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2.1 True and saddlepoint approximation for the difference of gamma random variables 37
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2.8 Simulation using T = max(x̄/ȳ, ȳ/x̄) with exponential data and small n = nx =

ny under H0 : Px = Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2.13 Simulation using T = |x̄ − ȳ| with gamma data and small nx 6= ny under H0 :

Px = Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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2.20 MCC: Simulation using T = |x̄ − ȳ| with normal data and small sample sizes

under H0 : Px = Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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Abstract

Part I: Permutation Testing

Chapters 1 and 2: Fast Approximation of Small p-values in

Permutation Tests by Partitioning the Permutations

Researchers in genetics and other life sciences commonly use permutation tests to evaluate

differences between groups. Permutation tests have desirable properties, including exactness

if data are exchangeable, and are applicable even when the distribution of the test statistic

is analytically intractable. However, permutation tests can be computationally intensive.

We propose both an asymptotic approximation and a resampling algorithm for quickly

estimating small permutation p-values (e.g. < 10−6) for the difference and ratio of means

in two-sample tests. Our methods are based on the distribution of test statistics within and

across partitions of the permutations, which we define. We present our methods and demon-

strate their use through simulations and an application to cancer genomic data. Through

simulations, we find that our resampling algorithm is more computationally efficient than an-

other leading alternative, particularly for extremely small p-values (e.g. < 10−30). Through

application to cancer genomic data, we find that our methods can successfully identify up-

and down-regulated genes. While we focus on the difference and ratio of means, we speculate

that our approaches may work in other settings

Chapter 3: Tests of Matrix Structure for Construct Validation

Psychologists and other behavioral scientists are frequently interested in whether a ques-

tionnaire reliably measures a latent construct. Attempts to address this issue are referred to

as construct validation. We describe nonparametric hypothesis testing procedures to assess

matrix structures, which can be used for construct validation. These methods are based on

a quadratic assignment framework, and can be used either by themselves or to check the

robustness of other methods. We investigate the performance of these matrix structure tests

xii



through simulations, and demonstrate their use by analyzing a big five personality traits

questionnaire administered as part of the Health and Retirement Study. We also derive the

rate of convergence for our overall test to better understand its behavior.

Part II: Semiparametric regression

Chapter 4: P-Splines with an `1 Penalty for Repeated Measures

P-splines are penalized B-splines, in which finite order differences in coefficients are typically

penalized with an `2 norm. P-splines can be used for semiparametric regression and can

include random effects to account for within-subject variability. In addition to `2 penalties,

`1-type penalties have been used in nonparametric and semiparametric regression to achieve

greater flexibility, such as in locally adaptive regression splines, `1 trend filtering, and the

fused lasso additive model. However, there has been less focus on using `1 penalties in

P-splines, particularly for estimating conditional means.

We demonstrate the potential benefits of using an `1 penalty in P-splines, with an em-

phasis on fitting non-smooth functions. We propose an estimation procedure using the alter-

nating direction method of multipliers and cross validation, and provide degrees of freedom

and approximate confidence bands based on a ridge approximation to the `1 penalized fit.

We also demonstrate potential uses through simulations and an application to electrodermal

activity data collected as part of a stress study.

xiii
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Chapter 1

Fast Approximation of Small p-values

in Permutation Tests by Partitioning

the Permutations

1.1 Introduction and Motivation

Many researchers in the life sciences use permutation tests, for example, to test for differential

gene expression (Doerge and Churchill, 1996, Morley et al., 2004, Stranger et al., 2005, 2007,

Raj et al., 2014), and to analyze brain images (Nichols and Holmes, 2001, Bartra et al.,

2013, Simpson et al., 2013). These tests are useful when the sample size is too small for

large sample theory to apply, or when the distribution of the test statistic is analytically

intractable. Permutation tests are also exact, meaning that they control the type I error

rate exactly for finite sample size (Lehmann and Romano, 2005). However, permutation

tests can be computationally intensive, especially when estimating small p-values for many

tests. In this chapter, we present computationally efficient methods for approximating small

permutation p-values (e.g. < 10−6) for the difference and ratio of means in two-sample tests,

though we speculate that our methods will also work for other smooth function of the means.

We denote the two groups of sample data as x = (x1, . . . , xnx)′ and y = (y1, . . . , yny)′,

with respective sample sizes nx and ny. We denote the full data as z = (x′,y′)′, with total

sample size N = nx + ny. Writing z = (z1, . . . , zN)′, we have that zi = xi, i = 1, . . . , nx,

and znx+j = yj, j = 1, . . . , ny. In our setting, zi are scalar values for all i = 1, . . . , N . We

use π to denote a permutation of the indices of z, i.e. π : {1, . . . , N} → {1, . . . , N} is a

bijection, and we denote the permuted dataset corresponding to π as z∗ = (z∗1 , . . . , z
∗
N)′,

where z∗π(i) = zi, i = 1, . . . , N . We use the term correspondence throughout this chapter, so
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for clarity, we define our use of the term in Definition 1.1.

Definition 1.1 (Correspondence). Let z = (z1, . . . , zN)′ be the N -dimensional vector of ob-

served data, and let π : {1, . . . , N} → {1, . . . , N} be a bijection (permutation) of the indices

of z. We say that the N -dimensional vector z∗ = (z∗1 , . . . , z
∗
N)′ corresponds to permutation

π if z∗π(i) = zi for all i = 1, . . . , N .

It will also be useful to write the permuted dataset as z∗ = (x∗′,y∗′)′, where x∗ =

(z∗1 , . . . , z
∗
nx

)′ and y∗ = (z∗nx+1, . . . , z
∗
N)′ are the permuted group samples.

Let T be a test statistic, such that larger values are more extreme, and let t = T (x,y)

be the observed test statistic. Similar to Lehmann and Romano (2005, p. 636), we denote

the permutation p-value as p̂ = Pr(T ≥ t|z) = |Ψ|−1
∑

π∈Ψ I[T (x∗,y∗) ≥ t], where Ψ is

the set of all permutations of the indices of z, |Ψ| = N ! is the number of elements in Ψ, I

is an indicator function, and for each π, (x∗′,y∗′)′ is the corresponding permuted dataset.

The randomization hypothesis (Lehmann and Romano, 2005, Definition 15.2.1) asserts that

under the null hypothesis, the distribution of T is invariant under permutations π ∈ Ψ. This

allows, for example, for the null hypothesis H0 : zi
iid∼ P, i = 1, . . . , N , or more generally, for

exchangeability, H0 : P (Z1 = z1, . . . ZN = zn) = P (Z1 = z∗1 , . . . , ZN = z∗N) for all permuted

datasets z∗.

The set Ψ is typically too large to evaluate fully, so Monte Carlo methods are usually

used to approximate p̂. When resampling with replacement, also known as simple Monte

Carlo resampling, the Monte Carlo estimate of p̂ is p̃ = (B + 1)−1
(∑B

b=1 I [Tb ≥ t] + 1
)

,

where B is the number of resamples, and Tb = T (x∗,y∗) for (x∗′,y∗′)′ corresponding to the

bth randomly sampled permutation πb. We refer to the above estimate as the adjusted p̃,

because it adjusts the estimate to ensure it stays within its nominal level (Lehmann and

Romano, 2005). However, for simplicity and to be consistent with other computationally

efficient methods, particularly that of Yu et al. (2011), we use the unadjusted p̃, in which we

remove the ‘+1’ from the numerator and denominator.

While there may be many reasons for obtaining accurate small p-values, perhaps they are

most often obtained in multiple testing settings, which are common in genetics. For example,

in the analysis we present in Section 1.6, we analyze 15,386 genes for differential expression.

With a Bonferroni correction and a type I error rate of α = 0.05, to control the family-wise

error rate (FWER), we would need to estimate p-values < 0.05/15, 386 ≈ 3.25×10−6. While

one might want to use a different correction to control the FWER, false discovery rate (FDR),

or other criteria, we would still need to calculate small p-values before implementing typical

step-up or step-down procedures (for example, Holm (1979) to control FWER, or Benjamini

and Hochberg (1995) to control FDR). These p-values, in combination with content area
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expertise and other statistical quantities, such as effect size, can be useful for prioritizing

genes for further laboratory and statistical analysis.

As noted by Kimmel and Shamir (2006) and Yu et al. (2011), with simple Monte Carlo

resampling, to estimate p-values on the order of p̂ = 10−6 with a precision of σp̂ = p̂/10, we

need on the order of B = 108 resamples when using simple Monte Carlo resampling. For

example, to separately estimate 5,000 p-values that are each on the order of 10−6, we would

need a total of 5, 000× 108 = 5× 1011 resamples.

Several researchers have developed methods for reducing the computational burden of

permutation tests, including Robinson (1982), Mehta and Patel (1983), Booth and Butler

(1990), Kimmel and Shamir (2006), Conneely and Boehnke (2007), Li et al. (2008), Han et al.

(2009), Knijnenburg et al. (2009), Pahl and Schäfer (2010), Zhang and Liu (2011), Jiang and

Salzman (2012), and Zhou and Wright (2015). For comparisons with our method, we focus

on the stochastic approximation Monte Carlo (SAMC) algorithm developed by Liang et al.

(2007) and tailored to p-value estimation by Yu et al. (2011). Of the available methods,

we found that SAMC was the most appropriate comparison, because: 1) we could directly

apply it to the test static in our motivating application (see Section 1.6), 2) it is intended

for very small p-values, and 3) it does not require derivations, so is more likely to be used

in practice.

In this article, we propose alternative methods for quickly approximating small permuta-

tion p-values for the difference and ratio of the means in two-sample tests. Our approaches

partition the permutations such that p̃ has a predictable trend across the partitions. Taking

advantage of this trend, we develop both a closed form asymptotic approximation to the

permutation p-value, as well as a computationally efficient resampling algorithm.

We find through simulations that our resampling algorithm is more computationally effi-

cient than the SAMC algorithm, which in turn is 100 to 500,000 times more computationally

efficient than simple Monte Carlo resampling (Yu et al., 2011). However, SAMC is a more

general algorithm and can be used for a greater variety of statistics. The increase in efficiency

is most notable for our algorithm when estimating extremely small p-values (e.g. < 10−30).

Our asymptotic approximation tends to be less accurate than our resampling algorithm but

does not require resampling.

Before presenting our methods, we briefly explain the underlying properties that make

them possible. The two basic components underlying our methods are 1) the partitions,

which we define, and the distribution of permutations across these partitions, and 2) the

limiting behavior of test statistics within each partition, and the trend in p-values across the

partitions. We address the first component in Section 1.2 and the second in Section 1.3.

In Section 1.4, we introduce methods for estimating permutation p-values that take
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advantage of the properties discussed in Sections 1.2 and 1.3. In Section 1.5, we investigate

the behavior of these methods through simulations and compare against the SAMC algorithm

(additional simulations and comparisons against other methods are in Chapter 2). Then in

Section 1.6, we use our proposed methods to analyze cancer genomic data. In Section 1.9, we

end with a discussion of limitations and possible extensions. As noted under Supplementary

material, we have implemented our methods in the R package fastPerm.

1.2 Partitioning the Permutations

1.2.1 Defining the Partitions

Let the smaller of the two sample sizes be nmin = min(nx, ny). We define the distance between

permutation π and the observed ordering of the indices (1, 2, 3, . . . , N) as the number of

observations that are exchanged between x and y under the action of π. To be precise, let

ω(π) be the set of indices that π places in one of the first nx positions, i.e. ω(π) = {i ∈
{1, . . . , N} : π(i) ≤ nx}. Then we define the distance, denoted as d(π), between permutation

π and the observed ordering, as

d (π) = nx − |ω(π) ∩ {1, 2, . . . , nx}|. (1.1)

We define partition m, denoted as Π(m), as the set of all permutations a distance of m

away from the observed ordering, i.e. Π(m) = {π : d (π) = m}, m = 0, 1, . . . , nmin. As de-

scribed below, our proposed methods focus on the permutation distributions of test statistics

when resampling is restricted to permutations from a single partition.

To see why this definition of distance is useful, and to foreshadow our method, suppose

that µx 6= µy, and note that as observations are exchanged between x and y, the empirical

distributions of the permuted samples x∗ and y∗ tend to become more similar. Consequently,

test statistics that measure changes in the mean tend to become less extreme. For example,

suppose that n = nx = ny with n even, and let z∗ = (x∗′,y∗′)′ be a permuted dataset

corresponding to a permutation π ∈ Π(n/2). Then half of the observations in x∗ are from

x and half are from y, and the same is true for y∗. Consequently, we would expect x̄∗ ≈ ȳ∗,

where x̄∗ and ȳ∗ are the means of the permuted samples.

To make this explicit, and again assuming that n = nx = ny, let δπx = (δπx,1, . . . , δ
π
x,n)′ and

δπy = (δπy,1, . . . , δ
π
y,n)′ be n×1 indicator vectors designating which observations are exchanged

between x and y under the action of permutation π:

δπx,i =

1 if π(i) > n

0 if π(i) ≤ n
, i = 1, . . . , n, δπy,j =

1 if π(n+ j) ≤ n

0 if π(n+ j) > n
, j = 1, . . . , n.
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Under the action of permutation π, x̄∗ = n−1
[
(1− δπx)′x+

(
δπy
)′
y
]
, where 1 is an n × 1

vector of ones. Assuming uniform distribution of the permutations π, E [δπx |π ∈ Π(m)] =

(m/n)1, an n×1 vector with all elements equal tom/n. Consequently, E[x̄∗|π ∈ Π(m),x,y] =

x̄+ (m/n)(ȳ − x̄) and E[ȳ∗|π ∈ Π(m),x,y] = ȳ + (m/n)(x̄− ȳ).

Then, for example, with the test statistic T = x̄ − ȳ, we have that E[T (x∗,y∗)|π ∈
Π(m),x,y] = (x̄ − ȳ)(1 − 2m/n), where x∗,y∗ are the permuted samples corresponding to

a permutation π ∈ Π(m), m = 0, . . . , n. This shows that the expected value of T is zero

when for both x∗ and y∗ half of the observations are from x and half are from y, i.e. in the

m = n/2 partition. Similarly, the magnitude of T is |x̄ − ȳ| when either none or all of the

observations are exchanged between x and y (partitions m = 0 and m = n, respectively).

This example demonstrates that test statistics tend to be less extreme when the permuted

group samples, x∗ and y∗, each contain a mixture of elements from the observed group

samples, x and y. Similar results hold for unbalanced sample sizes.

1.2.2 Distribution of the Partitions

Uniform sampling of the permutations π leads to a non-uniform distribution of the partitions

Π(m). The probability of drawing a permutation from partition m under uniform sampling,

which we denote as f(m),m = 1, . . . , nmin, is given by

f (m) ∝ |Π(m)| (π ∼ Uniform)

=

(
nx
m

)(
ny
m

)
,

where the last line follows directly from the definition of Π(m). The normalizing constant is∑nmin

j=0

(
nx

j

)(
ny

j

)
=
(
N
nmin

)
, so

f (m) =

(
N

nmin

)−1(
nx
m

)(
ny
m

)
. (1.2)

As described in Section 1.4, in our proposed methods, we use f to weight the partition-

specific p-values in order to obtain an overall p-value.

We note that in practice, directly using (1.2) to calculate f(m) is not possible for large nx

and ny, because the binomial coefficients become too large to represent on most computers.

However, by noting the relationship between the gamma function and factorials, we can

compute (1.2) for large sample sizes with the equivalent form:

f (m) = exp{log Γ(nx + 1)− log Γ(nx −m+ 1)

+ log Γ(ny + 1)− log Γ(ny −m+ 1)− 2 log Γ(m+ 1)

− log Γ(N + 1) + log Γ(N − nmax + 1) + log Γ(nmax + 1)},
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where log Γ is the log gamma function.

1.3 Trend in p-values Across the Partitions

In this section, we describe the trend in p-values across the partitions both with asymptotic

and simulated results. The results described in this section are given in greater detail in

Section 1.8 and are the basis for our proposed methods.

Let T be a two-sided test statistic that is a function of the means, such that larger values

are more extreme. In particular, we study T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄). T is a

random variable, and we could calculate its value for all permutations of the data to get its

permutation distribution.

We use two notations for the arguments to T : T (x,y) and T (m). T (x,y) denotes

the test statistic computed with data x,y, e.g. T (x,y) = |x̄ − ȳ|, and T (m) denotes

the test statistic computed with some permuted dataset z∗, where z∗ corresponds to a

permutation π ∈ Π(m). This notation facilitates further analysis in Section 1.8. We note

that Pr (T (m) > t|z) = Pr (T (x∗,y∗) > t|z, π ∈ Π(m)), i.e., T (m) = T (x∗,y∗) restricted to

permutations in partition m. To be concrete, we could in principle compute the partition-

specific permutation p-value, Pr(T (m) > t|z), as p̂(m) = |Π(m)|−1
∑

π∈Π(m) I[T (x∗,y∗) ≥ t],

where for each π ∈ Π(m), (x∗′,y∗′)′ is the corresponding permuted dataset.

While we are primarily interested in two-sided statistics T in this chapter, it helps to

first note results for their one-sided counterparts, which we denote by R. In particular,

R = x̄− ȳ and R = x̄/ȳ. Similar to before, let R(m) = R(x∗,y∗) restricted to permutations

in partition m. As shown in Corollary 1.2 of Section 1.8, under certain regularity conditions

and sufficiently large sample sizes, R(m) ∼ N(ν(m), σ2(m)), where ν(m) and σ2(m) are

functions of the partition m as well as the sample means and variances of x and y. The

regularity conditions are standard assumptions for finite sample central limit theorems and

the delta method, requiring that the tails of the distributions of the data are not too large

and that the derivative of R exists at the means.

As described in Corollary 1.3 of Section 1.8, a direct consequence of the limiting normality

of R(m) is that for nx and ny sufficiently large,

Pr (T (m) ≥ t|z) ≈ 2−Φ [ξ (min {m, 2mmax −m})]−Φ
[
ξconj (min {m, 2mmax −m})

]
, (1.3)

where Φ is the standard normal cumulative density function (CDF), mmax = arg maxm f(m),

and ξ and ξconj are functions of the partition m and data z, whose forms depend on the

statistic T . The functions ξ and ξconj are identical in form but reverse the role of the means
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of the permuted samples x̄∗ and ȳ∗. This accounts for the two-sided form of T . Equation

1.3 is the basis for our asymptotic approximation, which is described in Section 1.4.1.

The proof of (1.3) involves the fact that Pr (T (m) ≥ t|z), as a function of m, is approx-

imately symmetric about mmax. This symmetry is exact when nx = ny and less accurate

as the group sample sizes become imbalanced. Consequently, the accuracy of the approxi-

mation in (1.3) is best for equal group sample sizes and worsens as the group sample sizes

become more imbalanced.

The result in (1.3) and the form for ξ and ξconj shown in Section 1.8 for T = max(x̄/ȳ, ȳ/x̄)

give the smooth pattern shown in Figure 1.1 for nx = ny = 100, µx = σ2
x = 4, and µy = σ2

y =

2. In the case where nx 6= ny, the center of the trend shifts but is otherwise similar.

The smooth trend shown in Figure 1.1 is primarily an observation, though it holds with

striking similarity for both T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄) for a wide range of group

sample sizes and parameter values. This observation is the basis for our resampling algorithm

described in Section 1.4.2.

Figure 1.2 shows simulated results with B = 103 resamples within each partition for data

coming from the following distributions with nx = ny = 100: Poisson with rates λx = 4

and λy = 2; exponential with rates λx = 2 and λy = 1; log normal with means µx = 2 and

µy = 1 and variances σ2
x = σ2

y = 1, where µ and σ2 are the means and variances of the log;

and negative binomial with size rx = ry = 3 and probability of success p = r/(r+ µ), where

the means are µx = 4 and µy = 2. For visual comparison between theoretical and simulated

results, Figure 1.1b shows the theoretical values cut off at 10−3.

Note that the p-value for the m = 0 partition is always 1, as the only permutation in

that partition is the observed test statistic. The same holds for partition m = nmin when

nx = ny.

1.4 Proposed Methods

In this section, we propose two methods for approximating small permutation p-values:

1) a closed-form asymptotic approximation, and 2) a computationally efficient resampling

algorithm. First, we note that we can express the permutation p-value as

Pr(T ≥ t|z) =

nmin∑
m=0

Pr (T (m) ≥ t |z) f (m) . (1.4)

Both the asymptotic and resampling-based approaches involve approximations for the

Pr (T (m) ≥ t |z) terms in (1.4). The asymptotic approach uses (1.3) to approximate these

terms, whereas the resampling algorithm uses the trend across the partitions to predict the

terms.
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(a) Theoretical trend
(b) Theoretical trend cut off at
10−3

Figure 1.1: Theoretical trend in p-values with T = max(x̄/ȳ, ȳ/x̄) for nx = ny =
100, µx = σ2

x = 4, and µy = σ2
y = 2.

Figure 1.2: Simulated trend in p-values with B = 103 resamples within each
partition and T = max(x̄/ȳ, ȳ/x̄)

If multiplicity corrections are needed, researchers can apply step-up or step-down pro-

cedures to the p-values produced by our method (e.g. Holm (1979) to control FWER, or

Benjamini and Hochberg (1995) to control FDR).
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1.4.1 Asymptotic Approximation

Our asymptotic approximation to the permutation p-value is given by

p̂asym =
∑nmin

m=0 h(m)f(m), where f(m) is given by (1.2) and

h(0) = 1

h(m) = 2− Φ [ξ(min {m, 2mmax −m})]− Φ
[
ξconj(min {m, 2mmax −m})

]
,

m ∈ [1, nmin − 1]

h(nmin) =

1 if nx = ny

2− Φ [ξ(min {m, 2mmax −m})]− Φ
[
ξconj(min {m, 2mmax −m})

]
otherwise

To see why h(0) = 1 always and h(nmin) = 1 when nx = ny, note that the p-value is always 1

in the m = 0 partition, because this partition only contains the observed permutation. The

same is true for the nmin partition when nx = ny, as T is a two-sided statistic.

Regarding notation, we use a hat in p̂asym as opposed to a tilde to emphasize that we are

not using Monte Carlo methods.

1.4.2 Resampling Algorithm

As noted in Section 1.3, we could in principle estimate each Pr(T (m) ≥ t|z) term in (1.4)

with Monte Carlo methods, but this would be more computationally intensive than directly

estimating Pr(T ≥ t|z) without conditioning on the partition. This is because for small

p-values, Pr(T (m) ≥ t|z) terms for m near mmax (the middle partition when nx = ny) are

very small, so we would need to use an extremely large number of resamples to estimate

these values (e.g. see Figure 1.1a).

However, by taking advantage of the trend in p-values across the partitions, we can avoid

directly calculating Pr(T (m) ≥ t|z) for m near mmax. Instead, we use simple Monte Carlo

resampling to estimate Pr(T (m) ≥ t|z) sequentially for m = 1, 2, . . . ,mstop, where mstop is

the stopping partition, which, as described below, is determined dynamically. We then use a

Poisson model to predict the Pr(T (m) ≥ t|z) terms for the remaining partitions (as well as

for partitions m = 1, . . . ,mstop) under the assumption that the log of the partition-specific

p-values is linear in m.

We then take a weighted sum across the predicted partition-specific p-values, as in (1.4),

to obtain an overall p-value. We denote the resulting p-value as p̃pred, where the tilde

emphasizes the use of Monte Carlo methods and the subscript emphasizes that the estimate

is based on predicted counts within each partition.
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As described in Algorithm 1, we set the number of Monte Carlo resamples within parti-

tions at Bpred (e.g. we use Bpred = 103) and estimate Pr(T (m) > t|z) for m = 1, . . . ,mstop,

where mstop is the first partition in which none of the resampled statistics are larger than the

observed statistic. We stop at partition mstop because the exponential decrease in p-values

across the partitions, shown in Figure 1.1a, makes it nearly certain that we would not obtain

a p-value greater than zero in partitions larger than mstop using only Bpred = 103 resamples.

In other words, it would be a waste of resources to continue sampling from additional parti-

tions. Furthermore, since the trend is symmetric about mmax, we can estimate the p-values

in partitions m = mmax + 1, . . . , nmin using the p-values in partitions m = 1, . . . ,mmax.

Regarding the Poisson model, this is a natural choice for count data (the number of

resampled statistics larger than the observed statistic within each partition) and also en-

forces a log-linear trend. Furthermore, we found that Poisson regression worked best in the

simulations. In addition to our current approach of using a slope and intercept term in

the Poisson model, we experimented with using higher order polynomials and B-splines and

selecting the optimal order or degrees of freedom based on AIC. However, we found that this

approach was too sensitive to noise in the data and sometimes gave highly erroneous results

(e.g. p-values > 1).

In Algorithm 1, we represent vector indices by square brackets [·] and begin the index

at zero because our partitions begin at m = 0. We use the vector c to store the count of

permuted test statistics in each partition that are as large or larger than the observed test

statistic as obtained with simple Monte Carlo resampling and use cpred to store predicted

counts based on a fitted model. We use Bpred to denote that number of resamples within

each partition.

Algorithm 1 p̃pred

1: set m← 1 and c[0]← Bpred

2: while (m ≤ mmax and c[m− 1] > 0) do
3: for b = 1, . . . , Bpred, sample πb ∈ Π(m) uniformly and calculate Tb(m) = T (x∗,y∗)

for x∗,y∗ corresponding to πb
4: set c[m]←

∑
b I[Tb(m) ≥ t] and update m← m+ 1

5: end while
6: set mstop ← m− 1 and mreg ← maxm {m ∈ {1 . . . ,mmax} : c[m] > 0}
7: regress c[0 : mreg] on (0, . . . ,mreg) using a Poisson model with slope and intercept terms
8: predict cpred for m = 1, . . . , nmin with fitted model, s.t. cpred is symmetric about mmax

9: set cpred[0]← Bpred, and if nx = ny, then set cpred[nx]← Bpred

10: return p̃pred ≡ (1/Bpred)
∑nmin

m=0 cpred[m]f(m)

Our proposed algorithm runs in O(Bpredmstop) time. As described in Section 1.7, we

provide functions for estimating mstop, and thus run-time, prior to running the algorithm.
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1.5 Simulations

To investigate the behavior of our proposed methods, we conducted simulations with the

statistics T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄). Given the extremely small p-values in our

simulations, it was not feasible to compute the true permutation p-values for comparison.

Instead, we used asymptotically equivalent p-values and large sample sizes.

In Section 2.3, we show results from additional simulations for 1) small sample sizes,

and 2) data generated under the null hypothesis, in which case we approximated the true

permutation p-value with simple Monte Carlo resampling, and 3) data generated as Gamma

random variables. In Section 2.4, we also show simulations with the moment-corrected

correlation (MCC) method of Zhou and Wright (2015) using the statistic T = |x̄ − ȳ|, and

compare our method with saddle point approximations (Robinson, 1982) by analyzing two

small datasets (nx = ny = 8 and nx = 7, ny = 10), also using the statistic T = |x̄ − ȳ|. In

Section 2.5, we show simulation results using our method with a studentized statistic to test

null hypotheses regarding a single parameter as opposed to the full distribution, as described

by Chung and Romano (2013). The results in Sections 2.3 and 2.4 show that the accuracy of

our method is comparable to alternative methods, and the results in Section 2.5 show that

by using a studentized statistic, our method can be extended to null hypotheses specifying

equality in the means (H0 : µx = µy), as opposed to equality in the entire distributions

(H0 : Px = Py).

1.5.1 Difference in Means

In this section, we consider the test statistic T = |x̄ − ȳ| with normally distributed data

of equal variance. Since the t-test is asymptotically equivalent to the permutation test in

this setting (Lehmann and Romano, 2005, p. 642-643), we used the t-test as a baseline

for comparison. We simulated data with both equal and unequal sample sizes (nx = ny

and nx 6= ny). In both cases, we generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as

realizations of the respective random variables Xi
iid∼ N(µx, 1) and Yj

iid∼ N(µy, 1) for various

parameter values. For each combination of parameter values, we generated 100 datasets.

For equal sample sizes, we set n = nx = ny = 100, 500, or 1,000. For unequal sample

sizes, we set ny = 500, and nx = 50, 200, or 350. In both cases we set µy = 0 and µx = 0.75

or 1. For each dataset, we applied our methods and did a t-test with the t.test function in

R (R Core Team, 2017) (two-sided with equal variance). For our resampling algorithm, we

used Bpred = 103 resamples in each partition.

For comparison, we also ran the SAMC algorithm using the R package EXPERT written

12



(a) p-values (b) Number of resamples in Alg 1

Figure 1.3: Simulation results using the statistic T = |x̄ − ȳ| with equal sample
sizes of n = nx = ny = 100, 500, 1,000. Alg 1 is our resampling algorithm with
Bpred = 103 resamples in each partition, Asym is our asymptotic approximation,
SAMC is the SAMC algorithm, and pt is a two-sided t-test with equal variance.
The diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in 1.3b shows the number of iterations used
in the SAMC algorithm (set in advance, and independent of p-value). The SAMC
algorithm did not produce values for 385 tests (points missing).

by Yu et al. (2011). We set the number of iterations (also resamples) in the initial round at

5 × 104 and the number of iterations in the final round at 106. Following the advice of Yu

et al. (2011), we set the gain factor sequence to begin decreasing after the 1, 000th iteration,

the proportion of data to be updated at each iteration at 0.05, and the number of regions at

101 for the initial run and 301 for the final run.

Results are shown in Figures 1.3 and 1.4. In the Figures, pt denotes the p-value from a

two-sided t-test with equal variance, and p denotes the p-value from either our methods or

SAMC. The dashed line has a slope of 1 and intercept of 0, and indicates agreement between

methods. The SAMC algorithm did not produce values for smaller p-values due to numerical

problems, so these points are missing from Figures 1.3 and 1.4 (385 missing points in Figure

1.3, and 179 missing points in Figure 1.4). In order to estimate these points with the EXPERT

implementation of the SAMC algorithm, we would need to increase the number of iterations.

As Figures 1.3 and 1.4 show, our resampling algorithm and asymptotic approximation are

able to estimate extremely small p-values, which the SAMC algorithm is not able to estimate

even though we set it to use approximately two orders of magnitude more resamples than

our resampling algorithm. While our asymptotic approximation has less variance than our

resampling algorithm, the asymptotic approximation appears to have more bias. We note

that the scales are not the same in Figures 1.3 and 1.4, but in both cases, the p-values are

13



(a) p-values (b) Number of resamples in Alg 1

Figure 1.4: Simulation results using the statistic T = |x̄− ȳ| with unequal sample
sizes, where ny = 500 and nx = 50, 200, 350. Alg 1 is our resampling algorithm
with Bpred = 103 resamples in each partition, Asym is our asymptotic approxi-
mation, SAMC is the SAMC algorithm, and pt is a two-sided t-test with equal
variance. The diagonal dashed line has slope of 1 and intercept of 0, and indi-
cates agreement between methods. The horizontal line in 1.4b shows the number
of iterations used in the SAMC algorithm (set in advance, and independent of
p-value). The SAMC algorithm did not produce values for 179 tests (points
missing).

smaller than what would typically be estimated with resampling methods.

Figures 1.3b and 1.4b also demonstrate that our algorithm uses fewer permutations when

estimating smaller p-values than when estimating larger p-values. This occurs because the

trend in partition-specific p-values across the partitions tends to be steeper for smaller overall

p-values, which leads to earlier stopping times.

1.5.2 Ratio of Means

In this section, we consider the test statistic T = max(x̄/ȳ, ȳ/x̄), both for nx = ny and

nx 6= ny. We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the

respective random variablesXi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy), where Exp(λ) is an exponential

distribution with rate λ, i.e. E[Xi] = 1/λx. We chose this setup because 1) having data

with non-negative support ensures non-zero denominators in the ratio statistic, and 2) the

resulting ratio statistic follows a beta prime distribution, also called a Pearson type VI

distribution (Johnson et al., 1995, p. 248), which provides an approximate baseline for

comparison (see Section 2.2).

For equal sample sizes, we set n = nx = ny = 100, 500, or 1,000. For unequal sample

sizes, we set ny = 500, and nx = 50, 200, or 350. In both cases we set λx = 1 and λy = 1.75
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(a) p-values (b) Number of resamples in Alg 1

Figure 1.5: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with equal
sample sizes of n = nx = ny = 100, 500, 1,000. Alg 1 is our resampling algorithm
with Bpred = 103 resamples in each partition, Asym is our asymptotic approx-
imation, Delta is the delta method, SAMC is the SAMC algorithm, and pβ is
the two-sided p-value from the beta prime distribution. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.
The horizontal line in 1.5b shows the number of iterations used in the SAMC
algorithm (set in advance, and independent of p-value). The SAMC algorithm
did not produce values for 246 tests (points missing).

or 2.25. For all parameter combinations, we generated 100 datasets.

For each dataset, we applied our methods and computed the p-value from the beta prime

distribution. For our resampling algorithm, we used Bpred = 103 resamples in each partition.

We also computed p-values using the delta method (see Section 2.6) and ran the SAMC

algorithm with the same specifications as described in Section 1.5.1.

Results are shown in Figures 1.5 and 1.6. In the Figures, pβ denotes the p-value from

the beta prime distribution, and p denotes the p-value from either our methods, the delta

method (see Section 2.6), or SAMC. The dashed line has a slope of 1 and intercept of 0,

and indicates agreement between methods. As before, the SAMC algorithm did not produce

values for smaller p-values, so these points are missing from Figures 1.5 and 1.6 (246 missing

points in Figure 1.5, and 33 missing points in Figure 1.6).

As Figures 1.5 and 1.6 show, both our resampling algorithm and asymptotic approxima-

tion appear to have more bias in this setting than for the difference in means, though in this

case, the asymptotic approximation is biased downward instead of upward. Our resampling

algorithm tends to be biased upward.

As before, the SAMC algorithm had trouble estimating extremely small p-values with the

number of iterations we allowed it. In the case of equal sample sizes, the SAMC algorithm

began to have problems for p-values around 10−30. In the case of unequal sample sizes, the
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(a) p-values (b) Number of resamples in Alg 1

Figure 1.6: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with unequal
sample sizes, where ny = 500 and nx = 50, 200, 350. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, Delta is the delta method, SAMC is the SAMC algorithm, and pβ
is the two-sided p-value from the beta prime distribution. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.
The horizontal line in 1.6b shows the number of iterations used in the SAMC
algorithm (set in advance, and independent of p-value). The SAMC algorithm
did not produce values for 33 tests (points missing).

SAMC algorithm appears to have performed similarly to our resampling algorithm, albeit

with one to two orders of magnitude more resamples. Figures 1.5 and 1.6 also show that

p-values from the delta method (see Section 2.6) are not reliable, even for large sample sizes.

Similar to Section 1.5.1, Figures 1.5b and 1.6b show that our resampling algorithm uses

fewer resamples for smaller p-values. Also, as before, the scale of the p-values is not the

same in Figures 1.5 and 1.6, but in both cases, they are smaller than what would typically

be estimated with resampling methods.

1.6 Application to Cancer Genomic Data

To further demonstrate our methods, we analyzed RNA-seq data collected as part of The

Cancer Genome Atlas (TCGA) (National Cancer Institute, 2015). In particular, we were

interested in identifying genes that were differentially expressed in two different types of lung

cancers: lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC).

We downloaded normalized gene expression data from the TCGA data portal. As de-

scribed by TCGA, to produce the normalized gene expression data, tissue samples from

patients with LUSC and LUAD were sequenced using the Illumina RNA Sequencing plat-
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form. The raw sequencing reads from all patient samples were processed and analyzed using

the SeqWare Pipeline 0.7.0 and MapspliceRSEM workflow 0.7 developed by the University

of North Carolina. Sequencing reads were aligned to the human reference genome using

MapSplice (Wang et al., 2010), and gene level expression values were estimated using RSEM

(Li and Dewey, 2011) with gene annotation file GAF 2.1. For each sample, RSEM gene

expression estimates were normalized to set the upper quartile count at 1,000 for gene level

estimates. For the analyses in this section, we used the normalized RSEM gene expression

estimates.

For both LUAD and LUSC, TCGA contains normalized expression estimates for 20,531

genes (the same genes for both cancers). There were 548 subjects with LUAD observations,

and 541 with LUSC observations. To ensure that our results would be biologically meaning-

ful, we restricted our analysis to genes for which at least 50% of the subjects had expression

levels above the 25th percentile of all normalized gene expression levels (6.57). This reduced

our analysis to 15,386 genes.

Let Px,g and Py,g be the underlying distributions that generated the normalized expression

levels in LUAD and LUSC, respectively, for gene g. To test the two-sided hypothesis of

H0 : Px,g = Py,g versus the alternative H1 : µx/µy 6= 1, we used the fold-change statistic

T = max(x̄g/ȳg, ȳg/x̄g). Here, µx and µy are the means of Px,g and Py,g, respectively.

First, we conducted simple Monte Carlo permutation tests on all 15,386 genes with

B = 103 resamples. This left us with 10,302 genes with p-values less than 10−3, the minimum

estimate possible with only B = 103 resamples. We then used our resampling algorithm to

estimate p-values for the 10,302 genes that passed our preliminary screen.

Table 1.1 shows the results for the fifteen genes with the smallest p-values, as well as the

deviance and AIC from the Poisson regression fit during the resampling algorithm. We report

both the estimate from the initial, single run of our algorithm, as well as the 10th, 50th, and

90th quantiles from an additional 1,000 runs. Note that Table 1.1 reports the observed ratio

of mean(LUAD)/mean(LUSC), not the max of the ratios that we used in the permutation

test. Of the top 15 genes, none had elevated levels of LUAD. Point estimates for all genes

are available as supplementary material.

Eleven of the these fifteen genes, shown in bold (DSG3, KRT5, DSC3, CALM3, TP63,

ATP1B3, KRT6B, TRIM29, PVRL1, FAT2, and KRT6C ), were also identified by Zhan

et al. (2015) as being among the most effective genes for distinguishing between LUAD and

LUSC. Like us, Zhan et al. (2015) used the TCGA dataset, though they based their analysis

on the area under the curve from a Wilcoxon rank-sum test.

We emphasize that in presenting Table 1.1, we are not trying to promote the use of

p-values as the sole source of information for making scientific decisions, such as ranking the
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Table 1.1: Fifteen genes with the smallest p-values, and other output from our
algorithm with Bpred = 103 resamples in each partition. Single run is the value
of log10(p̃pred) from the initial run of our resampling algorithm. The quantiles
are from 1,000 replicates. For the single run, mstop is the partition at which our
algorithm stopped, and deviance and AIC are from the Poisson regression fit
during the algorithm. Genes shown in bold were identified by Zhan et al. (2015)
as being among the most effective genes for distinguishing between LUAD and
LUSC using the area under the curve from a Wilcoxon rank-sum test.

log10(p̃pred)

Gene name Single run Quantiles (10th, 50th, 90th) mean(LUAD)
mean(LUSC)

mstop Deviance AIC

DSG3 -212 (-217, -208, -200) 0.0100 5 40.1 68.1
KRT5 -210 (-223, -214, -205) 0.0107 4 12.5 38.2
DSC3 -197 (-212, -205, -197) 0.0175 6 41.5 72.1

CALML3 -195 (-198, -188, -179) 0.0138 6 57.8 90
TP63 -193 (-199, -192, -186) 0.0308 6 24.2 55.1

ATP1B3 -193 (-196, -188, -181) 0.225 5 28.6 57.7
S1PR5 -190 (-190, -181, -173) 0.0775 6 98.4 131
KRT6B -185 (-189, -181, -173) 0.0173 5 45.4 76.1
TRIM29 -183 (-188, -181, -174) 0.0788 6 39.3 72

JAG1 -180 (-186, -179, -172) 0.170 5 60.7 92.2
PVRL1 -180 (-183, -177, -171) 0.110 6 8.33 39.2
CLCA2 -178 (-188, -180, -172) 0.0138 7 51.6 86.8
BNC1 -178 (-197, -188, -181) 0.0244 7 76.8 112
FAT2 -177 (-186, -179, -173) 0.0339 7 53.5 89

KRT6C -177 (-188, -181, -174) 0.0183 6 84.8 119

importance of genes. Instead, we present Table 1.1 and make comparisons with the findings

of Zhan et al. (2015) as a way of verifying the reasonableness of our results. Zhan et al.

(2015) used different methods to analyze the TCGA data, so we do not expect our results to

be exactly the same, but it is encouraging that our results appear to agree to some extent.

We also want to point out that our resampling algorithm can approximate extremely

small p-values, but that in doing so, there is a large amount variability in the estimates.

However, we think these estimates could still be used as an approximation of the order of

magnitude, and note that they would be infeasible to estimate with existing Monte Carlo

methods, including the SAMC algorithm.

1.7 Run Time and Sufficient Sample Size

In this section, we provide further details on the run-time of our resampling algorithm and

guidance regarding the sample sizes necessary for our test to be reliable.
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Figure 1.7: Comparison between masym
stop and mstop in the analysis of cancer ge-

nomic data. mstop is the actual stopping partition, which our resampling algo-
rithm determines dynamically. masym

stop is our estimate of the stopping partition
based on asymptotic approximations, and can be computed before running the
algorithm. The dashed diagonal line has a slope of 1 and an intercept of 0, and
indicates agreement.

Our resampling algorithm runs in O(Bpredmstop) time. In our current implementation,

we set Bpred a priori. Regarding mstop, we obtain the following approximation for small

p-values, in which we assume that 1− Φ(ξ(m))� 1− Φ(ξconj(m)). From Algorithm 1,

masym
stop = min

m
{m ∈ {1, . . . ,mmax} : c[m] < 1}

≈ min
m
{m ∈ {1, . . . ,mmax} : Pr(T (m) ≥ t|x,y) < 1/Bpred} (for large Bpred)

≈ min
m
{m ∈ {1, . . . ,mmax} : 1− Φ(ξ(m)) < 1/Bpred} (1.5)

≈ min
m

{
m ∈ {1, . . . ,mmax} : Φ−1(1− 1/Bpred) < ξ(m)

}
(for large nx, ny) (1.6)

≡ masym
stop ,

where (1.5) follows from (1.12) and the assumption that 1− Φ(ξ(m))� 1− Φ(ξconj(m)).

In the R package fastPerm, we provide functions for computing masym
stop , which can help

an analyst to approximate run-time before running the algorithm. We emphasize that masym
stop

is based on asymptotic approximations, and may not be the same as the actual stopping

partition; masym
stop is not used in Algorithm 1. As shown in Figure 1.7, the expected stopping

distribution masym
stop appears to be a reasonable estimate of the actual stopping partition mstop

in our analysis of cancer genomic data.

We can also use masym
stop to provide guidance on sample size. Note that masym

stop is the ex-

pected number of data points available to the Poisson regression in our resampling algorithm
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Table 1.2: n̂ for T = max(x̄/ȳ, ȳ/x̄), equal samples sizes nx = ny = n̂, Bpred =
1, 000, and c = 4.

µy = σ2
y µx = σ2

x n̂ p̂asym

2

3 5 2.4× 10−1

4 6 2.4× 10−2

5 13 2.4× 10−5

5.25 16 1.3× 10−6

5.5 19 6.0× 10−8

5.75 24 4.2× 10−10

6 31 4.1× 10−13

6.25 40 4.3× 10−17

6.5 55 1.1× 10−23

6.6 63 3.3× 10−27

6.7 74 4.5× 10−32

6.8 87 7.7× 10−38

6.9 105 7.8× 10−46

7 130 6.0× 10−57

for estimating the overall p-value. Large values of masym
stop imply more reliable but slower es-

timates, and smaller values of masym
stop imply less reliable but faster estimates. To ensure that

the results of the sampling algorithm are reliable, we recommend that masym
stop ≥ c for some

constant c. For example, we use c = 4. Then for equal sample sizes n = nx = ny, we set

n̂ = min
n
{n ∈ N : masym

stop ≥ c}.

While not explicit in the above notation, we note that masym
stop , and thus n̂, is a function of

σ2
x, σ

2
y, µx, µy, and Bpred. Tables 1.2 and 1.3 show n̂ and p̂asym = p̂asym(n̂, σ2

x, σ
2
y, µx, µy), the

the p-value from our asymptotic approximation for the given set of parameter values and

sample sizes. In Tables 1.2 and 1.3, we set Bpred = 1, 000. As in Figure 1 in Section 1.3

and Figure 1.8 in Section 1.8, to obtain p̂asym, we substituted parameter values for sample

quantities, e.g. µx for x̄ and σ2
x for (nx − 1)−1

∑nx

i=1(xi − x̄)2. As can be seen in Tables 1.2

and 1.3, n̂ and p̂asym have an inverse relationship.

In general, we recommend that researchers check the output from fastPerm to ensure

that mstop ≥ 4, and we note that the sample sizes required to achieve mstop ≥ 4 increase as

the p-value decreases. Based on Tables 1.2 and 1.3, at least 15-20 observations in each group

appears sufficient for p-values near 1 × 10−6, and at least 70-90 observations in each group

appears sufficient for p-values near 1× 10−30.
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Table 1.3: n̂ for T = |x̄ − ȳ|, σ2
x = σ2

y = 1, equal samples sizes nx = ny = n̂,
Bpred = 1, 000, and c = 4.

µy µx n̂ p̂asym

0

1.5 5 5.4× 10−2

2 9 7.7× 10−4

2.2 13 2.1× 10−5

2.25 15 3.7× 10−6

2.3 18 3.1× 10−7

2.4 32 4.0× 10−12

2.45 53 2.3× 10−19

2.475 80 1.3× 10−28

2.48 89 1.1× 10−31

2.49 115 1.5× 10−40

2.5 165 1.4× 10−57

1.8 Proofs

In this section, we find the limiting distribution of T = max(x̄/ȳ, ȳ/x̄) and T = |x̄− ȳ| within

each partition, and note the corresponding trend in p-values across the partitions. In the

process, we prove the results discussed in Section 1.3. We structure this section around the

statistic T = max(x̄/ȳ, ȳ/x̄) to help to motivate our discussion, and then extend our results

to the statistic T = |x̄− ȳ|.
As before, we denote the total sample size as N , and we require that N ≥ 2 to allow for

at least one observation in each sample. Let {mN}∞N=2, {nNx }∞N=2, and {nNy }∞N=2 be sequences

such that mN/N → τ and nNx /N → λ as N →∞, and for all N , nNy = N − nNx . We require

that for all N , 0 < mN ≤ nNx ≤ nNy < N , and similarly, 0 < τ ≤ λ ≤ 1− λ < 1. We denote

the observed data as xN and yN , which are nNx × 1 and nNy × 1 vectors, respectively.

Let δm
N

x = (δm
N

x,1 , . . . , δ
mN

x,nN
x

)′ and δm
N

y = (δm
N

y,1 , . . . , δ
mN

y,nN
y

)′ be nNx × 1 and nNy × 1 indicator

vectors, respectively, with 1’s corresponding to indices of xN and yN that are exchanged for

a particular permutation π and zero elsewhere. To be specific, for a permutation π ∈ Π(mN),

we define δm
N

x,i and δm
N

y,j as

δm
N

x,i =

1 if π(i) > nNx

0 if π(i) ≤ nNx

i = 1, . . . , nNx

δm
N

y,j =

1 if π(nNx + j) ≤ nNx

0 if π(nNx + j) > nNx

j = 1, . . . , nNy .
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For completeness, we note that for fixed m and i 6= j, and dropping dependence on N ,

E[δmx,i] = m/nx E[δmy,i] = m/ny

Var(δmx,i) =
m

nx

(
1− m

nx

)
Var(δmy,i) =

m

ny

(
1− m

ny

)
Cov(δmx,i, δ

m
x,j) =

−m(nx −m)

n2
x(nx − 1)

Cov(δmy,i, δ
m
y,j) =

−m(ny −m)

n2
y(ny − 1)

We denote the ratio of means as R = x̄/ȳ. With the permutation test, for each permu-

tation π in partition mN , we calculate the statistic (ignoring for now the max function used

earlier)

R(mN) =

1
nN
x

[(1− δmN

x )′xN + δm
N

y

′
yN ]

1
nN
y

[δmN

x
′
xN + (1− δmN

y )′yN ]
.

As for all permutation tests, R(mN) is conditional on the data. The random quantities

are (δm
N

x , δm
N

y ), which indexed by N , form a triangular array of identically distributed,

dependent random variables. We can rewrite R(mN) as

R(mN) =
nNy
nNx

nNx x̄+
(∑nN

y

j=1 δ
mN

y,j y
N
j −

∑nN
x
i=1 δ

mN

x,i x
N
i

)
nNy ȳ −

(∑nN
y

j=1 δ
mN

y,j y
N
j −

∑nN
x
i=1 δ

mN

x,i x
N
i

)


= g

 nN
y∑

j=1

δm
N

y,j y
N
j −

nN
x∑

i=1

δm
N

x,i x
N
i︸ ︷︷ ︸


W (mN )

. (1.7)

Writing R(mN) as a function of W (mN) will make it straightforward to generalize our

results. We note that conditional on the observed data xN and yN , all terms in R(mN) are

constant except for W (mN).

We can further split W (mN) into

W (mN) =

nN
y∑

j=1

δm
N

y,j y
N
j︸ ︷︷ ︸

Wy(mN )

−
nN
x∑

i=1

δm
N

x,i x
N
i︸ ︷︷ ︸

Wx(mN )

(1.8)

Following Theorem 2.8.2 in Lehmann (1999, p. 116), restated in Theorem 1.1 below, under

certain conditions both Wy(m
N) and Wx(m

N) in (1.8) converge to normal random variables,

in which case W (mN) also converges to a normal random variable.

We make a few observations before stating Theorem 1.1. The following statements focus

on Wy(m
N), but equivalent statements apply to Wx(m

N). First, we note that conditional
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on yN , Wy(m
N) is the sum of a random sample without replacement of mN elements from a

finite population yN = (yN1 , . . . , y
N
nN
y

)′. We consider a sequence of populations of increasing

size, yN , N = 2, 3, . . ., and random samples vN = (vN1 , . . . , v
N
mN )′ from each yN . To be

specific, for fixed δm
N

y , let K = {j : δm
N

y,j = 1} be the set of indices corresponding to the

selected elements of yN . Then writing K = {k1, . . . , kmN}, we have vN = (yNk1
, . . . , yNk

mN
)′.

Let v̄mN = (1/mN)
∑mN

k=1 v
N
k , and ȳnN

y
= (1/nNy )

∑nN
y

j=1 y
N
j . Then as shown by Lehmann

(1999, p. 116-117),

E[v̄mN |yN ] = ȳnN
y

Var(v̄mN |yN) =
nNy −mN

mN(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

We can now state Theorem 1.1.

Theorem 1.1 (Theorem 2.8.2, Lehmann (1999)).

v̄mN − E[v̄mN |yN ]√
Var(v̄mN |yN)

→ N(0, 1)

provided that mN → ∞ and nNy − mN → ∞ as N → ∞, and either of the following two

conditions is satisfied:

i) mN/nNy is bounded away from 0 and 1 as N →∞, and

max(yNj − ȳnN
y

)2∑
j(y

N
j − ȳnN

y
)2
→ 0

or

ii)
max(yNj − ȳnN

y
)2∑

j(y
N
j − ȳnN

y
)2/nNy

remains bounded as N →∞.

For a proof, please see Lehmann (1999) and references therein, particularly the corollary

to Lemma 4.1 in Hájek (1961), and Example 4.1 and Section 5 in Hájek (1961). Our con-

straints on mN , nNx , and nNy imply that mN → ∞ and nNy − mN → ∞ as N → ∞. The

other conditions in Theorem 1.1 require that the contribution of each deviance to the sum of

deviances becomes negligible as the sample size becomes large. This excludes data coming

from distributions with a non-finite variance, such as the Cauchy distribution.

Applying Theorem 1.1 to W (mN) we get Corollary 1.1.
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Corollary 1.1. Conditional on xN and yN , and assuming the conditions in Theorem 1.1

hold,
W (mN)− µ(mN)√

V (mN)
→ N(0, 1),

where µ(mN) = µy(m
N)− µx(mN) and V (mN) = Vy(m

N) + Vx(m
N), with

µy(m
N) = E[Wy(m

N)|yN ] = mN ȳnN
y

µx(m
N) = E[Wx(m

N)|xN ] = mN x̄nN
x

and

Vy(m
N) = Var(Wy(m

N)|yN) = mN
nNy −mN(
nNy − 1

)
nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2

Vx(m
N) = Var(Wx(m

N)|xN) = mN nNx −mN

(nNx − 1)nNx

nN
x∑

i=1

(xNi − x̄nN
x

)2.

Before proving Corollary 1.1, we state Lemma 1.1.

Lemma 1.1. For all m and N , Cov
(
Wx(m

N),Wy(m
N)|x,y

)
= 0.

Proof of Lemma 1.1. First note that for all m,N, i, and j, δm
N

x,i ⊥ δm
N

y,j . This is a direct

consequence of the sampling procedure implied by the permutation, in which we condition

on the number of elements to exchange (m), and then randomly select m elements of x and

m elements of y. Therefore, dropping dependence on N ,

E [Wx(m)Wy(m)|x,y] = E

[(∑
i

δmx,ixi

)(∑
j

δmy,jyj

)
|x,y

]

= E

[∑
i

∑
j

δmx,ixiδ
m
y,jyj|x,y

]
=
∑
i

∑
j

xiyjE
[
δmx,iδ

m
y,j

]
=
∑
i

xiE
[
δmx,i
]∑

j

yjE
[
δmy,j
]

(δmx,i ⊥ δmy,j)

= E [Wx(m)|x]E [Wy(m)|y] .

Therefore,

Cov
(
Wx(m

N),Wy(m
N)|x,y

)
= E

[
Wx(m

N)Wy(m
N)|x,y

]
− E

[
Wx(m

N)|x
]
E
[
Wy(m

N)|y
]

= 0

which proves the lemma.
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Now we prove Corollary 1.1.

Proof of Corollary 1.1. Working with the first term in (1.8), we have

Wy(m
N) =

nN
y∑

j=1

δm
N

y,j y
N
j = mN v̄mN

Therefore, as shown by Lehmann (1999, p. 116-117),

µy(m
N) = E[Wy(m

N)|yN ] = mN ȳnN
y

and

Vy(m
N) = Var(Wy(m

N)|yN) =
(
mN
)2 nNy −mN

mN(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

= mN
nNy −mN

(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

Similarly, working with the second term in (1.8),

µx(m
N) = E[Wx(m

N)|xN ] = mN x̄nN
x

Vx(m
N) = mN n

N
x −mN

(nNx − 1)

1

nNx

nN
x∑

i=1

(xNi − x̄nN
x

)2.

Applying Theorem 1.1, we have

Wy(m
N)− µy(mN)√
Vy(mN)

=
v̄mN − E[v̄mN |yN ]√

Var(v̄mN |yN)
→ N(0, 1).

Similarly, we have

Wx(m
N)− µx(mN)√
Vx(mN)

→ N(0, 1).

By Lemma 1.1, we have

Var
(
Wy(m

N)−Wx(m
N)
∣∣x,y) = Vy(m

N) + Vx(m
N).

Since uncorrelated normal random variables are independent, for N sufficiently large we also

have Wy(m
N) ⊥ Wx(m

N). Then since the sum of independent normal random variables is

also normal, for N sufficiently large we have

W (mN) = Wy(m
N)−Wx(m

N) ∼ N
(
µy(m

N)− µx(mN), Vy(m
N) + Vx(m

N)
)
.
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Equivalently, we have
W (mN)− µ(mN)√

V (mN)
→ N(0, 1)

which proves the corollary.

In the rest of this section, we assume that N is sufficiently large for asymptotic normality

to hold for any given partition m, so we drop N from the notation.

In Corollary 1.2 below, we apply the delta method to show that for sufficiently large N ,

the permutation distribution of the statistic R(m) is normal within each partition.

Corollary 1.2. Let R = g(W ), and suppose that g′(µ(m)) > 0 exists. Also, suppose the

conditions in Theorem 1.1 hold. Then conditional on the observed data x,y, and for N

sufficiently large, R(m) ∼ N(ν(m), σ2(m)), where the mean ν(m) and variance σ2(m) are

functions of the partition m.

Proof of Corollary 1.2. By Corollary 1.1, W is normal for N sufficiently large. Then by the

delta method, g(W ) also converges to a normal distribution, which proves the corollary.

The result in Corollary 1.2 for the one-sided statistic R(m) leads directly to the following

result for its two-sided counterpart T (m), given in Corollary 1.3 below. However, we first

define a new function gconj, the conjugate of g.

Definition 1.2 (Conjugate gconj). Let g(W ) be a function of W , in which the only other

terms are the constants nx, ny, x̄ and ȳ. The conjugate gconj is formed by switching the place

of nx with ny, and x̄ with ȳ, and reversing the sign on each occurrence of W .

For example, for R = x̄/ȳ, we have

g =
ny
nx

(
nxx̄+W

nyȳ −W

)
gconj =

nx
ny

(
nyȳ −W
nxx̄+W

)
and for R = x̄− ȳ, as shown below, we have

g = x̄− ȳ +

(
1

nx
+

1

ny

)
W gconj = ȳ − x̄−

(
1

ny
+

1

nx

)
W.

We note that (gconj)conj = g.

Corollary 1.3. Let T (m) = max (g(W (m)), gconj(W (m))). Under the conditions of Theorem

1.1, and assuming g′(µ(m)) > 0 and (gconj)′(µ(m)) > 0 exist, then for N sufficiently large,

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
,

(1.9)
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where Φ is the standard normal CDF, mmax = arg max f(m), and

ξ(m) =
t− g (µ(m))

g′ (µ(m))
√
V (m)

, ξconj(m) =
t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

.

Proof of Corollary 1.3. For m = 1, . . . ,mmax,

Pr(T (m) > t|x,y) = Pr (g(W (m)) > t) + Pr
(
gconj(W (m)) > t

)
= Pr

(
Z >

t− g (µ(m))

g′ (µ(m))
√
V (m)

)
+ Pr

(
Z >

t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

)
(1.10)

≈ 1− Φ (ξ(m)) + 1− Φ
(
ξconj(m)

)
(1.11)

where Z is a standard normal random variable and µ(m) and V (m) are given in Corollary

1.1. Line (1.10) follows from the delta method, and line (1.11) follows from Corollary 1.2 for

N sufficiently large.

Furthermore, since the partition-specific p-values are approximately symmetric about

mmax (the p-values are exactly symmetric for equal sample sizes, and the symmetry worsens

as the sample sizes become more imbalanced), we can get the asymptotic p-value for any

partition m = 1, . . . ,min(ny, nx) as

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
.

(1.12)

This proves the corollary.

We also note that when nx = ny, the approximation in (1.9) is equally accurate for

partitions both smaller and larger than mmax. However, for unequal sample size, the approx-

imation is less accurate for partitions larger than mmax.

In summary, and to be explicit with all quantities, for the statistic T = max(x̄/ȳ, ȳ/x̄),

we have

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
where Φ is the standard normal CDF, mmax = arg maxm f(m), f(m) =

(
N
nmin

)−1(nx

m

)(
ny

m

)
,
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nmin = min(nx, ny), and 1

ξ(m) =
t− g (µ(m))

g′ (µ(m))
√
V (m)

ξconj(m) =
t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

g(µ(m)) =
ny
nx

(
nxx̄+ µ(m)

nyȳ − µ(m)

)
gconj(µ(m)) =

nx
ny

(
nyȳ − µ(m)

nxx̄+ µ(m)

)
g′ (µ(m)) =

ny
nx

(
nyȳ + nxx̄

(nyȳ − µ(m))2

)
(gconj)′ (µ(m)) = −ny

nx

(
nxx̄+ nyȳ

(nxx̄+ µ(m))2

)
where

µ(m) = m(ȳ − x̄)

V (m) = m

[
ny −m

ny(ny − 1)

ny∑
j=1

(yj − ȳ)2 +
nx −m

nx(nx − 1)

nx∑
i=1

(xi − x̄)2

]
.

To get the expected trend shown Figure 1 of Section 3, we set t = x̄/ȳ (the observed

test statistic), and substituted expected values for the sample quantities. For example, if we

generated the elements of x as iid realizations of a random variable X, then we substituted

E[X] for x̄, and Var(X) for (nx − 1)−1
∑nx

i=1(xi − x̄)2.

We note that we get similar results for T = |x̄−ȳ|. In this case we can write R(m) = x̄−ȳ
as

R(m) =
1

nx
[(1− δx)′x+ δ′yy]− 1

ny
[δx
′x+ (1− δy)′y]

= x̄− ȳ +

(
1

nx
+

1

ny

)
W (m)

Therefore, (1.9) still holds, but with g(µ(m)) = x̄ − ȳ +
(
n−1
x + n−1

y

)
µ(m) and g′(µ(m)) =(

n−1
x + n−1

y

)
, with the corresponding results for gconj and (gconj)′. All other formula are the

same as those given for the ratio of means. The resulting trend for T = |x̄− ȳ| is shown in

Figure 1.8 with nx = ny = 100, µx = 4, µy = 2, and σ2
x = σ2

y = 1.

While this section shows that the nearly log linear trend holds for both T = |x̄− ȳ| and

T = max(x̄/ȳ, ȳ/x̄), we speculate that the trend might be similar for other statistics that

are smooth functions of the means. The results for R = x̄/ȳ and R = x̄ − ȳ above suggest

a general formulation of permutation statistics in terms of W , which might help with this

effort. This general formulation is presented in Proposition 1.1, in which R could be any

statistic of the sample means, and not necessarily the ratio or difference of means.

1Implementation note: In the fastPerm package, we use the same function to compute ξ and ξconj,

reversing the order of the arguments related to x and y.
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Figure 1.8: Theoretical trend in p-values across the partitions for T = |x̄ − ȳ|
with nx = ny = 100, µx = 4, µy = 2, and σ2

x = σ2
y = 1.

Proposition 1.1. Let R(m) = R(x̄∗(m), ȳ∗(m)|x,y) be any statistic of the permuted sample

means conditional on observed data x,y, where x̄∗(m) and ȳ∗(m) are the means of a permuted

dataset (x∗′,y∗′)′ corresponding to a permutation π ∈ Π(m). Then we can always write

R(m) = g(W (m)) for some function g that is conditional on the observed data x,y.

Proof of Proposition 1.1. Noting that x̄∗(m) = x̄+(1/nx)W (m) and ȳ∗(m) = ȳ−(1/ny)W (m),

we have

R (x̄∗(m), ȳ∗(m)|x,y) = R (x̄+ (1/nx)W (m), ȳ − (1/ny)W (m)|x,y)

= g (W (m))

where the last line follows, because x̄, ȳ, nx, and ny are constant conditional on x and y,

and can be absorbed into the functional form of R. This proves the proposition.

Then for any one-sided statistic R = g(W ), in order for asymptotic normality to hold

within each partition for the corresponding two-sided statistic T , we must check the condi-

tions in Theorem 1.1 and Corollary 1.3. However, it remains to be shown what additional

properties are required to ensure a log concave trend in p-values across the partitions, so we

must currently check new statistics on a case-by-base basis.

1.9 Discussion

As we have demonstrated through simulations and an application to cancer genomic data,

our methods can quickly approximate small permutation p-values (e.g. < 10−6) for two-

sample tests, where the test statistic is the difference or ratio of means. The computational
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efficiency of our resampling algorithm is particularly notable when estimating extremely

small p-values (e.g. < 10−30).

As is suggested in the example of Section 1.2, our methods can only detect changes in the

mean. If Px 6= Py but µx = µy, then the statistics T = |x̄− ȳ| and T = max(x̄/ȳ, ȳ/x̄) cannot

detect differences. We also note that while our development focuses on the null hypothesis

Px = Py, the simulations in Appendix E suggest that our methods extend to less restrictive

null hypotheses, such as those considered by Janssen (1997) and Chung and Romano (2013).

As shown in Section 1.5 and Chapter 2, the accuracy of our resampling method is com-

parable to alternative methods, such as SAMC and MCC, though SAMC and MCC are

applicable in situations where our methods are not. In particular, MCC can handle any

statistic that can be expressed as, or is permutationally equivalent to, an inner product. In

addition to these methods, researchers may want to consider the method of Fieller (1954)

for obtaining confidence intervals for the ratio of means, and the approaches described by

Cui and Churchill (2003) for using t-tests and ANOVA to analyze the mean log ratio.

While the reliability of our resampling algorithm will vary based on the empirical dis-

tribution of the data, in general, we recommend having at least 15-20 observations in each

group for p-values near 1 × 10−6 and at least 70-90 observations in each group for p-values

near 1× 10−30 (see Section 1.7). As demonstrated in Section 1.6, there can be considerable

variability in estimating extraordinarily small p-values (e.g. 1× 10−200). For these extraor-

dinarily small p-values, we recommend that our method be used only to approximate the

order of magnitude of the permutation p-value.

In choosing between our resampling algorithm and asymptotic approximation, we rec-

ommend using the resampling algorithm when possible for small p-values, as it appears to

perform better in simulations. However, as demonstrated in Chapter 2, our asymptotic

method may be preferable for large p-values, as it appears to be more conservative under

the null. Both approaches work best for equal sample sizes, and we suggest caution when

using with small and highly imbalanced samples.

Depending on a researcher’s needs, our algorithm could be useful as a fast approximation

of small p-values. This might be helpful, for example, in a screening study involving many

genes, in which a researcher wants to quickly get a sense for which genes have p-values that

are likely to be below a small threshold. It might also be helpful as a preliminary analysis to

approximate the order of magnitude of a p-value, which could help a researcher to determine

whether it would be feasible to follow-up with other Monte Carlo methods, such as SAMC,

and if so, how many iterations they would need to use. For some situations, such as our

analysis in Section 1.6, this could save considerable time and resources.

We want to emphasize that our methods are most useful for approximating small per-
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mutation p-values. For large p-values, our resampling algorithm is less computationally

efficient than simple Monte Carlo resampling. In the context of genomics data, before using

our methods, we recommend that researchers use simple Monte Carlo resampling with a

small number of resamples (e.g. 103) to identify which genes have p-values below a certain

threshold (e.g. 10−3). However, this is not a requirement.

This chapter focuses on two-sample tests, and we plan to explore extensions to multiple

samples in future work. As one way to handle multiple samples, we could conduct a union-

intersection test (Casella and Berger, 2002, p. 380). For example, say we have k samples

x1, . . . ,xk, and we wish to test the hypothesis H0 : ∩i 6=jPxi = Pxj versus the alternative

H1 : ∪i 6=jµxi 6= µxj , where µi is the mean of Pxi . Then we could use Algorithm 1 to compute

p-values for all pairwise differences (or all pairwise ratios), and then take the minimum p-

value. As another alternative, we could extend Algorithm 1 to use an omnibus statistic,

similar to the ANOVA F-test, and use a multi-sample version of (1.2). For example, we

might use T =
∑

i ni|x̄i − x̄|/n where x̄i and ni are the mean and sample size, respectively,

for group i, x̄ is the overall mean, and n =
∑

i ni. However, the extension of (1.2) to multiple

samples is non-trivial. It is also unclear whether the p-values from the multi-sample case

would follow the same trends across the partitions as in the two-sample case.

Returning to the two-sample case, while we have focused on the difference and ratio

of the means, preliminary efforts to explain the nearly log-linear trend in p-values across

the partitions suggests that the same pattern might hold for other smooth functions of the

means. In future work, we plan to explore this further. We also plan to investigate potential

diagnostics for assessing the reliability of the algorithm’s output, possibly based on the AIC

from the Poisson regression. Finally, we note that alternative Monte Carlo methods could

be incorporated into our resampling algorithm. For example, the SAMC algorithm could be

used in place of simple Monte Carlo resampling within each partition. This might further

reduce run-time and increase accuracy.

1.10 R Package and Code

We have implemented our method in the R package fastPerm available at https://github.

com/bdsegal/fastPerm. All code for the simulations and analyses in this chapter are avail-

able at https://github.com/bdsegal/code-for-fastPerm-paper.
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Chapter 2

Fast Approximation of Small p-values

in Permutation Tests by Partitioning

the Permutations: Further Empirical

Investigations

2.1 Introduction

In this chapter, we study the behavior of the methods we introduced in Chapter 1 under

additional simulation scenarios and against additional alternative methods. In Section 2.2,

we derive parametric p-values for ratios and differences of gamma random variables, which

we use in Section 2.3 to evaluate the performance of our methods and alternative techniques.

In Section 2.4, we compare against the moment corrected correlation (MCC) method of Zhou

and Wright (2015), as well as a saddlepoint approximation to the permutation p-value. In

Section 2.5, we evaluate the performance of our method under null hypotheses of a single

parameter, as opposed to the entire distribution. In Section 2.6, we derive an asymptotic

test for the ratio of the means via the delta method, and demonstrate its application to the

cancer genomic data described in Section 1.6.
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2.2 Parametric p-values for Ratios and Differences of

Gamma Random Variables

The results in this section are used in our simulations of exponential and gamma random

variables to obtain parametric approximations to the permutation p-value.

2.2.1 Ratio of Means

Let F be the beta prime CDF, also called a Pearson type VI distribution (Johnson et al.,

1995, p. 248), and let f be the corresponding pdf. Following the form given by Becker and

Klößner (2016), for Z ∼ F ,

fZ(z;α1, α2, s, q) =

(
z−q
s

)α1−1 (
1 + z−q

s

)−α1−α2

sB(α1, α2)

where B is the beta function. As we show in this section, if Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy),

then X̄/Ȳ and Ȳ /X̄ follow scaled beta prime distributions. This allows us to approximate

the permutation p-value for the ratio statistic with the p-value from a beta prime. We

note that the beta prime p-value is not conditional on the data, so is not the same as the

permutation p-value, but simulation results suggest it is a reasonable approximation.

As in Section 1.5.2, let xi, i = 1, . . . , nx, and yj, j = 1, . . . , ny, be realizations of the

respective random variables Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy). We consider the quantity

T = max
(
X̄/Ȳ , Ȳ /X̄

)
, and denote the observed statistic as t = max (x̄/ȳ, ȳ/x̄). Then

under the null hypothesis that λx = λy, the p-value from the beta prime distribution is

pβ = Pr(T ≥ t)

= Pr
(
max(X̄/Ȳ , Ȳ /X̄) ≥ t

)
= Pr

({
X̄/Ȳ ≥ t

}
∪
{
Ȳ /X̄ ≥ t

})
= Pr

(
X̄/Ȳ ≥ t

)
+ Pr

(
Ȳ /X̄ ≥ t

)
(disjoint) (2.1)

= Pr

(
ny
nx

∑
iXi∑
j Yj
≥ t

)
+ Pr

(
nx
ny

∑
j Yj∑
iXi

≥ t

)
(2.2)

= 1− F (t;α1 = nx, α2 = ny, s = ny/nx, q = 0) (2.3)

+ 1− F (t;α1 = ny, α2 = nx, s = nx/ny, q = 0) .

The equality in (2.1) follows because X̄/Ȳ ≥ t if and only if Ȳ /X̄ < t (assuming t 6= 1,

which occurs with probability one). Line 2.3 follows from well known properties, which we

outline below.
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Let U1 ∼ Gamma(α1, λ1) and U2 ∼ Gamma(α2, λ2), U1 ⊥ U2. Also, let V1 = h1(U1, U2) =

U1/U2 and V2 = h2(U1, U2) = U2 with respective inverse transformations U1 = h−1(V1, V2) =

V1V2 and U2 = h−1(V1, V2) = V2. Noting that the Jacobian of the transformation is

J =

∣∣∣∣∣∂u1/∂v1 ∂u1/∂v2

∂u2/∂v1 ∂u2/∂v2

∣∣∣∣∣ =

∣∣∣∣∣v2 v1

0 1

∣∣∣∣∣ = v2,

we have

fV1,V2(v1, v2) = fU1,U2

(
h−1

1 (v1, v2), h−1
2 (v1, v2)

)
|J |

=
λα1

1

Γ(α1)
(v1v2)α1−1e−λ1v1v2

λα2
2

Γ(α2)
vα2−1

2 e−λ2v2v2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1 vα1+α2−1
2 e−(λ1v1+λ2)v2 .

Therefore,

fV1(v1) =

∫ ∞
0

fV1,V2(v1, v2)dv2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1

∫ ∞
0

vα1+α2−1
2 e−(λ1v1+λ2)v2dv2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1

Γ(α1 + α2)

(λ1v1 + λ2)α1+α2

=

(
v1

λ2/λ1

)α1−1 (
1 + v1

λ2/λ1

)−α1−α2

(λ2/λ1)B(α1, α2)
,

which is a generalized beta prime distribution with shape parameters α1 and α2, location

parameter q = 0, and scale parameter s = λ2/λ1. In the case where λ1 = λ2, this simplifies

to the standard beta prime distribution with shape parameters α1 and α2. This shows

that whenever U1 ∼ Gamma(α1, λ), U2 ∼ Gamma(α2, λ), and U1 ⊥ U2, we have U1/U2 ∼
F (α1, α2, 1, 0). We note that some sources report that for U1 ∼ Gamma(α1, λ1), U2 ∼
Gamma(α2, λ2), and U1 ⊥ U2, we have U1/U2 ∼ F (α1, α2, 1, 0) if λ1 = λ2 = 1 (e.g., Leemis

and McQueston, 2008). However, as shown above, this also holds when λ1 = λ2 6= 1.

Now let Z = (
∑nx

i=1 Xi) /
(∑ny

j=1 Yi
)
. Since Xi

iid∼ Exp(λx) and Yj
iid∼ Exp(λy), it follows

that
∑nx

i=1Xi ∼ Gamma(nx, λx) and
∑ny

j=1 Yj ∼ Gamma(ny, λy). Then under the null of

λx = λy, the results above give Z ∼ F (nx, ny, 1, 0) and 1/Z ∼ F (ny, nx, 1, 0).

Now let W = sZ. Then by a change of variable, we have

fW (w) =

(
w
s

)nx−1 (
1 + w

s

)−nx−ny

sB(nx, ny)
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Applying this result to (2.2), we have

ny
nx

∑nx

i=1Xi∑ny

j=1 Yj
∼ F (·;nx, ny, ny/nx, 0)

and similarly,

nx
ny

∑ny

j=1 Yj∑nx

i=1Xi

∼ F (·;ny, nx, nx/ny, 0)

Then (2.3) follows directly from (2.2).

To compute the CDF values for the scaled beta prime, we used the PearsonDS package

for R (Becker and Klößner, 2016).

Similarly, for gamma random variables Xi
iid∼ Gamma(αx, λx) and Yj

iid∼ Gamma(αy, λy),∑nx

i=1Xi ∼ Gamma(nxαx, λx) and
∑ny

j=1 Yj ∼ Gamma(nyαy, λy). Then letting

Z = (
∑nx

i=1Xi) /
(∑ny

j=1 Yj
)
, under the null of H0 : λx = λy, αx = αy = α, we have Z ∼

F (·;nxα, nyα, 1, 0) and 1/Z ∼ F (·;nyα, nxα, 1, 0), so (ny/nx)Z ∼ F (·;nxα, nyα, ny/nx, 0)

and (nx/ny)Z ∼ F (·;nyα, nxα, nx/ny, 0). Therefore,

pβ = Pr(T ≥ t) = 1− F (t;nxα, nyα, ny/nx, 0)

+ 1− F (t;nyα, nxα, nx/ny, 0) .

In our simulations, we generated data under the alternative H1 : λx 6= λy, αx = αy = α

for various values of α. While we would ideally also simulate under the alternatives H1 :

λx 6= λy, αx 6= αy and H1 : λx = λy, αx 6= αy, in these scenarios it is not possible to compute

pβ under H0 : αx = αy, λx = λy, because α does not disappear in the beta prime density.

Consequently, we would have to compute pβ under H0 : αx = αy = c, λx = λy for a specified

constant c. This is more restrictive than the null hypothesis for the permutation test, and

consequently, it would not be clear how to compute the parametric p-value to use as an

approximation for the true permutation p-value.

2.2.2 Difference in Means

Let MX(t) be the moment generating function (MGF) for random variable X. Then for Xi
iid∼

Gamma(α, λ), i = 1, . . . , n, M 1
n

∑n
i=1Xi

(t) = M∑n
i=1Xi

(t/n) =
∏n

i=1MXi
(t/n) =

(
1− 1

nλ
t
)−nα

,

which is the MGF for a Gamma distribution with shape parameter nα and rate parameter

nλ. Therefore, X̄ ∼ Gamma(nα, nλ).

Then for Xi
iid∼ Gamma(α, λ), i = 1, . . . , nx and Yj

iid∼ Gamma(α, λ), j = 1, . . . , ny, the

distribution of X̄ − Ȳ , which we denote as G, is (Klar, 2015)

G(z) = Pr(X̄ − Ȳ ≤ z) = C

∫ ∞
max{0,−z}

vnyα−1e−nyλvγ (nxα, nxλ(v + z)) dv︸ ︷︷ ︸
A(z)

, (2.4)
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where γ(a, b) =
∫ b

0
sa−1e−sds is the lower incomplete gamma function, and

C = (nyλ)nyα/ (Γ(nxα)Γ(nyα)) is the normalizing constant. Klar (2015) also gives the

density for X̄ − Ȳ , which was derived by Mathai (1993).

However, in our simulations we found that several scenarios led to numerical problems in

computing (2.4) due to large gamma and incomplete gamma function values. These were not

solved by computing G(z) = exp{nyα log(nyλ)− log Γ(nxα)− log Γ(nyα) +log(A(z))} where

log Γ is the log gamma function. As an alternative, we used a saddlepoint approximation

for (2.4). As described below, the saddlepoint approximation is accurate and did not pose

computational difficulties.

To compute the saddlepoint approximation, note that under H0 : λx = λy = λ, αx =

αy = α, the MGF of X̄ − Ȳ is

MX̄−Ȳ (t) =

(
1− 1

nxλ
t

)−nxα(
1 +

1

nyλ
t

)−nyα

t ∈ (−nyλ, nxλ),

and the cumulant generating function is

K(t) = log (MX̄−Ȳ (t)) = −nxα log

(
1− t

nxλ

)
− nyα log

(
1 +

t

nyλ

)
.

After some algebra, we get the derivatives

K ′(t) =
α(nx + ny)t

(nxλ− t)(nyλ+ t)

K ′′(t) = α(nx + ny)
t2 + nxnyλ

2

[(nxλ− t)(nyλ+ t)]2
.

Let t̂ = t̂(z) ∈ (−nyλ, nxλ) be the solution to K ′(t̂) = z. Then as Butler (2007) describes,

the saddlepoint approximation of the cumulative distribution for z 6= E[X̄ − Ȳ ] = 0 is

(Lugannani and Rice, 1980)

Ĝ(z) = Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

û

)
, (2.5)

where ŵ = sgn(t̂)
√

2
[
t̂z −K(t̂)

]
, û = t̂

√
K ′′(t̂), and Φ and φ are the standard normal

distribution and density, respectively. The two-sided p-value is then psaddle = Pr(T ≥ t) =

1− Ĝ(t;nx, ny, λ, α) + Ĝ(−t;nx, ny, λ, α).

Figure 2.1 compares the true distribution (2.4) and saddlepoint approximation (2.5) for

nx = ny = 100, α = 1, and λ = 4. Figure 2.1 shows agreement between the true distribution

and saddlepoint approximation far into the tail. The trend is similar for other parameter

values (not shown), and appears to be reliable up to quantile values of around 10−200. We also
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note that through simulations, we found that both the true distribution and the saddlepoint

approximation agreed with the empirical distribution for a variety of parameter values.

Figure 2.1: Comparison of true (G) and saddlepoint approximation (Ĝ) distribu-

tions of the difference of gamma random variables. The diagonal dashed line has

slope of 1 and an intercept of 0, and indicates agreement.

Both the true distribution (2.4) and saddlepoint approximation (2.5) are functions of α

and λ. Neither parameter disappears under the null of H0 : αx = αy = α, λx = λy = λ,

so we must set α and λ to fixed values to compute p-values. To do this in the simulations,

we pooled the generated data, computed the maximum likelihood estimates (MLEs), and

plugged the MLEs into (2.5). In the simulations, we found that allowing both α and λ to

vary led to less reliable p-values from the saddlepoint approximation than allowing just one

parameter to vary. To be consistent with our simulations for the ratio of gamma means, we

fixed α and used the MLE estimate for λ in the simulations.

We note that this procedure for obtaining a parametric approximation to the permu-

tation p-value involves three approximations: 1) approximating the permutation p-value

(conditional on the data) with a parametric distribution (not conditional on the data), 2)

approximating the parametric distribution with a saddlepoint approximation, and 3) ap-

proximating the general null H0 : λx = λy with the more restrictive null H0 : λx = λy = λ̂,

where λ̂ is the MLE from the pooled data.

To obtain the MLE estimates, let z = (x′,y′)′ be the pooled data, N = nx + ny be the

total sample size, and z̄ = N−1
∑N

i=1 zi, s
2 = (N − 1)−1

∑
i(zi− z̄)2 be the sample mean and
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variance, respectively. Then assuming iid observations, the joint log likelihood is

` = Nα log(λ)−N log (Γ(α)) + (α− 1)
∑
i

log(zi)−Nλz̄.

Taking the derivative with respect to λ and setting to zero, we get λ = α/z̄. Then taking

∂`/∂α and substituting in λ = α/z̄, we get

`′(α) = N log
(α
z̄

)
−NΨ(α) +

∑
i

log(xi)

`′′(α) =
N

α
−NΨ′(α),

where Ψ(α) = d log(Γ(α))/dα is the digamma function, and Ψ′(α) = dΨ(α)/dα is the

trigamma function. We used Newton-Raphson until convergence of `(α) to get the MLE α̂,

where each update is given by αk+1 = αk − `′
(
αk
)
/`′′
(
αk
)
, and then set λ̂ = α̂z̄. To get

initial values for α, we used the method of moments and set α0 = z̄2/s2.

2.3 Additional Simulations

In this section, we present simulation results under additional scenarios.

2.3.1 Difference in Means with Normal Data

In this subsection, we use the statistic T = |x̄ − ȳ| with data generated as normal random

variables.

Small Sample Sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(µx, 1) and Yj

iid∼ N(µy, 1). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For both

equal and unequal sample sizes and for each each n or nx, we set µx = 2 or 3, and µy = 0,

and simulated 100 datasets for each combination of parameters. We used the p-value from

a t-test with equal variance, denoted as pt, as an approximation for the true permutation

p-value.

Results for equal and unequal sample size are shown in Figures 2.2 and 2.3, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, SAMC is the SAMC algorithm, and pt is a two-sided t-test with

equal variance. The number of resamples used by our algorithm is shown in Figures 2.2b
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(a) p-values (b) Number of resamples in Alg 1

Figure 2.2: Simulation results using the statistic T = |x̄ − ȳ| with normal data,
µx = 2 or 3, µy = 0, and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1
is our resampling algorithm with Bpred = 103 resamples in each partition, Asym
is our asymptotic approximation, SAMC is the SAMC algorithm, and pt is a
two-sided t-test with equal variance. The diagonal dashed line has slope of 1 and
intercept of 0, and indicates agreement between methods. The horizontal line in
2.2b shows the number of iterations used in the SAMC algorithm (set in advance
and independent of p-value).

and 2.3b. We note that the bias shown in Figures 2.2a and 2.3a are similar to that obtained

with moment-corrected correlation (MCC) (Zhou and Wright, 2015), shown in Figure 2.19

of Section 2.4.

Under the Null Hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(0, 1) and Yj

iid∼ N(0, 1). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For

both equal and unequal sample sizes and for each each n or nx, we simulated 1,000 datasets

(we used 1,000 datasets instead of 100 to better investigate the type I error rate). We used

the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃, as an

approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures 2.4 and 2.5, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, t-test shows the p-value from a two-sided t-test with equal

variance, and p̃ is from simple Monte Carlo resampling with 105 resamples. We compare

p-values from the t-test against p̃, which shows close agreement. We do not show results

from the SAMC algorithm, because the EXPERT package (Yu et al., 2011) does not provide
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(a) p-values (b) Number of resamples in Alg 1

Figure 2.3: Simulation results using the statistic T = |x̄ − ȳ| with normal data,
µx = 2 or 3, µy = 0, and unequal sample sizes, where ny = 100 and nx = 20, 40, 60.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, SAMC is the SAMC algorithm, and pt
is a two-sided t-test with equal variance. The diagonal dashed line has slope of
1 and intercept of 0, and indicates agreement between methods. The horizontal
line in 2.3b shows the number of iterations used in the SAMC algorithm (set in
advance and independent of p-value).

Table 2.1: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
normal data and equal sample sizes n = nx = ny. MC is the unadjusted p-value
from simple Monte Carlo resampling with 105 resamples, t-test is a two-sided
t-test with equal variance, Alg 1 is our resampling algorithm, and Asymptotic is
our asymptotic approximation.

signif level n MC t-test Alg 1 Asymptotic

0.01
20 0.010 0.010 0.015 0.010
40 0.013 0.013 0.015 0.013
60 0.010 0.010 0.011 0.010

0.05
20 0.048 0.050 0.064 0.050
40 0.055 0.055 0.075 0.056
60 0.049 0.050 0.061 0.050

0.1
20 0.098 0.098 0.14 0.11
40 0.11 0.11 0.14 0.11
60 0.10 0.10 0.12 0.10

results for p-values > 10−3.

Tables 2.1 and 2.2 show the Type I error rates under the null H0 : Px = Py for the equal

and unequal sample size simulations, respectively. MC is the unadjusted p-value from simple

Monte Carlo resampling with 105 resamples, t-test is a two-sided t-test with equal variance,

Alg 1 is our resampling algorithm, and Asymptotic is our asymptotic approximation.
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Figure 2.4: Simulation results using the statistic T = |x̄ − ȳ| with normal data
under the null Px = Py with equal sample sizes of n = nx = ny = 20, 40, 60.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, t-test shows the p-value from a two-
sided t-test with equal variance, and p̃ is from simple Monte Carlo resampling
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods.

Figure 2.5: Simulation results using the statistic T = |x̄ − ȳ| with normal data
under the null Px = Py with unequal sample sizes of nx = 20, 40, 60 and ny = 100.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, t-test shows the p-value from a two-
sided t-test with equal variance, and p̃ is from simple Monte Carlo resampling
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods.
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Table 2.2: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
normal data and unequal sample sizes nx 6= ny (nx shown and ny = 100). MC is
the unadjusted p-value from simple Monte Carlo resampling with 105 resamples,
t-test is a two-sided t-test with equal variance, Alg 1 is our resampling algorithm,
and Asymptotic is our asymptotic approximation.

signif level nx MC t-test Alg 1 Asymptotic

0.01
20 0.013 0.013 0.018 0.013
40 0.016 0.016 0.018 0.016
60 0.010 0.010 0.013 0.010

0.05
20 0.049 0.049 0.075 0.049
40 0.047 0.047 0.066 0.047
60 0.044 0.044 0.057 0.044

0.1
20 0.090 0.090 0.14 0.092
40 0.10 0.10 0.14 0.11
60 0.090 0.090 0.13 0.090

2.3.2 Ratio of Means with Exponential Data

In this subsection, we use the statistic T = max(x̄/ȳ, ȳ/x̄) with data generated as exponential

random variables.

Small Sample Sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For each

n or nx, we set λy = 5 or 10, and λx = 1. For both equal and unequal sample sizes, we

simulated 100 datasets for each combination of parameters. We used the p-value from the

beta prime distribution, denoted as pβ (see Section 2.2), as an approximation to the true

permutation p-value.

Results for equal and unequal sample size are shown in Figures 2.6 and 2.7, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, SAMC is the SAMC algorithm, and

pβ is the two-sided p-value from the beta prime distribution. The number of resamples used

by our resampling algorithm is shown in Figures 2.6b and 2.7b.

Under the Null Hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Exp(1) and Yj

iid∼ Exp(1). For equal sample sizes, we set n =

42



(a) p-values (b) Number of resamples in Alg 1

Figure 2.6: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data, n = nx = ny = 20, 40, 60, and rates λy = 5, 10 and λx = 1. Alg 1 is
our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Delta is the delta method, SAMC is the SAMC
algorithm, and pβ is the two-sided p-value from the beta prime distribution. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in 2.6b shows the number of iterations
used in the SAMC algorithm (set in advance, and independent of p-value). The
SAMC algorithm did not produce values for 15 tests (points missing).

(a) p-values (b) Number of resamples in Alg 1

Figure 2.7: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data, nx = 20, 40, 60, ny = 100, and rates λy = 5, 10 and λx = 1. Alg 1 is
our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Delta is the delta method, SAMC is the SAMC
algorithm, and pβ is the two-sided p-value from the beta prime distribution. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in 2.7b shows the number of iterations
used in the SAMC algorithm (set in advance, and independent of p-value).
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Figure 2.8: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data under the null of Px = Py with equal sample sizes of n = nx = ny =
20, 40, 60. Alg 1 is our resampling algorithm with Bpred = 103 resamples in each
partition, Asym is our asymptotic approximation, Delta is the delta method, Beta
prime gives the p-value from the beta prime distribution, and p̃ is from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods.

nx = ny = 20, 40, 60. For unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For

both equal and unequal sample sizes, we simulated 1,000 datasets for each combination of

parameters (we used 1,000 datasets instead of 100 to better investigate the type I error rate).

We used the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃,

as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures 2.8 and 2.9, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, Beta prime gives the p-value from the

beta prime distribution, and p̃ is from simple Monte Carlo resampling with 105 resamples.

Given the large p-values, using 105 Monte Carlo resamples should be sufficient to obtain

reliable estimates of the true permutation p-value. Therefore, this comparison demonstrates

that the permutation p-value is not exactly the same as the p-value from the beta prime

distribution. However, it appears reasonably close, so we use it as an approximation to the

truth in other simulations in which the p-values are much smaller and simple Monte Carlo

methods are not feasible.

We do not show results from the SAMC algorithm, because as noted above, the EXPERT

package (Yu et al., 2011) does not provide results for p-values > 10−3.

Tables 2.3 and 2.4 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample size simulations, respectively. MC is the unadjusted p-value from
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Figure 2.9: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data under the null of Px = Py with unequal sample sizes of nx = 20, 40,
60 and ny = 100. Alg 1 is our resampling algorithm with Bpred = 103 resam-
ples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, Beta prime gives the p-value from the beta prime distribution, and p̃ is
from simple Monte Carlo resampling with 105 resamples. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.

Table 2.3: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with exponential data and equal sample sizes n = nx = ny. MC is simple
Monte Carlo resampling with 105 resamples, Alg 1 is our resampling algorithm,
Asymptotic is our asymptotic approximation, Delta is the delta method, and Beta
prime is the the beta prime distribution.

signif level n MC Alg 1 Asymptotic Delta Beta prime

0.01
20 0.010 0.016 0.066 0.003 0.009
40 0.010 0.018 0.050 0.002 0.008
60 0.013 0.013 0.031 0.006 0.015

0.05
20 0.064 0.084 0.14 0.045 0.058
40 0.061 0.079 0.11 0.054 0.061
60 0.051 0.063 0.091 0.050 0.047

0.10
20 0.11 0.15 0.21 0.12 0.11
40 0.11 0.14 0.17 0.11 0.11
60 0.093 0.11 0.14 0.095 0.092

simple Monte Carlo resampling and 105 resamples, Beta prime is the p-value from the beta

prime distribution, Alg 1 is our resampling algorithm, and Asymptotic is our asymptotic

approximation.
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Table 2.4: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with exponential data and unequal sample sizes nx 6= ny (nx shown, and ny =
100). MC is simple Monte Carlo resampling with 105 resamples, Alg 1 is our
resampling algorithm, Asymptotic is our asymptotic approximation, Delta is the
delta method with, and Beta prime is the beta prime distribution.

signif level n MC Alg 1 Asymptotic Delta Beta prime

0.01
20 0.011 0.016 0.054 0.008 0.012
40 0.008 0.012 0.033 0.004 0.006
60 0.012 0.016 0.035 0.007 0.014

0.05
20 0.061 0.082 0.127 0.065 0.056
40 0.048 0.062 0.097 0.047 0.050
60 0.047 0.065 0.083 0.044 0.051

0.10
20 0.12 0.16 0.19 0.14 0.12
40 0.10 0.14 0.17 0.11 0.10
60 0.091 0.12 0.14 0.093 0.088

2.3.3 Difference in Means with Gamma Data

In this subsection, we use the statistic T = |x̄ − ȳ| with data generated as gamma random

variables.

Small Sample Sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λx) and Yj

iid∼ Gamma(α, λy), where α = 0.5, 3, 5, λx = 1,

and λ is the rate parameter. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and for

unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For α = 0.5, we set λy = 2.5, 3 for

all n or nx. For α = 3, we set λy = 1.5, 1.75 for all n or nx. For α = 5, we set λy = 1.25, 1.5

for all n or nx. For both equal and unequal sample sizes, we simulated 100 datasets for each

combination of parameters.

Results for equal and unequal sample size are shown in Figures 2.10 and 2.11, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, t-test is a t-test with unequal variance, and Saddle is the

saddlepoint approximation (see Section 2.2). SAMC results are not shown, as the EXPERT

package does not provide p-values larger than 10−3. We use the p-values from simple Monte

Carlo resampling, denoted as p̃, with 105 resamples as a basis of comparison, and only show

values for which p̃ > 10−3 to ensure that the p̃ are reliable (1,023 values shown in Figure

2.10, and 573 values shown in Figure 2.11).

We use a t-test with unequal variance because we anticipate that this is the test that
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Figure 2.10: Simulation results using the statistic T = |x̄− ȳ| with gamma data
and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, t-test is a t-test with unequal variance, and Saddle is the sad-
dlepoint approximation (see Section 2.2). p̃ is the p-values from simple Monte
Carlo resampling with 105 resamples. SAMC results are not shown, as the EX-
PERT package does not produce p-values larger than 10−3. Only simulations
with p̃ > 10−3 shown (1,023 values shown). The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods.

would be used in practice, though we note that it tests a more general null hypothesis

(H0 : µx = µy) than the permutation test (H0 : Px = Py). This puts our methods at a

disadvantage.

Overall, Figures 2.10 and 2.11 suggest that our methods work well in this setting, though

our resampling algorithm might be liberal for equal sample sizes and α = 0.5. The t-test

performs well in some scenarios, but tends to be too conservative, particularly for unequal

sample sizes. Overall, the Saddlepoint approximation with fixed α and the MLE λ̂ from

the pooled data appears to have more variance than the other methods. Comparison with

Figures 2.21 and 2.22 in Section 2.4 suggests that our resampling algorithm might be more

reliable in this setting than moment corrected correlation (MCC) (Zhou and Wright, 2015)

under the alternative and for unequal sample sizes.
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Figure 2.11: Simulation results using the statistic T = |x̄− ȳ| with gamma data
and unequal sample sizes of nx = 20, 40, 60 and ny = 100. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, SAMC is the SAMC algorithm, and pt is a two-sided t-test with
equal variance. SAMC results are not shown, as the EXPERT package does not
produce p-values larger than 10−3. Only simulations with p̃ > 10−3 shown (573
values shown). The diagonal dashed line has slope of 1 and intercept of 0, and
indicates agreement between methods.

Under the Null Hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λ) and Yj

iid∼ Gamma(α, λ) for α = 0.5, 3, 5 and λ = 1, 5,

where λ is the rate parameter. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and

for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For both equal and unequal

sample sizes, and for each each n or nx and combination of α and λ, we simulated 1,000

datasets (we used 1,000 datasets instead of 100 to better investigate the type I error rate).

We used the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃,

as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures 2.12 and 2.13, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, Saddle is the saddlepoint approximation described in Section

2.2, t-test shows the p-value from a two-sided t-test with unequal variance, and p̃ is from

simple Monte Carlo resampling with 105 resamples. We do not show results from the SAMC

48



Figure 2.12: Simulation results using the statistic T = |x̄− ȳ| with gamma data
under the null Px = Py with equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1
is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Saddle is the saddlepoint approximation described
in Section 2.2, t-test shows the p-value from a two-sided t-test with unequal
variance, and p̃ is from simple Monte Carlo resampling with 105 resamples. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods.

algorithm, because the EXPERT package (Yu et al., 2011) does not provide results for p-values

> 10−3.

Figures 2.12 and 2.13 suggest that our methods work well in this setting, and have less

variability than both the t-test and saddlepoint approximation (using fixed α fixed and the

MLE λ̂ from the pooled data).

Tables 2.5 and 2.6 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample size simulations, respectively. MC is the unadjusted p-value from

simple Monte Carlo resampling and 105 resamples, Saddle is the saddlepoint approximation

described in Section 2.2, Alg 1 is our resampling algorithm with Bpred = 103 resamples in

each partition, Asym is our asymptotic approximation, and t-test shows the p-value from a

two-sided t-test with equal variance.
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Table 2.5: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
gamma data and equal sample sizes n = nx = ny. MC is the unadjusted p-value
from simple Monte Carlo resampling with 105 resamples, Saddle is the saddlepoint
approximation described in Section 2.2, Alg 1 is our resampling algorithm with
Bpred = 103 resamples in each partition, Asym is our asymptotic approximation,
and t-test is a two-sided t-test with equal variance.

α signif level nx MC Saddle Alg 1 Asym t-test

0.5

0.01
20 0.0110 0.0100 0.0165 0.0060 0.0045
40 0.0125 0.0110 0.0150 0.0090 0.0085
60 0.0115 0.0085 0.0140 0.0105 0.0105

0.05
20 0.0495 0.0560 0.0665 0.0460 0.0410
40 0.0515 0.0490 0.0660 0.0520 0.0485
60 0.0455 0.0450 0.0595 0.0435 0.0425

0.1
20 0.1000 0.1020 0.1280 0.1020 0.0945
40 0.0995 0.0950 0.1260 0.1020 0.0975
60 0.0980 0.0950 0.1230 0.0990 0.0965

3

0.01
20 0.0115 0.0070 0.0165 0.0095 0.0095
40 0.0120 0.0115 0.0150 0.0120 0.0120
60 0.0075 0.0075 0.0080 0.0070 0.0070

0.05
20 0.0510 0.0465 0.0715 0.0515 0.0495
40 0.0545 0.0575 0.0680 0.0560 0.0525
60 0.0470 0.0475 0.0665 0.0480 0.0475

0.1
20 0.0940 0.0990 0.1280 0.0980 0.0940
40 0.0990 0.1000 0.1320 0.0990 0.0980
60 0.0980 0.0985 0.1230 0.0980 0.0980

5

0.01
20 0.0115 0.0095 0.0175 0.0115 0.0115
40 0.0090 0.0065 0.0130 0.0080 0.0080
60 0.0045 0.0055 0.0085 0.0040 0.0040

0.05
20 0.0525 0.0525 0.0675 0.0525 0.0505
40 0.0525 0.0545 0.0715 0.0535 0.0520
60 0.0460 0.0445 0.0580 0.0470 0.0470

0.1
20 0.0965 0.0960 0.1220 0.0980 0.0955
40 0.1070 0.1060 0.1370 0.1080 0.1080
60 0.0925 0.0905 0.1300 0.0940 0.0915
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Table 2.6: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
gamma data and unequal sample sizes nx 6= ny (nx shown and ny = 100). α is the
shape parameter in the gamma distribution, MC is the unadjusted p-value from
simple Monte Carlo resampling with 105 resamples, Saddle is the saddlepoint
approximation described in Section 2.2, Alg 1 is our resampling algorithm with
Bpred = 103 resamples in each partition, Asym is our asymptotic approximation,
and t-test is a two-sided t-test with equal variance.

α signif level nx MC Saddle Alg 1 Asym t-test

0.5

0.01
20 0.0095 0.0095 0.0105 0.0085 0.0245
40 0.0090 0.0060 0.0105 0.0070 0.0140
60 0.0130 0.0160 0.0170 0.0105 0.0135

0.05
20 0.0460 0.0465 0.0675 0.0440 0.0740
40 0.0455 0.0470 0.0620 0.0445 0.0540
60 0.0505 0.0500 0.0670 0.0495 0.0530

0.1
20 0.0915 0.0930 0.1260 0.0845 0.1220
40 0.0980 0.0945 0.1280 0.0960 0.1040
60 0.1100 0.1080 0.1410 0.1100 0.1080

3

0.01
20 0.0085 0.0095 0.0155 0.0085 0.0135
40 0.0135 0.0120 0.0185 0.0135 0.0140
60 0.0070 0.0055 0.0090 0.0070 0.0070

0.05
20 0.0440 0.0440 0.0665 0.0435 0.0480
40 0.0480 0.0555 0.0695 0.0485 0.0530
60 0.0470 0.0495 0.0635 0.0485 0.0460

0.1
20 0.0875 0.0885 0.1260 0.0885 0.1000
40 0.1050 0.1040 0.1350 0.1060 0.0975
60 0.1040 0.1080 0.1370 0.1040 0.1040

5

0.01
20 0.0140 0.0110 0.0200 0.0140 0.0145
40 0.0090 0.0100 0.0155 0.0090 0.0100
60 0.0105 0.0090 0.0120 0.0110 0.0075

0.05
20 0.0540 0.0535 0.0845 0.0540 0.0620
40 0.0530 0.0525 0.0730 0.0525 0.0555
60 0.0520 0.0510 0.0635 0.0520 0.0500

0.1
20 0.1140 0.1160 0.1520 0.1140 0.1130
40 0.0995 0.1000 0.1300 0.0995 0.1040
60 0.1040 0.0985 0.1320 0.1050 0.1060
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Figure 2.13: Simulation results using the statistic T = |x̄ − ȳ| with gamma
data under the null Px = Py with unequal sample sizes of nx = 20, 40, 60 and
ny = 100. Alg 1 is our resampling algorithm with Bpred = 103 resamples in
each partition, Asym is our asymptotic approximation, Saddle is the saddlepoint
approximation described in Section 2.2, t-test shows the p-value from a two-sided
t-test with unequal variance, and p̃ is from simple Monte Carlo resampling with
105 resamples. The diagonal dashed line has slope of 1 and intercept of 0, and
indicates agreement between methods.

2.3.4 Ratio of Means with Gamma Data

In this subsection, we use the statistic T = max(x̄/ȳ, ȳ/x̄) with data generated as gamma

random variables.

Small Sample Sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λx) and Yj

iid∼ Gamma(α, λy), where λ is the rate param-

eter, and α = 0.5, 3, 5. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and for

unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For all simulations, we set λx = 1.

For equal samples sizes, we set λy = 7, 12.5 for each n. For unequal sample sizes, we set

λy = 2.25, 2.75 for all nx for α = 0.5, λy = 2, 2.5 for all nx for α = 3, and λy = 1.75, 2.25 for

all nx for α = 5. We simulated 100 datasets for each combination of parameters.

Results for equal and unequal sample size are shown in Figures 2.14 and 2.15, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our
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(a) p-values

(b) Number of resamples in Alg 1

Figure 2.14: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with
gamma data and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 is
our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Delta is the delta method, SAMC is the SAMC
algorithm, and pβ is the two-sided p-value from the beta prime distribution. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in 2.14b shows the number of iterations
used in the SAMC algorithm (set in advance, and independent of p-value). The
SAMC algorithm did not produce values for 652 tests (points missing).

asymptotic approximation, Delta is the delta method, SAMC is the SAMC algorithm, and

pβ is the two-sided p-value from the beta prime distribution. Figures 2.14b and 2.15b show

the number of resamples used by our resampling algorithm.

Under the Null Hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, 1) and Yj

iid∼ Gamma(α, 1) for α = 0.5, 3, 5. For equal

sample sizes, we set n = nx = ny = 20, 40, 60. For unequal sample sizes, we set nx = 20, 40, 60

and ny = 100. For both equal and unequal sample sizes, we simulated 1,000 datasets for

each combination of parameters (we used 1,000 datasets instead of 100 to better investigate

the type I error rate). We used the p-value from simple Monte Carlo resampling with 105

resamples, denoted as p̃, as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures 2.16 and 2.17, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our
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(a) p-values

(b) Number of resamples in Alg 1

Figure 2.15: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with
gamma data and unequal sample sizes of nx = 20, 40, 60, ny = 100, and rates
λy = 5, 10, and λx = 1. Alg 1 is our resampling algorithm with Bpred = 103

resamples in each partition, Asym is our asymptotic approximation, Delta is the
delta method, SAMC is the SAMC algorithm, and pβ is the two-sided p-value
from the beta prime distribution. The diagonal dashed line has slope of 1 and
intercept of 0, and indicates agreement between methods. The horizontal line
in 2.15b shows the number of iterations used in the SAMC algorithm (set in ad-
vance, and independent of p-value). The SAMC algorithm did not produce values
for 304 tests (points missing).

asymptotic approximation, Delta is the delta method, Beta prime gives the p-value from the

beta prime distribution, and p̃ is from simple Monte Carlo resampling with 105 resamples.

Given the large p-values, using 105 Monte Carlo resamples should be sufficient to obtain

reliable estimates of the true permutation p-value. Therefore, this comparison demonstrates

that the permutation p-value is not exactly the same as the p-value from the beta prime

distribution. However, it appears reasonably close, so we use it as an approximation to the

truth in other simulations in which the p-values are much smaller and simple Monte Carlo

methods are not feasible.

We do not show results from the SAMC algorithm, because as noted above, the EXPERT

package (Yu et al., 2011) does not provide results for p-values > 10−3.

Tables 2.7 and 2.8 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample sizes, respectively. MC is the unadjusted p-value from simple

Monte Carlo resampling with 105 resamples, Beta prime is the p-value from the beta prime
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Figure 2.16: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with
gamma data under the null of Px = Py with equal sample sizes of n = nx =
ny = 20, 40, 60. Alg 1 is our resampling algorithm with Bpred = 103 resam-
ples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, Beta prime gives the p-value from the beta prime distribution, and p̃ is
from simple Monte Carlo resampling with 105 resamples. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.

distribution, Alg 1 is our resampling algorithm, and Asym is our asymptotic approximation.

2.4 Comparison with Additional Methods

2.4.1 Moment-Corrected Correlation

Moment-corrected correlation (MCC) (Zhou and Wright, 2015) is an analytical approxima-

tion to the permutation p-value, which is applicable in multiple testing situations in which

the test statistic is permutationally equivalent to a single inner product. Where applicable,

this approach is fast, as it does not involve resampling. However, if the test statistic of

interest is not permutationally equivalent to an inner product, the MCC approach cannot

be used.

The statistic T = x̄ − ȳ fits into this setting, whereas, to the best of our knowledge,

T = x̄/ȳ does not. To see this, let z = (x′,y′)′ andw = (1/nx, . . . , 1/nx︸ ︷︷ ︸
nx

,−1/ny, . . . ,−1/ny︸ ︷︷ ︸
ny

)′.
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Table 2.7: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with gamma data and equal sample sizes n = nx = ny. α is the shape parameter
in the gamma distribution, MC is simple Monte Carlo resampling with 105 resam-
ples, Alg 1 is our resampling algorithm, Asym is our asymptotic approximation,
Delta is the delta method, and Beta prime is the the beta prime distribution.

α signif level n MC Alg 1 Asym Delta Beta prime

0.5

0.01
20 0.013 0.018 0.093 0.002 0.015
40 0.007 0.014 0.055 0.001 0.007
60 0.007 0.010 0.047 0.002 0.011

0.05
20 0.050 0.076 0.182 0.026 0.053
40 0.050 0.072 0.135 0.037 0.055
60 0.048 0.068 0.114 0.043 0.050

0.1
20 0.110 0.136 0.243 0.106 0.108
40 0.106 0.135 0.196 0.114 0.104
60 0.096 0.127 0.178 0.101 0.097

3

0.01
20 0.007 0.012 0.027 0.003 0.006
40 0.012 0.016 0.025 0.010 0.010
60 0.012 0.015 0.025 0.012 0.008

0.05
20 0.043 0.067 0.088 0.046 0.044
40 0.053 0.062 0.073 0.052 0.051
60 0.059 0.075 0.080 0.061 0.049

0.1
20 0.095 0.126 0.143 0.103 0.090
40 0.098 0.133 0.147 0.104 0.103
60 0.095 0.115 0.116 0.097 0.093

5

0.01
20 0.009 0.015 0.023 0.009 0.009
40 0.008 0.013 0.025 0.008 0.011
60 0.012 0.012 0.019 0.012 0.013

0.05
20 0.046 0.063 0.082 0.054 0.052
40 0.048 0.063 0.066 0.050 0.043
60 0.055 0.078 0.079 0.057 0.057

0.1
20 0.093 0.130 0.139 0.106 0.099
40 0.091 0.134 0.138 0.094 0.093
60 0.115 0.138 0.136 0.116 0.112
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Table 2.8: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with gamma data and unequal sample sizes nx 6= ny (nx shown and ny = 100).
α is the shape parameter in the gamma distribution, MC is simple Monte Carlo
resampling with 105 resamples, Alg 1 is our resampling algorithm, Asym is our
asymptotic approximation, Delta is the delta method, and Beta prime is the beta
prime distribution.

α signif level nx MC Alg 1 Asym Delta Beta prime

0.5

0.01
20 0.011 0.015 0.065 0.006 0.011
40 0.015 0.018 0.053 0.003 0.013
60 0.008 0.011 0.042 0.003 0.012

0.05
20 0.043 0.069 0.128 0.047 0.053
40 0.057 0.072 0.133 0.048 0.056
60 0.052 0.071 0.112 0.045 0.050

0.1
20 0.098 0.121 0.179 0.109 0.091
40 0.113 0.141 0.195 0.119 0.108
60 0.106 0.126 0.172 0.109 0.098

3

0.01
20 0.011 0.016 0.023 0.012 0.011
40 0.005 0.011 0.027 0.005 0.009
60 0.011 0.013 0.017 0.011 0.011

0.05
20 0.047 0.070 0.073 0.059 0.039
40 0.058 0.065 0.069 0.057 0.054
60 0.053 0.066 0.070 0.050 0.052

0.1
20 0.088 0.128 0.135 0.104 0.087
40 0.094 0.124 0.124 0.101 0.089
60 0.094 0.119 0.117 0.097 0.097

5

0.01
20 0.010 0.014 0.022 0.007 0.009
40 0.011 0.011 0.017 0.011 0.009
60 0.015 0.020 0.025 0.015 0.018

0.05
20 0.058 0.074 0.085 0.066 0.054
40 0.046 0.057 0.059 0.048 0.052
60 0.059 0.081 0.085 0.061 0.062

0.1
20 0.110 0.145 0.143 0.121 0.114
40 0.081 0.114 0.108 0.085 0.088
60 0.113 0.145 0.138 0.118 0.115
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Figure 2.17: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with
gamma data under the null of Px = Py with unequal sample sizes of nx = 20,
40, 60 and ny = 100. Alg 1 is our resampling algorithm with Bpred = 103 resam-
ples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, Beta prime gives the p-value from the beta prime distribution, and p̃ is
from simple Monte Carlo resampling with 105 resamples. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.

Then x̄− ȳ = z′w. In contrast, x̄/ȳ cannot be written in this form, and we conjecture that

it is not permutationally equivalent to any statistic that can be.

Figures 2.18 through 2.20 show simulation results for two-sided and doubled p-values, as

described by Zhou and Wright (2015), using the mcc package (Zhou, 2014) under the same

normal data settings as in Section 2.3.1. While MCC is more reliable for large sample sizes

(Figure 2.18), MCC appears to suffer from the same bias as our methods for small sample

sizes (Figure 2.19). Furthermore, we do not think that MCC can be used to obtain p-values

for the statistic T = max(x̄/ȳ, ȳ/x̄).

Figures 2.21 and 2.22 show simulation results for two-sided and doubled p-values for small

sample sizes and under the null, respectively, using the mcc package (Zhou, 2014) under the

same gamma data settings as in Section 2.3.3. In Figure 2.21, we used B = 105 resamples to

obtain the Monte Carlo estimate p̃ of the true permutation p-value, and only show results

for p̃ > 10−3 to ensure reliable estimates (1,019 values shown in Figure 2.21a, and 705 values

shown in Figure 2.21b).

As seen in Figure 2.21, in many cases the MCC method substantially underestimated the

permutation p-value for equal sample sizes nx = ny and α = 0.5. We did not observe this
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(a) nx = ny (b) nx 6= ny

Figure 2.18: MCC with large sample sizes for T = |x̄− ȳ| with normal data and
equal sample sizes of n = nx = ny = 100, 500, 1, 000, and unequal sample sizes of
nx = 50, 200, 350 with ny = 500. In both cases, data were simulated as normal
random variables with µy = 0, µx = 0.75, 1 and σ2

x = σ2
x = 1. pt is the p-value

from a t-test with equal variance. The diagonal dashed line has a slope of 1 and
an intercept of 0, and indicates agreement.

(a) nx = ny (b) nx 6= ny

Figure 2.19: MCC with small sample size for T = |x̄− ȳ| with normal data and
equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as normal
random variables with µy = 0, µx = 2, 3 and σ2

x = σ2
x = 1. pt is the p-value from

a t-test with equal variance. The diagonal dashed line has a slope of 1 and an
intercept of 0, and indicates agreement.
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(a) nx = ny (b) nx 6= ny

Figure 2.20: MCC under the null hypothesis for T = |x̄ − ȳ| with normal data
for equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as normal
random variables with µy = µx = 0 and σ2

x = σ2
x = 1. pt is the p-value from

a t-test with equal variance. The diagonal dashed line has a slope of 1 and an
intercept of 0, and indicates agreement.

(a) nx = ny (b) nx 6= ny

Figure 2.21: MCC with small sample size for T = |x̄ − ȳ| with gamma data
and equal sample size n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as gamma
random variables, as described in Section 2.3.3. p̃ is the p-value from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has a
slope of 1 and an intercept of 0, and indicates agreement.
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(a) nx = ny (b) nx 6= ny

Figure 2.22: MCC under the null hypothesis for T = |x̄ − ȳ| with gamma data
for equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as gamma
random variables, as described in Section 2.3.3. p̃ is the p-value from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has a
slope of 1 and an intercept of 0, and indicates agreement.

tendency with our resampling algorithm (see Figures 2.10 and 2.11).

2.4.2 Saddlepoint Approximations

Saddlepoint approximations can be used to estimate permutation p-values (Robinson, 1982).

As shown in Table 2.9, estimates from our methods are comparable to those from saddle-

point approximations when using the statistic T = |x̄ − ȳ|. However, unlike saddlepoint

approximations, our resampling algorithm requires no derivations.

2.5 Simulations Under Null Hypotheses for Single

Parameters

Neuhaus (1993), Janssen (1997), Chung and Romano (2013), and others have extended

permutation tests to be valid not only under the null Px = Py, but also under the more

general null that θ(Px) = θ(Py), where θ(P ) is a single parameter. For example, for X ∼
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Table 2.9: Comparison with Saddlepoint approximations for T = |x̄−ȳ|. Datasets
are from Robinson (1982, Table 2), who obtained them from Lehmann (1975).
Dataset 1 pertains to hours of pain relief due to two different drugs (nx = ny = 8),
and Dataset 2 pertains to the effect of an analgesia for two classes (nx = 7, ny =
10). The exact and saddlepoint p-values are from Robinson (1982). The the
p-value from our resampling algorithm (p̃pred) is the mean from 100 runs; the
first and third quantiles were (0.080, 0.088) for dataset 1, and (0.011, 0.012) for
dataset 2.

Method Dataset 1 Dataset 2

Exact 0.102 0.012
First saddlepoint 0.089 0.010

Second saddlepoint 0.101 0.011
p̃pred 0.083 0.012
p̂asym 0.092 0.013

N(µx, σ
2
x), Y ∼ N(µy, σ

2
y), we might be interested in the alternative H1 : µx 6= µy, even if

σ2
x 6= σ2

y .

As described by Chung and Romano (2013), in order to obtain a test procedure that is

asymptotically valid in the above setting where σ2
x 6= σ2

y, we need to replace T = |x̄− ȳ| with

the studentized statistic

T =
|x̄− ȳ|√

s2
x/nx + s2

y/ny
(2.6)

where s2
x = (nx−1)−1

∑
i(xi− x̄)2 and s2

y = (ny−1)−1
∑

j(yj− ȳ)2 are the sample variances.

For each permutation, we compute the quantities x̄∗, ȳ∗, s∗x
2, and s∗y

2 with the permuted

datasets. In this section, we conduct simulations using (2.6) when Px 6= Py under the null

H0 : µx = µy and alternative H1 : µx 6= µy.

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(0, σ2

x) and Yj
iid∼ N(0, σ2

y), where σ2
x = 9 and σ2

y = 1. For

equal sample sizes, we set n = nx = ny = 20, 40, 60, and for unequal sample sizes we set

nx = 20, 40, 60 and ny = 100. For both equal and unequal sample sizes, we simulated 1,000

datasets for each combination of parameters. Figures 2.23 and 2.24 show the results with

equal and unequal sample sizes, respectively.

As seen in Figures 2.23 and 2.24, the permutation test with the unstudentized statistic

is relatively unaffected in our simulation under equal sample sizes, but is inaccurate for

unequal sample sizes. This is as expected. By using a studentized statistic, our method is

accurate even for unequal sample sizes. For comparison, Figures 2.23 and 2.24 also show

the p-value from a t-test with unequal variance, as well as a Monte Carlo estimate using the

unstudentized statistic T = |x̄− ȳ|.
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Figure 2.23: Simulation results under the null µx = µy with normal data and
unequal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 Student and Alg 1 are
our resampling algorithm with the studentized (2.6) and unstudentized statis-
tics, with Bpred = 103 resamples in each partition. t-test is the p-value from a
two-sided t-test with unequal variance. MC student and MC are Monte Carlo
estimates with the studentized (2.6) and unstudentized statistics, respectively,
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods.

Figure 2.24: Simulation results under the null µx = µy with normal data with
unequal sample sizes of nx = 20, 40, 60 and ny = 100. Alg 1 Student and Alg 1 are
our resampling algorithm with the studentized (2.6) and unstudentized statistics,
and with Bpred = 103 resamples in each partition. t-test is the p-value from a
two-sided t-test with unequal variance. MC student and MC are Monte Carlo
estimates with the studentized (2.6) and unstudentized statistics, respectively,
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods.
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2.6 Asymptotic Test of the Ratio of Means via the

Delta Method and Application to Cancer

Genomic Data

Let x̄ and ȳ be the sample means, and s2
x = (nx−1)−1

∑
i(xi−x̄)2 and s2

y = (ny−1)−1
∑

i(yi−
ȳ)2 be the sample estimates of variance. By the central limit theorem, for nx, ny sufficiently

large, and assuming independence between samples,(
x̄

ȳ

)
∼ N

([
µx

µy

]
,

[
σ2
x/nx 0

0 σ2
y/ny

])
.

Let g(x̄, ȳ) = (x̄/ȳ). Then ∇g = (1/ȳ,−x̄/ȳ2)′, and by the delta method x̄/ȳ → N(θ, τ 2
1 ),

where θ = g(µx, µy) = µx/µy and

τ 2
1 = ∇gT (µx, µy)

[
σ2
x/nx 0

0 σ2
y/ny

]
∇g(µx, µy) =

σ2
x

nx

1

µ2
y

+
σ2
y

ny

µ2
x

µ4
y

.

Using unbiased estimates for the variance, we get

τ̂1
2 =

s2
x

nxȳ2
+
s2
yx̄

2

nyȳ4

where s2
x and s2

y are the sample variances for x and y, respectively. Similarly, we estimate

the variance of ȳ/x̄ as

τ̂2
2 =

s2
y

nyx̄2
+
s2
xȳ

2

nxx̄4
.

Therefore, to test the null H0 : µx/µy = 1 versus the alternative H1 : µx/µy 6= 1, the

two-sided p-value using the delta method and unbiased estimates of variance is

p∆ =

Pr(Z > x̄/ȳ) + Pr(U ≤ ȳ/x̄), x̄/ȳ ≥ 1

Pr(U > ȳ/x̄) + Pr(Z ≤ x̄/ȳ), x̄/ȳ < 1
,

where Z ∼ N(1, τ̂1
2) and U ∼ N(1, τ̂2

2). We use the ∆ subscript in p∆ to emphasize that the

p-value is from the delta method. We note that p∆ is potentially problematic, particularly if

τ̂1
2 or τ̂2

2 are large, because the ratio is bounded below by zero, but the normal distribution

is not.

We note that by allowing for unequal variance, we are testing a different null hypothesis

than with the permutation test (H0 : Px = Py). However, we expect that in practice, re-

searchers would allow for unequal variance when using the delta method, which is why we use
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it as a basis for comparison. This comparison puts the permutation test at a disadvantage,

but as shown in the simulations, the permutation test still performs better than the delta

method.

Figure 2.25 compares estimates of the permutation p-values from our resampling algo-

rithm (p̃pred) to p∆ for the cancer genomic data in Section 1.6. The dashed lines have an

intercept of zero and slope of one, and indicate agreement. As seen in Figure 2.25, p∆ tends

to be an overestimate for small p-values, which is the same trend observed in the simulations.

Out of the 100 genes with the smallest p∆, only three were identified by Zhan et al. (2015)

as strongly distinguishing between LUAD and LUSC (PVRL1, PERP, and ATP1B3 ).

(a) Genes with p̃ ≤ 1× 10−3 (10, 302 genes) (b) Genes with p̃ > 1× 10−3 (5, 084 genes)

Figure 2.25: p-values for cancer genomic data: Comparison of results with the

delta method (p∆) and our resampling algorithm (p̃pred) with Bpred = 103 resam-

ples within each partition, or with simple Monte Carlo (p̃) with a total of B = 103

resamples (see Section 6). The diagonal dashed lines have a slope of 1 and an

intercept of 0, and indicate agreement between the methods.

65



Chapter 3

Tests of Matrix Structure for

Construct Validation

3.1 Introduction

Psychologists and other behavioral scientists are frequently interested in whether a survey

or questionnaire measures the concepts it purports to measure. Attempts to address this

issue are referred to as construct validation. Since the construct cannot be directly observed,

it is impossible to assess its validity directly. Instead, researchers divide construct validity

into different aspects that can be addressed separately. These different aspects are called

criterion-related validity, convergent validity, discriminant validity, and content validity. As

Kline (2011) describes, criterion-related validity concerns the consistency of the test with

external measures, convergent and discriminant validity refer to the magnitudes of correla-

tions between test questions, and content validity is the degree to which the questions can

be interpreted to represent the underlying scientific construct. By considering these different

aspects of validity together, researchers can produce an overall body of evidence either in

favor of or against validating a construct.

The statistical aspects of construct validation are covered by convergent and discriminant

validity. Convergent validity occurs when the magnitudes of the correlations are high between

items that are hypothesized to measure the same construct, and discriminant validity occurs

when the magnitudes of the correlations are low between items hypothesized to measure

different constructs (Kline, 2011). In this chapter, we describe tests for matrix structure

that can be used to assess convergent and discriminant validity. These matrix structure

tests can be used either by themselves or to check the robustness of other methods, such as

confirmatory factor analysis (CFA).
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In Section 3.2, we provide a motivating example. In Section 3.3, we describe methods for

testing matrix structure based on the quadratic assignment framework of Hubert and Schultz

(1976), and derive rates of convergence for the overall test. In Section 3.4, we discuss related

methods, including linear models, pattern hypothesis tests of correlation coefficients, and

CFA. In Section 3.5, we investigate the behavior of these methods through simulations, and

in Section 3.6, we demonstrate these methods by analyzing the big five personality traits

questionnaire conducted as part of the 2010 Health and Retirement Survey (HRS, 2016).

In Section 3.8, we discuss the benefits and limitations of using tests of matrix structure

for construct validation, as well as potential extensions. As noted in Section 3.9, we have

implemented the methods described in this chapter in the R package matrixTest.

3.2 Motivating Example

As a motivating example, we analyze the big five personality traits questionnaire that was

given as part of the 2010 Health and Retirement Study (HRS, 2016). HRS is a “longitudinal

panel study that surveys a representative sample of approximately 20,000 Americans over

the age of 50 every two years” (HRS, 2016). The big five personality traits questionnaire is

given as part of the HRS Psychosocial and Lifestyle Questionnaire, which is administered to a

rotating, random selection of 50% of the HRS respondents. The HRS data are publicly avail-

able at http://hrsonline.isr.umich.edu. The Psychosocial and Lifestyle Questionnaire

is part of the core data release, in the file labeled LB_R (leave-behind, respondent).

In 2010, 7,215 respondents provided complete responses to the big five personality trait

questionnaire, and an additional 1,050 subjects provided partial responses. The big five

personality traits questionnaire contains 31 items, each of which was recorded on a four-

point Likert scale. In what follows, we did a complete case analysis and did not incorporate

sampling weights into the estimation of correlation coefficients, though this could be done

in future analyses.

To assess convergent and divergent validity, we were interested in the magnitude of the

correlations, but not the direction. Figure 3.1 shows the absolute values of Spearman’s rank

correlation matrix for the 31 items in the questionnaire, ordered by the hypothesized groups,

which are outlined. From upper left to lower right, the outlined groups are: 1) neuroticism,

2) extroversion, 3) agreeableness, 4) openness to experience, and 5) conscientiousness. The

questionnaire items are described in Appendix A.

From a visual inspection of Figure 3.1, the first block (neuroticism) appears to exhibit

both convergent validity (high within block correlation) and divergent validity (low between-

block validity). The second, third and fourth blocks (extroversion, agreeableness, and open-
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Figure 3.1: Absolute values of the Spearman rank correlation matrix for the
HRS big five personality traits questionnaire ordered by hypothesized groups.
From upper left to lower right, the groups are: 1) neuroticism, 2) extroversion,
3) agreeableness, 4) openness to experience, and 5) conscientiousness. Diagonal
elements are all equal to 1, and are not included in the color gradient. Item labels
(d, h, l, . . . ) are taken from the HRS questionnaire. The items are described in
Appendix A.

ness to experience) appear to exhibit convergent validity, though the relatively high corre-

lations between these blocks makes it unclear whether they also exhibit divergent validity.

The fifth block (conscientiousness) does not appear to exhibit either convergent or divergent

validity. We next develop methods to formally test convergent and divergent validity using

nonparametric tests of matrix structure.

3.3 Tests of Matrix Structure

Several authors have developed methods for testing matrix structure, including Bock and

Bargmann (1966), Srivastava (1966), McDonald (1974) and Jöreskog (1978). The approach

we describe has a similar goal to these methods, but differs in the way hypothesized matrix

structures are assessed. Most notably, our approach sets up a traditional null hypothesis

that researchers seek to reject, and does not use a goodness of fit (GOF) test or index to

evaluate model fit.
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3.3.1 Block Diagonal Structure

Let A be a p × p symmetric matrix. In our applications, A is typically the covariance or

correlation matrix, or the absolute values of the covariance or correlation matrix. We are

interested in whether A is approximately block diagonal:

A =



A1

A2

. . .

AK


where blocks A1 through AK have respective dimensions p1×p1, . . . , pK×pK , and

∑K
k=1 pk ≤

p. When A is the covariance matrix, this is the structure implied by a CFA model in which

each item loads onto no more than one latent variable. Throughout this chapter, we use the

terms group and block interchangeably.

By approximately block diagonal, we mean that the elements in blocks A1, . . . , AK are

larger in absolute value than elements in the non-blocks. If A were perfectly block-diagonal,

all elements in blocks A1, . . . , AK would be non-zero, and all other elements would be zero.

Figure 3.1 is an example where A is the elementwise absolute values of the correlation matrix,

with p = 31 variables and a hypothesized K = 5 blocks of sizes p1 = 4, p2 = 5 and p3 = 5,

p4 = 7, and p5 = 10. If we exclude the fifth block from Figure 3.1, then
∑4

k=1 pk < p, and

the hypothesized block-diagonal structure would not extend all the way to the bottom right

corner of the correlation matrix.

3.3.2 Hubert’s Γ

Hubert’s Γ (Hubert and Schultz, 1976) was originally proposed by Mantel (1967). Conse-

quently, some authors, including Good (2000), refer to the statistic as Mantel’s U . However,

we follow most authors, including Jain and Dubes (1988), Halkidi et al. (2001) and Zaki and

Jr. (2014) and refer to the statistic as Hubert’s Γ, especially since our methods are based on

the quadratic assignment framework of Hubert and Schultz (1976).

To define Hubert’s Γ, let vi be the label for the variable in row and column i of matrix

A and let ∆ be a p× p matrix with element δij in row i and column j, where

δij =

1 if variables vi and vj are hypothesized to belong to the same block

0 otherwise.
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Similarly, we denote the element in row i and column j of A as aij. Let N = p(p − 1)/2

be the number of upper triangular elements in A, where the upper triangular elements form

the set {aij : i < j}. Let a = (a12, a13, a23, a14, a24, . . . , aN−1,N)T be the N × 1 vector of the

upper triangular elements of A, and let δ = (δ12, δ13, δ23, δ14, δ24, . . . , δN−1,N)T be the N × 1

vector of the upper triangular elements of ∆. Since the A and ∆ matrices are symmetric,

we do not need to consider the lower triangular elements. Hubert’s Γ is defined as the

mean element-wise product between the upper triangular elements of A and ∆, given as

Γ = N−1
∑

i<j aijδij = N−1aTδ.

We use the normalized Γ, which is more interpretable. Let ā = N−1
∑

i<j aij and σ̂2
a =

(N − 1)−1
∑

i<j(aij − ā)2 be the sample mean and variance of the elements in a, let δ̄ =

N−1
∑

i<j δij and σ̂2
δ = (N − 1)−1

∑
i<j(δij − δ̄)2 be the sample mean and variance of the

elements in δ, and let σ̂2
aδ = (N − 1)−1

∑
i<j(aij − ā)(δij − δ̄) be the sample covariance

between a and δ. Then the normalized Γ, which we denote as Γnorm, is defined as the

Pearson correlation between a and δ, given as

Γnorm =

∑
i<j(aij − ā)(δij − δ̄)√∑

i<j(aij − ā)2
∑

i<j(δij − δ̄)2
=

σ̂2
aδ

σ̂aσ̂δ
. (3.1)

Since Γnorm is a correlation, −1 ≤ Γnorm ≤ 1.

In general, the ∆ matrix can be replaced by any conformable matrix in calculating Γ and

Γnorm depending on the hypothesis a researcher wants to test. As we show in Section 3.4.1,

Γnorm with ∆ as defined above is related to the slope from a linear model that contrasts the

within-block elements with the between-block elements.

Large positive values of Γnorm (values near 1) indicate that overall, the clustering has a

high degree of convergent and discriminant validity. If Γnorm is near zero, then either the

clusters have low levels of convergent validity, discriminant validity, or both. If Γnorm is large

and negative, then we have likely flipped blocks with non-blocks, and would have reason to

revisit the exploratory analysis.

3.3.3 Permutation Test

The null hypothesis in our permutation test is that off-diagonal elements of A are exchange-

able. Rejecting the null is evidence in favor of the hypothesized latent structure.

As described below and depicted in Figure 3.2, the overall test contrasts all the within

block elements (solid) with all the between block elements (diagonal lines). The block-specific

test contrasts the elements within a particular block with the elements between that block

and the other blocks.
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A1

A2

A3

A4

(a) Overall test

A3

(b) Block-specific test for A3

Figure 3.2: Elements contrasted by Γnorm for a matrix A with K = 4 hypothesized
blocks. The within block elements (solid) are contrasted with the between block
elements (diagonal lines). Γnorm does not include the diagonal elements in the
contrast.

Overall Test

As before, let vi be the label of the ith column and row of A, and let v = (v1, . . . , vp)

be the ordered sequence of labels. For example, if A is the matrix of correlations among

items on a questionnaire, then vi would be the ith item on the questionnaire. Also, let π

be a permutation of the indices of v, and let v∗ = (v∗1, . . . , v
∗
p) be a permuted sequence of

labels, where v∗π(i) = vi, i = 1, . . . , p. For example, in Section 3.2, the items in the Big Five

questionnaire are labeled as v = (v1 = a, v2 = b, . . . , v31 = z6), and under the hypothesized

ordering shown along the rows and columns of Figure 3.1, v∗ = (v∗1 = d, v∗2 = h, v∗3 =

l, . . . , v∗31 = z6).

In the permutation test, we keep the ∆ matrix constant, permute the order of the labels

in A, and recompute the test statistic Γnorm. In keeping ∆ constant, we are conditioning on

the hypothesized number of blocks K and block sizes pk, k = 1, . . . , K. This conditioning is

an important constraint needed in the permutation test.

If we randomly sample B permutations π1, . . . πB with replacement, then the Monte Carlo

(MC) approximation to the permutation p-value is (Lehmann and Romano, 2005)

p̃ =
1

B + 1

[
B∑
b=1

1
(∣∣Γbnorm

∣∣ ≥ ∣∣Γ0
norm

∣∣)+ 1

]
,

where 1 is an indicator function, Γ0
norm is the test statistic under the hypothesized clustering,

and Γbnorm is the test statistic from the bth randomly sampled permutation πb. That is, p̃
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represents the proportion of MC resamples with test statistics that exceed the observed test

statistic under the hypothesized clustering.

Exchangeable off-diagonal elements implies a variety of matrix structures, including con-

stant off-diagonal elements (referred to by Steiger (1980a) as equicorrelation in the case

where A is the correlation matrix) and white noise. Under constant-off diagonal elements,

A is of the form A = a11′ + (1− a)I for some a ∈ R (for correlation matrices, a ∈ [−1, 1]),

where 1 is a column vector of 1’s and I is the identity matrix:

A =


1 a

1
. . .

a 1

 .

More generally, under white noise we assume the off-diagonal elements aij ∼ P, i < j for

some common distribution P . If A is a covariance or correlation matrix, then we have the

additional constraint that A is positive semi-definite. If P has zero variance, we obtain

constant off-diagonals.

Block-Specific Test

In addition to the overall test, we can test each block individually to see if the within-block

elements are larger than the corresponding between-block elements. To this end, let Γnorm,k

be the same as above, except that the sum is restricted to (i, j) such that at least one of

vi, vj is in block k. As before, we remove variance terms from the sum. To be precise, let

Vk = {vi : aii ∈ Ak} be the set of labels assigned to block k, and let Ik = {(i, j) : vi ∈
Vk or vj ∈ Vk, i < j} be the set of ordered index pairs with at least one index in block

k. Let Nk = |Vk| be the number of elements in Vk, and let āk = N−1
k

∑
(i,j)∈Ik aij and

σ̂2
a,k = (Nk − 1)−1

∑
(i,j)∈Ik(aij − āk)2 be the sample mean and variance of elements in the

set {aij : (i, j) ∈ Ik}, and δ̄k = N−1
k

∑
(i,j)∈Ik δij and σ̂2

δ,k = (Nk − 1)−1
∑

(i,j)∈Ik(δij − δ̄k)2

be the sample mean and variance of elements in the set {δij : (i, j) ∈ Ik}. Also, let σ̂2
aδ,k =

(Nk − 1)−1
∑

(i,j)∈Ik(aij − āk)(δij − δ̄k) be the sample covariance. Then we define

Γnorm,k =

∑
(i,j)∈Ik(aij − āk)(δij − δ̄k)√∑

(i,j)∈Ik(aij − āk)2
∑

(i,j)∈Ik(δij − δ̄k)2
=

σ̂2
aδ,k

σ̂a,kσ̂δ,k
.

When testing multiple blocks, to control the family-wise error rate we follow Westfall and

Young (1993) and for each permutation πb set Γmax,b
norm = maxk∈{1,...,K} |Γbnorm,k|, where Γbnorm,k

is the computed statistic for block k under permutation πb. We then compute the MC
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estimate of the permutation p-value for block k as

p̃k =
1

B + 1

[
B∑
b=1

1
(
Γmax,b

norm ≥
∣∣Γ0

norm,k

∣∣)+ 1

]
.

3.3.4 Recommendations for Choosing Matrix A

In construct validation, the primary question concerns the magnitude of association, as

opposed to the direction. Furthermore, in most questionnaires, the direction of correlation is

arbitrary. For example, in the HRS big five personality questionnaire, some items are reverse

coded to preserve positive correlations among items hypothesized to measure the same latent

construct. Consequently, in some applications A could be set to the element-wise absolute

correlations, as in the motivating example in Section 3.2. By using the absolute values of

the correlations, we avoid potentially overlooking associations between items that are coded

in such a way that their correlations are negative.

We use Spearman’s rho so that our test is robust to non-normal data and non-linear

associations. However, we speculate that other nonparametric correlation coefficients would

also be reasonable, such as Kendall’s tau and Goodman and Kruskal’s gamma. Ultimately,

we recommend that researchers use a matrix A that best measures the phenomenon of

interest, which may differ across applications.

3.3.5 Convergence Rate

In data analyses, we use Monte Carlo methods to approximate the permutation p-value

obtained with the estimated quantities a. We denote the permutation p-value with the

estimated quantities as p̂(a). However, we would ideally approximate the permutation p-

value obtained with the true population values, which we denote as p̂(ρ), where ρ are the

true population values. Assuming a is a consistent estimator of ρ, a → ρ as n → ∞. In

this section, we address the rate at which the overall permutation p-value computed with

the estimated values p̂(a) converges to the overall permutation p-value computed with the

true values p̂(ρ). These results hold for the overall test.

As stated in Theorem 3.1, under fairly general conditions, the permutation p-value for

the overall test has the same rate of convergence as the elements of a.

Theorem 3.1. Let aj be the sample estimates of ρj, j = 1, . . . , N , and suppose that for all

j, |aj − ρj| = O(g(n)) with probability one for some strictly decreasing function g, such that

g(n) → 0 as n → ∞. Also suppose that the permutation distribution R̂N(t) has limiting
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distribution R(t) such that the density of R(t), denoted as f(t), exists and supt f(t) < ∞.

Then for N sufficiently large, with probability one, |p̂(a)− p̂(ρ)| = O(g(n)).

Furthermore, as described in Corollary 3.1, when a are Pearson’s or Spearman’s corre-

lations, |p̂(a)− p̂(ρ)| = O(1/
√
n). As described in Corollary 3.2, the same rate holds when

using the absolute values of Pearson’s or Spearman’s correlations.

Corollary 3.1. Let a be Pearson’s or Spearman’s correlation coefficients estimated from

n iid observations. Let τ 2
j = Var(aj) and assume τ 2

j < ∞ for j = 1, . . . , N . Also suppose

that the permutation distribution R̂N(t) has limiting distribution R(t) such that the density

of R(t), denoted as f(t), exists and supt f(t) < ∞. Then for N sufficiently large, with

probability one, |p̂(a)− p̂(ρ)| = O(1/
√
n).

Corollary 3.2. Under the same conditions as Corollary 3.1, but with a and ρ replaced with

absolute values of Pearson’s or Spearman’s correlations, we also have that with probability

one |p̂(a)− p̂(ρ)| = O(1/
√
n).

For details and proofs, please see Section 3.7.

3.4 Comparison to Related Methods

3.4.1 Linear Model and t-test

To better understand and interpret Γnorm, we note that because Γnorm is a correlation, it

is permutationally equivalent to the ordinary least squares coefficient from a simple linear

regression model where the outcomes are the absolute values of the correlation coefficients

a and the covariates are the indicators δ.

To see this, we write the linear model as

E[a] = β01 + β1δ (3.2)

where 1 is an N×1 vector. The ordinary least squares estimate for (3.2) is β̂1 = (σ̂a/σ̂δ)Γnorm.

Let Wk = {(i, j) : vi ∈ Vk, vj ∈ Vk, i < j} be the set of ordered index pairs for upper

triangular elements such that both indices are in block k, let Nin,k = |Wk| be the number of

elements in Wk, and Nin =
∑

kNin,k be the total number of upper triangular within-block

elements. Also, let Wout = {(i, j) : (i, j) 6∈ Wk, k = 1, . . . , K, i < j} be the set of ordered

index pairs for upper triangular elements not in blocks, and Nout = |Wout| be the number of

non-block elements. Then, because ∆ is a matrix of zeros and ones, we have β̂1 = āin− āout,

where āin = N−1
in

∑
k

∑
(i,j)∈Wk

aij and āout = N−out1
∑

(i,j)∈Wout
aij are the mean within-block
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and between-block elements, respectively. In the overall test, σ̂2
a and σ̂2

δ are constant across

permutations. Therefore, there is a one-to-one relationship between Γnorm and β̂1, and they

are permutationaly equivalent. In other words, β̂1 could be substituted for Γnorm in the

permutation test to obtain the same permutation p-value. When restricting to subsets of

the matrix to evaluate Γnorm,k, σ̂
2
a,k is no longer constant across permutations, so Γnorm,k and

β̂1,k are no longer permutationaly equivalent.

We also note that the t-statistic with unequal variance has potential advantages over the

statistics Γnorm and β̂1. In particular, the t-statistic with unequal variance controls the type

I error rate in permutation tests under the null H0 : āin = āout versus H1 : āin 6= āout even

if the variance of the within-block and between-block correlations are different (Chung and

Romano, 2013). The t-statistic with unequal variance is given by

t =
āin − āout√

σ̂2
in/Nin + σ̂2

out/Nout

(3.3)

where σ̂2
in = (Nin−1)−1

∑
k

∑
(i,j)∈Wk

(aij−āin)2 and σ̂2
out = (Nout−1)−1

∑
(i,j)∈Wout

(aij−āout)
2

are the sample variances of the within-block and between-block upper triangular elements

of A, respectively.

Due to the results of Chung and Romano (2013), it may be beneficial to use the studen-

tized statistic t given by (3.3) in future work in place of Hubert’s Γ, as it leads to permutation

tests that are valid under a wider range of scenarios than those we examined in our simu-

lations. However, in our simulations, the use of (3.3) in the permutation test gave nearly

identical results to those obtained with Γnorm.

3.4.2 Goodness of Fit (GOF) Tests

Several statistical methods used in construct validation rely on a goodness of fit (GOF) test,

including CFA and pattern hypothesis tests (Steiger, 2007). Frequently, GOF tests are based

on χ2 statistics. In general terms, the null hypothesis in GOF tests is H0: “the model fits”

and the alternative is H1: “the model does not fit.” Under this framework, failure to reject

the null is evidence in favor of the scientific theory. This is in contrast to the tests of matrix

structure described in Section 3.3.3, for which rejection of the null is evidence in favor of the

scientific theory.

Since GOF tests reverse the usual role of the null and alternative hypotheses, the inter-

pretation of type I and II errors is also reversed. To guard against making false scientific

claims, one needs to avoid accepting the null when the alternative is true – a type II error.

Similarly, to increase the chances of finding evidence in favor of a scientific theory, one needs

to avoid rejecting the null when the null is true. Given the analogy with statistical power,
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Table 3.1: Comparison of interpretation of errors under traditional and GOF
frameworks. Within each cell, the traditional interpretation is on the first line,
and the GOF interpretation is on the second line in bold. H0 is the null hypoth-
esis and H1 is the alternative hypothesis (H0 rejected if p-value < c for cutoff
value c).

Truth
H0 H1

D
ec

is
io

n H0 (p-val ≥ c)
Correct failure to reject H0 Type II error (missed opportunity)

Type I power GOF false alarm

H1 (p-val < c)
Type I error (false alarm) Power

GOF missed opportunity Correct rejection of H0

we refer to this as type I power. Since this is not a standard term, we define it in Definition

3.1.

Definition 3.1 (Type I power). Type I power is the probability of failing to reject the null

hypothesis when the null hypothesis is true: Pr(fail to reject H0|H0 true).

The reversal in GOF tests of the standard scientific interpretation of Type I and II

errors may have several implications for the reliability of GOF tests in evaluating scientific

hypotheses. In particular, failure to control type II errors in GOF tests could lead to higher

than expected rates of false scientific claims, and low type I power would make it difficult to

find evidence in favor of a scientific claim. Table 3.1 shows these differing interpretations,

and proposes the terms “GOF false alarms” and “GOF missed opportunities” to describe the

potential errors when conducting a GOF test. We are unaware of work aimed at controlling

type II error rates in GOF tests, but several researchers have suggested ways to address low

type I power. Contrary to standard statistical power, type I power decreases as sample size

increases, making low Type I power a pervasive problem.

GOF Tests in Structural Equation Models (SEMs)

To address low type I power in structural equation models (SEMs), including CFA, re-

searchers have developed alternative fit indices, most of which adjust the χ2 GOF statistic

based on the degrees of freedom, such as the comparative fit index (CFI) (Bentler, 1990) and

Tucker-Lewis Index (TLI) (Tucker and Lewis, 1973). However, as shown in Section 3.5.1, the

type I power of CLI and TLI decreases as sample size increases, though not as dramatically

as for unadjusted χ2 GOF statistics.

Many of the rules of thumb for interpreting fit indices have roots in the work of Hu

and Bentler (1999). In particular, values above 0.95 are commonly considered to indicate
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acceptable fit for CFI and TLI (Hu and Bentler, 1999), though Hooper et al. (2008) notes

that some researchers have suggested a cut-off value of 0.9 for CFI, and 0.8 for TLI. We

show simulation results with all three cutoffs in Section 3.5.

As Barrett (2007) notes, some simulation studies, including Marsh et al. (2004), Beaudu-

cel and Wittmann (2005), Yuan (2005), and Fan and Sivo (2005), have cast doubt on the

reliability of these rules of thumb for CFI and TLI. We note that the criticism of Barrett

(2007) is controversial, and Steiger (2007) offers a rebuttal. Kline (2011) and Hu and Bentler

(1999) offer discussions on fit statistics and indices for SEMs, and we refer the reader to these

sources for details.

Pattern Hypothesis GOF Tests

As Steiger (1980b) describes, a pattern hypothesis is “any hypothesis that states that some

of its elements are equal to each other and/or to specified numerical values.” Using the same

notation as before, let a be the N × 1 vector of upper triangular elements of A. Pattern

hypotheses are of the form (Steiger, 1980b)

H0 : a = Lβ + a∗, (3.4)

where β is a q× 1 vector of parameters to be estimated, a∗ is q× 1 vector of constants, and

L is an N × q matrix of zeros and ones, with

Lij =

1 if the ith element of a is hypothesized to equal βj

0 otherwise,

In the case where A is a covariance matrix, pattern hypothesis tests are related to the analysis

of covariance structures (Bock and Bargmann, 1966).

If we set q = 2, then (3.4) would be a re-parameterization of (3.2). In this case, to recover

(3.2) from (3.4), we would set a∗ to zero and reparameterize L as L = [1, δ]. This changes

L from being a cell-means coding to a reference cell coding.

For the rest of this section, we assume A is the Pearson correlation matrix for underlying

data xl = (xl1, . . . , xlp)
T , l = 1, . . . , n, in which we have n observations of p variables. In

particular, let x̄i = n−1
∑n

l=1 xli, σ̂
2
i = (n−1)−1

∑n
l=1(xli−x̄i)2 and σ̂2

ij = (n−1)−1
∑n

l=1(xli−
x̄i)(xlj − x̄j). Then aij = σ̂2

ij/(σ̂iσ̂j). In this case, we set r = a to use more familiar

notation. If the underlying data are iid multivariate normal, then we can induce normality

on the correlation coefficients by taking the Fisher r-to-z variance stabilizing transformation,

denoted as z(r), where (Fisher, 1921)

z(r) =
1

2
log

(
1 + r

1− r

)
= arctanh(r).
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The Fisher transformation improves the normal approximation to the distribution of the

correlation coefficients, even if the underlying data are not normal, though the form of the

N × N covariance matrix Var(z(r)) may not be the same as for normal data (Hawkins,

1989).

Following (Steiger, 1980b), we test the null hypothesis (3.4) with the GOF χ2 statistic

X2 = (n− 3) [z(r)− z(r̂GLS)]T S−1
LS [z(r)− z(r̂GLS)] , (3.5)

where r̂GLS = L(LT Σ̂−1
LSL)−1LT Σ̂−1

LSr, Σ̂LS is the covariance matrix with elements given by

Steiger (1980b) with r̂LS = L(LTL)−1LTr substituted for r, and SLS is the covariance matrix

with elements also given by Steiger (1980b). Asymptotically, X2 follows a χ2 distribution

with N − 2 degrees of freedom (Steiger, 1980b). We note that the covariance formulas

originated in the work of Pearson and Filon (1898) and are also given by Olkin and Finn

(1990, 1995).

The permutation test with Γnorm and the GOF χ2 test with (3.5) are similar, but with

important differences. In (3.4), and assuming q = 2, let β = (β0, β1)T . Then the permutation

test is similar to obtaining a p-value for the null hypothesis H0 : β1 = 0, whereas (3.5) gives

a p-value for the GOF null hypothesis H0 : “the model fits.” In addition, the permutation

test is nonparametric and relies only on the exchangeability of off-diagonal elements, as

opposed to the GOF test with (3.5), which relies on asymptotic approximations to obtain

the reference distribution. The permutation test is also applicable for a variety of matrices

A, whereas the asymptotic reference distribution for (3.5) is valid only for certain types of

matrices.

3.5 Simulations

In this section, we simulated data under two scenarios: 1) block diagonal structure, and 2)

constant off-diagonal values. For each scenario, we generated 1,000 datasets for each of three

sample sizes (n = 10, 100, and 1,000). For all simulations, we used K = 4 blocks of sizes

p1 = 5, p2 = 7, p3 = 9, p4 = 11, so that the total number of variables was p =
∑

k pk = 32.

In all figures, the block numbers begin in the upper left and end in the lower right, i.e., block

k = 1 is in the top left corner, and block k = 4 is in the bottom right corner.

In the matrix structure testing framework, Sections 3.5.1 and 3.5.4 are under the alter-

native hypothesis (H1 is true) and Sections 3.5.2 and 3.5.3 are under the null hypothesis (H0

is true). In the GOF framework, the model is correctly specified in Section 3.5.1 (H0 is true)

and misspecified in Sections 3.5.2, 3.5.3, and 3.5.4 (H1 is true).
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We followed our recommendations in Section 3.3.4 and used absolute Spearman correla-

tion coefficients when computing Γnorm, though we acknowledge that other choices for the

matrix A are possible. For the pattern hypothesis test, we used Pearson’s correlation and

Fisher’s r-to-z transform to compute X2, as described in Section 3.4.2. To obtain CFI and

TLI, we fit CFA models with K = 4 latent factors and pi items loading onto the the ith fac-

tor, with pi given above. In the CFA models, each item loaded onto exactly one factor. The

tables in this section do not directly compare the results with the permutation test against

those from CFI/CLI, because different types of errors are relevant for the two approaches,

but we use the tables to compare the methods in Section 3.8.

3.5.1 Block Diagonal Structure

To simulate data under the scenario of a block diagonal correlation matrix, we began by

generating the square root of the variance matrix Σ1/2 such that variables within groups

would be correlated with each other, and variables across groups would have minimal but

non-zero correlations. In particular, we set Σ
1/2
ij =

∑
k 1[vi ∈ Vk, vj ∈ Vk]rk + uij, where

r1 = 0.25, r2 = 0.2, r3 = 0.23, r4 = 0.15, and uij ∼ N(0, 0.01).

For each sample size of n = 10, 100, and 1,000, we simulated 1,000 n × p datasets, Yt,

t = 1, . . . , 1, 000, where

Yt =


yT1
...

yTn

 ,
and yl = (yl1, . . . , ylp)

T , l = 1, . . . , n, were generated independently as N(0,Σt) random

vectors with Σt generated as described above. We then created corresponding n×p datasets

Zt, t = 1, . . ., 1,000, of ordinal variables where for each dataset, zli = 1 if yli < −2, zli =

2 if − 2 ≤ yli < −1, zli = 3 if − 1 ≤ yli < 0, zli = 4 if 0 ≤ yli < 1, zli = 5 if 1 ≤ yli < 2, and

zli = 6 if 2 ≤ yli.

For each dataset, we estimated Spearman’s correlation matrix, which we denote as C =

C(Z), and conducted a permutation test with Hubert’s Γ on A = abs(C) where the absolute

values are taken element-wise. We used B = 10, 000 MC resamples for the permutation

tests. We also computed X2 with the Pearson correlation matrix of Z (treating the ordinal

data as numeric), and fit a CFA model with the data Z (treating the data as ordinal) using

the lavaan package (Rosseel, 2012) for R.

Figure 3.3 shows the estimated Spearman’s absolute correlation matrices A from a single

simulation for each sample size.
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(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure 3.3: Block diagonal: estimated Spearman’s correlation coefficients (abso-
lute values) from a single simulation at each sample size.

Figure 3.4 shows the distribution of p-values from a permutation test with Γnorm and

B = 10, 000 resamples, p-values from the X2 pattern hypothesis test, and CFI values from

a CFA model. As seen in Figure 3.4, the distribution of p-values from Γnorm is heavily left-

skewed, which is as expected under the alternative hypothesis. The p-values from the X2

statistic quickly move from close to one to close to zero as the sample size increases, and

the CFI values cluster around 0.8 to 0.9 for all sample sizes. However, as shown in Table

3.3, the distribution of CFI values shifts downward as sample size increases, though not as

dramatically as for p-values from X2.

Table 3.2 shows the power with Γnorm and the permutation test under the alternative

hypothesis of block diagonal structure for statistical significance levels of α = 0.01 and 0.05.

As seen in Table 3.2, the statistical power was 1 for all tests with sample sizes of 100 and

1,000.

Table 3.3 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95) as well as more liberal cutoff values noted by

Hooper et al. (2008) (0.9 and 0.8). As can be seen in Table 3.3, the statistical power of TLI

and CFI decreases as sample size increases, similar to the X2 GOF test. Notably, the Type

I power is at or near zero for both CFI and TLI for large sample sizes and cutoffs of 0.9 and

0.95.

3.5.2 Constant Off-Diagonal Correlation

For the scenario of constant off-diagonal correlation, we set Σt,ij = 0.5 if i 6= j and 1 if i = j.

We used B = 1, 000 MC resamples for each test. The rest of the simulation is as described

in Section 3.5.1.
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Figure 3.4: Overall test for block diagonal scenario: permutation p-values with
Γnorm and B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis
test, and CFI values from a CFA model. For each sample size we did 1,000
simulations. Results with TLI are similar to those for CFI and are not shown.

Table 3.2: Statistical power in block diagonal scenario using Γnorm in a permuta-
tion test for significance levels of α = 0.01 and 0.05. 1,000 simulations were run
for each sample size.

α = 0.01
Block

n Overall k = 1 k = 2 k = 3 k = 4
10 0.97 0.30 0.31 0.71 0.36
50 1.0 0.93 0.96 1.0 0.98
100 1.0 0.98 0.99 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0
α = 0.05

Block
n Overall k = 1 k = 2 k = 3 k = 4
10 0.98 0.44 0.49 0.81 0.52
50 1.0 0.97 0.99 1.0 1.0
100 1.0 1.0 1.0 1.0 1.0

1,000 1.0 1.0 1.0 1.0 1.0

81



Table 3.3: Type I power for block diagonal scenario: percent of simulation results
above the cutoff value (CFI and TLI above the cutoff indicate good model fit)

Cutoff
Fit index n 0.95 0.9 0.8

CFI
10 0.94 0.95 0.96
50 0.016 0.33 0.96
100 0.0020 0.32 0.99

1,000 0.0 0.14 1.0

TLI
10 0.94 0.95 0.96
50 0.0074 0.26 0.93
100 0.0 0.22 0.97

1,000 0.0 0.07 0.99

(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure 3.5: Constant off-diagonal: estimated Spearman’s correlation coefficients
(absolute values) from a single simulation at each sample size.

Figure 3.5 shows the estimated Spearman’s absolute correlation matrices A from a single

simulation at each sample size.

Figure 3.6 shows the distribution of p-values from a permutation test with Γnorm and

B = 1, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure 3.6, the distribution of p-values from Γnorm is uniform,

which is as expected under the null hypothesis. The p-values from the X2 statistic move

from close to one to close to zero as the sample size increases, though not as quickly as in

the block diagonal scenario, and the CFI values cluster close to 1 for all sample sizes. In

this scenario, the CFA model is misspecified, so large CFI values, indicating good model fit,

represents a GOF false alarm (see Table 3.1).

Table 3.4 shows the type I error rates for Γnorm and the permutation test for statistical

significance levels of α = 0.01 and 0.05. As seen in Table 3.4, the error rates are near their
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Figure 3.6: Overall test for constant off-diagonal scenario: permutation p-values
with Γnorm andB = 1, 000 MC resamples, p-values from theX2 pattern hypothesis
test, and CFI values from a CFA model. For each sample size we did 1,000
simulations. Results with TLI are similar to those for CFI and are not shown.

Table 3.4: Type I error rates in constant off-diagonal scenario using Γnorm in a
permutation test for significance levels of α = 0.01 and 0.05. 1,000 simulations
were run for each sample size.

n Overall Block-specific FWER
α = 0.01

10 0.016 0.0092
100 0.018 0.012

1,000 0.011 0.011
α = 0.05

10 0.062 0.060
100 0.061 0.051

1,000 0.057 0.047

nominal rates for all sample sizes.

Table 3.5 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as more liberal cutoff values noted

by Hooper et al. (2008) (0.9 and 0.8). As seen in Table 3.5, The GOF false alarm rates are

high for CFI and TLI in this simulation, and increase with sample size.
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Table 3.5: GOF false alarm rate for constant off-diagonal scenario: percent of
simulation results above the cutoff value (CFI and TLI above the cutoff indicate
good model fit)

Cutoff
Fit index n 0.95 0.9 0.8

CFI
10 0.89 0.92 0.98
100 1.0 1.0 1.0

1,000 1.0 1.0 1.0

TLI
10 0.88 0.92 0.97
100 1.0 1.0 1.0

1,000 1.0 1.0 1.0

(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure 3.7: White noise: estimated Spearman’s correlation coefficients (absolute
values) from a single simulation at each sample size.

3.5.3 White Noise

We generated Σt as purely white noise, where Σ
1/2
t,ij ∼ N(0, 1) and Σt =

(
Σ

1/2
t

)T
Σ

1/2
t . The

rest of the simulation is as described in Section 3.5.1.

Figure 3.7 shows the estimated Spearman’s absolute correlation matrices A from a single

simulation at each sample size.

Figure 3.8 shows the distribution of p-values from a permutation test with Γnorm and

B = 1, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure 3.8, the distribution of p-values from Γnorm is uniform,

which is as expected under the null hypothesis. The p-values from the X2 statistic move

from close to one to close to zero as the sample size increases, though some simulates gave

p-values close to 1 even for n = 100 and 1,000. The CFI values cluster close to 1 for all

sample sizes. In this scenario, the CFA model is mispecified, so small CFI values for n = 100
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Figure 3.8: Overall test in white noise scenario: permutation p-values using Γnorm

and B = 1, 000 MC resamples, p-values from the X2 pattern hypothesis test, and
CFI values from a CFA model. For each sample size we did 1,000 simulations.
Results with TLI are similar to those for CFI and are not shown.

Table 3.6: Type I error rates for white noise scenario using Γnorm in a permutation
test for significance levels of α = 0.01 and 0.05. 1,000 simulations were run for
each sample size.

n Overall Block-specific FWER
α = 0.01

10 0.012 0.011
100 0.010 0.0080

1,000 0.012 0.011
α = 0.05

10 0.054 0.055
100 0.044 0.048

1,000 0.058 0.054

and 1,000 indicate a low GOF false alarm rate.

Table 3.6 shows the type I error rates for Γnorm and the permutation test for statistical

significance levels of α = 0.01 and 0.05. As seen in Table 3.6, the error rates are near their

nominal rates for all sample sizes.

Table 3.7 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as more liberal cutoff values noted

by Hooper et al. (2008) (0.9 and 0.8). As seen in Table 3.7, The GOF false alarm is zero for
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Table 3.7: GOF false alarm rate for white noise scenario: Percent of simulation
results above the cutoff value (CFI and TLI above the cutoff indicate good model
fit)

Cutoff
Fit index n 0.95 0.9 0.8

CFI
10 0.87 0.88 0.91
100 0.0 0.0 0.0

1,000 0.0 0.0 0.0

TLI
10 0.87 0.88 0.90
100 0.0 0.0 0.0

1,000 0.0 0.0 0.0

(a) n = 10 (b) n = 100 (c) n = 1, 000

Figure 3.9: Partial block diagonal: estimated Spearman’s correlation coefficients
(absolute values) from a single simulation at each sample size.

all sample sizes larger than n = 10.

3.5.4 Partial Block Diagonal Structure

For this scenario, we followed the simulation as described in Section 3.5.1, but set r4 = 0,

i.e., the last hypothesized block is not a true block.

Figure 3.9 shows the estimated Spearman’s absolute correlation matrices A from a single

simulation at each sample size.

Figure 3.10 shows the distribution of p-values from a permutation test with Γnorm and

B = 10, 000 MC resamples, p-values from the X2 pattern hypothesis test, and CFI values

from a CFA model. As seen in Figure 3.10, the distribution of p-values from Γnorm is left-

skewed, which is as expected under the alternative hypothesis. The p-values from the X2

statistic move from close to one to close to zero as the sample size increases, and the CFI
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Figure 3.10: Overall test in partial block diagonal scenario: permutation p-values
using Γnorm and B = 10, 000 MC resamples, p-values from the X2 pattern hypoth-
esis test, and CFI values from a CFA model. For each sample size we did 1,000
simulations. Results with TLI are similar to those for CFI and are not shown.

values cluster around 0.75 to 0.9 for all sample sizes.

Table 3.8 shows the power (overall and blocks 1, 2, 3) and type I error rate (block 4)

using Γnorm in a permutation test for statistical significance levels of α = 0.01 and 0.05. As

seen in Table 3.8, the statistical power is high for blocks 1, 2, and 3, and the type I error

rate is low for block 5.

Table 3.9 shows the percent of simulations with CFI and TLI above the cutoff value

recommended by Hu and Bentler (1999) (0.95), as well as more liberal cutoff values noted by

Hooper et al. (2008) (0.9 and 0.8). As seen in Table 3.9, The GOF false alarm rate decreases

as sample size increases. However, these results do not by themselves show that three of the

four block are correctly modeled, and only the fourth is incorrectly modeled.

3.6 Application

In this section, we continue our analysis of the HRS big five personality traits questionnaire

described in Section 3.2.
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Table 3.8: Partial block diagonal scenario: power (overall and blocks 1, 2, 3) and
type I error rate (block 4) using Γnorm in a permutation test for significance levels
of α = 0.01 and 0.05. 1,000 simulations were run for each sample size.

α = 0.01
Block

n Overall k = 1 k = 2 k = 3 k = 4
α = 0.01

10 0.83 0.32 0.33 0.72 0.0010
50 1.0 0.94 0.95 1.0 0.0
100 1.0 0.99 1.0 1.0 0.0

1,000 1.0 1.0 1.0 1.0 0.0
α = 0.05

10 0.91 0.47 0.49 0.83 0.010
50 1.0 0.98 0.99 1.0 0.0020
100 1.0 1.0 1.0 1.0 0.0

1,000 1.0 1.0 1.0 1.0 0.0010

Table 3.9: GOF false alarm rate for the partial block diagonal scenario: percent of
simulation results above the cutoff value (CFI and TLI above the cutoff indicate
good model fit)

Cutoff
Fit index n 0.95 0.9 0.8

CFI
10 0.93 0.94 0.98
50 0.0038 0.13 0.83
100 0.0 0.12 0.90

1,000 0.0 0.018 0.93

TLI
10 0.93 0.94 0.97
50 0.0025 0.089 0.75
100 0.0 0.061 0.83

1,000 0.0 0.0084 0.84
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(a) Overall (b) Block-specific

Figure 3.11: Distribution of Γnorm and Γmax
norm from B = 10, 000 MC resamples

with absolute Spearman’s correlation coefficients for the HRS big five personality
traits questionnaire. Solid red lines: observed Γ0

norm,k, k = 1 is neuroticism, k = 2
is extroversion, k = 3 is agreeableness, k = 4 is openness to experience, and k = 5
is conscientiousness.

Table 3.10: Results for HRS big five personality traits questionnaire with B =
10, 000 MC resamples, controlling for family-wise error rate

Block k Interpretation Γ0
norm,k p-value

– Overall 0.40 < 0.0001
1 Neuroticism 0.55 0.0002
2 Extroversion 0.37 0.0025
3 Agreeableness 0.49 0.0003
4 Openness to experience 0.50 0.0002
5 Conscientousness 0.21 0.11

3.6.1 Permutation Test With Γnorm

Figure 3.11 and Table 3.10 show the results from a permutation test with B = 10, 000 MC

resamples.

As seen in Figure 3.11 Table 3.10, the permutation test provides evidence in favor of

validating the extroversion, agreeableness, neuroticism, and openness blocks, but not the

conscientiousness block. However, based on Figure 3.1, the agreeableness, conscientiousness,

and neuroticism blocks appear to be highly correlated with each other. In this case, we

would recommend further discussions based on content area knowledge to better understand

whether these blocks measure distinct underlying constructs in the HRS population. These

results could potentially also help to inform future versions of the questionnaire.
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3.6.2 Pattern Hypothesis Test and CFA

The p-value from the pattern hypothesis test with X2 gave a p-value of < 10−16, providing

evidence against validating the construct. However, the large sample size in the HRS study

leads to low type I power, making it unlikely that the pattern hypothesis test would provide

evidence in favor of validating the big five personality traits.

Using the lavaan package for R (Rosseel, 2012), we fit a CFA model with five latent factors

(one for each of the five constructs, with each item loading onto its hypothesized factor).

This gave a CFI of 0.91 and a TLI of 0.90. Based on the recommendations of Hu and Bentler

(1999) and Hooper et al. (2008), it is unclear whether these values provide evidence for or

against validating the construct. If we strictly followed the 0.95 cutoff recommended by Hu

and Bentler (1999), then we would not find evidence in support of the constructs. However,

as we found with Γnorm and the permutation test, we likely have evidence in support of

validating the constructs, with the possible exception of the “conscientiousness” block.

3.7 Proof of Convergence Rate

Existing results for the large sample behavior of permutation tests focus on the relationship

between the conditional permutation distribution of a statistic and the unconditional lim-

iting distribution as the number of observations increases (e.g. see Lehmann and Romano,

2005, Section 15.2.2). In particular, let T (x1, . . . , xn) be a test statistic of the n observa-

tions x1, . . . , xn. Also, let R̂n(t) be the permutation distribution of T , and let R(t) be the

unconditional asymptotic distribution of T . Then most existing results study the scenario

in which R̂n → R(t) as n→∞, with the goal of understanding the large sample properties

of the permutation test, such as power.

In this section, we address a related but different question. In our setup, we need to

account for: 1) measurement error and 2) fixed number of inputs to the test statistic. Let

aj = ρj + uj(n), where ρj is the true population quantity, aj is our estimate, and uj(n) is

measurement error, which is a function of the number of respondents n. In our proposed

method, we use a statistic of the form T (ρ1 + u1, . . . , ρN + uN), where the number of corre-

lations N = p(p− 1)/2 is fixed by the questionnaire, which contains p items. In our setting,

instead of letting N →∞, N is constant and uj(n)→ 0 as n→∞ assuming aj are consistent

estimators of ρj. Our goal is to understand the rate at which the p-value with the estimated

quantities converges to the p-value that would be obtained with the true quantities.

As before, we denote the N × 1 vector of upper triangular elements of A as a =

(a1, a2, . . . , aN)T . Let π be a permutation, or bijection, of the columns and rows of A,

90



let Π be the set of all such permutations π, and let |Π| = p! be the total number of permu-

tations in Π. Let Aπ be matrix A with the rows and columns permuted according to π, and

let aπ be the N × 1 vector of upper triangular elements of Aπ. Let Γnorm(a) be Hubert’s Γ

computed with a, and let a0 be the vector of correlation coefficients under the hypothesized

ordering.

In data analyses, we use Monte Carlo methods to approximate the permutation p-value

obtained with the estimated quantities a. We denote the permutation p-value with the

estimated quantities as p̂(a) = |Π|−1
∑

π∈Π 1 [|Γnorm(aπ)| ≥ |Γnorm(a0)|]. However, we would

ideally approximate the permutation p-value obtained with the true population quantities,

which we denote as p̂(ρ) = |Π|−1
∑

π∈Π 1 [|Γnorm(ρπ)| ≥ |Γnorm(ρ0)|]. Fortunately, under

general conditions specified in Theorem 3.1, if |aj − ρj| = O(g(n)) for j = 1, . . . , N , then

we also have |p̂(a) − p̂(ρ)| = O(g(n)). In other words, the rate of convergence for the

permutation p-value is the same as the rate of convergence of the underlying elements of a.

As shown in Corollary 3.1, when a are Pearson’s or Spearman’s correlation coefficients, we

have g(n) = O(1/
√
n). As shown in Corollary 3.2, the same rate of convergence holds when

using the absolute values of Pearson’s or Spearman’s correlation coefficients.

As shown in Section 3.4.1, Γnorm(a) = (σ̂δ/σ̂a)(āin − āout), where āin is the mean of the

within block elements and āout is the mean of the between block elements. Since σ̂δ and σ̂a

are constant conditional on the data, this shows that Γnorm(a) is permutationally equivalent

to the difference in means, which we denote by D(a) = āin − āout. Similarly, we denote the

difference in means of the true population quantities as D(ρ) = ρ̄in − ρ̄out.

In this section, we work with D instead of Γnorm, because the former simplifies the deriva-

tions. Since D and Γnorm are permutationally equivalent, they produce identical permutation

p-values. Consequently, the convergence rate of the permutation p-value must be the same

for D as for Γnorm.

Before focusing on our primary interest, |p̂(a)− p̂(ρ)|, we state an inequality in Lemma

3.1 that we will use to prove our main result in Theorem 3.1.

Lemma 3.1. Suppose that with probability one, |aj − ρj| ≤ εj(n) < ∞, j = 1, . . . , N . For

each n ∈ N, let εmax(n) = maxj εj(n). Then with probability one, |D(a)−D(ρ)| ≤ 2εmax(n).
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Proof of Lemma 3.1. From these assumptions, it follows that with probability one,

|D(a)−D(ρ)| = |āin − āout − (ρ̄in − ρ̄out)|

= |āin − ρ̄in + ρ̄out − āout|

≤ |āin − ρ̄in|+ |ρ̄out − āout|

≤ 2εmax(n)

We now turn to our primary interest, |p̂(a) − p̂(ρ)|. To that end, for fixed ε > 0, let

Bε = (|D(ρ0)| − ε, |D(ρ0)|+ ε) be the ε-ball centered around |D(ρ0)|. Also, let

ΠB(ε) = {π ∈ Π : |D(ρπ)| ∈ Bε}

ΠB̄(ε) = {π ∈ Π : |D(ρπ)| 6∈ Bε}.

Note that for each ε, ΠB(ε) and ΠB̄(ε) partition Π, i.e. Π = ΠB(ε) ∪ ΠB̄(ε) and ΠB(ε) ∩
ΠB̄(ε) = ∅.

For fixed ε we have

|Π| |p̂(a)− p̂(ρ)| =

∣∣∣∣∣∑
π∈Π

1 (|D(aπ)| ≥ |D(a0)|)−
∑
π∈Π

1 (|D(ρπ)| ≥ |D(ρ0)|)

∣∣∣∣∣
=

∣∣∣∣∣∑
π∈Π

{1 (|D(aπ)| ≥ |D(a0)|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

π∈ΠB(2ε)

{1 (|D(aπ)| ≥ |D(a0)|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣∣︸ ︷︷ ︸
CB

(3.6)

+

∣∣∣∣∣∣
∑

π∈ΠB̄(2ε)

{1 (|D(aπ)| ≥ |D(a0)|)− 1 (|D(ρπ)| ≥ |D(ρ0)|)}

∣∣∣∣∣∣︸ ︷︷ ︸
CB̄

. (3.7)

We further partition ΠB̄(2ε) into

ΠL
B̄(2ε) = {π ∈ ΠB̄(2ε) : |D(ρπ)| < |D(ρ0)|}

ΠR
B̄(2ε) = {π ∈ ΠB̄(2ε) : |D(ρπ)| > |D(ρ0)|}.

We proceed by bounding CB (3.6) in Lemma 3.2 and CB̄ (3.7) in Lemma 3.3. We then

combine these bounds with the ε given by Lemma 3.1 to prove our main result in Theorem

3.1.
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Let R̂N(t) be the permutation distribution of |D(ρ)|, and suppose that for N sufficiently

large, R̂N(t) ≈ R(t), where R is a limiting distribution with a well-behaved density as

specified in Lemma 3.2.

Lemma 3.2. Let R̂N(t) be the permutation distribution of |D(ρ)|. Suppose R̂N(t) ≈ R(t)

for N sufficiently large, where R(t) has density f(t) such that M = supt f(t) < ∞. Also

let ε = ε(n) and suppose ε(n) = O(g(n)) for some strictly decreasing function g such that

g(n)→ 0 as n→∞. Then for N sufficiently large, CB = O(g(n)). In particular, CB/|Π| ≤
4Mε(n).

Proof of Lemma 3.2. In the following, we use the convention that f(t) = 0 for t 6∈ supp(f),

where supp(f) is the support of f . We have

CB
|Π|
≤ |ΠB (2ε)|

|Π|
= R̂N (|D(ρ0)|+ 2ε)− R̂N (|D(ρ0)| − 2ε)

≈ R (|D(ρ0)|+ 2ε)−R (|D(ρ0)| − 2ε) (for large N)

=

∫ |D(ρ0)|+2ε

|D(ρ0)|−2ε

f(s)ds

≤ 4Mε (3.8)

Since |Π| is a constant and ε = ε(n) = O(g(n)), this shows that CB = O(g(n)).

We note that the constraint on R in Lemma 3.2 precludes distributions that concentrate

on sets of measure zero, such as the dirac delta function. In other words, the limiting

distribution cannot be degenerate. We also note that in Lemma 3.2, we could set ε(n) =

2εmax(n), where εmax(n) is given in Lemma 3.1. In this case, (3.8) becomes 8Mεmax(n).

The proof of Lemma 3.2 assumes that N = p(p − 1)/2 is sufficiently large for the ap-

proximation R̂N(t) ≈ R(t) to hold, i.e. that the matrix A has many elements. In practice,

N is determined by the number of items p on the questionnaire. Furthermore, since the

total number of permutations p! grows very quickly, we anticipate that p > 10 (N > 45) is

sufficient in most applications for the permutation distribution to be approximated well by

a limiting distribution for which the density exists and is bounded above. The bound on CB

is then a function of the number of subjects n who reply to the questionnaire.

We now turn to the CB̄ term (3.7).

Lemma 3.3. For fixed ε > 0, suppose that Pr(|D(a)−D(ρ)| ≤ ε) = 1. Then CB̄ = 0 almost

surely, i.e. Pr(CB̄ = 0) = 1.
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Proof of Lemma 3.3.

Pr(CB̄ = 0) ≥ Pr

|D(a0)| ∈ Bε,
⋂

π∈ΠL
B̄

(2ε)

|D(aπ)| ≤ |D(ρ0)| − ε,

⋂
π∈ΠR

B̄
(2ε)

|D(aπ)| ≥ |D(ρ0)|+ ε

 (3.9)

≥ Pr (|D(a0)| ∈ Bε) +
∑

π∈ΠL
B̄

(2ε)

Pr (|D(aπ)| ≤ |D(ρ0)| − ε)

+
∑

π∈ΠR
B̄

(2ε)

Pr (|D(aπ)| ≥ |D(ρ0)|+ ε)− |ΠB̄(2ε)| (3.10)

= 1 (3.11)

To see why the inequality in (3.9) holds, consider the set DL =
{
|D(ρπ)| : π ∈ ΠL

B̄
(2ε)

}
and

let πmax = arg maxπ
{
|D(ρπ)| ∈ DL

}
. The right-hand side of (3.9) requires that |D(aπmax)| ≤

|D(ρ0)| − ε and |D(a0)| > |D(ρ0)| − ε. Furthermore, by the definition of ΠL
B̄

(2ε), we have

|D(ρπmax)| ≤ |D(ρ0)| − 2ε. Therefore, we have both |D(aπmax)| < |D(a0)| and |D(ρπmax)| <
|D(ρ0)|. Consequently, 1 {|D(aπmax)| ≥ |D(a0)|}−1 {|D(ρπmax)| ≥ |D(ρ0)|} = 0. The same

argument applies to all elements in DL. Similarly, let DR =
{
|D(ρπ)| : π ∈ ΠR

B̄
(2ε)

}
and

πmin = arg minπ
{
|D(ρπ)| ∈ DR

}
. Then an analogous argument as above applies to the

elements in DR.

Line (3.10) is a direct application of Bonferroni’s inequality (see Casella and Berger, 2002,

p. 13). Line (3.11) holds, because all probabilities in (3.10) are equal to one. To see this,

note that by assumption, for all π ∈ ΠL
B̄

, with probability one

|D(aπ)| < |D(ρπ)|+ ε

≤ |D(ρπmax)|+ ε

≤ |D(ρ0)| − ε

with analogous results for π ∈ ΠR
B̄

. By assumption, we also have |D(a0)| ∈ Bε with proba-

bility one. This completes the proof.

We note that in Lemma 3.3, we could take ε to be any small positive value. In particular,

for each n ∈ N, we could set ε = 2εmax(n), where εmax(n) is given in Lemma 3.1.

We now state our main result in Theorem 3.1 followed by Corollaries 3.1 and 3.2, which

focus on the special case of Pearson’s and Spearman’s correlations.

Theorem 3.1. Let aj be the sample estimates of ρj, j = 1, . . . , N , and suppose that for all

j, |aj − ρj| = O(g(n)) with probability one for some strictly decreasing function g, such that
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g(n) → 0 as n → ∞. Also suppose that the permutation distribution R̂N(t) has limiting

distribution R(t) such that the density of R(t), denoted as f(t), exists and supt f(t) < ∞.

Then for N sufficiently large, with probability one, |p̂(a)− p̂(ρ)| = O(g(n)).

Proof of Theorem 3.1. From (3.6) and (3.7), we have |p̂(a) − p̂(ρ)| ≤ |Π|−1 (CB + CB̄). By

assumption, with probability one, |aj − ρj| ≤ εj(n) where εj(n) = O(g(n)), j = 1, . . . , N .

For each n ∈ N, let εmax(n) = maxj εj(n). Then by Lemma 3.1, |D(a) −D(ρ)| ≤ 2εmax(n)

with probability one. Therefore, by setting ε = 2εmax(n), Lemma 3.3 gives Pr(CB̄ = 0) = 1,

and Lemma 3.2 gives CB = O(g(n)). It follows that with probability one |p̂(a) − p̂(ρ)| =

O(g(n)).

Corollary 3.1. Let a be Pearson’s or Spearman’s correlation coefficients estimated from n

iid observations. Let τ 2
j = Var(aj) and assume τ 2

j < ∞ for j = 1, . . . , N . Also suppose

that the permutation distribution R̂N(t) has limiting distribution R(t) such that the density

of R(t), denoted as f(t), exists and supt f(t) < ∞. Then for N sufficiently large, with

probability one, |p̂(a)− p̂(ρ)| = O(1/
√
n).

Proof of Corollary 3.1. Suppose that a are Pearson’s correlation coefficients. Then under

these assumptions and by the central limit theorem and delta method,
√
n(aj−ρj) is asymp-

totically normal for j = 1, . . . , N (Lehmann and Romano, 2005, p. 438). Then for n suffi-

ciently large and ε > 0,

Pr (|aj − ρj| > ε) = Pr

(√
n|aj − ρj|
τj

>

√
nε

τj

)
≈ Pr

(
|Z| >

√
nε/τj

)
(Z ∼ N(0, 1))

= 2

[
1− Φ

(√
nε

τj

)]
,

where Φ is the standard normal CDF. Setting δ = 2 (1− Φ(
√
nε/τj)) and solving for δ ∈ [0, 1],

we get that with probability 1 − δ, |aj − ρj| ≤ τjΦ
−1 (1− δ/(2N)) /

√
n. Setting δ = 0, we

get that with probability one,

|aj − ρj| ≤ τjΦ
−1(1)/

√
n. (3.12)

Hence with probability one, |aj − ρj| = O(1/
√
n), j = 1, . . . , N . Then by Theorem 3.1, with

probability one, |p̂(a)− p̂(ρ)| = O(1/
√
n).

Since Spearman’s correlation is Pearson’s correlation of the ranks, the above argument

carries over to Spearman’s correlation.

Corollary 3.2. Under the same conditions as Corollary 3.1, but with a and ρ replaced with

absolute values of Pearson’s or Spearman’s correlations, we also have that with probability

one |p̂(a)− p̂(ρ)| = O(1/
√
n).
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Proof of Corollary 3.2. Let aabs and ρabs be N × 1 vectors of the absolute values of the

estimated correlation coefficients and the true correlations, respectively. We have |aabs,j −
ρabs,j| =

∣∣|aj| − |ρj|∣∣ ≤ |aj − ρj| ≤ τjΦ
−1(1)/

√
n, where the last inequality follows from

(3.12) in the proof of Corollary 3.1. Hence with probability one, |aabs,j − ρabs,j| = O(1/
√
n),

j = 1, . . . , N . Then by Theorem 3.1, with probability one, |p̂(aabs)−p̂(ρabs)| = O(1/
√
n).

We believe that the regularity conditions in these proofs are sufficiently general to be

applicable to most data encountered in practice. However, in future work, we plan to in-

vestigate alternative proofs that relax the constraint that R̂N(t) has a limiting distribution

R(t). We also plan to extend these results to the block-specific tests, and provide corollaries

for other common correlations.

3.8 Discussion

Directly testing hypotheses concerning the structure of A with the methods described in this

chapter, as opposed to implicitly testing the structure of A through a model-based approach,

such as CFA, has both advantages and disadvantages. The tests of matrix structure presented

in this chapter allow for greater variety of matrices (e.g. A can be correlations or absolute

correlations, in addition to covariances), have null hypotheses that are aligned with the

scientific question, and make it possible to test each block separately in addition to the

overall test. These nonparametric tests also address the challenge in CFA of determining

whether poor fit (small GOF index) is due to incorrect assumptions on the distributions of

the random variables (secondary interest), or an inaccurate attribution of test questions to

latent variables (primary interest).

However, CFA, and more generally, SEMs, allow for more flexible latent variable struc-

tures, and can be used in subsequent analyses to study associations between latent variables

and additional covariates. With this in mind, we view methods for directly testing the struc-

ture of A as being useful either by themselves when appropriate, or to check the robustness

of model-based approaches.

The simulation results suggest that the permutation test with Γnorm maintains high power

while controlling the type I error rate. In particular, the p-values are uniformly distributed

under the null hypothesis, so type I error rates can be estimated theoretically. In contrast,

CLI and TLI behave differently depending on the scenario, so it is not possible to theoretically

estimate error rates, such as the GOF false alarm rate (type II errors, see Table (3.1)). This

has the consequence that the known behavior of CLI and TLI are restricted to simulation

results, and may not generalize to other settings.
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In this chapter, we focused on scenarios in which each observed variable loads onto no

more than one latent factor, which implies a block diagonal structure in the covariance and

correlation matrices. This constraint is commonly imposed on CFA models as well. However,

the Γnorm statistic and permutation test are not restricted to these scenarios, and in future

work it could be beneficial to study the performance of these methods when testing more

general matrix structures.

In future work, it may also be beneficial to investigate the use of the studentized difference

in means (3.3) in place of Γnorm in the permutation test. In our simulations, (3.3) gave nearly

identical results as Γnorm (results not shown), but due to the results of (Chung and Romano,

2013), we speculate that there may be scenarios in which (3.3) controls the type I error rate

better than Γnorm.

Finally, we note that we view these tests as single pieces of information that can be

used in a larger decision-making process. This approach is consistent with the American

Statistical Association’s statement on p-values (Wasserstein and Lazar, 2016).

3.9 R Package and Code

We have implemented the methods described in this chapter in an R package matrixTest

available at https://github.com/bdsegal/matrixTest. Code for reproducing all analyses

in this chapter is available at https://github.com/bdsegal/code-for-matrixTest-paper.
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Part II

Semiparametric Regression
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Chapter 4

P-splines with an `1 Penalty for

Repeated Measures

4.1 Introduction

Many nonparametric regression methods, including smoothing splines and regression splines,

obtain point estimates by minimizing a penalized negative log-likelihood function of the

form lpen = −l(β) + P (β), where l is a log-likelihood, P is a penalty term, and β are the

coefficients to be estimated. Typically, quadratic (`2 norm) penalties are used, which lead

to straightforward computation and inference. In particular, `2 penalties typically lead to

ridge estimators, which have both closed form solutions and are linear smoothers. The `2

penalty also has connections to mixed models, which allows the smoothing parameters to

be estimated as variance components (Green, 1987, Speed, 1991, Wang, 1998, Zhang et al.,

1998).

However, nonparametric regression methods that use an `1-type penalty, such as `1 trend

filtering (Kim et al., 2009) and locally adaptive regression splines (Mammen et al., 1997),

are better able to adapt to local differences in smoothness and achieve the minimax rate

of convergence for weakly differentiable functions of bounded variation (Tibshirani, 2014a),

whereas `2 penalized methods do not (Donoho and Johnstone, 1988). The trade-off is that

`1 penalties generally lead to more difficult computation and inference because the objective

function is convex but non-differentiable, and the fit is no longer a linear smoother.

In this chapter, we propose P-splines with an `1 penalty as a framework for generalizing `1

trend filtering within the context of repeated measures data and semiparametric (additive)

models (Hastie and Tibshirani, 1986). In Section 4.2, we discuss connections between P-

splines and `1 trend filtering which motivate the methodological development. In Section
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4.3, we present our proposed model, and in Section 4.4, we discuss related work. In Section

4.5, we propose an estimation procedure using the alternating direction method of multipliers

(ADMM) (see Boyd et al., 2011) and cross validation (CV). In Section 4.6, we derive the

degrees of freedom and propose computationally fast approximations, and in Section 4.7,

we develop approximate confidence bands based on a ridge approximation to the `1 fit.

In Section 4.8, we study our method through simulations and evaluate its performance in

fitting non-smooth functions. In section 4.9, we demonstrate our method in an application

to electrodermal activity data collected as part of a stress study. We close with a discussion

in Section 4.10.

4.2 P-splines and `1 Trend Filtering

In this section, we give brief background on P-splines and `1 trend filtering, and show the

relation between them when the data are independent and identically distributed (iid) nor-

mal.

P-splines (Eilers and Marx, 1996) are penalized B-splines (see De Boor, 2001). B-splines

are flexible bases that are notable in part because they have compact support, which leads to

banded design matrices and faster computation. This compact support can be seen in Figure

4.1, which shows eight evenly spaced first degree and third degree B-spline bases on [0, 1].

We can define an order M (degree M − 1) B-spline basis with j = 1, . . . , p basis functions

recursively as (De Boor, 2001)

φmj (x) =
x− tj

tj+m−1 − tj
φm−1
j (x) +

tj+m − x
tj+m − tj+1

φm−1
j+1 (x), j = 1, . . . , 2M + c−m, 1 < m ≤M

φ1
j(x) =

1 tj ≤ x < tj+1

0 otherwise
, j = 1, . . . , 2M + c− 1

where tj are the knots, division by zero is taken to be zero, and c is the number of internal

knots. For order M B-splines defined on the interval [a, b], in order to obtain j = 1, . . . , p

basis functions, we set 2M boundary knots (M knots on each side) and c = p−M interior

knots. In general, one can set t1 ≤ t2 ≤ · · · ≤ tM = a < tM+1 < · · · < tM+c < b =

tM+c+1 ≤ tM+c+2 ≤ · · · ≤ t2M+c. In order to ensure continuity at the boundaries, we set

t1 < t2 < · · · < tM−1 < tM = a and b = tM+c+1 < tM+c+2 < · · · < t2M+c. We also use equally

spaced interior knots, which is important for the P-spline penalty, and drop the superscript

on φ designating order when the order does not matter or is stated in the text.

B-spline bases can be used to fit nonparametric models of the form y(x) = f(x) + ε(x),

where y(x) is the outcome y at point x, f(x) is the mean response function at x, and ε(x)
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Figure 4.1: Eight evenly spaced B-spline bases on [0, 1]

is the error at x. To that end, let y = (y1, . . . , yn)T be an n × 1 vector of outcomes and

x = (x1 . . . , xn)T be a corresponding n × 1 vector of covariates. Also, let φ1, . . . , φp be B-

spline basis functions and let F be an n × p design matrix such that Fij = φj(xi), i.e., the

jth column of F is the jth basis function evaluated at x1, . . . , xn. Equivalently, the ith row

of F is the ith data point evaluated by φ1, . . . , φp. For iid normal y, a simple linear P-spline

model with the standard `2 penalty can be written as

β̂0, β̂ = arg min
β0∈R,β∈Rp

1

2
‖y − β01− Fβ‖2

2 +
λ

2
‖D(k+1)β‖2

2, (4.1)

where β0 is the intercept, β is a p × 1 vector of parameter estimates, 1 is an n × 1 vector

with each element equal to 1, λ > 0 is a smoothing parameter, and D(k+1) ∈ R(p−k−1)×p is

the k + 1 order finite difference matrix. For example, for k = 1

D(2) =



1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1


∈ R(p−2)×p (4.2)

In general, as described by Tibshirani (2014a), D(k+1) = D(1)D(k) where D(1) is the (p− k−
1)× (p− k) upper left matrix of:

D(1) =


−1 1

−1 1
. . . . . .

−1 1

 ∈ R(p−1)×p. (4.3)

101



Our proposed model builds on one in which the `2 penalty in (4.1) is replaced with an `1

penalty:

β̂0, β̂ = arg min
β0∈R,β∈Rp

1

2
‖y − β01− Fβ‖2

2 + λ‖D(k+1)β‖1. (4.4)

`1 trend filtering is similar to (4.4), and is based on the following objective function, in

which it is assumed that x1 < x2 < · · · < xn are unique and equally spaced:

β̂ = arg min
β∈Rn

1

2
‖y − β‖2

2 + λ‖D(k+1)β‖1. (4.5)

Apart from requiring unique and equally spaced observations, (4.5) differs from (4.4) in that

(4.5) has one parameter per data point, no intercept, and the design matrix is the identity

matrix. D(k+1) is also resized appropriately by replacing p with n in the dimensions of (4.2)

and (4.3). However, under certain conditions noted in Observation 4.1, (4.4) and (4.5) are

identical.

Observation 4.1 (Continuous representation). For second order (first degree) B-splines

with n basis functions, equally spaced data x1 < x2 < · · · < xn with knots at t1 < x1, t2 =

x1, t3 = x2, . . . , tn = xn−1, tn+1 = xn, tn+2 > xn, and centered outcomes such that y(0) = 0,

P-splines with an `1 penalty are a continuous analogue to `1 trend filtering.

Proof of Observation 4.1. Under these conditions, for i = 1, . . . , n

φ2
j(xi) =

1 i = j

0 otherwise
.

To see this, note that

φ2
j(xi) =

xi − tj
tj+1 − tj

φ1
j(xi) +

tj+2 − xi
tj+2 − tj+1

φ1
j+1(xi)

=
ti+1 − tj
tj+1 − tj

φ1
j(ti+1) +

tj+2 − ti+1

tj+2 − tj+1

φ1
j+1(ti+1). (4.6)

Now,

φ1
j(ti+1) =

1 tj ≤ ti+1 < tj+1

0 otherwise
and φ1

j+1(ti+1) =

1 tj+1 ≤ ti+1 < tj+2

0 otherwise
.

We have φ1
j(ti+1) = 1 for i = j − 1 and 0 otherwise, but for i = j − 1, we have ti+1 − tj =

tj − tj = 0. We also have φ1
j+1(ti+1) = 1 for i = j and 0 otherwise, and for i = j, we have

tj+2 − ti+1 = tj+2 − tj+1 > 0. It follows that for i = 1 . . . , n, (4.6) evaluates to 1 if i = j and

0 otherwise.
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Let F be the design matrix in (4.4), where Fij = φ2
j(xi). Then from the previous result,

we have F = In, where In×n is the n×n identity matrix. This, together with the assumption

that β0 = y(0) = 0, implies that the objective functions (4.4) and (4.5) are identical, which

proves Observation 4.1.

We note that Tibshirani (2014a) shows that `1 trend filtering has a continuous represen-

tation when expressed in the standard lasso form, and Observation 4.1 gives a continuous

representation of `1 trend filtering when expressed in generalized lasso form.

Ramdas and Tibshirani (2016) developed an algorithm to extend `1 trend filtering to

irregularly spaced data. It might also be possible to extend `1 trend filtering to repeated

measures data to account for within-subject correlations. However, due to Observation 4.1,

we think it is beneficial to view `1 trend filtering as a special case of P-splines with an `1

penalty. We think this approach has the potential to be a general framework, because higher

order B-splines could be used in combination with different order difference matrices, just

as can be done with P-splines that use the standard `2 penalty. Furthermore, expressing `1

trend filtering as P-splines with an `1 penalty may facilitate the development of confidence

bands (see Section 4.7), which could help to fill a gap in the `1 penalized regression literature.

In addition, there are connections between P-splines with an `1 penalty and locally adap-

tive regression splines. In particular, as Tibshirani (2014a) shows, the continuous analogue

of `1 trend filtering is identical to locally adaptive regression splines (Mammen et al., 1997)

for k = 0, 1, and asymptotically equivalent for k ≥ 2.

4.3 Proposed Model: Additive Mixed Model Using

P-splines with an `1 Penalty

To introduce our model, let yi = (yi1, . . . , yini
)T be an ni × 1 vector of responses for subject

i = 1, . . . , N , and let y = (yT1 , . . . ,y
T
N)T be the stacked n × 1 vector or responses for all N

subjects, where n =
∑N

i=1 ni. Let xi = (xi1, . . . , xini
)T be a corresponding ni × 1 vector of

covariates for subject i, and x = (xT1 , . . . ,x
T
N)T be the n× 1 stacked vector of all covariate

values. In many contexts, x is time. To account for the within-subject correlations of yi, we

can incorporate random effects into the P-spline model. To that end, let Z̃i be an ni × qi
design matrix for the random effects for subject i (possibly including a B-spline basis), and

let b̃i = (b̃i1, . . . , b̃iqi)
T be the corresponding qi × 1 vector of random effect coefficients for
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subject i. Also, let

Z̃ =


Z̃1

. . .

Z̃N


be the n× q block diagonal random effects design matrix for all subjects, where q =

∑N
i=1 qi,

and let b̃ = (b̃T1 , . . . , b̃
T
N)T be the q × 1 stacked vector of random effects for all subjects. We

propose an additive mixed model with j = 1, . . . , J smooths:

minimize
β0∈R,b̃∈Rq ,β̃j∈Rpj ,j=1,...,J

1

2
‖y − β01−

J∑
j=1

F̃jβ̃j − Z̃b̃‖2
2 +

J∑
j=1

λj‖D̃
(kj+1)
j β̃j‖1 + τ

1

2
b̃T S̃b̃ (4.7)

where F̃j is a n× pj design matrix of B-spline bases for smooth j, D̃
(kj+1)
j is the kj + 1 finite

difference matrix, and σ2
b S̃ is the covariance matrix of the random effects b̃. For example, if

b̃ are random intercepts, then S̃ = IN×N and Z̃ would be an n×N matrix such that Z̃il = 1

if observation i belonged to subject l and zero otherwise. Alternatively, to obtain random

curves using smoothing splines and a B-spline basis, we could set

S̃ =


S̃1

. . .

S̃N


where S̃j,il =

∫
φ′′ji(t)φ

′′
jl(t)dt, and φ′′j1, . . . , φ

′′
jpj

are the second derivatives of the B-spline

basis functions for the jth smooth. We would then set Z̃ to be the corresponding B-splines

evaluated at the input points.

We note that (4.8) includes varying-coefficient models (Hastie and Tibshirani, 1993). For

example, as pointed out by Wood (2006, p. 169), we could have F2 = diag(x′)F1, where

x′ is another covariate vector, and diag(x′) is a diagonal matrix with x′i at the ith leading

diagonal position.

As written, (4.7) is not generally identifiable. To see this, suppose ŷ(x) = β̂0 + f̂1(x) +

f̂2(x), where neither f1 nor f2 are varying-coefficient terms. Then letting f̂ ′1(x) = f̂1(x) + δ

and f̂ ′2(x) = f̂2(X)−δ, we also have ŷ(x) = β̂0 + f̂ ′1(x)+ f̂ ′2(x). To make (4.7) identifiable, we

follow Wood (2006, Section 4.2) and introduce a centering constraint on each non-varying

coefficient smooth, i.e.
∫
f̂j(x)dx = 0 for all smooths j = 1, . . . , J such that Fj 6= diag(x′)Fl

for some x′ and l 6= j. To this end, let E = {j ∈ {1, . . . , J} : Fj 6= diag(x′)Fl for some x′, l 6=
j} be the indices of the non-varying coefficient smooths, and let Ē = {j ∈ {1, . . . , J} : j 6∈ E}
be its complement. We constrain 1T F̃jβ̃j = 0 for j ∈ E and 1T Z̃b̃ = 0. We accomplish this

by defining new pj × (pj − 1) orthonormal matrices Qj, j = 1, . . . , J , such that 1T F̃jQj = 0,

and a q × (q − 1) matrix QJ+1 such that 1T Z̃QJ+1 = 0.

104



As Wood (2006, Section 1.8.1) shows, Q can be obtained by taking the QR decomposition

of F̃ T
j 1 (or Z̃T1), and retaining the last pj − 1 (or q − 1) columns of the left orthonormal

matrix.1 We can then re-parameterize the pj constrained parameters β̃j in terms of the

pj − 1 unconstrained parameters βj, such that β̃ = Qjβj. Similarly, we can re-parameterize

the q constrained parameters b̃ in terms of the q − 1 unconstrained parameters b, where

b̃ = QJ+1b. For j ∈ E , let Fj = F̃jQj and Dj = D̃
kj+1
j Qj. For j ∈ Ē , let Fj = F̃j and

Dj = D̃j. Also, let S = QT
J+1S̃QJ+1 and Z = Z̃QJ+1. Then we can re-write (4.7) in the

identifiable form

minimize
β0∈R,b∈Rq−1,βj∈R

p′
j ,j=1,...,J

1

2
‖y − β01−

J∑
j=1

Fjβj − Zb‖2
2 +

J∑
j=1

λj‖Djβj‖1 + τ
1

2
bTSb. (4.8)

where p′j = pj − 1 for j ∈ E and p′j = pj for j ∈ Ē .

We note that the penalty matrix S given above for random subject-specific splines de-

fines non-zero correlation between nearby random effect coefficients within subjects. This is

in contrast to the approach of Ruppert et al. (2003) for estimating subject-specific random

curves, which focuses on the case in which nearby within-subject coefficients are not corre-

lated. Let d̂i(x) =
∑qi

j=1 b̂ijφij(x) be the estimated difference between the ith subject-specific

curve and the marginal mean at point x. The smoothing spline approach above constrains∫
(d̂′′)2(x)dx = bTi Sibi < C for some constant C > 0, whereas the approach of Ruppert

et al. (2003) constrains bTi Iqi×qibi =
∑qi

j=1 b̂
2
j < C. Whereas the non-diagonal penalty matrix

S implies correlations between nearby coefficients, the identity matrix in the approach of

Ruppert et al. (2003) implies zero correlation.

Similar to the equivalence between Bayesian models and `2 penalized smoothing splines

(Wahba, 1990), there is an equivalence between Bayesian models and `1 penalized splines.

In particular, (4.8) is equivalent to the following distributional assumptions, which we can

use to obtain Bayesian estimates:

y|b = β01 +
J∑
j=1

Fjβj + Zb+ ε

ε ∼ N
(
0, σ2

ε I
)

b ∼ N(0, σ2
bS
−1) for Assσ2

b = σ2
ε/τ

ε ⊥ b

(Djβj)l ∼ Laplace(0, aj) for aj = σ2
ε/(2λj), l = 1, . . . , pj − kj − 1, j = 1, . . . , J

1The matrices 1T F̃j and 1T Z̃ are of rank 1, so the remaining pj − 2 (or q − 2) columns are arbitrary

orthonormal vectors. In R (R Core Team, 2017), when taking the QR decomposition of F̃T1, an appropriate

matrix Q can be obtained as Q <- qr.Q(qr(colSums(F_tilde)), complete = TRUE)[, -1].
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The last distributional assumption is an element-wise Laplace prior on the kj + 1 order

differences in coefficients.

In some cases, the random effects penalty matrix S may be positive semidefinite but

not invertible. For example, the smoothing spline random curves outlined above lead to a

penalty matrix S that is not strictly positive definite, but that is still positive semidefinite.

This does not cause problems for the ADMM algorithm, but some changes are required

for other algorithms as well as for Bayesian estimation. Following Wood (2006, Section

6.6.1), let S = UΛUT be the eigendecomposition of a positive semidefinite matrix S, where

UUT = I(q−1)×(q−1) and Λ is a diagonal matrix with eigenvalues in descending order in the

diagonal positions. Let b̆ = UTb and Z̆ = ZU , so that bTSb = b̆TΛb̆ and Z̆b̆ = Zb. Let qr

be the number of strictly positive eigenvalues of S, where 0 < qr < q − 1, and let Λr be the

qr × qr upper left portion of Λ. We can partition b̆ as b̆ = (b̆Tr , b̆
T
f )T , where b̆Tr is a qr × 1

vector of penalized coefficients and b̆Tf is a qf × 1 vector of unpenalized coefficients, where

qr + qf = q − 1. Then b̆TΛb̆ = b̆Tr Λrb̆r, and it follows that b̆r ∼ N(0, σ2
bΛ
−1
r ) and b̆f ∝ 1.

However, allowing for unconstrained random effect parameters leads to identifiability

issues. Therefore, in practice if qf > 0, we recommend using a normal or Cauchy prior on

b̆f . In particular, b̆f,l ∼ N(0, σf ) or b̆f,l ∼ Cauchy(0, σf ), l = 1, . . . , qf with either a diffuse

prior on σf and constraints to ensure σf > 0, or a diffuse prior on log(σf ) without constraints.

The Cauchy prior may be a preferable first choice, as it provides a weaker penalty and is

similar to the recommendations of Gelman et al. (2008) for logistic regression. However, in

some cases, such as in Section 4.9, it is necessary to use a normal prior.

To further improve the computational efficiency of Monte Carlo sampling methods, we

can partition Z̆ into Z̆ = [Z̆r, Z̆f ] where Z̆r contains the first qr columns of Z̆ and Z̆f contains

the remaining qf columns. We then set b̌r = Λ
−1/2
r b̆ and Žr = Z̆rΛ

1/2
r , so that Žrb̌r = Z̆rb̆r

and br ∼ N(0, σ2
b̌
I), which allows for more efficient sampling.

4.4 Related Work

There are many nonparametric and semiparametric methods for analyzing repeated measures

data. For an overview, please see Fitzmaurice et al. (2008, Part III). However, most existing

methods use an `2 penalty (e.g. Rice and Wu, 2001, Guo, 2002, Chen and Wang, 2011,

Scheipl et al., 2015).

Focusing on the optimization problem, our method puts a generalized lasso penalty (Tib-

shirani, 1996) on the fixed effects and a quadratic penalty on the random effects. Unlike

the elastic net (Zou and Hastie, 2005), we do not mix the `1 and `2 penalties on the same

parameters, though this could be done in the future.
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While not developed for analyzing repeated measures, the fused lasso additive model

(FLAM) (Petersen et al., 2016) is similar to ours. FLAM optimizes the following problem:

minimize
θ0∈R,θj∈Rn,1≤j≤J

1

2
‖y − θ01−

J∑
j=1

θj‖2
2 + αλ

J∑
j=1

‖D(1)θj‖1 + (1− α)λ
J∑
j=1

‖θj‖2 , (4.9)

where 0 ≤ α ≤ 1 specifies the balance between fitting piecewise constant functions (α = 1)

and inducing sparsity on the selected smooths (α = 0). From Observation 4.1, we see that

(4.9) is equivalent to our model (4.8) when: α = 1, there is J = 1 smooth, our design matrix

has p = n columns, our B-spline bases have appropriately chosen knots, and our model has

no random effects. As Petersen et al. (2016) show, FLAM can be a very useful method for

modeling additive phenomenon, and as with the fused lasso (Tibshirani et al., 2005), jumps

in the piecewise linear fits have the advantage of being interpretable.

We also mention the sparse additive model (SpAM) (Ravikumar et al., 2009) and sparse

partially linear additive model (SPLAM) (Lou et al., 2016). SpAM fits an additive model

and uses a group lasso penalty (Yuan and Lin, 2006) to induce sparsity on the number of

active smooths. SPLAM fits a partially linear additive model and uses a hierarchical group

lasso penalty (Zhao et al., 2009) to induce sparsity in the selected predictors and to control

the number of nonlinear features.

One notable difference between our model and FLAM, SpAM, and SPLAM, is that we

allow for multiple smoothing parameters. In our applied experience with additive models

and standard `2 penalties, we have found that in practice it can be important to allow for

multiple smoothing parameters, particularly when the quantities of interest are the individual

smooths as opposed to the overall prediction. This is equivalent to allowing each smooth to

have different variance. However, this flexibility comes at a cost: fitting multiple smoothing

parameters is currently the greatest challenge in fitting our proposed model. Perhaps due in

part to these computational difficulties, several other authors also assume a single smoothing

parameter in high-dimensional additive models (e.g. Lin et al., 2006, Meier et al., 2009).

There are fast and stable methods for fitting multiple smoothing parameters for `2 penal-

ties paired with exponential family and quasilikelihood loss functions, notably the work of

Wood (2004) using generalized cross-validation (GCV) and Wood (2011) using restricted

maximum likelihood. Furthermore, Wood et al. (2015) extends these methods to larger

datasets, and Wood et al. (2016) extends these methods to likelihoods outside the exponen-

tial family and quasilikelihood form. However, similarly computationally efficient methods

do not yet exist for fitting multiple smoothing parameters for `1 penalties.

In addition to allowing for multiple smoothing parameters, we also propose approximate

inferential methods, which is not typically provided for `1 penalized models. Yuan and
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Lin (2006), Ravikumar et al. (2009), Lou et al. (2016), and Petersen et al. (2016) focus

on prediction and provide bounds on the prediction risk and related quantities. These are

important results, and we think that distributional results for individual parameters and

smooths will also be useful to practitioners.

We also note that Eilers (2000) and Bollaerts et al. (2006) discuss a variant of P-splines

for quantile regression, in which the `1 norm is used in both the loss and penalty function.

However, we are not aware of existing P-spline methods that combine an `1 penalty with an

`2 loss function.

4.5 Point Estimation

4.5.1 Regression Parameters and Random Effects

To fit (4.8), we use the alternating direction method of multipliers (ADMM) (see Boyd et al.,

2011). ADMM has the advantage of being scalable to large datasets. To formulate (4.8) for

ADMM, we introduce constraint terms wj and re-write the optimization problem as

minimize
1

2

∥∥∥∥∥y − β01−
J∑
j=1

Fjβj − Zb

∥∥∥∥∥
2

2

+
J∑
j=1

λj‖wj‖1 +
τ

2
bTSb (4.10)

subject to Djβj −wj = 0, j = 1, . . . , J

The augmented Lagrangian in scaled form (using u to denote the scaled dual variable)

is

Lρ(β, b,w,u) ∝ 1

2

∥∥∥∥∥y − β01−
∑
j

Fjβj − Zb

∥∥∥∥∥
2

2

+
∑
j

λj ‖wj‖1 +
ρ

2

∑
j

‖Djβj −wj + uj‖2
2

+
τ

2
bTSb

where ρ > 0 is the penalty parameter. The dimensions are y ∈ Rn×1, β0 ∈ R, Fj ∈
Rn×p′j , βj ∈ Rp′j×1, Z ∈ Rn×(q−1), b ∈ R(q−1)×1, Dj ∈ R(pj−kj−1)×p′j , wj ∈ R(pj−kj−1)×1,

uj ∈ R(pj−kj−1)×1, and S ∈ R(q−1)×(q−1), where p′j = pj − 1 if j ∈ E (non-varying coefficient

smooths) and p′j = pj if j ∈ Ē (varying coefficient smooths).

ADMM is an iterative algorithm, and we re-estimate the parameters for updates m =

1, 2, . . . until convergence.2 It is straightforward to derive the m+1 updates (see Boyd et al.,

2We use m to denote the iteration of the ADMM algorithm. This is unrelated to our use of m in Section

4.2 to denote the order of the B-spline basis.
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2011, Section 6.4.1):

βm+1
0 =

1

n
1T

(
y −

∑
j

Fjβ
m
j − Zbm

)
βm+1
j := arg min

βj

Lρ(β
m+1
0 ,βj,β

m+1
l<j ,β

m
l>j, b

m,wm,um)

=
(
F T
j Fj + ρDT

j Dj

)−1 (
F T
j y

(j,m) + ρDT
j (wm

j − umj )
)

bm+1 := arg min
b

Lρ(β
m+1
j=1,...,J , b,w

m,um)

= (ZTZ + τS)−1ZT (y − βm+1
0 1−

∑
j

Fjβ
m+1
j )

wm+1
j := arg min

wj

Lρ(β
m+1
j=1,...,J , b

m+1,wj,u
m)

= ψλj/ρ(Djβ
m+1
j + umj )

um+1
j := umj +Djβ

m+1
j −wm+1

j

where y(j,m) = y − βm+1
0 1−

∑
l<j Flβ

m+1
l −

∑
l>j Fjβ

m
l − Zbm and ψλ/ρ is the element-wise

soft thresholding operator, where for a single scalar element x

ψλ/ρ(x) =


x− λ/ρ x > λ/ρ

0 |x| ≤ λ/ρ

x+ λ/ρ x < −λ/ρ

For stopping criteria, we use the primal and dual residuals (rm and sm, respectively):

rm =


D1β

m
1 −wm

1
...

DJβ
m
J −wm

J

 ∈ R(p−k−J)×1

sm = −ρ


DT

1

(
wm

1 −wm−1
1

)
...

DT
J

(
wm
J −wm−1

J

)
 ∈ Rp×1

where k =
∑J

j=1 kj, p =
∑J

j=1 pj − |E|, and |E| is the cardinality of E .

Following the guidance of Boyd et al. (2011), we stop when ‖rm‖2 ≤ εpri and ‖sm‖2 ≤ εdual,
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where

εpri = εabs
√
p− k − J + εrel max


∥∥∥∥∥∥∥∥
D1β

m
1

...

DJβ
m
J

∥∥∥∥∥∥∥∥
2

,

∥∥∥∥∥∥∥∥
wm

1
...

wm
J

∥∥∥∥∥∥∥∥
2


εdual = εabs√p+ εrelρ

∥∥∥∥∥∥∥∥
DT

1 u
m
1

...

DT
Ju

m
J

∥∥∥∥∥∥∥∥
2

.

By default, we set εrel = 10−4 and εabs = 10−4, and the maximum number of iterations at

1, 000.

4.5.2 Smoothing Parameters

To estimate λ1, . . . , λJ and τ , we compute cross-validation (CV) error for a path of values

one smoothing parameter at a time. In the CV, we split the sample at the subject level, as

opposed to individual observations. First, we estimate a path for τ with λ1, . . . , λJ set to 0.

Then we fix τ at the value that minimizes AIC and compute a path for λ1, setting it to the

value that minimizes CV, and so on.

We fit a path for each λj from λmax
j to 10−5λmax

j evenly spaced on the log scale, where

λmax
j is the smallest value at which Djβj = 0. By taking the sub-differential of (4.8) with

respect to βj and setting Djβj to 0, we get λmax
j = ‖(DjD

T
j )−1DjF

Ty‖∞, where for a

vector a, ‖a‖∞ = maxj |aj|. We also use warm starts, passing starting values separately

for each fold, though warm starts appear to be minimally beneficial with ADMM. We set

ρ = min(max(λ1, . . . , λJ), c) at each iteration for some constant c > 0 (e.g. c = 5). When

the number of smooths J is small (e.g. J ≤ 2) a grid search is also feasible.

4.6 Degrees of Freedom

In this section, we obtain the degrees of freedom, with the primary goal of estimating vari-

ance. However, we note that degrees of freedom does not always align with a model’s

complexity in terms of its tendency to overfit the data (Janson et al., 2015).
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4.6.1 Stein’s Method and Estimate of Variance

Let g(y) = ŷ, where g : Rn → Rn is the model fitting procedure. For y ∼ N(µ, σ2I), the

degrees of freedom is defined as (see Efron, 1986, Hastie and Tibshirani, 1990)

df(g) =
1

σ2

n∑
i=1

Cov(gi(y), yi). (4.11)

As Tibshirani (2014a) notes, (4.11) is motivated by the fact that the risk Risk(g) = E‖g(y)−
µ‖2

2 can be decomposed as Risk(g) = E‖g(y)−y‖2
2−nσ2 + 2

∑n
i=1 Cov(gi(y), yi). Therefore,

the degrees of freedom (4.11) corresponds to the difference between risk and expected training

error. Furthermore, if g is continuous and weakly differentiable, then df(g) = E[∇ · g(y)]

(Stein, 1981) where ∇ · g =
∑n

i=1 ∂gi/∂yi is the divergence of g. Therefore, an unbiased

estimate of df(g) (also used in Stein’s unbiased risk estimate (Stein, 1981)) is

d̂f(g) =
n∑
i=1

∂gi/∂yi. (4.12)

To obtain an estimate of degrees of freedom, we transform the generalized lasso compo-

nent of our model to standard form, similar to the approach of Petersen et al. (2016). To do

so, we use the following matrices described by Tibshirani (2014b). Let

D̃∗j =


D̃

(0)
j,1
...

D̃
(kj)
j,1

D̃
(kj+1)
j

 ∈ Rp′j×p′j

be an augmented finite difference matrix, where D̃
(i)
j,1 is the first row of the finite difference

matrix D̃
(i)
j , and D̃

(0)
j = Ip′j×p′j is the identity matrix where as before, p′j = pj − 1 if j ∈ E

(non-varying coefficient smooths) and p′j = pj if j ∈ Ē (varying coefficient smooths). As

shown by Tibshirani (2014b), the inverse of D̃∗j is given by Mj = M
(0)
j M

(1)
j · · ·M

(k)
j where3

M
(i)
j =

[
Ii×i

L(p′j−i)×(p′j−i)

]
∈ Rp′j×p′j ,

where L(p′j−i)×(p′j−i) is the (p′j − i)× (p′j − i) lower diagonal matrix of 1s.

Assuming our outcome y is centered, so that β0 = y(0) = 0, and letting Vj = FjMj,

D∗j = D̃∗jQj for j ∈ E and D∗j = D̃∗j for j ∈ Ē , and αj = D∗jβj, we can write the penalized

3We denote the inverse matrix as Mj . This is unrelated to our use of M in Section 4.2 to denote the

order of the B-spline basis.
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log likelihood (4.8) as

lpen =
1

2
‖y −

∑
j

Vjαj − Zb‖2
2 +

J∑
j=1

λj

pj∑
l=kj+2

|αjl|+
1

2
τbTSb. (4.13)

To avoid difficulties later differentiating with respect to the `1 norm, we remove the non-

active `1 penalized coefficients from (4.13). We also form the concatenated design matrix

V = [V1, . . . , VJ ] and will need to index the active set of V . To these ends, let Aj = {l ∈
{kj + 2, . . . , p′j} : α̂j,l 6= 0} be the active set of the penalized coefficients for smooth j, and

let A∗j = {1, . . . , kj + 1}∪Aj be the active set for smooth j augmented with the unpenalized

coefficients. Also, for a set Aj and constant c ∈ R, let Aj + c = {i+ c : i ∈ Aj} be the set of

elements in Aj shifted by c. Now let A∗ =
⋃J
j=1(A∗j +

∑j−1
l=0 p

′
l) be the augmented active set

of V , where p′0 = 0 and p′j, j = 1, . . . , J are the number of columns in Vj (equivalently Fj).

Finally, let VA∗ be matrix V subset to retain only those columns indexed by A∗. Similarly,

let α̂ = (α̂T1 , . . . , α̂
T
J )T be the concatenated vector of estimated coefficients, and let α̂A∗ be

vector α̂ subset to retain only elements indexed by A∗. Then we can write the estimated

penalized loss (4.13) as

l̂pen =
1

2

∥∥∥∥∥y − [VA∗ , Z]

(
α̂A∗

b̂

)∥∥∥∥∥
2

2

+
J∑
j=1

λj

pj∑
l=kj+2

|α̂jl|+
1

2
τ b̂TSb̂ (4.14)

Taking the derivative of (4.14) and keeping in mind that the first kj + 1 elements of each

α̂j are unpenalized and |α̂jl| > 0 for all l ∈ Aj, we have

0(|A∗|+q−1)×1 =
∂lpen

∂(α̂TA∗ , b̂
T )T

=

[
V T
A∗

ZT

](
[VA∗ , Z]

(
α̂A∗

b̂

)
− y

)
+

(
η

τSb̂

)
(4.15)

where

η =



0k1+1

λ1 sign(α̂A1)

0k2+1

λ2 sign(α̂A2+p1)
...

0kJ+1

λJ sign(α̂AJ+
∑J−1

j=1 pj
)


,

0kj+1 is a (kj + 1)× 1 vector or zeros, and the sign operator is taken element-wise.

From Tibshirani and Taylor (2012, Lemmas 6 and 9), we know that within a small

neighborhood of y, the active set A and the sign of the fitted terms α̂A are constant with

respect to y except for y in a set of measure zero. Therefore, ∂η/∂y = 0|A∗|×n, where 0|A∗|×n
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is an |A∗| × n matrix of zeros and |A∗| is the cardinality of A∗. Then taking the derivative

of (4.15) with respect to y, we have

0(|A∗|+q−1)×n =
∂2lpen

∂(α̂TA∗ , b̂
T )T∂y

=

[
V T
A∗

ZT

]
[VA∗ , Z]

[
∂α̂A∗/∂y

∂b̂/∂y

]
−

[
V T
A∗

ZT

]
+

[
0|A∗|×n

τS(∂b̂/∂y)

]
.

Solving for the derivatives of the estimated coefficients, we have[
∂α̂A∗/∂y

∂b̂/∂y

]
=

([
V T
A∗

ZT

]
[VA∗ , Z] +

[
0|A∗|×|A∗| 0|A∗|×(q−1)

0(q−1)×|A∗| τS

])−1 [
V T
A∗

ZT

]
.

Now let A = [VA∗ , Z] and

Ω =

[
0|A∗|×|A∗| 0|A∗|×(q−1)

0(q−1)×|A∗| τS

]
.

Then since ŷ = A(α̂TA∗ , b̂
T )T we have

∂ŷ

∂y
=

∂ŷ

∂(α̂TA∗ , b̂
T )T

∂(α̂TA∗ , b̂
T )T

∂y

= A
(
ATA+ Ω

)−1
AT .

From Tibshirani and Taylor (2012, Lemmas 1 and 8), we know that g(y) = ŷ is continuous

and weakly differentiable. Also, ∇g = tr(∂ŷ/∂y). Therefore, we can use Stein’s formula

(4.12) to estimate the degrees of freedom as

d̂f = 1 + tr
(
A(ATA+ Ω

)−1
AT ) = 1 + tr

(
(ATA+ Ω)−1ATA

)
, (4.16)

where we add 1 for the intercept. We note that this result is similar to the degrees of freedom

for the elastic net (see the remark on page 18 of Tibshirani and Taylor, 2012) as well as for

FLAM (Petersen et al., 2016).

To obtain degrees of freedom for individual smooths j = 1, . . . , J , let Ej be an (|A∗|+q−
1)× (|A∗|+ q− 1) matrix with 1s on the diagonal positions indexed by A∗j +

∑j−1
l=0 |A∗l | and

zero elsewhere, where |A∗j | is the cardinality of A∗j and A∗0 = ∅. Also, let f̂j = Vjα̂j be the

estimate of the jth smooth. Then as Ruppert et al. (2003) note, f̂j = AEj(A
TA+ Ω)−1ATy.

Therefore,

d̂fj = tr
(
AEj(A

TA+ Ω)−1AT
)

= tr
(
Ej(A

TA+ Ω)−1ATA
)
. (4.17)

In other words, the degrees of freedom for smooth j is the sum of the diagonal elements of

(ATA+ Ω)−1ATA indexed by A∗j +
∑j−1

l=0 |A∗l |.
We estimate the overall variance as σ̂2

ε = ‖r‖2
2/d̂fresid, where d̂fresid = n − d̂f and r =

y −
∑J

j=1 Fjβ̂j − Zb̂ is an n × 1 vector of residuals. We note that there are alternative
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estimates for the residual degrees of freedom. In particular, letting C = A(ATA+Ω)−1AT , a

common alternative estimate of the residual degrees of freedom is d̂fresid = n− tr(2C−CCT )

(Buja et al., 1989, Hastie and Tibshirani, 1990). However, in simulations we found that

tr(2C−CCT ) ≈ tr(C) and the latter is easier to compute. Therefore, we set dfresid = n−tr(C)

as the residual degrees of freedom. This is also in keeping with the advice of Wood (2006,

Section 4.4.1)

Finally, we note that when using the ADMM algorithm, or most likely any proximal

algorithm, the fitted Djβ̂j, or equivalently α̂j, will typically have several very small non-

zero values, but will not typically be sparse. However, the vector ŵj is sparse, where in the

ADMM algorithm we constrain wj = Djβj. Therefore, in practice we use wj to obtain the

active set Aj.

4.6.2 Stable and Fast Approximations

In some cases, it may be numerically instable or computationally expensive to compute (4.16)

and (4.17). In this section we propose alternatives that are faster to compute and which use

less memory.

Based on Restricted Derivatives

In this approach, we take derivatives of the fitted values restricted to individual smooths. In

particular, from Section 4.6.1, we see that

∂ŷ

∂α̂A∗j

∂α̂A∗j
∂y

= VA∗j (V T
A∗j
VA∗j )−1V T

A∗j

∂ŷ

∂b̂

∂b̂

∂y
= Z(ZTZ + τS)−1ZT .

We can then approximate the degrees of freedom for each individual smooth and the random

effects by

d̃fj =

tr
(

(V T
A∗j
VA∗j )−1V T

A∗j
VA∗j

)
j = 1, . . . , J

tr
(
(ZTZ + τS)−1ZTZ

)
j = J + 1

(4.18)

We estimate the overall degrees of freedom as

d̃f = 1 +
J+1∑
j=1

d̃fj (4.19)

where we add 1 for the intercept.

This approach is similar to one described by Ruppert et al. (2003, p. 176), though in a

different context and for a different purpose. In particular, whereas we use this approach
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to approximate the degrees of freedom after fitting the model, Ruppert et al. (2003) use it

to set the degrees of freedom before fitting the model in the context of `2 penalized loss

functions.

Based on ADMM Constraint Parameters

In this approach, we propose estimates of degrees of freedom specific to the ADMM algo-

rithm. As in the previous section, this approach is based on estimates for the individual

smooths. Consider the model with J = 1 smooth, no random effects, and centered y:

‖y − Fβ‖2
2 + λ‖Dβ‖1.

If we make the centering constraints described Section 4.3, i.e. for j ∈ E , we have F = F̃Q

and D = D̃(k+1)Q for an n× p design matrix F̃ , a k+ 1 order finite difference matrix D(k+1),

and an orthonormal p×(p−1) matrix Q. Let A = {l ∈ {1, . . . , p−k−1} : (Dβ̂)l 6= 0} be the

active set, and let |A| be its cardinality. In our context, we expect the design matrices F to

be full rank, in which case Theorem 3 of Tibshirani and Taylor (2012) (see the first Remark)

states that the degrees of freedom is given by df = E[nullity(D−A)]. Here, nullity(D) is the

dimension of the null space of matrix D, and D−A is matrix D with rows indexed by A
removed. Now, D has dimensions (p−k−1)× (p−1), and we can see by inspection that for

all k < p−1 the columns of D are linearly independent. Therefore, the rank of D−A is equal

to the number of rows p−k−1−|A|, and the nullity is equal to the number of columns p−1

minus the number of rows. This gives d̂f = nullity(D−A) = k + |A| for centered smooths,

i.e. the number of non-zero elements of Dβ̂ plus one less than the order of the difference

penalty. This is similar to the result for `1 trend filtering, but we have lost one degree of

freedom due to the constraint that 1T F̃ β̃ = 0. For uncentered smooths, D has dimensions

(p− k − 1)× p, which gives d̂f = nullity(D−A)) = k + 1 + |A|.
As before, we note that in the ADMM algorithm, Dβ̂ will not generally be sparse, as

ADMM is a proximal algorithm. However, the corresponding w is sparse, where in the

optimization problem, we constrain Dβ = w. Suppose D is an order k finite difference

matrix. Then for smooth j = 1, . . . , J , a fast alternative to (4.17) is given by

d̃f
ADMM

j = 1[j ∈ E ] + kj +

p−k−1∑
l=1

1 [wjl 6= 0] . (4.20)

where E indexes the smooths subject to centering constraints and 1 is an indicator variable.

We then combine (4.20) with the restricted derivative approximation for the degrees of
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freedom of b̂ given above to obtain the overall degrees of freedom

d̃f
ADMM

= 1 +
J∑
j=1

d̂f
ADMM

j + tr
(
(ZTZ + τS)−1ZTZ

)
, (4.21)

where we add 1 for the intercept.

4.6.3 Ridge Approximation

Let U = [F1, . . . , FJ , Z] be the concatenated design matrix of fixed and random effects and

Ωridge =


λ1D

T
1 D1

. . .

λJD
T
JDJ

τS


be the penalty matrix. Then the hat matrix from the linear smoother approximation (see

Section 4.7) is given by H = U(UTU + Ωridge)−1UT . Similar to before, we can get the overall

degrees of freedom as

d̂f
ridge

= 1 + tr
(
(UTU + Ωridge)−1UTU

)
, (4.22)

where we add 1 for the intercept. To obtain degrees of freedom for individual smooths j =

1, . . . , J , let Ej be a (p+q−1)×(p+q−1) matrix with 1s on the diagonal positions indexed by

the columns of Fj and zero elsewhere. Also, let f̂j = Fjβ̂j be the estimate of the jth smooth.

Then the ridge approximation for smooth j is given by f̂j ≈ UEj(U
TU + Ωridge)−1UTy.

Therefore,

d̂f
ridge

j = tr
(
Ej(U

TU + Ωridge)−1UTU
)

(4.23)

Similar to before, we also propose fast approximations to the ridge estimate of degrees

of freedom based on restricted derivatives. In particular, let

d̃f
ridge

j =

tr
(
(Fj

TFj + λjD
T
j Dj)

−1F T
j F
)

j = 1, . . . , J

tr
(
(ZTZ + τS)−1ZTZ

)
j = J + 1

(4.24)

Then we can estimate the overall degrees of freedom as

d̃f
ridge

= 1 +
J+1∑
j=1

d̃f
ridge

j (4.25)

where we add 1 for the intercept.

As noted above, this approach is similar to one described by Ruppert et al. (2003, p.

176), though for a different purpose. Whereas we use this approach to obtain the degrees

of freedom after fitting the model, Ruppert et al. (2003) use it to set the degrees of freedom

before fitting the model.
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4.7 Approximate Inference

In this section, we discuss approximate inferential methods based on ridge approximations

to the `1 penalized fit and conditional on the smoothing parameters λj, j = 1, . . . , J and τ .

We use the ADMM algorithm to analyze the approximation. In particular, we note that we

can write the ADMM update for βj as

βm+1
j =

(
F T
j Fj + ρDT

j Dj

)−1
F T
j y

(j,m) + δmj (4.26)

where δmj = ρ(F T
j Fj + ρDT

j Dj)
−1F T

j D
T
j (wm

j −umj ) and y(j,m) = y− βm+1
0 −

∑
l<j Flβ

m+1
l −∑

l>j Flβ
m
l − Zbm. As we note in Observation 1.10, δj loosely represents the difference in

the estimate of βj obtained with the `1 and `2 penalties.

Observation 4.2. With the `1 penalty, i.e. ‖Djβj‖1, in general δmj 6= 0. However, with the

`2 penalty, i.e. ‖Djβj‖2
2, and λj = ρ, we have δmj = 0.

Proof of Observation 4.2. Similar to the ridge update for b, if we changed λj‖Djβj‖1 to

(λj/2)‖Djβj‖2
2 in (4.8) we could remove the wj term and the constraint that Djβ

m
j = wj

from (4.10) to obtain a ridge update βm+1
j =

(
F T
j Fj + λjD

T
j Dj

)−1
F T
j y

(j,m). Then since we

assumed λj = ρ, we have βm+1
j =

(
F T
j Fj + ρDT

j Dj

)−1
F T
j y

(j,m). By comparison with (4.26),

we see that δmj = 0.

Observation 4.2 motivates our approximate inferential strategy. Letting f̂j be the jth

fitted smooth, and letting y(j) = y − β̂0 −
∑

l 6=j Flβ̂l − Zb̂, we have

f̂j = Fjβ̂j = Fj(F
T
j Fj + ρDT

j Dj)
−1F T

j y
(j) + Fj δ̂j (4.27)

≈ Fj(F
T
j Fj + ρDT

j Dj)
−1F T

j y
(j) (assuming Fj δ̂j ≈ 0)

≈ Fj(F
T
j Fj + λjD

T
j Dj)

−1F T
j y

(j) (assuming λj ≈ ρ)

= Hjy
(j) (4.28)

where Hj = Fj(F
T
j Fj+λjD

T
j Dj)

−1F T
j . We obtain confidence intervals for the linear smoother

(4.28) centered around the estimated fit (4.27), ignore Fjδj when estimating variance, and

assume λj ≈ ρ. We also condition on the smoothing parameters λ1, . . . , λJ and τ .

Figure 4.2 gives a visual demonstration of the approximation for the simulation presented

in Section 4.8 and the application shown in Section 4.9. As seen in Figure 4.2, in these

examples the `1 fit and ridge approximation are very similar. If this holds in general, then

this would suggest that 1) the approximate inferential procedures we propose might have

reliable coverage probabilities, and 2) there may be minimal practical advantage to using an

`1 penalty instead of the standard `2 penalty. However, as shown in Section 4.8.3, the `1
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(a) Simulation (Section 4.8) (b) Application (Section 4.9)

Figure 4.2: Linear smoother approximation to the `1 penalized fit in the simula-
tion (see Section 4.8) and application (see Section 4.9). The solid red line is the
`1 penalized fit, the dotted green line is the linear smoother approximation, and
the dashed blue line is the difference between the two.

penalty appears to perform noticeably better in certain situations, including the detection

of change points.

4.7.1 Confidence Bands

In this section, we obtain confidence bands for typical subjects, i.e. for subjects for whom

bi = 0. Since we assume a normal outcome, this is equivalent to the marginal population

level response.

Frequentist Confidence Bands

Ignoring the distribution on Djβj, y
(j) is normal with variance Var(y(j)) = σ2

ε I+σ2
bZS

+ZT ,

where S+ is the Moore-Penrose generalized inverse of matrix S (as noted in Section 4.3,

S may not be positive definite). Therefore, V̂ar(f̂j) ≈ HjV̂ar(y(j))HT
j where V̂ar(y(j)) is

an n × n estimate of Var(y(j)) with σ̂2
ε and σ̂2

b plugged in for σ2
ε and σ2

b respectively, and

f̂j
·∼ N(f̂j, HjV̂ar(y(j))HT

j ). The estimated variance of the fit at a single point x, which we

denote as V̂ar(f̂j(x)), is the corresponding diagonal element of HjV̂ar(y(j))HT
j . Therefore,

asymptotic pointwise 1−α confidence bands take the form f̂j(x)±z1−α/2

√
V̂ar(f̂j(x)) where

Φ(za) = a and Φ is the standard normal CDF, e.g. z1−α/2 = 1.96 for α = 0.05.

For the purposes of interpretation, we include the intercept term in the confidence band

for the j = 1 smooth, but not for the remaining smooths.
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Bayesian Credible Bands

Many authors, including Wood (2006), recommend using Bayesian confidence bands for non-

parametric and semiparametric models, because the point estimates are themselves biased.

While Bayesian credible bands do not remedy the bias, they are self consistent.

To this end, we replace the element-wise Laplace prior with the (generally improper)

joint normal prior that is equivalent to the standard `2 penalty: βj ∼ N
(
0, (λjD

T
j Dj)

−1
)
.

This leads to the posterior

βj|y
·∼ N

β̂j, (F T
j V̂ar(y(j))−1Fj + λjD

T
j Dj︸ ︷︷ ︸

Wj

)−1

 . (4.29)

We can then form simultaneous Bayesian credible bands for fj|y by simulating from the

posterior (4.29) and taking quantiles from Fjβ
b
j , b = 1, . . . , B. Alternatively, for a faster ap-

proximation, we use frequentist confidence bands with FjW
−1
j F T

j in place of HjV̂ar(y(j))HT
j .

In practice, we have found the simultaneous credible bands and the faster approximation to

be nearly indistinguishable.4

As before, for the purposes of interpretation, we include the intercept term in the credible

band for the j = 1 smooth, but not for the remaining smooths.

4.7.2 Preliminaries for Bounding the Error in Confidence Band

Coverage Probabilities

In this section, we present preliminary work relevant to bounding the error in the coverage

probabilities of the approximate confidence bands. Since the approximate confidence bands

are based on a ridge approximation to the `1 penalized fit, we develop bounds for the differ-

ence between the ridge and `1 penalized fits. For simplicity, we focus on models with J = 1

smooth and no random effects. We use subscripts on parameters to denote the form of the

penalty, i.e. β1 is obtained from a model with an `1 penalty, and β2 is obtained from a

model with an `2 penalty. Throughout, we treat the smoothing parameter λ as constant.

First, consider the `1 penalized model

minimize
β1∈Rp

1

2
‖y − Fβ1‖2

2 + λ‖Dβ1‖1. (4.30)

4It appears that the latter (faster) method is the default in the mgcv package (Wood, 2006). As in mgcv,

we only need to compute the diagonal elements of FjW
−1
j FT

j as rowSums((FjW
−1
j ) ◦ Fj), where ◦ is the

Hadamard (element-wise) product.
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From Section 4.5, the ADMM updates are

βm+1
1 =

(
F TF + ρDTD

)−1 (
F Ty + ρDT (wm

1 − um1 )
)

wm+1
1 = ψλ/ρ(Dβ

m+1
1 + um1 ) (4.31)

um+1
1 = um1 +Dβm+1

1 −wm+1
1

where ψ is the element-wise soft thresholding operator defined in Section 4.5. Let M be

the iteration at convergence of the ADMM algorithm. Then the estimate from the ADMM

algorithm is given by

ŷ1 = FβM1 = F (F TF + ρDTD)−1
[
F Ty + ρDT (wM − uM)

]
= Hρy +R(wM − uM) (4.32)

where Hρ = F (F TF + ρDTD)−1F T and R = ρF (F TF + ρDTD)−1DT . We note that for

δm = ρ(F TF + ρDTD)−1DT (wm − um), we have Fδm = R(wm − um).

We compare against the equivalent `2 penalized model

minimize
β2∈Rp

1

2
‖y − Fβ2‖2

2 + λ
1

2
‖Dβ2‖2

2. (4.33)

For the `2 penalized model we can solve (4.33) directly to obtain parameter estimates

β̂2 = (F TF + λDTD)−1F Ty (4.34)

and fitted values

ŷ2 = F β̂2 = F (F TF + λDTD)−1F Ty = Hλy (4.35)

where Hλ = F (F TF + λDTD)−1F T . We can then bound the difference between ŷ1 (4.32)

and ŷ2 (4.35) as

‖ŷ1 − ŷ2‖2
2 = ‖Hρy +R(wM − uM)−Hλy‖2

2

= ‖(Hρ −Hλ)y +R(wM − uM)‖2
2

≤ ‖(Hρ −Hλ)y‖2
2 + ‖R(wM − uM)‖2

2

= yTKHy + (wM − uM)TKR(wM − uM)

≤ ξH,1‖y‖2
2 + ξR,1‖wM − uM‖2

2, (4.36)

where KH = (Hρ −Hλ)
T (Hρ −Hλ), KR = RTR, and ξH,1 and ξR,1 are the top eigenvalues

of KH and KR, respectively. We note that when λ = ρ, the first term in (4.36) is zero. The

second term is a function of the ADMM parameters w and u, and the matrix KR, which is
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in turn a function of the design and penalty matrices. In future work, we plan to investigate

whether further bounds can be put on these quantities under certain assumptions on the

data.

As another potential strategy, we can bound the quantity w obtained with the `1 and

`2 penalties. To that end, note that we can solve (4.33) using the ADMM algorithm by

rewriting (4.33) as

minimize
1

2
‖y − Fβ2‖2

2 + λ
1

2
‖w2‖2

2 (4.37)

subject to Dβ2 −w2 = 0.

The Lagrangian in scaled form for (4.37) is given by

Lρ ∝
1

2
‖y − Fβ2‖2

2 + λ
1

2
‖w2‖2

2 +
ρ

2
‖Dβ2 −w2 + u2‖2

2 ,

which leads to the ADMM updates

βm+1
2 =

(
F TF + ρDTD

)−1 (
F Ty + ρDT (wm

2 − um2 )
)

wm+1
2 =

ρ

λ+ ρ
(Dβm+1

2 + um2 ) (4.38)

um+1
2 = um2 +Dβm+1

2 −wm+1
2 .

By comparing the ADMM updates from the `1 and `2 penalized models, the only differ-

ence is the update for w in (4.31) and (4.38). If Dβm+1
1 ∈ [−λ/ρ, λ/ρ]p−k−1, i.e. the absolute

value of each component of Dβm+1
1 is no more than λ/ρ, then the difference between the

updated w1 and w2 is ∥∥wm+1
1 −wm+1

2

∥∥2

2
≤ (p− k − 1)

(
λ

λ+ ρ

)2

. (4.39)

This follows because w1 and w2 are (p − k − 1) × 1 vectors, and under the assumption

Dβm+1
1 ∈ [−λ/ρ, λ/ρ]p−k−1, each term can be off by at most

ρ

λ+ ρ

λ

ρ
=

λ

λ+ ρ
.

However, further work is needed to incorporate (4.39) into bounds on the error in the coverage

probabilities of the approximate confidence bands.

4.8 Simulation

We simulated data from a piecewise linear mean curve as shown in Figure 4.3. Each subject

had a random intercept, and is observed over only a portion of the domain. There are 50
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Figure 4.3: Simulated data: true marginal curve in black, observed (simulated)
data in gray.

subjects, each with between 4 and 14 measurements (450 total observations). The random

intercepts were normally distributed with variance σ2
b = 1, and the overall noise was normally

distributed with variance σ2
ε = 0.01.

In all models, we used order 2 (degree 1) B-splines with p = 21 basis functions.

4.8.1 Frequentist Estimation

We fit models with J = 1 smooth term and random intercepts. To obtain estimates for the

`1 penalized model, we used ADMM and 5-fold CV to minimize

minimize
β0∈R,β∈Rp−1,b∈RN−1

1

2
‖y − β01− Fβ − b‖2

2 + λ‖D(2)β‖1 + τbTb. (4.40)

As noted above, we used order 2 (degree 1) B-splines with p = 21 basis functions, i.e.

F ∈ Rn×(p−1) where n = 450 and p = 21. We also fit an equivalent model with an `2 penalty

using the mgcv package (Wood, 2006), i.e. with (λ/2)‖D(2)β‖2
2 in place of λ‖D(2)β‖1 in

(4.40). Figure 4.4 shows the marginal mean with 95% credible intervals, and Figure 4.5

shows the subject-specific predicted curves.

As seen in Figures 4.4 and 4.5, the results from the `1 and `2 penalized models are very

similar. For most purposes, we would recommend using the `2 penalized model. However,

the `1 penalized model does slightly better at identifying the change points and the line

segments. We explore this further in Section 4.8.3.

Table 4.1 compares the degrees of freedom and variance estimates from the `1 penalized

fit against those from the `2 penalized fit. From Table 4.1, we see that the ridge degrees
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(a) `1 fit with ADMM and CV (b) `2 fit with mgcv (Wood, 2006)

Figure 4.4: Marginal mean and 95% credible intervals from frequentist estimation:
black is true marginal mean, red is estimated marginal mean

(a) `1 fit with ADMM and CV (b) `2 fit with mgcv (Wood, 2006)

Figure 4.5: Subject-specific predicted curves from frequentist estimation: black
is true marginal mean, red is estimated marginal mean, blue is subject-specific
curves
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Table 4.1: Estimated degrees of freedom for smooth F and variance in `1 and `2

penalized models

Penalty
Estimator `1 `2 Truth

d̂f
ridge

17.6 19.0 –

d̂f 9 – –
σ̂2
ε 0.0104 0.0106 0.01
σ̂2
b 0.207 1.05 1

Table 4.2: Comparison of degrees of freedom estimates for the `1 penalized model

Smooth
Estimator Description Overall F Z

d̂f Stein (4.16) and (4.17) 58.6 9.00 48.6

d̃f Restricted (4.18) and (4.19) 58.7 9.00 48.7

d̃f
ADMM

ADMM (4.20) and (4.21) 57.7 8.00 48.7

d̂f
ridge

Ridge (4.22) and (4.23) 67.2 17.6 48.5

d̃f
ridge

Ridge restricted (4.24) and (4.25) 67.6 17.8 48.7

of freedom d̂f
ridge

appears reasonable, as it is near the estimate for the `2 penalized model.

The true degrees of freedom d̂f also seems reasonable. Ideally, the degrees of freedom should

equal six, as there are four change points and we are using a second order difference penalty

(see Section 4.6.2).

Table 4.2 compares the different estimates of degrees of freedom. In this simulation, the

degrees of freedom based on the ridge approximation is larger than that from Stein’s formula,

and the approximations based on restricted derivatives are equal or near to the quantities

they are estimating.

4.8.2 Bayesian Estimation

We modeled the data as y|b = β01 + Fβ + b+ ε where

ε ∼ N(0, σ2
ε I)

b ∼ N(0, σ2
bI)

D(2)β ∼ Laplace(0, σ2
λI)

p(σε) ∝ 1

p(σb) ∝ 1

p(log(σλ)) ∝ 1.
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(a) Dβ ∼ Laplace(0, σ2
λI) (b) Dβ ∼ N(0, σ2

λI) (c) No prior on Dβ

Figure 4.6: Credible bands for Bayesian models with order 2 (degree 1) B-splines.
Black is true marginal mean, red dashed is estimated marginal mean, gray area
is 95% credible interval

(a) Dβ ∼ Laplace(0, σ2
λI) (b) Dβ ∼ N(0, σ2

λI) (c) No prior on Dβ

Figure 4.7: Subject-specific predicted curves from Bayesian models fit with order
2 (degree 1) B-splines. Gray is observed data, black is true marginal mean, red
dashed is estimated marginal mean, and blue dashed is subject-specific predictions

We also fit models with normal and diffuse priors for D(2)β.

We fit all models with rstan (Stan Development Team, 2016), each with four chains of

2,000 iterations with the first 1,000 iterations of each chain used as warmup. The MCMC

chains, not shown, appeared to be reasonably well mixing and stationary, and had R̂ values

under 1.1 (see Gelman et al., 2014). Figure 4.6 shows the marginal mean with 95% credible

intervals, and Figure 4.7 shows point estimates.

As seen in Figures 4.6 and 4.7, all models performed well and gave similar fits as above.

Similar to before, the Laplace prior appears to better enforce a piece-wise linear fit, partic-

ularly around x = 0.2.
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(a) Number of estimated inflection points (b) Mean absolute deviance

Figure 4.8: Results from 1,000 simulated datasets measuring ability of the models
to detect inflection points

4.8.3 Change Point Detection

We simulated 1,000 datasets with the same generating mechanism used to produce the data

shown in Figure 4.3 and measured the performance of the `1 and `2 penalized models on two

criteria: 1) the number of inflection points found, and 2) the distance between the estimated

inflection points and the closest true inflection point. To that end, let T = {τ1, . . . , τ4} be

the set of true inflection points, and M = maxx∈X |f̂ ′′(x)| be the maximum absolute second

derivative of the estimated function, where X = {x1, x2, . . .} is the ordered set of unique

simulated x values. We approximate f̂ ′′ by

f̂ ′′(xi) ≈
(f̂(xi+1)− f̂(xi))/(xi+1 − xi)− (f̂(xi)− f̂(xi−1))/(xi − xi−1)

xi+1 − xi
.

Then let I = {x ∈ X : |f̂ ′′(x)| ≥ cM} be the set of estimated inflection points, where

c ∈ (0, 1) is a cutoff value defining how large the second derivative must be to be counted

as an inflection point. Also, let nI = |I| be the number of estimated inflection points,

and d̄ = n−1
I
∑

x∈I minτ∈T |x− τ | be the mean absolute deviance of the estimated inflection

points.

Figure 4.8 shows the results from 1,000 simulated datasets. The `1 penalized model was

better able to 1) find the correct number of inflection points, and 2) determine the location

of the inflection points.
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Figure 4.9: Raw electrodermal activity (EDA) data by experimental group

4.9 Application

4.9.1 Data Description and Preparation

In this section, we analyze electrodermal activity (EDA) data collected as part of a stress

study. In brief, all subjects completed a written questionnaire prior to the study, which

categorized the subjects as having either low vigilance or high vigilance personality types.

During the study, all participants wore wristbands that collected EDA levels while undergoing

stress-inducing activities, including giving a public speech and performing mental arithmetic

in front of an audience. The scientific questions were: 1) Is EDA higher among high vigilance

subjects, and 2) when did trends in stress levels change? In this section, we demonstrate

how our methods could address both questions.

The raw EDA data are shown in Figure 4.9. After excluding subjects who had EDA

measurements of essentially zero throughout the entire study, we were left with ten high

vigilance subjects and seven low vigilance subjects.

To remove the extreme second-by-second fluctuations in EDA, which we believe are ar-

tifacts of the measurement process as opposed to real biological signals, we smoothed each

curve separately with a Nadaraya–Watson kernel estimator using the ksmooth function in

R. We then thinned the data to reduce computational burden, taking 100 evenly spaced

measurements from each subject. Figure 4.10 shows the results of this process for a single

subject, and Figure 4.11 shows the prepared data for all subjects. Because of the limited

number of subjects, as well as issues of misalignment in the time series across individuals,
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Figure 4.10: Raw, smoothed, and thinned electrodermal activity data for a single
subject

the results presented here should be considered as illustrative rather than of full scientific

validity.

4.9.2 Models

In all models, we fit the general structure

yi(x) = β0 + β1(x) + 1high[i]β2(x) + bi(x) + εi(x)

where x represents time in minutes, 1high[i] = 1 if subject i has high vigilance and 1high[i] = 0

if subject i has low vigilance, bi(x) are random curves, and εi(x) ∼ N(0, σ2
ε ). For β1(x), β2(x),

and bi(x), we used a fourth order B-spline basis with 31 basis functions each, and a second

order difference penalty (k = 1).

Written in matrix notation, the `1 penalized model is

min
1

2
‖y − β01−

2∑
j=1

Fjβj − Zb‖2
2 +

2∑
j=1

λj‖D(2)βj‖1 + bTSb (4.41)

where y is a stacked vector for subjects i = 1, . . . , 17, F1 is an n × p design matrix where

n = 1, 700 and p = 31, and F2 = diag(1high[i])F1 where i is an n×1 vector of subject IDs. In

other words, F2 is equal to F1, but with rows corresponding to low vigilance subjects zeroed
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Figure 4.11: Electrodermal activity (EDA) data used in the analysis (seven low
vigilance and ten high vigilance subjects). Note: subjects not aligned in time
(x-axis).

out. We set

Z =


Z1

. . .

Z17


where each Zi is an ni × 31 random effects design matrix of order 4 B-splines evaluated at

the input points for subject i, and

S =


S1

. . .

S17


where Si,jl =

∫
φ′′ij(t)φ

′′
il(t)dt are smoothing spline penalty matrices. We also mean-centered

F1 and Z as described in Section 4.3, with the corresponding changes in dimensions.

To fit a comparable `2 penalized model, in which λj‖D(2)βj‖1 in (4.41) is replaced with

(λj/2)‖D(2)βj‖2
2, we rotated the random effect design and penalty matrices Z and S as

described in Section 4.3. To facilitate the use of existing software, we used a normal prior

for the “unpenalized” random effect coefficients, i.e. b̆f ∼ N(0, σ2
fI).

We also fit a Bayesian model using the same rotations and equivalent penalties as above.
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In particular, we modeled the data as y|b = β01 +
∑J

j=1 Fjβj + Žrb̌r + Z̆f b̆f + ε where

b̌r ∼ N(0, σ2
rI)

b̆f ∼ N(0, σ2
fI)

(Djβj)l ∼ Laplace(0, aj) for aj = σ2
ε/(2λj), l = 1, . . . , pj − kj − 1, j = 1, . . . , J

ε ∼ N
(
0, σ2

ε I
)
.

4.9.3 Results

Frequentist Estimation

We tried to use CV to estimate the smoothing parameters for the `1 penalized model. How-

ever, with only 17 subjects split between two groups, we only did 3-fold CV. CV did not

find a visually reasonable fit so we set the tuning parameters by hand.

Figure 4.12 shows the estimated marginal mean and 95% credible bands for the `1 penal-

ized model, and Figure 4.13 shows the subject-specific predicted curves for the `1 penalized

model. As seen in Figure 4.12a, our model identified a few inflection points, particularly

near minutes 40, 50, and 60. From Figure 4.12b it appears that the difference in EDA levels

between the low and high vigilance subjects was not statistically significant. Also, as seen

in Figure 4.13, the subject-specific predicted curves are shrunk towards the mean, which

is expected, because the predicted curves are analogous to best linear unbiased predictors

(BLUPs), although they are not linear smoothers.

Figure 4.14 shows the estimated marginal mean and 95% credible bands for the `2 penal-

ized model, and Figure 4.15 shows the subject-specific predicted curves for the `2 penalized

model. The estimate shown in Figure 4.14a is similar to that shown in Figure 4.12a, though

the inflection points are slightly less pronounced in Figure 4.14a. The results in Figure 4.14b

are for the most part substantively the same as those in Figure 4.12b; the `2 penalized model

does not show a statistically significant difference between the low and high vigilance sub-

jects, with the possible exception of minutes 44 to 67. As seen in Figure 4.15, the predicted

subject-specific curves from the `2 penalized model are also shrunk towards the mean.

Table 4.3 shows the estimated degrees of freedom for the `1 penalized model. Similar to

the simulation, the restricted derivate approximations tend to be near the quantities they are

estimating. In the `2 penalized model, smooth F1 had 14.2 degrees of freedom, and smooth

F2 had 6.96 degrees of freedom.
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(a) β̂1(x) (low vigilance) (b) β̂2(x) (high− low vigilance)

Figure 4.12: `1 penalized model: parameter estimates with 95% confidence bands

Figure 4.13: `1 penalized model: subject-specific predicted curves
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(a) β̂1(x) (low vigilance) (b) β̂2(x) (high− low vigilance)

Figure 4.14: `2 penalized model: parameter estimates with 95% confidence bands

Figure 4.15: `2 penalized model: subject-specific predicted curves
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Table 4.3: Comparison of degrees of freedom estimates for the `1 penalized model

Smooth
Estimator Description Overall F1 F2 Z

d̂f Stein (4.16) and (4.17) 188 10.0 2.00 175

d̃f Restricted (4.18) and (4.19) 193 10.0 2.00 180

d̃f
ADMM

ADMM (4.20) and (4.21) 192 9.00 2.00 180

d̂f
ridge

Ridge (4.22) and (4.23) 196 19.5 8.09 167

d̃f
ridge

Ridge restricted (4.24) and (4.25) 215 21.1 13.50 180

(a) β̂1(x) (low vigilance subjects) (b) β̂2(x) (high− low vigilance subjects)

Figure 4.16: Bayesian model: parameter estimates with 95% confidence bands

Bayesian Estimation

We fit the model using rstan (Stan Development Team, 2016) with four chains of 5,000

iterations each, with the first 2,500 iterations of each chain used as warmup. The MCMC

chains, not shown, appeared to be reasonably well mixing and stationary with R̂ values under

1.1 (see Gelman et al., 2014). Figure 4.16 shows the marginal means with 95% credible

intervals, and Figure 4.17 shows the subject-specific curves. Similar to the `2 penalized

model, the Bayesian model found a slightly statistically significant difference between low

and high vigilance between minutes 42 and 65.
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Figure 4.17: Bayesian model: subject-specific predicted curves

4.9.4 `2 Penalized Model with Alternative Correlation Structure

For comparison, we also fit an `2 penalized model with an alternative correlation structure

similar to that recommended by Ruppert et al. (2003, p. 192). In place of the correlation

structure implied by the penalty matrix S described above, we augmented each Zi matrix

on the left with the columns [1,xi], where xi is an ni × 1 vector of measurement times for

subject i. We then replaced Zibi with [1,xi, Zi](u
T
i , b

T
i )T , and assumed (uTi , b

T
i )T ∼ N(0,Σi)

where

Σi =

[
Σ′

σ2
bI

]
and Σ′ is a common 2 × 2 unstructured positive definite matrix. To model the within-

subject correlations, we used a continuous autoregressive process of order 1. In particular,

Cor(yi(xij), yi(xij′)) = ζ |xij−xij′ | for a common parameter ζ > 0.

Figure 4.18 shows the estimated marginal mean and 95% credible bands, and Figure

4.15 shows the subject-specific predicted curves. The estimates shown in Figure 4.18 are

similar to that shown in Figure 4.14. While estimates of the difference between low and high

vigilance subjects differs between this model and the `2 penalized model in Section 4.9.3, the

more notable difference is in the subject-specific predicted curves. As seen in Figure 4.19,

the predicted subject-specific curves are not shrunk towards the mean as much as in Figure

4.15.
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(a) β̂1(x) (low vigilance subjects) (b) β̂2(x) (high− low vigilance subjects)

Figure 4.18: `2 penalized model with alternative correlation structure: parameter
estimates with 95% confidence bands

Figure 4.19: `2 penalized model with alternative correlation structure: subject-
specific predicted curves
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4.10 Discussion and Potential Extensions

As demonstrated in this chapter, P-splines with an `1 penalty can be useful for analyzing

repeated measures data. Compared to related work with `1 penalties, our model is ambitious

in that we allow for multiple smoothing parameters and propose approximate inferential

procedures that do not require Bayesian estimation. However, these are also the two aspects

of our proposed approach that require additional future work.

Regarding estimation, our current approach of using ADMM and CV appears to work

reasonably well for J = 1 smooth, but is not yet reliable for J > 1 smooths. In the future, we

plan to develop more robust estimation techniques, particularly for smoothing parameters.

As one possibility, we have done preliminary work to minimize quantities similar to GCV

and AIC instead of the more computationally intensive CV, though these approaches do

not seem as promising as their `2 counterparts. When possible, Bayesian estimation may

be the most reliable way to currently fit these models. Bayesian estimation also opens the

possibility of using other sparsity inducing priors, such as spike and slab models (Ishwaran

and Rao, 2005).

Regarding inference, in future work we plan to use the δ quantity to bound difference

between `1 and `2 penalized fits under certain assumptions on the data (see Section 4.7.2),

and to study coverage probability through simulations. We also plan to investigate the use of

post-selection inference methods to develop confidence bands for linear combinations of the

active set, and to further investigate through simulations the performance of our proposed

estimates of degrees of freedom. However, we note that our primary use of the degrees of

freedom estimate d̂f is to obtain the residual degrees of freedom d̂fresid = n − d̂f, which we

then use to estimate the variances σ̂2
ε = ‖r‖2

2/d̂fresid. Therefore, when n� d̂f, σ̂2
ε is not very

sensitive to d̂f, in which case it is not critical for our purposes to obtain an exact estimate

of degrees of freedom.

In addition, we think it could be beneficial to investigate the addition of random effects to

locally adaptive regression splines, and to implement smoothing splines with an `1 penalty

(replacing the ‖Dβ‖1 penalty with ‖Ψβ‖1 where Ψij =
∫
φ′′i (s)φ

′′
j (s)ds and φ are basis

functions). We also plan to extend these results to a generalized model to allow for non-

normal response distributions.

Regarding the rate of convergence, from Observation 4.1 and the work of Tibshirani

(2014a), we know that for equally spaced data and F = In×n, P-splines with an `1 penalty

achieve the minimax rate of convergence for the class of weakly differentiable functions

of bounded variation. Let ‖A‖max = maxij |aij| be the maximum element of a matrix A.

We speculate that for a general n × p design matrix F of full rank (not necessarily of
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first degree B-splines), `1 penalized models achieve the minimax rate of convergence when

‖FF T − In×n‖max is small, but not when it is large. Proving this assertion and finding a

cutoff value has been challenging. The framework of Tibshirani (2014a) for comparing the

fits from two lasso problems with different design matrices may be promising, but extending

the results of Tibshirani (2014a) to design matrices of different dimensions has been difficult,

and would be required in our setting. It may also be possible to build on results regarding

the optimal number and placement of spline knots. We leave this for future work.

4.11 R Package and Code

We have implemented our method in the R package pSplinesL1 available at https://

github.com/bdsegal/psplinesl1. All code for the simulations and analyses in this chapter

are available at https://github.com/bdsegal/code-for-psplinesl1-paper.
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Appendix A

Big Five Questionnaire Items

As described by Smith et al. (2013), selected respondents to the 2010 Health and Retirement

Survey were asked to rate how well 31 items described them on the following four point scale:

1) A lot, 2) Some, 3) A little, 4) Not at all.

The items were as follows (letters match those shown in Figure 3.1): a) Outgoing, b)

Helpful, c) Reckless, d) Moody, e) Organized, f) Friendly, g) Warm, h) Worrying, i) Re-

sponsible, j) Lively, k) Caring, l) Nervous, m) Creative, n) Hardworking, o) Imaginative, p)

Softhearted, q) Calm, r) Self-disciplined, s) Intelligent, t) Curious, u) Active, v) Careless, w)

Broad-minded, x) Impulsive, y) Sympathetic, z) Cautious, z2) Talkative, z3) Sophisticated,

z4) Adventurous, z5) Thorough, and z6) Thrifty.

The items were grouped into five sub-dimensions:

1. Neuroticism: d, h, l, q

2. Extroversion: a, f, j, u, z2

3. Agreeableness: b, g, k, p, y

4. Openness to experience: m, o, s, t, w, z3, z4

5. Conscientiousness: c, e, i, n, r, v, x, z, z5, z6

All but c, q, v, and x were reverse coded.
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