local extrema. We use the same interpolation technique

and limiter for coarsening and refining the grid during dynamic grid adaptation. The

resulting discretization is fifth-order accurate in the L1 norm on the multi-level AMR

meshes. The free-stream preserving property also carries over to curvilinear adaptive

grids.

There are, of course, some compromises we had to make. While the finite differ-

ence scheme is conservative to round-off errors on a uniform (curvilinear) grid, the

conservation is only down to truncation error at grid resolution changes and during

dynamic refinement and coarsening. This is not easy to fix, because the high-order

finite difference algorithm is not compatible with a simple flux correction step that is

standard for finite volume AMR methods. As long as the grid resolution changes and

discontinuities (shocks) are not aligned for extended time, the error remains small,

and correct weak solutions can be obtained, as demonstrated by some of the numerical

tests.

We also note, that our finite difference scheme is not monotonicity-preserving

because the flux correction step (2.5) is not limited. This latter problem should be

relatively easy to fix with a properly designed limiter, but our numerical tests suggest

that the scheme performs remarkably well even without a flux-correction limiter.
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CHAPTER III

Magnetohydrodynamics with Embedded

Particle-in-Cell Simulation of Earth’s Dayside

reconnection

This chapter discusses the MHD-EPIC simulation of Earth’s magnetosphere. The

dayside magnetopause is covered by a PIC box to study the magnetic reconnection.

The flux transfer events (FTEs) and the reconnection related kinetic phenomena are

presented.

3.1 Model Description

The MHD-EPIC model has been successfully applied to investigate the interac-

tion between the Jovian wind and Ganymede’s magnetosphere, where the ion inertial

length is large compared to the size of its magnetosphere (Tóth et al., 2016). In

this chapter, the same model is applied to study Earth’s magnetosphere, which is

more challenging because of the small kinetic scale. The MHD-EPIC model two-way

couples the BATS-R-US (Powell et al., 1999; Tóth et al., 2008) MHD code and the im-

plicit particle-in-cell code iPIC3D (Markidis et al., 2010) through the Space Weather

Modeling Framework (SWMF) (Tóth et al., 2005, 2012). A general description of the

these models and the simulation setup is provided in this session.

62



3.1.1 Global MHD Model: BATS-R-US

In order to make the MHD model as complete as possible, the Hall term and

the electron pressure gradient term are included in the generalized Ohm’s law, and a

separate electron pressure equation is solved. The generalized Ohm’s law we use is:

E = −u×B +
J×B

qene
− ∇pe
qene

(3.1)

where qe, ne and pe are the charge per electron, electron number density and electron

pressure, respectively. The electron pressure is obtained from:

∂pe
∂t

+∇ · (peue) = (γ − 1)(−pe∇ · ue) (3.2)

where γ = 5/3 is the adiabatic index, and ue = u−J/(qene) is the electron velocity.

From the numerical prospective, it is not trivial to incorporate the Hall term into

the MHD equations. The Hall MHD equations support the whistler mode wave, which

is dispersive and the characteristic speed is inversely proportional to the wave length.

Since the shortest wave length that can be resolved in a numerical system is twice

the cell size, the fastest whistler wave speed is proportional to 1/∆x. For an explicit

time integration scheme, the time step is limited by the CFL condition, which leads

to a time step approximately proportional to 1/(∆x)2 for Hall MHD. In order to use

a reasonably large time step, a semi-implicit time discretization is employed (Tóth

et al., 2012). The semi-implicit scheme treats the stiff terms, which is the Hall term

here, and other terms separately. Excluding the Hall term, the rest of the equations

are updated with an explicit scheme, and the time step is only limited by the fast

magnetosonic wave speed. The Hall term is handled by an implicit solver after the

explicit update has been done.
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The typical solar wind condition at 1AU with purely southward IMF is used as

the boundary condition to drive the magnetosphere: B = (0, 0,−5) nT, mass den-

sity ρ = 5 amu/cm3, ion pressure pi = 3.45 × 10−3 nPa, and solar wind velocity

u = (−400, 0, 0) km/s. Electron pressure pe = 8pi = 2.76 × 10−2 nPa is used, so

that after crossing the shock, where the ions are heated by converting bulk into ther-

mal energy while the electron thermal energy changes adiabatically, the ion-electron

pressure ratio is about pi/pe ∼ 2.5. Wang et al. (2012) shows that the temperature

ratio Ti/Te in the solar wind varies from 0.1 ∼ 2, and the ratio is about 4 ∼ 12

inside the magnetosheath. The Ti/Te ratio, which is the same as pi/pe, used in the

simulation is close to but slightly smaller than the typical observed ratio. We use

Ti/Te = 1/8, because our numerical experiments show that the electrons can be nu-

merically heated by PIC if colder solar wind electrons are used as boundary condition.

A magnetic dipole with 30116 nT field strength at the magnetic equator is used. Its

magnetic axis is aligned with the z axis. The total magnetic field B is split into the

intrinsic dipole field B0 and the deviation B1. A three-dimensional block-adaptive

Cartesian grid is used to cover the whole magnetosphere: −224RE < x < 32RE,

−128RE < y < 128RE and −128RE < z < 128RE. Since we focus on the dayside

dynamics in this chapter, the mesh along the dayside magnetopause is refined to high

resolution with ∆x = 1/16RE (see Figure 3.1). 59 million cells are used in total. At

the inner boundary r = 2.5RE, the density is fixed as 28 amu/cm3, the pressure and

the magnetic field B1 have zero gradient, the radial velocity is zero, while the tan-

gential velocity is calculated from the ionosphere electrodynamics model developed

by Ridley et al. (2004).
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3.1.2 Implicit Particle-in-Cell Model: iPIC3D

The semi-implicit particle-in-cell code iPIC3D was developed by Markidis et al.

(2010). The advantage of iPIC3D over explicit particle-in-cell codes is that iPIC3D

is linearly unconditionally stable, so that iPIC3D can handle larger time step and

larger cell size than explicit PIC. Compared to the explicit PIC method, the cell size

of iPIC3D is chosen based on the scale of interest instead of the Debye length, and

the time step of iPIC3D is not limited by the plasma frequency or the speed of light,

but the accuracy condition, which requires vrms∆t/∆x < 1 on all grid nodes for all

species, where vrms is the root mean square of macro-particle velocities. In order

to make the simulation as efficient as possible while keeping the accuracy condition

satisfied, we use an adaptive time step:

∆t = c0 ·min(∆x/vrms, ∆y/vrms, ∆z/vrms) (3.3)

calculated for each grid nodes and the minimum is taken over the whole PIC mesh.

The root mean square velocity vrms is similar to the thermal velocity but contains

the effect of bulk velocity. c0 is a coefficient that should be smaller than 1. c0 = 0.4

is used for the simulation in this chapter.

Since the focus of this chapter is the dayside magnetopause reconnection, the

embedded PIC box is placed near the sub-solar magnetopause, where reconnection

happens under purely southward IMF. In the GSM coordinates, the region inside

8RE < x < 12RE and −6RE < y, z < 6RE (see Figure 3.1) is solved by iPIC3D.

The PIC region covers the magnetopause and it is just inside the bow shock. Since the

size of the ion diffusion region is the same order as the ion inertial length, such kinetic

scale should be resolved in order to capture reconnection kinetic physics. However,

the ion inertial length di = c/ωpi is about 60km ∼ 1/100RE for a typical magne-
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tosheath density of 20 amu/cm3. The length is so small that it is extremely difficult

to resolve even for a 3D global MHD model, not to mention the PIC code. Scaling

up the kinetic length helps to reduce computational resources. In the present simu-

lation, all the fluid values, including density, pressure, velocity, IMF and dipole field

strength, hence the derived values like the sound speed, Alfven velocity and plasma

beta, are realistic so that the global structure of the magnetosphere is comparable to

the real situation. On the other hand, the ion inertial length is scaled up 16 times to

about 1/6RE in the magnetosheath by artificially increasing ion mass per charge by

a scaling factor of 16. Since all the quantities are normalized in the numerical model,

there are several ways to understand or interpret the scaling. One way is treating

the scaling as changing the charge of ions and electrons. Compared with the original

system, we reduce the charge by a factor of 16 while all the other basic physical quan-

tities, like mass per ion, number density, and temperature remain realistic. From the

perspective of ideal magnetohydrodynamics, the scaled system is exactly equivalent

to the original one. For a particle-in-cell code, the reduction of charge per ion reduces

the electromagnetic force on an ion and therefore increases the gyroradius and gyrope-

riod by a factor of 16. But the gyroradius and the gyroperiod are still several orders

smaller than the global spatial and temporal scale, for example the distance from

Earth to the magnetopause and the time for the plasma moving from the subsolar

point to the cusp, respectively. How the scaling changes the structure of reconnection

is discussed in details in the paper by Tóth et al. (2017, submitted paper). We also

apply a reduced ion-electron mass ratio mi/me = 100, which is sufficiently large to

separate the electron and ion scales. We choose ∆x = 1/32RE as the PIC grid reso-

lution so that ∆x/di ∼ 5 and ∆x/de ∼ 0.5. This resolution keeps a balance between

the computational cost and the requirement of resolving kinetic scales. 216 particles

per cell per species are used and there are about 9 billion particles in total inside the

domain initially. Our numerical experiments suggest smoothing the electric field E
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and the current density j can help to suppress the numerical noise (Tóth et al., 2017,

submitted paper).

The typical magnetic field strength in the magnetosheath is about 30 nT, and the

corresponding ion gyro-frequency is Ωci = 0.0286Hz and Ωce = 2.86Hz with scaled

charge-mass ratio. As mentioned above, the time step of iPIC3D is determined by the

accuracy condition (Eq. 3.1.2). From the simulation, we find the maximum thermal

speed of electrons inside the PIC domain is about 2500km/s, which leads to a time

step of ∆t ∼ 0.03s ∼ 10−3Ω−1ci ∼ 0.1Ω−1ce with cell size ∆x = 1/32RE. Therefore, the

time step is small enough to resolve the gyro-motion of both electrons and ions.

3.1.3 Coupling Between BATS-R-US and iPIC3D

In the simulation presented here, the time step for BATS-R-US and iPIC3D are

around ∆tMHD = 0.015 s and ∆tPIC = 0.032 s, respectively. The coupling time

interval is set to a small value ∆tcouple = 0.005 s so that MHD and PIC are coupled

every time step. We note that the time step of PIC is even larger than the MHD,

because the MHD time step is limited near the magnetic poles due to the high Alfven

speed, while these regions are outside the PIC domain.

We used to generate particles in only one ghost cell layer (Daldorff et al., 2014) as

particle boundary condition. Our numerical experiments suggest using more layers (5

layers specifically in this chapter) as the particle boundary, while the electromagnetic

field boundary is still only enforced at the outermost layer, is helpful to smoothly

transit from PIC to MHD. The MHD cells overlapped with the PIC particle bound-

ary are not overwritten by PIC. Similar technique has been used to implement open

boundary condition for stand-alone PIC simulations (Peng et al., 2015).
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We run the simulation on 6400 processors for 170 hours to model one hour simula-

tion time on Blue Water supercomputer (Bode et al., 2012). iPIC3D and BATS-R-US

use about 80% and 15% of the simulation time, respectively. The coupling and other

overheads use the remaining 5%.

3.1.4 Energy Conservation

Even though the PIC region is not a closed system, therefore mass and energy

flow into and out of the region, it is important to check the energy variation during

the simulation to make sure the PIC model does not suffer from numerical heating

or cooling. The normalized energy changes are shown in Figure 3.2. Throughout

the simulation, the total energy Et variation is less than 3%. The small variation

suggests that the numerical heating or cooling are insignificant. The initial condition

for iPIC3D is under MHD equilibrium, but not necessarily under Vlasov equilibrium.

The electromagnetic field energy EEM and kinetic energy of each species normalized

by the initial total energy are also shown in Figure 3.2. During the first several

minutes, energy is transferred from the particles to the electromagnetic field. After

200s, the ion and electron energy decreases about 5%, while the electromagnetic field

energy increases from 0.3 to about 0.36. This is the transition from the MHD steady

state to a PIC preferred solution. Further changes of these energies are gradual and

small. EEM is mainly magnetic field energy, which is about 3 orders larger than elec-

tric field energy.
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3.2 Results

3.2.1 Overview

The iPIC3D code is initialized from a steady Hall MHD state, which is shown in

Figure 3.1. The steady state is obtained from the Hall MHD run by using a local

time stepping scheme, and a reconnection X-line already exists near the equatorial

plane along the dayside magnetopause. Since the local time stepping scheme is diffu-

sive in this case, the reconnection signature near the X-line is weak, for example, the

Hall magnetic field strength is only about 1 nT. The PIC code inherits the magnetic

field topology and starts evolving based on Maxwell’s equations and the motion of

the macro-particles. An overview of the evolution of the dayside magnetopause is

shown in Figure 3.3, which contains the Hall magnetic field By and the field lines at

the meridional plane inside the PIC box. At t = 70 s, By has already increased to

about 8 nT. The Hall field extends far away from the X-line with roughly the same

field strength for each branch. 15s later, south of the existing reconnection point,

another X-line starts to form at around x = 10.2RE and z = −1RE. At t = 145

s, both X-lines can be seen clearly, and a flux rope like structure forms between the

two X-lines. The top X-line has moved to about z = 0.5RE. The bottom X-line is

almost steady so far, but it will move southward later. At t = 325 s, the top and

bottom X-lines reach about z = 1.8RE and z = −3.5RE, respectively, and the center

of the flux rope is moving southward with the bottom X-line. Since the flux rope is

moving away from the top X-line, the current sheet between them becomes unstable

and a secondary flux rope is generated (rightmost panel of Figure 3.3). During the

one hour simulation, flux ropes form near the subsolar point and move toward poles

quasi-periodically. More details about reconnection and flux ropes, both macroscopic

and microscopic scales, are discussed in the following sub-sections.
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3.2.2 Evolution of FETs

The meridional cut of the first two FTEs formed in the simulation are already

shown in Figure 3.3. When we go beyond the 2D view, more complicated but com-

pleted structures arise. The flux ropes colored with the ion velocity z component uiz

at different times are shown in Figure 3.4. At t = 100 s, a short flux rope appears near

the subsolar point. It is labeled as FTE-A. This flux rope extends from y ∼ −1RE

to y ∼ 1RE in the dawn-dusk direction. It suggests that next to the primary X-

line near z = 0, another X-line starts to form south of the subsolar point. We have

checked a series of 2D x− z plane cuts, and found that the signature of reconnection,

like the ion jets, at the second X-line is clear at y = 0, but appears very weak far

away from the Sun-Earth line, for example at y = 0.78RE or y = −0.78RE. At

t = 150 s, the flux rope has extended significantly in both dawn and dusk directions.

Along the flux rope, the ion velocity varies. Close to the dusk side (positive y), the

reconnection at the second X-line produces fast northward ion jet flow to slow down

the southward flow from the primary X-line, so that the flux rope moves relatively

slowly. Close to the dawn side (negative y), the reconnection at the second X-line is

not strong enough to offset the southward flow ejected from the primary X-line. The

varying ion velocity leads to an inclined flux rope. At t = 240 s, the flux rope is even

more tilted because of the varying ambient ion jet velocity. A new small flux rope,

FTE-B in Figure 3.4, is generated at t = 320 s above FTE-A. FTE-A bifurcates at

y ∼ −2.5 and the new branch extends along the dawn-northward direction. FTE-A

keeps moving southward while FTE-B is growing. At t = 540 s, a large portion of

FTE-A, except for the dawn part, already moves to the southern edge of the PIC

domain (z = −6). FTE-B elongates significantly along the dawn-dusk direction. It

is twisted at the dawn side so that the axial direction is almost parallel to the z-axis.

At the dusk side, FTE-B connects to a newly formed flux rope FTE-C. At t = 660

s, FTE-B and FTE-C have merged and become indistinguishable. These 3D plots
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suggest:1) flux ropes arise from multiple X-line reconnection and can grow in time

along the dawn-dusk direction, 2) the pole-ward moving velocity varies along a flux

rope and makes them tilted, and 3) two flux ropes can merge and form a new long rope.

Since the PIC code is two-way coupled with the MHD model, the flux ropes can

smoothly move out of the PIC region. Figure 3.5 shows a series of jy and field lines

of FTE-A in the meridional plane after it leaves the PIC domain. FTE-A moves

southward along the magnetopause after it is generated near the subsolar point. At

t = 600 s, the flux rope is already close to the southern cusp. There is strong axial

current jy ∼ 0.02µA/m2 near the center of the flux rope. As FTE-A moves toward

the cusp, jy inside the flux rope decreases in intensity, which indicates the dissipation

of the magnetic helicity, as we can see at t = 660 s. When the FTE reaches the

center of the cusp (t = 720 s), the field lines at the leading edge of the FTE and the

cusp field lines are anti-parallel and creates a narrow and short current sheet with

negative jy around x ∼ 4RE and z ∼ −9.5RE. The ion velocity uiz at x = 4RE

in Figure 3.6 shows a jump around z = −9.5RE. The narrow current sheet and the

velocity jump imply that reconnection occurs between the flux rope field lines and

the cusp field lines. At t = 840 s, after FTE-A leaves the cusp, the signature of the

flux rope becomes very weak: even though the magnetic field is still perturbed, the

jy component is close to zero near the center and no ‘O’ line can be found. Finally,

the remnant of the flux rope completely disappears as it moves toward the tail. Here

we show the dissipation of FTEs in the meridional plane. But FTEs were observed

along the distant tail magnetopause (x = −67RE) on the dusk flank (Eastwood et al.,

2012). One possibility to explain the conflict is that these survived FTEs may bypass

the cusps and move along the flank from the dayside to tail magnetopause.
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3.2.3 Magnetic Field Signature

Since the most widely used indicator of FTEs in satellite data is the magnetic

field signature, we discuss how the flux rope magnetic field looks like along a virtual

satellite trajectory. A series of meridional cuts are shown in Figure 3.7 to illustrate

the magnetic field evolution. At t = 290 s, north of the FTE-A event, there is an

X-line at about z = 1RE surrounded by the quadrupolar Hall magnetic field By.

As expected, the two branches on the magnetosheath side with amplitude of ∼ 30

nT are stronger than the other two on the magnetosphere side with amplitude of

∼ 10 nT. Near the X-line, the magnetosheath and magnetosphere are separated by a

current sheet accompanied with very weak magnetic field. 30 s later, another X-line

near z = 0 arises, and an O line forms between the two X-lines. Around the edge

of the O lines, the azimuthal component of the magnetic field grows, while the By

component is still very weak just near the center. We note that the strong field on

the magnetosheath side of the flux rope is mainly contributed by the Bz component

because of the accumulation of the inflow magnetic field lines. The reconnection at

the northern X-line is stronger than the southern one, so the ion jet around the O

line is moving southward with a slow speed less than 100 km/s. Inside the O line,

the pressure starts increasing. 100 s later, the pressure at the center of the flux rope

already reaches about 1.3 nPa while the core field is still small. At t = 540 s, the O

line structure continues to grow as the two X-lines move northward and southward,

respectively. We can see the core field By at the center of the O line has grown to

a significant value of ∼ 30 nT now, while the center pressure drops to ∼ 1.0 nPa.

The converging jets from the two X-lines are comparable and the flux rope is almost

steady. 180 s later, the core field grows to ∼ 40 nT and the corresponding pressure

drops to about 0.8 nPa. The whole structure at this stage is moving northward driven

by the ion jet generated by the southern X-line. To demonstrate the scaling factor

has weak influence on the global structures, we perform another simulation with
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ion inertial length increased by a factor of 32. The simulation results are shown in

Figure 3.8. The FTE in Figure 3.8 shows similar dynamic process as the event in Fig-

ure 3.7: the core field grows gradually and the ion pressure is anti-correlated with the

core field strength. The FTEs in Figure 3.8 and Figure 3.7 also have comparable sizes.

At the early time when the O line just formed, for example, at t = 420 s, the weak

core field is surrounded by relatively large toroidal fields. We argue that this is an

example of the so-called ’crater FTEs’ that have been observed by spacecrafts (La-

Belle et al., 1987; Zhang et al., 2010). Since the O line moves slowly during its initial

stage of formation, the magnetic field observed at a fixed point can not reflect its

global structure. Instead, the magnetic field along the magnetopause (the red curve

in the left panel of Figure 3.9) is shown in the right panel of Figure 3.9 to illustrate its

magnetic field structure. Along the magnetopause, from south to north, the Bx field,

which is roughly normal to the magnetopause, reaches a local minimum of ∼ −15

nT at z = 0 and then quickly increases to ∼ 15 nT at z = 1RE. The flux rope is

bounded by the depressed magnetic field ‘trenches’ at z = −0.2RE and z = 2RE as

indicated by Bt. The depression results from the low magnetic field strength inside

the current sheet as can be seen from the right panel of Figure 3.9. Bt reaches local

maximum at the same position of the Bx peaks (z = 0RE and z = 1RE), while the

field strength decreases to about 10 nT between the peaks. We refer to the event on

30 July 2007 observed and analyzed by Zhang et al. (2010) as a comparison. Figure 6

of Zhang et al. (2010) shows the magnetic field signature of this event. Even though

the 30 July 2007 event has a large guide field (corresponding to By component in

our simulation), and its magnetic field around the flux rope is more steady than our

simulation, the whole structure of this event is similar to what is shown in Figure 3.9.

As the flux rope evolves, the core field strength grows to a significant value. The
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magnetic field measured at a fixed position x = 10.2RE, z = 2.75RE is shown in the

right panel of Figure 3.10. The vertical dashed line at t = 760 s represents the location

of the maximum Bt. Around this time, the Bx field, which is roughly perpendicular to

the magnetopause, jumps from ∼ 5 nT to ∼ −20 nT within about 25 s. At t = 760 s,

both the axial field By and the total field Bt reach a maximum. These features match

the signatures of an FTE with typical flux rope structure (Zhang et al., 2010). During

the one-hour long simulation, there are ten FTEs with significant core field moving

across the southern PIC edge. The occurrence frequency is consistent with observa-

tions (Rijnbeek et al., 1984) and previous MHD simulations (Raeder , 2006).

The IMF is purely southward in our simulation and there is no uniform background

guide field at the magnetopause. But a significant core field can still arise during the

FTE generation and evolution as seen in Figure 3.7. When a flux rope is still close

to the X-lines, the core field may be encompassed by the Hall magnetic field gen-

erated by the reconnection, resulting in complicated guide field structure. The BM

field at t = 540 s is shown in Figure 3.11. In order to compare with observations,

the magnetic field has been transformed into a boundary normal coordinate system

(LMN), in which the N component points outward, normal to the magnetopause,

the M component is determined by N× ZGSM and the L component completes the

right-hand coordinate system. Since the plot is shown in the meridional plane, the

YGSM direction is anti-parallel to the M direction. Around the flux rope center, the

guide field BM is negative, while the southern part of this flux rope is surrounded by

positive BM . The polarity of the positive ’Y’ shape BM is consistent with the Hall

magnetic field generated by the X-line at z = −1RE. If a satellite is moving across

the flux rope along the red solid line in the left panel of Figure 3.11, the satellite will

observe a tripolar guide field structure (right panel of Figure 3.11). Similar structure

was first observed in the solar wind (Eriksson et al., 2015), and then it was observed
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by the Polar satellite at the magnetopause (see Figure 1 of Eriksson et al. (2016)).

The Polar event shows a large negative BM core field bounded by two narrow BM

depressions in the presence of a large background guide field. There is no background

guide field in our simulation and thus the right panel of Figure 3.11 shows a pure

tripolar structure: the large negative BM field is surrounded by two relative small

positive peaks. Despite the difference in the background guide field, the topology of

BM obtained from our simulation is very similar to the Polar observation.

3.2.4 Kinetic Features

We have examined the global structure of the FTEs in the previous discussion.

In this subsection, we will demonstrate that the underlying kinetic physics is prop-

erly captured by our model. The Larmor electric field, identified by Malakit et al.

(2013), is a localized electric field that appears on the magnetospheric side of the

dayside reconnection site. The x-component of the electric field Ex at the end of the

simulation (t=3600s) is shown in Figure 3.12. The positive Ex pointing towards the

Sun along the magnetopause is the Hall electric field, while behind the Hall electric

field, the localized negative field pointing towards the Earth is the Larmor electric

field. A 1D cut through the reconnection site along the x direction is also shown in

Figure 3.12. The Larmor field strength is -3 mV/m, the magnetospheric side ambient

field is about 2 mV/m, and the nearby Hall field is about 12 mV/m. These values are

reasonably close to the MMS observation by Graham et al. (2016): the Hall electric

field strength is ∼ 20 mV/m and the Larmor field strength is about 10 mV/m (see

Figure 2 of Graham et al. (2016)).

Even though the ion inertial length is scaled up by a factor of 16 in the present

simulation, the electric field strength is not sensitive to the scaling factor. Ignoring
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the electron inertia term, the generalized Ohm’s is:

E = −ui ×B +
1

qini
j×B− 1

qini
∇pe = −ue ×B− 1

qini
∇pe (3.4)

Tóth et al. (2017, submitted paper) shows the electron velocity ue of the current sheet

does not change with the scaling factor while the current sheet width scales. The

gradient of electron pressure is inversely proportional to the scaling factor, because

the pressure jump is fixed across the current sheet and the current sheet width is

proportional to the scaling factor. Since the charge per ion or electron is also reduced

by the same factor, the scaling does not change the electric field strength. Besides the

scaling of the ion inertial length, a reduced ion-electron mass ratio mi/me = 100 is

used in this study to increase electron kinetic scales (see section 3.1.2). The influence

of the mass ratio mi/me has been studied in numerous papers (Shay and Drake, 1998;

Hesse et al., 1999; Ricci et al., 2004; Shay et al., 2007; Lapenta et al., 2010). For the

Larmor electric field , Malakit et al. (2013) specifically estimates its amplitude to be:

E ∼ kBTi
qiri

(3.5)

where kB is the Boltzmann’s constant, Ti, qi and ri are the temperature, charge per

ion and ion Larmor radius of the ions on the magnetospheric side. In the simulation,

qi reduces by a factor of 16 and ri becomes 16 times larger compared to the realistic

situation, while the temperature Ti does not change. So, the scaling of inertial length

should not influence the strength of the Larmor electric field. On the magnetosheath

side, our simulation shows the ion temperature is about 2 × 106K, magnetic field

strength is about 60 nT. Substituting these values into Eq. 3.5 gives E ∼ 5.5 nT. As

mentioned above, the value obtained from simulation is about -3 mV/m.

The crescent shape electron phase space distribution has been observed near
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the electron diffusion region at the dayside magnetopause by MMS (Burch et al.,

2016). The same distribution is also found in our 3D global simulation. The phase

space distribution of electrons inside a cube region: 10.27RE < x < 10.33RE,

−0.3RE < y < 0.3RE and −2.1RE < z < −1.9RE is shown in Figure 3.12. The

crescent distribution is found in the Vy − Vx plane, corresponding to the two veloc-

ity components perpendicular to the magnetic field. The crescent hot electrons are

drifting along negative y direction with a speed close to 3000 km/s. The direction

of the flow is consistent with the E × B direction, and the velocity of the crescent

particles is very close to the MMS observation (Burch et al., 2016). Slightly fur-

ther away from the reconnection site, where the Larmor field appears, inside a cube

10.08RE < x < 10.14RE, −0.3RE < y < 0.3RE and −2.1RE < z < −1.9RE,

the ion phase space distribution also presents crescent like shape as it is shown in

Figure 3.12(c). The crescent ions drift in positive y direction because Ex is negative.

We also checked the distributions for particles inside the current sheet but far from

the reconnection site, and no crescent distributions are found for either electrons or

ions.

Kinetic effects along the magnetopause current direction are also captured by

our 3D MHD-EPIC model. Figure 3.13 shows the fully developed lower hybrid drift

instability (LHDI) at the end of the simulation (t=3600 s) at the z = −3RE plane.

The electric field EM shown in Figure 3.13 is the M component in the boundary

normal coordinates, and M is anti-parallel to the current direction. The black curve

in Figure 3.13 separates the negative and positive Bz. We can see the LHDI appears

along the magnetopause on the magnetospheric side. A closer view of EM , as well

as Bz, ion mass density ρi and electron velocity uey are also shown Figure 3.13. It is

clear to see the LHDI arising near the interface of magnetosheath and magnetosphere,

where there is a sharp density gradient. Bz, ρi and uey show sawtooth pattern at the

same location. The amplitude of the LHDI electric field is about 8 mV/m, which
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is consistent with MMS observation (Graham et al., 2016). The dominant wave

length shown in Figure 3.13(b) is about 0.38RE, and the ambient magnetosheath

side electron gyroradius is about re = 0.025RE with the artificially changed charge

per electron mass ratio, which results in kre ∼ 0.4, where re = meve/(qeB) and ve

is defined as ve =
√

2Te/me. The value of kre is also consistent with observation

(Graham et al., 2016) and theory (Daughton, 2003). LHDI at different time and

different location is analyzed, the value of kre varies from∼ 0.3 to∼ 0.5, and kre ∼ 0.4

is a typical value. Similar as the argument above with the Ohm’s law, the electric field

strength is not sensitive to the scaling, that is why the LHDI electric field strength

agrees with MMS observations. But the length scale does change with the scaling.

The charge per mass of electron qe/me is artificially increased by a factor of 294 in

the simulation, and the electron thermal velocity reduces by a factor of
√

18.36 = 4.3

for mi/me = 100. The magnetic field is realistic, hence the electron gyroradius is

about 68 times larger than in reality. If we scale back the LHDI wavelength of the

simulation by the same factor, it will be ∼ 35 km. As a comparison, MMS observed

10km ∼ 13km wavelength (Graham et al., 2016). Figure 3.13(f) shows the isosurfaces

of EM = 4 mV/m colored by the ion velocity uiz viewed from the Sun. Along the

magnetic field direction, the isosurfaces are cut off two or three times. The ion

velocity jumps or even change directions across a cut-off region. It suggests these

cut-off regions corresponding to the reconnection sites and the LHDI electric field is

weak near the diffusion regions (Pritchett , 2013).

3.2.5 Comparison with Hall MHD

For comparison, we also run a pure Hall MHD simulation with the same setup

except the PIC region is removed and the MHD grid resolution around the day-

side magnetopause is refined to 1/32RE, which is the resolution used by PIC in the

MHD-EPIC run. Even for Hall MHD, resolving the ion inertial length is necessary
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in order to capture the Hall effect correctly. Due to the small kinetic scale inside

the magnetosheath, scaling the ion inertial length is also required for a global Hall

MHD simulation since Hall MHD is also computationally expensive as we will see.

We note that the ion inertial length in the pure Hall MHD simulation is also scaled

up by a factor of 16 so it can be resolved by 1/32RE cell. Hall MHD is reasonably

optimized by using semi-implicit scheme to overcome the time step imposed by the

whistler mode wave and speed up the simulation. It still takes 6400 cores running

about 67 hours to model one hour because of the high resolution and the stiffness of

the Hall term. As a comparison, the MHD-EPIC simulation (170 hours on 6400 cores)

is about 2.5 times more expensive. Hall MHD produces the Hall magnetic field near

the X-line and generates flux ropes in a way similar to MHD-EPIC. But Hall MHD

can not reproduce the kinetic features, neither the crescent particle distributions nor

the LHDI.

3.3 Summary

We have performed a one-hour long high-resolution global simulation with the

MHD-EPIC model to study dayside reconnection and FTEs. Our simulation is the

first attempt to investigate the FTEs and reconnection with kinetic physics resolved

in a realistic magnetopause environment. Although the kinetic scale is artificially

increased to reduce the computational cost, the model captures the kinetic features

very well. MMS observations, like the crescent particle phase space distribution and

LHDI, are reproduced in our model. The FTEs from the simulation also agree well

with spacecraft observations. The key results from the present simulation are:

• When an FTE arises, its cross section is small and it is short in the dawn-dusk

direction. During its growth, the cross section increases and the FTE extends
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along the dawn-dusk direction.

• An FTE forms near the subsolar point and moves toward the poles under steady

southward IMF conditions. When the FTE reaches the cusp, reconnection

happens between the FTE magnetic field and the cusp magnetic field lines,

thus dissipating the FTE. The signature of FTE is weak behind the cusps.

• FTE is flanked by two reconnection sites during its formation, and the converg-

ing ion jets around the FTE are found.

• The present simulation confirms that the ’crater FTEs’ magnetic field signature

can be found at the early stage of an FTE formation when the axial magnetic

field is still weak. A strong core field may develop as the FTE evolves, and the

Hall magnetic field may provides the initial seed core field. Therefore a fully

developed FTE has the typical strong core field structure.

• A tripolar guide field structure is found from our simulation.

• The Larmor electric field is found near the reconnection site on the magneto-

spheric side, and its amplitude is about -3 mV/m.

• A crescent electron phase space distribution is found near the reconnection site

where the Hall electric field reaches its maximum. A similar distribution is also

found for ions at the place where the Larmor electric field appears.

• The lower hybrid drift instability (LHDI) appears at the interface of the mag-

netosheath plasma and magnetosphere plasma. The LHDI electric field peak

strength is about 8 mV/m, and a typical ratio between its wavelength and the

electron gyroradius is about kre ∼ 0.4. The simulation agrees with the MMS

observations and theory.

Compared to the models relying on ad hoc resistivity or numerical resistivity to

generate FTEs or investigate reconnection process, our 3D MHD-EPIC model makes
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one significant step forward by incorporating a self-consistent kinetic description of

reconnection into a global MHD model. While the kinetic scales are increased by

artificially reducing the charge per mass for both ions and electrons, all the other

parameters are realistic. The scaling changes the size of kinetic features, for example

the wavelength of LHDI, but other values, like the strength of Larmor electric field or

LHDI electric field, are not modified by the scaling. Another artificial change is the

solar wind electron pressure. It is set to a value 8 times larger than the ion pressure so

that p/pe ∼ 2.5 inside the magnetosheath while the ratio is usually about 4 ∼ 12 from

observation (Wang et al., 2012). The artificially increased electron pressure can help

to stabilize the simulation, and it does not deviate significantly from the observed

values. We plan to improve this in the future studies.

The MHD-EPIC model offers a powerful tool to study magnetospheric physics.

The PIC code only covers the dayside magnetopause in the present simulation. As

a natural extension, it can be elongated to cover the bow shock so that the kinetic

processes associated with the bow shock can be modeled. Another future application

is covering the tail reconnection site with another PIC region, so that both dayside

and tail reconnections are handled by a kinetic code and we can study substorm in a

more realistic way.
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Figure 3.1: Part of the meridional plane with the adaptive MHD grid and the PIC
region. The color represents the plasma pressure on a logarithmic scale.
The black lines represent the refinement level, where the cell size changes.
The resolution of the finest level around the dayside magnetopause is
1/16RE, and the refinement ratio between two nearby levels is 2. The
blue box (8RE < x < 12RE, −6RE < z < 6RE) is the edge of the PIC
region covered by iPIC3D, and it extends from −6RE to 6RE in the y
direction.
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Figure 3.2: The normalized the total energy Et, electric field and magnetic field en-
ergy EEM , ion energy Eion and electron energy Eelectron. They are nor-
malized by the initial total energy.
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Figure 3.3: A series of snapshots showing By strength and the projected magnetic
field lines in the meridional plane inside the PIC region. The color bar is
different in each plot.
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Figure 3.4: The evolution of FTEs. Viewed from the Sun, a series of snapshots with
magnetic field lines colored by ion velocity uiz[km/s] are shown.
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Figure 3.5: The FTE dissipation when it is crossing the southern cusp. A series of
snapshots of current density jy[µA/m2] and field lines are shown. The
plots are obtained from MHD output. Along the FTE’s trajectory, the
grid is uniform and the cell size is 1/16RE. The red dashed line indicates
the cut used in Figure 3.6

85



jy

-14 -12 -10 -8 -6
z

-0.020

-0.015

-0.010

-0.005

0.000

0.005

uz

-14 -12 -10 -8 -6
z

-100

-50

0

50

Figure 3.6: jy[µA/m2] and uz[km/s] along the vertical red dashed line marked in
Figure 3.5. The jump of uz around z ∼ −9RE implies the occurrence of
magnetic reconnection.

86



-40

-20

0

20

40

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

20

40

60

80

9.5 10.010.511.011.5

X

-300

-200

-100

0

100

200

300

9.5 10.010.511.011.5

X

0.2

0.4

0.6

0.8

1.0

1.2

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

-40

-20

0

20

40

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

20

40

60

80

9.5 10.010.511.011.5

X

-300

-200

-100

0

100

200

300

9.5 10.010.511.011.5

X

0.2

0.4

0.6

0.8

1.0

1.2

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

-40

-20

0

20

40

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

20

40

60

80

9.5 10.010.511.011.5

X

-300

-200

-100

0

100

200

300

9.5 10.010.511.011.5

X

0.2

0.4

0.6

0.8

1.0

1.2

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

-40

-20

0

20

40

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

4

Z

20

40

60

80

9.5 10.010.511.011.5

X

-300

-200

-100

0

100

200

300

9.5 10.010.511.011.5

X

0.2

0.4

0.6

0.8

1.0

1.2

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

-40

-20

0

20

40

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

9.5 10.010.511.011.5

X

-1

0

1

2

3

Z

20

40

60

80

9.5 10.010.511.011.5

X

-300

-200

-100

0

100

200

300

9.5 10.010.511.011.5

X

0.2

0.4

0.6

0.8

1.0

1.2

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

9.5 10.010.511.011.5

X

t=290s

t=320s

t=420s

t=540s

t=660s

By Bt uiz pi

Figure 3.7: The evolution of FTEs in the meridional plane. From left to right, the
four columns show the By[nT] and the projected magnetic field lines; the
field strength Bt[nT]; the ion velocity in z direction Uiz[km/s]; and the
ion pressure pi[nPa] overlapped with magnetic field lines.
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Figure 3.8: The same variables as Figure 3.7 are shown. But these plots are created
from a simulation with the ion inertial length scaled up by a factor of 32.
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Figure 3.13: The Low hybrid drift instability (LHDI) at t = 3600 s. (a) Electric field
EM [mV/m] along the direction that is anti-parallel to the magnetopause
current direction in the z = −3RE plane. Near y = 0, the current di-
rection is almost parallel to the y direction. (b)-(e): zoom-in of different
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CHAPTER IV

Magnetohydrodynamics with Embedded

Particle-in-Cell Simulation of Mercury’s

magnetotail reconnection

BATS-R-US was the first MHD model applied for 3D global simulation of Mer-

cury’s magnetosphere (Kabin et al., 2000, 2008). Kabin et al. (2000) studied the

global structure of Mercury’s magnetosphere and found the dayside magnetopause

can be eroded to very low altitude with solar wind conditions of high ram pressure.

Jia et al. (2015) developed the resistive body capability for BATS-R-US and studied

how the induction effect arising from the conducting core affects the magnetospheric

global response to the varying solar wind conditions. The dominant heavy ion Na+,

which has number density about 10% of the H+ density in the plasma sheet, may

have remarkable influence on the structure and dynamics of the magnetosphere, so

the multi-fluid MHD models that treat Na+ as a separate fluid have also been used

for Mercury’s magnetosphere simulations (Kidder et al., 2008). Hybrid models, which

treat the electrons as a massless charged fluid, while model the ions as particles, have

also been used for global simulations (Kallio and Janhunen, 2003; Wang et al., 2010;

Müller et al., 2012). Due to the limitation of the physics capability and grid resolution

of these simulations, the magnetotail reconnection and tail flux ropes have not been
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studied in detail. Thanks to the new model MHD-EPIC, we can use the PIC code

to cover the tail region around the near Mercury neutral line (NMNL) and study the

dynamics of the tail reconnection and the properties of the flux ropes.

4.1 Simulation Setup

During our MHD-EPIC simulation of Mercury’s magnetosphere, we run the MHD

code BATS-R-US first to reach a steady state, then couple the MHD model with

the PIC code iPIC3D. The simulation setup for both BATS-R-US and iPIC3D is

described in the following subsections.

4.1.1 MHD Model

Following the work of Jia et al. (2015), a resistive body with finite conductivity

layer is used to mimic the interior structure of Mercury: the region within r < 0.8RM

is the highly conducting core, and the layer between 0.8RM and 1RM with finite

conductivity represents the mantle. The conductivity inside the mantle is set to

∼ 10−7 S/m. We refer to Jia et al. (2015) for more details about the profile of the

conductivity. The Hall effect and the electron pressure gradient term are also included

in Ohm’s law for the simulations presented here:

E = −u×B +
J×B

qene
− ∇pe
qene

+ ηJ (4.1)

where qe, ne and pe are the charge per electron, electron number density and elec-

tron pressure, respectively. η represents the resistivity, which is the inverse of the

conductivity. The electron pressure is obtained from:

∂pe
∂t

+∇ · (peue) = (γ − 1)(−pe∇ · ue) (4.2)
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where γ = 5/3 is the adiabatic index, and ue = u−J/(qene) is the electron velocity.

In summary, resistive Hall MHD equations with separate electron pressure equation

are solved in our MHD model. Inside the mantle region (0.8RM < r < 1RM), there is

no plasma flow, but the magnetic field can still change due to the finite conductivity.

So only the reduced Faradays law is solved inside the mantle:

∂B

∂t
= −∇× (ηJ), (4.3)

where J = 1
µ0
∇ × B. Outside the planet surface, the whole set of equations are

solved. Since both the Hall term and the resistivity term are stiff, a semi-implicit

scheme (Tóth et al., 2012) is used to speed up the simulation: the equations excluding

the stiff terms are solved explicitly first, then solve the stiff terms with an implicit

solver.

The whole simulation domain is a cube of −64RM < x < 24RM , −32RM <

y, z < 32RM . The center of Mercury coincides with the origin of the coordinates. A

dipole field with strength of 200 nT at the magnetic equator is used. The dipole axis

is aligned with the z axis but the dipole center is shifted northward by 0.2RM . A

stretched locally refined spherical grid is used. The tail region is refined so that the

cell size is about 0.02RM near x = −2RM . The plasma density in the lobes is about

0.5 amu/cm3, and the corresponding ion inertial length is about 300 km or 0.13RM .

The Hall effect can be well resolved because one inertial length is covered by ∼ 6

cells. The inner boundary condition for the magnetic field is set at the interface of

the mantle and the conducting core r = 0.8RM , where the magnetic field is fixed

due to the high conductivity. Since there is no plasma flow inside the surface, the

inner boundary for plasma density, velocity and pressure is at the surface r = 1.0RM .

A zero gradient boundary condition is applied to plasma density and pressure. The

boundary condition for velocity is set in a way that the plasma can be absorbed by
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the surface, and the surface is not an important source of plasma. If the velocity in

the cell just above the surface is outflow, then the radial component of the velocity is

set to zero and we keep the tangential component. If there is inflow, the zero gradient

boundary condition is applied for all components of velocity. The plasma can flow

around the surface or flow into the surface, but it cannot have a significant outflow

component near the surface.

Three simulations with different interplanetary magnetic field (IMF) are presented

in this chapter (see Table 4.1). The average IMF (Slavin et al., 2009; Jia et al., 2015)

is used for case-1. A purely southward IMF is used for case-2 so that the IMF is

symmetric in the y direction. The Bx component is eliminated for case-3 but it has

a large By component. The IMF strength and the solar wind plasma properties,

including the density, velocity and pressure, are the same for these three simulations,

as shown in Table 4.1.

Table 4.1: The solar wind conditions for three simulations
B ρ u pi pe

case-1 (-15.21,8.4,-8.51) nT 40 amu/cm3 (-400,0,0) km/s 0.048 nPa 0.048 nPa
case-2 (0,0,-19.35) nT 40 amu/cm3 (-400,0,0) km/s 0.048 nPa 0.048 nPa
case-3 (0,17.38,-8.51) nT 40 amu/cm3 (-400,0,0) km/s 0.048 nPa 0.048 nPa

4.1.2 PIC Parameters

MESSENGER observations suggest that the near Mercury neutral line (NMNL)

is around x = −2RM . To study the magnetic reconnection, the region around the

NMNL is covered by the PIC code: −4.2RM < x < −1.2RM , −1.5RM < y <

1.5RM and −1RM < z < 1.5RM (see Figure 4.1). The cell size is 1/64RM in all

directions. 216 macro-particles per species per cell are used, resulting in 2.5 billion

macro-particles in total. To reduce the computational cost, an artificially reduced

ion-electron mass ratio of mi/me = 100 is used. The cell size is ∼ 1/8 of the ion
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inertial length or ∼ 1.2 of the plasma skin depth.

4.2 Simulation Results

Each simulation of 300 s physical time takes about 230,000 core hours on Pleiades.

About 60% of the core hours were used for iPIC3D and BATS-R-US used the remain-

ing 40%. BATS-R-US almost used as many core hours as iPIC3D because the time

step of BATS-R-US is limited to a small value (∼ 3 × 10−4 s) by the high Alfven

velocity near the poles. In contrast, iPIC3D takes ∼ 10−3 s as time step. The results

from these three simulations are presented in this section.

4.2.1 Magnetotail Reconnection

Magnetotail reconnection is crucial for global magnetospheric convection. It trans-

fers the magnetic flux back to the dayside magnetosphere. This subsection will discuss

the tail reconnection seen in the simulations. To reduce the complexity, we will start

the discussion with the simulation results of case-2, which has purely southward IMF.

The Hall magnetic field By and the field lines at the meridional plane at t = 89.8 s are

shown in Figure 4.2. There are two X-lines in the snapshot: the primary X-line is at

x = −1.8RM and the secondary X-line is near x = −2.1RM . A small flux rope with

negative core field By is formed between these two X-lines. The reconnection sites are

surrounded by a quadrupolar Hall magnetic field. Since there is no By component in

the IMF, the background By field is also close to zero in the tail meridional plane, and

the quadrupolar field is approximately north-south symmetric with a field strength

of ∼ 20 nT.

The electron velocity in the x direction uex and the electron number density ne are

shown in Figure 4.3. The electrons are flowing towards the reconnection sites along

the separatrices. The velocity of the electron inflow from the tail side is ∼ 3000 km/s,

and the planet side inflow can be accelerated to∼ 10000 km/s. The fast inflow leads to
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two narrow electron density depletion layers along the interface of close and open field

lines (see the right panel of Figure 4.3). The electron density of the depletion layers

is about one order smaller than that of the surrounding region. The width of these

layers are ∼ 0.02RM or ∼ 50km, which is the same order as the ambient electron skin

depth. Similar depletion layers have been observed in Earth’s magnetotail (Oieroset ,

2001). More information about the plasma velocities are shown in Figure 4.4. The ion

jets shown in Figure 4.4(c) further confirm the existence of two X-lines. The ion and

electron velocities in the y direction create the cross-tail current. The electrons are

moving along the negative y direction while the ions are flowing along the positive

y direction. The ion velocity can reach ∼ 1000 km/s near the reconnection sites.

Similar high ion velocity is also found from Hall MHD simulation of Ganymede’s

magnetosphere (Dorelli et al., 2015). The width of the electron (ion) velocity layer is

about 0.02RM (0.2RM), which is close to the electron (ion) inertial length.

4.2.2 The Properties of the Flux Ropes

Flux ropes are the products of magnetic reconnection. They can move either

tailward or planetward. The tailward moving flux ropes are also termed as plasmoids.

The generation and evolution of a planetward moving flux rope is shown in Figure 4.5.

At t = 90 s, there is only one X-line near x = −1.9RM . 0.6 s later, another X-

line appears near x = −1.6RM and a small flux rope-like structure forms between

these two X-lines. The center of this flux rope is overlapped with one branch of the

quadrupolar Hall magnetic field, and the Hall field is the seed of the core field. At this

moment, the amplitude of the core field By has increased to ∼ 30 nT. At t = 91.4 s,

the core field with positive By of ∼ 60 nT is surrounded by another branch of the

Hall field, the sign of which reverses. The magnetic field components along the line

z = 0.17RM are shown in Figure 4.6. The Bz field jumps from the positive peak

at x = −1.75RM to the negative peak at x = −1.6RM . The peak-to-peak distance
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of 0.15RM or 360 km agrees with the MESSENGER observations (DiBraccio et al.,

2015). The amplitudes of the Bz peak-to-peak jump and the core field By are about

twice of the averaged MESSENGER observations. The ion number density at the flux

rope center is 2.5 cm−3, and the MESSENGER observations indicate an average value

of 3.15 cm−3. The 3D view of the flux rope is shown in Figure 4.7. The field lines

are connected to Mercury on one side. Interestingly, the other end of the flux rope is

still connected to the tailward field lines. Since the field lines at the planetward edge

of the flux rope are southward, but the closed field lines are northward, the flux rope

will finally reconnect with the closed field lines. The remnant of the flux rope can be

seen near x = −1.4RM and z = 0.15RM at t = 92.2 s in Figure 4.5.

A typical tailward flux rope is shown in Figure 4.8. It is generated near x =

−2.2RM and then propagates tailward. Finally it merges with the open filed lines near

x = −3.8RM . The magnetic field structure at t = 34.8 s is presented in Figure 4.9,

which shows the fields along the line of the z = 0.16RM . The Bz peak-to-peak

distance is about 0.2RM , the Bz jump amplitude is ∼ 35 nT, and the core field

strength is ∼ 25 nT. The ion number density near the core is about 2 cm−3. All these

values agree with MESSENGER observations (DiBraccio et al., 2015). The length

of the flux rope in the dawn-dusk direction is about 0.5RM , which can be seen from

Figure 4.10.

The event shown in Figure 4.8 is a typical tailward flux ropes for case-2 simulation

in terms of the size and field structure. Figure 4.11 shows an example of typical flux

ropes from case-3 simulation, which has a large positive IMF By component. This

flux rope has larger size (By peak-to-peak length is ∼ 0.6RM) and stronger core field

compared with the case-2 flux ropes. By checking a series of snapshots, it is found all

the flux ropes in case-3 have positive core field By, which is consistent with the IMF

By. Case-2 simulation generates both negative and positive core field flux ropes, for

example, the core field of the small flux rope in Figure 4.2 is negative and it is positive
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in the event shown in Figure 4.8, but, surprisingly, positive By flux ropes dominate

for the tailward flux ropes for case-2 simulation. More detailed further investigation

is needed for this topic.

4.2.3 Dawn-Dusk Asymmetry

For the ideal MHD system, the simulation with purely southward IMF is symmet-

ric in the dawn-dusk direction; therefore the observed dawn-dusk asymmetry (Sun

et al., 2016) must be caused by the non-ideal MHD effects. This section will present

the dawn-dusk asymmetry seen from the simulations.

Since the current aligned instabilities can develop inside the current sheet, the

current sheet is twisting and flapping during the simulation. In order to visualize the

difference in the dawn-dusk direction during magnetic reconnection, we can project

the values on the surface of Bx = 0 on an x-y plane. The projected plane is calculated

every 0.1 s, and the average of all the projections during the 300 s long simulations

is shown in Figure 4.12. The 1D cuts at x = −1.5RM and x = −2.6RM are also

shown in Figure 4.13 and Figure 4.14, respectively. Even for the case-2 simulation,

where the IMF is purely southward, the dawn-dusk asymmetry still arises. The

asymmetries of the electron pressure pe and ion pressure pi are the consequences

of the Hall effect. Inside the current sheet, the ions are moving from the dawn (the

negative y direction) side to the dusk (the positive y direction) (see Figure 4.4). Along

the dawn-dusk direction, the ion velocity uiy reaches local maximum near the x-axis,

therefore the ion pressure is enhanced on the dusk direction due to the ion velocity

divergence (compression). The electrons are moving from the dusk to the dawn, and

the electron pressure is increased on the dawn side. The pressure asymmetry can be

clearly seen in all three simulations.

The products of the magnetic reconnection, the ion and electron jets are also

shown in Figure 4.12. The case-1 and case-2 simulations show obvious dawn-dusk
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asymmetry for the planetward flows. Figure 4.13 shows the 1D cuts at x = −1.5RM .

It is clear that the planetward jets have the largest velocity near y = −0.25RM

for case-1 and case-2. This suggests that the fast reconnection jets should be more

frequently observed on the dawn side. For the case-3 simulation, the asymmetry is less

obvious. The x component of the ion and electron velocities along the x = −2.6RM

cut are shown in Figure 4.14. Similar to the planetward jets, the centers of the

tailward jets are near y = −0.25RM for the case-1 and case-2 simulations.

From Figure 4.12, we can see another significant difference between these three

simulations: the reconnection jets in case-2 are faster than that of the other two

simulations. That is because the southward IMF Bz of case-2 is stronger, and more

field lines are transported from the dayside to the tail; in order to maintain the flux

conservation, the tail reconnection should be stronger or more frequent for case-2,

and creates faster averaged plasma flows.

4.3 Discussion and Summary

This chapter discusses the MHD-EPIC simulations of Mercury’s magnetosphere.

The PIC box is placed around the near tail X-line to study the tail reconnection.

Typical symmetric magnetic reconnection signatures, such as the quadrupolar Hall

magnetic field, the ion and electron flow patterns, are identified from the simulations.

We found the electron density near the interfaces of the open-closed field lines is

about one order smaller than the surrounding region. Flux ropes, both the planet-

ward and the tailward, are generated. The flux rope cross-sectional scale, magnetic

field signature, and the ion density around the flux rope center agree well with the

MESSENGER observations (DiBraccio et al., 2015). The length of the flux ropes in

the dawn-dusk direction is about 0.5RM . The dawn-dusk asymmetry is also identified

from the simulations. The averaged electron and ion jets are stronger on the dawn

side, which is also consistent with the MESSENGER observations (Sun et al., 2016).
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In these simulations, the PIC box extends from y = −1.5RM to y = 1.5RM in the

y direction. It is still far away form the magnetopause, thus the kinetic effect of the

Kelvin-Helmholtz instability (KHI) is not included in the current simulations. The

heavy ions, such as Na+, are also not included. But the dawn-dusk asymmetry still

arises in the simulations. The electron pressure and ion pressure are asymmetric in the

dawn-dusk direction, but the total pressure is almost symmetric, which suggests the

current sheet thickness is also symmetric. The pressure asymmetry for each species

leads to different temperature and gyroradius on each side. How the difference in the

gyroradius is related to the reconnection asymmetry still needs to be explored in the

future (Lu et al., 2016). In our three simulations, the one with large IMF By does not

show clear reconnection asymmetry. It suggests another possibility: the reconnection

dawn-dusk asymmetry may be caused by the mechanism that is responsible for the

spreading of X-lines. Shepherd and Cassak (2012) suggested that the X-lines spread

with the electron velocity for the weak guide field system, while the X-lines extend

in both directions with Alfven velocity in the system with strong guide field. If the

onset location of the reconnection were symmetric in the Mercury’s magnetotail, we

would expect the X-lines occur more frequently on the dawnside for case-1 and case-2,

but not case-3 based on the theory of Shepherd and Cassak (2012). This expectation

is consistent with the simulation results. More analysis are needed to confirm this

hypothesis.
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Figure 4.1: Part of the meridional plane with the adaptive MHD grid and the PIC
region. The color represents the plasma pressure in nPa on a logarithmic
scale. The black lines represent the grid refinement levels. The red box
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Figure 4.5: A series of the By [nT] field overplotted with magnetic field lines on the
meridional plane.
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Figure 4.7: The 3D view of the planetward flux rope at t = 94.4 s. The field lines are
colored by the By field.
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Figure 4.8: A series of the By [nT] field overplotted with field lines on the merid-
ional plane. These plots show the evolution of a tailward flux rope. The
white dotted line in the second panel shows the cut along which the field
components are shown in Figure 4.9.
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Figure 4.10: The 3D view of the tailward flux rope at t = 34.8 s. The field lines are
colored by the By field.
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Figure 4.11: An example of typical flux ropes from the case-3 simulation, which has
a large IMF By component. The By component and the field lines are
shown.
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Figure 4.13: The 1D cuts at x = −1.5RM of the same data shown in Figure 4.12.
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Figure 4.14: The 1D cuts at x = −2.6RM of the same data shown in Figure 4.12.
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CHAPTER V

Summary and Future work

Numerical models are important tools for space physics research. In order to

improve the numerical accuracy and physics capability of the MHD model BATS-R-

US, a fifth-order accurate finite difference scheme on block-adaptive curvelinear grids

and the magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model

are developed, respectively. The applications of the MHD-EPIC model to Earth’s

dayside magnetopause reconnection and Mercury’s magnetotail reconnection are also

presented in this dissertation.

5.1 Summary

Chapter II describes the high-order accurate scheme that has been implemented

for BATS-R-US. This scheme employs the 5th order accurate monotonicity preserving

limiter MP5 to construct high-order accurate face fluxes. The fifth-order accuracy of

the spatial derivatives is ensured by a flux correction step. The method is generalized

to curvilinear grids with a free-stream preserving discretization. It is also extended

to block-adaptive grids using carefully designed ghost cell interpolation algorithms.

Only three layers of ghost cells are required, and the grid blocks can be as small as

6× 6× 6 cells. Dynamic grid refinement and coarsening are also fifth-order accurate.

All interpolation algorithms employ a general limiter based on the principles of the
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MP5 limiter. The finite difference scheme is fully conservative on static uniform

grids. Conservation is only maintained at the truncation error level at grid resolution

changes and during grid adaptation, but the numerical tests indicate that the results

are still very accurate.

The MHD-EPIC model was originally developed by Daldorff et al. (2014). In

the past two years, we have greatly improved its robustness and efficiency, extended

its capabilities, and applied it to more simulations. The MHD-EPIC simulation of

Earth’s dayside magnetopause reconnection is discussed in chapter III. Both the

global scale FTEs and the kinetic scale phenomena, such as the LHDI, are captured in

one model. It is found the magnetic field signature of FTEs at their early formation

stage is similar to a ‘crater FTE’. After the FTE core field grows to a significant

value, it becomes an FTE with typical flux rope structure. When an FTE moves

across the cusp, reconnection between the FTE field lines and the cusp field lines can

dissipate the FTE. The crescent electron phase space distribution, which has been

observed by MMS, is found near the reconnection site. A similar distribution is found

for ions at the location where the Larmor electric field appears. The lower hybrid

drift instability (LHDI) along the current sheet direction also arises at the interface of

magnetosheath and magnetosphere plasma. The LHDI electric field is about 8 mV/m

and its dominant wavelength relative to the electron gyroradius agrees reasonably with

MMS observations.

Mercury’s magnetotail reconnection is also studied with the MHD-EPIC model

in chapter IV. Both the planetward and tailward flux ropes are generated from the

simulations. The flux rope size, magnetic field structure, and the plasma density

are consistent with the observations. A typical flux rope is about 0.5RM long in the

dawn-dusk direction. The dawn-dusk asymmetries are identified from the simulations.

The pressure asymmetry is caused by the velocity divergence. The asymmetry of the

reconnection jets from the simulations is consistent with the observations, but the
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cause of the asymmetry needs to be further explored.

5.2 Future Work

The high-order scheme has shown its significant improvement compared with the

second-order schemes for the test problems. The high-order scheme provides an op-

portunity to do high resolution global simulations. A lot of works can be done with

the scheme, such as the simulation of KelvinHelmholtz instability (KHI) along the

magnetopause.

The MHD-EPIC model can be further improved in various ways:

• The Earth’s dayside magnetopause simulations show the PIC code heats the

electrons so that the electron-ion pressure is about pi/pe ∼ 2.5. We are planning

to investigate the heating mechanism. One potential reason is the cell size in

the simulations is too large for electrons, and the electrons are heated by the

finite grid instability.

• The next major improvement is to break the constraints on the shape the PIC

regions. As shown in the Earth’s simulation, a brick has to be used to cover

the dayside magnetopause even though the magnetopause is a curved surface.

The iPIC3D developers are developing the AMR mesh for iPIC3D. It will allow

us to cover the magnetopause with a larger box, and we can refine the region

along the magnetopause. Another approach is to develop curvilinear meshes for

iPIC3D. A combination of these two techniques will be even more useful.

In terms of the Earth and Mercury simulations, a lot of interesting questions still

need to be clarified:

• The spreading of the X-lines. From the evolution of the FTEs (see Figure 3.4),

we can see the X-line starts from a point. The Mercury simulations suggest
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the mechanism of X-line spreading may cause the dawn-dusk asymmetry in

Mercury’s tail. The current simulations show some evidence (not discussed in

the dissertation) that the X-lines spread faster in the electron velocity direction,

but further investigation is necessary.

• The properties of the flux ropes, including the FTEs. Some details are still

unknown, such as how the core field is enhanced and how the plasma escapes

from the flux rope center.

• Covering both the dayside and tail reconnection sites with PIC boxes in one

simulation. This kind of simulations will contain realistic reconnection processes

on both sides, and hopefully it will help us to understand some import topics,

such as the trigger of a substorm, the consequences of a substorm and the global

reconnection rate.

• Mercury’s magnetospheric dynamics. Although the dawn-dusk asymmetry can

arise from the current simulations, the heavy ions and the KHI at the mag-

netopause may play important roles in modulating the dawn-dusk asymmetry.

The MHD-EPIC model already has the capability to include heavy ions in the

MHD model and also in iPIC3D.
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