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ABSTRACT

Spotting Icebergs by the Tips:
Rumor and Persuasion Campaign Detection in Social Media

by

Zhe Zhao

Chair: Qiaozhu Mei

Identifying different types of events in social media, i.e., collective online activities or

posts, is critical for researchers who study data mining and online communication.

However, the online activities of more than one billion social media users from around

the world constitute an ocean of data that is hard to study and understand. In this

dissertation, we study the problem of event detection with a focus on two important

applications—rumor and persuasion campaign detection.

Detecting events such as rumors and persuasion campaigns is particularly im-

portant for social media users and researchers. Events in social media spread and

influence people much more quickly than traditional news media reporting. Viral

spreading of specific events, such as rumors and persuasion campaigns, can cause

substantial damage in online communities. Automatic detection of these can benefit

analysts in many different research domains.

Existing work on detecting rumors and persuasion campaigns faces challenges

stemming from the uncommonness of these events compared to other events, the

uncertain ways in which they spread, and the sheer magnitude of social media user
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activities. Presently, there are two main approaches to event detection. One approach

first identifies clusters of similar user activities or posts as social media events and

then applies a classifier to these to identify specific types of events, such as rumors

or persuasion campaigns. This approach typically incurs a high computational cost,

since all clusters must be identified before the irrelevant ones are filtered out. The

other approach first trains a classifier to identify rumor/persuasion campaign posts

and then groups these posts into clusters. While this approach avoids clustering

irrelevant posts, it cannot identify rumors and individual persuasion campaign posts

accurately due to the absence of collective information.

In this thesis, we extend the existing research on social media event detection of

online events such as rumors and persuasion campaigns. We conducted content analy-

sis and found that the emergence and spreading of certain types of online events often

result in similar user reactions. For example, some users will react to the spreading

of a rumor by questioning its truth, even though most posts will not explicitly ques-

tion it. These explicit questions serve as signals for detecting the underlying events.

Our approach to detecting a given type of event first identifies the signals from the

myriad of posts in the data corpus. We then use these signals to find the rest of the

targeted events. Different types of events have different signals. As case studies, we

analyze and identify the signals for rumors and persuasion campaigns, and we apply

our proposed framework to detect these two types of events.

We began by analyzing large-scale online activities in order to understand the

relation between events and their signals. We focused on detecting and analyzing

users’ question-asking activities. We found that many social media users react to

popular and fast-emerging memes by explicitly asking questions. Compared to other

user activities, these questions are more likely to be correlated to bursty events and

emergent information needs.

We use some of our findings to detect trending rumors. We find that in the case of

xii



rumors, a common reaction regardless of the content of the rumor is to question the

truth of the statement. We use these questioning activities as signals for detecting

rumors. Our experimental results show that our rumor detector can effectively and

efficiently detect social media rumors at an early stage.

As in the case of rumors, the emergence and spreading of persuasion campaigns

can result in similar reactions from the online audience. However, the explicit signals

for detecting persuasion campaigns are not clearly understood and are difficult to

label. We propose an algorithm that automatically learns these signals from data, by

maximizing an objective that considers their key properties. We then use the learned

signals in our proposed framework for detecting persuasion campaigns in social media.

In our evaluation, we find that the learned signals can improve the performance of

persuasion campaign detection compared to frameworks that use signals generated

by alternative methods as well as those that do not use signals.
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CHAPTER I

Introduction

By using online social media platforms such as Facebook and Twitter, anyone can

create and share information through the internet. Social media users include college

students, middle-class workers, scholars, celebrities, advertisers, politicians, and even

terrorists. As online social media platforms have become a major information source,

their impacts on areas such as commerce and politics as well as their trustworthiness

have raised people’s concern.

Many companies, organizations, and governments track and monitor different

types of social media events and trending topics, so that whenever an event that

is related to their interests emerges, they can quickly react to maximize its positive

effects and minimize its negative effects. Social media events reflect social media

users’ collective activities, such as posting and sharing a meme, discussing the same

piece of breaking news, and so forth. With different topics and levels of popularity,

some social media events are much more influential than others and are thus more

meaningful to track and monitor.

The emergence and spreading of rumors and of persuasion campaigns are two

types of social media events that can be extremely influential and sometimes harmful.

Figure 1.1 shows an example of a social media rumor: a tweet posted by the Associated

Press’s (AP) official Twitter account after it was hacked. The tweet reported two

1



Figure 1.1: A fake tweet posted by the Associated Press’s hacked Twitter account

Figure 1.2: Examples of persuasion campaigns on social media platforms

explosions in the White House and stated that the President was injured. Even

though the account was quickly suspended, the rumor spread to millions of users.

In such a special context, the rumor raised an immediate panic, which resulted in a

dramatic, although brief, stock market crash [25].

Figure 1.21 shows examples of social media persuasion campaigns supporting or

opposing terrorist groups. Millions of people can be exposed to and affected by viral

1Image sources: http://www.tomcotton.com/2015/02/tell-obama-stop-isis/,
www.givebackourfreedom.com, and http://www.marieclaire.co.uk/news/546482/

now-this-is-how-you-use-the-cannes-red-carpet-to-do-good-1.html
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persuasion. In May 2015, roughly 30,000 foreign fighters were fighting for the Islamic

State of Iraq and Syria (ISIS), a group of military jihadists in the Middle East.

The foreign fighters came from more than 100 countries around the world, including

Australia, Canada, and the US.2 Behind this is ISIS’s successful persuasion campaign

on social media. With more than 90,000 Twitter accounts around the world, a very

large amount of propaganda content for ISIS circulates much more quickly than it

can be identified and deleted by Twitter or other officials.3 In the absence of effective

methods for identifying and removing ISIS’s persuasion campaigns, the number of

social media users who turn into fighters for ISIS is continually increasing.

It is impossible to manually identify all of these events, given that thousands of

posts4 and images5 and hundreds of hours of videos6 are created every second on

different social media platforms. Automatic rumor and persuasion campaign detec-

tion systems must be able to go through this huge amount of social media content,

filtering out irrelevant content and events, in order to accurately identify potential

rumors and persuasion campaigns.

Researchers working on social media event detection, especially rumor and per-

suasion campaign detection, have made promising progress, with many prototype

systems having been built at different granularities. In rumor detection, for example,

a classifier trained using posts of a specific rumor is able to identify more posts of

that rumor, e.g., two explosions in the White House, based on each individual post’s

content, author, and other context features [86]. A similar classifier has been trained

and used to identify rumorous posts about a specific topic, e.g., the Boston Marathon

[43]. Then the identified posts related to that topic can be further analyzed and

grouped into different rumor statements, e.g., fake news that $1 will be donated to

2http://www.iraqinews.com/arab-world-news/isis-30000-foreign-fighters-100-countries
3http://www.cbsnews.com/news/why-so-difficult-counter-isis-social-media
4http://www.internetlivestats.com/twitter-statistics/
5http://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats
6https://fortunelords.com/youtube-statistics/
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victims per retweet and rumors about suspects. However, these approaches will not

be effective for detecting new rumors that are intentionally crafted to avoid some

of the significant features used by the classifier. Moreover, a single classifier cannot

be used to detect rumors about general unspecified topics, where the characteristic

features of individual posts associated with different rumors can be entirely different.

To build systems that can detect rumors or persuasion campaigns in general,

without training different classifiers for different topics or content, many existing ap-

proaches treat their emergence and spreading as social media events that collectively

involve multiple posts and reposts by users. To this end, many recent event detection

systems for rumors or persuasion campaigns train classifiers on groups of posts (gener-

ated by different types of user activities, such as posting and sharing). These systems

can therefore use the collective features of each group of posts, e.g., statistics such

as the number of shares or the temporal patterns of spreading, to determine whether

that group of posts corresponds to a social media rumor/persuasion campaign. As a

preprocessing step, these systems rely on general event detection algorithms to cluster

posts into groups based on their content, topics, and other features such as network

features. Each cluster or group corresponds to the emergence and spreading of one

social media event, such as a popular meme, trending topics, or breaking news. Since

our detection targets in this dissertation are specific types of events—i.e., rumors and

persuasion campaigns—which form a small subset of events in general [123], it would

be time consuming and inefficient to cluster all posts in this preprocessing step. More-

over, the performance of the classification can suffer from imbalanced positive and

negative examples during training. Additionally, some of the most helpful features for

classification—such as the time series of a number of posts or network features—can

only be determined after a cluster is large enough, or after outbursting. It would be

difficult to identify these at an early stage, which is a potentially critical stage for

preventing viral spreading.

4



One way to address these challenges is to efficiently filter out the majority of

irrelevant content before clustering posts into groups and extracting their collective

features. This will improve both the effectiveness and the efficiency of automatic event

detection systems that aim to identify only a small subset of all events from a large-

scale social media post stream. In this dissertation, we build such a system through

understanding the key signals for different types of events and discovering filtering

strategies based on these. Specifically, we build two systems, one to detect rumors and

one to detect persuasion campaigns. Understanding some of the similar properties of

these two types of events is the key for building our systems and identifying features

for filtering. The single general framework we used to build the two systems can also

be adapted to detect other types of social media events with similar properties.

What properties of social media events such as rumors and persuasion campaigns

can be used to filter out most irrelevant posts but retain the important ones for de-

tecting these events? In general, the properties should be unrelated to the content and

topic of each rumor or persuasion campaign, but every rumor or persuasion campaign

should have these. Those properties should be capable of being effectively and effi-

ciently spotted in some posts, but not necessarily all, that are involved in each rumor

or persuasion campaign. One such property for our given types of targeted events,

i.e., rumors or persuasion campaigns, is that their emergence and spreading can lead

to certain common user reactions. The posts that explicitly reflect those reactions

are signals of the targeted events we want to detect. By filtering out nonsignals, we

are left with a subset of posts that contains at least some posts for each targeted

event. This subset will later be used in our generic framework to extract and detect

targeted events.

Turning to social media rumors for an example, a content analysis showed that

a common user reaction after exposure to a rumorous post is to express skepticism

about its truth, due to its controversial content. A rumor in social media usually
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Table 1.1: Examples of signal tweets regarding the rumor of explosions in the White
House

Oh my god is this real? RT @AP: Breaking: Two Explosions in the White
House and Barack Obama is injured

Is this true? Or hacked account? RT @AP Breaking: Two Explosions in the
White House and Barack Obama is injured

Is this real or hacked? RT @AP: Breaking: Two Explosions in the White
House and Barack Obama is injured

How does this happen? #hackers RT @user: RT @AP: Breaking: Two
Explosions in the White House and Barack Obama is injured

Is this legit? RT @AP Breaking: Two Explosions in the White House and
Barack Obama is injured

WHAT????!!!! RT @AP Breaking: Two Explosions in the White House and
Barack Obama is injured

starts with a post of an unverified claim that purports to be fact. All of the user

activities that involve talking about and spreading that rumor form a group of posts.

Even though not all users will be skeptical or explicitly express their skepticism in

their posts, there are some who will. Figure 1.3 depicts how the two-explosion rumor

posted by the hacked AP account (see Figure 1.1) spread in Twitter. In the two

graphs, each node represents a tweet. Different colors represent different types of

user reactions: retweeting, questioning, and debunking. We can see that most of

the tweets are spreading the rumor by retweeting (red nodes). However, some of the

tweets are questioning the truth of the rumor and correcting the original post while

spreading it. These behaviors can be observed during the first 60 seconds after this

rumor emerged. Some examples of the tweets questioning the rumor are shown in

Table 1.1. These enquiry posts, which explicitly express users’ skeptical reactions,

are the signals we use to build our rumor detection system. They exist for almost all

social media rumors regardless of the actual rumorous content, and they are easy to

identify by their language patterns. Like rumors, social media persuasion campaigns

also result in common user reactions such as explicitly supporting or protesting against

the campaign, regardless of its goal.

Hypothetically, if those signals were entirely absent in non-targeted events, a set
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(a) 60 seconds after the hacked Associated
Press (AP) Twitter account tweeted the
White House rumor

(b) 134 seconds after the rumor (two sec-
onds after the first AP employee debunked
the rumor using his personal Twitter ac-
count, and two minutes before the official
denial came from the AP)

Figure 1.3: Snapshots of the diffusion of the White House rumor. Red, yellow, and
blue nodes: users spreading, correcting, and questioning the rumor.

of signals would be a subset of all posts of the targeted events. Then we could

identify the content of targeted events by analyzing the content of the signals and, if

the signals are reposts or responses, the content of the origin posts. We could also

retrieve the nonsignal posts for an event by using that content, so that further analysis

and monitoring could be conducted. Realistically, however, since signals are explicit

expressions of users’ common reactions, the more easily they can be detected and the

more common the reactions are, the less exclusive these signals will be. For example,

enquiry posts exist not only in rumors but can also appear in connection with any

breaking news. To further remove false positives, we build a generic framework for

targeted event detection with signal filtering.

As shown in Figure 1.4, the input of the generic framework is a steam of social

media posts. The output is a set of detected events. Each detected event is in the

form of a group of posts related to that event. In general, the framework consists of

the following three steps:

• 1. Signal filtering: In this step, all posts generated by user activities such

as posting, sharing, or responding are checked and separated into two groups,
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Figure 1.4: A general framework for detecting targeted social media events

signals and nonsignal posts.

• 2. Clustering: In this step, signals are clustered based on a given similarity

measure, e.g., content similarity. Thus, signals from the same targeted event

are grouped into one cluster. These clusters are candidate event clusters.

• 3. Classification: This step checks whether a candidate cluster is an actual

targeted event. Nonsignal posts are matched against and grouped with signals

into candidate clusters as appropriate. Then the collective features of each

candidate cluster are extracted so that classification algorithms can evaluate

how likely it is that a candidate is a target.

Similar to existing general rumor and persuasion campaign detection systems, we

train classifiers with the collective features of groups of posts to determine whether a

group corresponds to a targeted event. By using a signal filtering step before cluster-

ing, we can filter out a large proportion of the posts from the post stream. Only those

posts that are likely to be related to targeted events are used to generate candidate

clusters, and the candidate clusters will therefore have fewer irrelevant events than

clusters generated from the entire post stream. Thus, because our approach avoids

clustering all posts, our general framework for rumor or persuasion campaign detec-

tion reduces the computational cost as well as the difficulty of event classification.
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Additionally, as signals are reflections made in user reactions, it will be difficult for

those who create rumors and persuasion campaigns to intentionally avoid detection.

Finally, signals can usually be captured at any stage of an event rather than only

after it has gone viral. This is important for early detection of targeted events.

As our rumor detection and persuasion campaign detection systems share the

same generic framework, the most critical step—that of finding good signals for each

of these two types of events—depends on their individuating characteristics. We begin

our work in this dissertation by conducting a content analysis of posts on social media

to understand what the common user reactions to different types of events are, as

well as how users’ individual activities or posts can explicitly reflect such reactions.

Specifically, we focus on tracking and analyzing question-asking behaviors on social

media. Because the different types of explicit questions that users ask on social media

reflect their information needs, these are reactions to different types of social media

events, for example, rumors.

Among users who have information needs, many will choose to read posts by

others, discuss the details, and search with search engines. However, a few users

will post questions directly asking for the needed piece of information. By training a

classifier to automatically detect posts on Twitter that are questions, we extracted a

large collection of question posts. We grouped these questions according to different

keywords and checked their correlations with different types of social media events.

As questions are explicit expressions of emerging information needs, we found a high

correlation between the question topics and the topics of trending and bursting social

media events.

Based on our analysis, we found that a specific type of questions, namely, confir-

mation questions or enquiries, is related to social media rumors. As shown in previous

examples, we use these enquiry activities as signals to build our rumor detection sys-

tem. Each rumor is detected in the form of a group/cluster of posts that are related
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to a disputed factual claim. Again, the key insight is that when there is a rumor, even

though most posts will not raise questions about it, there will likely be a few that

do. By conducting content analysis on a labeled rumor tweet dataset, we found some

signature text phrases that are used by some individuals to express skepticism about

whether a claim is factual and that are less likely to be used to express anything else.

These text phrases include: “Is this true?”, “Really?”, and “What?”. Although rel-

atively few individual posts related to any particular rumor use any of these enquiry

phrases, many rumor clusters include some posts that do use these phrases, and such

posts appear quite early in the diffusion process.

We then applied this finding in our general event detection framework. We first

search for posts with the enquiry phrases to identify signals, then we cluster them by

comparing content similarity after removing the enquiry phrases and collecting related

nonsignal posts for each cluster, and finally, we use a classifier to rank the clusters

by the likelihood that they truly contain a disputed factual claim. Our experiment

shows that, by searching for the very rare but very informative signal phrases and

using clustering and a classifier on the clusters, our rumor detector has a surprisingly

good performance.

The enquiry signals that we used for rumor detection have unique language pat-

terns and phrases that are easy to identify. However, signals for detecting persuasion

campaigns and other targeted events in general may not contain such unique and

simple patterns. Possible signals might contain many patterns and combinations of

these. It is important to have an automatic or semiautomatic approach to find ways

to identify good signals, as good signals can significantly improve the effectiveness

and efficiency of detection while improper signals can make a detection system worse

by decreasing both precision and recall. Therefore, in our next study, we first devel-

oped an automatic way to identify potential patterns that could be used to filter out

nonsignal posts in our persuasion campaign detection system.
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Above, we have generally discussed the characteristics of signals in targeted event

detection and have shown how enquiry signals are used in rumor detection, as an

example. By quantifying some key characteristics of signals, such as their uniqueness

in targeted events, we built metrics to evaluate how a given signal identification

algorithm performs with respect to each characteristic. By jointly maximizing scores

on these metrics on labeled targeted events, we could automatically learn a signal

identifier in the form of a binary post-classifier using a set of patterns as features. We

trained this classifier on labeled persuasion campaigns and used it in our persuasion

campaign detection system.

Persuasion campaigns are series of activities that attempt to gain public sup-

port for an opinion or a course of action [83]. The motivations behind persuasion

campaigns in social media can be either legitimate or unethical and manipulative—

illustrated, for example, by Michelle Obama’s campaign to gain support in opposition

to Boko Haram and ISIS’s recruiting campaign, respectively (shown in Figure 1.2).

To detect persuasion campaigns in a large number of posts on social media, we first

developed a definition and a codebook for social media persuasion campaigns. Then

we manually labeled a set of persuasion campaigns in the form of clusters of posts.

We used this labeled dataset to train a signal identification algorithm. Finally, we

applied the algorithm to filter out nonsignal posts and build the persuasion campaign

detection system. Experimental results based on Twitter show that our detection

system is both effective and efficient compared to baseline methods.

The rest of this dissertation is organized as follows. We begin with a brief review

of existing approaches to event detection and detection systems built for detecting

different types of targeted events in Chapter II. We summarize these approaches

based on their methods and discuss whether and how they can be generalized as a

framework for detecting different types of targeted events. In Chapter III, we intro-

duce and discuss our general framework for detecting social media rumors, persuasion
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campaigns, and other targeted events where signals can be identified.

In Chapter IV, we conduct content analysis on different types of social media

posts and user activities, especially question-asking activities. We demonstrate that

question posts are indicators for identifying bursting events and emerging information

needs in general and that some of them can be used as signals for rumor detection.

In Chapter V, we discuss application of our general framework to the problem of

detecting social media rumors, using enquiries as signals. In Chapter VI, we quantify

the characteristics of signals as objectives for a good signal identification learning

algorithm. Then we apply this algorithm in our general framework to detect social

media persuasion campaigns. Finally, we summarize our findings and discuss future

research directions in Chapter VII.
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CHAPTER II

A Review of Social Media Event Detection

Social media data mining tasks target at extracting meaningful information from

large scale of social media content. As a sub-category of these tasks, social media

event detection targets at detecting collective information from social media users.

We list some of the event detection tasks and show their common characteristics

despite of specific event type each of them want to detection.

From the characteristics, many existing approaches adopts similar general frame-

works. These inspires us to develop a detection framework for detecting social media

rumors and persuasion campaigns. We briefly discuss the frameworks and provide a

high level summary in this chapter. We will review existing work in rumor detection

and persuasion campaign detection respectively in Chapter V and Chapter VI.

2.1 Event Detection Tasks in Social Media

Over the past ten years, social media research has expanded to make use of the

massive amounts of data generated by online social media and the concomitant activ-

ity by online users. It is now possible for researchers to make use of the large amounts

of user activities and detect online events/phenomena, such as online communities

[80], spams [48] [108] and trending topics [71]. The close relationship between users’

online activities and their real world activities also allows researchers to use detected
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online phenomena in detecting or predicting real world events, e.g., trend in stock

market [11], happening of earthquakes [92] and epidemics [38] [57], etc.

2.1.1 Common Characteristics of Social Media Event Detection Systems

Event detection in online social media has been studied for many years [4]. Most

studies focus on methods to extract social media events from clustering user activities

or posts. Each social media event is represented by a cluster of activities or posts.

The grouping criteria or similarity measure between activities or posts used to de-

velop a clustering algorithm correspond to the definitions of social media events [93].

Commonly used criteria include similarity of keywords [71], [53], and memes [61].

Following this formulation of social media event detection, various types of clus-

tering algorithms and topical modeling analyses have been developed [51]. Stream

clustering algorithms can be used to cluster input social media post streams or user

activity streams [93] [2]. After the clustering algorithm, user activities or posts with

similar content and topic are grouped into one cluster. Each cluster corresponds to

the emerging and spreading of a particular social media event.

Many studies concentrate on a particular type of online social media event. Re-

search topics include ongoing bursting events [9], trending social media memes [31]

[61], potential bursting events [53] [54], breaking news [84], social media rumors and

misinformations [100] [101], and persuasion campaigns [59]. Event detection systems

treat specific type of event as targeted event usually apply classifiers to identify them

from other events.

2.1.2 Types of Targeted Events

Trending event detection is one of the most representative social media event

detection tasks. The relevant studies aim to detect events that are popular or will

be popular, on social media platforms such as Twitter [71] [10]. The research groups

14



social media posts into clusters and uses features of the clusters such as the cluster

size or the trend to identify a subset of popular clusters. Clustering large amounts of

online posts and online activities is both time- and space-consuming, however. Thus,

detecting trends in real time depends on developing efficient algorithms and sufficient

computational resources [107].

Besides trending events, event detection systems target at detecting various types

of events. Community detection studies look at the clusters of users having direct

or close relationships [80]. Spam detection algorithms identify various unwanted and

malicious spammer or hacker activities [48] [108]. Other topics include detecting real

world events based on users’ online social media activities. The sentiments expressed

in social media posts have proven useful for detecting stock market trends [11]. For

one event, a study finds that users’ online social media posts on an earthquake are

faster than official sources [92]. Another study suggests that the aggregate features

of social media content can be used to detect epidemic outbursts [57].

2.2 General Framework for Detecting Targeted Events

Most of the above mentioned existing works treat detecting specific types of social

media events as a classification problem and adopt classifier on clusters of posts or

activities. Some of them treat clusters as inputs for training and evaluating their

classifiers without discussing how the clusters are generated. Others build end to end

detection systems by first applying clustering algorithms on posts or user activities

before the classification task. In general, they follows a clustering plus classification

framework for event detection.

Based on a predefined similarity measurement, the clustering plus classification

framework first groups (clusters) similar online users’ activities (posts). Each cluster

represents the collective activities corresponding to a social media event. Then they

classify each cluster as positive (targeted event) or negative (other event) [4] [99] [88]
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Figure 2.1: Clustering + Classification Framework

[89]. For example, posts can be grouped by hashtags and the classifier uses features

such as the times series of the cluster size to detect and predict any trending hashtags

[61] [17]. And by clustering posts using content similarity, trending statements can

be detected [107]. Figure 2.1 shows the workflow of this framework.

By adopting this framework, different types of targeted events, such as rumors or

controversial statements [101] has been studied. In existing rumor detection systems

[56] [43], classifiers are trained using different types of collective features extracted

from post clusters.

The classifiers can be trained to identify targeted events and work well on a

balanced dataset where targeted events are common, such as memes, or bursting

events, etc. When used for detecting relatively rare events, such as rumors and

persuasion campaigns, however, the framework can be inadequate. This is because

the framework clusters all posts. When targeted events are relatively rare, it is

inefficient to cluster all of them when only a few clusters are the detection targets.

Moreover, as there are more negative clusters than positive ones, a classifier trained

on a limited and unbalanced dataset with a different distribution of positives and

negatives can overfit and predict inaccurate labels.

Is it possible to flip the classification and clustering process, so that we first classify

posts to decide whether it belongs to a target cluster or not, then cluster only the

positive individual posts into clusters? By doing this, we can filter out many negative
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activities and improve the efficiency in clustering.

Because social media events correspond to clusters of posts, the label is assigned

to a cluster instead of a individual post. The classification task on individual post

cannot yield a good performance by simply applying the cluster label to its posts. For

example, it is unclear and hard to train a classifier on a single post to decide whether it

is a general persuasion campaign or not. Moreover, most important features reported

by existing event detection systems are collective features that can only be extracted

at cluster level, such as network features, aggregated content features and statistics

[27].

A post level classifier is only sufficient to detect whether or not a post is related to

a specific targeted event such as a specific social media rumor, due to the limitation

of post level feature [86]. A recent work studying general rumor detection trains

classifier to directly identify whether a individual post belongs to a specific type of

rumors or not [46] . A tweet level rumor classifier is trained and tested on a labeled

dataset. However, it is not scalable to identify general social media rumors on real

social media post stream, where rumors have various topics. In general, classifying

whether a post belongs to any rumor cluster will need more features than features

from the post itself.

Although detecting targeted events with a post level classifier is hard, it inspires

us to discover properties of individual post that are easy to identify and related to

target clusters. In our framework, we use posts that are signals to generate clusters

and then apply cluster level classifier to detect targeted events. Our approach is a

combination of the above mentioned two lines of existing works.

As discussed in Chapter I, our general framework for rumor and persuasion cam-

paign detection extends the clustering + classification approach by adding a signal

filtering step. It makes use of some indicating features from individual posts, i.s., sig-

nals, before clustering. A proper selected signal identification algorithm can improve
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both the efficiency and effectiveness of targeted event detection. In the next chapter,

we will provide high level description of our proposed framework. And we will apply

this framework to build our rumor detection system and persuasion detection system

respectively.
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CHAPTER III

A General Framework to Detect Targeted Events

In this chapter, we introduce the general framework for building rumor and per-

suasion campaign detection systems. We discuss our system’s input and output and

its three steps for detection: signal filtering, clustering, and classification. As signals

for rumors are different from signals for persuasion campaigns, this general framework

does not specify how to identify signals for the specific types of targeted social media

events.

3.1 Problem Definition

In this dissertation, we study the problem of social media event detection. In

particular, we detect two specific types of events: rumors and persuasion campaigns.

Our detection systems take a stream of social media posts as input and produce social

media events as output. A social media post contains user-generated content and is

the result of online user activity. A social media event is comprised of users’ collective

activities in the form of a group of posts with similar content. For example, a social

media event might be the trending of a social media meme, which is a group of posts

including the origin meme and posts that share and discuss it. Our targeted events,

rumors and persuasion campaigns, are groups of posts that spread and discuss either

a rumor or a persuasion campaign. The next two sections discuss different types
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of online activities and how collective activities can be reflected by groups of social

media posts.

3.1.1 User activities and posts in social media

Social media platforms such as Twitter and Facebook offer their users various

types of functions for interacting. Users can subscribe and consume information

posted by other users. They can also post and share information on their own page.

Users can have conversations about a post by commenting and replying. They can

also communicate via direct messages or other supported functions.

The functions offered by social media allow users to engage in many different

types of activities. In this dissertation, we focus on users’ public activities that can

be seen by everyone, usually provided by functions such as creating posts, resharing

or retweeting, and commenting. They are listed as follows:

• Posting. The user creates a new post on his or her wall or timeline. The post

content can be originally generated or come from sources outside the social

media platform.

• Resharing. The user reshares a post from another user on his or her wall or

timeline. In Twitter, this behavior is called retweeting, and the shared posts

will begin with “RT”. There are two types of retweets. One type directly shares

the original content. The other type shares by adding a short comment along

with the original content.

• Commenting. The user comments on a post by another user. In Twitter, com-

ments become tweets posted by the user who owns the comments. In Facebook,

comments can also be found on the user’s page.

These functions can result in the creation of a social media post in the user’s

timeline or public profile. For the purposes of this dissertation, we do not consider
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other activities such as adding friends, clicking and reading, and more.

3.1.2 Post clusters as social media events

A social media event consists of collective online activities of many users that have

a common topic or a common objective, such as questioning a piece of information

or spreading one. These posts share similarities, such as their content, and can

be grouped into a cluster that corresponds to the social media event. There are

many types of social media events, such as breaking news, trending memes, rumors,

and persuasion campaigns. Posts for a given type of event can be clustered based

on a specific similarity measure, and detection of social media events can then be

modeled as detection of post clusters from the post stream. For example, in rumor

detection, we cluster posts by their content and identify clusters with rumorous ones.

In this dissertation, we use the terms “social media events”, “collective activities”,

and “groups of posts” to refer to post clusters.

3.1.3 Target clusters

We use the term “target clusters” to refer to the post clusters we want our detec-

tion systems to detect. These can be clusters corresponding to social media rumors,

persuasion campaigns, or other types of targeted events. Although rumors and per-

suasion campaigns are defined differently and correspond to different types of target

clusters, they share some characteristics that make their detection more meaningful

than detection of other general social media events. Rumors ad persuasion campaigns

are:

• Influential. The spreading and outbursting of rumors and persuasion campaigns

are usually more influential than other general social media events, since most

of them target and can result in changing people’s opinions and real-world

behaviors.
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• Relatively rare. Compared to other post clusters, such target clusters are rela-

tively rare. They sometimes correspond to events that are unusual or abnormal.

• Time sensitive. Considering the temporal dynamics, target clusters will emerge,

grow, and disappear or transform to normal clusters. For example, a rumor will

be verified or debunked, and a persuasion campaign can emerge and quickly

draw people’s attention and then end when people stop discussing it.

3.1.4 System Input and Output

In this section we provide a formal definition of our detection system’s input and

output.

The input to our detection system is a stream of social media posts

{P1 = (p1, t1), P2 = (p2, t2), . . . , Pk = (pk, tk), . . . },

where each P = (p, t) is a tuple representing a post and its time stamp.

The output from our detection system at an arbitrary point in time is a set of

target clusters

{C1 = {P 1
c1
, P 2

c1
, . . . , P k1

c1
}, C2 = {P 1

c2
, P 2

c2
, . . . , P k2

c2
}, . . . Cn = {P 1

cn , P
2
cn , . . . , P

kn
cn }},

where each element C denotes a cluster containing post and time stamp tuples. P j
ci

represents the j-th post for cluster Ci.

3.2 A general framework for detecting target clusters

We propose a framework that can be used to detect different types of target

clusters. Our rumor detection system and persuasion campaign detection system

are built using this framework. In contrast to existing social media event detection
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Figure 3.1: Workflow of Our Proposed General Framework

systems that first cluster all posts and then identify target clusters, our proposed

framework introduces a filtering step to filter out the majority of the posts before

clustering.

As discussed in Chapter I, the emergence and spreading of social media rumors

or persuasion campaigns can result in common user reactions. Some of these can be

found explicitly in social media posts, which then serve as signals of the existence of

target clusters. In any target cluster, only a small proportion of the posts are signals.

But since these reactions are common to all target clusters, every target cluster will

have some. They are like the tip of the iceberg, and just as we can spot icebergs by

their tips, we can detect target clusters by their signals.

Based on this intuition, we propose a general framework to detect target clusters

in a social media post stream. Figure 1.4 of Chapter I shows this conceptually. Given

the formal definition of our detection problem, we show the workflow of our framework

in Figure 3.1. In addition to the input post stream, our framework assumes that a

signal identification algorithm and a measure of similarity between posts are given.

In our framework, we first use the signal identification algorithm to separate posts

into two groups, signals and non-signal posts. Then we cluster only the signals using

the given similarity measure. Each cluster of signals is a subset of a potential target

cluster.

We then match non-signal posts to these clusters using the same similarity mea-

23



sure, and when there is a match, the non-signal post is added to the cluster. The

clusters that now contain both signals and non-signal posts are candidate target clus-

ters. Finally, we identify the actual target clusters among these candidates using

a binary classifier trained on their collective features. In the next sections, we will

discuss each of the steps in the framework.

3.2.1 Signal filtering

Prior to this step, we analyze a specific type of target cluster, such as social

media rumors, and develop a signal identification algorithm for this type of cluster.

The identification algorithm can combine automatic feature selection and analyses by

domain experts. We discuss how to identify signals for social media rumors in the

next chapter which describes building a rumor detection system. When we turn to

building a persuasion campaign detection system, we will also introduce an automatic

algorithm that learns identifiers for signals.

In the signal filtering step for a specific type of target cluster, the input post

stream is run through its signal identification algorithm. This filtering step outputs

two streams, one consisting of signals and the other of non-signal posts. Only the

signals will be used to generate new clusters in the next step.

3.2.2 Clustering

This step begins by clustering the signals using the given similarity measure. Each

cluster that is obtained is a subset of a potential target cluster. Then non-signal posts

are matched against these clusters, and matching non-signal posts are added to the

clusters. We now have clusters that contain both signals and non-signal posts. We

output these as candidate target clusters for the next step. Unlike other existing

frameworks, which cluster all posts, our clustering step does not generate clusters

unless they contain signals. In this way our framework avoids clustering all posts,
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which is both time consuming and unnecessary since target clusters are relatively

rare.

There are two reasons why we need to add non-signals to the signal clusters: (1)

Every target cluster contains both signals and non-signal posts. By matching and

adding non-signal posts to the clusters, we can gain a complete understanding of a

target cluster, which is beneficial for later analysis. (2) Signals exist not only in target

clusters but also in some non-target clusters. Therefore, we need to extract collective

features from clusters with both signals and non-signal posts in order to identify the

true positives in the next step.

We note that our framework does not require a specific clustering algorithm. Any

generic stream-clustering algorithm, such as [6] or [2], can be used. We can also use

a batch-based clustering algorithm such as k -means by running it once for a given

period of time and updating the results.

3.2.3 Classification

As discussed above, not all of the candidate clusters generated by the previous

step will be target clusters, since signals can also occur in non-target clusters. There-

fore, we use a binary classifier to identify target clusters from the candidate clusters.

The classifier is trained using a labeled dataset with target and non-target clusters.

Different types of collective features can be used to represent each cluster, such as

content features, statistics, temporal features, and so forth. This step is similar to

that found in existing event detection systems; however, the number of our candidate

clusters is much smaller, with relatively more target clusters.

We adopt this general framework to build our rumor detection system in Chapter

V and our persuasion campaign detection system in Chapter VI. For these two

applications, the signal identifier, the post similarity measurement, and the features

for classification are designed differently and individually for each application.
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3.3 Discussion

As discussed in Chapter II, a common framework for building a social media event

detection system for a specific type of event is to first cluster all posts and then classify

the clusters. In contrast, our framework introduces signal filtering at the beginning

and modifies the clustering step so that it only generates clusters that have at least

a few signals. As a consequence, in the end we apply classification to only a small

subset of all clusters of posts.

Our framework can efficiently filter out the majority of non-signal posts before

clustering. This improves the detection efficiency. To identify target clusters, we

only need to classify a set of candidate clusters that contains a higher proportion of

target clusters than the set of all post clusters. This aslo improves the effectiveness

of the detection. It must be noted that our framework relies on spotting signals in

the post stream in order to detect candidate target clusters. Signal identification is

thus critical for building our detection systems. They will not work well if signals are

hard to identify or there are no signals that can be used.

To build our rumor detection system using this framework, we need to first discover

signals and develop a signal identification algorithm. One property that social media

rumors have is that, regardless of their specific content and topic, the spreading of the

rumor will result in some users’ skepticism about whether they are true. The common

user reaction of asking questions can provide a clue to help us find proper signals. To

understand how to identify such a reaction in user’s posts, we conducted a content

analysis of different types of user activities, particularly question-asking activities and

question posts. We found that some of these are reactions to different types of social

media events, including rumors; we will discuss this in the next chapter.

Based on our analysis, we found that confirmation questions or enquiries can be

used as signals for rumor detection. We manually selected a set of enquiry patterns,

such as “Is this true?” or “What?”, based on further content analysis. We use these
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patterns to identify posts that are signals of rumors. We then apply our framework

to detect rumors on Twitter; we will talk about this in Chapter V.

For social media events like persuasion campaigns, the potential signals may con-

tain complicated patterns that would be hard to identify manually. Thus, it is im-

portant to have an automatic approach to building a signal identifier. In Chapter

VI, we will discuss learning a signal identifier by optimizing combined objectives.

Each objective quantifies a property that we propose good signals should have. We

use a signal identifier learned from a set of labeled persuasion campaigns to build a

detection system with our framework.

Although in this dissertation we only build rumor and persuasion detection sys-

tems using the framework, our framework can be widely adapted for many other

types of targeted social media events. One condition for using our framework is that

the targeted events should exhibit some commonalities that can be captured from

posts. For example, the emergence and spreading of social media rumors, despite the

variety of topics, result in user reactions that question their truth. Similarly, common

reactions can also be found in the spreading of persuasion campaigns.
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CHAPTER IV

Analyzing User Asking Question Activities in

Social Media

Users can have different types of activities, such as posting, sharing or comment-

ing. And each of these types can have their unique content and topic distribution

[121]. In this chapter, we conduct content analysis on social media user activities.

We study most of them by understanding the content of corresponding social media

posts.

By conducting this analysis, we want to learn how individual user activities be-

come collective activities and social media events. We also want to understand the

correlation between activity types and event types. To be more specific, one of our

goal is to discover what posts are highly correlated with specific types of social media

events.

We focus our research on user asking question activities and the corresponding

question posts. We discuss how to extract and analyze user asking question activities

from billions of online conversations collected from Twitter [122]. With an automatic

text classifier, we can accurately detect real questions in tweets (i.e., tweets conveying

real information needs). We then present a comprehensive analysis of the large-scale

collection of questions we extracted. We found that questions being asked on Twitter

are substantially different from the topics being tweeted in general. These questions
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detected on Twitter have a considerable power of predicting social media trending

events, and the trends of Google queries. Many interesting signals emerge through

longitudinal analysis of the volume, spikes, and entropy of questions on Twitter, which

provide insights to the understanding of user behavioral patterns and the impact of

different types of events and in social platforms. Some of the insights found in this

study help us find patterns to identify signals for detecting social media rumors.

4.1 Overview

Recent years have witnessed an explosion of user-generated content in social me-

dia. Online social platforms such as Facebook, Twitter, Google+, and YouTube have

been complementing and replacing traditional platforms in many daily tasks of Web

users, including the creation, seeking, diffusion, and consumption of information. On

these platforms, user can share their experience by creating posts, commenting on

friends’ posts and other activities, resharing information from inside or outside one

platform, and can do many other different types of activities. In this dissertation, we

study clusters that are groups of different user activities with similar topic or content,

and we want to find target clusters from indications of individual user activities. In

this chapter, we first want to study and analyze different types of user activities,

understand why and how are they different, and why some of them can indicate the

occurrence of a specific type of target clusters and some of them cannot. By conduct-

ing content analysis on four major options users have on Google Plus, i.e., creating

post, resharing, commenting and plusing one (like), we found out that user activities

under these four different options are considerably different.

Next we want to study a specific type of user activities and have a in-depth un-

derstanding of why it is different compared to other types of activities and what this

specific type of user activities can indicate. User asking question activities in social

media, is the type of user activities that we are interested in. A recent research inter-
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est has been shown in understanding how people seek for information through online

social networks [78, 26, 81, 79, 67], how this “social information seeking” behavior

differs from that through traditional channels such as search engines or online ques-

tion answering (Q&A) sites, and how the social channel complements these channels

[77, 47, 75]. Based on a survey conducted by Morris et al. in 2010, 50.6% of the

respondents1 reported having asked questions through their status updates on social

networking sites [78]. The questions they ask involve various needs of recommen-

dations, opinions, factual knowledge, invitations and favor, social connections, and

offers. They covered many topics such as technology, entertainment, shopping, and

professional affairs [78]. An analysis later by Efron and Winget suggested that 13% of

a random sample of tweets (microblogs posted on Twitter.com) were questions [26].

Why is it compelling to understand the questions asked on social platforms? This

emerging research interest largely attributes to the importance of understanding the

information needs of Web users. Indeed, as the core problem in information retrieval,

a correct interpretation of the information needs of the users is the premise of any

automatic system that delivers and disseminates relevant information to the users. It

is the common belief that the analysis of users’ information needs has played a crucial

role behind the success of all major Web search engines and other modern information

retrieval systems. Better understanding and prediction of users’ information needs

also provides great opportunities to business providers and advertisers, leading to

effective recommender systems and online advertising systems.

Long have Web search engines been the dominating channel of information seeking

on the Web. According to recent statistics 2, 4 billion of search queries are submitted

to Google every day. The rest of the territory is shared by other channels such as

online question answering (Q&A) sites such as Yahoo! Answers. A statistic in 2010

1Note for the selection bias as all were Microsoft employees.
2http://www.comscore.com/Insights/Press_Releases/2012/4/comScore_Releases_March_

2012_U.S._Search_Engine_Rankings
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reported a daily volume of 823,966 questions and answers 3, in which each question

on average earned five to six answers according to [96]. This is much smaller than

the number of information needs asked through search engines.

The emergence of social platforms seems to be a game-changer. If the ratio re-

ported by Efron and Winget [26] still holds today, there will be over 50 million

questions asked through Twitter according to a recent statistic of 400 million tweets

posted per day 4. This number, although still far behind the number of search queries,

has already overwhelmed the number of questions in traditional Q&A sites. Moreover,

it has been found that people tend to ask different questions to their friends rather

than to search engines or to strangers on Q&A sites. In Figure 4.1, we can see people

asking questions in their tweets by either broadcasting so that any of their followers

can respond to them, or by targeting the question to particular friends. The results

of the survey by Morris et al. suggested that respondents especially prefer social sites

over search engines when asking for opinions and recommendations, and they tend

to trust the opinions of their friends rather than strangers on Q&A sites [78]. It is

reported in [77] that users enjoy the benefits of asking their social networks when they

need personalized answers and relevant information that unlikely exists publicly on

the Web. It is also reported that information needs through social platforms present

a higher coverage of topics related to human interest, entertainment, and technology,

compared to search engine queries [81].

All evidence suggests that the questions being asked through social networks

present a completely new perspective of online information seeking behaviors. By

analyzing this emerging type of behavior, one anticipates to help users effectively ful-

fill their information needs, to develop a new paradigm of search service that bridges

search engines and social networks (e.g., social search [29, 75]), and to predict what

3http://yanswersblog.com/index.php/archives/2010/05/03/1-billion-answers-served/
4http://news.cnet.com/8301-1023 3-57448388-93/twitter- hits-400-million-tweets-per-day-

mostly-mobile/
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Tweets	  Conveying	  	  
Informa3on	  Need	  

Tweets	  not	  Conveying	  	  
Informa3on	  Need	  

Do	  you	  know	  whether	  there	  is	  a	  
roadwork	  on	  I94	  

Man	  so	  everybody	  a	  frank	  ocean	  fan	  
now?	  Idc	  I	  was	  an	  original…	  

Which	  restaurant	  nearby	  has	  a	  
discount?	  

Why	  do	  I	  always	  do	  this?	  #hesatool	  
#fml	  

@someuser	  u	  work	  today???	   @someuser	  how	  are	  you?	  

Can	  anyone	  suggest	  some	  local	  
restaurants	  in	  Beijing?	  

They’re	  sFll	  together,	  why	  haven’t	  
they	  broken	  up	  yet?!?!	  

@someuser,	  do	  you	  what	  I	  am	  
doing	  is	  good?	  

Umm	  what?	  It’s	  already	  August?	  Hey	  
Summer,	  #wheredygo?	  

What’s	  your	  favorite	  summer	  
album	  to	  throw	  on	  a	  car	  stereo?	  

Im	  sFll	  gone	  smile!	  What	  are	  you	  
thanking?!	  Em	  not	  

Is	  my	  avi	  cute?	   Why	  won’t	  people	  understand	  that?!	  

Figure 4.1: Instances of tweets conveying an information need from asking questions,
and those which don’t.

the users need in order to strategize information service provision, persuasion cam-

paign, and Internet monetization.

The availability of large scale user-generated content in social network sites has

provided a decent platform for this kind of analysis. This revives our memory about

the early explorations of analyzing search engine query logs (e.g., [97, 104, 72]).

Indeed, the analysis of information needs with large-scale query logs has provided

tremendous insights and features to researchers and practitioners, and it has led to a

large number of novel and improved tasks including search result ranking [5], query

recommendation [8], personalization [105], advertising [14], and various prediction

tasks [39, 49]. We believe that a large-scale analysis of information needs on online

social platforms will reproduce and complement the success of query log analysis, the

results of which will provide valuable insights to the design of novel and better social

search and other online information systems.

In this chapter, we take the initiative and present the first very large scale and

longitudinal study of information needs in Twitter, the leading microblogging site.

Questions that convey information needs are extracted from a collection of billions

of microblogs (i.e., tweets). This is achieved by an automatic text classifier that dis-

tinguishes real questions (i.e., tweets conveying real information needs) from tweets
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with question marks. With these detected questions as signal activities of emerging

information needs, we are able to present a comprehensive description of the informa-

tion needs with both the perspectives of content analysis and trend analysis. We find

that questions being asked on Twitter are substantially different from the content

being tweeted in general. We prove that information needs detected on Twitter have

a considerable power of predicting the trends of search engine queries. Through the

in-depth analysis of various types of time series, we find many interesting patterns

related to the entropy of language and bursts of information needs. These patterns

provide valuable insights to the understanding of the impact of bursting events and

behavioral patterns in social information seeking.

4.2 Analyzing Different Types of User Activities

In this section, we analyze user’s online activities by their types and measure the

content differences among them. The findings we have here will help us understand

how to identify different types of activities from features of posts, and why some

activities with unique features can be used as signals to detect targeted events.

Here we analyze users’ different types of online activities in Google+ using an

anonymized data set. We first extract the topic entities in posts as our features to

construct feature vectors for each post. For each users’ behavioral actions on posts,

we aggregate the corresponding post feature vectors to build an entity vector for

each user-behavior combination. Then we coarsely measure the differences of topical

interests represented by these user-behavior entity vectors. We show that there exists

significant differences between these vectors, which motivates our approach to utilize

a small proportion of special user activities as indications to detect target clusters.
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4.2.1 Dataset Description

We use anonymized Google+ users’ public behaviors in May 2014 to conduct

our analysis. We analyzed all user actions on all public posts, and each record is

represented as a tuple: (u, b, E), where a user u (with an anonymized id) used behavior

b to engage with a post containing E set of entities. There are four types of activites

in our data: Create Post, Reshare, Comment, and +1.

Instead of using low-level features such as word tokens, we extract higher-level

semantic concept from the post in the form of entities using Google’s Knowledge

Graph [98], which contains entities that represent concepts such as computer algo-

rithms, landmarks, celebrities, cities, or movies. It currently contains more than 500

million entities, which provides both wide and deep coverage of topics.

Entity extraction is an open research problem and not a focus of our work here,

but in a nutshell, we utilized an entity extractor based on standard entity recognition

approaches that utilize prior co-occurrences between entities, likelihood of relatedness

between entities, entities’ positions within the text, and then finally ranking the

topicality of the entity for the text.

Given a post, we use its corresponding Knowledge Graph entities as features to

represent its topics. Therefore, each E in input tuple (u, b, E) is a set of Knowledge

Graph entities. For example, if a user u1 created a post with his dog’s picture,

this behavior might correspond to (u1, CreatePost, {“Dog′′, “Pet′′, . . . }). If another

user u2 commented on a post with a YouTube video about Minecraft on Xbox, this

behavior might correspond to the tuple (u2, Comment, {“Minecraft′′, “Xbox′′, . . . }).

4.2.2 Measuring differences among activities

For each user, we aggregate the entities from the posts she interacted with using

a particular type of activity. In the end, for each user, we obtain four sets of topic

entities corresponding to the four activity types mentioned above.
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Behavior Comment Plus One Reshare Create Post
Comment 1 0.092 0.050 0.102

+1 0.092 1 0.048 0.071
Reshare 0.050 0.048 1 0.012

Create Post 0.102 0.071 0.012 1

Table 4.1: Average Jaccard similarity between pairs of behavior types

We then use the Jaccard similarity index to measure the differences between the

sets. Jaccard similarity index is a common metric for measuring the similarity between

two sets and is calculated as follows given sets A and B: J(A,B) = A∩B
A∪B .

After we calculate Jaccard similarity scores of different activities for each user, we

then average the scores across all users. We filter out users who have less than 10

entities as non-active. Table 4.1 shows the results of the average Jaccard similarities.

We can see that the Average Jaccard Index between any two types of activities is low.

Take user’s commenting and +1 behaviors as an example, only 9% of the topics over-

lapped between these two behaviors. We also measure the difference between user’s

publishing and consuming behaviors. We combine the entities of user commenting

and +1 behaviors as a set of entities of consuming, and we combine the entities of

user creating post and resharing behaviors as a set of entities of publishing. The

average Jaccard Index is 0.122. The low overlap rate of these Jaccard scores suggests

that user acts differently in different behaviors.

4.2.3 Discussion

The results of the analysis show that, for each user, she typically have different

topic interests with each different type of activities. That is, she will often create posts

on topics that are different from the topics she comments on. The results suggest

that different types of user activities may have different properties and play different

roles in events in social media.

This corresponds to the recent efforts on building recommender systems by sepa-
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rating users’ activities types and provide recommendation results for different context.

Our finding is also related to findings in other areas such as sociology. Sociologists

have shown that people present different images to others in their everyday life and

their everyday conversations engage in different topics with different audiences [40].

The emergence of social media has also drawn sociologists’ interests to study this

phenomenon in online communities. For instance, sociologists theorize that, because

users do not have a clear idea of the exact audiences in public social media, they

end up with blurred context boundaries [70]. However, because different types of be-

haviors, such as posting or commenting, affect very different audiences, our analysis

below suggest that users still show different ’identities’, exhibiting different types of

behaviors around different topics in social media. By conducting qualitative study,

Zhao et al. point out that users experience social media platforms such as Facebook

as multiple different functional regions, similar to their multiple identities in real life

[120].

Understanding the content and topic differences among user activity types pro-

vides us insights on detecting targeted events in social media. The uniqueness of one

type of activities can be indicating to specific types of targeted events. Our general

detection framework is to leverage such uniqueness from signals to identify target

clusters with high accuracy.

After we have shown the differences among the four common types of activities, in

the next section, we continue our content analysis on user asking questions activities

and have an in-depth understanding of its characteristics. They are interesting to

study because questions are related to what people want to know, and it could be

potential signals for many different types of targeted events. We will show how user

asking question activities are different from other activities, and how their uniqueness

can be indicating to bursting events and emerging information needs. In next chapter,

we will show that enquiries, a specific type of questions, can be used as signals to
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detect social media rumors.

4.3 Identify Questions Asked in Twitter

Although a simple way to identify questions is to find question mark, not all tweets

with question marks are real questions. In order to detect signal activities of emerging

information needs from tweets, we need to distinguish tweets that convey a real

information need from many false positives such as rhetorical questions, expressions

of sentiments/mood, and many other instances. Figure 4.1 presents examples of

tweets that convey real information needs and those which don’t.

In this section, we present the task of detecting question asking activities from

tweets which is casted as a text classification problem. Given a tweet that contains

one or two question marks, the task is to determine whether it expects an infor-

mational answer or not. In this section, we first describe our dataset, then give a

formal definition of this problem and rubrics based on which human annotators can

accurately classify a tweet. A qualitative content analysis is conducted in order to

develop a codebook of classification and generate a set of labeled tweets as train-

ing/testing examples. We then introduce a classifier trained with these examples,

using the state-of-the-art machine learning algorithms and a comprehensive collec-

tion of features. The performance of the text classifier is evaluated and presented in

the last subsection.

4.3.1 Dataset Description

We analyze a longitudinal collection of microblogs (tweets) collected through the

Twitter stream API with Gardenhose access, which collects roughly 10% of all public

statuses on Twitter. The collection covers a period of 358 days, from July 10th,

2011 to June 31st 2012. A total number of 4,580,153,001 (12.8 million tweets per

day) tweets are included in this collection, all of which are self-reported as tweets in
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English. Every tweet contains a short textual message constrained by 140 characters,

based on which we determine whether it conveys an information need. For every

tweet, we keep the complete metadata such as the user who posted the tweet, the

time stamp at which it was posted, and geographical locations of the user if provided.

In our analysis we adopt only the time and user information but leave the richer

metadata for future analysis.

Note that a tweet may be a retweet of an existing tweet, may mention one or more

users by “@” their usernames, and may contain one or more hashtags (user-defined

keywords starting with an “#”). In our analysis, we keep the original form of all

hashtags, but de-identify all usernames mentioned in the tweets (e.g., substituting all

of them with a token “@someuser”).

To analyze information needs in these tweets, we choose tweets that appear to

be questions as signals. Specifically, we focus on tweets that contain at least one

question mark. Note that this treatment could potentially miss information needs

that are presented as statements. According to statistics in [78], 81.5% of informa-

tion needs asked through social platforms were explicitly phrased as questions and

included a question mark. Questions phrased as statements were often preceded by

inquisitive phrases like “I wonder,” or “I need” [78]. Because there is little foreseeable

selection bias, we choose to focus on questions with explicit question marks instead

of enumerating these arbitrary patterns in an ad hoc manner. In our collection of

tweets, 10.45% of tweets contain explicit appearance of question mark(s).

4.3.2 Training Question Detector

4.3.2.1 Definition and Rubrics

Given a tweet with question marks, our task is to determine whether this tweet

conveys a real information need or not (i.e., real questions). A formal definition is

needed to describe what we mean by “a real information need.” Inspired by the liter-
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ature of how people ask questions on Twitter and Facebook [81, 77], we provide the

following definition and rubrics of “real questions:”

A tweet conveys an information need, or is a real question, if it expects an infor-

mational answer from either the general audience or particular recipients.

Therefore, a tweet conveys an information need if

• it requests for a piece of factual knowledge, or a confirmation of a

piece of factual knowledge. A piece of factual knowledge can be phrased as

a claim that is objective and fact-checkable (e.g., “Barack Obama is the 44th

president of the United States”).

• it requests for an opinion, idea, preference, recommendation, or per-

sonal plan of the recipient(s), as well as a confirmation of such infor-

mation. Here the information been requested is subjective, which is not fact

checkable at the present.

A tweet does not convey an information need if it doesn’t expect an informational

answer. This includes rhetorical questions, expressions of greeting, summary of the

content (eye attractors), imperial requests (to be distinguished from invitations), sar-

casm, humor, expressions of emotion (complaints, regrets, anger, etc), or conversation

starters.

Figure 4.1 shows some examples of tweets conveying information need and tweets

which don’t. Using the description we proposed above, a human annotator can easily

classify a tweet. In the following subsections, we introduce how we extract features

from the tweets, how we select features using the state-of-the-art feature selection

techniques, and how we train classifiers using a single type of feature and then combine

them using boosting.
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4.3.2.2 Human Annotation

Based on the rubrics, we developed a codebook5 and recruited two human anno-

tators to label a random sample of tweets. We sampled 5,000 tweets randomly from

our collection, each of which contains at least one question mark and self-reported

as English. Finally, 3,119 tweets are labeled as real tweets in English and have same

labels by the two coders. Among the 3,119 tweets, 1,595 are labeled as conveying

an information need and 1,524 are labeled not conveying an information need. The

inter-rater reliability measured by Cohen’s kappa score is 0.8350, the proportion of

the agreements in all the results is 91.5%. The 3,119 labeled tweets will be used to

train and evaluate the classifier of information needs.

4.3.2.3 Text Classification

Feature Extraction The classification of tweets is a particularly challenging be-

cause of the extremely short length of content (i.e., a tweet has a limited length of 140

characters). This makes the textual features in an individual tweet extremely sparse.

To overcome this challenge, we not only utilize lexical features from the content of

the tweets, but also generalize them using the semantic knowledge base WordNet

[74, 30]. It is also our intent to include syntactical features as well as metadata

features. We extracted four different types of feature from each tweet, i.e., lexical

ngrams, synonyms and hypernyms of words (obtained from the WordNet), ngrams

of the part-of-speech (POS) tags, and light metadata and statistical features such as

the length of the tweet and coverage of vocabulary( i.e., number of different words

used in a tweet divided by the number of different words in the whole dataset ), etc..

Lexical Features

We included unigrams, bigrams, as well as trigrams. The start and end of a

5The codebook is made available at http://www-personal.umich.edu/~zhezhao/projects/

IN/codebook.html
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tweet are also considered in the ngrams. This gives us great flexibility to capture

features that reflects the intuitions from qualitative analysis. For example tweets

beginning with the 5Ws (who, when, what, where, and why) are more likely to be

real questions. All lexical features are lowercased and stemmed using the Krovetz

Stemmer [55]. Hashtags are treated as unique keywords. To eliminate the noise of

low frequent words, a feature is dropped if it appears less than 5 times. This resulted

in 44,121 lexical features.

WordNet Features

To deal with the problem of data sparsity, we attempt to generalize the lexical

features using the synonyms and the hypernyms of the words in tweets. We hope

this approach would connect different features sharing relevant semantics in different

tweets. By doing this, our algorithm can also handle words that haven’t been seen

in the training data, thus is anticipated to achieve a higher performance with limited

training data.

In [69], the authors studied how different types of relevant words from WordNet

influence the results of text classification. In most cases, using only synonyms and

hypernyms can improve classifiers such as Support Vector Machine (SVM) the most.

We explored different WordNet features in our task and drew the same conclusion.

We therefore adopt only synonyms and hypernyms of words in a tweet as additional

features. Note here we actually excluded this semantic generalization for nouns in a

tweet. This is because our task is to discover patterns of how people ask questions,

instead of what they ask. 23,277 WordNet features are extracted.

Part-of-Speech Features

Compared to a statement, questions present special patterns of syntactic structure.

Therefore we attempt to include syntactic features into consideration. Syntactic

parsing of billions of tweets appears to be costly and probably unnecessary, since the

quality of parsing is compromised given the inaccurate use of language in social media.
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We thus seek for features that capture light syntactic information. We first obtain

part-of-speech of the words in a tweet, and then extract ngrams of these part-of-speech

tags. That is, given a tweet with n words, w1, w2, . . . , wn, we extract grams from

the part-of-speech sequence of the tweet, is t1, t2, . . . , tn, and then extract unigrams,

bigrams and trigrams from this part-of-speech sequence as additional features of the

tweet. 3,902 POS features are extracted in total.

Meta Features

We also include 6 metadata features and simple statistical features of the tweet

such as the length of the tweets, the number of words, the coverage of vocabulary, the

number of capitalized words, whether or not the tweet contains a URL, and whether

or not it mentions other users. We believe these features are possibly indicative of

questions.

Feature Selection The four types of extracted features represent each tweet as a

vector with a very large number of dimensions. This is not surprising given the huge

and open vocabulary in Twitter. Even though we can reduce the number of features

by various heuristics of post-processing, the number of features remaining is still far

larger than the number of training examples. Therefore, it is essential to conduct

feature selection and further reduce the dimensionality of the data.

In this work, we adopt the state-of-the-art feature selection method named Bi-

Normal Separation (BNS) proposed in [32]. In this work, the author proved that

the proposed metric for feature selection outperformed other well-known metric such

as Information Gain and Chi-distance. Specifically, let tp and tn be the number

of positive cases with and without a given feature, fp and fn be the number of

negative cases with and without the feature. Let tpr be the sample true positive

ratio (i.e., tpr = tp/(tp+ fn)) and fpr be the sample false positive ratio (i.e., fpr =

fp/(fp+ tn)).
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The BNS metric of a given feature can be calculated by

‖F−1(tpr)− F−1(fpr)‖, (4.1)

where F is the Normal cumulative distribution function.

4.3.2.4 Training Classifier

After feature selection, we move forward and train four independent classifiers

using the Support Vector Machine (SVM) [22], based on each of the four types of

features. then combine the four classifiers that represent four types of features into

one stronger classifier using boosting. This is done through the Adaptive Boosting

method called Adaboost [34].

Adaboost is an effective algorithm that trains a strong classifier based on several

groups of weak classifiers. Usually Adaboost can obtain one classifier better than

any of the weak classifiers. However, when the performances of the weak classifiers

are higher than a certain level, it is hard to use this algorithm to generate a better

classifier. This situation seems to apply to our scenario, since the SVM classifiers are

sufficiently strong. In [66], the authors indicated that the reason why this problem

occurs is that after several iterations, when the combination of weak classifiers starts

to achieve a higher performance, the diversity inside the combination is getting lower.

That says, new weak classifiers are likely to make same predictions as the old ones.

To solve this problem, they add a parameter to control for the diversity of the weak

learners in each iteration. We aslso adopt this technique to combine the four SVM

classifiers.

We define parameter div as the threshold of a minimum diversity of a new weak

classifier to be added in each iteration in the Adaboost. The diversity that a new

classifier could add in iteration t is defined as follows:
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divt =
1

N

N∑
i=1

dt(xi) (4.2)

dt(xi) =

 0 ∃k, fk(xi) = ft(xi)

1 ∀k, fk(xi) 6= ft(xi)
(4.3)

Here dt(xi) is the diversity of classifier to be added in iteration t to data point

xi. N is the size of the training set. fk(xi) is the predicted result of the classifier

in iteration k for data point xi. Our information need detection algorithm uses this

modified Adaboost named AdaboostDIV. The diversity of a classifier represents how

much new information it could provide to a group of classifiers that have already

been trained in Adaboost. This value will be smaller and smaller when there are

more classifiers adopted. In each iteration of AdaboostDIV, we examine the diversity

of a new classifier. If the diversity of this classifier is higher than minimal threshold

div, we accept this classifier into the group of classifiers. Otherwise we terminate the

algorithm.

4.3.3 Evaluation

We train and evaluate our algorithm using the manually labeled set of 3,119

tweets. 10-fold cross validation and the metric of classification accuracy are adopted

to evaluate each candidate classifier.

Before feature selection, there are 44,121 ngram lexical features, 23,277 WordNet

features, 3,902 Part-of-Speech features, and 6 meta features. In Table 4.2, we compare

the performance of the four SVM classifiers using each of the four types of features and

various feature selection algorithms. The findings are consistent with the conclusions

in [32]. Feature selection using the BNS metric outperformed two other metrics,

namely accuracy (ACCU) and Information Gain, both of which improved over the

classifiers without feature selection. Among the four types of features alone, ngram
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Feature Type Lexical WordNet POS Meta

Raw 0.745 0.610 0.668 0.634

ACCU 0.790 0.673 0.718 /

Information Gain 0.804 0.676 0.723 /

BNS 0.856 0.702 0.745 /

Table 4.2: Results of SVM classifiers. Lexical features performed the best. Feature
selection improved classification accuracy.

Figure 4.2: Feature selection using BNS

lexical features appear to provide the best performance, while the six meta features

provide the weakest result which is also far better than random.

Figure 4.2 shows a fine tuning of the number of features selected using BNS.

Clearly, when too few or too many features are selected, the classification performance

drops because of insufficient discriminative power and overfitting, respectively. Based

on our experiment results, we select 3,795 top ranked lexical features, 3,119 top

WordNet features, as well as 505 top Part-of-Speech features.

At last, we combined the four SVM classifiers, representing four types of features,

using AdaboostDIV. The accuracy of the classifier (with 10-fold cross validation)

improved from 85.6% to 86.6%. The small margin suggests that the lexical features

are strong enough in detecting information needs, while other types of features add

little to the success. Using Adaboost instead of AdaboostDIV compromised the

performance, which is consistent to the findings in [66].
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Finally, the best performing classifier (four SVM classifiers combined with Ad-

aboostDIV, with feature selection with BNS) is adopted to classify all the tweets in

our collection. In our evaluation, the improvements made by feature selection and

AdaboostDIV passed the paired-sample t-test at the 5% significance level.

4.4 Analyzing the Characteristics of Question Asking Activ-

ity

User asking question activities are related to the emerging information needs.

Although many social media users won’t ask questions when they have information

needs, when such signal behaviors appears, just like the tip of the iceberg, it will

indicate that there is an emerging information needs. In this application, we cannot

extract non-signal behaviors such as searching in Twitter or search engines and read-

ing posts. But with the large amount of questions detected in our dataset, we can

still capture many meaningful emerging information needs.

After applying the text classifier above to the entire collection of tweets, we de-

tected 136,841,672 tweets conveying information need between July 10th 2011 to June

31st 2012. This is roughly a proportion of 3% of all tweets, and 28.6% of tweets with

question marks. With this large scale collection of real questions on Twitter, we

are able to conduct a comprehensive descriptive analysis of user’s information needs.

Without ambiguity, we call all the tweets collected as the Background tweets,

whether they are questions or not. We call tweets that convey information needs as

Information Needs (or short as IN), or simply Questions.

4.4.1 General Trend Analysis

Once we are able to accurately identify real questions (or information needs),

the first thing to look at is how many questions are being asked and how they are
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distributed. Below we present the general trend of the volumes of questions being

asked comparing to the total number of tweets in the background. For plotting

purposes, we choose to show the trend of the first 5 months from this entire time scope,

from July 10th 2011 to November 30th, 2011. Most of the events occurred during

this period of time, so plotting the whole year’s time series would take more space

and cannot be shown distinctly. These 5 months contain a collection of 1,640,850,528

tweets, in which 51,263,378 conveyed an information need. We use this time period

for all visualization and time-series analysis below.

Since there is a huge difference between the raw numbers of information needs

and the background tweets, we normalize the time series so that the two curves are

easier to be aligned on the plot. Specifically, we normalized all the time series using

the Z-normalization. That is, for the ith data point valued xi in the time series, we

transform the value by following equation:

x′i =
xi − µ
σ

(4.4)

Where µ and σ are the mean and standard deviation of all data points in this time

series. This simple normalization doesn’t change the trend of the time-series, but

allows two series of arbitrary values being aligned to the same range. In the plot, a

positive value means the daily count of IN/background tweets is above the average

count over time, and a negative value means the count is below the mean. An actual

value x on one day indicates that the count of that day is x standard deviations away

from the average.

From Figure 4.4.1, we observe that both the number of tweets and the number

of questions are increasing over time. There are observable but weak days-of-week

patterns, which differ search engine logs which present significant weekly patterns

(more queries on weekdays than weekends) [72]. The trend is much more sensitive
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Figure 4.3: Questions and background tweets over time.

than that of query logs [72], with obvious and irregular spikes and valleys scattered

along the time line. This implies that user’s information seeking behaviors on Twitter

are more sensitive to particular events than the behaviors on search engines. The

subfigure presents a strong daily pattern, where both the total number of tweets and

information needs peak in late morning and early evening, leaves a valley after noon,

and sinks soon after midnight.

In general, the trend of information needs correlates with the trend of the back-

ground, which means the information needs on Twitter are likely to be social driven

but not information driven. This is not surprising since real world events are likely to

stimulate both the demand and supply of information. The more interesting signals

in the plot are the noticeable differences between the two curves. On some days there

is a significantly overrepresented “demand” of information (i.e., questions) than the

“supply” (i.e., background), where there appears a noticeable gap between the two

curves. This offers opportunities to analyze what people want, provide better recom-

mendations, and develop propaganda. It is also an interesting observation from the

hours-of-day trend that information needs are always overrepresented between the

two peaks, before and after noon.
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(a) Trend of tweets conveying information need with
keyword “obama”

(b) Trend of tweets conveying information need with
keyword “nasa”

(c) Trend of tweets conveying information need with
keyword “scandal”

Figure 4.4: Trend of tweets conveying information need with different keywords
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4.4.2 Keyword Analysis

With a sense of the general trend of how people ask, the next question is what

people ask. Previous literature has provided insights on the categorization and dis-

tribution of topics of questions [78, 81]. Here we are not repeating their efforts, but

to provide a finer granularity analysis of the keywords. After removing stopwords

from the tweets, we extracted all unigrams and bigrams from tweets classified as con-

veying information needs. We trim this list of keywords by keeping those appeared

every day of our time frame. We believe these keywords that the most representative

of the everyday information needs of users in Twitter instead of information needs

only triggered by particular events. For each of these keywords, we keep the daily

count of the number of background tweets containing the keyword and the number

of information needs containing the keyword.

With these counts, we can distinguish keywords that appeared frequently in in-

formation needs and those appeared frequently in the background. Table 4.3 lists a

subset of keywords that are significantly overrepresented in information needs (i.e.,

have a much larger frequency in IN than in Background tweets, normalized by the

maximum of the two frequencies), compared to the keywords significantly overrep-

resented in the background. One can observe from the table that keywords about

technology (e.g., “noyoutube,” “pocket camera,” “skype,” “waterproof phone”) and

recommendation seeking (e.g., “any suggestion,” “any recommend”) have a high pres-

ence in questions while URLs (e.g., “http”), greetings (e.g., “good night,” “god bless”)

and requests (e.g., “follow back”) are more frequent in the background. This finding

is consistent with the quantitative analysis in literature [78, 81].

We further dropped the keywords that appeared less than 10 times a day in aver-

age, from which we obtained 11,813 keywords. For these keywords, we generated time

series that represent the demand of information about these keywords, by counting

the number of questions and general tweets containing particular keywords everyday.
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Frequent in IN Frequent in Background

noyoutube http
butterfly fall user video

pocket camera follow back
Monday retweet
skype beautiful

any suggestion photo
waterproof phone good night
any recommend god bless

Table 4.3: Overrepresented keywords in information needs and background

Figure 4.4 presents the trends of information needs and background tweets con-

taining three particular keywords, namely “Obama,” “NASA,” and “scandal.” In

Fig. 4.4(a), we can see that the trend of information needs closely correlates with

the background, with several noticeable bursting patterns. These patterns generally

correspond to real world events. For example, the largest spike around September 8th

was correlated with President Obama’s speech about the $450 billion plan to boost

jobs. Such types of major events are likely to trigger both questions and discussions

in online communities, thus have caused a correlated spike of both information needs

and the background.

The trends of the keyword “NASA” present a different pattern. The questions

and the background align well around the big spike, but disjoin in other time periods.

In general, the trend of information needs is more sensitive than the background

discussions, presenting more fluctuation. These smallish spikes are not triggered by

major events, but rather reflecting the regular demands of information. The trends of

the keyword “scandal” is even more interesting. Even the major spikes don’t correlate

with questions and with the background. For example, the big spike in information

needs was triggered by a widespread cascade of tweets that connects “Priest sex

scandal” with “Notre Dame football,” which is more like a cascade of persuasion,

rumor, or propaganda instead of an real event.
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Figure 4.5: Bursts detected from IN and background

Figure 4.6: Entropy of word distributions in questions and background

4.4.3 Burstiness Analysis

The anecdotal examples above presented interesting insights in understanding the

different roles of bursting patterns in the time series. This is done by comparing

individual spikes in information needs with the pattern in the background in the

same time period. A different perspective of investigating such bursting patterns is to

compare them longitudinally. How many spikes are like the spike caused by Obama’s

job speech? If a similar bursting pattern can be found among the information needs

of a different keyword, that means there is an event that have made a similar impact

with the president’s speech in terms of triggering the users’ behaviors of information
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seeking.

Literature has thrown light on how to detect real events based on burst detection in

social media [115, 114]. In our analysis, we adopt a straightforward solution to detect

similar burst events in the time series of information needs and the background.

Specifically, we select a signature bursting pattern of a real event as a query (e.g.,

the spike corresponding to Obama’s job speech in Figure 4.4(a)) and retrieve all

similar spikes in the time series of other keywords. The similarity measurement is the

Euclidean distance between Z-normalized time series. By doing this, we found 14,640

burst patterns in the time series of information needs and 12,456 burst patterns in

the background of all keywords. Figure 5 plots the number of burst events that have

a similar impact as the Obama speech, aggregated from the time series of all different

keywords. Apparently, there are more such spikes in the time series of information

needs rather than in the background, which reassures our finding that the behavior

of question asking is more sensitive than the narrative discussions of events. The

number of bursting patterns tops in late August and the month of October, which

coincides with the two series of events related to “Hurricane Irene” and “Occupy

D.C.”

4.4.4 Entropy Analysis

The investigation of bursting patterns provides insights about understanding the

impact of real events on Twitter users’ information seeking behaviors. The impact

is featured by the sudden increase of information needs (or background tweets, or

both) containing certain keyword. Another way to measure the impact of an event

is to look at how it influences the content of information people are tweeting about

and asking for. Shannon’s Entropy [36] is a powerful tool to measure the level of

uncertainty, or unpredictability of a distribution. It is well suited for sizing challenges,

compression tasks, as well as the measure of diversity of information. We apply
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Shannon’s entropy to the information needs detected, by measuring the entropy of

the word distribution (a.k.a., the language model) in all background tweets and in all

questions every day. Clearly, a lower entropy indicates a concentration of discussions

on certain topics/keywords, and a higher entropy indicates a spread of discussions on

different topics, or a diversified conversation.

Our intuition is that if a major event influences the discussion and information

seeking behaviors, the topics in the background or in the questions on that day will

concentrate on the topics about that event. Thus we are likely to observe a decreased

entropy. Figure 4.6 plots the entropy of the language models of all information needs,

and of all tweets in the background over time. We mark several points in the time

series where we observe a sudden drop of entropy on the next day, which indicates

a concentration of topics being discussed/asked. We selected these points by the

significance of the entropy drop and the differences between the entropy of IN and

the entropy of background. We then extract the keywords that are significantly

overrepresented in the day after each marked point, which give us a basic idea about

the topics that have triggered this concentration. These keywords are good indicators

of the actual events that have triggered the concentration (e.g., “the hurricane Irene,”

“arsenal chelsea” and “the rumor about the release date of iphone 5”).

It is especially interesting to notice that on some particular days, entropy drops in

information needs but increases in the background. We believe these are very indica-

tive signals for monitoring what the public needs. For example, on October 12th, 2011,

there was a sudden drop of entropy in information needs which didn’t occur in the

background tweets. The discussions concentrated on keywords like “ios,” “update,”

and “blackberry.” Indeed, on that day Apple released the new operation system iOS

5, which triggered massive questions about how to get the updates. During the same

time, there was a series of outages which caused a shutdown of the Blackberry Inter-

net Service. Such an event has contributed in the concentrations of questions about
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Figure 4.7: Questions of a user of low entropy.

Figure 4.8: Questions from a user of high entropy.

Blackberry. It is interesting to see that these events about technology indeed had a

larger impact in questions instead of the background tweets, which is again consistent

with the statistics in literature [78, 81]. Clearly, analyzing the entropy of information

needs provides insights on detecting events that have triggered the concentration of

information needs. Such discoveries indicate compelling opportunities for search and

recommender services, advertising, and rumor detection.

Interestingly, we found entropy analysis not only a powerful tool for macro-level

analysis of the impact of events, but also effective in micro-level analysis of the in-

formation seeking behaviors of individual users. Indeed, we can also compute the

entropy of the distribution of the number of questions that a user asks among differ-

ent hours of a day. Behaviors of users with a low entropy are more predictable than

behaviors of users with a high entropy. Below we show the two behavior patterns

from two specific users. One is with high entropy and the other is with low entropy

in Figure 4.7 and 4.8 respectively. In these two figures, the x-axes represent the 30

days in September, 2011, and the y-axes represent the 24 hours in each day. The

different colors in these two figures represent different numbers of posts (the legends

are shown on the right side of the figures).

55



Clearly, the user with low entropy is fairly predictable: he always asks questions

at 7am. By looking into his tweets, we found that this is an automatic account

that retweets open questions from Yahoo! Answers. The second user is much less

predictable, who seemed to be asking questions all over the hours of a day except for

the bed time. By looking into his tweets, we found that this is a user who uses Twitter

as an instant message platform, who chats with friends whenever he is awake. This

user-level analysis on entropy of information needs presents insights on characterizing

different individual behaviors.

4.4.5 Prediction of Trending Events

Up to now, we have presented many interesting types of analysis, mostly on the

longitudinal patterns of information needs. We see various insights about how to

make use of the analysis of information needs in Twitter. Previous literature has

visioned the different and complementary roles of social networks and search engines

in information seeking. What if we compare the information needs (questions) posted

on Twitter and the information needs (queries) submitted to search engines? Is one

different from the other? Can one predict the other? If interesting conclusions can

be drawn, it will provide insight to the search engine business.

To do this, we compare the trends of information need in Twitter with the trends

of Google search queries. Figure 4.9(a) shows the time series of the Twitter questions

containing the keyword “Justin Bieber” and the Google trend of the query “Justin

Bieber”. We use this query as an example because it is one of the most frequent search

queries in Google 2011 and is also contained in a large number of Twitter questions.

We can see that information needs in Twitter is more sensitive to bursting events,

while the same queries in Google presents a more periodic pattern (e.g., days-of-week

pattern).

We then move forward to test whether the information needs from one platform
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(a) Keyword: Justin Bieber

(b) Background v.s. information needs in predicting
Google trends. The higher the better

(c) Information need v.s. Google trends in predict-
ing each other. The higher the better

Figure 4.9: Twitter information needs can predict search queries.
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can predict those in the other, using the Granger causality test. The Granger causality

test is a statistical hypothesis test for determining whether a time series is useful in

forecasting another [41]. In [11], it is used to test whether the sentiment of Twitter

users can predict stock market.

Specifically, we selected a subset of keywords and manually downloaded the trends

of these keywords as queries submitted to Google 6. The subset of keywords contains

twenty keywords that have a high frequency in background tweets, twenty keywords

that have a high frequency in the questions, and twenty keywords from the most

popular search queries in Google. To select this subset, we sorted all the keywords

by frequency from the three different sources and select the top 20 named entities

and nouns. If there is an overlapping keyword from multiple sources, we simply add

a new keyword from the source with lower frequency of the overlapping keyword7.

We then use the Granger causality test to test whether the three trends (Twitter

background, Twitter information needs, and Google queries) of each keyword can

predict each other. By changing the parameters in Granger causality test, we can

test the prediction power of one time series to the other for different lags of time.

Here, we only show the results with lag of 5 days. We obtained similar results with

other different lags.

Results show that the trends of information needs in Twitter have a good predic-

tive power in predicting trends of Google queries and are less likely to be predicted

by the Google trends. This is measured by “of how many keywords, one type of time

series can predict another type of time series, given certain significance level.” From

Figure 4.9(b), we see that the information needs in Twitter have a better predictive

power than the background in predicting Google trends. From Figure 4.9(c), we see

that the information needs in Twitter have a better predictive power in predicting

6Since we don’t have access to real search logs, we used the Google trend: http://www.google.
com/trends/

7The List of the keywords can be found at http://www-personal.umich.edu/~zhezhao/

projects/IN/wlist
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Google trends rather than the other way around. Between information needs in Twit-

ter and Google trends, the questions in Twitter have a stronger predictive power of

Google queries, which successfully predicts the Google trends of more than 60% of

the keywords with a significance level of 0.05. Among these keywords, 9 of them

are from the popular Google queries. This is a promising insight for search engine

practitioners to closely watch the questions in Twitter and improve the search results

of targeted queries whenever a bursting pattern is observed.

4.5 Related Work

To the best of our knowledge, this is the first work to detect and analyze informa-

tion needs from billion level, longitudinal collection of tweets. Our work is generally

related to the qualitative and quantitative analysis of information seeking through

social platforms (e.g., [81, 19, 77]) and temporal analysis of online user behaviors

(e.g., [11, 39]).

4.5.1 Questions on Social Platforms

As described in Section 4.1, there is a very recent interest in understanding how

people ask questions in social networks such as Facebook and Twitter [19, 78, 26, 81,

79, 67]. This body of work, although generally based on surveys or small scale data

analysis, provides insights to our large-scale analysis of information needs in Twitter.

For example, In [81], the authors labeled 4,140 tweets using Mechanical Turks and

analyzed 1,351 of them which were labeled as real questions. They presented a rich

characterization of the types and topics in these questions, the responses to these

questions, and the effects of the underlying social network. In [78, 77, 113], Morris

et al. surveyed whether and how people ask questions through social networks, the

differences between these questions and questions asked through search engines, and

how different cultures influence the behaviors. Efron and Winget further confirmed
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this difference with a study of 375,509 tweets. Using a few simple rules, they identified

13% of these tweets as questions. They also provided preliminary findings on how

people react to questions.

More sophisticated methods have been proposed to detect questions in online

forums and Q&A sites [21, 109]. A recent work [62] studied the same problem in the

context of Twitter, which presented a classifier that achieved 77.5% of accuracy in

detecting questions from tweets. A much more accurate classifier is needed, however,

to analyze information needs at a very large scale.

It is interesting to see the effort of making use of the understandings of social

information seeking. In [47], Morris et al. proposed SearchBuddies, an automatic

content recommendation for information seeking behavior. The proposed work finds

relevant content based on the content and social context of Facebook status asking

for information. Such effort can also be found in work like [29, 77, 106], where a new

paradigm of search service, social search, is discussed. These explorations provided

good motivations to our effort of large-scale analysis of information needs on social

platforms.

4.5.2 Temporal Analysis of User Activities

The techniques of analysis used in our work is related to the existing work of ana-

lyzing user behaviors in general. For example, in [11], the authors proved that senti-

ment trends in Twitter has a power of predicting the Daw Jones Industrial Average.

In their approach, the Granger Causality Test is used to test this predictive power.

In [39], the authors used the Google trend related to influenza spread worldwide to

detect which stage the flu was at and to predict the trend of the flu. Our analysis pro-

vides another important application of these methods. Note that our analysis is also

related to the analysis of large scale search engine logs (e.g., [97, 104, 72]). Indeed, we

do anticipate the analysis of information needs in social platforms to complement the
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analysis of information needs through search engines, and provide a totally different

perspective and insights to search engine practitioners.

4.6 Summary

In this chapter, we studied the differences between different types of user activities

and focused on analyzing one specific type of activities, user asking question activities.

This type of activities through social platforms attracted much interest because of its

unique properties and complementary role to Web search. In this work, we present the

first large-scale analysis of user asking question activities in Twitter. We proposed

an automatic classification algorithm that distinguishes real questions from tweets

with question marks with an accuracy as high as 86.6%. Our classifier makes use

of different types of features with the state-of-the-art feature selection and boosting

methods.

We then present a comprehensive analysis of the large-scale collection of questions

we extracted. We found that questions being asked on Twitter are substantially dif-

ferent from the topics being generated by other types of activities. Question asking

behavior are highly related to bursting events and have a considerable power of pre-

dicting emerging information needs shown in Google trend. Many interesting signals

emerge through longitudinal analysis of the volume, spikes, and entropy of questions

on Twitter, which provide valuable insights to the understanding of the impact of real

world events in user’s information seeking behaviors, as well as the understanding of

individual behavioral patterns in social platforms.

Based on the insights from this analysis, we foresee many potential applications

that utilizes the better understanding of what people want to know on Twitter. One

possible future work is to develop an effective algorithm to detect and predict what

individual users want to know in the future. By doing this one may be able to develop

better recommender systems on social network platforms. With the presumption of
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accessing large scale search query logs, a promising opportunity lies in a large-scale

comparison of social and search behaviors in information seeking. On the other hand,

improving the classifier to detect tweets with implicit information need such as tweets

that is not an explicit question or without a question mark is also a potential future

work. Furthermore, it is interesting to do some user-level analysis, such as studying

the predictive power of different groups of users to see whether there exists a specific

group of users that contributes to predicting the trend most.

Some findings in this analysis help us understand how users’ posts can reflect the

intention or reactions of their activities. The content and topic differences among

different types of activities suggest that, some specific type can be unique and indica-

tive to some social media events. Question asking activities, and question posts are

the explicit expressions of users’ information needs of various topics. As questions in

general are highly correlated with bursting events, some questions, such as enquiries,

are highly correlated with unconfirmed events, i.e., rumors. This correlations initiates

our study on detecting social media rumors. In the next chapter, we will introduce

our rumor detection system that uses enquiry posts as signals.
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CHAPTER V

Early Detection of Social Media Rumors

In this chapter, we build a social media rumor detection system. Many previous

event detection techniques identify trending topics in social media, even topics that

are not pre-defined. We use our proposed general framework in this dissertation to

identify trending rumors, which we define as topics that include disputed factual

claims. Putting aside any attempt to assess whether the rumors are true or false, it

is valuable to identify trending rumors as early as possible.

It is extremely difficult to accurately classify whether every individual post is or

is not making a disputed factual claim. We are able to identify trending rumors by

recasting the problem as finding entire clusters of posts whose topic is a disputed

factual claim.

Inspired by our content analysis in last chapter, the key insight is that when there

is a rumor, even though most posts do not raise questions about it, there may be

a few that do. If we can find signature text phrases that are used by a few people

to express skepticism about factual claims and are rarely used to express anything

else, we can use those as detectors for rumor clusters. Indeed, we have found a few

phrases that seem to be used exactly that way, including: “Is this true?”, “Really?”,

and “What?”. Relatively few posts related to any particular rumor use any of these

enquiry phrases, but lots of rumor diffusion processes have some posts that do and
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have them quite early in the diffusion.

We have developed a technique based on searching for the enquiry phrases, clus-

tering similar posts together, and then collecting related posts that do not contain

these simple phrases. We then rank the clusters by their likelihood of really contain-

ing a disputed factual claim. The detector, which searches for the very rare but very

informative phrases, combined with clustering and a classifier on the clusters, yields

surprisingly good performance. On a typical day of Twitter, about a third of the top

50 clusters were judged to be rumors, a high enough precision that human analysts

might be willing to sift through them.

5.1 Overview

On April 15th of 2013, two explosions at the Boston Marathon finish line shocked

the entire United States. The event dominated news channels for the next several

days, and there were millions of tweets about it. Many of the tweets contained rumors

and misinformation, including fake stories, hoaxes, and conspiracy theories.

Within a couple of days, multiple pieces of misinformation that went viral on

social media were identified by professional analysts and debunked by the mainstream

media.1 These reports typically appeared several hours to a few days after the rumor

became popular and only the most widely spread rumors attracted the attention of

the mainstream media.

Beyond the mainstream media, rumor debunking Websites such as Snopes.com

and PolitiFact.org check the credibility of controversial statements.2 Such Websites

heavily rely on social media observers to nominate potential rumors which are then

fact-checked by analysts employed by the site. They are able to check rumors that

1Source: http://www.cnn.com/2013/04/16/tech/social-media/

social-media-boston-fakes/

and http://www.scpr.org/blogs/news/2013/04/16/13322/

boston-marathon-bombings-rumor-control-man-on-the/
2Source: http://www.snopes.com/politics/conspiracy/boston.asp
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are somewhat less popular than those covered by mainstream media, but still have

limited coverage and even longer delays.

One week after the Boston bombing, the official Twitter account of the Associated

Press (AP) was hacked. The hacked account sent out a tweet about two explosions

in the White House and the President being injured. Even though the account was

quickly suspended, this rumor spread to millions of users. In such a special context,

the rumor raised an immediate panic, which resulted in a dramatic, though brief,

crash of the stock market [25].

The broad success of online social media has created fertile soil for the emergence

and fast spread of rumors. According to a report of the development of new media in

China, rumors were detected in more than 1/3 of the trending events on microblog

media in 2012.3

Rather than relying solely on human observers to identify trending rumors, it

would be helpful to have an automated tool to identify potential rumors. The goal

of such a tool would not be to assess the veracity of claims made in the rumors,

merely to identify when claims were being spread that some people were questioning

or disputing. If such a tool can identify rumors earlier and with sufficiently high

precision, human analysts such as journalists might be willing to sift through all the

top candidates to find those that were worth further investigation. They would then

assess the veracity of the factual claims. Important rumors might be responded to

earlier, limiting their damage. In addition, such a tool could help to develop a large

collection of rumors. Previous research on rumor diffusion has included case studies

of individual rumors that spread widely (e.g., [44]), but a fuller understanding of the

nature of rumor diffusion will require study of much larger collections, including those

that reach only modest audiences, so that commonalities and differences between

3Ironically, this report was misinterpreted by a major news media source, which coined a new

rumor that “more than 1/3 of trending topics on Weibo are rumors.”

Source: http://truth.cntv.cn/erjiye/20/
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diffusion patterns can be assessed.

We propose a new way to detect rumors as early as possible in their life cycle.

The new method utilizes the enquiry behavior of social media users as sensors. The

key insight is that some people who are exposed to a rumor, before deciding whether

to believe it or not, will take a step of information enquiry to seek more information or

to express skepticism without asserting specifically that it is false. Some of them will

make their enquiries by tweeting. For example, within 60 seconds after the hacked AP

account sent out the rumor about explosions in the White House, there were already

multiple users enquiring about the truth of the rumor (Figure 5.1). Table 5.1 shows

some examples of these enquiry tweets.

(a) 60 seconds after the
hacked twitter account
sent out the White House
rumor there were already
sufficient enquiry tweets
(blue nodes).

(b) Two seconds after the
first denial from an AP em-
ployee and two minutes be-
fore the official denial from
AP, the rumor had already
gone viral.

Figure 5.1: Snapshots of the diffusion of the White House rumor. Red, yellow and
blue nodes: Twitters spreading, correcting, and questioning the rumor.

Of course, not all tweets about a rumor will be such skeptical enquiries. As

features for classifying individual tweets, enquiry signals are insufficient. Even if they

yielded high precision, the recall would be far too low. As features for classifying

tweet clusters, however, they provide surprisingly good coverage. Our technique for

automatically detecting rumors is built around this signal.

We make three contributions in this work. First, we develop an algorithm for

identifying newly emerging, controversial topics that is scalable to massive stream of

tweets. It is scalable because it clusters only signal tweets rather than all tweets,
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Table 5.1: Examples of enquiry tweets about the rumor of explosions in the White
House

Oh my god is this real? RT @AP: Breaking:
Two Explosions in the White House and Barack
Obama is injured

Is this true? Or hacked account? RT @AP
Breaking: Two Explosions in the White House
and Barack Obama is injured

Is this real or hacked? RT @AP: Breaking:
Two Explosions in the White House and Barack
Obama is injured

How does this happen? #hackers RT @user: RT
@AP: Breaking: Two Explosions in the White
House and Barack Obama is injured

Is this legit? RT @AP Breaking: Two Explosions
in the White House and Barack Obama is injured

and then assigns the rest of the tweets only if they match one of the signal clusters.

Second, we identify a set of regular expressions that define the set of signal tweets.

This crude classifier of signal tweets based on regular expression matching turns out

to be sufficient. Third, we identify features of signal clusters that are independent

of any particular topic and that can be used to effectively rank the clusters by their

likelihood of containing a disputed factual claim.4

The algorithm is evaluated using the Twitter Gardenhose (a 10% sample of the

overall tweet stream) to identify rumors on regular uneventful days. We also evaluate

it using a large collection of tweets related to the Boston Marathon bombing event.

We compare the algorithm to various baselines. It is more scalable and has higher

precision and recall than techniques that try to find all trending topics. It detects

more rumors, and detects them much earlier than a related technique that treats

only debunks or corrections as signals of rumors as well as techniques that repy on

tracking all trending topics or popular memes. The performance is also satisfactory in

4At the risk of redundancy, we emphasize that our technique does not make any attempt to assess
whether rumors are true or not, or classify or rank them based on the probability that they are true.
We rank the clusters based on the probability that they contain a disputed claim, not that they
contain a false claim.
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an absolute sense. It successfully detects 110 rumors from the stream of tweets about

the Boston Marathon bombing event, with an average precision above 50% among

the top-ranked candidates. It also achieves a precision of 33% when outputting 50

candidate rumors per day from analysis of the Gardenhose data.

5.2 Related Work

5.2.1 Detection Problems in Social Media

Although rumors have long been a hot subject in multiple disciplines (e.g., [24, 91,

76]), research on identifying rumors from online social media through computational

methods has only begun in recent years. Our previous work has shown that particular

known rumors can be retrieved with a high accuracy by training a machine learning

classifier for each rumor [86]. Here we seek to identify new rumors, not necessarily

retrieve all the tweets related to them.

Much previous research has tried to develop classifiers for a more challenging

problem than ours, automatically determining whether a meme that is spreading is

true or false ([112, 17, 42, 56]). Application domains have included “event rumors”

in Sun et al. [99], and fake images on Twitter during Hurricane Sandy [44]. The

“Truthy” system attempts a related classification problem, whether a spreading meme

is spreading “organically” or whether it is being spread by an “astroturf” campaign

controlled by a single person or organization [88, 89].

Identifying the truth value of an arbitrary statement is very difficult, probably

as difficult as any natural language processing problems. Even if one knows what

the truth is, the problem is related to textual entailment (recognizing whether the

meaning of one given statement can be inferred from another given statement), the

accuracy of the art of which is lower than 70% on balanced lab data sets [23]. This

is even harder for short posts in social media.
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Thus, most existing approaches that attempt to classify the truthfulness of spread-

ing memes utilize information beyond the content of the posts, usually by analyzing

the collective behavior of how users respond to the target post. For example, many

studies identified the popularity of a post (e.g., number of posts that retweeted or

replied to the post) as a significant signal. This information is used either directly

as features of the “rumor” classifier (e.g., [17, 42, 112, 56, 99, 101]), or as filters

to prescreen candidate topics (e.g., to only consider the most popular posts [43] or

“trending topics” [17, 42]), or both [17, 42]. Other work identified burstiness [101],

temporal patterns [56, 43], or the network structure of the diffusion of a post/topic

[89, 17, 95, 56] as important signals.

Most of these features of the tweet collection can only be collected after the rumor

has circulated for a while. In other words, these features only become meaningful

when the rumor has already reached and been responded to by many users. Once

these features become available, we also make use of them in our classifier that ranks

candidate rumor clusters. However, since we have set ourselves the easier task of

detecting controversial fact-checkable claims, rather than detecting false claims, we

are able to rely for initial detection on content features that are available much earlier

in a meme’s diffusion.

Some existing work uses corrections made by authoritative sources or social me-

dia users as a signal. For example, Takahashi and Igata tracked the clue keyword

“false rumor” [101]. Both Kwon et al. [56] and Friggeri et al. [35] tracked the judg-

ments made by rumor debunking websites such as Snopes.com. Studies of rumors

on Weibo.com also tracked official corrections made by the site [112, 99]. These cor-

rection signals are closer in spirit to those we employ. They suffer, however, from

limited coverage and delays, only working after a rumor has attracted the attention

of authoritative sources. In our experiments we will compare the recall and earliness

of rumor detection through our system using both correction and enquiry signals to
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a more limited version of our system that uses only correction signals.

Another related problem is detecting and tracking trending topics [71] or popular

memes [61]. Even if they are effective at picking up newly popular topics, they are not

sufficiently precise to serve as trending rumor detectors, as most topics and memes

in social media are not rumors. As an example, Sun et al. collected 104 rumors and

over 26,000 non-rumor posts in their experiment [99]. Later in this work, we will

compare the precision of the candidate rumors filtered using our method and those

filtered through trending topics and meme tracking.

5.2.2 Question Asking in Social Media

Another detection feature used in related work is question asking. Mendoza et

al. found on a small set of cases that false tweets were questioned much more than

confirmed truths [73]. Castillo et al. therefore used the number (and ratio) of question

marks as a feature to classify the credibility of a group of tweets. The same feature

is adopted by a few follow-up studies [42, 44].

In fact, the behavior of information seeking by asking questions on online social

media has drawn interest from researchers in both social sciences and computer science

(e.g., [19, 78, 81, 122]). Paul et al. analyzed a random sample of 4,140 tweets

with question marks [81]. Among the set of tweets, 1,351 were labeled as questions

by Amazon Mechanical Turkers. Morris et al. conducted surveys on if and how

people ask questions through social networks. They analyzed the survey responses

and presented findings such as how differently users ask questions via social media and

via search engines, and how different cultures influence the behaviors [78, 77, 113].

These studies have proved that question asking is a common behavior in social media

and provided general understanding of the types of questions people ask.

To study question asking behavior at scale, our previous work detected and ana-

lyzed questions from billions of tweets [122]. The analysis pointed out that the ques-
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tions asked by Twitter users are tied to real world events including rumors. These

findings inspired us to make use of question asking behavior as the signal for detecting

rumors once they emerge.

Though inspired by the value of question marks as features for classifying the

truth value of a post, for our purposes we need a more specific signal. Previous work

has shown that only one third of tweets with question marks are real questions, and

not all questions are related to rumors [81, 122]. In our work, we carefully select a

set of regular expressions to identify enquiry tweets that are indicative of rumors.

5.3 Problem Definition

5.3.1 Defining a Rumor

Many variations of the definition of rumors have been proposed in the literature of

sociology and communication studies [82]. These different definitions generally share

a few insights about the nature of rumors. First, rumors usually arise in the context

of ambiguity, and therefore the truth value of a rumor appears to be uncertain to its

audience. Second, although the truth value is uncertain, a rumor does not necessarily

imply false information. Instead, the term “false rumor” is usually used in these

definitions to refer to rumors that are eventually found to be false. Indeed, many

pieces of truthful information spread as rumors because most people don’t have first-

hand knowledge to assess them and no trusted authorities have fact-checked them

yet. Having such intuitions and following the famous work of DiFonzo and Bordia in

social psychology [24], we propose a practical definition:

“A rumor is a controversial and fact-checkable statement.”

We make the following remarks to further clarify this definition:
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• “Fact-checkable”: In principle, the statement has a truth value that could be

determined right now by an observer who had access to all relevant evidence.

This excludes statements that cannot be fact-checked or those whose truth

value will only be determined by future events (e.g., “Chelsea Clinton will run

for president in 2040.”).

• “Controversial (or Disputed)”: At some point in the life cycle of the statement,

some people express skepticism (e.g., verifications, corrections, statements of

disbelief or questions). This excludes statements that are fact-checkable but not

disputed (e.g., “Bill Clinton tried marijuana,” as Clinton himself has admitted

it.).

• Any statement referring to a statement meeting the criteria above is also clas-

sified as a rumor. This includes statements that point to several other rumors

(e.g., “Click the link http://... to see the latest rumors about Boston Bomb-

ing.”).

The above definition of rumor is effective in practice. As we describe below, human

raters were able to achieve high inter-rater reliability labeling statements as rumors

or not.

5.3.2 The Computational Problem

Based on the conceptual definition, we can formally define the computational

problem of real-time detection of rumors.

Definition V.1. (Rumor Cluster). We define a rumor cluster R as a group of social

media posts that are either declaring, questioning, or denying the same fact claim,

s, which may be true or false. Let S be the set of posts declaring s, E be the set of

posts questioning s, and C be the set of tweets denying s, then R = S ∪ E ∪ C. We

say s is a candidate rumor if S 6= ∅ and E ∪ C 6= ∅.
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Naturally, posts belonging to the same rumor cluster can either be identical to

each other (e.g., retweets) or paraphrase the same fact claim. Posts that are enquiring

about the truth value of the fact claim are referred to as enquiry posts (E) and those

that deny the fact claim are referred to as correction posts (C).

Definition V.2. (Real-time Rumor Detection). Consider the input of a stream of

posts in social media, D = 〈(d1, t1), (d2, t2) . . . 〉, where di, i ∈ [1, 2, · · · ] is a document

posted at time ti. The task of real-time rumor detection is to output a set of clusters

Rt = 〈Rt,1, Rt,2, . . . , Rt,l〉 at time t after every time interval ∆t, where the fact claim

st,j of each cluster Rt,j ∈ Rt is a candidate rumor.

Given any time point t where a new set of clusters are output, the clusters must

satisfy that

∀Rt,j ∈ Rt,∃(d′, t′) ∈ Rt,j s.t. t−∆t < t′ ≤ t

This means that the output rumor clusters at time t must contain at least one

tweet posted in the past time interval ∆t. Clearly, a cluster about a fact claim s

can accumulate more documents over time, such that Rt1,j ⊆ Rt2,j if t1 < t2 and

st1,j = st2,j = s. Therefore, we can naturally define the first time (t1 in the previous

example) where a rumor cluster about a fact claim s is output as the detection time

of the candidate rumor s. Our aim is to minimize the delay from the time when the

first tweet about the rumor is posted to the detection time.

5.4 Early Detection of Rumors

We propose a real-time rumor detection procedure that has the following five

steps.

1. Identify Signal Tweets. Using a set of regular expressions, the system selects

only those tweets that contain skeptical enquiries: verification questions and

corrections. These are the signal tweets.

73



Potential 
rumors

Tweet 
Stream

Signal 
tweet 

clusters

Matched 
non-signal 

tweets 

non-signal tweets

Signal tweets

1. 
Identify 
signal 
tweets

2. Cluster 
signal tweets to 

candidate clusters

3. Extract 
Statements from 

candidate clusters

4. Compare 
statements with 

non-signal tweets

5. Rank candidate 
clusters

Signal tweet 
clusters and 
statements

Labeled 
rumors

Figure 5.2: The procedure of real-time rumor detection.

2. Identify Signal Clusters. The system clusters the signal tweets based on

overlapping content in the tweets.

3. Detect Statements. The system analyzes the content of each signal cluster

to determine a single statement that defines the common text of the cluster.

4. Capture Non-signal Tweets. The system captures all non-signal tweets

that match any cluster’s summary statement, turning a signal cluster into a full

candidate rumor cluster.

5. Rank Candidate Rumor Clusters. Using statistical features of the clusters

that are independent of the statements’ content, rank the candidate clusters

in order of likelihood that their statements are rumors (i.e., controversial and

fact-checkable).

The algorithm operates on a real-time tweet stream, where tweets arrive continu-

ously. It outputs a ranked list of candidate rumor clusters at every time interval ∆t,

where ∆t could be as small as the interval when the next tweet arrives. In practice,

it will be easier to think of the time interval as, for example, an hour or a day, with

many tweets arriving during that interval.
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The system first matches every new tweet posted in that interval to rumor clus-

ters detected in the past, using the same method of capturing non-signal tweets

(component 4). Tweets that do not match to any existing rumors will go through the

complete set of five components listed above, with a procedure described in Figure

5.2. If very short time intervals are used,

5.4.1 Identify Signal Tweets

The first module of our algorithm extracts enquiry tweets. Not all enquiries are

related to rumors [122]. A tweet conveying an information need can be either of the

following cases:

• It requests a piece of factual knowledge, or a verification of a piece of factual

knowledge. Factual knowledge is objective and fact-checkable. For example:

“According to the Mayan Calendar, does the world end on Dec 16th, 2013?”

• It requests an opinion, idea, preference, recommendation, or personal plan of

the recipient(s), as well as a confirmation of such information. This type of

information is subjective and not fact-checkable.

We hypothesize that only verification/confirmation questions are good signals for

rumors. In addition, we expect that corrections (or debunks) are also good signals.

To extract patterns to identify these good signals, we conducted an analysis on a

labeled rumor dataset.

Discover patterns of signal tweets We analyzed 10,417 tweets related to five

rumors published in [86], with 3,423 tweets labeled as either verifications or correc-

tions. All tweets are lowercased and processed with the Porter Stemmer [85]. We

extracted lexical features from the tweets: unigrams, bigrams and trigrams. Then we

calculated the Chi-Square score for each feature in the data set. Chi-Squared test is a
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Pattern Regular Expression Type
is (that — this — it) true Verification

wh[a]*t[?!][?1]* Verification
( real? — really ? — unconfirmed ) Verification

(rumor — debunk) Correction
(that — this — it) is not true Correction

Table 5.2: Patterns used to filter Enquiries and Corrections

classical statistical test of independence and the score measures the divergence from

the expected distribution if one assumes a feature is independent of the class label

[32]. Features with high Chi-Square scores are more likely to appear only in tweets

of a particular class. Patterns which appear excessively in verification and correction

tweets but are underrepresented in other tweets were selected to detect signal tweets.

From the patterns with high Chi-Square scores, human experts further selected those

which are independent of any particular rumor. The patterns we selected are listed

in Table 5.2.

As a way to identify all the tweets containing rumors, this set of regular expressions

has relatively low recall. Even on the 3,423 tweets labeled as either verifications or

corrections in our training data, only 572 match these regular expressions. In the

signal tweet identification stage, however, it is far more important to have a high

precision. Low recall of signal tweets may still be sufficient to get high recall of signal

clusters. By identifying patterns that are more likely to appear only in signal clusters,

even though these patterns only appear a few times inside each rumor cluster, our

framework can make use of them to detect many rumors. Note that although current

patterns are discovered from a data set of five rumors, we could in principle rerun this

process after more rumors are labeled the detection framework, shown as the dotted

line in Figure 5.2.
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5.4.2 Identify Signal Clusters

When a tweet containing a rumor emerges, many people either explicitly retweet it,

or create a new tweet containing much of the original text. Therefore, tweets spreading

a rumor are mostly near duplicates, as illustrated in Table 5.1. By clustering, we aim

to group all the near duplicates, which are either retweets or tweets containing the

original rumor content.

There are many different clustering algorithms such as the K-Means [68]. Many

have a high computational cost and/or need to keep an N × N similarity matrix in

memory. Given that we expect tweets about the same rumor to share a lot of text,

we can trade off some accuracy for efficiency. In contrast to exploratory clustering

tasks where documents may be merely similar, we want to cluster tweets that are near

duplicates. Therefore, using an algorithm such as connected component clustering

can be efficient and effective enough for our purposes. A connected component in an

undirected graph is a group of vertices, every pair of which are reachable from each

other through paths. An undirected graph of tweets is built by including an edge

joining any tweet pair with a high similarity.

We use the Jaccard coefficient to measure similarity between tweets. Given two

tweets da and db, the similarity between da and db can be calculated as:

J(da, db) =
|Ngram(da) ∩Ngram(db)|
|Ngram(da) ∪Ngram(db)|

Here Ngram(da) and Ngram(db) are the 3-grams of tweets da and db. Jaccard dis-

tance is a commonly used indicator of the similarity between two sets. The similarity

values from 0 to 1 and a higher value means a higher similarity.

To further improve efficiency, we use the Minhash algorithm [15] to reduce the

dimensionality of the Ngram vector space, which makes calculating Jaccard similarity

much faster. The Minhash algorithm is used for dimensionality reduction and fast
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estimation of Jaccard similarities. In our approach, we randomly generate 50 hash

functions based on the md5 hash function. Then we use the 50 corresponding Minhash

values to represent each tweet. In our implementation of the connected component

clustering algorithm, we set the threshold for adding an edge at 0.6 (60% of the hashed

dimensions for the two tweets are equal).

The connected components in this graph are the clusters. We create a cluster

for each group of three or more tweets connected together. Connected components

can be found by either breadth-first search or depth-first search, which has a linear

time complexity O(E), where E is the number of edges. Since we want to cluster

tweets that are near duplicates, setting a high similarity threshold (0.6) yields a

relatively small number of edges. At this point, the procedure will have obtained a

set of candidate rumor clusters R. The next stage extracts, for each cluster Ri, the

statement si that the tweets in the cluster promote, question, or attempt to correct.

In our approach, for each rumor cluster, we extract the most frequent and continuous

substrings (3-grams that appear in more than 80% of the tweets) and output them in

order as the summarized statement. We keep the summarization component simple

and efficient in this study, though algorithms such as LexRank [28] may improve the

performance of text summarization.

5.4.3 Capture Non-signal Tweets

After the statement that summarizes the tweets in a signal cluster is extracted,

we use that statement as a query to match similar non-signal tweets from the tweet

stream, tweets that are related to the cluster but do not contain enquiry patterns. To

be consistent, we still use the Jaccard similarity and select tweets whose similarity

score with the statement is higher than a threshold (0.6 in our implementation). This

step partially recovers from the low recall of signal tweet detection using limited signal

patterns.
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Note the efficiency gain that comes from matching the non-signal tweets only

with the statements summarizing signal tweets. In particular, it is not necessary to

compare each of the non-signal tweets with each other non-signal tweet. Non-signal

tweets may form other clusters but we do not need to detect those clusters: they do

not contain nuclei of three connected signal tweets and thus are unlikely to be rumor

clusters.

5.4.4 Score Candidate Rumor Clusters

After we have complete candidate rumor clusters, including both signal and non-

signal tweets, we score them. A simple way to output clusters is to rank them by

popularity. The number of tweets in a cluster measures the statement’s popularity.

The most popular candidates, however, may not be the most likely to be rumors.

There may be statistical properties of the candidate rumor clusters that are better

correlated with whether they really contain disputed factual claims.

We extracted 13 statistical features of candidate clusters that are independent of

any particular substantive content. We then trained classifiers using these features,

to obtain a better ranking function. The features are listed as follows.

• Percentage of signal tweets (1 feature): the ratio of signal tweets to all tweets

in the cluster.

• Entropy ratio (1 feature): the ratio of the entropy of the word frequency distri-

bution in the set of signal tweets to that in the set of all tweets in the cluster.

• Tweet lengths (3 features): (1) the average number of words per signal tweet;

(2) the average number of words per any tweet in the cluster; and (3) the ratio

of (1) to (2).

• Retweets (2 features): the percentage of retweets among the signal tweets and

the percentage of retweets among all tweets in the cluster.
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• URLs (2 features): the average number of URLs per signal tweet and the average

number per any tweet in the cluster.

• Hashtags (2 features): the average number of hashtags per signal tweet and the

number per any tweet in the cluster.

• @Mentions (2 features): the average number of usernames mentioned per signal

tweet and the number per any tweet in the cluster.

We use rumor clusters labeled by human annotators to train a classifier that ranks

the candidate clusters by their likelihood of being rumors (detail described in section

5.3). We select two commonly used classifiers, the Support Vector Machine (SVM

[22]) with the LIBSVM package [18], and the Decision Trees [13] with a Matlab

implementation. 5 The detailed results are shown in Section 5.

5.5 Evaluation

5.5.1 Experiment Setup

In this section, we present empirical experiments to evaluate the proposed method

of early detection of rumors.

5.5.1.1 Data Sets

We first selected two different collections of tweets. One focuses on a specific high-

profile event, i.e. the Boston Marathon bombing in April 2013. The other consists of

a random sample of tweets from a month that was not unusually eventful.

Boston Marathon Bombing (Boston). Two bombs exploded at the finish line

of the annual Boston Marathon competition on April 15th, 2013.6 We chose this

context as a typical example of unpredictable real-world events.

5http://www.mathworks.com/help/stats/classificationtree-class.html
6http://en.wikipedia.org/wiki/Boston_Marathon_bombings, retrieved on March 7, 2015.
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To obtain a complete set of tweets related to this event, we collected tweets con-

taining keywords such as “Boston,” “marathon,” and “explosion” and their variations,

starting several hours after the explosion, using the official tracking API of Twitter’s.

The tracking API returned all tweets containing those keywords after 23:29 GMT. We

used the Twitter search API to collect tweets posted before this time point which con-

tained the same set of keywords. In summary, we collected 10,240,066 tweets through

the search API (13:30 GMT, April 14 to 23:29 GMT, April 15) and 23,001,329 tweets

through the tracking API (23:29 GMT, April 15 to May 10, 2013), adding up to

30,340,218 unique tweets in the entire data set.

Gardenhose. Besides the stream related to a major event, we are also interested in

the performance of the proposed method in detecting rumors from everyday tweets.

We thus collected a tweet stream in a random month of the year 2013 (November 1

to November 30, 2013), through the official stream API with Gardenhose access (10%

sample of the real-time stream of all tweets). This data set contains 1,242,186,946

tweets. Although the size is forty times larger than the Boston set, we anticipated

that the density of rumors in this everyday tweet stream may be lower.

To process such data sets of over a billion records, we implemented our methods

in MapReduce and conducted the experiments on a 72 core Hadoop cluster (version

0.20.2). The main components of our framework, including filtering, clustering and

retrieval algorithm are implemented using Apache Pig (version 0.11.1).

5.5.1.2 Baselines and Variants of Methods

To obtain a comprehensive understanding of the effectiveness of the overall method,

the identifiers of signal tweets, and the algorithms used to rank statements, we tested

six variants of the method. The first four variants all rank candidate rumors purely
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by popularity, the number of tweets in the cluster. They vary in the algorithm used

to identify signal tweets. The last three variants all use both enquiry and correc-

tion tweets as signals. They vary in the algorithm used to rank the candidate rumor

clusters.

Variant 1 (baseline 1): Trending Topics. This straightforward baseline method di-

rectly clusters all the input tweets. It treats all the tweets as signal tweets rather

than selecting only a subset. This method echoes the common approaches to detect-

ing trending topics and then identifying rumors among them [17, 42]. After tweets

are clustered and statements are extracted, this baseline method simply outputs the

top candidate clusters with the largest number of tweets.

Variant 2 (baseline 2): Hashtag Tracking. Hashtags are well recognized signals for

detecting trending and popular topics and have been used previously in rumor detec-

tion [89, 101]. As a second baseline, popular hashtags (i.e., those that appear more

than 10 times) are used to filter the signal tweets. Tweets containing these hashtags

are clustered and statements are extracted from these clusters. Clusters with the

largest number of tweets are presented to the user.

Variant 3 (baseline 3): Corrections Only. One novel contribution of our approach is

the utilization of enquiry tweets as early signals of rumors. To test the performance of

these signals, we downgraded our identifier of signal tweets by only using correction

tweets as filtering signals, i.e., tweets containing the correction patterns in Table 5.2,

including “rumor,” “debunk,” or “(this—that—it) is not true.” Certain correction

patterns such as the phrase “false rumor” have been used previously in the literature

to identify rumors [101].

Variant 4: Enquiries and Corrections. Besides the baseline methods, we included
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three variants that treat both enquiries and corrections as signal tweets, using the

complete set of patterns from Table 5.2. To enable comparison with the baselines,

variant 4 still ranks the candidate rumor clusters purely by popularity.

Variant 5: SVM ranking. This version ranks the candidate rumor clusters based on

their scores using the trained SVM classifier. Like Variant 4, it treats both enquiries

and corrections as signal tweets.

Variant 6: Decision tree ranking. This version ranks the candidate rumor clusters

based on their scores using the trained Decision Tree classifier. Like Variants 4 and

5, it treats both enquiries and corrections as signal tweets.

5.5.1.3 Ground Truth

We recruited two human annotators to manually label candidate rumors (i.e.

rumor clusters as defined in Section 5.3) as either a real rumor or not. The annotators

made decisions based on the statement extracted from the cluster, actual tweets in

the cluster, and other useful information about the statement through Web search.

To train the annotators, we developed a codebook according to the definition of

rumors discussed in Section 5.3 which includes both the definition and examples of

rumor and non-rumor statements. After being trained, both annotators labeled all

the top-ranked candidate rumor clusters extracted by either the Popularity method,

the Decision Tree method, or the Correction Signal method, from the first week of the

Gardenhose data set and the first two days and the eighth day of the Boston data

set. At most 10 clusters per hour per method were annotated for the Boston data

set and at most 50 clusters per day per method were annotated for the Gardenhose

data set. These added up to 639 candidate rumor clusters. The inter-rater reliability

was satisfactory, achieving a Cohen’s Kappa score of 0.76. Such a high agreement also
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demonstrates the coherence of our definition of rumors. For the statements the two

annotators did not agree on, an expert labeled them and broke the tie. Another 1,440

clusters generated by the first two baseline methods (Trending Topics and Hashtags)

on the same 72 hours of the Boston data set were then labeled by one of the two

annotators after they were well trained. It took an average about 80 hours for each

annotator to finish the labeling task including training.

5.5.1.4 Evaluation Metrics

We selected several quantitative metrics to evaluate the effectiveness and efficiency

of our proposed method. We calculated precision@N, which is the percentage of real

rumors among the top N candidate rumor clusters output by the a method. Since it is

not practical in general to manually label a complete data set with tens of millions of

tweets and hundreds of thousands of clusters, we cannot directly evaluate the actual

recall of a rumor detection method. However, the number of rumors each method

returns can be an indirect way to understand whether one method can detect more

rumors than another. Another important dimension of the effectiveness of a rumor

detection system is how early a rumor can be detected. We calculated the detection

time, the time when the algorithm was first able to identify it as a candidate rumor.

Finally, we also evaluated the scalability of the proposed method by plotting the scale

of the data against the running time of the algorithm.

5.5.2 Effectiveness of Behavioral Signals

We evaluated the effectiveness of rumor detection algorithms using different sig-

nals. We first compared the precision of the top-ranked candidate rumor clusters

output by different methods. For a fair comparison, all methods ranked the can-

didate rumor clusters simply using the popularity (i.e. number of tweets in each

cluster).
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5.5.2.1 Precision of Candidate Rumor Clusters

We compared the precision of our proposed methods using both enquiry and

correction signals with all three baseline methods on the Boston data set. Note that

both the baselines 1 and 2 (Trending Topics and Meme Tracking) have to cluster a

huge number of tweets, nearly all the incoming tweets of every time period, hence

they cannot handle the scale of all tweets in the Gardenhose data set. Therefore,

we compare the proposed methods with only Baseline 3 (Correction Signals) on the

Gardenhose data set. These results are summarized in Table 5.3. Clearly, the

use of both enquiry and correction signals typically detects more rumors than using

no signal (trending topics) or using memes (meme tracking), and the top-ranked

rumor clusters are much more precise. Using both enquiry and correction signals,

our method detected 110 rumors from the stream of tweets related to the Boston

Marathon bombing, with an average precision@10 above 50% (half of the top 10

candidate clusters output by the system are real rumors). On the stream of everyday

tweets, this method detected 92 rumors from a random month of 2013, with the

average precision@50 above 26% (one fourth of the top 50 clusters output by the

system are real rumors).

Some interesting observations can be made from these results. Detecting trending

topics or tracking popular memes can reveal some rumors, but they both suffer from

a low precision among the candidate clusters (lower than 10%), and thus miss many

rumors if the user can only check a certain number of candidates (i.e., 10 per hour or

50 per day). This is because both methods inevitably introduce many false positives,

popular statements that are not disputed. Detection using correction signals only

also misses half of the rumors in the Boston event, probably because the behavior

of debunking rumors is less common than enquiries in social media, as it certainly

requires more effort of the users.

Using correction signals achieves a high precision among detected candidates. This
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Table 5.3: Precision of rumor detection using different signals. Candidate rumors
ranked by popularity only. Maximum number of output rumor clusters:
10 per hour for Boston and 50 per day for Gardenhose.

Method Data Set Candidates
Detected

Real
Rumors

Precision

Trending
Topics

Boston 720 71 0.099

Hashtag
Tracking

Boston 720 35 0.049

Corrections
only

Boston 109 52 0.466

Enquiries+
Corrections

Boston 194 110 0.521

Corrections
only

Gardenhose 312 87 0.279

Enquiries+
Corrections

Gardenhose 350 92 0.263

is not surprising as statements already explicitly corrected or referred in tweets as

“rumors” are likely to in fact be disputed factual claims. Interestingly, using enquiry

as well as correction signals yields a similar precision.

5.5.2.2 Earliness of Detection

One of the most important objectives of our study is to detect emerging rumors

as early as possible so that interventions can be made in time. Correction signals

may appear only in a later stage of a rumor’s diffusion. If this is the case, detecting

rumors using such signals may have less practical value, as the rumors may have

already spread widely. To verify this and further understand the usefulness of enquiry

signals, we measured the earliness of detection. We computed the difference between

the time points at which the same rumor was first detected by different methods,

assuming that the algorithms are run in batch mode to output results only once per

hour. The results are summarized in Table 5.4.

We first compare the method which uses both enquiry and correction signals

with Baseline 3 (correction signals only). Since different methods may yield different
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Table 5.4: Earliness of detection comparing to Enquiries+ Corrections: enquiry sig-
nals help to detect rumors hours earlier.

Method Data Set Rumors
detected

Rumors
matched

Average
delay

Corrections
only

Boston 52 46 +4.3h

Trending
Topics

Boston 71 53 +3.6h

Hashtag
Tracking

Boston 35 31 +2.8h

clustering results and/or statements for the same rumor, we manually matched the 52

rumors detected by correction only from the Boston data set with the 110 rumors

detected by both enquiries and corrections. We obtained 46 rumors detected in the

top 10 results per hour by both methods.

There are 27 rumors that enquiries and corrections detected at least one hour

earlier than correction only. The two detected the rest of the 19 rumors in the same

hour. The detection of a rumor using enquiries and corrections is on average 4.3

hours earlier.

In Figure 5.3, we plot the detection time of each matched rumor using the two

different methods. The x axis represents time from April 15th 17:00 (GMT) to April

22nd 17:00 (GMT). Each row in the plot presents a rumor. A dark blue bar marks the

hour when the rumor is first detected by our method, and a red bar marks the hour

when the rumor is first detected by Baseline 3 (correction signals). Some example

rumors are annotated in the figure.

For example, at 20:00 (GMT) April 15th the enquiries and corrections algorithm

would have output the popular rumor that the police identified a Saudi national as

the suspect. This was one hour earlier than people started to realize it was false and

tweet corrections. For another widespread rumor about an 8-year-old girl who died

in the explosion, enquiries and corrections identified it almost one day earlier than

tracking correction signals only.
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In theory, how early can rumors be detected through enquiry signals, if candidate

rumors were output continuously rather than hourly? We marked the time points

when the system captures at least three signal tweets. On average, a real-time

system that tracks enquiry signals can hypothetically detect a rumor after its first

appearance in 9.6 minutes. To collect at least three correction tweets, a method has

to wait for 236.7 more minutes on average. Not all candidate rumor clusters are

actually output by our algorithms, so precision would have to be sacrificed to detect

all rumors that quickly.

We also compare enquiries and corrections with Baseline 1 (trending topics), and

Baseline 2 (meme tracking), on the earliness of detection. For Baseline 1, we matched

the 71 rumors detected by trending topics with 110 rumors detected by our method.

We obtained 53 common rumors detected by both methods. On average these rumors

were detected as trending topics 3.6 hours later than using enquiry+correction signals.

For Baseline 2, we matched the 35 rumors detected by meme tracking with rumors

detected by our method. 31 of them are matched. On average these rumors were

detected as trending memes 2.8 hours later than using enquiry+correction signals.

The earliness of our detection method compared to other methods passed paired-

sample t-test at significance level of 0.01.

In brief, we see that the use of enquiry tweets as signals not only detects more

rumors, but also detects them hours faster than tracking trending topics or popular

memes. Tracking correction signals, although it yields high precision, is the latest

among all methods.

5.5.3 Ranking Candidate Rumor Clusters

We assessed the benefits produced by ranking the candidate clusters, using the 13

statistical features described in the previous section. We tested the performance of

ranking functions based on Support Vector Machines and Decision Trees compared
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Please rt :“the boston bombing could just be a distraction from what could really happen ” this is a rumor but it might breal 
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First 3 Correction Tweets

First Tweet of Rumor

Figure 5.3: The earliness of rumor detection using enquiry signals or correction sig-
nals: enquiry tweets detect rumors much earlier.

with two other baseline methods. The first baseline ranks the clusters by the number

of tweets inside each cluster, referred to as Popularity. The second baseline ranks the

clusters based on the retweet ratio in the cluster of tweets, which was reported as

an indicative feature of rumors [101]. The second baseline is referred to as Retweet

Ratio.
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Figure 5.4: Precision@N of different ranking methods

We applied the ranking algorithms to the 350 candidate rumor clusters labeled

by human annotators (the 50 most popular clusters for each of the seven days from

2013-11-1 to 2013-11-7 in Gardenhose data set). We used 6 days of labeled results

to train the classifiers and the remaining day’s results to test the algorithms. We
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did a 7-fold cross validation, holding out each of the seven days and computing

the average performance. Figure 5.4 shows the results. We used Precision@N to

evaluate different ranking algorithms. In this figure, we can see that retweet ratio has

comparable performance to popularity, which remains about 0.3 no matter what N

is. Our ranking algorithm significantly improves the Precision@N when N is small.

The precision of the top 10 statements per day is above 0.7 using a Decision Tree,

which outperforms SVM and the baseline methods. Of course, as N approaches 50,

the precisions equalize since all the algorithms are essentially re-ranking the 50 most

popular items. Note we are dealing with the classification task on only hundreds

of examples and the 13 features we extracted are in different scales. In such case a

decision tree is easier to tune than the more sophisticated SVM [16]; this may explain

why the Decision Tree algorithm achieved a better performance than SVM. The

improvement of Precision@10 and Precision@20 made by the decision tree compared

to other methods passed the paired-sample t-test at significance level of 0.01.

Next, we tested whether the decision tree algorithm would find more rumors if it

was able to suggest its own 50 top-ranked candidate clusters among all the candidates

instead of reranking the most popular 50. In the previous figure, it was restricted to re-

ranking the 50 most popular ones. We evaluated the performance using Precision@N.

Figure 5.5 shows the results for the Gardenhose data set. We used tweets from

2013-11-1 to 2013-11-3 in the Gardenhose data set to train the decision tree and

then used tweets from 2013-11-4 to 2013-11-7 to test, with popularity ranking as the

baseline. Results show that we can not only improve Precision@N when N is small,

but also find more rumors in 50 output statements. 33% of our output statements

are rumors. The improvement of Precision@N when N ≤ 40 made by our ranking

algorithm passed the paired-sample t-test at significance level of 0.01.

In order to verify that the ranking algorithm is not overfitting only one data set,

We also applied the decision tree trained using 7 days of labeled results in Garden-
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hose data set to rank rumor clusters detected hourly from Boston data set. We got

similar results as in Figure 5.5. The average precision at 2, 4, 6, 8 an 10 in an hour is

improved compared to popularity based ranking. The features used at the top levels

of the decision tree include percentage of signal tweets and the average numbers of

words, URLs and @mentions per any tweet in the cluster.
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Figure 5.5: Precision@N if rumor clusters are ranked by the Decision Tree. One third
of top 50 clusters are real rumors.

5.5.4 Efficiency of Our Framework

We have shown that our rumor detection algorithm is effective in detecting rumors

in their early stage with reasonable precision. We now show that our framework is

computationally efficient. Our framework first filters tweets with specific signals, then

uses clustering to detect statements in this smaller group of tweets and at last outputs

potential rumor statements. Compared to approaches that first generate trending

topics and then identify rumors, we reduce the cost significantly in the detection

process.

We first tested the time cost of our algorithm (decision tree ranking in Section

5.2 which uses both enquiry and correction signals) compared to baseline methods of

running the algorithm on one batch of tweets from one time interval. We started from

1,000 tweet batches randomly sampled from tweets in our data set, then increased
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Figure 5.6: Running time vs. batch size.

the number of tweets to 100,000,000 exponentially. Figure 5.6 shows the results.

The x-axis shows the number of tweets to be processed in log scale. The baseline

methods here are the Baseline 1 and 2 from Section 5.2, which try to detect trending

topics or popular memes (hashtags) first. For baseline methods, we used the same

clustering and ranking implementations as our method except they don’t filter tweets

with enquiry or correction signals and they don’t have to retrieve tweets back after

clustering. When the scale reaches one million tweets, Baseline 1 cannot finish in

hours. Our method performs consistently and does not take much longer even at the

10 million scale: it can process 100 million tweets in about 80 minutes. It is intuitive

that Meme Tracking achieves an intermediate performance. It clusters only those

tweets that contain popular and trending hashtags, and thus scales somewhat better

than clustering all tweets to find trending topics, but is still not as efficient as our

method, which clusters a much smaller number of signal tweets.

We also tested our algorithm on one month’s tweets from the Gardenhose data

set, collected at November 2013. We set the time interval to be a day. The average

number of tweets every day in the Gardenhose data set was about 40 million. As

we would expect, experiment results indicate that the time cost does not increase

significantly after processing several days, even with the accumulation of older rumor

clusters. On average it took 28.77 minutes for our algorithm to finish detecting rumors
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Figure 5.7: Tracking detected rumors about Boston Marathon bombing
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Figure 5.8: Tracking detected rumors in November 2013

each day and took 14.38 hours in total to process the 1.2 billion tweets in the entire

month.

5.5.5 Discussion

We have shown in the experiments that tweets asking verification questions or

making corrections to controversial statements are very important signals of rumors

early in their life cycle. Some users who have an information need of evaluating a

rumor will post tweets either asking verification questions to express suspicions, or

will correct the rumor after their investigation. Verification questions are particularly

useful because they appear much sooner and thus facilitate earlier detection of rumors.

Not all clusters that include tweets that ask verification questions or use correction

phrases are actually rumors. We identified 13 different statistical features of clusters of

tweets, such as average tweet length and percentage of signal tweets, etc. By training
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a decision tree model, we built a powerful ranking algorithm that ranks tweet clusters

by how likely they are to be rumors (i.e., controversial, fact-checkable claims). The

precision we can achieve is much higher than without the ranking algorithm.

We demonstrated that our proposed framework can scale up well. By clustering

only the small set of signal tweets, we avoided the computational cost of detecting

popular statements or trending topics from the entire corpus. Our proposed frame-

work is robust even if the number of tweets to be processed exceeds 100 million.

To give the readers a sense of the end-to-end operation of our system, we present

the rumors detected in the two data sets. For the Boston data set, we identified

the top 5 candidate rumor clusters each hour. Figure 5.7 plots the number of tweets

hourly of each identified rumor statement. The dotted blue line in the background

shows the number of tweets arriving in that hour.

Although the small set of regular expressions may yield a low recall of enquiry

signals, when the candidate rumor clusters detected by our system are labeled by

human experts, they can be used to enrich the set of signals. Indeed, using statistical

feature selection techniques [32], one can extract features that are highly represen-

tative in the rumor clusters and underrepresented in the non-rumor clusters. These

patterns can be approved by human experts and added into the pipeline to identify

more signal tweets, thus improving precision and recall of rumor detection. By us-

ing rumors of our two data sets labeled by annotators, we have already discovered a

few additional promising patterns such as “scandal?”, or “fact check.” We leave the

iterative improvement of the signal patterns to future work.

One may be curious about what types of rumors are being circulated in a random

week of tweets. From the Gardenhose data set, we output the 10 top-ranked

rumors for each day and tracked them (Figure 5.8). We also show example statements

extracted from the most popular rumor clusters. Most everyday rumors turn out to

be gossip about celebrities, with occasionally emerging anecdotes like “python ate
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person.”

5.6 Summary

One post of a rumor in social media can sometimes spread beyond anyone’s control.

A rumor about two explosions in the White House is a perfect example of how a

single tweet out of more than 9,000 tweeted in the same second spreads and causes

real damage.

In social media, users share information based on different types of needs, including

the need to verify controversial information. We point out that such information needs

can not only help spread rumors, but also provide the first clue for detecting them.

Based on this important observation, we applied our proposed general framework

in this dissertation and designed a rumor detection system. We cluster only those

tweets that contain enquiry patterns (the signal tweets), extract the statement that

each cluster is making, and use that statement to pull back in the rest of the non-

signal tweets that discuss that same statement. We then rank the clusters based on

statistical features that compare properties of the signal tweets within the cluster to

properties of the whole cluster.

Extensive experiments show that our proposed method can detect rumors effec-

tively and efficiently in their early stage. With a small Hadoop cluster, in about half

an hour we process 10% of all the tweets posted in one day on Twitter. If we output

50 candidate statements, about one third of them are real rumors, and about 70% of

the top ranked 10 clusters are rumors.

There is still considerable room to improve the effectiveness of the rumor detection

method. We can improve the filtering of enquiry and correction signals by training

a classifier rather than relying on manually selected regular expressions. We can

further develop a method to automatically update the filtering patterns in real time

to prevent potential spamming of the detection system. We can also explore more
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features for each statement and train a better ranking algorithm for candidate rumor

clusters. Another direction is to adopt this method to detect rumors automatically

and generate a large data set of rumors, which can benefit many potential analyses

such as finding features that are potentially correlated to the truth value of a rumor,

or analyzing general diffusion patterns or the life cycle of rumors.
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CHAPTER VI

Detecting Persuasion Campaigns in Social Media

“Non-Islamic, non-foreign-motivated terrorist actions have killed at least

as many Americans on American soil as those who were promoted by

jihadists. But what we have also seen is ISIL evolve, because of the

sophistication of their social media, to a point where they may be inspiring

more attacks - even if they’re self-initiated, even if they don’t involve

complex planning - than we would have seen some time ago.”

Barack Obama

Persuasion campaigns consist of a series of activities that attempt to gain public

support for an opinion or course of action [83]. The motivation can be legitimate or

unethical and manipulative such as ISIS’s (or ISIL) recruiting campaign on Twitter.

As the use of social media websites increases, it becomes crucial to distinguish the

wide variety of persuasion campaigns from the massive amounts of social media posts.

In this chapter, we describe the construction of an event detection system for

detecting social media persuasion campaigns. The objective is to identify as many

persuasion campaigns as possible, so that users, the media, etc., can analyze, under-

stand, and possibly prevent potential damage.

As discussed in previous chapters, existing approaches for detecting social media

events such as persuasion campaigns usually consist of two steps. First, they cluster
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the posts corresponding to the social media event. Second, they apply a classifier to

identify persuasion campaigns from other events. To improve the effectiveness and

efficiency of this process, we adopt the general framework introduced in Chapter III

that utilizes a filtering step to filter irrelevant content by the identifying signals of

targeted events.

In Chapter V, we showed that enquiry posts are the signals to detect rumors.

Conducting content analysis on posts related to rumors allowed us to manually extract

a set of unique language patterns and phrases such as “is it true??” in order to identify

enquiry posts. Unlike rumors, however, signals for detecting persuasion campaigns do

not necessarily contain unique patterns and simple phrases. In fact, potential signals

may contain many patterns and their combinations. Therefore, we need an algorithm

that automatically finds good signal patterns from noisy data.

In this chapter, we quantify the key characteristics of the signals in detecting

persuasion campaigns and build metrics to evaluate a given signal identifier. We

propose to learn a binary classifier for identifying signals by jointly maximizing the

metrics. We train the classifier on labeled (known) persuasion campaigns and use it

in our persuasion campaign detection system. We use Twitter data to validate the

detection framework. The results show that our proposed method effectively detects

persuasion campaigns in the form of post clusters compared to baseline methods.

6.1 Overview

By March 21, 2016, presidential candidates from both parties had raised $619

million according to the Center for Responsive Politics. Most of the money was spent

to operate and support various types of campaigns. It was estimated that the amount

spent on political advertising for the 2016 presidential election was 20% more than the

amount spent for the 2012 election. More than half of an estimated $1 billion budget
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Figure 6.1: Word Cloud of a Subset of Hashtags for the Presidential Campaign in Jan
2016

for digital media was spent on social media persuasion campaigns1. Clearly, social

media websites such as Twitter and Facebook, had become marketing battlefields for

online persuasion campaigns.

According to a study on Facebook [12], Facebook feeds had a significant impact

on increasing turnout by a total of 340,000 votes in the 2012 presidential election.

Another study [20] found that people, especially young people, were likely to partic-

ipate political discussion or activity online. As an example, Figure 6.1 shows a word

cloud we generated by tracking hashtags related to the 2016 presidential campaigns

on Twitter in January 2016. In addition to candidates and politicians representing

both parties, celebrities, activists, companies and organizations, had built and op-

erated social media profiles as a way to promote their own images, music albums,

movies, products, or social activities.

Absent well-established quality control mechanisms such as those used by tra-

ditional news media, online marketing and social media persuasion campaigns has

proven risky. Using social media, the Islamic State of Iraq and Syria (ISIS) success-

fully recruited as many as 3,000 individuals from outside the region join to join as

jihadists2. Early detection of ISIS?s online campaigns has become a national security

concern for many countries including the U.S.

1http://www.huffingtonpost.com/r-kay-green/the-game-changer-social-m_b_8568432.

html
2http://www.cbsnews.com/news/isis-uses-social-media-to-recruit-western-allies/
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Table 6.1: Group of Tweets Related to a Persuasion Campaign on Twitter
@GregoryMeeks,In Nigeria, human life and
human right has lost its meaning say NO to
#TyrantBuhari Free Nnamdi Kanu #FreeBi-
afra
The truth will set you free, but first it will
make you miserable. #FreeBiafra #FreeN-
namdikanu Biafra referendum not war
These children all died of acute starvation,
over 2 million of them. Yet nobody talks
about #Biafra. #FreeBiafra now
Why must Nigeria be on every bad news in
the world.#FreeBiafra from Nigeria.

In general, researchers in many fields will benefit from an automatic social me-

dia persuasion campaign detection system. Assembling massive datasets of online

persuasion campaigns leads to deeper analyses of patterns, strategies, and diffusions.

Any persuasion campaign can be viewed from multiple perspectives by studying the

related and oppositional campaigns. Research outcomes help the media, which is not

a monolith, distinguish between real and so-called fake news and present unbiased

coverage.

In this chapter, we build a social media event detection system to detect online

persuasion campaigns. Social media persuasion campaign corresponds to collective

activities with the attempt to gain public support for an opinion or course of action.

It can be identified in the form of social media post cluster. Posts inside each post

cluster are related to the same persuasion campaign. Table 6.1 shows an example of

a group of tweets in an persuasion campaign of freeing Biafra from Nigeria.

Detecting persuasion campaigns in social media by language and content auto-

matically is challenging because campaign organizers and supporters employ different

strategies to disseminate posts and enlarge a campaign. This significantly adds the

difficulty for automatic detection systems to understand and discover these campaigns

by their language and content. For example, ISIS?s recruiting campaigns intend to
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use language that computer algorithms and human analyses fail to detect.

Existing approaches to detect persuasion campaigns usually apply classifiers to

groups of posts, i.e., post clusters. This follows the clustering and classification

pipeline shown in Figure 2.1 and discussed in Chapter II. Post clusters corresponding

to social media events can be generated by clustering posts given a post similarity

measurement [4]. The classifiers are trained to identify persuasion campaigns from the

post clusters. Various types of collective features, i.e., content features, network fea-

tures, statistics, and temporal features are used to train the classifiers. The collective

features can help identify persuasion campaigns with uncertain language patterns.

Similar to social media rumors and other targeted events discussed in the previous

chapters, detecting persuasion campaign from a large collection of posts or post stream

by firstly generating post clusters is time-consuming. Detection accuracy is also

affected by classifiers trained on and applied to imbalanced dataset, because relatively

rare persuasion campaigns are distributed in large quantities of irrelevant social media

posts, and most post clusters are not persuasion campaigns.

One way to overcome these challenges is to filter out the majority of irrelevant

content before clustering the posts into groups and extracting the collective features.

In Chapter III, we proposed a general framework to detect targeted social media

events by identifying signals and filtering out non-signal posts. Signals are posts

that appear in every target clusters usually not in non-target clusters. Because every

target cluster will have a few signals, by clustering only signals and matching non-

signal posts into signal clusters, our detection framework generates fewer non-target

clusters before classification. Therefore both efficiency and effectiveness for event

detection are improved.

The reason why signals exist in certain types of targeted events is that, the emer-

gence and spreading of the events can lead to common user reactions despite the

content of an event. For example, in Chapter V, to detect social media rumors, we
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found that several unique user activities, such as posting enquiry posts, has been

found mostly in rumor clusters than in non-rumor clusters. The enquiry posts are

highly accurate signals to detect rumors.

Similarly, as persuasion campaigns are targeted to grain supporters, despite actual

content and topic, common user reactions such as supporting or opposing exist. The

signals reflecting the reactions cannot be easily controlled by persuasion campaign

organizers trying to avoid detection. If we can identify signals for persuasion cam-

paigns, we can build persuasion campaign detection systems using our general frame-

work. Unlike social media rumors, however, persuasion campaigns express opinions

instead of factual claims and the resulting expressions of common reactions can be

more diverse. The signals for detecting persuasion campaigns may not contain certain

simple and unique language patterns.

To apply our detection framework to persuasion campaigns and other targeted

events, we need to identify their signals, even if it is difficult to do so from intu-

ition and domain knowledge. Therefore, our goal is to automatically learn a signal

identification algorithm from a labeled dataset of persuasion campaigns. We model

the signal identification process as a binary classification problem, i.e., given a post,

predicting whether or not it is a signal. Although a standard way to learn this binary

classification algorithm is to optimize the objectives calculated on labeled signals and

non-signal posts, we don’t have the labels since we do not know what exactly are

the signals for detecting persuasion campaigns. To learn a signal classifier directly

using labeled persuasion campaigns instead of labeled signals, we need to define the

objective and loss function for classifier training based on the labeled events, i.e.,

target clusters. To achieve this, we first need to understand the characteristics of the

signals, so that we can quantify them and use them as objectives.

As discussed above, to detect persuasion campaign post clusters from a post

stream using signals, the signals should exist only in the target clusters. Every target
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cluster should contain a few signals. The efficiency improvement of our detection

framework depends on the frequency of signals in a post stream, and the effectiveness

improvement depends on the accuracy of the signals in the target clusters and not in

other clusters. Based on these understandings, we define the objectives that can be

calculated on labeled target clusters to learn a signal classifier.

After we learn the signal classifier and use it to identify signals, we apply our

general framework to build the persuasion campaign detection system. We apply a

clustering algorithm on identified signals, match non-signals to signal clusters, and

classify the candidate clusters. To evaluate our approach, we apply our detection sys-

tem to Twitter, using the hashtags of each tweet, i.e., post, as features for clustering.

We generate a labeled persuasion campaign dataset to train the signal classifier and

evaluate its properties. Then we compare the learned signal classifier with manu-

ally crafted signal identifiers by conducting a content analysis similar to the method

described in Chapter V. Finally, we evaluate the effectiveness and efficiency of our

persuasion campaign detection system by comparing with several baseline approaches.

The contributions of Chapter VI are as follow:

• We apply our framework for detecting targeted events to detect social media

persuasion campaigns. We provide a formal definition of persuasion campaigns

and build a system to detect them from Tweet stream.

• We discuss and quantify the characteristics of signals for detecting targeted

events. We define multiple objectives to evaluate any given signal identification

algorithm on labeled targeted events.

• We build a signal classifier to identify the signals for persuasion campaign de-

tection. We learn the classifier by jointly optimizing our defined objectives such

as precision, recall, and filter rate.

• We generate a labeled dataset of online persuasion campaigns containing prod-
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uct promotion, political campaigns, social activities and spams for our detection

system. And we evaluate it on real Twitter data.

The rest of this chapter is organized as follows. In section 6.2, we discuss related

work on social media event detection, especially existing detection frameworks for

persuasion campaign detection . In section 6.3, we formally define our detection

problem. After that we will define our signal identification algorithm as a binary

classifier or a signal function and propose a method to learn it automatically. We

then describe our system implementation in section 6.6. In section 6.7 we describe

how we generate our dataset. In section 6.8 we give the evaluation results. We

conclude and discuss future work in the last section.

6.2 Related Work

In this section, we summarize existing research on persuasion campaign detection,

including specific problem definitions, features studied and adopted, and how we use

these existing approaches to build helped our proposed framework. We also discuss

existing work on multiple instance learning and anomaly detection, which inspire us

on learning signal classifier from labels of target clusters.

6.2.1 Social Media Persuasion Campaign Detection

There are many studies of the characteristics of different online campaigns and

the detection problem [1] [64] [59] [58] [27] [119] [118] [87] [52] [63] [65]. While most

work focuses on detecting persuasion campaigns using the clustering and classifica-

tion framework discussed in Chapter II, many studies devise clustering strategies with

meaningful post similarity measurements and effective collective features for classifi-

cation.

Lee et al. study campaign detection by building message graphs based on different

constraints on content similarity between social media posts/messages [59] [58]. The
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campaigns have a broader definition than the persuasion campaigns we use. Lee et

al. generate campaigns as post clusters based on different level of similarity and

network structures. They provide us with insights into adopting a proper similarity

measurement or grouping criterion for clustering posts in building our persuasion

campaign detection system.

Besides clustering strategies, other studies explore and discover important fea-

tures of persuasion campaigns. Tan et al. study the lanuange patterns of bursting

events [102] and persuasive statements [103] on social media platforms such as Twit-

ter and Reddit. Their most recent study [103], finds out that language patterns play

an important role in predicting persuasiveness, especially the patterns existing be-

tween the interactions of opinion holders and users holding opposing opinions. This

finding aligns with our hypothesis in our worker that signals of detecting persuasion

campaigns exist because of users’ pro and con common reactions.

Another work shows that many spams and promoting campaigns in social media

contain URL, and it studies how to detect spam and promoting campaigns grouped

by similarity measurement defined based on the URLs [119] [118]. A classifier is

trained by using a campaign’s statistical features and using a included URL to identify

whether the clusters or candidate campaigns are positive or negative.

As language and content features extracted from individual post or group of posts

are important in detecting persuasion campaigns, many approaches also study how

other types of collective features help in training classifiers to identify persuasion

campaigns. In a recent paper of detecting promoted social media campaign [27],

multiple types of features are used to train a classifier to identify whether posts

clusters grouped by hashtags are promoted by Twitter or not. They compared and

analyzed the importance of each type of feature, including network features extracted

from mentioning and retweeting networks, user account features, temporal features,

and content features. The authors find that network features and content features
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are the most important features in detecting promoted campaigns.

Some approaches focus on spatial and temporal features extracted from clusters to

detect different types of persuasion campaigns such as opinion spams [63], campaign

promoters [64], and promoted hashtags [1]. By detecting internet advocates [87]

and cyber armies [52] in political campaigns, studies reveal the importance of the

statistical features from users and posts collections, such as message and propagation

patterns, network structures, posting times, etc..

All the above mentioned approaches study different aspects of persuasion cam-

paign, e.g., opinion spams, promoting hashtags, advocates and promoters etc. There-

fore, the features they used in training their specific classifiers are meaningful to be

adopted in training our classifier to detect persuasion campaigns after filtering and

clustering. In our work, our classifier combines content and many of the features cited

above, such as statistics about URL, retweets and mentioned users.

6.2.2 Anomaly Detection and Multiple Instance Learning

Unlike existing clustering and classification approaches, our detection system dis-

covers signals and filters non-signal posts before generating post clusters. In order to

learn a binary classifier on post as signal identification algorithm without labels on

posts, we directly use labels of post clusters, i.e., whether a given post cluster is a

persuasion campaign or not. In general, our problem is similar to general machine

learning techniques such as multiple instance learning [7] and anomaly detection [117],

where each item’s label is related to the group’s label.

Graph anomaly detection or collective anomaly detection, proposes to detect

groups of anomaly activities by analyzing both individual activities and groups. Gen-

erative probabilistic models, e.g., the Multinomial Genre Model [111], Flexible Genre

Model [110], and GLAD model [116], have been proposed to model the relationship

between individual activity and the group of activities.
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Multiple instance learning studies the problem of classification where class labels

are assigned to bags of items instead of individual items. In a binary classification

scenario, the law of inheritance in this problem defines the label of a set as positive if

at least one item in the set is positive [7]. Similarly, a item level classifier is learned

to classify sets. Multiple instance learning has been applied to detecting social media

events. For example, Wang et al. develop a event detection framework to detect

posts related to civil unrest events using multiple instance learning. In their study,

they train a sentence level classifier with labels of news posts and adopt the classifier

to identify sentences related to civil unrest in each post and classify the posts as civil

unrest related.

We adopt the key concept of multiple instance learning and extend it for detecting

social media persuasion campaigns. Specifically, we design our specific objectives for

learning a signal classifier considering both effectiveness and efficiency, because we

use the signal classifier as a filtering step and later apply a cluster level classifier to

post clusters.

6.3 Problem Definition

In this section, we modify and extend the definition, given in Chapter III, for de-

tecting social media persuasion campaigns. Our detection system takes post streams

as the inputs, and output detected target post clusters. We use the following notations

shown in table 6.3.

6.3.1 Detecting Target Clusters in Social Media

Most social media event detection problems treats each event as a cluster of social

media posts and/or other types of user activities. To reduce ambiguity, our notion of

event is equivalent to a post cluster [4].

The problem of detecting persuasion campaigns from social media post stream can
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p =< f, t > A post in social media, cor-
responding to a tuple of
content feature f and time
stamp t.

P =
{p1, p2, . . . }

A steam of social media
posts.

G : P × P− >
{0, 1}

Similarity measurement or
grouping criterion for posts.
A function that returns 1 if
two input posts belong to
one cluster/group, and 0 if
not.

c =
{p1, p2, . . . , pk}

A cluster of social me-
dia posts. These posts
are grouped using specific
grouping criterion.

C =
{c1, c2, . . . }

A stream of clusters of social
media posts.

T : C− >
{0, 1}

A function that returns the
label of any given cluster c.
T(c) = 1 if c is a target
cluster and 0 otherwise. T
can be a codebook defining
the target cluster or a golden
standard.

Table 6.2: Notation used in problem definition

be modeled as a general social media event detection problem for a targeted event

type. As discussed in Chapter III, we use clustering algorithm to group posts into post

clusters and adopt supervised learning algorithms to identify target clusters. There-

fore, the inputs of our system contain a social media post stream, such as a tweet

stream; a grouping criterion for the clustering algorithm, e.g., a similarity measure-

ment for posts such as the cosine similarity on text; and a set of labeled persuasion

campaigns for supervised learning. Given the three inputs, the detection algorithm

should output a stream of target clusters corresponding to persuasion campaigns.

Problem Definition 1. Social Media Persuasion Campaign Detection.

INPUTS:
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• A stream of social media posts: P = {p1, p2, . . . },

• A grouping criterion: G : P × P− > {0, 1}.

• A labeled dataset of persuasion campaigns:

L = {< c1, T (c1) >,< c2, T (c2) >, . . . , < ck, T (ck) >}

OUTPUTS:

• A binary classifier: T̂ : C− > {0, 1}, where

T̂ = argmin
T ′

(
∑

<c,T (c)>∈L

Loss(T ′(c), T (c)))

Loss(label1, label2) is a loss function that returns a loss if label1 6= label2.

• A stream of target clusters: C = {c1, c2, . . . }, where

∀c ∈ C : c ⊆ P ∧ T̂ (c) = 1, and ∀pi, pj ∈ c ∈ C : G(pi, pj) = 1

The problem definition extends the general targeted event detection definition

in Chapter III for persuasion campaign detection. To obtain a labeled dataset of

persuasion campaigns in the form of post clusters, we need a codebook of definitions

to decide whether a given post cluster corresponds to a persuasion campaign or not.

We then use it decide whether or not a given post cluster corresponds to a persuasion

campaign. The next section describes persuasion campaigns on social media platforms

such as Twitter and the codebook of definitions.

6.3.2 Understanding Persuasion Campaigns

Our definition is summarized from existing definitions of persuasion campaigns in

the field of phycology, communication and politics [90] [37], and modified to fit the
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context of social media. Unlike some existing discussions of social media persuasion

campaigns in the literature and from some approaches for detecting different types

of campaigns [50] [60], we study general social media persuasion campaigns without

specific topics.

A persuasion campaign in social media can be a political campaign, propaganda,

spam or opinion spam, a promotion, etc. We summarizes different types of persua-

sion campaigns studied in related works and propose our definition of persuasion

campaign. A persuasion campaign is a movement targeted to change public opinion

and gain support for a specific topic. It can be represented by and extracted from a

collection/cluster of social media posts, i.e., a post cluster.

Definition VI.1. Persuasion Campaign Post Cluster (Persuasion Campaign): Given

a cluster of social media posts c, if most of the posts in c relate to a specific topic

designed to change public opinion or gain support for an event or an entity, then c

represents a persuasion campaign.

If it satisfies the definition, a subset of the persuasion campaign cluster can also

be a persuasion campaign. A single post designed to change public opinion or gain

support for an event or an entity, is a persuasive post. There are two major charac-

teristics of a persuasion campaign.

Attitudes/Opinions: Persuasion campaigns are related to opinions, not fact-checkable

events. Persuasion campaigns can be reduced to statements that express attitudes

on events and/or entities, but not the events themselves. Attitudes/opinions can also

urge an action/event/entity.

Examples: A collection of posts on the topic “Recreational marijuana is legalized

in Colorado” is a fact/event, whereas a collection of posts on the topic “Recreational

marijuana should be legalized in Michigan” is a persuasion campaign. A collection of

posts on the topic “Check this out! http://www.fake-product.com” is a persuasion

110



campaign. Although it expresses no clear opinion if the underlying goal is to urge

users to learn about a product or event (e.g, the url promotes a product), it is still a

persuasion campaign. If a celebrity tweets ?Everyone please follow me!? the original

tweet and the retweets are a persuasion campaign.

Controversy: Opinions that do not need additional support and opinions that most

users agree with are not persuasion campaigns.

Examples: A collection of posts on the topic “We should sleep at night every day”,

or “The president of the U.S. should work for people in the U.S.” are not persua-

sion campaigns, because these opinions are held by most people, whereas “President

Obama should put more effort into improving the education system for the American

people” is a persuasion campaign.

Common categories of persuasion campaigns in social media include but are not

limited to the following.

(1) Promotion of an entity, such as products or a company. Example: #EatAS-

nicker hashtag.

(2) Political persuasion, such as asking for support for a candidate or opposing

other candidates, or asking for support for a political issue. Examples: #MakeAm-

ericaGreatAgain to support Republican presidential candidate Donald Trump and

#FeeltheBern to support Democratic candidate Bernie Sanders.

(3) Social issues and protests. Example: www.worldcancerday.org/about/2016-

2018-world-cancer-day-campaign

Although not every persuasion campaign can be identified as one of these cat-

egories, many persuasion campaigns belong to these categories are very influential.

Usually in spreading these campaigns, many social media users who support them

help in the spreading and many other strategies such as automatic spammers and

promoters are used.
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Matching

Cluster 
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Post Stream: P

Labeled Data: L

Grouping Criterion: G
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Influential Events: C

Classifier:  T

Figure 6.2: Our system framework

Social media users, automatic spammers, and promotional strategies disseminate

the majority of persuasion campaigns via hashtags, which are words or phrases pre-

ceded by a ?#? sign. Many persuasion campaign detection systems rely on hashtags

to extract post clusters [27]. We consider hashtags as features that help us group

posts into post clusters. We use our definition of persuasion campaigns to label the

post clusters and their corresponding hashtags in order to obtain a labeled dataset.

6.4 Framework Overview

In this section, we introduce our framework for detecting social media persuasion

campaigns. This is an extension of the general framework in III. We include a signal

finding step in which we learn a signal classifier to identify signals. Also different from

our framework in rumor detection, where we process post stream batch by batch, we

develop our framework to handle stream data, so that real time detection can be

performed. Figure 6.2 illustrates the framework.

6.4.1 Signal Finding

In the signal finding step, we will learn a signal classifier, i.e., a function S, from

a labeled dataset of cluster L. In L, clusters have either 1 (positive) or 0 (negative)

labels. Below is the definition of this step, specifying the input and output.
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Definition VI.2. Signal Finding.

INPUTS:

• A labeled dataset generated by a set of clusters and a codebook:

L = {< c1, T (c1) >,< c2, T (c2) >, . . . , < ck, T (ck) >}

• Σ: parameters used to define the objective of a good signal function.

OUTPUT:

• Signal classifier S : P− > {0, 1}, for a given post p, S(p) = 1 if p is a signal

post, S(p) is 0 otherwise.

Signal classifier S is a function that maps any social media post p to 1 or 0. If

S(p) = 1, p is a signal, and S(p) = 0 means p is a non-signal post. In the previous

rumor detection system [123], S can be formulated as a regular expression matching

algorithm that matches a set of manually selected language patterns corresponding

to an enquiry post. To identify the signals for persuasion campaigns, we model S

as a weighted linear combination of content features. This function captures more

complex patterns for identifying signals than regular expressions, and is efficient in

filtering post stream. We will discuss objectives used to learn it from labeled dataset

of clusters in Section 6.5.

6.4.2 Signal Filtering and Clustering

After learning a signal classifier S, we use it to filter input post stream P. Then

we cluster the signals into candidate clusters Cs using a given grouping criterion or

similarity measurement method G. The definition are as follows:

Definition VI.3. Signal Filtering and Clustering.

INPUTS:
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• A stream of social media posts: P = {p1, p2, . . . }.

• A grouping criterion: G : P × P− > {0, 1}.

• Signal classifier: S : P− > {0, 1}.

• Threshold λ on the number of signal posts contained in a cluster.

OUTPUT:

• A stream of clusters: Cs = {cs1 , cs2 , . . . }, where

∀pi, pj ∈ c ∈ Cs : G(pi, pj) = 1, ∀p ∈ c ∈ Cs : S(p) = 1, and ∀c ∈ Cs : c ⊆

P ∧ |c| ≥ λ.

We note that the stream of candidate clusters Cs are clusters of signals. A candi-

date cluster is a cluster that has more than a pre-defined number (λ) of signals. We

set λ to three, which is the same as the number of signals set in our rumor detection

system.

6.4.3 Signal Cluster Matching

Since a target cluster contains both signals and non-signal posts. After clustering

signals, we need to match new posts from post stream P to candidate clusters Cs. The

new posts can be either signals or non-signal posts. Thus, we generate clusters that

contain all relevant posts under group criterion G. Because our system is built for

stream data and every post is processed only once for each step, the non-signal posts

processed before a candidate cluster is created will not be matched. The definitions

of input and output are as follows:

Definition VI.4. Signal Cluster Matching.

INPUTS:

• A stream of social media posts: P = {p1, p2, . . . , }.
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• A stream of clusters: Cs = {cs1 , cs2 , . . . }.

• A grouping criterion: G : P × P− > {0, 1}.

OUTPUT:

• A stream of clusters: Cm = {cm1 , cm2 , . . . }, where

∀cmi
∈ Cm,∃csj ∈ Cs : csj ⊆ cmi

∧ cmi
− csj ⊆ P ,

and ∀pi, pj ∈ c ∈ Cm : G(pi, pj) = 1.

6.4.4 Cluster Classification

This final step is to classify candidate clusters and identify target clusters. It

combines two steps, i.e., the training of a classifier from the labeled dataset of target

clusters, and applying the classifier to identify the target clusters from candidate

cluster stream Cm. The definitions of input and output are as follows:

Definition VI.5. Cluster Classification.

INPUTS:

• A stream of clusters: Cm = {cm1 , cm2 , . . . }.

• A labeled dataset generated by a set of clusters and a codebook:

L = {< c1, T (c1) >,< c2, T (c2) >, . . . , < ck, T (ck) >}

OUTPUTS:

• An binary classifier: T̂ : C− > {0, 1}, where

T̂ = argminT ′(
∑

<c,T (c)>∈L Loss(T
′(c), T (c)))

• A stream of clusters: C = {c1, c2, . . . , }, C ⊆ Cm,

where ∀c ∈ C : T̂ (c) = 1, and ∀cmi
∈ (Cm − C) : T̂ (cmi

) = 0.
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We output the stream of target clusters C identified by a learned classifier T̂ .

In this section, we have introduced our framework and define the inputs and out-

puts of each step. The next sections explain how we implement our persuasion cam-

paign detection system, beginning with the design of objective functions for training

the signal classifier.

6.5 Training Classifier for Signal Identification

In this section, we introduce our method of learning a signal classifier automat-

ically from labeled dataset of target clusters. We discuss the characteristics of the

signals in detecting targeted events. We formalize and build an objective function

with labeled clusters as input for each of the characteristics. By joint optimizing the

objectives, we learn a binary classifier for signal identification.

6.5.1 Objectives of Signal Identification

Signals are an social media posts that are the indications of target clusters. Signals

exist in every target cluster and every target cluster contains a few signals. This is

the uniqueness of signals for targeted event detection. Our previous work on rumor

identified enquiry signals by language patterns manually selected from feature analysis

conducted on labeled rumors [123]. To generalize the the process, we propose to learn

a signal classifier from the labeled target clusters, by understanding and quantifying

the key properties of the signals.

In our detection framework, a candidate cluster is defined as one having more

than a pre-defined number (λ) of signals. For any post cluster c, whether or not it is

a candidate cluster is represented by a function F of c.

F (c) = δ(
∑
p∈c

S(p)− λ) (6.1)
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Where

δ(v) =

 1, v ≥ 0

0, v < 0

In general, we want to find a set of candidate clusters containing as many positive

target clusters and as few negative target clusters as possible. Therefore, our signal

identification algorithm, i.e., the signal function S defined in section 6.4, need perform

well in the following three aspects: (1) High Recall: To preserve enough relevant posts

for generating target clusters. (2) High Precision: To preserve posts only from target

clusters, so that clusters of the preserved posts contain the fewest non-target clusters.

(3) High filter rate: To filter most irrelevant posts before clustering.

We represent and evaluate the three aspects for any given signal function S by

using function F.

High Recall : For any c that is a target cluster T (c) = 1, F(c) should be 1 in most

cases. Given a labeled dataset L of target clusters, we evaluate signal function S by

the recall of its corresponding classification criterion F by calculating the percentage

of true positive cases in all positive clusters, i.e., True Positive ((TP)) rate:

TP (S, L) =

∑
<c,T (c)>∈L(F (c)× T (c))∑

<c,T (c)>∈L T (c)
(6.2)

High Precision For any c that is not a target cluster T (c) = 0, F(c) should be

0 in most cases. We evaluate signal function S by the precision of its corresponding

classification criterion F, by calculating the percentage of true negative cases in all

negative cases, i.e., True Negative (TN) rate:

TN(S, L) =

∑
<c,T (c)>∈L((1− F (c))× (1− T (c)))∑

<c,T (c)>∈L(1− T (c))
(6.3)
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High Filter Rate The ratio of signal posts to all posts should be low, so that most

posts can be filtered. We evaluate signal function S by calculating the number of

signal posts in all labeled dataset and compared it to the number of all posts, i.e.,

Filter Rate (FR):

FR(S, L) = 1−
∑

p∈c∧<c,T (c)>∈L S(p)∑
<c,T (c)>∈L |c|

(6.4)

Ideally, if a signal function S and its corresponding classification criterion F can

obtain both high recall and high precision, the final post cluster classification step

is unnecessary. Signal identification algorithms, however, need to filter most of the

tweets before clustering to improve efficiency, i.e., high filter rate. Therefore, all three

aspects are needed to force signal function S to look for posts with uncommon features

that distribute mostly in target clusters. This is a much harder goal to achieve than

the objectives for the final post cluster classification algorithms, which intuitively look

for features that are common in target clusters but not in other clusters. Therefore, a

signal function needs to find a good tradeoff among these three properties. Combining

with a final post cluster classification algorithm in our detection framework, we can

detect targeted events both efficiently and effectively.

A good signal identification algorithm needs to balance the effectiveness with

efficiency. It first needs to have a high recall or high True Positive rate ((TP))

described in Equation 6.2, so that after signal filtering, most of the positive target

clusters can be preserved. Since we have a final cluster classification step, signal

filtering can look for tradeoff between a promising precision or True Negative rate

(TN) described in Equation 6.3 and high Filter Rate (FR) described in Equation

6.4.

Meanwhile, since a signal function learns the features and properties of individual

posts instead of the entire cluster, it uses of different set of features than the third

classification step. Because of the constrains on the filter rate, these features are
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usually uncommon in general but related to a small proportion of users’ common

reactions to the targeted events. Usually, the reactions are both content irrelevant

and more robust to over-fitting. Applying a good signal identification algorithm

allows us to eliminate many potential false positive cases. In our experiments, we

will evaluate this by comparing the final accuracy of detection systems using different

signals and not using signals.

In summary, to learn a good signal classifier and signal function S, three objectives

need to be considered. A high TP is required for not filtering out positive target

clusters before classification step. A high TN increases the final accuracy after the

classification. And a high FR increases the efficiency of detection system.

6.5.2 Learning Signal Classifier

We model signal function S(p) using a linear combination of features from post p:

S(p) = δ(WΦ(p)) = δ(
∑

φ(p)(i)inΦ(p)

(wi × φ(p)(i))), (6.5)

where Φ(p) is the feature vector of post p, φ(p)(i) is the ith dimension of the features

of post p, W is a vector of the feature weights we need to learn from labeled dataset,

and δ is a sign function for classification. Usually it can be replaced by exponential

function such as in Logistic Regression.

To learn a good signal function S, we need to consider TP, TN and FR. Our

objective function combines the three properties as:

Obj(S, L) = rTPTP (S, L) + rTNTN(S, L) + rFRFR(S, L), (6.6)

where rTP , rTN , and rFR are the weights of the three properties. We need to

make rTP higher than rTN and rFR as discussed above, because high recall is more

important than precision and filter rate in the signal function. Therefore, given a
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labeled dataset L of target clusters, we can learn the feature weights W in signal

function S by maximizing the objective Obj(S, L).

We use gradient descent to learn signal function S:

Wk+1 := Wk + η
∂Obj(S, L)

∂W
, (6.7)

where η is the learning rate and k is the number of iterations in the gradient

descent. To calculate the gradient, we use sigmoid function to replace function δ(v):

δS(v) = 1/(1 + exp−kv),

where k is a hyper parameter determining the steepness of the sigmoid function. In

this work, we set k = 10.

6.6 Framework Implementation

In this section, we describe how we implement our detection framework to detect

persuasion campaigns in social media. We first build a signal identification algorithm

by learning the signal function S. Given a set of labeled persuasion campaigns L, we

learn S by maximizing the objective function described in Equation 6.6. Using the

same labeled dataset L, we also train the classifier T̂ for classifying post clusters.

With learned S, we apply our framework to a stream data in Twitter.

Given input social media post stream P, we filter non-signal posts and cluster

signals into candidate clusters and then match every new incoming post from stream

P to the candidate clusters. Next, we run post cluster classifier T̂ on the candidate

clusters in every short time interval and output the detected target clusters.
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6.6.1 Signal Learning

To learn signal function S, we first extract features from posts. We use ngrams,

i.e., uni-gram, bi-gram, and tri-gram as features. We filter low frequent ngrams which

appear less than five times and remove high frequent ngrams which appear more than

100,000 times in the labeled dataset.

In our optimization process with gradient descent, due to non-convexity from joint

maximizing three objectives, the initialization of the variables is very important. To

obtain good initial states, we randomly generate initial weights 100 times, directly

calculate their objective values, and select 10 with the highest value. We start training

with these 10 sets of initial weights separately. It takes 100 iterations before we

observe convergence on the objective value. We end by selecting the result with the

highest objective value as the final output of signal function S.

6.6.2 Signal Filtering, Clustering and Matching

Having learned the signal function S, we now apply it to filter the input post

stream P. We cluster the signals and clusters with more than λ signal posts become

candidate clusters. And we merge every incoming post in the post stream that can

be matched with candidate clusters into the matched clusters. We set λ to 3, which

we also use in our rumor detection system (see Chapter V for details).

The process of filtering, clustering and matching is not a typical stream clustering

problem. Unlike existing stream clustering approaches, our system does not cluster

all posts, i.e., we only need to output and update clusters having more than λ signals.

We extend some of the existing stream clustering approaches [94] [3] to develop our

own stream signal filtering, clustering and matching algorithm.

Algorithm 1 shows the pseudo code of our signal filtering, clustering and matching

algorithm. We output the updated information of candidate clusters Cm whenever

a new post matches with a candidate cluster or we detect a new candidate. In our
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Data: Social Media Post Stream P, Signal Function S
Result: A Stream of Matched Candidate Clusters: Cm
initialization ;
Cs = {} ; /* signal clusters */

Cm = {} ; /* Stream of Candidate clusters */

while post p in P do
matched = MatchToCluster(p, Cm) ; /* Check if post p can be

matched a cluster in Cm */

if matched then
Output Cm[matched].insert(p) ; /* Insert post into matched

candidate cluster */

continue;

end
if S(p) then

matched = MatchToCluster(p, Cs);
if matched then

Cs[matched].insert(p);
if size(Cs[matched] ¿= λ) then

Output Cm.insert(Cs.pop(matched)) ; /* Move signal

clusters with more than λ signal posts to Cm */

end

end
else

Cs.insert(CreateCluster(p)) ; /* Create a new signal cluster

for non-matched signal post */

end

end

end
Algorithm 1: Signal Filtering, Clustering and Matching
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implementation, we use and inverted index on cluster centers to reduce the time

required to match post with clusters.

Our system has the flexibility of using different post features and similarity mea-

surements for clustering. For example, if tweets are clustered by Jaccard similarity

on ngrams, we can extract clusters of near duplicate statements. Since the posts that

disseminate one persuasion campaign can have totally different ngram content, we use

hashtags as features and measure their cosine similarity between tweets. To match

post into candidate cluster, we measure the similarity between the post and cluster

center. We set a high threshold (0.99) of the cosine similarity so that the majority of

tweets inside one cluster will contain same hashtag or set of hashtags.

6.6.3 Classifying a Group of Tweets

To train the classifier to identify whether a candidate cluster is a persuasion cam-

paign or not, we extract both the content features and other statistical features from

the clusters.

For the content features, we extract uni-grams, bi-grams and tri-grams from the

labeled dataset and apply stemming and filtering to both low-frequent (less than 5

times) and high frequent (more than 100,000 times) terms.

For the statistical features, we use features similar to previous studies of rumor

detection and persuasion campaign detection [123] [119] [27]. These features include:

percentage of retweets in culture, percentage of tweets with URL in cluster, percentage

of tweets with mentioned users in cluster, percentage of tweets with hashtags in

cluster, average length of tweets, content entropy, and average number of words.

We choose linear kernel SVM as our classification algorithm. By running a five-fold

cross-validation on our labeled persuasion campaign dataset, the average accuracy of

using content feature only is 0.819 and the average accuracy of using both content

feature and statistics is 0.853. Therefore, we train classifier with the two types of
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features combined, and use the trained classifier to identify persuasion campaigns

from the candidate cluster stream Cm.

6.7 Experiment Setup

In this section, we describe how to generate the labeled dataset and the dataset for

evaluating our persuasion campaign detection system. We also list baseline methods

used in evaluating detection performance, including signal learning.

6.7.1 Datasets

We use post stream of social media platform Twitter to conduct our experiment.

We have been tracking tweets using Twitter’s gardenhose API that provides 10% of

random sampled tweets. Our archive contains tweets from Jan 31st 2015 to Feb 7th

2016. Different proportion of these tweest are used to for either generating labeled

dataset or evaluating detection performance.

6.7.1.1 Labeling Persuasion Campaigns

To generate a labeled dataset for training classifiers, we conduct an online search

of the most popular hashtags associated with persuasion campaigns on Twitter. We

identify 80 hashtags, covering different categories discussed in Section 6.3, such as

politics, spams, and commercials. We track them on Twitter and generate post

clusters for each hashtag. We also randomly select 80 hashtags from all the hashtags

appearing in January 2016 as potential negative examples in the labeled dataset.

Our positive clusters and their corresponding hashtags derive from five sources:

• Hashtags of supporting and opposing 2016 U.S presidential campaign candi-

dates: We select 21 popular pro or con hashtags relating with presidential can-

didates that appear in January 2016. Each cluster contains tweets having the

corresponding hashtag.
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• Promoting tweets and hashtags. We identify 303,618 promoted english tweets in

January 2016 from our Gardenhose collection. We group them by hashtag. We

manually select the most popular 25 hashtags that are relevant with promotion

content. Finaly, we retrieve all tweets containing one of the 25 hashtags to

create tweet clusters.

• Superbowl commercials. We identify a total of 17 official commercial hashtags

for both the 2015 and the 2016 Superbowl football game. For 2015 commercials,

we create clusters by searching tweets from Jan 31st to Feb 2nd 2015. And for

2016 we use tweets for the month of January for 2016.

• ISIS propaganda. Since ISIS uses Twitter to post propaganda content, we find

some of its supporting or opposing campaigns. We manually identify and track

7 relevant hashtags from Nov 27th 2015 to Jan 31st 2016.

• Urging support for social issues or actions. We identify 10 popular hashtags in

this category. They are mostly related to public reactions to specific controver-

sial events, e.g., hashtag #RefugeesNotWelcome during the Syria migrant crisis

in Europe in January 2016, and #EndYulinFestival for protesting a festival that

celebrating dog eating.

We develop a codebook based on our definition of social media persuasion cam-

paigns in Section 6.3. We employ two human annotators to identify real persuasion

campaigns from the 160 hashtags. We retain only the post clusters having at least 50

tweets and having same label by both annotators. The totals are 66 positive clusters

and 76 negative clusters. Our labeled positive target clusters represented by their

hashtags can be found online 3.

Besides model training, we also need to label results of different detection systems

for evaluation purposes. We ask the annotators to manually label the output post

3http://www-personal.umich.edu/~zhezhao/image/labels
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clusters from our system and baseline systems using the codebook. The inter-rater

readability measured by the kappa score [45] between the two annotators is 0.767.

6.7.1.2 Testing Dataset

We use tweets from Feb 1 to Feb 7 2016 as the input post stream. There are about

36 million tweets daily and 255,050,763 tweets in total for the study period. We run

our detection system and baseline detection systems and output detected persuasion

campaigns for each day of our dataset. We evaluate the detection performance by

averaging the daily performance.

6.7.2 Evaluation Methods

We extend our general detection framework for targeted social media events shown

as in Figure 3.1 for persuasion campaign detection and include a learning process to

learn a signal classifier for signal filtering. To evaluate our work, we need to evaluate

both signal learning, and the end-to-end persuasion campaign detection performance.

6.7.2.1 Signal Learning

To evaluate our proposed signal function learning approach, we need to compare

our method with other ways of finding signal identification algorithms such as the

content analysis used in our previous rumor detection system. In that method, the

content analysis uses feature selection methods such as Chi-Square to generate a list

of language patterns. We manually delete patterns that are relevant to the content of

specific rumors and select a few that reflect common user reactions to rumors, e.g.,

enquiry patterns.

We also study how different weighted combinations of the three objectives (recall,

precision and filter rate) in Equation 6.6, can be used to learn a good signal function.

The three baseline methods and our method are as follows.
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Baseline 1 Chi-Square and Manually Selection. We conduct Chi-Square feature

selection method on our labeled datasets [33]. We compare the ngram features in all

tweets that are relevant to at least one persuasion campaign to tweets that are irrel-

evant to any persuasion campaigns. To obtain performance, we remove the content

of hashtags and only keep the hashtag sign representing a hashtag in all tweets dur-

ing preprocessing. We manually filter out the features relevant to specific persuasion

campaigns and select 12 features that are content-irrelevant. The top features ranked

by Chi-Sqaure are: “url #hashtag #hashtag”, “#hashtag #hashtag #hashtag”, and

“please retweet” etc.

Baseline 2 Optimize Accuracy. In this method, we learn signal function S using

our approach but adjust the weights of the three objectives. We set the weight on

Filter Rate (rFR) to 0, and set the weight on True Positive Rate (rTP ) and True

Negative Rate (rTN) to 1. The learning process is similar to maximizing only the

accuracy of the classification criterion F of signal function S in Equation 6.1.

Baseline 3 Equally optimize TP, TN and Ratio. We set all three weights in the

objective function in Equation 6.6 to 1. Therefore, a signal function will be learned

by treating TP, TN and FR equally important.

Our Method As described in Section 6.5, a good signal identification algorithm

need to have a high TP, so that positive target clusters will not be filtered in the

signal filtering step. sTherefore, we set weight on TP, (rTP ) to 2 and set rTN and

rFR to be 1. So during optimization, True Positive rate have higher importance than

True Negative rate and Filter Rate.

To evaluate the four methods, we randomly separate 20% of the labeled dataset

into a testing set, and use the remaining 80% to find the signal functions of the

different methods. To tune parameters such as learning rate η, we conduct four-fold
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cross validation in the training set. To evaluate different signal functions, we calculate

the TP rate, TN rate and FR in the testing set.

6.7.2.2 Detection Framework

After signal function S has been learned, we apply the signal function learned

to detect persuasion campaigns from the social media post stream. Our objectives

are to compare our method with existing clustering and classification frameworks,

and ascertain whether our learned signal function outperforms other signal identifi-

cation algorithms, e.g., Baseline 1 method in signal learning of using Chi-Square and

manually selected patterns.

Baseline 1 Clustering and Classification. This method do not use any signal fil-

tering techniques. Instead, it clusters all posts and generates candidate clusters for

classification.

Baseline 2 Manually Selected Signal + Clustering + Classification. In this method,

we use the Baseline 1 method of signal learning to identify signals, and then filter

the posts and cluster signals to generate candidate clusters. We classify the candi-

date clusters matching both signal and non-signal posts by using the learned cluster

classifier. This method can be viewed as directly applying and extending the rumor

detection framework [123].

Our Method Automatically Learned Signal + Clustering + Classification. In our

method, we learn signal function by maximizing the objective function defined in

Equation 6.6 and apply the learned signal function to detect persuasion campaigns

using the framework in Section 6.4.

To evaluate the accuracy detection and report the average accuracy of the three

methods, we sort the positive clusters identified by each method by cluster size for
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each day from February 1 to February 7 2016, and output the 50 most popular clusters.

We evaluate the relevant recall by merging the clusters detected by all methods into

a single persuasion campaign set. We also assess the run times and computational

costs of the three methods.

6.8 Experiment Results

In this section, we show our experimental results. We discuss the performance of

learned signal classifier using our method compared to the baseline methods. Then

we show the effectiveness of detecting social media persuasions campaign using our

framework compared to baseline approaches. We also discuss the efficiency of our

detection system. We also give our analysis on the earliness of signals identified by

the learned signal classifier, and discuss how to learn early signals using our method.

At last we summarize and discuss our insights from the results.

6.8.1 Signal Learning

As discussed in previous section, to learn the feature weights in the signal func-

tion S using labeled persuasion campaign dataset L, we maintain multiple random

initialized weights and train them separately. Our experiment results show that the

objective value usually converges to a local maximum and stops within 100 iterations.

Therefore, for each set of initialized weights, we stop training at the 100th iteration

and select the set with the highest objective value.

For Baseline method 1, i.e., selecting patterns manually from Chi-square feature

selection analysis, we first calculate Chi-square score on the training set, which is 80%

of the labeled dataset. Then we manually select 12 pattens as the signal patterns.

Any tweet having at least one of these patterns is a signal. We use these patterns as

a baseline signal identification algorithm.

Note that Baseline method 1 for signal learning will also be used in building
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baseline detection system in later experiments, where we should use the entire labeled

dataset to conduct this analysis. We compare the Chi-Square scores calculated on

the training set with the scores calculated on the entire labeled dataset. We find

the same 12 patterns on the entire labeled dataset as in the training set. So in later

experiments of evaluating detection systems, we use these 12 patterns for identifying

signals for the baseline detection system.

For Baseline methods 2 and 3 and our method, we conduct a four-fold cross-

validation in the training dataset to select the best learning rate and regularization

factor for each method and then use the tuned parameters to learn the weights in the

complete training set. We evaluate these methods using three objectives, i.e., TP, TN,

and Filter Rate, on testing set. To eliminate the randomness of performance caused

by achieving different local maximums, we run the evaluation process five times and

report the mean of each metric. Table 6.3 lists the results and Figure 6.3 lists the

results of plotting in a figure with an error bar.

Although there is no single numeric value indicates which signal function is better,

we know that a good signal function should first have a high TP rate, then a high

TN rate and a high FR rate. Comparing with Baseline 2 and Baseline 3, our method

learns a better signal.

Comparing our method with Baseline 2, our method outperforms Baseline 2 for

the TN and FR rates. Baseline 2 optimizes TN and TP equally and does not optimize

FR. It is expected that the filter rate is lower than our method. But ideally Baseline

2 should have a higher TN rate than our method. The reason why Baseline 2 has

a lower TN rate than our method is due to the non-convexity of our optimization

process. When training a traditional binary classifier such as logistic regression, the

convexity of its optimization on accuracy makes the learned classifier balance with TN

and TP. However, since we don’t have labels on posts, the definition of our objective

is not directly on the signal function S but on an gated function F, which makes the
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optimization no longer convex.

Because Baseline 2 does not optimize filter rate, the training easily falls into

saddle points where many tweets are signals. This causes the TP close to 1 and the

TN close to 0, because the classification criterion, gated function F, in Equation 6.1

identifies a positive cluster by checking whether clusters have no less than λ signals.

Since λ is not only small but irrelevant to cluster size, when many tweest are signals,

more positive clusters, both true positives and false positives, will be identified. In

this case the sigmoid function used to replace the sign function in F will generate

0 gradients, which makes the optimization stuck there. On the other hand, adding

Filter rate as another objective prevents predicting too many signals and balancing

the performance of TP and TN.

Comparing with Baseline 3, setting a higher weight on True Positive rate in our

method returns the required high TP rate. Because Baseline 3 sets equal weights on

TP, TN, and FR, the results learned balance TP and TN with a high FR. Noting that

a good signal identification algorithm should have high a TP so that we can reserve

as many true target clusters as possible before classification, by setting weight on TP

to be 2 and weights on TN and FR to 1, we can learn a signal function with high

TP and medium TN. Also, since Baseline 3 treats TP and TN equally, the standard

deviation shown in Figure 6.3 is much higher than the other methods including ours.

This is because different local maximums achieve either high TP or high TN.

Baseline 1 and our method perform similarly for TP and TN, although Baseline

1 has a lower FR. This shows by manually select content irrelevant features from a

rank-list generated be feature selection method such as Chi-Square, we can get good

patterns for high TP and medium TN for persuasion campaign detection. Lacking a

constraint on FR, the signal identification algorithm learned using this method could

show low efficiency in filtering irrelevant posts before clustering.
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6.8.1.1 Examples of Top-ranked Features for Learned Signal Function

Baseline 1 The 12 patterns extracted using feature analysis in Baseline 1 mostly

relate with the use of multiple hashtags, and asking for retweeting. This reflects

the common use reaction of asking for support. For example, it can capture tweets

such as “Lets Vote against, Disparity, Discrimination and Suppression of Mamata..

Lets Slap Mamata Legally #Vote4GJM #VoteForBJP #Gorkhaland.”. The 12 pat-

terns extracted are: “#hashtag #hashtag #hashtag”, “url #hashtag #hashtag”,

“#hashtag #hashtag url”, “chance to win”, “@user will”, “please retweet”, “retweet

please”, “you retweet ”, “let’s get”, “retweet this @user”, “you retweet”, “retweet

this”. These patterns are indicative to persuasion campaigns, altough some of them,

such as multiple hashtags, or asking for retweet, are relatively common in post stream.

Commonality makes signal identification and filtering less efficient.

Our method Since our method learns a binary classifier that contains a com-

plex combination of a large number of patterns, we give a few examples of the

top patterns ranked by learned weights. Compared to Baseline 1 which uses mul-

tiple hashtags, some of the top-ranked patterns in our method combine the use of

hashtags with persuasive pro or con expressions. For example, the pattern “fantas-

tic #hashtag” captures this tweet related to a persuasion campaign. “I’ve already

voted. Have you? Pls #vote and #RT for this fantastic #Plymouth initiative: vmb-

voom.com/pitches/cre8t...”. This pattern express the common user reactions of sup-

porting. We also have patterns such as “time to banish” expressing common reactions

of opposing. Some other top-ranked patterns similar to asking for retweets, although

less common, including “amp to follow”,“rt amp follow”, “shout outs required”, etc.

132



Table 6.3: Performance of Different Signal Learning Methods
Method True Positive rate True Negative rate Filter Rate
Baseline 1 0.9333 0.1667 0.6418
Baseline 2 1 0.0111 0.5858
Baseline 3 0.3067 0.8556 0.9986
Our Method 0.9333 0.2 0.9435

Figure 6.3: Performance of Signal Function Learning

6.8.2 Persuasion Campaign Detection

In this subsection we evaluate the effectiveness of detecting persuasion campaigns

from tweet stream. We compare our framework with the clustering + classification

framework without signal filtering. We also compare our learned signal classifier with

the signal patterns manually selected from Baseline 1. The setup of our detection

system and the two baseline approaches in this evaluation are introduced in Section

6.7.

To compare the effectiveness of different frameworks, we run the three detection

systems on 10% of the daily tweets from February 1-7. For each day, each method

outputs all positive clusters classified by the same classifier trained on the labeled

dataset. The implementation of the classifier is discussed in Section 6.6. We rank the

output positive clusters by size, select the top 50 largest clusters, and ask our two

human annotators to label whether they are persuasion campaigns or not. We use

average accuracy, which is the average of the correct prediction percentage in the 50
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clusters over the seven days of the study period.

We also want to understand the recall of each framework. Since the cost of labeling

all post clusters outputted from the three detection systems is high, we calculate

relevant recall on the set of the top 50 largest clusters from the three systems that

have already been labeled as persuasion campaigns by the annotators. To identify

whether a cluster returned from one method contains the same persuasion campaign

as a cluster returned from another method, we compare the hashtag(s) identified as

a cluster center. When two clusters’ centers contain the same hashtag(s), it means

they refer to the same persuasion campaign. In our experiment, after merging all

labeled persuasion campaign clusters from all methods, we have a total of 260 unique

persuasion campaigns.

Table 6.4 lists the performance results. We can see that our method of using au-

tomatically learned signal classifier outperforms other two methods. Using manually

selected signals have higher precision and recall than baseline method 1 (no signal

filtering). This is because applying signal functions can filter negative cases and keep

most of the positive cases, which further increase accuracy of detection.

Applying signal function and a signal filtering step cannot change the prediction

results of the final step of classification, but it can select the candidate clusters to

be classified by the classifier. Proper selection, such as filtering many potential false

negative clusters, greatly improves final detection accuracy.

For event detection scenarios such as persuasion campaign detection, positive

example are rare. Thus, a cluster level classifier trained on limited labeled dataset is

likely to overfit and perform less well on a larger and imbalanced set of post clusters

in a real tweet stream. Adding a signal filtering step changes the set of candidate

post clusters for classification by providing another perspective on post level thus can

improve the situation of overfitting.

Unlike the use Chi-Square for manual pattern selection, our method targets at
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Table 6.4: Detection Performance of Different Detection Method
Method Average Accuracy Relevant Recall
Baseline 1 0.463 0.415
Baseline 2 0.569 0.45
Our Method 0.646 0.569

joint optimizing for a high true positive rate, low false negative rate, and high filter

rate. Our method not only looks for content-irrelevant post level features as in the

manual selection, but also for uncommon features, i.e., it handles both data imbalance

and overfiiting.

6.8.3 Earliness of the Signal

Although we are not looking for signals that appears at the early stage of persua-

sion campaign in our signal learning process, it is important to study the earliness of

detection. Because it will be more meaningful if we can detect persuasion campaigns

at their earlier stages.

Since we apply the same classifiers at the classification step, if we output all

positive clusters as detection results, the baseline method 1 of not using signals will

always be the method that detects a given persuasion campaign earliest. However,

since there will be a large number of false positive post clusters outputted at the same

time, it may not be practical for us to locate meaningful persuasion campaigns.

Instead of checking all results, it is more practical to check the most popular

positive clusters returned by the detection system. Therefore, we use the largest 50

positive clusters detected by each method to evaluate earliness.

For each method, we compare the first day it outputs a positive persuasion cam-

paign to the earliest day the same persuasion campaign has been detected by any

methods. For the baseline method 1, in seven days, 108 unique clusters has been

detected, 99 of them are detected on the same day as the earliest detection and 9

clusters are detected later. The average detection delay compared to the earliest de-
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tection is 0.18 day. For the baseline method 2, 117 unique clusters has been detected

and 114 of them are detected on the same day as the earliest detection, the average

detection delay compared to the earliest detection is 0.05 day. And for our method,

148 unique clusters are detected and 140 of them are detected on the same day as the

earliest detection. The average detection delay compared to the earliest detection is

0.12 day.

In general, using signal filtering detects persuasion campaigns earlier than baseline

method without signal filtering when only showing the most popular results. Here,

since manually selected signal doesn’t filter as many posts as our signal function, but

still have similar TP and TN rate, some persuasion campaigns can be detected earlier

than our method. Our method filters most of the tweets and still has a relatively

early detection result compared to Baseline 1.

Next we also want to understand how constraining the size and time stamp of the

training data in learning the signal classifier assistis in identifying early signals. If our

labeled dataset only contains the early posts of each persuasion campaigns and we can

still learn a good signal, this signal can by applied and may achieve a better earliness

in detection. We sort the tweets in each labeled post cluster by time, and limit each

cluster to only contain the earliest k tweets. We compare the signal function learned

on the training set with different k and show the results in Figure 6.4. From the result

we can see, when k is small, we can still learn the signal function with high TP and

TN, but the filter rate is relatively low. When k is too large, performance becomes

unstable and decreases. This result suggests that choosing a proper training size is

important for learning a good signal and possibly an early signal.

6.8.4 Detection Efficiency

We also evaluate the efficiency of each detection system. We run them using

our stream based clustering algorithm discussed in Algorithm 1. For Baseline 1, we
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Figure 6.4: Learning Signal Function using Different Size of Labeled Dataset

treat every tweet as a signal and any cluster has more than 3 tweets as a candidate

cluster. For Baseline 2, we use manually selected patterns as the signal identification

algorithm. For our method, we use signal function S learned automatically as the

signal identification algorithm. All detection systems are run on a single core 2.3GHz

CPU.

We set a threshold limit on the size of candidate clusters. If a candidate cluster

size is larger than 1,000,000, we replace the oldest ones with the newest ones. Without

this constraint, the number of candidate clusters will grow as the posts from the input

stream are processed, and Baseline 1 and 2 cannot finish our scalability test within

a day. We also implement an inverted index for matching tweets with clusters to

further improve efficiency. Figure 6.5 shows the time cost of each method by scale of

input stream.

We can see that when the number of tweets processed is small, all the three

methods cost about the same amount of time and have comparable efficiency. When

the number of tweets is small, feature extraction and other processes, such as signal

filtering, cluster matching, and outputting, cost more time than clustering. And

Baseline 1 does not have signal filtering function to match incoming post with signal
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Figure 6.5: Time Consumed (seconds) by Method

patterns. When scalability increases, the cost of Baseline 1 increases significantly.

Baseline 2 is more efficient than baseline 1 because it filters more than 50% of the

tweets. Our method has the shortest run time, i.e., it process 100M posts in about

four hours.

Since the run time may be influenced by many uncontrollable factors such as other

running processes, and hard drive efficiency. To get a better idea of the computational

resources signal functions can save, we count the number of function calls for similarity

measurement in our framework. In our detection task, other than measuring the

similarity, most functions such as feature extraction and signal filtering are called

only once for each incoming post. For the clustering algorithm, comparing pair-wise

similarity between posts or between post and cluster center consumes the most time.

Figure 6.6 shows the number of similarity comparison functions (in log scale) called by

method. By applying our learned signal, the number of function calls is significantly

less than both baseline methods. Note that our detection system users an inverted
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Figure 6.6: Number of Similarity Measurements by Method

index to match every new post in a stream with candidate clusters. The matching and

retrieval calculations are not counted as similarity measurements. Applying state-of-

the-art retrieval approaches can further increase the efficiency of our system.

To sum up, in this section, we conduct experiments on our social media persuasion

campaign detection system. We test our method of learning signal classifier for signal

filtering from labeled persuasion campaigns. We also compare our detection system

with other existing detection frameworks and signal identification algorithms on a

real world Twitter dataset. For signal learning, our method can learn better signal

identification algorithm evaluated by the key properties of signal filtering. And we

apply the learned signal identification algorithm in detecting persuasion campaigns

and achieve better performance than baseline methods.

6.9 Summary

In this chapter we studied the problem of detecting persuasion campaigns from

social media post stream. We revisited the definition and general framework of de-
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tecting target clusters in social media and applied them in detecting persuasion cam-

paigns. To solve the detection problem, we extended our proposed framework by

automatically learning a signal identification algorithm. We quantified the properties

of signals for filtering irrelevant posts, including precision, recall, and filter rate, and

proposed to learn a signal classifier to identify signals from a labeled persuasion cam-

paign dataset. We applied our learned signal classifier to our detection framework.

Experiments using tweet stream from Twitter showed that our proposed method out-

performed detection systems without signal filtering and detection systems that used

manually selected patterns for filtering signals.

As the experiment has demonstrated, adopting signal filtering can achieve some

level of earliness in detecting persuasion campaigns compared to detection systems

without signal filtering. Future research, therefore, should study how to learn a

signal not only have high true positive rate, true negative rate and filter rate, but

also appears at the early stage of a target cluster.

Having generated additional persuasion campaigns by using our detection system,

future research should consider how different signals perform differently in detecting

subsets of persuasion campaigns such as political campaigns, promotions, and spams.
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CHAPTER VII

Conclusion

This dissertation proposes a general framework to detect online social media ru-

mors and persuasion campaigns effectively and efficiently. In this chapter we sum-

marize the development and application of the two detection systems. We note the

contributions of our research to the published literature on social media and the im-

plications for commonly used data mining applications. Chapter 7 ends with our

suggestions for future research.

7.1 Summary

Today, Facebook, Twitter, Google Plus, and other social media platforms as yet

unknown play an outsized role in modern communications. Increasingly, people de-

pend on them to interact with other users, to broadcast (disseminate) their opinions,

and to get information. The advent of so-called fake news is one of several reasons

that computer scientists need to identify and closely examine the dissemination of

rumors and the persuasion campaigns associated with social media events.

Existing methods used by researchers to detect social media events first apply

clustering techniques to cluster posts. Each post cluster corresponds to a social

media event. Reachers apply a predefined set of rules or a classifier trained on a

labeled dataset to identify whether a post cluster corresponds to a targeted social
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media event. The detection methods, however have proven ineffective and inefficient

when applied to detect events involving only a small subset of all post clusters such

as rumors and persuasion campaigns, because of the imbalanced situation of target

clusters in all clusters.

In this dissertation we improve the detection methods by adding a signal identi-

fication and filtering step. Signals, which are the posts that indicate the existence of

targeted events, reflect the common user reactions during an event?s emergence and

dissemination.

Instead of clustering all posts, we only cluster the signals identified from a social

media post stream. We match the nonsignal posts with the signal clusters to obtain

a subset of the post clusters that contain signals. We apply a classifier to identify

the target clusters. We use the general framework to build rumor and persuasion

detection systems. The framework can also be adapted to detect other types of social

media events with similar properties.

The use of a signal filtering step before clustering filters out a large percentage of

the posts from the post stream. In other words, only the signals that are likely to be

related to targeted events are used to generate candidate clusters, and the resulting

candidate clusters contain fewer irrelevant events than the clusters generated from

the entire post stream. This general framework for rumor or persuasion campaign

detection significantly reduces the computational cost as well as the difficulty of event

classification.

Do signals exist at all? How to identify them? And what make them different from

other posts? As the most critical component of our framework is the identification

of good signals, we start by conducting a content analysis of posts on social media,

in this case, Twitter, to understand users? common reactions to different types of

events and how users? individual activities or posts explicitly reflect such reactions.

We analyze the difference between user activity types according to the the content of
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their corresponding posts.

Specifically, we track and analyze users? question-asking behaviors on Twitter.

Because the types of explicit questions asked reflect users? information needs, they

also represent reactions to different types of social media events, e.g., rumors. Training

a classifier to automatically detect the posts on Twitter that are questions allows

us to extract a large collection of question posts. By grouping these questions by

keywords, our analysis found popular topics in questions are different from the topics

being generated by other posts. Question topics have high correlation with social

media bursting events and have a considerable power of predicting trend of Google

search. Our analysis provides insights in detecting social media rumors. A specific

type of questions, namely, confirmation questions or enquiries, are related to social

media rumors.

What are signals for social media rumors? And how can be build effective and

efficient system to make use of them to detect social media rumors? In order to

build social media rumor detection system, we need to answer these two research

questions. Because rumors are factual claims with disputes, when a rumor occurs,

it results in common user reactions such as enquiring and fact-checking. There will

be a small number of posts enquiring the truth value of the rumor statement in a

rumor cluster, although most of them are not. We continue our content analysis by

understanding enquiries and other common user reactions of social media rumors.

By comparing feature differences between posts in rumor clusters and posts in non-

rumor clusters, we discover a set of unique language patterns that related to enquiring

and fact-checking posts. These patterns are used to identify signals of social media

rumors.

We apply the proposed general framework to detect rumors on Twitter. We

cluster only the tweets containing enquiring and fact-checking patterns. We extract

the statements made by each cluster and match them with nonsignal tweets that
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discuss the same statement. The clusters with both signal and nonsignal tweets

become candidate clusters. We train a classifier to rank the candidate clusters by

the probability that they are rumor clusters, based on their statistical features. Our

experiment shows that we can detect rumors with high accuracy more efficiently than

when we do not use signals. Observing that enquiry posts can appear in very early

stages of a rumor infers that our detection system can detect rumor clusters far earlier

than the existing detection methods.

The results inspire us to apply our framework to another type of targeted event,

social media persuasion campaigns. Unlike rumors, the signals for detecting persua-

sion campaigns may not contain unique and simple language patterns. In fact, the

signals may contain many patterns and combinations.

What are the properties of signals for detecting target clusters? Can we auto-

matically learn a post classifier for signal identification using those properties? In

our work of building social media persuasion campaign detection system, we identify

three key properties of signals for targeted event detection.

• High recall: All or most target clusters have these signals. Therefore, we do not

filter target clusters by filtering nonsignal posts.

• High precision: Signals exist mostly or only in target clusters. Therefore, we

can filter out many nontarget clusters.

• High filter rate: Signals are relatively uncommon compared to other posts.

Therefore, only clustering signals increases detection efficiency.

A good signal identification algorithm needs to have all three properties, so our

detection framework using it is more effective and efficient compared to frameworks

without it. And when these three properties cannot be satisfied at the same time,

high recall is the first priority. This is because a cluster classification step after

clustering signals and generating candidate clusters can identify positive clusters. So
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it is more important that most potential positive clusters are preserved after signal

filtering process. Quantifying the key properties into learning objectives enables us

to develop a joint optimization learning algorithm to learn a signal classifier from

labeled persuasion campaigns.

Once the signal classifier is learned, it can be used to identify signals from social

media post stream. We apply it in our general detection framework to detect per-

suasion campaigns. Our detection system takes input of social media post stream,

filters non-signal posts and clusters signals into signal clusters. Then by matching

non-signals to signal clusters, it gets a stream of candidate clusters. Then we iden-

tify persuasion campaigns from these candidate clusters using a binary classifier. In

our evaluation, we show that by using signals identified from a learned signal classi-

fier, we can detect persuasion campaigns with higher precision and recall compared

to framework using signals identified from manually selected language patterns and

framework without using signal filtering.

Once the signal classifier is learned, we use it to identify the signals in a social

media post stream and incorporate the learned signal classifier into our general de-

tection framework to detect persuasion campaigns. Our detection system uses the

social media post stream as input, identifies and clusters the signals into signal clus-

ters. By matching the non-signals with the signal clusters, we obtain the stream of

candidate clusters. Then we identify persuasion campaigns by using a binary classi-

fier. In our evaluation, we show that by using the signals identified from a learned

signal classifier, we can detect persuasion campaigns with higher precision and re-

call than frameworks using manually selected signals and frameworks without signal

identification and filtering.
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7.2 Contributions and Limitations

General detection framework for rumors and persuasion campaigns We

develop a general framework for detecting social media rumors and persuasion cam-

paigns. Our framework is both efficient and effective. It yields better detection

performance than existing approaches that do not identify and use signals. It can

also be applied to other types of social media events, if the emerging and spreading

of such events can result in common user reactions .

Content analysis of online user activities The content analysis we conduct to

understand the different types of user activities and their corresponding posts can be

used for other social media mining applications. We can leverage the content and

topic differences between the posts generated by type of user activities to build user

profiles for context-aware recommendation tasks. Our analysis of user-asking question

activities shows how a bursting events correlates with the trend of question posts, and

provide insights into understanding the potentially popular memes in social media.

Social media rumor detection system We build a system to detect social media

rumors at early stage. By monitoring social media posts of enquiring, fact-checking

and correcting activities, we can identify the early signs of occurrences of rumors. Our

system can be applied to real world social media website and perform detection task

in real time. The ability to detect rumors at the earliest stages can help computer

scientists, the media, and political campaigns to quickly analyze and evaluate detected

rumors. Most importantly, early rumor detection can also draw attention to false or

fraudulent claims before dissemination occurs.

A leaning algorithm to discover signals We propose a learning algorithm that

can directly learn a signal classifier from labeled target clusters. Absent our auto-

matic learning algorithm, researchers must rely on domain knowledge to manually
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select the unique language patterns and features to identify the signals of a targeted

event. Manual selection, however, is ineffective when no simple rules and patterns

can be found to identify the signals for events such as persuasion campaigns. The

automatic learning algorithm allows researchers to identify signals having complex

combinations of patterns and features. The the weights of a signal classifier learned

for a specific detection task can provide insights into discovering a problem?s unknown

characteristics.

Social media persuasion campaign detection system We build a social media

persuasion campaigns detection system. Social media persuasion campaigns have

great power in affecting people’s everyday life. Our system of detecting persuasion

campaigns are built and tested on Twitter stream, it achieves high accuracy and is

robust to deal with the large scale of social media post stream in real time.

Our general detection framework also has some limitations. We can only detect

some types of social media events where signals can be found. For events where no

common user reactions can be found, we cannot identify their signals.

The framework is most efficient when the signals and targeted events are relatively

uncommon. Otherwise, it is essential to cluster most posts before classification. Al-

though proper filtering could improve performance as a preprocessing step of the

classification, the improvement will not be as significant as the detection of uncom-

mon target clusters.

7.3 Future Research

Our general detection framework, rumor detection system, and persuasion cam-

paign detection system suggest the following research streams.
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Earliness of signals In rumor detection, enquiries are signals that appear at an

early stage of rumor clusters. In a persuasion campaign, both manually selected

patterns and learned signal classifiers show some level of earliness in the detection

process. The next step should develop a numeric metric to evaluate and estimate the

earliness of signals. Adding earliness to the learning objective could automatically

learn the early signals for detecting targeted events.

Tracking detected events Our work studies the detection of social media events.

After events are detected, it is often necessary to track and monitor them, in an effort

to understand their diffusion, patterns of spreading, and how they influence and are

influenced by other events.

Applying our framework in network analysis Our framework detects social

media events by detecting target clusters of social media posts. It can also be used

to detect clusters of items other than posts. One direct application we want to study

is clusters of users. There are many existing works in detecting different types of

communities in social media. We are interested in extending our framework to detect

different types of social user communities and understand the relevant signals.

Detecting target clusters beyond social media We also want to apply and

extend our framework to the outside of social media, where clustering applications

take variety of forms. For example, we want to examine how to apply our framework

to detect diseases from medical images such as MRI or CT scans. Identifying potential

cancers as a target cluster could help researchers to learn the potential signals for this

type of target cluster.

Detecting terrorist groups and propaganda Although in our work of persua-

sion campaign detection, we have discussed the detection of terrorist group’s pro-
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paganda as detecting persuasion campaigns in social media. Critical study of this

subcategory of persuasion campaigns is urgently needed. There are two challenges to

overcome: the lack of a labeled dataset, and the complex strategies employed by ter-

rorist groups to evade detection by governments and social media hosts. Developing

a detection system for propaganda could prevent dissemination.
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