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ABSTRACT

Collective behavior is a fascinating phenomenon occurring at many scales in bi-

ology. From flocking of birds to synchronization in neural populations, examples

abound where local interactions give rise to “macroscopic”, often counterintuitive

behavior, at the level of the community. In this thesis, I investigate community be-

havior in three distinct systems using a combination of theoretical and experimental

approaches. The work spans a broad range of topics inspired by dynamics in micro-

bial communities. In Chapter II, we provide a comprehensive theoretical study of

synchronization in coupled oscillators, a topic that is among the most widely studied

in dynamical systems. However, while past work has focused almost exclusively on

populations of a fixed size, I introduce a new model of self-dividing oscillator pop-

ulations that exhibits a remarkable range of synchronization phenomena as growth

rate is varied. Chapter III describes a largely experiment-driven effort to understand

a specific and counterintuitive phenomenon: the promotion of microbial community

(biofilm) growth by low doses of antibiotic drugs in a medically relevant bacterial

species, E. faecalis. We show that for cell wall synthesis inhibitors–which have for

decades been among the most widely prescribed classes of antibiotics–low doses stim-

ulate cell lysis and are associated with an increase in extracellular DNA, long believed

to be an important structural component of biofilms. We also develop a simple math-

ematical model that highlights the interplay between the toxicity of the drug and

xii



the “beneficial” effects of cell lysis and can be used to predict the impact of various

chemical perturbations that impact optimal biofilm growth. Finally, Chapter IV is

devoted to ongoing work on spatial pattern formation in two bacterial species, E.

coli and E. faecalis, exhibiting cooperative antibiotic resistance via the production

of a community good–an enzyme that targets and degrades antibiotics. The work

draws on previous theoretical models to predict pattern formation in simple (non-

cooperative) populations, which we quantify using customized experimental tools for

quantitatively characterizing colony growth over time and space. In addition, we ob-

serve a range of new pattern-formation phenomena driven, in part, by the interplay

between cell motility, cooperation, and density-dependent cell growth.
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CHAPTER I

Introduction

Collective behavior is an interesting and important phenomenon occurring at

many scales in biology [1]. From a city of people or a flock of birds to a swarm

of insects or microbial biofilm communities, examples abound where local interac-

tions give rise to group properties in nature. For example, ants and honey bees

develop a unique self-organized society in order to work and live together in diverse

environments, while single cell and molecular level studies continue to uncover new

social behavior [2] of microbial collectives. In many cases, their ability to survive

and evolve may come not only from individual adaption to the environment, but also

from coordination and cooperation amongst individuals. These collective phenomena

underlie fascinating and robust biological behavior while also inspiring new avenues

for theoretical work at the interface of statistical physics [3], dynamical systems [4],

and microbiology [5].

In this thesis, I investigate community behavior in three distinct systems using a

combination of theoretical and experimental approaches. The work spans a broad

range of topics inspired by dynamics in microbial communities, though the focus

and goals of the investigations vary dramatically. More specifically, Chapter II is

devoted to a purely theoretical study of synchronization in coupled oscillators, a
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topic that is among the most widely studied in dynamical systems. However, while

past work has focused almost exclusively on populations of a fixed size, I introduce a

new model of self-dividing oscillator populations that exhibits a remarkable range of

synchronization phenomena as growth rate is varied. The goal of this work is not to

model a specific microbial system, but rather to investigate the dynamics born from

coupling between growth and synchronization in a minimal model. By contrast,

Chapter III describes a largely experiment-driven effort to understand a specific

and counterintuitive phenomenon: the promotion of microbial community (biofilm)

growth by low doses of antibiotic drugs in a medically relevant bacterial species,

E. faecalis. We show that for cell wall synthesis inhibitors–which have for decades

been among the most widely prescribed classes of antibiotics–low doses stimulate

cell lysis and are associated with an increase in extracellular DNA, long believed

to be an important structural component of biofilms. We also develop a simple

mathematical model that highlights the interplay between the toxicity of the drug and

the “beneficial” effects of cell lysis and can be used to predict the impact of various

chemical perturbations that impact optimal biofilm growth. Finally, Chapter IV is

devoted to ongoing work on spatial pattern formation in two bacterial species, E.

coli and E. faecalis, exhibiting cooperative antibiotic resistance via the production

of a community good–an enzyme that targets and degrades antibiotics. The work

draws on previous theoretical models to predict pattern formation in simple (non-

cooperative) populations, which we quantify using customized experimental tools

for quantitatively characterizing colony growth over time and space. In addition, we

observe a range of new pattern-formation phenomena driven, in part, by the interplay

between cell motility, cooperation, and density-dependent cell growth.

In what follows, I provide a brief introduction to each topic and outline the struc-
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ture of the thesis.

Chapter II

In nature, collective and coherent groups can generate periodic motion due to weak

interactions amongst individuals, a phenomenon called synchronization. In many

synchronizing systems–including fireflies or coupled lasers–synchronization occurs in

populations of a fixed size. However, if we look at microbial systems, the timescale

of oscillations may often be comparable with timescale of whole population growth,

intuitively coupling oscillator phase and cell division. In this chapter, we introduce a

minimal model of both phase dependent and phase independent population growth

in coupled oscillators and excitable systems. We demonstrate how this coupling can

lead to a wide range of dynamical behavior, including bistability between oscillatory

and asynchronous states, as population growth is modulated.

Chapter III

One of the most striking and important examples of collective behavior occurs in

microbial biofilms. Biofilms are densely packed communities of bacterial cells that

stick and grow on surfaces and embedded within self-secreted extracellular polymer

substance (EPS). In 1991, Lawrence group firstly used confocal laser scanning mi-

croscopy to examine hydrated biofilms and found more than 70% of the structure is

constitutive of EPS and space [6]. Since then, biofilms have been a subject of intense

research interest, in part because they exhibit a wide range of remarkable behavior,

including long-range metabolic codependence [7] and electrical signaling [8, 9, 10],

phenotypic phase variation [11] and spatial heterogeneity [12], strong ecological com-

petition [13], and multiple types of cooperative behavior, including collective resis-

tance to antimicrobial therapy [14, 15, 16]. Heterogeneity in physiological state

and spatial structure has been implicated in bacterial tolerance in biofilms, which
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ultimately cause bacteria in biofilms to be more resistant to antibiotics than plank-

tonic cells in liquid culture [17]. Biofilms become leading causes of life-threatening

infections which are severe to human lives due to this fundamental feature. Surpris-

ingly, however, recent work has shown that subminimal inhibitory concentrations

(sub-MICs) of some antibiotics were found to promote biofilm formation [18]. Unfor-

tunately, much is still unknown about how low drug doses affect the composition and

spatial structure of the biofilms of many species, especially for Enterococcus faecalis,

which remains among the leading causes of hospital acquired infections because of

its ability to form biofilms [19, 20]. In this chapter, we investigated the effects of

sub-MICs of cell wall synthesis inhibitors, for example β-lactam ampicillin, on the

formation of E. faecalis biofilms. We found that inhibitors of cell wall synthesis, but

not other classes of antibiotics, induce biofilm formation associated with increased

cell lysis and increased extracellular DNA (eDNA), a known conduit for biofilm for-

mation. Using a range of experimental approaches–from bulk assays to confocal

microscopy–we quantify this effect and develop a simple mathematical model that

predicts changes in biofilm formation due to external perturbations, including the

degradation of eDNA or the addition of cell lysis inhibitors.

Chapter IV

In Chapter IV, we investigate spatial pattern in bacterial populations grown on

agar plates. By using a customized, scanner-based experimental set-up along with

fluorescence microscopy, we were able to measure and quantify the growth of colonies

and track their emergence over time under different antibiotic stresses. In simple non-

cooperative populations, we observe the expected genetic demixing phenomenon due

to genetic drift and reduced population size at the frontier. On the other hand,

mixed populations of sensitive and resistant cells exhibited cooperation and density-
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dependence not captured by previous models. In this chapter, we will discuss our

ongoing work to quantify these processes in E. coli and E. faecalis and to adapt

theoretical models to account for new spatial phenomena.
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CHAPTER II

Synchronization and Phase Redistribution in Self-replicating
Populations of Coupled Oscillators and Excitable Elements

2.1 Introduction

Synchronization phenomena in collections of coupled oscillators and excitable ele-

ments are widely studied in statistical physics [21, 22, 23, 24, 1], in part because they

represent prototypical nonequilibrium phase transitions exhibiting time-translational

symmetry breaking. In addition to their theoretical value, models of synchronization

offer insight into a diverse collection of physical, chemical, and biological phenom-

ena [1, 25], ranging from bulk oscillations in chemical reactions to phenotypic or

behavioral synchronization in populations of living organisms.

Synchronization plays a particularly important role in biological systems, where

coherent oscillations may serve biological or behavioral function. Examples abound,

including rhythmic flashing of fireflies [23], coherent behavior of neurons in human

neocortex [26] or primate retina [27], circadian oscillations in cyanobacteria [28, 29,

30], vertebrates [31] and mammals [32, 33], and synchronized cell division [34] or

protein dynamics [35, 36] in populations of single-cell organisms. In many of these

systems, the timescales of the oscillations are well-separated from the timescales of

population growth, allowing one to neglect its effects on macroscopic synchrony. In

turn, the vast majority of theoretical studies on coupled oscillators have dealt with
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a fixed population size. However, this restriction may not always be applicable,

as an increasing number of systems have been shown to exhibit oscillations that

occur on similar timescales as population growth [37, 38, 34, 35, 36, 28, 29, 30].

This overlap in timescales raises the question of how population growth might affect

synchronization, given that the population wide distribution of oscillator phases may

be strongly coupled to the growth process.

Several recent studies have illustrated the complex synchronization phenomena

that can occur in growing populations. In bacteria populations, an elegant series

of experimental studies has recently laid the groundwork for synthetic sensors and

logical programming in living systems based on tunable oscillations in growing pop-

ulations [35, 36]. These studies highlight a wide range of fascinating spatiotemporal

behavior. However, the effect of growth rate on the dynamics of these populations is

not addressed in detail. In addition, recent theoretical work [39] has demonstrated a

rich collection of dynamical behaviors in small chains of coupled oscillators gradually

increasing in number. In this work, by contrast, we focus on the large-population

limit and the corresponding phase transitions to macroscopic oscillations. To our

knowledge, this work is the first to systematically address how coupling between

population growth and oscillator phase can effect synchronization.

Specifically, we explore the effects of population growth and the corresponding re-

distribution of phases on the synchronization properties of a simple class of models for

both coupled oscillators and excitable elements. While the paradigmatic Kuramoto

model has paved the way to much of our current understanding of synchrony [22, 24],

oscillator models with discrete phases have gained increasing attention because of

their relative mathematical simplicity [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53]. Here, we focus on these discrete phase models because they can be readily
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modified to integrate oscillator growth and the potential phase dependence of the

division and birth processes.

Using a combination of numerical simulations, mean field theory, and linear stabil-

ity analysis, we find that the redistribution of phases induced by population growth

can disrupt synchronization via either continuous (supercritical) or discontinuous

(subcritical) transitions in both discrete phase oscillators and excitable elements.

We observe a range of dynamical behaviors, including bistability between two asyn-

chronous states or between asynchronous and oscillatory states, a switch between

supercritical and subcritical transitions as growth is increased, the existence of asyn-

chronous states with unequal phase distributions, or modulation of the bulk oscilla-

tion frequency. These results demonstrate that even in minimal models, the coupling

between population growth and oscillator phase can profoundly affect synchroniza-

tion and even lead to new dynamical states that do not exist in the absence of this

coupling.

This chapter is divided into two sections, with the first devoted to discrete phase

oscillators and the second to excitable, discrete phase systems. In Section 2.2.1, we

briefly review the discrete phase oscillator model and extend it to capture population

growth. In Section 2.2.2, we develop a mean field approximation, and in sections 2.2.3

and 2.2.4 we use linear stability analysis and numerical simulations to explore the

effects of growth when division is independent of state or strongly state-dependent,

respectively. In Section 2.3.1 we outline a model for growing populations of excitable

elements, in Section 2.3.2 we describe numerical simulations of the model, and in

Section 2.3.3 we use mean field theory and linear stability analysis to derive complete

phase diagrams for the growing populations. We conclude with a discussion of the

results in Section 2.4.
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2.2 Discrete Phase Oscillators

2.2.1 Model for Growing Oscillator Populations

We will model an active oscillator as an m-state system governed by unidirectional

transitions between states, 1→ 2→ 3...→ m→ 1→ 2... [40]. The states represent

a type of discretized phase, and formally, the state space of a single oscillator can

be described by a phase variable 0 ≤ φ ≤ 2π in the limit m → ∞. For simplicity,

we restrict ourselves here to finite m and study a discrete phase oscillator with

the minimum number of states (m = 3) required to generate a Hopf bifurcation

and, hence, macroscopic oscillations in a coupled population [41, 42, 43, 44]. In

addition to their relative simplicity, these discrete phase models are often appropriate

descriptions for biological or chemical systems, where the oscillations commonly occur

on a discrete state space.

In the absence of coupling, each oscillator transitions irreversibly between states

(1 → 2 → 3 → 1) with a probability per unit time g, which sets the oscillator’s

intrinsic frequency. The model is therefore an example of a Markov chain. Coupling

between oscillators is achieved by allowing these transition rates to depend on the

fraction of the oscillators in each state; hence, g is replaced by a function Γi, which

is the probability per unit time for a given oscillator to transition from state i − 1

to state i (with i = 1, 2, 3 (mod 3)). Γi also depends on a real parameter a ≥ 0,

which measures the strength of the coupling between oscillators (hence ∂Γi/∂a ≥

0). While a number of nonlinear coupling functions have been used in previous

studies [44, 50], for now we will leave the coupling function unspecified but explicitly

note its dependence on the fraction of oscillators Pi in state i, Γi = Γi(Pi). The

primary requirement for this function is that it facilitates phase coherence between

oscillators and leads to a Hopf bifurcation at a positive value of a. We discuss these
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constraints in more detail in what follows.

In the mean field limit of all-to-all coupling, the fraction of oscillators Pi in state

i is governed by the continuous time master equation,

Ṗi = −PiΓi+1 + Pi−1Γi. (2.1)

The total number of oscillators is conserved in this model (
∑

i Pi = 1), and the fixed

point P ∗i = 1/3 becomes unstable via a Hopf bifurcation as long as

Γ′i
Γi
> 3, (2.2)

above some critical value of a ≡ ac [50] . In Equation 2.2, Γ ≡ Γ(x, a)
∣∣
x=1/3

and

Γ′i ≡
∂Γ(x,a)
∂x

∣∣
x=1/3

. For larger a > ac, macroscopic oscillations occur. In what follows,

we consider the class of oscillator models where Equation 2.2 is satisfied for some

a ≥ ac > 0.

To incorporate population growth, we introduce two minimal mechanisms by

which growth and oscillator phase may be coupled. First, we allow each oscilla-

tor in state i to give birth to a new oscillator with probability per unit time εik,

with
∑

i εi = m = 3. The dimensionless weighting factors εi couple the rate of di-

vision to the state of the oscillator, and k is a growth rate constant. In this work,

we restrict our attention to two limiting cases: phase independent growth, εi = 1,

and strongly phase-dependent growth, εi = 3δij, where δij is the Kronecker delta.

In the former case (Case 1), oscillators in all states are equally likely to divide, so

division itself is independent of the state of the oscillator. In the latter case (Case

2), division can only occur for oscillators in state j. We choose j = 1 without loss

of generality. This state dependence of division could be relevant in a number of

biological settings, such as synchronization in cell division itself, where the oscilla-

tors in certain states–for example, those in certain stages of the cell cycle–divide
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preferentially. State-dependence of division could also occur in oscillations of protein

dynamics, as transcriptional and translational activity are often linked to the cell

cycle [54, 55, 56, 57, 58].

Second, we allow the phase of the daughter oscillator to depend probabilistically

on the state of the mother. Specifically, with each division, the new daughter os-

cillator has probability χ to be in the same state as the mother and a probability

(1 − χ)/2 to be in each of the two remaining states. This assumption could again

be relevant in many biological applications, where cell division can lead to a repar-

titioning of intracellular contents, such as proteins, that may be fundamental to the

oscillation [59, 60]. We stress that our goal here is not to incorporate biological de-

tails into a system-specific model, but rather to introduce state-dependent division

and birth in a minimal model. While other rules for coupling single oscillator dy-

namics to division are possible, we will show below that the simple rules above lead

to a rich collection of dynamical behaviors.

2.2.2 Mean Field Theory

To develop a mean field approximation for this model, we begin by writing evo-

lution equations for Ni, the number of oscillators in state i, as

Ṅi = −NiΓi+1 +Ni−1Γi+

εikNiχ+
k

2
(εi+1Ni+1 + εi−1Ni−1)(1− χ)

(2.3)

with i = 1, 2, 3 (mod 3). The first two terms capture the nonlinear coupling between

oscillators that drives synchronization, analogous to the two terms in Equation 2.1,

while the latter two terms account oscillator division, as described in Section 2.2.1.

Since the total number of oscillators
∑

iNi = N(t), we rewrite Equation 2.3 in terms
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of Pi, the fraction of oscillators in state i, using Ṗi = Ṅi/N −NiṄ/N
2, to arrive at

Ṗi = −PiΓi+1 + Pi−1Γi + εikPiχ+

k

2
(εi+1Pi+1 + εi−1Pi−1)(1− χ)− Pi

Ṅ

N
,

(2.4)

where Ṅ/N = k
∑

j εjPj follows directly from Equation 2.3. The model is now fully

specified by two differential equations (e.g. for Ṗ1 and Ṗ2) and the normalization

condition P1 + P2 + P3 = 1. Without loss of generality, we can set g = 1, which

is equivalent to measuring time in units of g and replacing k with k/g; in what

follows, we use k for economy of notation. Equation 2.4 provides a general mean

field description valid in the limit of all-to-all coupling and can be solved numerically

for any choice of parameters. To make further analytical progress, we now restrict

our attention to the limiting cases of phase independent growth, εi = 1, and strongly

phase-dependent growth, εi = 3δij.

2.2.3 Case 1: Division is independent of state

When division takes place independently of the state of each oscillator (εi = 1),

Equation 2.4 reduces to

Ṗi = −PiΓi+1 + Pi−1Γi − kPi(1− χ)+

k

2
(Pi+1 + Pi−1)(1− χ)

(2.5)

Several things become apparent from inspection. First, for χ = 1 (daughter oscil-

lators are always in the same state as the mother), Equation 2.5 reduces to Equa-

tion 2.1. In this case, oscillator division leads to an exponentially increasing number

of oscillators over time, but all synchronization properties–which depend on the frac-

tion of oscillators in each state, not the total number–will remain unchanged. Second,

it is clear that the asynchronous fixed point Pi = 1/3 is a solution to Equation 2.5

for all parameter values.
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Figure 2.1: Top panels: values of successive maxima / minima of the time series P1(t) (black, dark)
and P2(t) (red, light) for each value of the dimensionless growth k for model in Equation 2.5. Top
left, χ = 0; bottom left, χ = 1/3; top right, χ = 2/3; bottom right, χ = 1. Bottom panel: order
parameter q for χ = 0 (light blue, lightest), χ = 1/3 (black, darkest), χ = 2/3 (dark blue, dark),
and χ = 1 (red, light). Different shapes represent different intrinsic oscillator frequencies (g = 0.75,
circles; g = 1, crosses; g = 1.5, triangles). In all panels, a = 20 > ac,0, N0 = 500, initial conditions
are given by P1 = 2/3, P2 = 1/3, and the coupling function Γi = 1 + aP 2

i .
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To analytically explore the effects of division on oscillator synchrony, we linearize

around the asynchronous fixed point; the corresponding Jacobian matrix, J , evalu-

ated at the fixed point, is

J =

−3
2
(1− χ)k − 2Γ + 1

3
Γ′ −Γ− 1

3
Γ′

Γ + 1
3
Γ′ −3

2
(1− χ)k − Γ + 2

3
Γ′

 . (2.6)

where Γ and Γ′ are the coupling function and its derivative, respectively, evaluated

at Pi = 1/3. The matrix J has complex conjugate eigenvalues λ = α± iω, with

α =
1

2
(−3(1− χ)k − 3Γ + Γ′)

ω =
1

2

(√
3Γ +

1√
3

Γ′
) (2.7)

which cross the imaginary axis at

k ≡ kc =
1

3(1− χ)
(−3Γ(ac) + Γ′(ac)) , (2.8)

where we have explicitly noted the dependence of Γ and Γ′ on the critical value of

the coupling, ac. Equation 2.8 provides a relationship between the critical values of

growth kc and coupling ac, which separate synchronous and asynchronous behavior.

For k = 0, Equation 2.8 reduces to Equation 2.2. More generally, for k > kc, the fixed

point is stable and no oscillations occur; sufficiently fast population growth therefore

disrupts otherwise synchronized populations. In addition, at the bifurcation point,

the frequency of the oscillations is given by ω ≡ ω0 = 1
2

(√
3Γ(ac) + 1√

3
Γ′(ac)

)
and

is therefore expected to be modified by the addition of growth, which changes ac.

To determine the nature of the bifurcation (subcritical or supercritical), we calcu-

late the first Lyapunov coefficient, l1. The sign of l1, which is analogous to the coef-

ficient of the third order term in the normal form for a Hopf bifurcation, is negative

for supercritical and positive for subcritical Hopf bifurcations. For an n-dimensional

dynamical system ẋ = f(x, ε) with an equilibrium point x = xH undergoing a Hopf
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Figure 2.2: Top panels: values of successive maxima / minima of the time series P1(t) (black, dark)
and P2(t) (red, light) for each value of the dimensionless growth rate k for model in Equation 2.5.
Top left, χ = 0; bottom left, χ = 1/3; top right, χ = 2/3; bottom right, χ = 1. Bottom panel:
order parameter q for χ = 0 (light blue, lightest), χ = 1/3 (black, darkest), χ = 2/3 (dark blue,
dark), and χ = 1 (red, light). In all panels, a = 4 > ac,0, N0 = 500, g = 1, initial conditions are
given by P1 = 2/3, P2 = 1/3, and the coupling function Γi = eaPi .
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Figure 2.3: Upper panel: frequency ω of macroscopic oscillations for model in Equation 2.5, cor-
responding to the maximum peak of the power spectrum of P1(t) for χ = 0, 1/3, 2/3, 1 (upper
triangles, circles, and squares, respectively). Curves originating at ω ≈ 6.5 correspond to Γi = eaPi ;
curves originating at ω ≈ 5.2 correspond to Γi = 1 + aP 2

i . Lower panel: order parameter, q, as a
function of kc − k near the critical point. Open shapes correspond to Γi = 1 + aP 2

i ; small closed
circles correspond to Γi = eaPi . Open shapes: χ = 0 (light blue, leftmost), χ = 1/3 (black, mid-
dle), χ = 2/3 (dark blue, rightmost) at different intrinsic oscillator frequencies (g = 0.75, circles;
g = 1, crosses; g = 1.5, triangles). Closed circles: g = 1 and χ = 0 (blue, middle), χ = 1/3 (red,
leftmost), χ = 2/3 (green, rightmost). In all panels, N0 = 500 and initial conditions are given by
P1 = 2/3, P2 = 1/3. a = 20 > ac,0 for Γi = 1 + aP 2

i ; a = 4 > ac,0 for Γi = eaPi . Dashed line:
mean field scaling q ∼ (kc− k)1/2. Curves are shifted slightly to allow for visualization of all curves
simultaneously.
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bifurcation at parameter value ε = εH , l1 can be calculated following the projection

procedure in [61] as

l1 =
1

2ω0

Re[〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉

+ 〈p,B(q̄, (2iω0I − A)−1B(q, q))〉],
(2.9)

where 〈., .〉 is the complex scalar product, I is the identity matrix, and p and q are

the right and left eigenvectors, respectively, of the Jacobian A = ∂f
∂x
|x=xH given by

Aq = iω0q,

ATp = −iω0p.

(2.10)

The vectors are normalized so that 〈p, q〉 = 1, and the functionsB(u, v) and C(u, v, w)

are multilinear, n-dimensional vector functions given by

B(u, v) =
n∑

j,k=1

∂2f(ψ, εH)

∂ψj∂ψk

∣∣∣∣
ψ=xH

ujvk

C(u, v, w) =
n∑

j,k,l=1

∂3f(ψ, εH)

∂ψj∂ψk∂ψl

∣∣∣∣
ψ=xH

ujvkwl.

(2.11)

Specifically, for the model in Equation 2.5, we find

q =

(
−1− i

√
3

2
√

2
,

1√
2

)
,

p =

(
−i
√

2

3
,−3
√

2 + i
√

6

6

)
,

(2.12)

independent of the coupling function Γ. Following straightforward algebraic manip-

ulations, we arrive at

l1 =

√
3

4

(
Γ′′′ − 6Γ′′

3Γ + Γ′

)
. (2.13)
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where primes indicate derivatives of the coupling function

Γ ≡ Γ(x, ac)
∣∣
x=1/3

,

Γ′ ≡ ∂Γ(x, ac)

∂x

∣∣
x=1/3

,

Γ′′ ≡ ∂2Γ(x, ac)

∂x2

∣∣
x=1/3

,

Γ′′′ ≡ ∂3Γ(x, ac)

∂x3

∣∣
x=1/3

.

(2.14)

Interestingly, Equation 2.13 suggests that the nature of the Hopf bifurcation is de-

termined by the magnitude of the derivatives of the coupling function at the critical

point. Because increasing growth rate, k, will change the critical value ac, it is possi-

ble for growth to not only change the coupling required for synchronization, but also

the nature of the transition itself. For example, if we make the physically realistic

assumptions that Γi ≥ 0 and Γ′i ≥ 0, the condition Γ′′′ = 6Γ′′ separates supercritical

and subcritical transitions. To illustrate this point, in the next section we consider

two specific examples of the coupling function and show that both supercritical and

subcritical bifurcations are possible, depending on its derivatives.

2.2.3.1 Examples of supercritical and subcritical growth-induced bifurcations

In this section, we study two specific coupling functions to demonstrate the rich

dynamics possible in this class of models. First, we consider a coupling of the form

Γ(Pi, a) = 1 + aP 2
i , (2.15)

which satisfies Equation 2.2 for a > ac ≡ 9 in the absence of population growth. For

nonzero growth rate k, we can rearrange Equation 2.8 to show the critical value ac

is increased to

ac = ac,0 + 9k(1− χ), (2.16)

where ac,0 is the critical coupling in the absence of growth. In a synchronized pop-

ulation (a > ac,0), introducing population growth therefore quashes the macroscopic
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Figure 2.4: Order parameter q as a function of k for Equation 2.5 with Γi = eaPi and a = 6.75.
Simulations were run from two sets of initial conditions: P1 = 2/3, P2 = 1/3 (red, light) and
P1 = 1/3, P2 = 1/3 (blue, dark), leading to different steady state behavior. Insets: phase portraits
for k = 12 for each set of initial conditions. χ = 0 and N0 = 5000 for all points. Dashed lines
indicate region of bistability.

oscillations when

k > kc ≡
a− 9

9(1− χ)
. (2.17)

At the transition point, the frequency of oscillations is given by

ω0 =

√
3

6
(ac + 3) =

√
3

(
2 +

3

2
kc(1− χ)

)
. (2.18)

Hence, for a fixed value of k = kc, the frequency at the transition point decreases

linearly with χ, eventually reaching the transition frequency ω0 = 2
√

3 of the non-

dividing model. On the other hand, for a fixed value of a > ac,0, the frequency at

the transition point approaches the value ω =
√

3
6

(a + 3), independent of χ, as k

approaches kc.

Finally, we can calculate the first Lyapunov coefficient, l1, which depends on k,
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as

l1 = −9
√

3(1 + k(1− χ))

4 + 3k(1− χ)
. (2.19)

Hence, l1 < 0 for all k and 0 ≤ χ ≤ 1, indicating that the bifurcation remains

supercritical in the presence of population growth.

As a second example, we consider the coupling

Γ(Pi, a) = eaPi . (2.20)

In the absence of growth, the model undergoes a Hopf bifurcation at a = ac,0 = 3.

In the presence of growth, the critical value ac increases and is given by the solution

to

3k(1− χ) = (a− 3)ea/3. (2.21)

Equivalently, if we start with a synchronized population at a given value of a > ac,0,

the oscillations will be destroyed when k > kc ≡ (a−3)ea/3/(3(1−χ)). The frequency

at the transition point is given by

ω0 =
(ac + 3)ea/3

2
√

3
, (2.22)

which increases when growth is introduced and ac > ac,0. Most interestingly, the

first Lyapunov coefficient, l1, is

l1 = −
√

3(ac − 6)a2
c

4(3 + ac)
, (2.23)

which changes sign at ac = 6 (or equivalently, when Γ′′′ = 6Γ′). For small growth

rates such that ac,0 < ac < 6, the bifurcation between synchronous and asynchronous

state is supercritical. However, for larger growth rates, ac > 6 and the bifurcation

becomes a subcritical, discontinuous transition. In this case, population growth–

and the corresponding redistribution of oscillator phases–leads to a fundamentally

different transition for sufficiently high growth rates.
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To confirm these results numerically, we simulated growing populations of os-

cillators using the Gillespie algorithm [62] for a wide range of k (growth rate), g

(oscillator natural frequency), and χ (probability of daughter being in same state

as mother). Unless otherwise noted, simulations were run starting with N0 = 500

oscillators that are strongly coupled (a > ac,0). For nonzero k, the total number

of oscillators grows approximately exponentially, so computer memory limits simu-

lations to relatively short time periods. To circumvent this limitation, we allowed

simulations to run until the total number of oscillators reached Nmax = 10N0; when

the number of oscillators exceeded Nmax, we automatically reset the total number

of oscillators to N0 while preserving the fractional distribution of oscillator states.

While this numerical procedure effectively underestimates the fluctuations observed

in the oscillations, our goal is to approximate a thermodynamic limit N → ∞, and

even the modest starting number N = 500 yields relatively small fluctuations in

macroscopic behavior.

After simulations have reached steady state, we visualize the dynamics by plot-

ting the values of successive maxima / minima of the time series P1(t) (black,

dark) and P2(t) (red, light) for each value of the dimensionless growth rate k (Fig-

ures 2.1 and 2.2). We also calculated the synchronization order parameter q =

(〈|Z − 〈Z〉t|2〉t)1/2
, which was originally proposed in [45]. In this definition, Z(t) =

1
N

∑
j e

iθj(t) is the (not yet averaged) Kuramoto order parameter [21, 24], θj = 2πk/3,

k = (0, 1, 2) is the discretized phase of oscillator j, and angle brackets represent an

average over time. The standard Kuramoto order parameter is not appropriate

for models where rotational symmetry is absent and, consequently, non-oscillating

steady states can lead to nonzero values of the order parameter, despite the absence

of collective synchrony. As shown in [45], the order parameter q is akin to a gener-
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alized standard deviation of Z(t) and removes the bias due to a lack of rotational

symmetry. Nonzero values of q correspond to synchronized, oscillatory states.

For Γi = 1 + aP 2
i at a = 20 > ac,0 (Figure 2.1) and Γi = eaPi at a = 4 > ac,0

(Figure 2.2), oscillations smoothly decrease in amplitude with increasing k, leading

eventually to a completely asynchronous state. The value of the critical growth k

is consistent with the linear stability analysis, Equation 2.17 and Equation 2.21; it

increases with χ until, at χ = 1, the oscillations are undisturbed by even large growth

rates.

Our numerical simulations indicate that population growth affects not only global

synchronization, but also the frequency of the macroscopic oscillations in the syn-

chronized state. To explore this frequency dependence systematically, we calculated

the power spectrum of the time series P1(t) for each simulation in steady state. Fig-

ure 2.3 (top panel) shows the frequency of the dominant peak in the power spectrum,

which characterizes the frequency of the macroscopic oscillations. In both examples,

increasing k leads to a monotonically increasing oscillation frequency until, at suffi-

ciently high values of k, the macroscopic oscillations are no longer present.

Because these models are globally coupled and exhibit supercritical bifurcations,

one expects that the order parameter should scale as q ∼ (kc − k)β near the critical

point, with β = 1/2 the standard mean field scaling exponent. Indeed, we find that

in our numerical simulations, the order parameter approximately follows mean field

scaling near the critical point, independent of the value of χ or the specific coupling

function chosen (Figure 2.3, bottom panel; note that we have slightly shifted the

curves relative to one another so that each is visible). One would expect similar

behavior for any choice of Γi where a supercritical transition occurs as k eclipses a

critical value kc.
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By contrast, the transition becomes discontinuous when Γi = eaPi and a is in-

creased beyond a = 6. For example, at a = 6.75, growth induces a subcritical

Hopf bifurcation (Figure 2.4), as indicated by the discontinuous drop in the order

parameter and the corresponding bistability. Interestingly, in the bistable region,

which we find to exist for 11.9 ≤ k ≤ 12.1, synchronous oscillations co-exist with

an asynchronous fixed point. For populations initiated with approximately uniform

phase distributions, the system settles into a stable asynchronous state; for highly

non-uniform distributions, the population undergoes stable oscillations indicative of

synchrony (upper right inset). Similar behavior would be expected in the class of

models where l1 can switch signs as growth increases (see Equation 2.13), indicat-

ing that in this class of models, coupling between population growth and phase can

modify the nature of the Hopf bifurcation.

2.2.4 Case 2: Division occurs only in one state

When division occurs only in one state (εi = 3δi1), equation 2.4 reduces to

Ṗi = −PiΓi+1 + Pi−1Γi + 3kPi(δi,1χ− P1)+

3k

2
(δi,3Pi+1 + δi,2Pi−1)(1− χ)

(2.24)

where δij is the Kronecker delta. Because the choice of εi has broken the rotational

symmetry of the model, the solution Pi = 1/3 is not, in general, a steady state

solution to Equation 2.24. In what follows, we first consider the case χ = 1/3,

which is amenable to analytical treatment, and then go on to numerically explore

the general case 0 ≤ χ ≤ 1.

When χ = 1/3, Equation 2.24 reduces to

Ṗi = −PiΓi+1 + Pi−1Γi + 3kPi

(
δi,1
3
− P1

)
+

k(δi,3Pi+1 + δi,2Pi−1),

(2.25)
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Figure 2.5: Top panels: values of successive maxima / minima of the time series P1(t) (black, dark)
and P2(t) (red, light) for each value of the dimensionless ratio k for the model Equation 2.24. Top
left, χ = 0; bottom left, χ = 1/3; top right, χ = 2/3; bottom right, χ = 1. Bottom panel: order
parameter q for χ = 0 (light blue, lightest gray), χ = 1/3 (black), χ = 2/3 (dark blue, darkest
gray), and χ = 1 (red, gray). Different shapes represent different intrinsic oscillator frequencies
(g = 0.75, circles; g = 1, crosses; g = 1.5, triangles). Inset: frequency ω of macroscopic oscillations,
corresponding to the maximum peak of the power spectrum of P1(t) for χ = 0, 1/3, 2/3, 1 (upper
triangles, circles, squares and stars, respectively). In all panels, a = 20 > ac,0, N0 = 500, initial
conditions are given by P1 = 2/3, P2 = 1/3, and the coupling function Γi = 1 + aP 2

i .
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for which Pi = 1/3 is always a solution. The corresponding matrix J is identical to

Equation 2.6 when χ = 1/3, and the linear stability analysis yields identical results

to those in Equations 2.6-2.13. For example, if Γi = 1 + aP 2
i , we have a critical

coupling of ac = ac,0 + 6k, and when the coupling is fixed at a = 20, synchronization

is destroyed when k > kc = 11/6, which is consistent with numerical simulations

(Figure 2.5). In addition, at the transition point ω =
√

3
6

(ac+3) =
√

3 (2 + kc) and the

transition is always supercritical
(
l1 = −3

√
3(3+2k)
4+2k

< 0
)

. Hence, while Equation 2.5

and Equation 2.24 correspond to microscopically distinct mechanisms and differ in

higher order terms, when χ = 1/3 the linear stability properties of the fixed point

Pi = 1/3, which determine synchronization properties near the phase transition, are

identical. Intuitively, this correspondence arises because, in both cases, the division

process redistributes the oscillators uniformly between the 3 possible states.

For other values of χ, however, state-dependent division can give rise to entirely

new dynamics. To explore this behavior, we performed numerical simulations for

a wide range of parameters, as in Section 2.2.3. As a prototype model, we choose

Γi = 1 + aP 2
i , but we later show that the similar behavior is observed for other

coupling functions and even in continuous phase models. While the amplitude of the

oscillations decreases with increasing growth rate k (Figure 2.5), the oscillations of

P1 and P2 do not always occur around the symmetric values (P1, P2) = (1/3, 1/3).

Furthermore, for sufficiently large values of k, the system appears to settle into a

non-oscillating fixed point where the fraction of oscillators in states 1 and 2 can be

significantly different. As an example, for χ = 2/3 (Figure 2.5, upper right) the

oscillations cease at k ≈ 3, leading initially to a non-oscillating state where P1 < P2.

This is somewhat counterintuitive, as only oscillators in state 1 divide, and the

majority of daughter cells (χ = 2/3) are also in state 1. As k is further increased,
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Figure 2.6: Upper left panel: Steady state solution P ∗
1 of the mean field model, Equation 2.24.

Stability is indicated by marker (open circles, unstable points; closed circles, stable points; squares,
saddle points). Dashed box is region where synchronous oscillations stably coexist with a non-
oscillating state. Solid box is region where two asynchronous states stably coexist. Upper right
panel: Two example time series of P1 from numerical simulations with N0 = 2000 starting from
identical initial conditions, P1 = 0.45, P2 = 0.45. In one case, the system settles into stable
oscillations (red, light). In the other case, a fluctuation drives the system to the asynchronous fixed
point following initial oscillations (black). Bottom panel: phase portraits for k = 2.3, 2.6, 2.9, 3.2, 3.5
(left to right). Thin (blue, dark gray) lines are example trajectories, thick (red, light gray) lines
are stable limit cycles; stability of fixed points is indicated by markers (open (red) circles, unstable;
closed (red) circles, stable; squares (black), saddle). In all panels, χ = 1.
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Figure 2.7: Upper panel: Steady state solution P ∗
1 of the mean field model, Equation 2.24. Stability

is indicated by marker (open circles, unstable points; closed circles, stable points; squares, saddle
points). Dashed box is region where synchronous oscillations stably coexist with a non-oscillating
state. Solid box is region where two asynchronous states stably coexist. Bottom panel: phase
portraits for k = 2.7, 2.85, 3.0, 3.15, 3.3 (left to right). Thin (blue, dark gray) lines are example
trajectories, thick (red, light gray) lines are stable limit cycles; stability of fixed points is indicated
by markers (open (red) circles, unstable; closed (red) circles, stable; squares (black), saddle). In all
panels, χ = 1.
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trials. Insets: Time series of order parameter Z(t) for two typical simulations (k = 0.32 in both
cases) in the bistable region; the population stochastically switches between two stable states, one
synchronized (top curve) and one asynchronous (bottom curve).

the population is eventually dominated by oscillators in state 1, as one might expect.

Each individual oscillator continues to cycle through all three states, but on average,

the distribution of states is not uniform.

In addition, growth can dramatically affect the frequency of oscillations in the

synchronous state, but the effect is no longer monotonic for all values of χ. As k

is increased, we find oscillations of increasing frequency for χ = 0 and χ = 1/3,

approximately constant frequency for χ = 2/3, and rapidly decreasing frequency for

χ = 1 (Figure 2.5, lower panel inset). It is somewhat surprising that the choice of χ,

alone, can lead to either an increase or decrease in the overall oscillation frequency.

Interestingly, the case χ = 1 also appears to undergo an abrupt transition for k ≈ 2.9,

indicating that the transition is qualitatively different from the supercritical Hopf

bifurcation in the non-growing model.

To examine this transition in detail, we performed linear stability analysis numer-

ically for χ = 1. In particular, for χ = 1, we find that the fixed point P ∗1 remains

close to P1 = 1/3 for k < 3 and loses stability via a supercritical Hopf bifurcation
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at k ≈ 3, in apparent contradiction with numerical results, which indicate a dis-

continuous transition at a smaller value of k (see Figure 2.5). Interestingly, a more

thorough numerical analysis reveals that a second branch of stable solutions arises

at k ≈ 2.5 (Figure 2.6, upper left). The emergence of this solution branch leads to

two types of novel bistable behavior and underlies the abrupt transition observed

in numerical simulations. As k is increased above k ≈ 2.5, one finds bistability be-

tween a synchronized oscillating state and a non-oscillating state with P1 > P2 > P3.

Surprisingly, the synchronized oscillations occur only when oscillator states are ini-

tially distributed within a relatively small section of phase space. Initial conditions

with Pi = 1 for i =1, 2, or 3, for example, will (counterintuitively) lead to an asyn-

chronous, non-oscillating steady state dominated by oscillators in state 1. For finite

populations, fluctuations may also lead the population to stochastically jump from

one stable state (oscillations) to the other (fixed point) (Figure 2.6, upper right). As

k is further increased, the unstable fixed point at P1 ≈ 1/3 becomes stable (supercrit-

ical Hopf), leading to a small region of bistability between two non-oscillating states.

Finally, at k ≈ 3.4, the lower branch of the solution disappears and the population

settles into a fixed point on the upper branch of the solution curve. Similar behavior

occurs for other χ values in the approximate range 0.8 ≤ χ ≤ 1; for smaller χ, the

Hopf bifurcation occurs prior to the emergence of the upper solution branch, leading

to a larger region of bistability between asynchronous fixed points.

2.2.4.1 Bistability in Other Classes of Oscillators

When oscillators in any state can divide (i.e. Case 1), our linear stability analysis

shows that similar behavior exists for a class of coupling functions, as long as the

derivatives follow certain restrictions (see Section 2.2.3). Unfortunately, because the

rotational symmetry of the model is broken when only one state can divide (i.e. Case
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2), we are not able to provide similar analytical evidence that the bistable behavior

discussed in Section 2.2.4 (e.g. Figure 2.6) occurs for other choices of coupling

function. However, it is straightforward to perform numerical linear stability analysis

for any particular model.

To confirm that these findings are not specific to the chosen form of the coupling

function, we performed linear stability analysis for Γi = eaPi at a = 3.65 > ac,0. As

shown in Figure 2.7, we see similar dynamics for this choice of coupling. Specifically,

for small k, we see stable oscillations. As k increases, we see a region of bistability

between synchronous oscillations and an asynchronous fixed point, followed by a

region of bistability between two asynchronous fixed points. Finally, at k ≈ 3,

the lower branch of the solution disappears and the population settles into a fixed

point on the other branch of the solution curve. Numerically, we find that similar

bistabilities also occur for other coupling functions, including multiple examples of

the form Γi = 1+aP n
i with 1 < n ≤ 4 (results not shown). As before, these coupling

functions lead to a supercritical Hopf bifurcation in the absence of growth.

Our analysis of discrete phase oscillators suggests that population growth can in-

duce bistability between stable, asynchronous fixed points and stable, synchronous

oscillations when the growth is strongly phase-dependent. While the exact mathe-

matical correspondence between these discrete phase models and classic continuous

phase models, such as the Kuramoto model, has yet to be rigorously established, one

might expect similar bistability to occur in continuous phase models as well. To ex-

plore this question, we performed numerical simulations of populations of Kuramoto

oscillators [21], whose (continous) phases φ evolve according to

φ̇i = ωi +
K

N

∑
j

sin(φj − φi), (2.26)

ωi is the intrinsic frequency of oscillator i, K is a coupling parameter, and the sum
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runs over all oscillators in the population. We take ωi = ω for all oscillators; for

identical oscillators, a synchronous state exists for all K > 0. To incorporate phase

dependent population growth, at each time step we allow oscillators whose phase

falls in a given range, φ0 ≤ φ ≤ φ1, to reproduce with probability per unit time k.

Following division, the daughter oscillator has a phase that is chosen to fall in the

range φ0 ≤ φ ≤ φ1 with uniform probability. To circumvent numerical limitations

due to exponentially growing populations, we start with N0 = 500 oscillators and

allow them to grow to a total size of N = 106; when N reaches this maximum value,

we reset the population size to N = 1000 while preserving the phase distribution of

oscillators. In practice, we preserve the approximate phase distribution by binning

oscillator phases into a total of M bins over the range 0 ≤ φ ≤ 2π. Prior to resetting

the population size, we calculate the fraction of oscillators in each bin and choose

the phases in the smaller population so that the distribution is conserved. We find

that similar behavior is observed as long as M is sufficiently large. In what follows,

we choose M = 10, φ0 = π/3, φ1 = 2π/3, and we set K = 1.

As with the discrete oscillators, numerical simulations suggest that population

growth decreases the synchrony of the population, eventually leading to a discontin-

uous transition to asynchronous behavior and a region of bistability between syn-

chronous and asynchronous oscillations (Figure 2.8). Because the simulations involve

finite populations, it is common to see trajectories that stochastically switch between

stable oscillations and asynchronous behavior (Figure 2.8, inset). While a full anal-

ysis of continuous models is an exciting avenue for future work, we stress that our

goal here is simply to provide evidence that growth-induced bistability can occur in

continuous phase models. Further analysis along these lines is necessary and would

be welcome, but it is beyond the scope of the current work.
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2.3 Excitable Elements

2.3.1 Model for Growing Populations of Excitable Elements

The results of Section 2.2 raise the question of whether population growth might

have similar effects on populations of coupled excitable elements. To explore this

question in a simple context, we will model an excitable system as a discrete m-state

system comprised of a quiescence state (0), an excited state (1), and a finite set

of refractory states (2, 3, ...,m − 1) using the model introduced in [47]. For each

state i, the discretized phase is θ = 2πi/m. Here we study a simple four state

system, which contains the minimum number of refractory states (2) required for

stable synchronization [63].

This discrete time model involves deterministic transitions between states 1→ 2

and 2 → 3 and probabilistic transitions from the quiescent state 0 to the activated

state 1. Coupling between elements is achieved by allowing the transition from state

0 to state 1 to depend on the states of the neighboring systems and a parameter σ

that measures the strength of the inter-element coupling. The last transition, from

state 3 back to the quiescent state 0, is also probabilistic and occurs with probability

pγ, which is the same for all excitable elements [47]. A thorough analysis of this

model [47] reveals that, in the thermodynamic limit, the population transitions from

an absorbing state to an active state at a critical value of σ. More interestingly,

for certain choices of pγ, it can undergo synchronous oscillations within a range of

coupling strengths σ1 < σ < σ3, and there exists a region of bistability between

synchronous oscillations and an asynchronous fixed point for σ2 < σ < σ3, with

σ1 < σ2 < σ3.

In what follows, we study this model in the case where individual elements are

allowed to reproduce, producing daughter elements in potentially different states. As

31



with the oscillators, we focus on two cases: all oscillators are equally likely to divide

(case 1), and division occurs only for oscillators in one particular state (case 2). As

before, the daughter element will be in the same state as the mother with proba-

bility χ, and will be randomly assigned to each of the other states with probability

(1 − χ)/3. The discrete nature of the model makes it amenable to rapid numerical

simulations [47], which we explore in the next section.

2.3.2 Numerical Simulations

We performed discrete time simulations starting from N0 = 104 globally coupled

excitable elements for t = 500 total time steps. To avoid limits due to computational

memory, we reduce the total population size by a factor of 5 (while preserving the

state distribution) when the number of units reaches 5× 104. As in [47], we take the

probability of exciting a quiescent state to be

pµ(t) = 1−
(

1− σ

N(t)

)Nt(1)

, (2.27)

where N(t) is the total number of units at time step t, Nt(1) is the number of

elements in state 1 at time step t, each excited element can activate a neighbor in

the quiescent state with probability σ/N(t), and pµ reflects the probability that the

quiescent state is excited by at least one of its Nt(1) active neighbors. We choose

initial conditions so that P0(0) = 0.8 and P0(1) = 0.2, where Pi(j) is the fraction

of oscillators in state j at time step i. For each choice of k and χ, we continuously

increased coupling strength σ from 2 to 50 for each successive simulation, using the

steady state from the previous value of σ as initial conditions for the next value.

We then repeated the simulations starting from σ = 50 and decreasing σ to 0; when

simulations reached a steady state, we calculated the order parameter q, which is the

same as that used for oscillators (see Section 2.2).
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In the case where all states can divide, the most salient effect of population growth

is to decrease the range of σ over which oscillations are stable (Figure 2.9). For exam-

ple, when pγ = 0.94, [47] showed that the model undergoes a synchronizing transition

as σ is increased from zero. Further increase of σ leads to discontinuous re-entrant

transition that includes a region of bistability between synchronous and asynchronous

states (black curves, main panel). When including population growth, we find that

as k is increased from zero, the size of both the synchronized and bistable regions

shrink (Figure 2.9, blue curves); as k is further increased, the bistable region even-

tually disappears (Figure 2.9, red curves) and, eventually, the entire synchronization

region is lost (not shown). We observe a similar decrease in the size of the oscillatory

regime for χ = 0 (top panels) and χ = 1 (bottom panels) and for smaller values

of pγ where bistability does not exist, even in the absence of growth. In all cases,

increasing χ slightly counteracts the effect of population growth; that is, larger χ

leads to a slightly larger region of synchrony and/or bistability.

We find qualitatively similar behavior when division is restricted to only one

state, such as state 1 (Figure 2.10). Interestingly, however, we find that the effect

of increasing χ will depend on which state is chosen for division. Specifically, when

division is restricted to states 0, 2 or 3, increasing χ will lead to an increase in the

size of the active region (Figure 2.10, upper insets), as in the case where all states

can divide (Figure 2.9). By contrast, when division is restricted to state 1, increasing

χ will lead to a decrease in the size of the active region (Figure 2.10, main panels

and lower insets).

For all simulations, we also calculated 1) the frequency of macroscopic oscillations

in the active regions and 2) the maximum growth rate–which we refer to as the critical

growth rate–that still allows for synchronous oscillations. Figure 2.11(a) shows that
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Figure 2.9: Order parameter q vs coupling strength σ when all states divide for (a) χ = 0 and (b)
χ = 1. Error bars are from standard deviations over 10 runs. Black dashed (upper curve), blue
dash dot (middle curve) and red dotted line (lower curve) represent growth rate k = 0, 0.005 and
0.01, respectively, at pγ = 0.94. For smaller values of pγ , the size of the active region shrinks and
the bistable area disappears, even in the absence of growth (upper insets in (a) and (b): pγ = 0.84).
If pγ is further reduced, stable oscillations will eventually disappear (lower insets in (a) and (b):
pγ = 0.74).
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Figure 2.10: Order parameter q vs coupling strength σ when division is restricted to one state.
Main panels: Division is restricted to units in state 1: (a) χ = 0 and (b) χ = 1. Black dashed
(upper curve), blue dash dot (middle curve) and red dotted lines (lower curve) represent growth
rate k = 0, 0.01 and 0.07, respectively at pγ = 0.94. When increasing χ from 0 to 1, the size of the
active region shrinks (lower insets of both panels, k = 0.07). For comparison, upper insets show
effect of increasing χ when division is independent of state (upper insets in (a) and (b), k = 0.01).

population growth increases the frequency of oscillations, regardless of which state is

chosen for division. Figure 2.11(b) illustrates that as χ increases, the critical growth

rate increases when division is independent of state or is restricted to states 0, 2, or 3;

the opposite trend exists when division is restricted to state 1 (upper red triangles).

2.3.3 Mean Field and Linear Stability Analysis

To gain a systematic picture of these results, we follow the approach in [47] to

develop a mean field approximation and derive full phase diagrams for these excitable

systems. Specifically, by assuming that probability of exciting a quiescent state via

one of its N(t)− 1 neighbors is σPt(1)/(N(t)− 1), the probability of excitation via

at least one excited neighbor is

pµ(t) = 1−
(

1− σPt(1)

N(t)− 1

)(N(t)−1)

. (2.28)
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Figure 2.11: Frequency and critical growth rate vs χ. Upper figure: circle, square and up triangle
represent χ = 0, 0.5 and 1, respectively. Blue (darker) shows the case in which all states divide
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square, red up triangle, magenta down triangle and cyan diamond represent five cases (all states
divide, only state 0 divides...), respectively. Inset: zoom in black circle (all states divide case)
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In the thermodynamic limit, pµ becomes 1 − e−σPt(1). In the case where all states

divide, the system is governed by the difference equations

Nt+1(0) = pγNt(3) + e−σPt(1)Nt(0)

+ k(χNt(0) +
1− χ

3
(Nt(1) +Nt(2) +Nt(3)))

Nt+1(1) = (1− e−σPt(1))Nt(0)

+ k(χNt(1) +
1− χ

3
(Nt(0) +Nt(2) +Nt(3)))

Nt+1(2) = Nt(1)

+ k(χNt(2) +
1− χ

3
(Nt(0) +Nt(1) +Nt(3)))

Nt+1(3) = Nt(2) + (1− pγ)Nt(3)

+ k(χPt(3) +
1− χ

3
(Nt(0) +Nt(1) +Nt(2))),

(2.29)

and the total number of oscillators follows N(t+1) = (1+k)N(t). If all equations are

divided by the total number of oscillators, we arrive at equations for the probability

Pt(i) to be in state i at time t,

Pt+1(0) =
pγ

1 + k
Pt(3) +

e−σPt(1)

1 + k
Pt(0)

+
k

1 + k
(χPt(0) +

1− χ
3

(1− Pt(0)))

(2.30)

Pt+1(1) =
1− e−σPt(1)

1 + k
Pt(0)

+
k

1 + k
(χPt(1) +

1− χ
3

(1− Pt(1)))

(2.31)

Pt+1(2) =
1

1 + k
Pt(1)

+
k

1 + k
(χPt(2) +

1− χ
3

(1− Pt(2)))

(2.32)

Pt+1(3) =
1

1 + k
Pt(2) +

1− pγ
1 + k

Pt(3)

+
k

1 + k
(χPt(3) +

1− χ
3

(1− Pt(3))).

(2.33)
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Similarly, if division is restricted to only one state, such as state 1, we have

Pt+1(0) =
pγ

1 + kPt(1)
Pt(3) +

e−σPt(1)

1 + kPt(1)
Pt(0)

+
k(1− χ)

3(1 + kPt(1))
Pt(1)

(2.34)

Pt+1(1) =
1− e−σPt(1)

1 + kPt(1)
Pt(0) +

kχ

1 + kPt(1)
Pt(1) (2.35)

Pt+1(2) =
1

1 + kPt(1)
Pt(1) +

k(1− χ)

3(1 + kPt(1))
Pt(1) (2.36)

Pt+1(3) =
1

1 + kPt(1)
Pt(2) +

1− pγ
1 + kPt(1)

Pt(3)

+
k(1− χ)

3(1 + kPt(1))
Pt(1).

(2.37)

It is easy to derive similar equations when division is restricted to one of the other

states. In all cases, nontrivial steady states P ∗(i) occur when Pt+1(i) = Pt(i) (i =

0, 1, 2, 3). Since the probabilities are normalized to 1, we can omit equations (2.30)

and (2.34) and reduce each set of equations by one.

To study the stability of nontrivial solutions, we linearize the equations near each

solution; the corresponding Jacobian matrix J when all states can divide is given by

J =
JN

1 + k
+

(
k

1 + k

(
χ− 1− χ

3

))
I, (2.38)

where JN is the Jacobian for non-dividing populations [47]

JN =


a11 e−σP1 − 1 e−σP1 − 1

1 0 0

0 1 1− pγ



∣∣∣∣∣∣∣∣∣∣∣
~P ∗

, (2.39)

I is identity matrix, and a11 = σe−σP1(1 − P1 − P2 − P3) + e−σP1 − 1. At steady

state, P ∗1 = P ∗2 = pγP
∗
3 . We note that even when χ = 1 and the excitable elements

reproduce to form identical daughter cells, the model does not reduce to the corre-

sponding non-growing model. Hence, unlike the oscillator model, growth will modify
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Figure 2.12: Phase diagrams when all oscillator states can divide. Upper panel: Phase diagram
pγ vs σ when all states divide and k = 0.005, χ = 1. Curves indicate nature of bifurcation (blue
(gray), supercritical Hopf; red (light gray), subcritical Hopf; black, global saddle node of limit
cycles). Regions of bistability between synchronous and asynchronous states are indicated. Crosses
and circles indicate results from numerical simulations (N0 = 104). Black line shows numerical σc3
from mean field analysis. Cross and circle represent simulation results. Dash dot curves show non-
growing case for comparison. Lower panels: phase boundaries (excluding bistable regions) when
all states divide, χ = 0; k = 0 (black circle), k = 0.01 (blue square), k = 0.02 (red up triangle),
k = 0.03 (magenta down triangle). Lower right inset, k = 0.02 for different values of χ: Black circle,
blue square, red up triangle, magenta down triangle represent χ = 0, 1

3 , 2
3 and 1, respectively.

the dynamics of these excitable systems even in the case when all states can divide

and χ = 1. For cases where division is restricted to one state, the Jacobian can be

readily calculated numerically, but it cannot be simply written in terms of JN .

As in the case of continuous time systems, the eigenvalues provide information

about the stability of each fixed point. Specifically, bifurcations between stable and

unstable fixed points occur when |λ| = 1, allowing us to dilineate phase boundaries

separating oscillatory and non-oscillatory regimes. Specifically, we are interested in

the location of Neimark-Sacker (NS) bifurcations, which are the discrete time analog

of a Hopf bifurcation. As with Hopf bifurcations, the nature of the transition is

given by the sign of the first Lyapunov coefficient: the NS bifurcation is supercritical
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Figure 2.13: Phase diagrams when division is restricted to one state. Main panel: phase diagram
for excitable elements with growth (solid lines; χ = 0, k = 0.04, only state 1 can divide) and without
growth (dashed lines). Curves indicate nature of bifurcation (blue (gray), supercritical Hopf; red
(light gray), subcritical Hopf; black, global saddle node of limit cycles). Regions of bistability
between synchronous and asynchronous states are indicated. Crosses and circles indicate results
from numerical simulations (N0 = 104). Right panel, phase boundaries (excluding bistable regions)
for χ = 0 and χ = 1 when only state 1 (top) or only state 2 (bottom) divides; k = 0.07 in both
cases.

if l1 < 0 and subcritical if l1 > 0. Following standard bifurcation theory (see, for

example, [47]), we calculate l1 as

l1 =
1

2
Re
{
λ̄
[〈
~s, ~C(~r, ~r, ~̄r)

〉
+ 2

〈
~s, ~B(~r, (I − J)−1 ~B(~r, ~̄r))

〉
+
〈
~s, ~B(~̄r, (λ2I − J)−1 ~B(~r, ~r))

〉]}
,

(2.40)

where brackets represent the standard complex inner product, ~r is the eigenvector of

the Jacobian matrix with corresponding eigenvalue λ, ~s is the eigenvector of JT with

eigenvalue λ∗, and normalization is chosen so that 〈~r, ~r〉 = 1 and 〈~s, ~r〉 =
∑3

i=1 s̄iri =

1. Furthermore, ~B(~x, ~y) and ~C(~x, ~y, ~z) are vector-valued multi-linear functions

Bi(~x, ~y) =
3∑

j,k=1

∂2Fi(~Pt)

∂Pt(j)∂Pt(k)

∣∣∣∣∣
~P ∗,σc

xjyk,

Ci(~x, ~y, ~z) =
3∑

j,k,l=1

∂3Fi(~Pt)

∂Pt(j)∂Pt(k)∂Pt(l)

∣∣∣∣∣
~P ∗,σc

xjykzl,

(2.41)

where ~x = (x1, x2, x3)T , ~y = (y1, y2, y3)T and ~z = (z1, z2, z3)T are arbitrary vectors.
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As in [47], when l1 > 0 (indicating a subcritical bifurcation and the corresponding

bistability), we supplement the above calculations with simulations of the mean field

equations to determine the location of the bistable regimes, which are not fully

determined by linear stability properties.

Figure 2.12 shows the resulting phase diagrams for the case where all states di-

vide, and Figure 2.13 shows the phase diagram when division is restricted to state 1.

Population growth has several obvious effects on the excitable systems. First, growth

can shift the location of the fixed points, but unlike the oscillator case, we do not

find evidence of new fixed points. Consistent with our simulations, growth shifts the

phase boundaries to higher values of pγ, leading to a smaller region of synchronized

oscillations and a significantly reduced region of bistability; as k is further increased,

the oscillatory region is eventually eliminated (see Figure 2.12, bottom panel). The

phase diagrams indicate that adding growth can have significant effects on the dy-

namics, depending on the values of σ and pγ. Consider, for example, the main panel

of Figure 2.13. Systems originally undergoing oscillations can enter a bistable state

(e.g. (σ, pγ) = 18, 0.98)) or a non-oscillating active state (e.g. (σ, pγ) = 8, 0.82))

when growth is increased to k = 0.04. Qualitatively similar behavior is observed

when division is restricted to one of the other states, or when all states can divide

(Figure 2.12).

Interestingly, we also find that the effect of χ on the phase diagram will depend

on which state is chosen for division (Figure 2.12, bottom inset; Figure 2.13, right

panels). For example, increasing χ at a fixed value of k will raise the phase boundary

to higher pγ when state 1 divides, but will lower the boundary when states 0, 2, or 3

divide (Figure 2.13, right panels) or when all states can divide (Figure 2.12, bottom

inset). When only the excited state (1) divides, self-similarity between mother and
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daughter oscillators decreases the area of phase space over which synchrony can

occur, while such self-similarity increases the size of the synchronized region when

any of the non-excited states divide.

2.4 Discussion

We have shown that population growth, and the corresponding redistribution of

oscillator phases, can induce a wide range of new dynamic behaviors in systems of

coupled oscillators and excitable elements. In particular, when growth is indepen-

dent of oscillator phase, increasing growth rate leads to an increase in oscillation

frequency and a decrease in phase synchrony, eventually culminating in a transition

to a non-oscillating steady state. Interestingly, the growth-induced transition can be

subcritical, even when the non-growing model exhibits a supercritical bifurcation; in

that case, one sees a bistable region with coexisting synchronous and asynchronous

states, depending on the derivatives of the coupling function. When division is

strongly state dependent, growth can again lead to extinction of oscillations, but in

certain parameter regimes, one finds new asynchronous states with unequal phase

distributions, bistability between two asynchronous states or between asynchronous

and oscillatory states, or modulation of the bulk oscillation frequency. In excitable

systems, which may include bistable behavior even in the absence of growth, the

most salient effects of growth are to shift the phase boundaries separating active, os-

cillatory, and bistable regimes while also increasing the frequency of super-threshold

oscillations. In practice, the shifting phase boundaries can lead to a range of differ-

ent dynamical effects, many of which mirror the behaviors seen in oscillators. For

example, systems originally undergoing oscillations can enter a bistable state or a

non-oscillating active state when growth is increased.
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Our work complements several recent studies on specific biological systems. No-

tably, a number of interesting studies have examined cell-density dependent synchro-

nization (see, for example, [38, 37]). In these systems, synchronization of intracellular

dynamics can be modified at high cell densities as a result of biochemical communi-

cation known as quorum sensing. These studies do not directly explore the effects of

population growth rate, but instead treat cell density as the relevant control param-

eter that governs not only intracellular coupling, but also the dynamics of individual

cells. It may be interesting to further explore the role of population growth rate

itself on synchronization in these systems. In addition, the authors of [30] develop a

detailed biochemical model of circadian clocks in growing cyanobacteria populations.

They show that otherwise stable oscillations–specifically, those driven by phospho-

rylation cycles–are destabilized at high growth rates via a supercritical Hopf bifur-

cation for the chosen range of parameters. Therefore, in fast growing populations,

additional stabilizing mechanisms (transcription-translation cycles) are required to

preserve integrity of the oscillations. The current work raises the question of whether

subcritical bifurcations, including the bistability observed in our models, might occur

in different parameter regimes.

We have shown that population growth can dramatically influence synchronization

phenomena and, in some cases, lead to entirely new dynamical states in populations

of coupled oscillators and excitable elements. While we focused on discrete phase

models because of their relative simplicity, we hope these results will motivate fu-

ture explorations on the interplay between synchronization and population growth

in additional models of oscillators, excitable elements, and perhaps more general

dynamical systems. Given the theoretical importance of self-synchronization in sta-

tistical physics and its ubiquity in biological systems, we believe that the potential
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effects of population growth on collective oscillations will prove to be an important

and rich topic for future exploration.

44



CHAPTER III

Interplay Between Antibiotic Efficacy and Drug-induced
Lysis Underlie Enhanced Biofilm Formation at

Subinhibitory Drug Concentrations

3.1 Introduction

Biofilms are dense, surface-associated microbial communities that play an impor-

tant role in infectious diseases and a range of device-related clinical infections [20, 64].

Biofilms exhibit a fascinating range of community behavior [65], including long-range

metabolic codependence [7] and electrical signaling [8, 9, 10], phenotypic phase vari-

ation [11] and spatial heterogeneity [12], strong ecological competition [13], and mul-

tiple types of cooperative behavior, including collective resistance to antimicrobial

therapy [14, 15, 16]. The biofilm response to antibiotics has been a topic of particular

interest, with biofilms across species showing dramatically increased resistance to an-

tibiotics relative to planktonic cells. Surprisingly, however, a number of recent studies

have shown that exposure to sub-lethal doses of antibiotics may enhance biofilm for-

mation in a range of species [66, 67, 18]. While antibiotic-mediated biofilm induction

has been associated with modulated expression of biofilm-related genes, particularly

those affiliated with bacterial and cell surface adhesion, cell motility, or metabolic

stress, the mechanisms vary across species and drug classes and remain a focus of

ongoing research efforts [67, 18].
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In this work, we investigate the effects of sublethal antibiotic concentrations on

biofilm formation in E. faecalis, a gram-positive bacteria commonly underlying noso-

comial infections, including bacteremia, native and prosthetic valve endocarditis, and

multiple device infections [19, 20]. While our understanding of the molecular basis

of both biofilm development and drug resistance in E. faecalis continues to rapidly

mature [19, 68], surprisingly little attention has been paid to the impact of subin-

hibitory antibiotic treatments on E. faecalis communities. However, a recent series

of studies has shown that E. faecalis biofilm formation (without antibiotic) hinges

on an intriguing interplay between fratricide-associated cell lysis and the release of

extracellular DNA (eDNA) [69, 70, 71, 72, 73]. More generally, eDNA is widely

recognized as a critical component of biofilm structure in many species [74, 75, 76].

Additionally, a recent study in S. aureus showed that β-lactams administered at

subinhibitory concentrations promoted biofilm formation and induced eDNA release

in an autolysin-dependent manner [77]. Taken together, these results suggest that–

for some drugs–biofilm induction hinges on a balance between the inhibitory effects

of antibiotics–which reduce biofilm formation at sufficiently high concentrations–and

the potential of antibiotic-induced cell lysis to promote biofilm formation, presum-

ably through release of eDNA. Here we investigate this trade-off in E. faecalis biofilms

exposed to multiple classes of antibiotics. We find that subinhibitory doses of cell

wall synthesis inhibitors, but not other classes of drug, promote biofilm formation

associated with increased cell lysis and increased eDNA and eRNA. Using a simple

mathematical model, we quantify the trade-offs between drug efficacy and “benefi-

cial” cell lysis and use the model to predict the effect of environmental perturbations,

including the addition of DNase or chemical inhibitors of lysis, on the location and

height of optimal biofilm production. Our results suggest that inhibitors of cell wall
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Figure 3.1: Inhibitors of cell wall synthesis enhance biofilm formation at low concentrations. A.
Biofilm mass (normalized to 1 in the absence of drug) as a function of ampicillin concentration
for E. faecalis strain V583 in TSB (blue) and BHI (red). B. Similar to panel A, with E. faecalis
strain OG1RF in TSB (light blue) and BHI (black). Similar curves are also shown for V583 in
BHI exposed to three additional cell wall synthesis inhibitors: ceftriaxone (C), oxacillin (D), and
fosftomycin (E). In all panels, biofilm mass is measured by crystal violet assay (see Methods). Error
bars are ± standard error of the mean from ten replicates.

synthesis promote biofilm formation via increased cell lysis and offer a quantitative,

predictive framework for understanding the trade-offs between drug toxicity and

lysis-induced biofilm induction.

3.2 Results

3.2.1 Cell wall synthesis inhibitors, but not other classes of antibiotics, promote
biofilm formation at low concentrations

To investigate antibiotic induced biofilm formation, we exposed cultures of E.

faecalis V583, a fully sequenced clinical isolate, to ampicillin during the first 24

hours of biofilm development. Using a bulk crystal violet staining assay (Methods),
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Figure 3.2: Antibiotics that do not target the cell wall do not enhance biofilm formation. Biofilm
mass (normalized to 1 in the absence of drug) as a function of antibiotic for E. faecalis strain V583
in BHI exposed to protein synthesis inhibitors (red box: erythromycin, spectinomycin, linezolid,
doxycycline), DNA synthesis inhibitors (blue box: ciprofloxacin, norfloxacin), RNA synthesis in-
hibitor (green box: rifampicin), and folic acid synthesis inhibitors (black box, trimethoprim). In all
panels, biofilm mass is measured by crystal violet assay (see Methods). Error bars are ± standard
error of the mean from ten replicates.

we observed a statistically significant enhancement of biofilm formation after 24 hours

in the presence of low doses of ampicillin (Figure 3.1 A). Similar effects were observed

for cells grown in different types of media (BHI, TSB) as well as for strain OG1RF,

a common laboratory strain (Figure 3.1 B), with the magnitude of the enhancement

ranging from ≈ 10− 30%.

To determine whether the biofilm enhancement was specific to ampicillin, we per-

formed similar experiments for antibiotics from multiple drug classes. Interestingly,

we observed a similar increase of biofilm mass for other drugs inhibiting cell wall

synthesis, including ceftriaxone, oxacillin, and fosfomycin (Figure 3.1 C-E), whose

mechanism of action is tightly linked to cell lysis. By contrast, drugs targeting

protein synthesis, DNA synthesis, RNA synthesis, and folic acid synthesis did not

promote biofilm formation (Figure 3.2).
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3.2.2 Biofilm enhancement occurs at subinhibitory concentrations but is associated
with increased cell lysis and extracellular nucleic acid

In ampicillin, peak biofilm formation occurs for concentrations of approximately

0.1 µg/mL, which is significantly below the reported minimum inhibitory concen-

tration (MIC) for V583. To determine whether this concentration has a measurable

effect on the viability of V583 in planktonic phase, we measured optical density time

series of V583 cultures exposed to differing drug concentrations (Figure 3.3 A). Ampi-

cillin has little effect (< 10%) on the steady state density of cells up to concentrations

of approximately 0.2 µg/mL, and the dose response curve is well-approximated by

a Hill-like function, which is commonly used in pharmacology, that exhibits a half-

maximal inhibitory concentration of K50 = 0.38± 0.01 µg/mL. Therefore, increased

biofilm formation occurs at concentrations that have little impact on planktonic cell

growth.

While these drug concentrations do not appreciably impact planktonic cell growth,

it’s possible that they still produce a measurable increase in cell lysis. To investigate

this issue, we measured cell lysis in 24 hour biofilms (Figure 3.3 B) and planktonic

cultures (Figure 3.6) using an established ATP-based luminescence assay. Indeed,

we observed increase cell lysis even for low doses of ampicillin (≤ 0.2 µg/mL), with

lysis increasing by nearly 5 fold in biofilms and several thousand fold in planktonic

cultures for the highest doses.

Because eDNA has been implicated in E. faecalis biofilm formation, we next asked

whether subinhibitory doses of ampicillin lead to increased quantities of extracellular

nucleic acids in biofilms. To answer this question, we grew 24-hour biofilms in 5 mL

cultures at various concentrations of ampicillin, harvested the biofilms and removed

cells by centrifugation, and then extracted nucleic acid from remaining supernatant.
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We then quantified DNA (RNA) following treatment with RNase (DNase) using

quantitative imaging of agarose gel electrophoresis. Both eDNA and eRNA increase

with ampicillin treatment, with eDNA (but not eRNA) increasing even at the lowest

dose (ampicillin at 0.1 µg/mL).

3.2.3 Non-antibiotic induction of cell lysis promotes biofilm formation

Because cell lysis is observed at subinhibitory doses of ampicillin, and because

lysis has been previously implicated in biofilm formation, we next asked whether

non-antibiotic inducers of cell lysis might also increase biofilm mass at small concen-

trations. To test this hypothesis, we grew biofilms in the presence of Triton X-100, a

surfactant and known inducer of cell lysis. Interestingly, we observed enhancement

of biofilm formation similar in magnitude (≈ 20%) to that observed for cell wall

inhibitors over Triton X-100 concentrations that yield similar (approximately 1.5-2

fold) increase of cell lysis (Figure 3.3 D).

3.2.4 Antibiotic-induced biofilm formation corresponds to an increase in number of
living cells

While our results indicate that biofilm mass is increased at low doses of ampicillin,

it is not clear whether this enhancement is due to an increase in the number of living

cells or merely an increase in bulk biofilm mass, which may include both viable and

non-living components. To answer this question, we grew 16 replicate biofilms at

3 different antibiotic concentrations, treated them with live-dead cell stains, and

quantified the number of live and dead cells in two-dimensional sections at single-

cell resolution using laser-scanning confocal microscopy (Methods). We observed

an average increase in the number of living cells of approximately 25%, similar in

magnitude to the effects observed in bulk experiments. These results indicate that

biofilms formed under subinhibitory concentrations contain more living cells–not
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Figure 3.3: Enhanced biofilm formation occurs at sub-inhibitory concentrations and is associated
with increased cell lysis and increased extracellular nucleic acid. A. Relative cell density (OD)
approximately 10 hours after addition of ampicillin. Solid curve, fit to (1 − (A/K50)h)−1, with A
the ampicillin concentration, K50 = 0.38 ± 0.01 µg/mL the half maximal inhibitory concentration
of the drug, and h = 3 a Hill coefficient. Inset: time series of optical density following drug
exposure at time t = 0 for ampicillin concentrations of 0 (black), 0.2 µg/mL (blue), 0.4 µg/mL
(red), 0.6 µg/mL (green), 0.8 µg/mL (magenta), and 1.0 µg/mL (cyan). B. Cell lysis (relative to
untreated cells) as a function of ampicillin as measured by ATP assay (see Methods). Error bars
are ± standard error of the mean from eight replicates. Dashed line, fit to 1 + a2/r00, with a the
ampicillin concentration (measured in units of the drug’s half maximal inhibitory concentration
(K50)) and r00 = 0.010±0.001. C. Abundance of extracellular DNA (eDNA, blue) or RNA (eRNA,
yellow) as a function of ampicillin concentration. D. Triton X-100, a known inducer of cell lysis,
enhances biofilm formation at low concentrations. Biofilm mass is measured by crystal violet assay
(see Methods), and error bars are ± standard error of the mean from eight replicates. Inset: cell
lysis (relative to untreated cells) as a function of Triton X-100 concentration. Red points correspond
to peak in biofilm formation.
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Figure 3.4: Enhanced biofilm formation corresponds to an increase in the number of living cells.
Top panels: example laser scanning confocal images from biofilms exposed to ampicillin at different
concentrations (0, left panel; 0.1 µg/mL, middle panel; 0.2 µg/mL, right panel) and post-treated
with live (green) and dead (red) stains. Main panel: Relative count of live cells and dead cells (inset)
as a function of ampicillin concentration. Counts are normalized relative to the total number of
live cells in the absence of drug, which is set to 1. Error bars are ± standard error of the mean
taken over a total of 48 two dimensional slices per condition (three z-slices of each biofilm and 16
total biofilms per condition).

merely an increase in non-living mass–than those formed in the absence of drug.

3.2.5 A simple mathematical model describes biofilm induction as a balance between
beneficial cell lysis and costly drug efficacy

To quantify the trade-offs between antibiotic efficacy and “beneficial” cell lysis,

we developed a simple mathematical model describing the number of living cells N

and the number of lysed (dead) cells D in a biofilm. Specifically, we have

∂N

∂t
= g

(
1− N

K

)
N − rN + cLD

∂D

∂t
= rN − γD

(3.1)
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In the first equation, the first term describes logistic growth (with per capita growth g

and carrying capacity K > 0), the second describes cell death (lysis) with rate r ≥ 0,

and the last term describes the increase in biofilm mass due to surface attachment

of living cells in the planktonic phase, a process which is coupled to the number

of lysed cells D and controlled by a parameter c > 0. It is straightforward to

show that models without this coupling do not exhibit a drug-induced maximum in

biofilm mass (see SI). While the mechanism of coupling is not specified in the model,

this term could describe eDNA-induced attachment of planktonic cells, assumed to

occur at a rate proportional to both the living cells in solution (L) and the lysed

cells in the biofilm (D). In the second equation, the first term accounts for cell

lysis and the second term describes a decay of dead (lysed) cell material due to, for

example, detachment from the biofilm. The model implicitly assumes that the effect

of antibiotic on cells in the planktonic phase occurs on a fast timescale, allowing L

to reach a steady state on the timescale of biofilm formation. This assumption is

consistent with experimental measurements, where planktonic populations reach a

steady state size after approximately 10 hours (Figure 3.3), while the biofilms we

study are formed over a 24 hour period. The model includes two parameters, r and

L, that depend on drug concentration, which we call a.

In the steady state, the living biofilm mass N is given by

N

K
= 1 + r0(a) (L0(a)− 1) , (3.2)

where r0(a) = r(a)/g and L0(a) = cL(a)/γ are (rescaled) functions describing the

rate of cell lysis and the number of living cells in planktonic solution as a function

of drug, a. Equation 3.2 illustrates a simple balance between the biofilm-inducing

properties of lysis (proportional to L0(a)) and the biofilm reducing effects of lysis.

A more detailed analysis shows that when L0(a) > 1, the maximum biofilm mass
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Figure 3.5: Minimal mathematical model predicts qualitative changes in peak location and height
following external perturbations. A simple mathematical model that couples cell lysis to biofilm
formation describes qualitative features of biofilm enhancement. The model contains two free
parameters (ε and r01) which can be estimated from the peak height and peak location in biofilm
enhancement curves (e.g. Figure 3.1 or Figure 3.4). A. Left panel (Theory): Living biofilm mass
(n∗, solid line) as a function of ampicillin for parameter values ε = 1.18 ± 0.01 and r01 = 19 ± 4
estimated from living biofilm cell counts (i.e. solid curve in upper right panel). Dashed curve shows
the predicted change in peak location and height due to perturbations that reduce the coupling ε
by several percent. Right panels (Experiment): relative biofilm mass (solid curves) as a function of
ampicillin from confocal microscopy (see also Figure 3.4) and bulk experiments (see also Figure 3.1).
Dashed curves: identical experiments but with DNase added at a concentration of 400-500 µg/mL.
B. Left panel (Theory): Living biofilm mass (n∗, solid line) as a function of ampicillin for parameter
values ε = 1.09 ± 0.02 and r01 = 18 ± 6 estimated from bulk experiments (i.e. solid curve in right
panel). Dashed curve shows the predicted change in peak location and height due to perturbations
that decrease cell lysis. Right panel (Experiment): relative biofilm mass (solid curve) as a function
of ampicillin from bulk experiments (see also Figure 3.1). Dashed curves: identical experiments but
with polyamethoid sulfonate, a known inhibitor of cell lysis, at a concentration of 10 µg/mL. Error
bars represent ± standard error of the mean.
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can occur for a > 0, i.e., the model exhibits a peak in biofilm mass at a non-zero

concentration of drug (SI).

Fortunately, the functions r0(a) and L0(a) can each be estimated–up to a scaling

constant–by independent experiments. Specifically, using the data in Figure 3.3

A, we take L0(a) = ε/(1 + ah), where h = 3 a Hill coefficient and a is mea-

sured in units of the drug’s half-maximal inhibitory concentration, estimated to be

K50 = 0.38± 0.01 µg/mL. Similarly, based on the measurements in Figure 3.3 B, we

take r0(a) = r01 (1 + a2/r00), with r00 = 0.010 ± 0.001. It should be noted that we

assume a simple quadratic dependence of lysis on a to match the experimental mea-

surements; this should be viewed as a simple parameterization of the experimental

lysis measurements and does not imply any particular mechanism. The quadratic

dependence of lysis on a could depend on complex pharmacological and pharmaco-

dynamics of the antibiotics, and we do not attempt to model those here.

The remaining two parameters, ε and r01, are scaling parameters that can be

estimated from biofilm data. Because the measured value of r00 << 1, we can derive

approximate solutions for the location (amax) and height (ph) of the biofilm peak

(SI). Specifically, the peak location is given by

amax ≈
(

2(ε− 1)

4 + ε

)1/3

(3.3)

and the peak height is given by

ph ≈ 1 +
3

5

(
2

5

)2/3

r01(ε− 1)5/3. (3.4)

It is clear from these expressions that an optimum in biofilm production occurs at a

nonzero concentration a when ε > 1, and the effect of further increasing ε is to shift

the peak to higher a and increase its height.
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3.2.6 Mathematical model predicts changes to peak height and location due to ex-
ternal perturbations

While it is straightforward to estimate ε and r01 from biofilm experiments–for

example, ε = 1.09 ± 0.02 and r01 = 18 ± 6 based on the bulk experiments in Fig-

ure 3.1 A–it is more instructive to consider the qualitative predictions of the model

as parameters are varied. To express these scaling parameters in terms of the original

(physical) parameters, let’s write L(a) as the product of a normalized drug-dependent

component (1/(1 + ah)) and a scaling constant α, which represents the number of

living cells in planktonic phase at drug concentration a = 0. It is then clear that

ε = cα
γ

. Increasing ε therefore corresponds to 1) increasing the coupling between

biomass material and lysis (c), 2) decreasing the decay rate of lysed cell material

in the biofilm (γ), and/or 3) increasing the number of living cells in solution (α) at

constant a = 0.

Our model predicts that perturbations that decrease ε will lower the peak height

(Figure 3.5 A, left panel; Figure 3.7, bottom left). To test this prediction experimen-

tally, we repeated both bulk and microscopy experiments in the presence of DNase.

Because eDNA has been implicated as the molecular conduit linking cell lysis to

biofilm formation, we expect DNase treatment to decrease ε by effectively lowering

the coupling parameter c (that is, to reduce the beneficial effects of cell lysis). Indeed,

biofilms treated with DNase exhibit lower peaks (Figure 3.5 A, right panels). It is

worth noting that the model also predicts a slight shift in the location of the peak,

but the resolution of the experimental data is insufficient to evaluate that prediction

quantitatively. A second way of decreasing ε would be to decrease the number of

living cells in planktonic phase (α). One possibility is to treat the cells with a second

(non-lysis-inducing) antibiotic; indeed, treatments with tetracycline and rifampicin
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decrease the height of the peak to almost zero (Figure 3.8), though we cannot rule

out additional mechanisms, including interactions between the antibiotics.

Because the peak in biofilm production appears liked with cell lysis, one would

expect chemical inhibitors of cell lysis to significantly impact the peak height and/or

location, though the exact effects are not clear a priori. In terms of the model, the

primary effect of decreasing cell lysis would be to shift r0(a) → r0(a) − β, with β a

positive constant (or equivalently, a shift in r00 → r00 − β/r01). While these effects

would not be evident at the level of the approximate equations (Equations 3.3, 3.4),

we can easily evaluate the predicted effects numerically (Figure 3.5B, left panel, and

Figure 3.7, bottom right panel). Decreasing lysis is predicted to shift the peak lo-

cation to higher drug concentrations and, somewhat counterintuitively, leads to an

increase in the relative height of the peak. In words, a higher concentration of antibi-

otic is needed to achieve sufficient cell lysis to induce increased biofilm production.

To test this prediction experimentally, we repeated the experiment in the presence

of polyamethoid sulfonate, a known inhibitor of cell lysis. Polyamethoid sulfonate

inhibits cell lysis by approximately 40% in the absence of drug at the concentrations

used (Figure 3.8). Indeed, treatment with the lysis inhibitor leads to a shift in

optimal biofilm mass to higher drug concentrations and increases the relative size of

the peak.

3.3 Discussion

Our work demonstrates that biofilm formation in E. faecalis is enhanced by subin-

hibitory concentrations of cell-wall synthesis inhibitors, but not by other classes of

antibiotics. Enhanced biofilm is associated with increased cell lysis and an increase

in eDNA and eRNA. We observed similar enhancement effects when cultures were
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treated with non-antibiotic chemicals that induce similar amounts of cell lysis. To

quantify the trade-off between drug toxicity and the beneficial effects of cell lysis, we

developed a simple mathematical model that predicts changes to the magnitude and

concentration-dependence of optimum biofilm formation induced by external pertur-

bations that reduce eDNA, reduce living cells in the planktonic phase, or inhibit cell

lysis.

Subinhibitory concentrations of antibiotics have been reported to promote biofilm

formation in multiple species [67, 18], but studies in E. faecalis are relatively rare.

Subinhibitory antibiotic concentrations have previously been shown to impact the

physioelectrical [78] and adhesion behavior [79] of E. faecalis. In addition, low con-

centrations of tigecycline have been shown to reduce biofilm formation, even when

growth of planktonic cells is not significantly affected [80]. To our knowledge, this is

the first work to describe enhancement of biofilm formation due to cell wall synthesis

inhibitors in E. faecalis.

While our findings are consistent with recent findings supporting the role of eDNA

in biofilm formation, other mechanisms may also contribute to the observed increase

in biofilm formation. For example, recent work has shown that eDNA is prevalent in

biofilms even at the early developmental stages when cell lysis is minimal [81]. We

cannot rule out contributions from similar non-lysis-based mechanisms for increasing

eDNA to the observed biofilm enhancement. In addition, it is well-known that sub-

MIC levels of antibiotic can dramatically alter gene expression profiles in bacteria [82,

83, 84], indicating that biofilm enhancement may arise from a complex combination

of multiple factors.

We also stress that our mathematical model is a dramatic oversimplification of

the complex biofilm-formation process. Computational models of biofilm forma-
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tion may contain dozens or even hundreds of microscopic parameters, yet even the

most elaborate mathematical models neglect biological details at some scale. Our

approach was not to develop a detailed microscopic model, but rather to develop

a simple, minimal model to help intuitively explain and predict the trade-offs be-

tween antibiotic efficacy and beneficial cell lysis at the population level. Linking our

model with more detailed agent-based simulations may help us further understand

the potential role of spatial structure and heterogeneity in drug-induced biofilm for-

mation. For example, recent work has shown that in the absence of drug, E. faecalis

biofilm formation depends on a phenotypic bistability in gene expression, giving rise

to lysis-susceptible and lysis-inducing sub-populations [69, 70, 71, 72, 73]. It would

be interesting to further explore the interplay between this multi-modal population

structure and drug-induced lysis observed in this work.

Our work also raises intriguing questions about how genetic resistance determi-

nants might spread in biofilm populations, even in the absence of the strong selection

pressure of high drug concentrations. A quantitative understanding of biofilm for-

mation may also inspire new optimized dosing protocols, similar to those in, for

example, [85, 86, 87] developed for planktonic populations. In the long run, these

results may lay the groundwork for improved, systematic design of biofilm-specific

therapies [88, 89].

3.4 Supplemental Information

3.4.1 Mathematical Model

To model lysis-induced biofilm formation, we consider a simple model given by

∂N

∂t
= g

(
1− N

K

)
N − rN + cLf(D)

∂D

∂t
= rN − γD

(3.5)
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where N is the number of living cells in the biofilm, D is the number of dead (lysed)

cells, and L is the number of living cells in the planktonic media. In the first equa-

tion, the first term describes logistic growth (with per capita growth g and carrying

capacity K > 0), the second describes cell death (lysis) with rate r ≥ 0, and the last

term describes the increase in biofilm mass due to surface attachment of living cells

in the planktonic phase. When f(D) is a constant, cells attach to the biofilm at a

rate proportional to the number of cells in the planktonic phase (L > 0) times a rate

parameter c > 0; more general choices for f(D) couple biofilm induction to cell lysis,

which we show below is required to achieve a peak in N as a function of lysis. In the

second equation, the first term accounts for cell lysis and the second term describes a

decay of dead (lysed) cell material due to, for example, detachment from the biofilm.

The model includes two parameters, r and L, that depend on drug concentration,

which we call a. In what follows, we begin our analysis under mild assumptions on

r(a) and L(a). Then, for a more detailed analysis, we resort to specific functional

forms which can be estimated, up to a scaling constant, directly from experimental

data.

3.4.2 Biofilm formation uncoupled from lysis

We first consider a simple case where biofilm formation is uncoupled from cell

lysis, i.e. f(D) = constant (which we subsume into the constant c without loss

of generality). In this case, Equation 3.5 can be written in terms of dimensionless

variables n = N/K, d = Dg/(Kr), and rescaled time τ = tg as

∂n

∂τ
= (1− n)n− r0n+ L0

∂d

∂τ
= n− γ0d

(3.6)
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where r0 = r/g, L0 = cL/(gK), and γ0 = γ/g. In the steady state, we have

n∗ =
1

2

(
1− r0 +

√
(1− r0)2 + 4L0

)
d∗ =

1

2γ0

(
1− r0 +

√
(1− r0)2 + 4L0

) (3.7)

where we have kept only the physically meaningful (positive) root. It is straight-

forward to show that this steady state is always a stable fixed point (trJ < 0 and

detJ > 0, where J is the Jacobian of the system in Equation 3.6 evaluated at (n∗, d∗)).

It is intuitively clear that this model does not exhibit a non-zero peak in n∗

as a function of antibiotic a. Recall that the dependence on a arises from r0(a)

and L0(a), which are functions of drug concentration. If we make the physically

reasonable assumptions that, for a > 0, r′0(a) > 0 (lysis increases with drug) and

L′0(a) < 0 (planktonic cells decrease with drug)–both of which are consistent with

experimental measurements–the derivative of n∗(a) is always negative. Specifically,

we have

∂n∗(a)

∂a
=

1

2

(
r′0(a)(λ− 1) +

2L′0(a)√
4L0(a) + (r0(a)− 1)2

)
(3.8)

where primes indicate differentiation with respect to a and λ = r0(a)−1√
4L0(a)+(r0(a)−1)2

.

Because |λ| ≤ 1, both terms are negative, indicating that n∗(a) is always decreasing

and cannot exhibit a maximum for a > 0.

3.4.3 Biofilm formation coupled to lysis

To capture experimental observations in a minimal model, we consider Equa-

tion 3.5 with f(D) = D, so that the number of dead (lysed) cells is coupled to living

biofilm mass. We can write Equation 3.5 in terms of rescaled variables n = N/K,

d = Dg/(Kr), and τ = tg as

∂n

∂τ
= (1− n)n− r0n+ L0r0d

∂d

∂τ
= n− γ0d

(3.9)
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where r0 = r/g, L0 = cL/γ, and γ0 = γ/g. In the steady state, we have

n∗ = 1 + r0 (L0 − 1)

d∗ =
1

γ0

(1 + r0 (L0 − 1))

(3.10)

We restrict our analysis to the physically-meaningful regime r0(1 − L0) ≤ 1, where

the steady state values n∗ and d∗ are positive semi-definite. In this regime, the steady

state solution Equation 3.10 is always a stable fixed point (trJ < 0 and detJ > 0,

where J is the Jacobian of the system in Equation 3.9 evaluated at (n∗, d∗)).

To look for a peak in biofilm (living) mass as a function of a, we again consider

r0 → r0(a) and L0 → L0(a) with r′0(a) > 0 (lysis increases with drug) and L′0(a) < 0

(planktonic cells decrease with drug). Differentiating Equation 3.10 with respect to

a, we have

∂n∗(a)

∂a
= r0(a)L′0(a) + (L0(a)− 1) r′0(a). (3.11)

It is clear that ∂n∗(a)
∂a
≤ 0 when L0(a) ≤ 1. However, an optimum (∂n

∗(a)
∂a

= 0) can

occur when L0 is sufficiently large, i.e. when

L0(a) =

∣∣∣∣r0(a)L′0(a)

r′0(a)

∣∣∣∣+ 1 (3.12)

In words, the existence and location of an optimum is determined by properly scaled

functions–and the corresponding first derivatives–describing lysis (r0(a)) and the

decay of living cells in the planktonic phase (L0(a)) as a function of drug. Both

of these functions can be independently measured–up to a scaling constant–in our

experiments. In turn, these two scaling constants become free parameters which can

be estimated, for example, from the peak height and peak location in our biofilm

experiments.

To make further analytical progress, we assume that r(a) and L(a) take the fol-

62



Figure 3.6: Subinhibitory concentrations of ampicillin increase cell lysis in planktonic populations.

lowing functional forms

r0(a) = r01(r00 + a2)

L0(a) =
ε

(1 + ah)

(3.13)

where r00 and r01 describe the increase in lysis as a function of a, ε is a positive

definite parameter that captures the effective coupling between biofilm formation and

cell lysis, h is a hill coefficient, and a is measured in units of the drug’s half-maximal

inhibitory concentration (IC50). Based on experimental measurements (Figure 3.3),

we estimate r00 = 0.010 ± 0.001 << 1, h = 3.2 ± 0.2, and the drug’s IC50 is given

by 0.38 ± 0.01 µg/mL. For mathematical simplicity, we take h = 3 in what follows.

As we will see, the remaining two parameters (ε and r01) determine the location and

the height of the peak in biofilm production as a function of a.

Plugging Equations 3.13 into Equation 3.12 yields a nonlinear equation that can

be solved numerically to yield the peak location amax,

2a6
max + (4 + ε)a3

max + 3εr00amax + 2(1− ε) = 0. (3.14)

It is clear that Equation 3.14 has amax > 0 solutions only when ε > 1. Because we

expect this peak to occur in the subinhibitory regime of antibiotic concentration, we

assume a << 1 and ignore the sixth order term to give

a3
max + δamax + ω = 0 (3.15)
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Figure 3.7: Changes in ε and r00 shift peak location and peak height. Top left: Approximate equa-
tion for peak location (Equation 3.19, red dashed) and exact value (black). Top right: Approximate
equation for peak height (Equation 3.20, red dashed), ε ≈ 1 expansion (Equation 3.21, blue dashed)
and exact value (black). Bottom left: Peak height vs. peak location (exact) for 1 ≤ ε ≤ 1.6. Bottom
right: Peak height vs. peak location (exact) for 0 ≤ r00 ≤ 0.2. Parameters r00, r01 and ε were
chosen to match the range observed in experiments. r01 = 20 for all panels. r00 = 0.01 for top
panels and bottom left panel. ε = 1.2 for bottom right panel.

with δ ≡ 3εr00
4+ε

and ω ≡ 2(1−ε)
(4+ε)

. Since r00 is estimated to be on the order of 10−2, we

assume δ << 1 and expand amax in a power series as

amax = a0 + a1δ + ... (3.16)

Subbing this expression into Equation 3.15 and equating like powers of δ, we have

a0 = (−ω)1/3 =

(
2(ε− 1)

4 + ε

)1/3

(3.17)

and

a1 = − 1

3a0

= − 1

3
(

2(ε−1)
4+ε

)1/3
. (3.18)

To first order in δ, then, the peak location is given by

amax =

(
2(ε− 1)

4 + ε

)1/3

− εr00

(4 + ε)2/3 (2(ε− 1))1/3
(3.19)

We can also plug Equation 3.19 into the expression for n∗ (Equation 3.10) to get an

expression for the peak height, ph. The full expression is cumbersome, even to first
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Figure 3.8: Left panel: Addition of a second (non-lysis-inducing) drug reduces the height of the
biofilm peak. Black circles: ceftriaxone only. Green triangles: ceftriaxone combined with rifampicin
(0.3 µg/mL). Red triangles: ceftriaxone combined with tetracycline (0.2 µg/mL). Right panel:
polyamethoid sulfonate reduces cell lysis.

order in δ, but the 0th order approximation (δ = 0) is given by

ph = 1 +
22/3(ε2 + ε− 2)r01

2 + 3ε

(
ε− 1

4 + ε

)2/3

(3.20)

For ε just above 1, the expression can be expanded to yield

ph ≈ 1 +
3

5

(
2

5

)2/3

r01(ε− 1)5/3 (3.21)

which makes it clear that increasing ε increases the peak height.

Figure 3.7 shows that the approximate solutions derived above capture the ε

dependence of peak height and peak location well (top panels). The model predicts

that increasing ε leads to an increase in both peak height and peak location (bottom

left panel). On the other hand, increasing r00 leads to a decrease in both peak height

and peak location (bottom right panel). It’s instructive to consider these trends in

terms of the original model parameters. Rewriting Equation 3.13 in terms of the

original model parameters, we have

cL(a)

γ
=

ε

(1 + ah)
. (3.22)

Let’s write L(a) as the product of a normalized drug-dependent component (1/(1 +

ah)) and a scaling constant α that describes a-independent changes in the number of
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living cells in solution. It is then clear that ε = cα
γ

. Increasing ε therefore corresponds

to 1) increasing the coupling between biomass material and lysis (c), 2) decreasing the

decay rate of lysed cells (γ), and/or 3) increasing the number of living cells in solution

(α) at constant a. In terms of experimental perturbations, ε could be decreased by

treating biofilms with DNase, which underlies the hypothesized biological coupling

between lysis and biofilm formation. This treatment would therefore be expected

to decrease c. A second way of decreasing ε would be to decrease the number of

living cells in planktonic phase (α). One possibility is to treat the cells with a second

(non-lysis-inducing) antibiotic; indeed, treatments with tetracycline and rifampicin

decrease the height of the peak to almost zero (Figure 3.8), though we cannot rule

out additional mechanisms, including interactions between the antibiotics.
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CHAPTER IV

Spatial Pattern Formation in Antibiotic Resistant Bacterial
Populations

4.1 Introduction

There are numerous observations of spatial patterns formed by different species of

bacteria grown in non-liquid media [90]. An example of interesting pattern formation

is a series of concentric rings formed by Escherichia coli on semi-solid agar plates

and was reported in early 1991 [91]. Bacterial growth patterns can vary dramatically

as growth conditions, such as medium type, the amount of nutrients, and hardness

of agar surface, are varied; transitions between morphotypes can be seen by altering

these factors. For example, bacteria can move faster and form compact patterns on

plates with more nutrients or less agar. However, on poor media plates, some bacteria

can have branching shaped patterns via group motility or chemical signals [92]. When

exposed to antibiotic stress, a larger variety of growth patterns can be observed due,

in part, to unfavorable environmental stress [93].

These works have revealed large-scale bacterial coordination within colonies which

have, in turn, contributed to a deeper understanding of microbial evolution and ge-

netics. The results have also led to the development of new theoretical models,

including reaction-diffusion aggregation [94] and the walker model [95], which have

been used to successfully predict spatial patterns in some cases [96]. The meth-
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ods are particularly useful for populations containing a single species, but they are

not easily extended to mixtures of two or more species. On the other hand, in the

absence of cooperation/competition interactions, so called “stepping stone” models

(see Section 4.1.1) have been especially powerful for explaining genetic demixing phe-

nomenon, with large scale experimental observables linked–in some cases–to analyt-

ical expressions containing microscopic parameters. Unfortunately, despite the great

success of these models for non-interacting populations, they often fail to describe

complex interaction phenomena observed in real experiments containing multiple

species.

In this chapter, we investigate pattern formation in mixed bacterial populations

containing antibiotic sensitive and antibiotic resistant strains of the same species

(either E. coli or E. faecalis). In both species, antibiotic resistance is conferred

by over-expression of the enzyme β-lactamase, which degrades drugs from the β-

lactam class (in our case, ampicillin). Similar types of enzyme-mediated resistance

have recently shown to be a cooperative phenomenon in both liquid cultures [97]

and in microscopic colonies [98], allowing sensitive cells to survive in the presence

of resistant cells, even at high drug concentrations. However, little is known about

how this cooperation might impact spatial pattern formation in mixed populations

exposed to drug, though a deeper understanding of the phenomenon could provide

insight into theoretical population dynamics while also enriching our understanding

of how drug resistance determinants spread in microbial communities.

While the E. coli and E. faecalis resistant strains both exhibit resistance via

enzyme production and the associated drug degradation, they differ in important

ways that may impact pattern formation. First, E. coli are mobile bacteria which

exhibit self-propelled motility on soft agar; by contrast, E. faecalis are typically not
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motile. In addition, E. faecalis are round (coccus), while E. coli are rod-shaped;

such microscopic shape differences have been recently predicted to influence large-

scale colony growth [99].

In what follows, we first review the stepping stone model (Section 4.1.1) and

show how it can be used to estimate microscopic parameters (diffusion constants)

in simple microbial populations. Then, we discuss our experiments used to measure

the velocity of colony expansion and segmentation using time-resolved scanning and

fluorescence microscopy, first in single-species populations and later in more complex

situations. We demonstrate experimentally that populations of E. coli and E. faecalis

both exhibit features of cooperative drug resistance but shown dramatically different

spatial patterns. Finally, we briefly discuss how adaptations of a stochastic lattice

model will allow us to quantitatively investigate the different patterns and density

effects observed experimentally.

4.1.1 Stepping Stone Model

Stepping stone model was proposed by Motoo Kimura in 1964 [100] and is very

useful to study spatial segmentation of bacterial populations. Similar to the Wright-

Fisher and Moran models [101], this model includes genetic drift, selection, migration

and mutation. It can be extended to study high dimensions and a large number of

alleles; for simplicity, however, here we use the one-dimensional model and consider

only two alleles which can approximate the population expansion front with low cell

density.

Assume there is an infinite array of colonies which are separated by distance L and

each colony can have N0 individual cells with two alleles. During every generation, a

random individual selected from each colony can grow and another individual would

die at the same time. But due to selection, individual with different alleles can have
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different growth rates. The individual with allele one would be chosen to grow with

probability w1f/(w1f + w2(1 − f)), where f is fraction of allele one in each colony,

w1 and w2 are growth rates of allele one and two respectively. Their offspring can

mutate from allele one to two with a probability µ12 or from allele two to one with a

probability µ21. Individuals can also migrate to left or right neighbor colonies with

a probability of m/2. In the continuous space limit, we can derive the equation for

f ,

∂f

∂t
= Ds

∂2f

∂x2
+ sf(1− f) + µ21 − (µ12 + µ21)f +

√
Dgf(1− f)Γ, (4.1)

where Γ is a white noise and arises from random genetic drift within each colony,

Ds = mL2/2 and s = 2(w1 − w2)/(w1 + w2). We calculate spatial heterozygosity

H as a measurement of degree of spatial assortment, and it is close to 0 when local

extinction occurs. The equation for H is given by

H(t, x1 − x2) = 〈f(t, x1)(1− f(t, x2)) + f(t, x2)(1− f(t, x1))〉, (4.2)

where the bracket means average over all possible locations.

If there is no selection process, which means an individual with allele one has the

same fitness as the individual with allele two, and if we also ignore mutation process,

then equation of H in polar coordinates is [102],

∂H(t, φ)

∂t
=

2Ds

(R0 + vt)2

∂2H(t, φ)

∂φ2
− Dg

R0 + vt
H(t, 0)δ(φ), (4.3)

where φ is the angle, R0 is initial radius of sample droplet, v is expansion velocity,

Dg is genetic diffusion constant and Ds spatial migration constant. H is given as

H(t, φ1 − φ2) = 〈f(t, φ1)(1− f(t, φ2)) + f(t, φ2)(1− f(t, φ1))〉. (4.4)

It is possible to solve equation 4.3 exactly and calculate the number of isolated
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sectors N when t is very large [102],

N(t→∞) =
2πH(0, φ)v

Dg

+H(0, φ)

√
2πR0v

Ds

. (4.5)

Since N is linear with
√
R0, by varying radius of initial sample and counting sector

numbers in experiment, we will be able to calculate diffusion constants from this

equation by least-squares fitting [103].

Unfortunately, if selection, mutation or cooperation plays an important role in

the dynamics, the analytical calculation is significantly more complicated [104] [102]

and the differential equations can not be solved analytically because the hierarchy

of moment equations does not close. In what follows, we will see that the stepping

stone model above provides accurate estimates of simple population dynamics for

our system in the absence of antibiotic, but more complex models are required to

describe the cooperative and density-dependent pattern formation observed in the

presence of antibiotic.

4.2 Results

4.2.1 Quantitative Measurements of Colony Growth and Segmentation

As described in Chapter V, I used a commercial document scanner, customization

of previously developed Matlab code [105], and fluorescence microscopy to measure

pattern formation and dynamics during colony growth. To visualize the bacteria, we

labeled wild-type (blue) and resistant (red) strains of both E. coli and E. faecalis

using previously available reporter plasmids that constitutively express fluorescent

proteins of the appropriate color. By scanning the plates over time, I collected time

series of colony growth and used it to estimate expansion velocity and then used flu-

orescence microscopy to image colonies at the final time step and observe segmented

regions. This experimental setup is convenient because on each agar plate, multiple
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Figure 4.1: Scanner image of one plate without ampicillin. Fraction of resistant cells is 0.1. Dilution
rates are 1, 10, 100 and 1000.

colonies can be grown and measured at the same time. When studying cooperation

between resistant and sensitive cells, different concentrations of antibiotic ampicillin

(AMP) will be added into the agar plates. As mentioned previously, resistant strains

can express β-lactamase enzyme which can break down the β-lactam ring structure

of antibiotic and thus deactivate its antibacterial activity. Sensitive cells will also

benefit from this process and have a chance to survive in the hostile environment.

The sample volume, population composition (fraction of resistant cells), and the

dilution level (overall population density) of the initial sample can be easily varied

to explore their effects on pattern formation. Figure 4.1 shows the scanner image

of a plate without AMP. Different colonies represent different resistant fractions

and different initial dilutions (initial population densities). As one might expect,

stochastic fluctuations lead to a roughening of the colony frontier when dilution rate

is high or initial cell density is low.
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Figure 4.2: Number of sectors as a function of square root of radius. Black curve is least-squares
fitting and initial fraction of resistant cells in mixture is 0.5. Blue curve is least-squares fitting and
initial fraction of resistant cells in mixture is 0.1.

4.2.2 Pattern formation in Drug-Resistant Escherichia coli Communities

In Section 4.1.1, it is shown that number of isolated sectors is linear with square

root of initial radius of the sample when there is no selection pressure and mutation.

To confirm this prediction, we varied the initial radius of the colony by using different

volumes of samples, and then 1) measured time series of colony radii and 2) counted

the number of sectors at the final time point, after 3 days incubation. In figure 4.2,

we use theoretical predictions from the stepping stone model to estimate diffusion

constants in mixtures of drug sensitive and drug resistant E. coli in the absence of

drug.

The average velocity of expansion is about 1.72 ± 0.05 × 10−2 µm/s. The initial

radius is about 2.8 mm for 3 µL sample and can vary a lot among different droplets

even with the same volume. It looks like the droplet with mixture inside would

expand as a whole for a little bit ( 0.2 mm) and then start segmentation.
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(a) Microscope image of one resistant colony
without dilution.

(b) Microscope image of one sensitive colony
without dilution.

0 1000 2000 3000 4000 5000 6000

Time (mins)

0

1

2

3

4

5

6

7

A
re

a
 (

p
ix

e
ls

)

10
4

(c) Area of each colony on one plate as a func-
tion of time.
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(d) Radius of each colony on one plate as a
function of time.

Figure 4.3: ScanLag and Microscope images of one plate without ampicillin. Note that the early-
time measurements in c and d are not accurate because we will detect many small separated cells
within initial droplet area until they merge to one large colony.
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Figure 4.4: Scanner image of one plate with 1 µg/mL ampicillin. Dilution rates are 1, 10, 100 and
1000.

4.2.2.1 Founder cell density has enhanced impact on segmentation in the presence of
ampicillin

In the presence of antibiotic, we expect that spatial pattern formation will exhibit

evidence of cooperation. To investigate this question, we repeated the mixed-species

experiments in the presence of ampicillin. First, in the absence of drug, we found that

decreasing the number of founder cells (with a fixed starting volume) leads to a higher

degree of assortment (less segmentation), an effect that is predicted by Equation 4.5.

However, the effects of founder cell density are considerably enhanced in the presence

of antibiotic (Figures 4.4 and 4.5). A similar phenomenon was recently observed in

two cooperative strains of Bacillus subtilis on agar plates, though the mechanism

of cooperation was significantly different [106]. Our observations could be partially

explained by cooperation, and a full quantitative analysis is currently in progress

(see below).
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Figure 4.5: Scanner image of one plate with 2 µg/mL ampicillin. Dilution rates are 1, 10, 100 and
1000.

4.2.2.2 High drug concentrations affect appearance time for initial colony but not
final colony size

We also observe several other trends in the presence of ampicillin. At low con-

centrations (< MICs), the final colony area and radius are very similar to the drug

free (no AMP) case (Figure 4.4). However, as ampicillin concentration is increased

(Figures 4.5 and 4.6) the final colony sizes can be comparable with the no AMP case,

even though the appearance time for sensitive colonies alone can be much longer. It’s

possible that these delays indicate the presence of so-called “persister cells”, which

are drug-tolerant and start to grow after a long incubation time [107]. In addition,

we observe local segmentation in the middle of the colony when dilution rate is high

in figure 4.6 (b).
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(a) Area of each colony on one plate as a function of
time.

(b) Microscope image of one resistant colony
with dilution rate 100.

Figure 4.6: ScanLag and Microscope images of one plate with 2 µg/mL ampicillin.

4.2.2.3 Fraction of resistant cells depends on antibiotic concentration and initial cell
density

As ampicillin concentration is increased, we found that resistant cells will become

dominant at higher dilution rates (see Figure 4.7; compare two colonies in right side

of third row which has no dilution, and last two colonies at the bottom which has

1000 dilution rate). These results are consistent with recent results in liquid culture,

where the fraction of resistance cells at stationary phase is proportional to antibiotic

concentration and inversely proportional to initial cell density [97]. In addition, we

found that the shape of the resistant cell colonies, as shown in figure 4.8, will change

dramatically when dilution rates are increased.

4.2.2.4 Sensitive cells do not survive high antibiotic concentrations unless initial pop-
ulation density is sufficiently high

In figure 4.9, we see that sensitive cells will not grow at low initial densities due

to high concentration of antibiotic, but they can survive in a mixed population as

long as the initial population density is sufficiently high. The microscope images for

mixture colonies with high dilution rates are purely red with no special structures

inside.
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Figure 4.7: Scanner image of one plate with 3 µg/mL ampicillin. Dilution rates are 1, 10, 100 and
1000.

(a) Microscope image of one resistant colony
with dilution rate 10.

(b) Microscope image of one resistant colony
with dilution rate 100.

Figure 4.8: Microscope images of one plate with 3 µg/mL ampicillin.
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(a) Scanner image of one plate with 4 µg/mL
ampicillin.

(b) Scanner image of one plate with 5 µg/mL
ampicillin.

Figure 4.9: Scanner images of one plate. Dilution rates are 1, 10, 100 and 1000.

4.2.3 Enterococcus faecalis exhibit dramatically different spatial patterns and dy-
namics than E. coli

E. faecalis exhibit significantly different colony morphologies and spatial patterns

than those observed in E. coli. As shown in figure 4.10, colonies are compact with

a significantly smoother front. In addition, microscope figures 4.11 also showed

very different shapes. When rod-like cells (E. coli) mixed together, they tend to

have fractal shape, whereas coccal cells (E. faecalis) show clear vertical boundaries

through the colony, a finding that is consistent with recent work indicating that cell

morphology can greatly affect bacterial spatial pattern [99].

As shown in figure 4.12, size of each colony is smaller than E. coli and expansion

velocity is about 6.65±0.08×10−3 µm/s, which is almost half of that for E. coli. This

velocity is comparable with some other motile species [103], but we have to know

that colony expansion is also related to nutrient concentration, agar concentration,

medium type and so on.

As concentrations of ampicillin increased, sensitive cells die but can still grow in

mixture, and resistant cells start to dominate at higher dilution rates. We will see

79



Figure 4.10: Scanner image of one plate without ampicillin. Fraction of resistant cells is 0.1.
Dilution rates are 1, 10, 100 and 1000.

(a) Microscope image of one resis-
tant colony without dilution.

(b) Microscope image of one resis-
tant colony with dilution rate 100.

(c) Microscope image of one resis-
tant colony with dilution rate 1000.

Figure 4.11: Microscope images of one plate without ampicillin.
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(a) Area of each colony on one plate as a func-
tion of time.
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(b) Radius of each colony on one plate as a
function of time.

Figure 4.12: ScanLag images of one plate without ampicillin.

interesting patterns in figures 4.13, 4.14, 4.15 and 4.16 at higher dilutions, and it is

difficult for resistant cells to survive at high concentration of antibiotic as well.

4.2.4 Stochastic Lattice Model

While the stepping stone model is a powerful tool for simple populations, it is not

easy to extend the analytical results to two-dimensions or to incorporate complex

cooperative interactions. To investigate the source of the spatial patterns observed

in our experiments, we adapted a simple, lattice-based stochastic model that can be

used to simulate our experiment results [103]. As proof of principle, we simulated

colony growth on a lattice size of 1000*1000 and with a local carrying capacity of

30 at each spatial location. The simulation was started with a mixture population

N = 10000 in the center of the lattice. The initial radius can vary according to

different conditions, typically R0 = 40, which is consistent with measured pixels in

our experiment.

During each time step, each island will have the chance to grow and migrate.

First, one randomly choses an individual from a point; the migration rate is then

proportional to the fraction of the cells on the point and the fraction of vacancies on

a randomly selected nearest-neighbor point. The growth probability is proportional
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(a) Scanner image of one plate. (b) Microscope image of one resistant colony
without dilution.

(c) Microscope image of one resistant colony
with dilution rate 100.

(d) Microscope image of one resistant colony
with dilution rate 1000.

Figure 4.13: Microscope images of one plate with 1 µg/mL ampicillin.
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(a) Scanner image of one plate. (b) Microscope image of one resistant colony
without dilution.

(c) Microscope image of one resistant colony
with dilution rate 10.

(d) Microscope image of one resistant colony
with dilution rate 100.

Figure 4.14: Microscope images of one plate with 2 µg/mL ampicillin.

(a) Scanner image of one plate. (b) Microscope image of one resis-
tant colony without dilution.

(c) Microscope image of one resis-
tant colony with dilution rate 10.

Figure 4.15: Microscope images of one plate with 3 µg/mL ampicillin.
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(a) Scanner image of one plate. (b) Microscope image of one resis-
tant colony without dilution.

(c) Microscope image of one resis-
tant colony with dilution rate 10.

Figure 4.16: Microscope images of one plate with 4 µg/mL ampicillin.

to the fraction of the cells on the point and fraction of vacancies as well. As shown

in figure 4.17, it is straightforward to measure the growth of a colony and observe

dynamics for a wide range of conditions.

4.2.4.1 Model captures basic features of stepping stone model but allows for incor-
poration of complex interactions

To begin investigating our experimental observations, we increased the initial ra-

dius by increasing the total volume and keeping cell density constant. I assume

population number is proportional to R2
0. The model exhibits a linear relation be-

tween number of sectors and square root of radius (Figure 4.18), similar to what is

predicted in the stepping stone model.

Our ongoing work is focused on adapting the lattice model above to incorporate

cooperative effects of antibiotic resistance. To do so, we assume that cell death occurs

stochastically at a rate r that decreases linearly with the number of resistant cells

in the local lattice site. Indeed, this simple model exhibits cooperation and density

effects similar to those seen in experiment; for example, in the presence of antibiotic

at high concentrations, the sensitive cell population will not survive if the initial

population density is sufficiently low (Figure 4.19). Our current work is focused on

investigating the impact of cooperation on spatial patterns in both motile and non-
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(a) Spatial pattern model of a colony expan-
sion.
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(b) Area as a function of time.
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(c) Radius as a function of time.
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(d) Heterozygosity as a function of polar angle.

Figure 4.17: Images of stochastic modeling without antibiotic. Time=1000, initial fraction of
resistant cells is 0.5. Blue and red color represents sensitive and resistant cells respectively, black
color means mixture.
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Figure 4.18: Number of sectors as a function of square root of radius. Blue curve is least-squares
fitting and initial fraction of resistant cells in mixture is 0.1.

motile cells. While the current simulation mimics many of the features of E. coli

pattern formation, we expect that a more sophisticated model will be needed for the

patterns observed in non-motile cells.

4.3 Conclusion

We have developed a quantitative experimental platform for studying dynamics

and steady-state spatial patterns of fluorescently labeled bacterial populations grow-

ing on agar plates. The setup involves a commercial document scanner controlled

by customized Matlab software, adapted from a similar setup developed in [105],

and can be used to track colony size over time. At the final time point, spatial pat-

terns are visualized with high spatial resolution to investigate pattern formation in

multicolored communities. We have found that both E. coli and E. faecalis commu-

nities comprised of sensitive and drug-resistant cells exhibit colony growth dynamics

and spatial patterns consistent with a simple stepping stone model in the absence

of antibiotic. However, the addition of antibiotic leads to considerably more com-

plex behavior, including cooperation between sensitive and resistant cells leading to
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(a) Spatial pattern model of a colony expan-
sion. Initial cell number is 10000.
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(b) Spatial pattern model of a colony expan-
sion. Initial cell number is 100.

Figure 4.19: Images of stochastic modeling with antibiotic. Time=500, killing rate d = d0(1-fraction
of resistant cells), d0 = 0.1, initial fraction of resistant cells is 0.1. Blue and red color represents
sensitive and resistant cells respectively, black color means mixture.

(a) Spatial pattern model of a colony expan-
sion. Initial cell number is 10000 and killing
rate d = 0.02.

(b) Spatial pattern model of a colony expan-
sion. Initial cell number is 100 and killing rate
d = 0.2.

Figure 4.20: Images of stochastic modeling with antibiotic. Time=500, initial fraction of resistant
cells is 0.1. Blue and red color represents sensitive and resistant cells respectively, black color means
mixture.
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density-dependent extinction of the sensitive subpopulation. We also observe striking

differences in the patterns formed between the two bacterial species. To investigate

these trends, we’ve developed a simple stochastic model of colony growth that can be

easily extended to incorporate complex interactions and competition between cells.

Our preliminary results indicate that a local spatial coupling between the death rate

of sensitive cells and the local density of resistant cells captures some qualitative

features of our experiments. As a whole, our set-up allows for the quantitative study

of spatial patterns and provides a framework for ongoing studies on the impact of

cooperative antibiotic resistance on spatial pattern formation in multiple bacterial

species.
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CHAPTER V

Materials and Methods

5.1 Bacterial strains and media

The bacteria used in my study are Enterococcus faecalis V583, OG1RF and Es-

cherichia coli MG1655. The vancomycin resistance strain V583 was isolated from

blood culture of patients in 1987 [108]. OG1RF was derived from human oral isolate

OG1 [109]. MG1655 is a commonly used wild-type E. coli and was derived from

original K-12 isolate [110].

In order to label strains with different fluorescent colors, ATUM ProteinPaintbox

was purchased and FPB-54-441 was used for E. coli fresno red fluorescent protein

(RFP), which has Isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible promoter

with kanamycin marker of 25 µg/mL resistance. Blue fluorescent protein (BFP) was

originally from plasmid pBAD-mTagBFP2 [111] and was Gibson assembled onto

the same backbone as fresno RFP. Plasmid used to construct resistant E. coli was

pFPV-mCherry, which can express β-lactamase enzyme and mCherry fluorescent

protein [112]. These plasmids were then transformed into E. coli MG1655 using

standard transformation protocols.

The plasmid vector used for E. faecalis was pBSU101 [113], which has a 120

µg/mL spectinomycin resistance marker and constitutively expresses GFP. FPB-31-

441 rudolph RFP or BFP color region was inserted into pBSU101 to replace GFP
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Bacterial Strains and Plasmids Characteristics Chapter

E. faecalis V583 Wild-type Chapter III

E. faecalis OG1RF Wild-type Chapter III

E. coli MG1655 + IPTG-Fresno
RFP + pFPV-mCherry

IPTG inducible, 25 µg/mL
kanamycin resistance, Fresno
RFP and β-lactamase enzyme

Chapter IV

E. coli MG1655 + IPTG-BFP
IPTG inducible, 25 µg/mL

kanamycin resistance and BFP
Chapter IV

E. faecalis OG1RF +
pBSU101-Rudolph
RFP-β-lactamase

120 µg/mL spectinomycin
resistance, Rudolph RFP and

β-lactamase enzyme
Chapter IV

E. faecalis OG1RF +
pBSU101-BFP

120 µg/mL spectinomycin
resistance and BFP

Chapter IV

Table 5.1: A list of bacterial strains and plasmids used in this project.

and provide multiple colors. To make resistant E. faecalis, the β-lactamase gene

and the corresponding promoter was amplified by PCR from the chromosome of E.

faecalis HH22 [114] and then Gibson assembled onto pBSU101. These plasmids were

finally transformed into E. faecalis OG1RF.

E. faecalis bacteria was inoculated from single colony grown on brain heart in-

fusion (BHI) medium with 1.5% (w/v) bacteriological agar added. E. coli bacteria

was inoculated from lennox lysogeny broth (LB) agar. All media were prepared us-

ing millipore water and were sterilized by autoclaving at 121◦C for 15 minutes. E.

faecalis strains were grown overnight in BHI or tryptic soy broth (TSB) medium at

37◦C without shaking. E. coli strains were grown overnight in LB medium at 30◦C

with continuous shaking at 200 rpm.

For long-term storage, bacterial stocks were made by mixing overnight culture

with sterilized 30% glycerol solution. All antibiotics used in my study in table 5.1

were sterilized by passing 0.22 µm filter, aliquoted and kept at -20 or -80◦C for no

more than 3-6 months.

All chemicals and media were purchased from Sigma-Aldrich or Fisher Scientific

unless stated otherwise.
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Antibiotics Description Abbreviation
Ampicillin Interfere with bacterial cell wall synthesis AMP

Vancomycin Cell wall synthesis inhibitor VAN
Ceftriaxone Cell wall synthesis inhibitor CEF
Tazobactam Cell wall synthesis inhibitor TAZ
Fosfomycin Cell wall synthesis inhibitor FOS
Oxacillin Cell wall synthesis inhibitor OXA

Chlorhexidine Disrupt cell membrane CHL
Gentamicin Inhibit 30s subunit GEN
Tetracycline Inhibit 30s subunit TET
Tigecycline Inhibit 30s subunit TIG
Doxycycline Inhibit 30s subunit DOX

Spectinomycin Inhibit 30s subunit SPEC
Kanamycin Inhibit 30s subunit KAN

Erythromycin Inhibit 50s subunit ERY
Linezolid Inhibit 50s subunit LIN

Ciprofloxacin DNA synthesis inhibitor CIP
Norfloxacin DNA synthesis inhibitor NOR

Nitrofurantoin Cell wall, protein, DNA and RNA synthesis inhibitor NIT
Rifampin RNA synthesis inhibitor RIF

Trimethoprim Folic Acid synthesis inhibitor TRI

Table 5.2: A list of antibiotics used in this project.

5.2 Growth curves of Enterococcus faecalis

E. faecalis V583 overnight culture was diluted 100 times into fresh BHI medium,

and then 200 µL diluted culture was added to each well of a 96-well plate. Different

concentrations of antibiotics were added when measuring killing rates or minimum

inhibitory concentrations (MICs). EnSpire Multimode Plate Reader was used to

incubate and measure optical density at a wavelength of 600 nm every 15 minutes

for 24 hours at 30◦C. BHI medium was used as a blank. Each condition under test

would have a few replicates.

5.3 Microtiter plate biofilm assay

Overnight cultures of E. faecalis V583 were diluted 1:100 into fresh BHI medium.

100 µL of dilution culture with different concentrations of antibiotics or chemicals was

added to each well of a flat-bottomed polystyrene microtiter 96-well plate (Greiner
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Bio-One Cellstar). For each treatment we had 6-12 replicates. The plate was incu-

bated at 37◦C without shaking for 24 hours.

After incubation, we dumped out liquid cultures by turning over the plate, shaking

and patting on paper towels. Wells were then gently washed washed and shaken with

fresh phosphate buffered saline (PBS). To fix biofilm on the plate, 125 µL 96% ethanol

was added into each well for 20 minutes. Ethanol was then dumped and we let the

plate dry at room temperature for half an hour. 125 µL 0.5% crystal violet [115] [116]

was then added to stain the whole biofilm mass. After 30 minutes, we washed plate

by pipetting PBS twice, and then rinsed it twice into a tub of PBS and dumped

out liquid. The plate was turned upside down and dried for 1 hour. Finally, 125 µL

30% acetic acid was added to each well in order to dissolve biofilm. Solutions were

transferred to a new 96-well plate and absorbance readings at 590 nm were taken

using Enspire multimodal plate reader.

5.4 ATP detection assay

Biofilms were grown with different concentrations of antibiotics or chemicals in

a 96-well plate for 24 hours. We then washed the plate twice with nuclease-free

water and dumped out liquid. 10 µL nuclease-free water was added to each well

and biofilms were scraped down by using inoculation loops or pipette tips. Solutions

were transferred to a new 96-well white polystyrene plate (Thermo Scientific Nunc

F96 MicroWell) and 90 µL ATP standard assay solution from ATP Determination

kit (Molecular Probes) was added to each sample. Luminescence was measured by

plate reader.
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5.5 Confocal laser scanning microscopy

200 µL bacterial cultures wth ampicillin or DNase I were grown in a 16-well

chambered coverglass vessels. Four replicates for each treatment were made. After

incubating for 24 hours, liquid was removed and plate was washed twice with filtered

millipore water and then stained using LIVE/DEAD BacLight Bacterial Viability

kit (Molecular Probes) for 20 minutes. We then dumped out liquid again, removed

upper structure of the vessel and attached a coverglass on top of it.

Zesis LSM700 confocal laser scanning microscope was used to examine biofilm

samples. For each well, four image stacks were taken at similar locations on the

cover slip. Thickness of a biofilm is typically about 20-30 µm and the spacing be-

tween slices is 1 µm. To analyze images, we split them into red and green channels,

adjusted brightness/contrast and set threshold individually using automated thresh-

olding algorithms in ImageJ. We then performed watershed algorithm to segment

cells and finally measured number of live or dead cells for each slice within biofilms.

5.6 DNA techniques

5.6.1 Extracellular DNA/RNA extraction

Biofilms were grown with ampicillin 0, 0.1 and 0.2 µg/mL in 6-well polystyrene

plates with a total volume of 5 mL for each well. Each treatment had three replicates.

After 24 hours, we dumped out liquid and washed the plate twice with PBS. 1 mL

1X Tris-EDTA (TE, 10mM Tris-Cl, 1 mM EDTA, pH=8.0) buffer was added into

each well and we then scraped down biofilms from bottom of plates.

After harvesting biofilms, cells were centrifuged down and supernatant was puri-

fied by using only binding and washing steps in QIAprep Spin Miniprep kit according

to the manufacturer’s instruction. 5 volumes of PB buffer was added to 1 volume
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of supernatant and mixed. 800 µL of solution was transferred to a spin column and

centrifuged at 13000 rpm for 1 minute. 0.5 mL PB buffer was added to wash the spin

column and centrifuged for 1 minute. 0.75 mL PE buffer was added to spin column

and centrifuged again for 1 minute. The flow-through was discarded and residual

was removed by centrifuging spin column for an additional 1 minute. Transferred

spin column in a new 1.5 mL microcentrifuge tube and 30 µL EB buffer was added

to the center of the spin column. Let it stand for 1 minute and then centrifuged for

1 minute to elute DNA. DNase I or RNase was added to the same treatment samples

as controls.

5.6.2 Agarose gel electrophoresis

We first rinsed gel tray and related tools with nuclease-free water and then made

1% agarose gel with 1X Tris-acetate-EDTA (TAE, pH=8.4) buffer according to size

of DNA fragments. Appropriate volume of SYBR safe was added into agarose gel.

We then filled chamber with 1X TAE buffer and samples were loaded according to

the well size. The gel was run at 120V for 40 mins. DNA or RNA fragments were

virtualized under UV light from UV transilluminator. To analyze images, ImageJ

software was used to subtract background and perform intensity analysis for different

lanes. The same size of regions were selected for different lanes and a profile plot of

each lane was drawn. A straight line across the base of peak was drawn to enclose

the peak, and the wand tool was used to select each peak and measure percentage

of relative densities.

5.6.3 Transformation by electroporation

150 mL culture of E. faecalis was grown overnight in BHI medium. 30 mL of

liquid culture was aliquoted into chilled 50 mL centrifuge tube. We harvested cells
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by centrifuging at 5000g for 15 minutes, resuspended pellet in 30 mL chilled 10%

glycerol, and centrifuged again. We then repeated wash step with 15 mL chilled

glycerol and again with 6 mL glycerol. The pellet was resuspended in 600 µL chilled

glycerol and transferred to a chilled 1.5 mL microcentrifuge tube. After centrifuging

for 15 minutes, resuspended pellet in 200 µL glycerol.

1.5 mL overnight culture of E. coli was diluted in 150 mL fresh super optimal

broth (SOB). The culture was grown with shaking until optical density reached 0.4-

0.5. Cells were harvested by centrifuging 30 mL culture at 6500g for 7 minutes. We

washed pellet with 30 mL chilled nuclease-free water and centrifuged, resuspended

pellet in 1 mL nuclease-free water, and transferred suspension to a new microcen-

trifuge tube. After centrifuging at 17000g for 1 minute, we resuspended the pellet in

200 µL nuclease-free water.

Plasmids were extracted and purified by using QIAprep Spin Miniprep kit in 5.6.1.

Appropriate DNA solutions were mixed with electrocompetent cells in a chilled epo-

rator cuvette. The cuvette was then charged and fired at certain voltage. The

mixture was added in 1 mL fresh media and grown for 3 hours. After outgrowth,

100 µL culture was dispensed on a selective plate and grown overnight.

5.7 RNA sequencing

We prepared biofilm samples following the same protocols in 5.6.1 with ampi-

cillin 0, 0.125 and 0.25 µg/mL. RNA extraction was performed by using a Qiagen

RNeasy mini kit in combination with RNAprotect Bacteria Reagent and RNase-Free

DNase Set. TE buffer (30 mM Tris-Cl, 1 mM EDTA, pH=8.0) containing 50 mg/mL

lysozyme was prepared.

2 volumes of bacteria reagent were added to 1 volume of biofilm culture and
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mixed by vortexing for 5 seconds. After incubating for 5 minutes, the culture was

centrifuged at 5000g for 10 minutes and then supernatant was discarded. 10 µL

Qiagen proteinase K and 200 µL TE buffer was added to resuspend the pellet. After

vortexing for 10 seconds, solution was incubated for 20 minutes and vortexed for 10

seconds every 2 minutes. 700 µL RLT buffer was added and the tube was centrifuged

for 2 minutes at a maximum speed. 500 µL 96% ethanol was added and mixed by

pipetting. 700 µL lysate was then transferred to a spin column and centrifuged at

13000 rpm for 15 seconds. The flow-through was discarded and 350 µL RW1 buffer

was added to spin column. The spin column was centrifuged again for 15 seconds.

10 µL DNase I and 70 µL RDD buffer was then added and incubated for 15 minutes.

350 µL RW1 buffer was added to spin column and incubated for 5 minutes, and

then centrifuged for 15 seconds. The spin column was transferred to a new 2 mL

collection tube. 500 µL RPE buffer was added and centrifuged to wash the spin

column membrane. Washed it again by adding 500 µL RPE buffer and centrifuging

or an additional 2 minutes. Finally, the spin column was transferred in a new 1.5

mL collection tube. 30 µL RNase-free water was added and centrifuged for 1 minute

to elute RNA.

According to manufacturer’s instruction, total RNA was isolated with high qual-

ity. Ribosomal RNA removal, RNA-seq libraries preparation and measurements were

performed by University of Michigan DNA sequencing core by using HiSeq 50 cycle

single-read stranded RNA method.

After checking RNA quality, short-sequence reads were annotated onto NCBI ref-

erence by using Bowtie 2 [117] and alignments were sorted by using SAMtools [118].

Differential gene expression analysis was performed by using Cuffdiff [119] and Cum-

meRbund [120], and then BioVenn [121] was used for comparisons between different
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treatment cases. Differentially express genes were obtained based on criteria that

false discovery rate (FDR) value <= 0.05 and |log(fold change)| (FC) >= 0.5. Sig-

nificant proteins were used to determine the Clusters of Orthologous Groups (COG)

of proteins.

5.8 Scanner Tracking of Microbial Colonies

We used the previously described “ScanLag” technique to record growth dynamics

of cells on agar plates at high temporal and spatial resolution [107]. This technique

could be customized for use in my study in order to automatically monitor pattern

formation and help to understand growth and cooperation process when working

with two cell types.

A commercial document scanner (Epson Perfection V370 Flatbed scanner) was

set up and controlled by a laptop using scanning manager application files can be

downloaded from JoVE [105] and installed on laptop. Petri dishes with appropriate

medium and different concentrations of antibiotics were prepared and 1.0% (w/v)

bacteriological agar was added. Cultures of interested bacteria were grown overnight

in appropriate medium with relative antibiotics and then diluted in fresh medium

until optical density reached 0.1. Cells were centrifuged down and resuspended in

nuclease-free water. Different ratios of cell compositions and densities were created

based on based on experimental requirements. 1-15 µL droplets of culture were

plated on agar plates. The plates were covered with black cloth to absorb moisture

and placed on the scanner (at most 6 plates). The laptop was able to control the

scanner to automatically take images every 15-20 minutes over 2-3 days.

Finally, we developed customized Matlab software to analyze these images and

measure characteristics of colonies. By labeling and tracking sizes of colonies, the

97



appearance time of each colony could be measured to determine antibiotic stresses.

Radius and area of each colony were also recorded in order to calculate growth rates

of bacteria.

The plates were also imaged at the final time step by using Olympus fluorescence

microscope with monochrome camera. These images were processed and analyzed

to study dynamics and genetic demixing phenomenon between two types of cells.
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