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ABSTRACT 

 

 Although the improvement in circuit speed has been limited in recent years, there has been 

increased focus on the internet of things (IoT) as technology scaling has decreased circuit size, 

power usage and cost. This trend has led to the development of many small sensor systems with 

affordable costs and diverse functions, offering people convenient connection with and control 

over their surroundings. This dissertation discusses the major challenges and their solutions in 

realizing small IoT systems, focusing on non-digital blocks, such as power converters and analog 

sensing blocks, which have difficulty in following the traditional scaling trends of digital circuits. 

To accommodate the limited energy storage and harvesting capacity of small IoT systems, 

this dissertation presents an energy harvester and voltage regulators with low quiescent power and 

good efficiency in ultra-low power ranges. Switched-capacitor-based converters with wide-range 

energy-efficient voltage-controlled oscillators assisted by power-efficient self-oscillating voltage 

doublers and new cascaded converter topologies for more conversion ratio configurability achieve 

efficient power conversion down to several nanowatts. 

To further improve the power efficiency of these systems, analog circuits essential to most 

wireless IoT systems are also discussed and improved. A capacitance-to-digital sensor interface 

and a clocked comparator design are improved by their digital-like implementation and operation 

in phase and frequency domain. Thanks to the removal of large passive elements and complex 
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analog blocks, both designs achieve excellent area reduction while maintaining state-of-art energy 

efficiencies. 

Finally, a technique for removing dynamic voltage and temperature variations is presented 

as smaller circuits in advanced technologies are more vulnerable to these variations. A 2-D 

simultaneous feedback control using an on-chip oven control locks the supply voltage and 

temperature of a small on-chip domain and protects circuits in this locked domain from external 

voltage and temperature changes, demonstrating 0.0066 V/V and 0.013 °C/°C sensitivities to 

external changes. Simple digital implementation of the sensors and most parts of the control loops 

allows robust operation within wide voltage and temperature ranges. 
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CHAPTER 1  

Introduction 

In recent years, benefits from process scaling have becoming limited by side effects of 

scaling such as short-channel effects, leakages, and interconnect parasitic effects [1], [2]. This has 

resulted in a reduction in gate-delay scaling (Figure 1.1 [2]), which has been limiting the speed 

improvement of circuits solely by scaling previous circuits to new technology. This has 

necessitated architectural changes to maintain the expected trend of overall performance 

improvement. Fortunately, scaling trends of switching energy (Figure 1.1), and area and cost per 

transistor (Figure 1.2) still maintain as expected and hence, the overall performance has been able 

to grow by integrating more functional blocks without increasing overall area, cost and energy 

budgets. 

 

Figure 1.1 Theoretical / actual scaling trend of delay and energy. [2] 
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Figure 1.2 “Cost/Area × Area/Transistor = Cost/Transistor.” [2], recited from [3] 

 

Reflecting on these trends, parallel computing has become widespread as an alternative 

way to continue to improve performance while clock frequency improvement has slowed in the 

past decade as shown in Figure 1.3 and Figure 1.4. Despite of the limitation of the parallelism due 

to the challenges in hardware design and limited degree of parallelism in certain algorithms, 

parallel computing has seen significant success in certain useful algorithms and has opened a new 

application area of circuit design. For example, deep learning is receiving strong attention recently 

in order to improve performance in machine learning and signal processing, with help of new 

algorithmic and architectural trials involving massive degrees of parallelism. [4] 

 

Figure 1.3 “Core counts on processors published at ISSCC.” [1] 
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Figure 1.4 “Clock frequency scaling trends.” [1] 

 

On the other hand, maintained cost reduction trends for the same function has enabled 

another direction to expand the power of the circuit, by broadening its applications towards the 

areas that were unrealistic in old process technologies due to their costs or other resource 

requirements. Circuits and systems that do not necessarily need performance improvement can be 

made with lower area, cost and energy requirement, and realize more integration of diversified 

functions that interact with the outside environment, which is designated “More-than-Moore” in 

[5] (Figure 1.5). 

 

Figure 1.5 “More than Moore” devices. [5] 
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Combined with the traditional processing performance improvement trends, this functional 

diversification trend can make a breakthrough in these new application areas and help people 

improve their quality of life as depicted in Figure 1.6. One good example of these combined trends 

can be found in recent success of smart phones. The performance of a smart phone is not better 

than a personal computer or a mobile laptop, but this new type of personal device has gained many 

new applications and changed our life thanks to its much smaller size and better mobility. Always 

connected to both an end-user and the Internet, a smart phone plays a role in building an intimate 

connection between the user and the Internet. On top of that, embedded sensors in smart phones 

have extended the possible applications by processing collected environmental data from those 

sensors such as camera, microphone and GPS in the network. 

 

Figure 1.6 Dual trend of “miniaturization of digital functions (More Moore)”  

and “functional diversification (More than Moore)”. [5] 

 

The concept of the Internet of Things (IoT) expands this approach [6], [7], by trying to 

connect a person to not only the Internet, but also other surrounding objects around him/her. The 
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“objects” do not need to be restricted to certain types of electronic devices; rather than that, they 

can incorporate everything in our life, so that people feel always connected and have control over 

all the matters around them, including home appliance, car, or environment itself such as 

temperature, background music or light intensity in a room. 

To broaden possible applications of the IoT area, it is important to collect and process data 

from many different sources. A sensor system is specialized in collecting environmental data and 

this plays a key role in connecting the IoT network to the real world. Advanced process technology 

enables implementation of circuits with the same functionality with smaller size and cost, and will 

allow many small sensor node systems to collect various environmental data with affordable total 

cost as expected in [7] (Figure 1.7). However, the reduced form factor of each sensor node draws 

additional challenges as many of the key components in the sensor systems does not follow the 

traditional scaling trend of digital circuits. In this dissertation, these new challenges in non-digital 

blocks such as power management and sensor interface blocks are discussed, while exploring 

possible solutions. 

 

Figure 1.7 “Sensors will populate the world of IoE” [7] 
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1.1 Powering Small IoT Systems 

Recent advances in low power circuits have enabled mm-scale wireless sensor node 

systems [8], [9], but providing power into those small IoT systems is not simple. Wiring through 

a power adaptor and cables from the wall outlet significantly increase total system size and cost. 

Embedding a battery in a system is not a good solution when solely used due to its limited energy 

capacity at this small form factor. Expecting increase of the number of IoT devices per person in 

the future, this short battery time can burden an end-user for charging too many devices repeatedly 

in a short period. Energy harvesting is an attractive way to replenish dissipated power from the 

battery and extend its battery time up to semi-permanent operation without any manual recharge, 

and combined with its expected low production cost, can enable an end-user to “install and forget” 

such sensors. However, the same size limitation restricts the amount of harvested power, which 

can be as low as tens of nW for mm-scale photovoltaic cells in indoor conditions. Efficient DC-

DC up-conversion at such low power levels (for battery charging) is challenging, and to solve this, 

this dissertation presents an energy harvester using new switched-capacitor voltage-doubler circuit 

that maintains high power conversion efficiency over a very wide power level range. 

After energy harvesting, harvested energy stored in a battery has to be converted to the 

proper voltage level and supplied to each load circuit. In a small IoT system where the amount of 

stored energy is limited, having a good power-management unit (PMU) for such power conversion 

and distribution is important in improving overall energy utilization efficiency. The system’s small 

form factor and chip size renders the use of inductive power conversion unfavorable, but adopting 

switched-capacitor (SC) DC-DC converters raises a second issue in controlling its conversion ratio 

because multiple-ratio reconfigurable converter is not as efficient as simple fixed-ratio converters. 

In addition, different from inductive conversion where single-inductor multiple-output converters 
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have been presented, it is difficult to generate multiple output voltage level using a single 

capacitive converter, which is important to optimize energy consumption in many IoT systems 

where different blocks have different optimum operating voltage level. In this dissertation, a fully 

integrated power management system that converts an input voltage within a 0.9V-4V range to 3 

fixed output voltages, 0.6V, 1.2V, and 3.3V, is presented.  While maintaining converter efficiency 

by limiting the number and level of the output voltages to 3 fixed voltage level, it also offers a 

choice of voltage for a load circuit so that the load circuit does not lose too much efficiency by 

using a voltage far off the optimum level. 

To improve the number of configurable ratios and conversion efficiency from the binary-

reconfigurable converter, a new reconfigurable SC DC-DC converter topology is presented in this 

dissertation so that it can be reconfigured to have any arbitrary rational conversion ratio: p/q, 

0<p<q≤2N+1. The key idea of the design, which we refer to as a rational DC-DC converter, is to 

incorporate negative voltage feedback into the cascaded converter stages using negative-

generating converter stages (“voltage negators”); this enables reconfiguring of both the numerator 

p and denominator q of the conversion ratio. With help from the current supply of the voltage 

negators, output conductance becomes comparable to conventional few-ratio SC DC-DC designs. 

Hence, the proposed design achieves a resolution higher than previous binary SC converters while 

maintaining the conversion efficiency of dedicated few-ratio SC converters.  

 

1.2 Energy-Efficient Sensor and Data Converter 

As the real world is analog, a sensor system that reads environmental variables usually 

require an analog sensor interface and an analog-to-digital converter. Hence, in addition to power 
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harvesting and management systems, a second important challenge of reducing the size of a sensor 

system is from these analog sensing parts. While most digital circuits can be relatively easily scaled 

with new process technology, analog circuits cannot in many cases [1], [4]. Because of the thermal 

noise limit of analog circuits, their current consumption is difficult to reduced. Reducing the level 

of supply voltage is also limited to maintain an optimum overdrive voltage at each transistor and 

enough signal swing at each signal path. Short-channel effects reduce the gain of each amplifier 

stage, making it difficult to get desired signal gain while maintaining loop stability. In addition, 

the size of the analog circuits is more difficult to scale than digital circuits, especially when they 

require passive elements such as resistors or capacitors. 

This dissertation presents two related works in advanced processes, where the difficulty of 

analog circuit scaling is overcome by switching the structure and operation principle from 

traditional analog to a more digital approach. In these works, analog signals that have been 

traditionally represented in terms of voltage or current are represented as frequency, count or phase 

instead, which helps extend the signal swing and also facilitates digital processing downstream. 

Furthermore, this extended signal swing in phase domain can remove area-consuming passive 

elements such as load capacitors and biasing resistors, enabling significant area reduction. 

First, a fully-digital capacitance-to-digital converter (CDC) with a new iterative delay-

chain discharge scheme is presented, where a ring-oscillator is used to discharge current from the 

sensed capacitor. By using a simple ring-oscillator to discharge or transfer charge from the sensed 

capacitor instead of using a complex current sources or switched-capacitor circuits, this circuit 

enables a simple, fully digital conversion scheme that is inherently linear over a wide range. 

Second, a new energy-efficient ring oscillator collapse-based comparator, which we refer 

to as an edge-pursuit comparator (EPC), is presented. With help of limitless phase integration, this 
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comparator automatically adjusts its performance by changing the comparison energy according 

to its input difference without any control, eliminating unnecessary energy spent on coarse 

comparisons. Furthermore, a detailed analysis of the EPC in the phase domain shows improved 

energy efficiency over conventional comparators even without the automatic comparison energy 

scaling, and wider resolution tuning capability with small load capacitance and area. The EPC is 

used in a SAR ADC design, which supplements a 10-bit differential coarse CDAC with a 5-bit 

common-mode CDAC. This offers an additional 5 bits of resolution with common mode to 

differential gain tuning that improves linearity by reducing the effect of switch parasitic 

capacitance. 

 

1.3 Improving Sensor Accuracy and Variation 

As discussed above, challenges in implementing small sensor systems can be addressed by 

the proposed approaches so that a sensor system can efficiently distribute its harvested energy to 

operate an energy-efficient sensor to read environmental variables. However, there still exists an 

unresolved challenge – sensor offset due to process variation and environmental factors. Static 

offset can be easily removed by 1-point calibration, but the amount of offset is affected by different 

types of process, voltage and temperature (PVT) variations, so that it changes constantly and 

degrades the accuracy of sensor readout. As the sensor size becomes smaller, the effect of these 

variations can become more serious, as local process variation or voltage / temperature fluctuation 

are not averaged throughout the whole sensor area because of its too small in size. 

To help overcome this challenge, an on-chip voltage / temperature locking circuit is 

proposed in this dissertation to remove offset variation from voltage and temperature change. 
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Rather than compensating for temperature and voltage variation, variation-sensitive circuits such 

as reference generators or high-fidelity analog circuits can operate in this locked domain to reduce 

their variation across voltage and temperature. Using the references in this locked domain as the 

standard references, other on-chip circuits can be repeatedly calibrated to maintain accuracy when 

its environment changes. Despite its relatively large power consumption for on-chip heating, its 

fast locking speed from local heating will limit the energy consumption per new calibration and 

calibrations need to be performed only periodically. 

 

1.4 Outline of the Dissertation 

This dissertation proposes circuit techniques to solve several major problems in 

implementation of small sensor systems. Limitation of energy in a small form factor is resolved 

by energy harvesting and improving energy utilization efficiency of power management units and 

actual sensors. Difficulties of analog circuit scaling are overcome by more digital-like 

implementation. Remaining offset issue is solved by voltage / temperature locking for variation 

removal. 

Chapter 2 presents an ultra-low power energy harvesting circuit that can harvest from as 

low as 3nW power source, which corresponds to output power level from 1mm2 solar cell under 

dim room light. Chapter 3 presents a power management system that maintains >60% conversion 

efficiency within very wide output power range of 20nW to 0.5mW, covering almost entire 

operating range a sensor system. Chapter 4 presents a new reconfigurable converter topology for 

better conversion efficiency and output conductance. As a result of efficiency improvement, a test 

chip implemented in 0.18μm CMOS offers 79 conversion ratios using only 3 cascaded converter 
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stages and 2 voltage negator stages, and achieves >90% efficiency when downconverting from 2V 

to a 1.1-to-1.86V output voltage range. 

Chapter 5 presents a capacitance-to-digital converter in which most analog operation is 

implemented in digital manner. As a result, a test chip fabricated in 40nm CMOS performs 

conversion across a very wide capacitance range of 0.7pF to over 10nF with < 0.06% linearity 

error, while showing 35.1pJ conversion energy and 141fJ/c-s FoM with 11.3pF input capacitance, 

which marks the lowest conversion energy and FoM reported. Chapter 6 presents a SAR ADC 

using new, oscillator-collapse based energy efficient clocked comparator. A test chip fabricated in 

40nm CMOS shows 74.12 dB SNDR and 173.4 dB FOMs. With the full ADC consuming 1.17 

μW, the comparator consumes 104 nW, which is only 8.9% of the full ADC power, proving the 

comparator’s energy efficiency. 

Chapter 7 presents an on-chip variation removal circuit. By using on-chip local oven 

control, both voltage and temperature of a local domain is locked at certain constant level and 

variation from voltage and temperature changes are removed in the domain. A test chip is 

fabricated in 14nm FinFET process shows 0.0066 V/V voltage sensitivity and 0.013 °C/°C ambient 

temperature sensitivity with the accompanying heater consuming ~2 mW / °C. 

Finally, charter 8 concludes the dissertation by summarizing the contributions and discuss 

several possible research directions in the future. Related publications from the author is listed 

below. 
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CHAPTER 2  

Ultra-Low Power Energy Harvester 

2.1 Introduction 

Energy harvesting is an attractive way to power such systems due to the limited energy 

capacity of batteries at these form factors. However, the same size limitation restricts the amount 

of harvested power, which can be as low as tens of nW for mm-scale photovoltaic cells in indoor 

conditions. Efficient DC-DC up-conversion at such low power levels (for battery charging) is 

extremely challenging and has not yet been demonstrated. 

Boost DC-DC converters are widely used to harvest energy from DC sources and yield high 

conversion efficiency [10]–[13]. However, they require a large off-chip inductor at low harvested 

power levels, increasing system size. Alternatively, switched-capacitor (SC) DC-DC converters 

can be fully integrated on-chip and are favored for form-factor constrained applications [14]–[21]. 

At low power levels, SC converter efficiency is constrained by the overheads of clock generation 

and level-conversion to drive the switches. As a result, efficient SC converter operation has been 

limited to the μW range. 

This dissertation presents a fully integrated switched-capacitor energy harvester that consists 

of cascaded self-oscillating voltage doublers. In each voltage doubler, an oscillator is completely 
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internalized and clocking power overhead is reduced. The reduced power overhead of both clock 

generation and level shifting enables the harvester to operate with very weak power sources, as 

low as a few nWs. By completely integrating the clock generation in the SC, the overhead scales 

with the current load resulting in a very wide load range of ~1000×. By adjusting the number of 

cascaded voltage doublers as well as with a new method of modulating the low voltage applied to 

each doubler stage, the overall conversion ratio can be configured between 9× and 23×. 

 

2.2 Self-Oscillating Voltage Doubler 

2.2.1 Motivation and Basic Structure 

As shown in Figure 2.1, conventional SC DC-DC voltage doublers generally consist of 

three parts: clock generator, level shifter and switched capacitor network (SCN). The clock 

generator produces a clock, which is fed into the level shifters. The level shifters take the clock 

and create switch control signals for the SCN. As the clock oscillates, the SCN periodically 

changes its connections to generate the output voltage. Each of these blocks introduces power 

overhead, reducing efficiency. Looking at each transistor in the complete converter circuit, the 

dynamic power consumption of SCN switches directly contributes to generating output power, 

whereas the clock generator and level shifter power consumption does not contribute to output 

power. As a result, the basic motivation of the proposed self-oscillating voltage doubler is to 

remove the unnecessary power consumption of those secondary blocks and transistors. 

Figure 2.2 shows the basic structure of the self-oscillating voltage doubler. It consists of 

two stacked ring oscillators with output nodes of corresponding stages connected through flying 
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caps (C1 ~ CN). In each stage, inverters from the top and bottom ring either charge or discharge the 

flying cap, thereby transferring power to the upper ring. Simultaneously, the inverters drive the 

next stage in their ring, creating a multi-phase DC-DC converter with overlapping 

charge/discharge phases and self-sustaining operation. Every transistor in this structure is 

essentially a flying cap switch and hence dynamic power loss is minimized since there are no 

superfluous transistors. The natural multi-phase operation reduces output voltage ripple with little 

cost. 

 

Figure 2.1 Structure of a conventional capacitive voltage doubler. 
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Figure 2.2 Basic structure of the proposed self-oscillating voltage doubler. 

 

Another advantage of this structure lies in reduced level shifting overhead. Conventional 

level shifters generally use output keepers, which generate contention loss in addition to dynamic 

power loss. This contention loss comes from the timing mismatch among the signals of a level 

shifter; depending on the amount of mismatch, contention loss can dominate dynamic power 

consumption and greatly reduce overall efficiency. Several previous SC voltage converters have 

used nonoverlapping clocks to reduce level shifting contention loss [17]–[19]. However, this 

introduces another overhead, i.e., generation of the nonoverlapping clocks. Additionally, such a 

converter does not actively convert power during the nonoverlapping periods, reducing its 

maximum output power. 

The self-oscillating voltage doubler has no dedicated level shifter because both ring 

oscillators actively generate their own clock signals. However, contention loss can still arise from 

phase mismatch between the two oscillations. This is mitigated by the fact that the two oscillators 
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are synchronized at every stage and hence the amount of mismatch is very small, avoiding the need 

for nonoverlapping clocks. According to simulation results, phase mismatch is less than 1% of a 

fanout-of-4 (FO4) inverter delay, and contention loss from this mismatch is also under 1% of total 

dynamic power loss. 

The self-oscillating voltage doubler is capable of self-startup regardless of its initial state. 

When VIN is initially supplied to VMED, the bottom oscillator starts oscillating. In each SCN stage 

of the doubler, both the nodes before and after the flying cap driver are coupled between the top 

and bottom oscillator. Therefore, even when VHIGH is very low and the top oscillator is not 

oscillating by itself, the coupled nodes in the top oscillator will be rising and falling, and hence 

electrical charge is transferred to VHIGH solely due to the driving capability of the bottom oscillator. 

Due to this fluctuation of the top nodes, VHIGH can rise above the average voltage level of the top 

nodes. As VHIGH becomes higher, the average level of the top nodes also increases, forming a 

positive feedback that raises VHIGH above VMED. As VHIGH rises higher than VMED, the top oscillator 

starts normal oscillation on its own. Because the top oscillator is initially much weaker than the 

bottom, the top oscillation is naturally synchronized to the bottom oscillator. After synchronization, 

the voltage doubler starts normal operation, continually generating output power. 

 

2.2.2 Modulation Scheme for Optimum Conversion Efficiency 

The self-oscillating voltage doubler is modulated to maintain optimum conversion 

efficiency over a wide range of output power levels. The specific goal of the modulation is to 

balance conduction and switching losses by examining the ratio of output to input voltages (RDIV 

= VOUT / VIN). A low RDIV indicates a large voltage across the switches and dominant conduction 
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loss. Conversely, high RDIV indicates low conduction loss (zero as RDIV  2) and more dominant 

switching losses due to a higher frequency needed to transfer the same amount of load current. 

To find optimum RDIV, we first define CFLY as the total amount of flying cap, f as the 

oscillation frequency, and Δ as the amount of voltage drop: 

𝛥 = 2𝑉𝐼𝑁 − 𝑉𝑂𝑈𝑇 . 
(2.1) 

The voltage doubler operates in a multi-phase manner with low ripple, and hence VOUT is 

assumed to be constant in this analysis. In this case the input power to the voltage doubler PIN can 

be approximately written as 

𝑃𝐼𝑁 = 2𝐶𝐹𝐿𝑌𝑉𝐼𝑁𝛥𝑓 , (2.2) 

by additionally assuming that Δ << VIN and that the top and the bottom oscillators have similar 

total parasitic capacitances. With these additional assumptions, the active current going out from 

VHIGH to VMED through the top oscillator is nearly reused as the active current flowing from VMED 

into VLOW through the bottom oscillator. Therefore, only a small portion of the total parasitic effect, 

or switching loss, is actually incorporated into the true input power, hence the approximate 

equation is relatively accurate. Simulation results also support the existence of this current reuse 

and the PIN approximation. For example, in a simulation with Δ = 0.2VIN, true input power differs 

from PIN in Equation (2.2) only less than 15% of the total switching loss. 

Conduction loss LC comes from the effective internal resistances of the voltage converter. 

Assuming DC at the power rails, this loss is the same as the loss from charge sharing, and can be 

written as 

𝐿𝐶 = 𝐶𝐹𝐿𝑌𝛥
2𝑓 . (2.3) 

Switching loss LS is the total dynamic power loss in the voltage doubler: 
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𝐿𝑠 = ( ∑ 𝛼𝑖𝐶𝑖
𝑛𝑜𝑛−𝑓𝑙𝑦𝑖𝑛𝑔

𝑉𝑠𝑤𝑖𝑛𝑔𝑖
2 )𝑓 = 𝐶𝐸𝐹𝐹𝑉𝐼𝑁

2 𝑓  , (2.4) 

where Ci is every non-flying capacitor including parasitic capacitance, and VSWING and α are the 

voltage swing and activity factor of each non-flying capacitor, respectively. CEFF is defined as 

𝐶𝐸𝐹𝐹 = ∑ 𝛼𝑖𝐶𝑖
𝑛𝑜𝑛−𝑓𝑙𝑦𝑖𝑛𝑔

𝑉𝑆𝑊𝐼𝑁𝐺𝑖
2

𝑉𝐼𝑁
2 ≅ ∑ 𝐶𝑖

𝑛𝑜𝑛−𝑓𝑙𝑦𝑖𝑛𝑔

  , (2.5) 

and is independent of the oscillation frequency. This value depends on Δ because the VSWING of 

the top oscillator nodes depend on Δ, however it is fairly constant with Δ << VIN. 

The ratio of these losses to input power can then be written as: 

𝐿𝐶
𝑃𝐼𝑁

=
𝐶𝐹𝐿𝑌𝛥

2𝑓

2𝐶𝐹𝐿𝑌𝑉𝐼𝑁𝛥𝑓 
=

𝛥

2𝑉𝐼𝑁
 (2.6) 

and 

𝐿𝑆
𝑃𝐼𝑁

=
𝐶𝐸𝐹𝐹𝑉𝐼𝑁

2 𝑓

2𝐶𝐹𝐿𝑌𝑉𝐼𝑁𝛥𝑓 
=
𝐶𝐸𝐹𝐹𝑉𝐼𝑁
2𝐶𝐹𝐿𝑌𝛥

  . (2.7) 

These two ratios are clear functions of Δ. Assuming Δ << VIN and neglecting the weaker 

dependency of CEFF on Δ, the inequality of arithmetic and geometric means: 

𝑥 + 𝑦

2
≥ √𝑥𝑦 (2.8) 

can be applied as illustrated in Figure 2.3, to obtain the lower bound of total loss ratio: 

𝐿𝑇𝑂𝑇𝐴𝐿
𝑃𝐼𝑁

=
𝐿𝐶 + 𝐿𝑠
𝑃𝐼𝑁

=
𝛥

2𝑉𝐼𝑁
+
𝐶𝐸𝐹𝐹𝑉𝐼𝑁
2𝐶𝐹𝐿𝑌𝛥

≥ √
𝛥

𝑉𝐼𝑁
×
𝐶𝐸𝐹𝐹𝑉𝐼𝑁
𝐶𝐹𝐿𝑌𝛥

= √
𝐶𝐸𝐹𝐹
𝐶𝐹𝐿𝑌

  . (2.9) 
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Figure 2.3 Rough dependency of voltage doubler loss elements on Δ. 

 

Therefore, maximum efficiency 𝜂𝑀𝐴𝑋 is 

𝜂𝑀𝐴𝑋 = 1 − (
𝐿𝑇𝑂𝑇𝐴𝐿
𝑃𝐼𝑁

)
𝑀𝐼𝑁

= 1 − √
𝐶𝐸𝐹𝐹
𝐶𝐹𝐿𝑌

  , (2.10) 

when the following equality condition is satisfied: 

𝛥

2𝑉𝐼𝑁
=
𝐶𝐸𝐹𝐹𝑉𝐼𝑁
2𝐶𝐹𝐿𝑌𝛥

  , (2.11) 

put differently: 

𝛥

𝑉𝐼𝑁
= √

𝐶𝐸𝐹𝐹
𝐶𝐹𝐿𝑌

= (
𝐿𝑇𝑂𝑇𝐴𝐿
𝑃𝐼𝑁

)
𝑀𝐼𝑁

  , (2.12) 

or 
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𝑅𝐷𝐼𝑉 =
𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

= 2 −
𝛥

𝑉𝐼𝑁
= 2 − √

𝐶𝐸𝐹𝐹
𝐶𝐹𝐿𝑌

= 1 + 𝜂𝑀𝐴𝑋  . (2.13) 

Therefore, as long as the circuit operates properly and these two losses are dominant, its 

optimum efficiency is nearly a constant value that is determined by the ratio of total parasitic 

capacitances to the total flying capacitances CFLY, and RDIV at optimum efficiency is also a constant. 

 

Figure 2.4 Leakage loss model of the voltage doubler. 

 

As output power becomes smaller, leakage power loss becomes dominant over the 

conduction and switching losses. Leakage loss can be modeled as a constant current sink attached 

to the output node, as shown in Figure 2.4. In simulation, amount of equivalent leakage current, 

ILEAK, does not vary over 8% across a wide output voltage range (VIN < VOUT < 2 × VIN). In this 

model, overall conversion efficiency is 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜂𝑤𝑖𝑡ℎ𝑜𝑢𝑡−𝑙𝑒𝑎𝑘𝑎𝑔𝑒×
𝐼𝐿𝑂𝐴𝐷

𝐼𝐿𝑂𝐴𝐷 + 𝐼𝐿𝐸𝐴𝐾
 (2.14) 

and is optimized with the same arguments as a voltage doubler with no leakage, if the load can be 

approximately considered as a constant current sink. Therefore, even when output power is very 

small, the optimum efficiency point is still at a similar condition to (2.13), namely: 
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𝑅𝐷𝐼𝑉 ≅ 2 − √
𝐶𝐸𝐹𝐹
𝐶𝐹𝐿𝑌

 (2.15) 

In this work, voltage doubler oscillation frequency is modulated to achieve optimum RDIV. 

Delay blocks are inserted in the oscillation paths and their delay is controlled by an analog delay 

tuning voltage, VCTR (Figure 2.5). Negative feedback control of VCTR adjusts the output voltage 

level to the desired optimum level. 

Instead of frequency modulation, a block enabling scheme is another candidate approach 

to use the proposed design in a high performance setting with higher power demands. In this 

scheme, several independent voltage doubler blocks that share the same input and output ports are 

prepared, with each block capable of being turned on/off independently. According to the desired 

output power level, the number of turned-on blocks are adjusted to keep optimum output to input 

voltage ratio. This scheme does not require any delay elements in the oscillation paths, eliminating 

efficiency loss from delay elements. To match time constants for charging/discharging flying caps 

to the oscillation period, the ring structure can be lengthened (i.e., more stages) to match its open-

loop clock signal path effort to each stage effort for charging/discharging a flying capacitor. In this 

scheme, the coarser granularity control relative to frequency modulation reduces efficiency when 

output power is lower than the optimal output power of a unit voltage doubler block. The block 

enabling scheme also requires more transistors and flying capacitors, increasing area. To focus on 

the ultra-low power design space, this work adopts the frequency modulation scheme. 
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2.2.3 Circuit Implementation 

 

Figure 2.5 Implementation of the voltage doubler with frequency modulation. 

 

Figure 2.5 shows the detailed implementation of the voltage doubler with frequency 

modulation. To modulate oscillation frequency, delay blocks are inserted in the oscillation paths. 

As shown in Figure 2.6, a delay block consists of two coupled leakage-based delay elements [8] 

and a pass transistor TP controlled by VCTR. When the inputs HI and LI of a stage switch from high 

to low, output nodes HOD and LOD (driven low) become isolated. TP then provides a leakage path 

from LO to LOD that slowly raises LOD and, through CC, also HOD. Back-to-back inverters in the 

delay element provide positive feedback and amplify the transition once it reaches VTH, creating a 

sharp edge. This transition is then passed to the next stage. The opposite transition functions 

similarly. 
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Figure 2.6 Detailed implementation (left) and timing diagram (right) of the delay block. 

 

A higher VCTR allows TP to provide more leakage, reducing the delay and speeding the 

oscillation. The leakage through TP can be adjusted to any amount between its on and off currents, 

offering a very wide range of delay controllability. Additionally, due to the output isolation, the 

structure can produce very long, synchronized delays while the coupled positive feedback creates 

a sharp edge that limits short-circuit current and contention loss, enabling ultra-low power 

operation with very slow oscillation speed. 

This structure also has an advantage for low-power self-startup and idle power 

minimization.  It can oscillate even when the control voltage is 0, though very slowly, and therefore, 

is capable of self-startup. When the input voltage become available from the cold stage, VCTR goes 

up from zero voltage, speeding up its oscillation until it reaches optimum. Start-up energy is 

reduced because its initial oscillation starts from the slowest speed, minimizing dynamic energy 
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loss during start-up. When no input power is available from the power source, VIN always becomes 

lower than VDIV, pulling down the control voltage VCTR to its lowest possible value. This 

automatically minimizes the idle power consumption. 

 

Figure 2.7 Detailed implementation of the voltage divider (left) and  

the charge pump (right) from Figure 2.4. 

 

VCTR is adjusted through negative feedback. A clocked comparator, operating at a fraction 

of the internal oscillator frequency, takes in a divided form of the output voltage (VDIV = 

VOUT/RDIV_DESIRED) and the input voltage VIN. A charge pump then takes in the corresponding pull-

up/pull-down signals and adjusts the delay tuning voltage VCTR as needed to either speed or slow 

the oscillation. As shown in Figure 2.7, the voltage divider is implemented with a combination of 

a diode stack and a capacitive divider, to provide both fast response and good low-frequency 

behavior. In the charge pump (Figure 2.7, right), two input inverter chains with small capacitive 

loads, CSTEP, determine the amount of charge transfer per cycle to be similar to VDD × CSTEP. Each 

chain also generates a short pulse at an output isolation transistor, turning it on briefly and only 
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while the mirrored current flows through. The isolation transistors are turned off otherwise and 

help sustain the output voltage more than 1000 times longer in simulation than without isolation, 

even when clock frequency is as low as a few Hz. 

 

2.3 Energy Harvester 

2.3.1 Overall Structure 

 
Figure 2.8 Overall energy harvester architecture. 

 

Figure 2.8 shows the block diagram of the complete harvesting system, consisting of 4 

stages of cascaded voltage doublers, a negative voltage generator, and circuits for conversion ratio 
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control. A negative voltage is used to boost overall conversion ratio over 16× and to power control 

circuits. The negative voltage generator is implemented by connecting VHIGH and VMED of the 

doubler to VIN and ground, respectively, resulting in VNEG ≈ −VIN at the VLOW port of the doubler. 

The target RDIV of each voltage doubler is adjusted for its optimal operation. 

 

Figure 2.9 5-stage bootstrapped ring oscillator for voltage doublers with lower VTH switches and 

its timing diagram (top right). 

 

To facilitate energy harvesting from a low voltage source (e.g., a photovoltaic cell under 

low light), the first stage and negative voltage generator use low VTH (~300mV) devices for their 

flying cap drivers. Bootstrapping is also used with these low VTH switches, as shown in Figure 2.9, 

to improve ION / IOFF ratio at low input voltages. To ensure the bootstrapped signal does not decay 

in a clock cycle, every transistor in the bootstrap circuit uses a regular threshold voltage. For robust 
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bootstrapping with a fast oscillation frequency, a reset switch for each bootstrap capacitor is driven 

by the output ΦI, which has an increased voltage swing. To eliminate the short-circuit path through 

the reset switches, an isolation transistor is inserted in each reset path, which is driven by ΦI-2, the 

output signal of one of the previous bootstrap stages. Thick oxide I/O devices are used in the final 

doubler stage to protect the circuit from high voltages used to charge energy storage devices such 

as batteries or supercapacitors. 

2.3.2 Conversion ratio modulation 

The conversion ratio is adjusted by changing the number of cascaded stages. We propose 

an additional adjustment scheme where the VLOW of a doubler is switched among VIN, GND, and 

VNEG, as shown in Figure 2.8. If VLOW is set to −VIN, the voltage across the flying cap increases, 

resulting in VOUT = (VMED + VIN) × 2 – VIN = 2 × VMED + VIN. If VLOW is set to ground for all 4 

cascaded stages, the overall conversion ratio is 16×. However, if the final stage VLOW is set to VNEG, 

the overall conversion ratio increases by 1× to become 17×. Similarly, setting the third stage VLOW 

to VNEG raises voltage VC by ~VIN, resulting in an increase of overall conversion ratio by 2×. On 

the other hand, setting VLOW to VIN decreases conversion ratio. In this way the conversion ratio is 

controlled in a binary manner as shown in Table 2.1, generating any integer ratio from 9× to 23×. 

By changing the conversion ratio, harvester input voltage VIN can be adjusted to closely 

approximate the maximum-power point of the power source, thereby optimizing the power 

harvested from the source. By selecting the bottom voltage from among three choices rather than 

just two, the overall conversion ratio range is greater and also the voltage across each doubler can 

be chosen properly for best operation. For example, the switch mapping shown in Table 2.1 first 

seeks to develop a larger voltage across the second doubler since its use of standard VTH transistors, 

coupled with its lower amplitude (relative to later stages) make its operation more challenging. 
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Table 2.1 Switch mapping for harvester’s overall conversion ratio control from 9× to 23×. 

 

 

Figure 2.10 Dual switching scheme for the harvester to reconfigure its conversion ratio while 

maintaining its capability of self-startup. 

 

To enable cold start of the complete system, the control logic (including the conversion 

ratio register) operates between VNEG and VIN rails. Upon initial system startup, VNEG and V2X 

become available first, thus allowing the control logic to turn on and configure the switches. As 

shown in Figure 2.10, every switch is realized with a dual structure, one controlled with lower 

voltages for harvester self-startup, and the other controlled by a level-converted higher voltage to 

strongly turn on the switch for high output power levels. As each stage is powered up, its internal 

frequency modulation begins to control the frequency for optimum efficiency. 
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2.4 Measured Results 

 

Figure 2.11 Die micrograph of 0.18μm CMOS test chip. Total flying cap sizes of the standalone 

voltage doubler and the harvester are 54pF and 600pF, respectively. 

 

The proposed voltage doubler (standalone) and energy harvester are fabricated in 0.18μm 

CMOS (Figure 2.11). The standalone voltage doubler uses bootstrapping to minimize its leakage. 

The division ratio of the output voltage divider in the frequency feedback control circuit (see 

Figure 5), which is equivalent to the desired output to input voltage ratio (RDIV_DESIRED), is set to 

1.73 for the standalone voltage doubler in all measurements.  

Figure 2.1 shows a single doubler has >70% measured efficiency across 1nA to 0.35mA 

output current (>105 range) with low idle power consumption of 170pW. Internal clock frequency 
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is modulated to maintain constant RDIV and is proportional to the load current until the clock period 

becomes too short relative to the time constant for charging/discharging a flying cap. As described 

in the expression (2.13) in Section 2.2.2, the conversion efficiency of the doubler is nearly flat 

within its operational range with an efficiency of roughly RDIV_DESIRED - 1 = 73%. 

 

Figure 2.12 Measured results of the voltage doubler. 

 

Figure 2.13 shows measured results of the harvester with different conversion ratios. Results 

show that a 0.35V input can be converted to a 2.2V-5.2V voltage range with similar conversion 

efficiencies across settings. As conversion ratio goes up, output voltage level monotonically 

increases except for a transition from 16× to 17×. At this transition, the number of cascaded stages 

increases from 3 to 4, thereby introducing another power loss at the first stage and lowering output 

voltage level. Figure 2.14 shows measured results of the harvester at different VIN. Conversion 

ratio is adjusted to maintain a similar VOUT level. With VIN = 0.45V, corresponding to an outdoor 

condition, the harvester delivers 5nW-5μW output power with >40% efficiency and an idle power 

consumption <3nW. For VIN = 0.25V, corresponding to a solar cell under very low light, the 
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harvester can take in between 10nW and 120nW to charge a ~4V battery with >35% efficiency. 

For both VIN, the harvester’s output power range well covered expected solar cell power range. 

 

Figure 2.13 Measured results of the harvester with different conversion ratios. 

 

Figure 2.14 Measured results of the harvester at different VIN. 

 

Figure 2.15 shows the measured results with a small silicon solar cell (0.84mm2) at the input. 

In one test, the harvester is connected to the solar cell under various light conditions. These results 

are shown in the graph as the X-marked points. In the second test, the solar cell operation is 

emulated using an external current source in parallel with the solar cell, to perform a finer grain 
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sweep of harvester performance. These two test results are very consistent as shown together in 

this graph, showing that the harvester can convert input power from the solar cell with up to 50% 

efficiency under a wide range of light condition, from dim room lighting to beyond outdoor 

daylight. Because of its low idle power consumption, the harvester shows >35% end-to-end 

efficiency even under a dim light of 260lux, where the solar cell generates only 7nW output power. 

By adjusting the conversion ratio the harvester can take in nearly 100% of the solar cell output 

power at its maximum power point for incident light up to 200klux, covering almost all practical 

light conditions (Figure 2.15, “Solar cell efficiency” curve). 

 

Figure 2.15 Measured results of the harvester with a 0.84mm2 silicon solar cell at the input. 

 

A second chip is fabricated in 0.18μm CMOS that includes the harvester with the same 

design specifications previously described but has interfaces compatible with the M3 (Michigan 

Micro-Mote) sensor system [9]. This chip is tested with a solar cell of 1.33mm2 area to measure 
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its self-startup characteristic (Figure 2.16). As shown in Figure 2.17, the harvester cold starts with 

55lux of light and a 5.2nW power source and charges an output capacitance to 4V, which is a 

voltage enough to charge a battery. Figure 2.18 shows measured results in different temperatures, 

with solar cell short circuit current overridden to 180nA to emulate room lighting. The results 

show the harvester’s robust operation across -10°C - 50°C temperature range. 

 

Figure 2.16 Measurement setup for the second harvester chip’s self-starting behavior. 
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Figure 2.17 Cold start behavior of the harvester powered by a 1.33mm2 solar cell. Output is 

connected to a capacitor. Light is turned on at some time between 0 ~ 20s. 

 

 

 

Figure 2.18 Measured results of the harvester in different temperatures,  

with solar cell ISC = 180nA. 

 



35 

 

 

Figure 2.19 Micrograph of a small M3 wireless sensor node system [9] with harvester (top right), 

and a graph of measured battery voltage (bottom) showing that its battery is continuously 

charged by the harvester during system operation. 

 

This chip is integrated in a very small M3 wireless sensor node system (Figure 2.19, top right) 

with volume of approximately 1mm3
  [9]. A graph at the bottom shows the system battery voltage 

during operation. As shown in the graph, the system periodically wakes up and sends a radio signal 

every ~3 minutes. The positive slope in the battery voltage plot during sleep cycles show that the 

battery is being charged effectively by the proposed harvester. Table 2.2 and Table 2.3 summarize 

the voltage doubler and harvester performance and compares to prior related work. 
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Table 2.2 Performance summery and comparison of the standalone voltage doubler. 

 

Table 2.3 Performance summary and comparison of the harvester. 
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2.5 Conclusion 

An ultra-low power fully integrated energy harvester based on a novel SC voltage doubler 

structure is presented. Internalized clock generation and clock frequency modulation allow the 

doubler to operate across a wide load range (>105×) with low idle power consumption of 170pW. 

Four voltage doublers are cascaded to form an energy harvester, which can operate with a very 

limited power source of a few nWs. Overall harvester conversion ratio is configurable from 9× to 

23× using bottom voltage switching, a negative voltage generator, and cascaded stage count, 

generating 2.2V-5.2V VOUT from 0.35V VIN. Measured results with a small silicon solar cell 

(1.33mm2) show the harvester cold starts with 55lux of light and a 5.2nW power source. The 

harvester chip is integrated in an actual wireless sensor node system and demonstrates charging of 

the system battery during typical operation. 
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CHAPTER 3  

Low-Power Wide-Range Power Management Unit  

3.1 Introduction 

As Internet-of-Things (IoT) systems proliferate there is a greater demand for small and 

efficient power management units. Fully-integrated switched-capacitor (SC) DC-DC converters 

are promising candidates due to their small form factor and low quiescent power, aided by dynamic 

activity scaling [22]–[24]. However, they offer a limited number of conversion ratios, making it 

challenging to use in actual systems since they often require multiple output voltages (to reduce 

power consumption) and use various input power sources (to maximize flexibility). In addition, 

maintaining both high efficiency and fast load response is difficult at low output current levels, 

which is critical for IoT devices as they often target low standby power to preserve battery charge. 

This dissertation presents a fully integrated power management system that converts an input 

voltage within a 0.9V-4V range to 3 fixed output voltages: 0.6V, 1.2V, and 3.3V. A 7-stage binary-

reconfigurable SC DC-DC converter [22], [23] first generates 1.2V from battery voltage input, and 

0.6V, 3.3V output is generated from 1.2V output from the binary converter, each by 2:1 

downconverter and 1:3 Dickson upconverter, respectively. Only one reconfigurable converter is 

used to optimize overall conversion efficiency within a small chip area. While maintaining 

converter efficiency by limiting the number and level of the output voltages to 3 fixed voltage 
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levels, it also offers a rough choice of voltage for a load circuit so that the load circuit does not 

lose too much efficiency by using a voltage far off the optimum level. 

 

3.2 Overall Architecture and Operation 

 

Figure 3.1 Overall architecture of the complete power-management system and its operation. 

 

Figure 3.1 explains the overall structure of the full system (top) and its operation (bottom). 

It contains three SC converters (binary-reconfigurable SC up/downconverter, 1:3 Dickson 

upconverter, 2:1 SC downconverter) with each responsible for generating one of the three output 
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voltage: 1.2V, 3.3V, and 0.6V. The binary-reconfigurable up/downconverter converts a wide range 

of input voltage into a 1.2V output voltage. The Dickson upconverter and 2:1 downconverter then 

receive this 1.2V output and convert it into 3.3V and 0.6V, respectively.  

Proper conversion ratio configuration of the binary converter is important for robust and 

power-efficient 1.2V generation. If the ratio is set too low, the binary converter output cannot reach 

1.2V while if the ratio is set too high, conversion efficiency worsens due to large conduction loss. 

The system regulates the conversion ratio by using both feedback and feedforward control [24]. 

When the system input voltage (VBAT) becomes available, the main controller starts up and turns 

on the binary converter with a small default ratio. Conversion ratio is continually increased by 

feedback control until the converter output voltage V1P2 reaches ~1.2V, which triggers the ‘output 

on detector’. 

At this point, the 1:3 Dickson upconverter turns on and generates the higher voltages 2.4V 

and 3.3V. The 2.4V is then used to power an internal 1.2V voltage reference and LDO to generate 

a clean reference voltage VREF for more accurate regulation of the 1.2V supply voltage. After VREF 

becomes available, feedforward control acts to set the binary conversion ratio by directly 

computing the desired conversion ratio using an 8-bit ADC. After the ADC has measured the 

battery voltage, the conversion ratio is calculated in digital logic to be the measured ratio VREF / 

VBAT plus an offset value; this allows for an optimal voltage drop to balance conduction and 

switching losses, maximizing efficiency. After the system is fully turned on, the binary converter 

ratio is periodically adjusted while supplying output voltages, allowing for self-adaptation in the 

face of slow input voltage drift arising from battery discharge or temperature changes, both of 

which frequently occur in wireless IoT systems. 
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3.3 Key Building Blocks and Techniques 

3.3.1 Switched-Capacitor DC-DC Converters 

 

Figure 3.2 Structure of SC Converters 

 

Figure 3.2 shows the structure of the three SC converters: a 7-bit binary-reconfigurable 

up/downconverter, a 2:1 SC downconverter, and a 1:3 Dickson upconverter. The 7-bit binary 

converter (Figure 3.2, top) consists of seven 2:1 SC converters with configuration switches 

following a recursive topology [23]. Because the supply voltage level into each stage varies 

dynamically as the conversion ratio is continuously reconfigured, flying capacitance drivers are 
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implemented by level shifters using cross-coupled PMOS and NMOS switches to maintain the 

same clock swing and current drivability regardless of their voltage levels. Whenever the 

conversion ratio changes the intermediate voltages among stages have to be refreshed, while each 

internal node in the cross-coupled switches must be stabilized with respect to its corresponding 

intermediate voltage. This yields a chicken and egg problem because intermediate voltages can be 

stabilized into new values only when the cross-coupled switches are working properly, however 

these switches work properly only when the intermediate voltages are stabilized. By alternating 

normal operation and reset of the SC converters by a periodic reset generator (Figure 3.2, bottom 

left), those two floating nodes can be stabilized at the same time when necessary. 

 

3.3.2 Converter Frequency Control Loop 

In addition to conversion ratio adjustment, DC-DC converters in IoT systems should be 

able to self-adapt to widely varying output load conditions to maintain good efficiency. Figure 3.3 

shows the frequency control loop of the binary converter, consisting of a main feedback path and 

a fast voltage drop detection path. For initial startup, the main path compares the first stage output 

V1 with the divided input voltage, maintaining a proper amount of voltage drop Δ through the first 

stage for optimum conversion efficiency. After the system is fully turned on, the binary converter 

output V1P2 is compared to VREF to be the same level as VREF. Given this ability to maintain a 

constant output voltage level, the binary converter offers near-optimum efficiency across load 

conditions as the conversion ratio is already configured for a proper voltage drop amount for 

optimum efficiency (via the feedforward ratio control path). The 1:3 Dickson upconverter and 2:1 

downconverter also have similar frequency control loops for their own oscillators, allowing each 
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of the 3 converters to independently adapt to different load currents at their corresponding output 

voltages. 

 

Figure 3.3 Frequency control loop for each SC converter with load-proportional biasing scheme. 

 

3.3.3 Load-Proportional Biasing 

The entire control loop operates with a divided converter clock to maintain dynamic power 

consumption that is proportional to the SC converter switching loss. This ensures that efficiency 

loss due to the control loop is always a small predictable value regardless of load current level. 

Other digital blocks are also clocked by this divided converter clock (Figure 3.3, bottom right). 

This helps reduce their power consumption relative to the system’s output power level, but also 
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maintains control loop stability since the operating speed of the various blocks are all scaled by 

the same factor – hence, blocks can communicate with each other at similar relative response speed, 

including voltage output. 

 

3.3.4 Drop Detector for Rapid and Robust Frequency Adjustment 

While the load-proportional speed adjustment scheme offers these benefits, it also has a 

drawback in the case of small output power. In that case the system responds slower relative to 

external condition changes such as a sudden load current increase. To address this problem, the 

frequency control loop in each converter has a dedicated fast voltage drop detector that monitors 

converter output voltage and triggers a drop detection signal when it goes below certain threshold. 

The drop detector requires periodic reset to detect output voltage change and maintain a certain 

threshold level. Hence each converter contains two drop detectors for uninterrupted overlapping 

operation and detection: one detector always remains on while the other is being reset. By focusing 

only on triggering upon a fast single drop event without considering stability or continuous 

operation, the detector’s response time can be boosted hundreds times faster (simulation) than the 

main feedback path, rendering the control loop fast enough for sudden current load changes. Once 

the detection signal is triggered, the clock frequency is set to its maximum, quickly restoring the 

output voltage to safe levels. Afterwards, feedback through the main path slowly lowers the clock 

frequency to support any sustained increase in load current. Drop detector bias current is also 

adjusted to be load proportional. 
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Figure 3.4 Die micrograph of a test chip. 

 

Figure 3.5 Measured performance vs. input voltage. 
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3.4 Measured Results 

Voltage drop detection at V1P2 output

(VBAT = 3V, ILOAD_V3P3=ILOAD_V0P6=1nA,

 ILOAD_V1P2: 10nA  1µA (100×))

IOUT_1P2 = 10nA

IOUT_1P2 ç 1µA (100×)

Drop detected

Clock frequency goes 

to maximum

Stabilized for new 

load condition

 

Figure 3.6 Measured drop detector operation. 
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The power management system chip was fabricated in 0.18um CMOS (Figure 3.4). As 

shown in Figure 3.5, the system stably delivers 1.2V, 3.3V, and 0.6V output voltages from an input 

voltage ranging from 0.9V to 4V. Figure 3.6 shows the drop detector responds to 100X sudden 

load current increase. Graphs in Figure 3.7 shows the converter supplies 20nW − 500µW with 

>60% efficiency. Table 3.1 summarizes result and compares the design with previous relevant 

work. 

 

Table 3.1 Performance summary and comparison. 

 

 

3.5 Conclusion 

A fully integrated power management system that converts an input voltage within a 0.9V-

4V range to 3 fixed output voltages, 0.6V, 1.2V, and 3.3V, is presented. A 7-stage binary-

reconfigurable DC-DC converter enables the wide input voltage range. Three-way dynamic 

frequency control maintains converter operation at near-optimum conversion efficiency under 
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widely varying load conditions from 5nW to 500µW. A load-proportional bias scheme helps 

maintain high efficiency at low output power, fast response time at high output power and retains 

stability across the entire operating range. Analog drop detectors improve load response time even 

at low output power, allowing the converter to avoid the need for external sleep/wakeup control 

signals. Within a range of 1V-4V input voltage and 20nW-500µW output power, the converter 

shows >60% conversion efficiency while maintaining responsiveness to 100X sudden current 

increase. 
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CHAPTER 4  

Rational Conversion Ratio SC DC-DC Converter 

using Negative Output Feedback 

4.1 Introduction 

4.1.1 Switched-Capacitor DC-DC Converters 

Switched converters have been widely used in DC-DC voltage conversion because of their 

high conversion efficiency and simple structure that can easily be miniaturized. Among them, 

switched-capacitor (SC) DC-DC converters have several advantages over inductive switching DC-

DC converters. First, they use capacitors for temporal energy storage, which can easily be 

integrated on chip using general CMOS processes. While it is difficult to make on-chip inductors 

with a high quality factor, on-chip capacitors with little parasitic capacitance can be fabricated 

easily, enabling it possible to make fully-integrated DC-DC converters with high efficiency [19], 

[25], and the loss from parasitic capacitance can be further reduced by charge recycling [25]. 

Techniques to increase the density of flying capacitors such as deep trench capacitors [19] has 

already achieved high output power density per unit area comparable to inductive converters. 

In addition to its ease of integration, SC conversion scheme has another advantage in its 

control. Switching converters, either capacitive or inductive, generates DC output voltage by 



50 

 

filtering a switching signal through high reactance of the energy-storage devices. Therefore, 

inductive converters require fast switching signals, or well-controlled short time switching signal 

even in discontinuous operation, to maintain the reactance of inductors, because the reactance of 

an inductor is proportional to the signal frequency. These switching control necessitates consuming 

some quiescent power for inductive converters. On the other hand, reactance of a capacitor is 

inversely proportional to the signal frequency through it, so SC converters can use any low 

switching frequencies when neglecting the effect of leakage currents. This characteristic of the SC 

converters enables them to easily have very low quiescent power, and therefore, very wide input / 

output power range. [26] 

These advantages render SC DC-DC converters promising for integrated voltage regulators, 

especially for small, low-power systems such as Internet-of-Things (IoT) systems or wireless 

sensor nodes (WSNs). However, many SC DC-DC converters offer only a few conversion ratios, 

limiting their use for systems in which either the input and output voltages vary. This is particularly 

important in wireless systems where various input power sources can be used for energy harvesting, 

battery voltage degrades slowly even relying on a battery, and multiple, varying output voltages 

are usually required to optimize system power consumption. 

 

4.1.2 Binary-ratio-reconfigurable SC converters 

Though many ratio-reconfigurable SC converters has been reported to solve this problem, 

[24], [27], [28] they usually offered a few conversion ratios that are not enough to maintain high 

conversion efficiency across wide input and output voltage ranges with a fine grain enough for 

effective voltage scaling. S. Bang et al. proposed a converter structure called SAR SC DC-DC 

converter [22] to configure simple 2:1 SC downconverters in a cascaded topology as shown in 
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Figure 4.1 to achieve arbitrary binary ratios: p/2N, 0<p<2N, where N is the maximum number of 

cascaded 2:1 converter stages. 

 

Figure 4.1 SAR SC DC-DC converter. [7] 

 

Figure 4.2 Recursive SC DC-DC converter. [29] 

 

In contrast with previous reconfigurable SC converters with only a few fixed ratios with 

limited granularity, this structure introduced a new way of reconfigurable SC converters, offering 
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any ratios that can be represented as a finite binary fraction. This means that this converter can 

offer any conversion ratios between 0 and 1 with any desired ratio error tolerance by only 

increasing the number of cascaded stages. However, as the number of cascaded stages increases, 

the conduction path from the power source to output passes through more converter stages, giving 

rise to more conduction loss. Therefore, overall efficiency of the converter with more stages 

becomes worse and worse. 

This structure was improved in [29] by modifying the power connection and reversing the 

cascading order to increase output conductance, as shown in Figure 2. By choosing input of each 

stage between the output of the previous stage and original supply rails, this structure, named 

recursive SC DC-DC converter, has an improved output conductance compared to [22]. If each 

stage is sized exponentially with base of 2, this converter has an output conductance of 

𝐶𝑡𝑜𝑡𝑓𝑠𝑤/ (1 −
1

2𝑁
)
−2

= 𝐶𝑡𝑜𝑡𝑓𝑠𝑤 (
2𝑁

2𝑁 − 1
)

2

 (4.1) 

when assuming the output is a DC voltage, where 𝐶𝑡𝑜𝑡 is the size of total flying capacitors, 𝑓𝑠𝑤 the 

switching frequency, and N the number of stages. [29] According to this formula, the converter 

has smaller output conductance as the number of stages increase, but it has a lower bound of 

𝐶𝑡𝑜𝑡𝑓𝑠𝑤, meaning that even the converter with any small desired granularity can have practically 

acceptable conductance and efficiency. 

Despite its conductance improvement in [29] from [22], this design still provides less 

output conductance than previous works offering only a small fixed number of ratios [24], [27], 

[28], such as 1/3 and 2/5, because these ratios cannot be represented with simple finite binary 

fraction, so large number of stages are required to approximate those ratios and the output 

conductance becomes worse according to (4.1). [30] suggested a technique called “charge 

feedback” to add a few more ratios with the ratio of denominator 24, but it failed to achieve output 



53 

 

conductance as high as previous work due to its use of inefficient ladder structure. In addition to 

that, different from binary techniques this simple tweak does not propose a way to exponentially 

expand the number of reconfigurable ratios of a converter. 

 

4.1.3 Proposed technique to generate arbitrary rational ratio 

This dissertation presents an SC DC-DC converter that can be reconfigured to have any 

arbitrary rational conversion ratio: p/q, 0<p<q≤2N+1. The key idea of the design, which we refer 

to as a rational DC-DC converter, is to incorporate negative voltage feedback into the cascaded 

converter stages using negative-generating converter stages (“voltage negators”); this enables 

reconfiguring of both the numerator p and denominator q of the conversion ratio. Contrary to the 

current loss and conductance degradation due to the charge feedback technique in [30], with help 

from the current supply of the voltage negators, output conductance becomes comparable to 

conventional few-ratio SC DC-DC designs. Hence, the proposed design achieves a resolution 

higher than previous binary SC converters while maintaining the conversion efficiency of 

dedicated few-ratio SC converters. 

 

4.2 Rational DC-DC Converter 

4.2.1 Structure of the rational DC-DC converter 

Figure 4.3 shows the structure of the recursive converter in a different form, for its 

comparison to the proposed rational converter. In the rational converter, each stage has a 2:1 SC 
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converter that receives one input from the previous stage’s output, and the other from a power 

supply rail, either VDD or VSS. Since these circuit each 2:1 converter has 1/2 voltage gain from 

input to output, changing supply voltage at a stage far away from the output has an exponentially 

smaller impact than ones near the output, resulting in binary ratio tuning. 

 

Figure 4.3 Recursive DC-DC converter redrawn 

 

Solving in a mathematical form, the output voltage of the converter 𝑉𝑂𝑈𝑇 is 

𝑉𝑂𝑈𝑇 = 𝑉𝑁 =
1

2
(𝑉𝐷𝐷×𝑎𝑁 + 𝑉𝑁−1) =

1

2
(𝑉𝐷𝐷×𝑎𝑁 +

1

2
(𝑉𝐷𝐷×𝑎𝑁−1 + 𝑉𝑁−2))

= ⋯ 

= 𝑉𝐷𝐷×(
1

2
𝑎𝑁 +

1

4
𝑎𝑁−1 +⋯+

1

2𝑁
𝑎1)= 𝑉𝐷𝐷×(0. 𝑎𝑁𝑎𝑁−1⋯𝑎1)(2) 

(4.2) 

where (0. 𝑎𝑁𝑎𝑁−1⋯𝑎1)(2) represents a binary fraction. 
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Figure 4.4 Structure of the proposed rational converter. 

 

As shown in Figure 4.4, one input of each 2:1 SC downconverter is connected to the output 

of the previous stage in a rational converter, as in the binary converter. However, the other input 

is chosen among the supply rails as well as a set of negative feedback voltages, −VOUT, VDD–VOUT, 

and 2VDD−VOUT so that VOUT is determined by an equation VOUT=A×VDD – B×VOUT, where A and 

B are referred to as the converter’s forward path gain and feedback factor, respectively. 

In this structure, negative voltage feedback enables three extra choices for each stage, 

increasing the number of combinations and thus its reconfigurability – this allows the converter to 

be reconfigured in an algorithmic way to any rational conversion ratio p/q, 0<p<q≤2N+1, where 

N is the maximum number of 2:1 stages. In addition, the negating converters provide extra current 

into the output terminal, improving overall converter output conductance. For any rational 

conversion ratio, the normalized conductance of the rational converter is provably no smaller than 

previous SC converters including fixed-ratio converters. In addition, switching loss in the rational 

converter matches previous best reported SC converters at many ratios and hence leads to similar 

or better overall efficiency. 
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4.2.2 Operation of the rational DC-DC converter 

Figure 4.5 describes operation of the rational converter in more detail using an example 

where the conversion ratio is set to p/q = 4/13. First, to generate this ratio, the number of stages N 

is set by p and q to be three as 4/13 can be represented as a ratio of two binary fractions with three 

digits after the binary point, 0.100(2) / 1.101(2). The numerator of this ratio becomes the forward 

path gain A, and the denominator minus one, 0.101(2), becomes the feedback factor B. The input 

supply voltage of each stage is selected by the corresponding digits in the binary representation of 

A and B, i.e., ai and bi. Specifically the ith converter stage uses the ith bit from the right in A or B 

and selects an input voltage equal to ai × VDD – bi × VOUT, which effectively gives the four options 

of VDD, VSS, VDD−VOUT, and −VOUT. Then, overall output voltage 𝑉𝑂𝑈𝑇 becomes 

𝑉𝑂𝑈𝑇 = 𝑉𝑁 =
1

2
(𝑉𝐷𝐷×𝑎𝑁 − 𝑉𝑂𝑈𝑇×𝑏𝑁 + 𝑉𝑁−1) 

=
1

2
(𝑉𝐷𝐷×𝑎𝑁 − 𝑉𝑂𝑈𝑇×𝑏𝑁 +

1

2
(𝑉𝐷𝐷×𝑎𝑁−1 − 𝑉𝑂𝑈𝑇×𝑏𝑁−1 + 𝑉𝑁−2)) = ⋯ 

= 𝑉𝐷𝐷×(
1

2
𝑎𝑁 +

1

4
𝑎𝑁−1 +⋯+

1

2𝑁
(𝑎1 + 𝑎𝐿))

− 𝑉𝑂𝑈𝑇×(
1

2
𝑏𝑁 +

1

4
𝑏𝑁−1 +⋯+

1

2𝑁
(𝑏1 + 𝑏𝐿)) 

= 𝑉𝐷𝐷×(0. 𝑎𝑁𝑎𝑁−1⋯(𝑎1 + 𝑎𝐿))(2) − 𝑉𝑂𝑈𝑇×(0. 𝑏𝑁𝑏𝑁−1⋯(𝑏1 + 𝑏𝐿))(2) 

(4.3) 

If we define A and B as 

𝐴 ≡ (0. 𝑎𝑁𝑎𝑁−1⋯(𝑎1 + 𝑎𝐿))(2) (4.4) 

and 

𝐵 ≡ (0. 𝑏𝑁𝑏𝑁−1⋯(𝑏1 + 𝑏𝐿))(2), (4.5) 
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Figure 4.5 Example configuration for 4/13 conversion ratio (A≤1) 

 

𝑉𝑂𝑈𝑇 can be represented as 

𝑉𝑂𝑈𝑇 = 𝐴×𝑉𝐷𝐷 − 𝐵×𝑉𝑂𝑈𝑇 =
𝐴

1 + 𝐵
𝑉𝐷𝐷. (4.6) 

Therefore, the overall conversion ratio becomes 

𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑂𝑈𝑇
𝑉𝐷𝐷

=
𝐴

1 + 𝐵
=

𝑝

1 + (𝑞 − 1)
=
𝑝

𝑞
, (4.7) 

which is the same as the ratio that is first set (p/q). 

Therefore, in this manner the converter can be configured for any desired ratio p/q, 

provided A is less than or equal to 1. Otherwise, it is impossible to make A that is greater than 1 

by only changing ai parameters, where another configuration is used to generate desired ratio. 
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For A greater than 1, the voltage negators are reconfigured to generate VDD−VOUT and 

2VDD−VOUT. For example, when the conversion ratio p/q is 9/11 as shown in Figure 6, N is set to 

three as 9/11 = 1.001(2) / 1.011(2), and A is 1.001(2) and B is 0.011(2) accordingly. With the change 

in voltage negator configuration, the voltage selection signal for forward path gain is also changed 

into a new value 

𝐴′ ≡ 𝐴 − 𝐵, (4.8) 

which is always less than 1 if p<q because 

𝐴′ = 𝐴 − 𝐵 =
𝑝

2𝑁
− (

𝑞

2𝑁
− 1) = 1 −

𝑞 − 𝑝

2𝑁
< 1 (4.9) 

and always greater than 0 if A > 1 because 

𝐴′ = 𝐴 − 𝐵 > 𝐴 − 1 > 0. (4.10) 

To compensate for the reduction in forward path gain by B, extra VDD is added whenever 

bi is 1 by selecting a’i × VDD – bi × (VOUT – VDD) among VDD, VSS, VDD−VOUT, and 2VDD−VOUT. 

Then, overall output voltage 𝑉𝑂𝑈𝑇 becomes 

𝑉𝑂𝑈𝑇 = 𝑉𝑁 =
1

2
(𝑉𝐷𝐷×𝑎′𝑁 − (𝑉𝑂𝑈𝑇 − 𝑉𝐷𝐷)×𝑏𝑁 + 𝑉𝑁−1) = ⋯ 

= 𝑉𝐷𝐷×(
1

2
𝑎′𝑁 +

1

4
𝑎′𝑁−1 +⋯+

1

2𝑁
(𝑎′1 + 𝑎′𝐿)) − (𝑉𝑂𝑈𝑇

− 𝑉𝐷𝐷)×(
1

2
𝑏𝑁 +

1

4
𝑏𝑁−1 +⋯+

1

2𝑁
(𝑏1 + 𝑏𝐿)) 

= 𝑉𝐷𝐷×(0. 𝑎′𝑁𝑎′𝑁−1⋯(𝑎′1 + 𝑎′𝐿))(2) − (𝑉𝑂𝑈𝑇 − 𝑉𝐷𝐷)×(0. 𝑏𝑁𝑏𝑁−1⋯(𝑏1 +

𝑏𝐿))(2) 

(4.11) 

If we define A’ as 
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𝐴′ ≡ (0. 𝑎′𝑁𝑎
′
𝑁−1⋯(𝑎′1 + 𝑎′𝐿))(2), (4.12) 

𝑉𝑂𝑈𝑇 can be represented as 

𝑉𝑂𝑈𝑇 = 𝐴′×𝑉𝐷𝐷 − 𝐵×(𝑉𝑂𝑈𝑇 − 𝑉𝐷𝐷) = (𝐴′ + 𝐵)×𝑉𝐷𝐷 − 𝐵×𝑉𝑂𝑈𝑇

=
𝐴′ + 𝐵

1 + 𝐵
𝑉𝐷𝐷. 

(4.13) 

Therefore, the overall conversion ratio becomes 

𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑂𝑈𝑇
𝑉𝐷𝐷

=
𝐴′ + 𝐵

1 + 𝐵
=
(𝐴 − 𝐵) + 𝐵

1 + 𝐵
=

𝐴

1 + 𝐵
=
𝑝

𝑞
, (4.14) 

achieving the ratio same as desired. 

 

Figure 4.6 Example configuration for 9/11 conversion ratio (A>1) 

 

In the example case of p/q = 9/11 in Figure 4.6, A’ becomes A−B = 0.110(2), which is 

actually realized in the converter by setting a’L=1, a’1=1, a’2=0 and a’3=1 because this 

configuration offers lower bottom-plate parasitic switching loss than setting a’L=0, and a’1, a’2, 
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and a’3 to 0, 1, 1, respectively. By combining these two general configuration scheme, the 

converter can be configured into any rational conversion ratio. 

 

4.2.3 Performance analysis of the rational DC-DC converter 

As shown in Table 4.1, the rational converter offers many more conversion ratios due to 

both numerator and denominator being selectable, and this number increases faster than binary 

converters as more stages are cascaded. Many of these non-binary ratio configurations have higher 

conductance than binary configurations for similar voltages, and thus, lower conduction loss. 

 

Table 4.1 Comparison of the number of configurable ratios in rational and binary converters. 

 

For every configuration, the rational converter has an output conductance of  

𝐶𝑡𝑜𝑡𝑓𝑠𝑤 (
𝑞

𝑞 − 1
)
2

 (4.15) 

when assuming the output is a DC voltage, which marks the best conductance among SC 

converters that do not include inductors. The recursive converter has the same output conductance 

for its available ratios because 

1. Number of main stages w/o negators for rational

2. Required stage size granularity for optimum conductance
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𝐶𝑡𝑜𝑡𝑓𝑠𝑤 (
2𝑁

2𝑁 − 1
)

2

= 𝐶𝑡𝑜𝑡𝑓𝑠𝑤 (
𝑞

𝑞 − 1
)
2

 (4.16) 

for 𝑞 = 2𝑁. However, it is impossible for the recursive converter to generate ratios with small non-

binary denominators, such as 1/3 and 2/5, which have good output conductance according to 

(4.15).  

Figure 4.7 depicts and compares conduction loss for available ratios of the two converters. 

Furthermore, the flexibility in selecting aL and bL in the first stage can be exploited to reduce 

bottom plate swing in many conversion ratios, further lowering bottom plate switching loss as 

shown in Figure 4.8. 

Therefore, a rational converter guarantees higher or equal efficiency relative to a binary 

converter over the entire output voltage range. Figure 4.9 shows efficiency curves of the rational 

and recursive converters versus conversion ratio, assuming each 2:1 SC converter stage has 90% 

conversion efficiency due to switching loss, and as shown in the figure, this statement holds even 

assuming infinite stages in the binary converter since most added ratios in this case offer poor 

efficiency arising from increased conduction loss. 
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Figure 4.7 Conduction loss vs. conversion ratio of the 4-stage rational converter  

with comparison to the recursive converter. 

 
Figure 4.8 Switching loss vs. conversion ratio of the 4-stage rational converter  

with comparison to the recursive converter. 
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Figure 4.9 Switching loss vs. conversion ratio of the 4-stage rational converter  

with comparison to the recursive converter. 

 

 

4.3 Chip Fabrication and Measurement 

4.3.1 Test Chip Fabrication 

To test the performance of this converter and fairly compare it with other previous 

converters, a generally reconfigurable SC converter is designed as shown in Figure 4.10. It consists 

of 15 identical unit converters that can form into an up to 4-stage binary converter with 15 ratio 

configurations (p/24, 0<p<24), a few-ratio converter with 1/3 and 2/5 ratios, or an up to 3-stage 

rational converter with 79 ratio configurations (p/q, 0<p<q≤24), with relative sizing among stages 

for optimal normalized conductance. 
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Figure 4.10 Structure of a general reconfigurable DC-DC converter. 

 

The unit converter is a 2-phase SC converter with four terminals. Each terminal can be 

connected to arbitrary voltage rails including VDD, VSS, VOUT, negative feedback voltages, and 

three intermediate voltages for inter-stage connections. Despite the large number of 

reconfiguration switches, they do not impact efficiency as they all form connections among DC 

voltages and hence do not contribute additional switching loss. 

The unit converter can be configured as a 2:1 by shorting VHL and VLH, or a voltage negator 

generating VDD–VOUT by connecting each of the four terminals to VDD, VDD–VOUT, VOUT, and VSS. 

Voltage negators generating –VOUT and 2VDD-VOUT uses the same configuration as 2:1 

downconverter, but the negated outputs are generated at different terminals. (Figure 4.11) 
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Figure 4.11 Structure of voltage negators. 

 

A test chip including the general reconfigurable DC-DC converter described above was 

fabricated in 180nm CMOS. (die photo in Figure 4.12). The fabricated converter includes a total 

flying capacitance of 1.8nF (15 unit converters × 0.12nF per each unit converter) 

 

Figure 4.12 Die micrograph of the test chip. 
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consistent with theoretical calculations in Figure 4.9. The converter shows 95% peak conversion 

efficiency for VOUT of 1.83V, >90% efficiency over a range of VOUT from 1.1V to 1.86V, and >80% 

efficiency over a wide 0.47–1.87V VOUT range.  

 

Figure 4.13 Measured efficiency vs. VOUT of the rational and recursive converters. Ratios for 

optimum efficiency between 2/3 and 15/16 for the rational converter are noted as examples. 

 

Figure 4.14 compares the output conductance at 2/3 configuration of the rational converter 

with the most similar ratio configuration of the binary converters, 11/16, showing that 2/3 

configuration has higher output conductance, and thus, better efficiency. When compared to some 

previous few-ratio converters’ configurations [27], [28] the rational converter shows similar or 

better conductance and efficiency for 1/3 (Figure 4.15) and 2/5 (Figure 4.16).  

 

Table 4.2 summarizes rational converter performance and compares it to previous related 

work. 
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Figure 4.14 Output conductance comparison among rational, SAR, and  

recursive converters at ratios around 2/3. 

 

 

 

Figure 4.15 Output conductance comparison at 1/3 conversion ratio. 
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Figure 4.16 Output conductance comparison at 2/5 conversion ratio. 

 

Table 4.2 Performance summary and comparison. 
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4.4 Conclusion 

A way of configuring a SC DC-DC converter into any rational conversion ratios is 

presented. Negative output feedback helps maintain the conversion efficiency comparable to 

conventional few-ratio SC DC-DC designs. Theoretical calculation and measures results are well-

matched, showing its efficiency is superior to conventional binary-reconfigurable structures. 
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CHAPTER 5  

Fully Digital Capacitance-to-Digital Converter using 

Iterative Delay-Chain Discharge 

5.1 Introduction 

Capacitance sensors are widely used to measure various physical quantities, including 

position, pressure, and concentration of certain chemicals [31]–[36]. Integrating capacitive sensors 

into a small wireless sensor system is challenging due to their large power consumption relative to 

the system total power/energy budget, which can be as low as a few nW [34]. Typical Capacitance-

to-Digital Converters (CDCs) use charge sharing or charge transfer between capacitors to convert 

the sampled capacitance to voltage, which is then measured with an ADC [31]–[36]. This approach 

requires complex analog circuits, such as amplifiers and separate ADCs, increasing design 

complexity and often increasing power consumption. Moreover, the initial capacitance to voltage 

conversion essentially limits the input capacitance range because of output voltage saturation. This 

paper presents a fully-digital CDC that is based on the observation that when a ring-oscillator (RO) 

is powered from a charged capacitance, the number of RO cycles to discharge the capacitance to 

a fixed voltage is naturally linear with the capacitance value. This observation enables a simple, 

fully digital conversion scheme that is inherently linear over a wide range. 
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5.2 Structure of Proposed CDC 

5.2.1 Basic Operation Scheme 

Figure 5.1 explains the proposed conversion method. The top node of sensed capacitor CT 

is directly connected to the supply node of a ring oscillator. This node is initially charged to 

VHIGH, and is then discharged gradually as the inverter RO oscillates. As signals in the RO 

transition, the RO draws a small charge from the sensed capacitor CSENSE, gradually lowering VCT. 

As a result the RO propagation delay increases, which is compared to a constant delay reference. 

The RO transition count until the period delay becomes longer than the reference delay is recorded 

by a counter, which becomes the output code DOUT. 

 

Figure 5.1 Basic structure of the proposed CDC. 

 

Since RO delay only depends on VCT (neglecting noise initially), DOUT is equal to the 

number of RO transitions while VCT is discharged from VHIGH to a constant voltage, VLOW. As 

shown in Fig. 2, during conversion, at any particular VCT value, the amount of charge withdrawn 

per RO transition only depends on VCT at that time. Therefore, the number of transitions required 
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to reduce VCT by a certain small voltage is proportional to input capacitance CSENSE. As this is true 

at any VCT level, the output code DOUT, the sum of transition counts across all continuous small 

intervals from VHIGH to VLOW, is also proportional to CSENSE. As the RO draws charge directly 

from CSENSE without initial capacitance to voltage conversion, the CDC input capacitance range is 

essentially unlimited, constrained only by the counter size. This is desirable when the CSENSE range 

is uncertain at design time. Furthermore, energy used to charge CSENSE is reused to oscillate the 

RO, reducing overall power consumption. 

 

Figure 5.2 Basic operation scheme of the proposed CDC. 

 

5.2.2 Detailed Implementation 

Figure 5.3 shows the detailed implementation of the CDC circuit and its operation. Here 

an inverter chain is used in place of an RO to discharge CSENSE – it is a 16-stage chain that is 

identical to the reference delay generator. Because of the identical structures, conversion stops 

when VCT drops below VLOW. The number of stages in the inverter chain is chosen for optimal 

SNR per conversion energy, where the energy to charge CSENSE is balanced with the energy 

consumed by other blocks.  
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Figure 5.3 Detailed implementation of the CDC. 

 

The two propagation delays are compared by three delay comparators, which have a similar 

structure to an RS latch. The bottom comparator compares the propagation delay of falling edges, 
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and the middle one compares the rising edges. Whenever the reference delay is shorter than the 

CSENSE discharge delay chain, the comparators output pulses once, increasing counts stored in the 

sub1 and sub2 counters. A third counter tracks the main oscillation triggering signal. After each 

comparison, the next edge generator block triggers the next discharge and delay comparison, 

maintaining oscillation. All blocks except the CSENSE delay chain operate at VLOW, and a level 

converter drives the two delay chain inputs with VHIGH. 

 

Figure 5.4 Detailed timing diagram of the CDC. 

 

As shown in the timing diagram of Figure 5.4, conversion starts by precharging CSENSE to 

VHIGH. This is followed by Sense rising, triggering the first edge to propagate through the two 
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determines when to finish the overall conversion, which occurs when VCT becomes lower than 
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VLOW by some margin. As VCT approaches VLOW, the bottom two delay comparators pulse CK1 

and CK2. They initially pulse sporadically, due to noise, and then more frequently as VCT crosses 

VLOW. Just before conversion finishes, these two comparators pulse every cycle. When the top 

comparator pulses Finish, Sense is turned off and oscillation stops. Final DOUT is the total count of 

comparator outputs for which VCT > VLOW, and is calculated as 2×DMAIN – (DSUB1+DSUB2). 

The use of three comparators is designed to increase SNR by averaging noise over many 

comparisons when VCT is near VLOW. Comparing both rising and falling edges doubles the number 

of comparisons. By extending the conversion to where VCT falls some margin below VLOW, 

comparisons are performed through the whole noisy region around VLOW, whereby false “VCT < 

VLOW” decisions above VLOW are stochastically compensated by false “VCT > VLOW” decisions 

below VLOW. Simulation shows that energy increases by 3% compared to the standard approach of 

stopping conversion immediately after the first comparison triggers, while overall conversion 

noise is square-rooted. In addition, the distribution of DOUT using this scheme is centered at the 

number of exact counts from VHIGH to VLOW, thereby improving output code linearity. 

 

5.2.3 Parasitic Capacitance Cancelation 

The CDC measures the capacitance between one input node and ground, but several 

applications require the capacitance value between two input nodes excluding parasitic capacitance 

to ground. We accomplish this through three conversions, as shown in Figure 5.5, First, node B is 

connected to ground and the capacitance between node A and ground is measured, which includes 

parasitic capacitance CPA. Second, nodes A and B are flipped and CSENSE + CPB is measured. 

Finally, both A and B nodes are connected to VCT to measure CPA + CPB. By adding the first two 

codes and subtracting the third, the parasitic capacitance is canceled out. While this requires three 
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conversions, parasitic capacitance typically remains unchanged or changes slowly and the parasitic 

cancelation can be performed infrequently, amortizing its overhead. 

 

Figure 5.5 Technique for parasitic capacitance cancelation. 

 

5.2.4 Output Code Calibration 

The output code varies as temperature or supply voltage changes. This code deviation is 

removed by one-point calibration. In a calibration phase, VCT is connected to an internal reference 

capacitor with known capacitance CREF and the ratio of CREF to corresponding DOUT is stored. In 

subsequent normal conversion, digital output codes are converted to actual capacitance value by 

multiplying the code and the stored ratio. If the supply voltage changes sufficiently slowly, this 

calibration can be re-done occasionally. 

 

5.3 Chip Fabrication and Measured Results 

The CDC is fabricated in 40nm CMOS and tested with VHIGH=1.0V and VLOW=0.45V. As 

shown in the die micrograph in Figure 5.6, Core circuit area without testing circuits and internal 
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capacitors is 0.0017mm2. This small area comes from simplicity of the CDC core circuit which 

consists of only a few hundreds of logic gates. 

 

Figure 5.6 Die micrograph of the 40nm CMOS test chip. 

 

Figure 5.7 shows the test chip has a very wide input capacitance range from 0.7pF to 10nF 

with a small linearity error of < 0.06%. Measured output noise percentage reduces as CSENSE 

increases due to noise averaging. At 11.3pF, the CDC has 0.109% resolution, 35.1pJ total 

conversion energy (including both VHIGH and VLOW), and 141fJ/c-s FoM. FoM increases 

monotonically with the sensed capacitance. Figure 5.8 shows output code sensitivity to 

temperature improves by 145× (from 2247ppm/°C to 15.5ppm/°C) due to calibration. 
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Figure 5.7 Measured CDC resolution and linearity error. 

 

 

Figure 5.8 Measured CDC temperature sensitivity before and after calibration. 
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Results with an actual pressure sensor (Figure 5.9) demonstrate 1.39mmHg resolution with 

parasitic cancelation. As shown in the result, the parasitic capacitance of this pressure sensor shows 

much less sensitivity to its parasitic capacitance than its sensed capacitance, justifying infrequent 

parasitic capacitance cancelation suggested in Section 5.2.3. Table 5.1 summarizes CDC 

performance and compares it with prior work. 

 

 

Figure 5.9 Measured results with capacitive pressure sensor with parasitic cancelation. 
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Table 5.1 Performance summary and comparison. 

 

 

5.4 Conclusion 

A wide range fully-digital CDC with low conversion energy and FoM is presented. These 

benefits essentially come from its adopting new conversion method using iterative delay-chain 

discharge. This approach does not require complex analog circuits which consumes extra power, 

while retaining high linearity over a wide range which is theoretically unlimited. 

 

  

[26] JSSC 09 [27] ISSCC 14 [28] VLSI 14 [30] JSSC 13 [31] JSSC 12 This work

Technology
1.5µm 

CMOS

0.18µm 

CMOS

0.18µm 

CMOS

0.16µm 

CMOS

0.35µm 

CMOS

40nm 

CMOS

Method
CDS +

Cyclic ADC
CDS + SAR SAR + ΔΣ ΔΣ

Period

Modulation

Iterative

Delay-Chain

Discharge

Input range N/R 2.5 – 75.3pF 0 – 24pF 0.54 – 1.06pF N/R 0.7pF – 10nF

Resolution 75aF 6.0fF 0.16fF 70aF N/R
0.109% 1

(12.3fF)

Meas. Time 0.5ms 4ms 230µs 0.8ms 7.6ms 19.06µs 1

Power 36µW 5 160nW 33.7µW 10.3µW 5 211µW 5 1.84µW 1

Conversion

Energy 2
18nJ 640pJ 7.75nJ 8.26nJ 1.61µJ 35.1pJ 1

FoM 3 (fJ/c-s) 22000 181 175 3900 139000 141 1,4

1 Measured when sensing 11.3pF capacitance w/o parasitic cancelation or calibration.

2 Conversion Energy = Power * (Meas. Time)

3 FoM = (Conversion Energy) / 2
(20 log (Input range / 2 Sqrt(2) / Resolution) – 1.76) / 6.02

4 Input range is assumed to be 0.7pF – 11.3pF for this calculation

5 Estimated number from the paper

N/R: Not reported
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CHAPTER 6  

Edge-Pursuit Comparator: An Energy-Scalable 

Oscillator Collapse-Based Comparator 

6.1 Introduction 

Comparators are widely used in many applications such as voltage regulation, brown-out 

detection and analog-to-digital conversion. In many of these applications, the performance of the 

entire circuit relies directly on the comparator’s performance as the comparator plays a key role. 

A high resolution SAR ADC is a good example, which needs an especially low-noise comparison 

to distinguish voltages that are very close for fine bit decisions requiring a large amount of energy 

that takes a significant portion of the total conversion energy.  

 

Figure 6.1 Required energy for comparison vs. input difference.  

(a) Conventional comparators wasting most energy for large input difference.  

(b) Energy scaling saved wasted energy for comparison. 
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However, as depicted in Figure 6.1(a), while the actual energy requirement decreases sharply 

as the input signal difference becomes larger, conventional clocked comparators [37]–[39] usually 

consume nearly constant energy for each comparison since they are designed according to the most 

accurate and power-hungry comparison. Therefore, in these kinds of applications, adjusting the 

energy for comparison according to the input difference level can greatly help in reducing the total 

comparison energy (Figure 6.1(b)) as well as the overall energy consumption. For this reason, 

many prior works on SAR ADCs have presented techniques for comparator energy scaling [40]–

[44], including dual ADC architectures which use two comparators for coarse and fine 

comparisons [45], [46], multiple repetitive comparisons for noise-critical bits [40], [41], [46], and 

time-domain comparators whose noise level can be modulated by changing the length of the delay 

lines [42]. However, these structures reduce the simplicity of the SAR structure by introducing 

overheads for extra control, increasing design and control complexity. They also have a limited 

number of energy scaling steps and a limited noise tuning range, making it difficult to benefit much 

from comparator energy scaling. In addition, some of these prior techniques require pre-

programmed scaling by prediction, introducing additional inefficiencies from prediction misses. 

This dissertation presents a ring oscillator collapse-based comparator, referred to as an edge-

pursuit comparator (EPC). The EPC automatically scales comparison energy according to its input 

difference without external control, tailoring comparison energy to each conversion. Wide-range 

energy scaling allows for saving a significant amount of energy for coarse comparisons. Phase-

domain operation running for many cycles over the ring oscillator enables high resolution 

operation with a small load capacitance and area. 
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6.2 Structure and Operation of the Edge-Pursuit Comparator 

Figure 6.2 shows the structure of the edge-pursuit comparator [43], which is composed of 

two NAND gates and inverter delay cells. The design is inspired by a physically unclonable 

function circuit that uses oscillator collapse to uniquely identify integrated circuits [47]. Here, the 

design is modified to serve as a comparator with differential inputs; the topology is shown below 

to be particularly well suited for use as a comparator.  

 

 

Figure 6.2 Structure of the edge-pursuit comparator. 
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Figure 6.3 Operation of the edge-pursuit comparator. 

 

 

 

Figure 6.4 Output of the EPC vs. time during comparison. Output waveform changes according 

to (a) the polarity of the |VINP – VINM| (b) amount of the input signal difference. 
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Initially, the comparator is in the reset state as the signal START is low to disconnect the 

oscillation path, as shown in Figure 6.3(a). The comparator initiates a comparison when the signal 

START goes high simultaneously at both NAND gates (Figure 6.3(b)). This injects two 

propagating edges into the oscillator, which travel around the comparator (Figure 6.3(c)) until one 

overtakes the other, collapsing the oscillation (Figure 6.3(d)). Differential input signals (VINP, VINM) 

are alternatively applied to both the top and bottom current-limiting transistors of the delay cells, 

modulating the pull-up and pull-down edge-propagation delays. The propagation delay of these 

two edges is controlled by mutually exclusive current-limiting transistors such that increasing VINP 

causes one edge to propagate faster and the other to become slower (and vice versa for VINM). 

After one propagating edge overtakes the other edge, the oscillation collapses and the stage outputs 

settle to either VDD or GND, dictated by which edge was slower and hence overtaken (Figure 

6.4(a)). The comparator output COMP is sampled from an internal stage that goes high when VINP 

> VINM and low otherwise. When the voltage difference between VINM and VINP is small, the two 

injected edges have similar propagation delays and the number of cycles required to make a 

decision automatically increases (Figure 6.4(b)). This filters out high frequency noise, as the 

design performs noise averaging over a longer period of time. On the other hand, for large voltage 

differences the oscillation inherently collapses quickly, limiting dynamic energy consumption for 

coarse comparisons. In this manner, the comparator naturally adjusts its energy dissipation without 

external control, and realizes both high accuracy and low power operation. 

 



86 

 

6.3 Analysis of Edge-Pursuit Comparator Performance 

During a comparison, the edge-pursuit comparator operates similarly to a ring-oscillator. 

After it is triggered, two injected edges propagate with different speeds driven by different 

transistors, whose phase difference drifts until it shifts by -π or π compared to when the propagation 

started. Therefore, comparator noise can be estimated by analyzing the phase difference in the 

time- or phase-domain instead of voltage or current. To simplify the noise analysis, we reduce the 

circuit to be analyzed to the one shown in Figure 6.5. The NAND gates with the comparator clock 

are skipped as their propagation delay and jitter noise are much smaller than the other stages. Each 

current-limiting transistor is modeled as a noisy current source. Assuming the parasitic device 

capacitances are much smaller than the stage load capacitance 𝐶𝐿, the noise from transistors in the 

middle of the stack can be neglected, allowing these transistors to be modeled as simple noiseless 

switches that flip at ~𝑉𝐷𝐷/2. 

 

 

Figure 6.5 Simplified delay cell model for noise estimation. 
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Figure 6.6 Operation of EPC in phase domain. 

 

6.3.1 Operational Analysis in Phase Domain 

We analyze the EPC behavior in the phase domain, with the basic concept illustrated in 

Figure 6.6. According to Abidi’s analysis of ring oscillator noise in [48], the comparator period 

jitter variance is  
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Here 𝜏 is the oscillation period, 𝜎𝜏
2 is the variance of the period jitter, 𝑓0 is the oscillation 

frequency, and 𝑉𝑜𝑣 is the overdrive voltage of the current-limiting transistors. Assuming that the 

period jitter is uncorrelated between the two propagating edges, the variance of the phase 

difference shift at a period is 
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𝜎𝛥𝜙
2 ≅ 2×(2𝜋)2

𝜎𝜏
2

𝜏2
= 8𝜋2𝑓0

𝑘𝑇

𝐼
(
2

𝑉𝑜𝑣
(𝛾𝑁 + 𝛾𝑃) +

2

𝑉𝐷𝐷
). (6.2) 

In addition to noise, the phase difference shifts as the input voltage difference gives rise 

to a current difference for the two propagating edges. The average period difference between the 

two edges 𝛥𝜏 is 

Δτ ≅
Δ𝐼

𝐼
𝜏 = 𝑣𝑖𝑛

𝑔𝑚
𝐼𝑓0

=
𝑣𝑖𝑛
𝑉𝑜𝑣

2

𝑓0
 (6.3) 

where 𝑣𝑖𝑛 is the input differential voltage and 𝑔𝑚 is the transconductance of the current-limiting 

transistors. Therefore, the average phase difference shift at a period 𝜇𝛥𝜙 is 

𝜇Δ𝜙 ≅ 2𝜋×
Δτ

𝜏
= 4𝜋

𝑣𝑖𝑛
𝑉𝑜𝑣

. (6.4) 

Note that in this convention, a positive 𝑣𝑖𝑛 causes the phase difference to drift towards 

the boundary at 𝜋. Therefore, an oscillation finishing with the phase difference at 𝜋 means the 

comparison result is “high”, and otherwise (finishing at −𝜋) means “low”. 

For easier formulation of the phase shift during a comparison, we assume that the phase 

difference shift 𝛷(𝑡) is a continuous-time random process with independent increments in non-

overlapping time intervals, similar to 1-dimensional Brownian motion with drift. Then, the 

probability density function of 𝜙(𝑡), 

𝑓(𝑡, 𝜙) ≡ 𝑓𝛷(𝑡)(𝜙), 𝑡 ≥ 0, −𝜋 ≤ 𝜙 ≤ 𝜋, (6.5) 

satisfies the Fokker-Planck equation [49] 
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𝜕𝑡𝑓(𝑡, 𝜙) = −𝛭𝜕𝜙𝑓(𝑡, 𝜙) +
𝛴

2
𝜕𝜙
2𝑓(𝑡, 𝜙), (6.6) 

where 𝛭 and 𝛴 are “drift” and “diffusion” coefficients of this random process, defined as 

𝛭 ≡
𝜇𝛥𝜙

𝜏
= 4𝜋𝑓0

𝑣𝑖𝑛
𝑉𝑜𝑣

 (6.7) 

𝛴 ≡
𝜎𝛥𝜙
2

𝜏
= 8𝜋2𝑓0

2
𝑘𝑇

𝐼
(
2

𝑉𝑜𝑣
(𝛾𝑁 + 𝛾𝑃) +

2

𝑉𝐷𝐷
). (6.8) 

From the initial condition of the comparator, this system has a boundary condition 

𝑓(0, 𝜙) = 𝛿(𝜙). (6.9) 

In addition, another boundary condition at the phase shift boundaries is given by 

𝑓(𝑡, 𝜋) = 𝑓(𝑡, −𝜋) = 0 (6.10) 

because a trial of this process is excluded from the probability density once its value reaches a 

boundary. 

The solution of this system is 

𝑓(𝑡, 𝜙) =
1

𝜋
𝑒
𝛭
𝛴
𝜙∑𝑒−𝜆(𝑛)𝑡𝑐𝑜𝑠(𝑘(𝑛)𝜙)

∞

𝑛=1

, (6.11) 

where the coefficients 𝑘(𝑛) and 𝜆(𝑛) are defined as 

𝑘(𝑛) = 𝑛 −
1

2
, 𝑛 ∈ 𝑁 (6.12) 



90 

 

𝜆(𝑛) =
𝛭2

2𝛴
+
𝛴

2
×𝑘(𝑛)2. (6.13) 

 

6.3.2 Comparison Time and Energy 

Let 𝑇 be a random variable for the comparison time and 𝑓(𝑡) be a function representing 

the probability of the comparator oscillating at time t. 𝑓(𝑡) is derived by integrating 𝑓(𝑡, 𝜙) in 

equation (6.11) along the 𝜙 axis: 

𝑓(𝑡) ≡ 𝑃[𝑇 > 𝑡] = 𝑃[−𝜋 < 𝑓𝛷(𝑡)(𝜙) < 𝜋] = ∫ 𝑓(𝑡, 𝜙)𝑑𝜙
𝜋

−𝜋

=
1

𝜋
𝛴𝑐𝑜𝑠ℎ (

𝛭

𝛴
𝜋)∑(−1)𝑛+1

𝑘(𝑛)

𝜆(𝑛)
𝑒−𝜆(𝑛)𝑡

∞

𝑛=1

. 

(6.14) 

By differentiating this with respect to 𝑡, we obtain the probability density function of 𝑇, 

𝑓𝑇(𝑡), as 

𝑓𝑇(𝑡) =
𝑑

𝑑𝑡
𝑃[𝑇 ≤ 𝑡] = −𝑓′(𝑡) =

1

𝜋
𝛴𝑐𝑜𝑠ℎ (

𝛭

𝛴
𝜋)∑(−1)𝑛+1𝑘(𝑛)𝑒−𝜆(𝑛)𝑡

∞

𝑛=1

. (6.15) 

The average comparison time 𝐸[𝑇] is 

𝐸[𝑇] = ∫ 𝑡𝑓𝑇(𝑡)𝑑𝑡
∞

0

=
𝜋𝑡𝑎𝑛ℎ (

𝛭
𝛴 𝜋)

𝛭
=
𝜋2

𝛴
𝑆 (
𝛭

𝛴
), (6.16) 

where the scaling factor 𝑆, which is dependent on the ratio 𝛭 𝛴⁄ , is defined as 
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𝑆(𝑘) ≡
𝑡𝑎𝑛ℎ(𝑘𝜋)

𝑘𝜋
. (6.17) 

The function 𝑆(𝑘) is an even function with its maximum at (0,1). Its value decreases as 

|𝑘| becomes larger, characterizing the automatic energy scaling behavior of this comparator. 

When 𝛭 = 0, i.e. 𝑣𝑖𝑛 = 0, the average comparison time peaks at 𝜋2 𝛴⁄ . 

The energy for a comparison is easily calculated from the comparison time. Because each 

edge draws current 𝐼 from the supply voltage 𝑉𝐷𝐷 on average as it propagates, the comparator 

consumes an average power of 

𝑃 = 2𝐼𝑉𝐷𝐷. (6.18) 

Therefore, the average energy consumption per comparison is 

𝐸 = 𝑃×𝐸[𝑇] = 2𝐼𝑉𝐷𝐷
𝜋2

𝛴
𝑆 (
𝛭

𝛴
). (6.19) 

 

6.3.3 Input Referred Noise 

Let 𝑔(𝑡, 𝜙) be a function on the region 𝑡 ≥ 0,−𝜋 ≤ 𝜙 ≤ 𝜋 whose value represents the 

probability for the comparator to finish its oscillation with a final phase difference shift of 𝜋, 

meaning output “high”, when the current phase difference shift is 𝜙 at time 𝑡. By this definition, 

the value of this function must be independent of time 𝑡, because its dynamic behavior is only 

determined by the stationary random variable 𝛥𝛷(𝛥𝑡) and current phase difference 𝜙. Then, 

𝑔(𝑡, 𝜙) = 𝑔(𝜙) satisfies the differential equation 
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𝐴𝑔′(𝜙) +
𝐵

2
𝑔′′(𝜙) = 0. (6.20) 

Solving equation (6.20) with two boundary conditions 

𝑔(𝜋) = 1, 𝑔(−𝜋) = 0 (6.21) 

that are clearly given by the earlier definition of 𝑔, we obtain 

𝑔(𝜙) =
𝑒
2𝛭
𝛴
𝜋 − 𝑒

−2𝛭
𝛴

𝜙

𝑒
2𝛭
𝛴
𝜋 − 𝑒

−2𝛭
𝛴

𝜋
. (6.22) 

Let ℎ(𝑣𝑖𝑛) ≡ 𝑔(0) be a function representing the probability of the comparison result being 

“high” when the input voltage is 𝑣𝑖𝑛. This function changes its value according to 𝑣𝑖𝑛 as 𝛭 

depends on 𝑣𝑖𝑛.  

ℎ(𝑣𝑖𝑛) ≡ 𝑔(0)|𝑣𝑖𝑛 =
𝑒
2𝐴(𝑣𝑖𝑛)

𝐵
𝜋 − 1

𝑒
2𝐴(𝑣𝑖𝑛)

𝐵
𝜋 − 𝑒−

2𝐴(𝑣𝑖𝑛)
𝐵

𝜋
. (6.23) 

The comparator’s input-referred noise voltage 𝑣𝑛 is a random variable with a probability density 

function 𝑓𝑣𝑛(𝑣) that satisfies 

ℎ(𝑣𝑖𝑛) = ∫ 𝐻(𝑣𝑖𝑛 + 𝑣𝑛)𝑓𝑣𝑛(𝑣𝑛)𝑑𝑣𝑛

∞

−∞

= ∫ 𝑓𝑣𝑛(𝑣𝑛)𝑑𝑣𝑛

∞

−𝑣𝑖𝑛

 (6.24) 

where 𝐻(𝑣𝑖𝑛) is the Heaviside step function that models probability of the ideal noiseless 

comparator output, and therefore, 

𝑓𝑣𝑛(𝑣𝑛) = ℎ′(−𝑣𝑛) = ℎ′(𝑣𝑛) (6.25) 

because ℎ′ is an even function. 

Then, the comparator’s input-referred noise power 𝜎𝑣𝑛
2  is obtained as 
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𝜎𝑣𝑛
2 = ∫ 𝑣𝑛

2𝑓𝑣𝑛(𝑣𝑛)𝑑𝑣𝑛

∞

−∞

= ∫ 𝑣𝑛
2ℎ′(𝑣𝑛)𝑑𝑣𝑛

∞

−∞

=
𝜋2

3
𝑓0
2 (
𝑘𝑇

𝐼
)
2

(
2

𝑉𝑜𝑣
(𝛾𝑁 + 𝛾𝑃) +

2

𝑉𝐷𝐷
)
2

𝑉𝑜𝑣
2 , 

(6.26) 

 

6.4 Discussion on Characteristics of Edge-Pursuit Comparator 

The analysis in Section 6.3 reveals some useful characteristics of the edge-pursuit 

comparator compared to conventional comparators, which are discussed in this section. In addition, 

to evaluate the energy efficiency of the EPC and compare it to conventional clocked comparator 

topologies [37]–[39], energy efficiency norm values are estimated for EPC and conventional 

comparators and compared to each other. 

 

6.4.1 Input Noise Tunability 

From (6.26), the noise rms level 𝜎𝑣𝑛 is  

𝜎𝑣𝑛 = √𝜎𝑣𝑛
2 =

𝜋

√3
𝑓0
𝑘𝑇

𝐼
(
2

𝑉𝑜𝑣
(𝛾𝑁 + 𝛾𝑃) +

2

𝑉𝐷𝐷
)𝑉𝑜𝑣. (6.27) 

Note that the rms level of the comparator’s input-referred noise is proportional to 𝑓0/𝐼, 

which is inversely proportional to the total capacitor size throughout the oscillator. Using this 

characteristic, one can easily tune the required input-referred noise level across a wide range for 

this comparator topology during both design time and runtime. On the other hand, other 

comparators usually require the tuning of design factors inversely proportional to the required 
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noise power, rather than the rms level, which renders wide-range noise tuning more difficult. 

Figure 6.7(a) shows an example of changing the total capacitance by changing the size of each 

inverter cell, and as expected, the noise rms level roughly follows the inverse of the total 

capacitance. 

 

Figure 6.7 Simulated input referred noise vs. (a) delay cell size and (b) number of delay cell. 

 

Another example in Figure 6.7(b) tries to change the total capacitance by changing the 

number of delay cells in the comparator. However, simulated results show that the noise changes 

more sensitively than expected, which is due to positive feedback on the phase difference shift. 

The phase difference shift changes the time that each stage output stays at 0 and 𝑉𝐷𝐷, during which 

the internal nodes of each delay cell are reset. If this time for reset becomes too short, the nodes in 

the delay cell cannot be completely reset, accelerating the phase difference shift in the present 

direction. As shown in the graph, this positive feedback more affects the comparator with a small 

number of stages because the time for reset is shorter. This mechanism is similar to the 

regeneration of the output signal in conventional regenerative comparators, but this phase 

regeneration does not consume much energy whereas voltage regeneration in conventional 

comparators consumes a fixed amount of dynamic energy. For this reason, the energy efficiency 

of the edge-pursuit comparator is maintained even for designs with a small number of stages. This 
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positive feedback mechanism further increases the tunable noise range, showing a 12.5x noise 

level change only by changing the number of stages from 8 to 14, while conventional comparators 

require more than 100x design parameter tuning for a similar noise level change. 

 

6.4.2 Automatic Energy Scaling 

According to (6.19), the EPC’s energy consumption depends on the energy scaling factor 

𝑆(𝛭 𝛴⁄ ). To estimate how much energy is actually saved in usual applications, we obtain the 

relationship between 𝛭 𝛴⁄  and 𝑣𝑖𝑛 from equation (6.27) and (6.7), 

𝛭

𝛴
=

1

√12

𝑣𝑖𝑛
𝜎𝑣𝑛

. (6.28) 

Taking this equation together with the graph of the scaling factor 𝑆 in Figure 6.8 into account, the 

energy scaling factor remains around 1 when 𝑣𝑖𝑛 is within the noisy region, but if 𝑣𝑖𝑛 goes outside 

the noisy region, it decreases fast towards 0 in a hyperbolic manner. Therefore, the comparator can 

save almost all its energy in most voltage ranges, except for a small noisy region that is usually 

within the μVs ~ mVs range. 
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Figure 6.8 Graph of the EPC’s scaling factor 𝑆(𝑘). 

 

 

Figure 6.9 Comparisons during SAR ADC conversion in the energy-worst case. 

 

For example, assuming an application of the EPC in a SAR ADC where the comparator is 

designed to have the same noise level as the quantization noise, a comparison with 𝑣𝑖𝑛 = 𝐿𝑆𝐵 =

√12𝜎𝑣𝑛 only consumes ~0.317 times the energy of the comparison with 𝑣𝑖𝑛 = 0. Even assuming 

the worst case of consuming the maximum comparison energy, where the comparison occurs 
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alternatively below and above 0 to finally finish with the comparison exactly at 𝑣𝑖𝑛 = 0 as shown 

in Figure 6.9, the calculated total energy for all comparisons (𝑣𝑖𝑛 = (1√12)𝐿𝑆𝐵, 1𝐿𝑆𝐵, 2𝐿𝑆𝐵,

⋯214𝐿𝑆𝐵) during a single ADC conversion is only ~1.86 times the energy of a single comparison 

with 𝑣𝑖𝑛 = 0. 

 

6.4.3 Energy vs. Noise Efficiency 

To evaluate the edge-pursuit comparator’s energy efficiency and compare it to other 

comparators, we shall define a norm for comparison 

𝑁 ≡ 𝐸×
𝜎𝑣𝑛
2

𝑉𝐷𝐷
2 , (6.29) 

which means the energy consumption per SNR assuming maximum signal power is 𝑉𝐷𝐷
2 . From 

(6.8), (6.19) and (6.26), we get the norm value for the EPC: 

𝑁𝐸𝑃𝐶 =
𝜋2

6
𝑆 (
𝛭

𝛴
)𝑘𝑇

(𝑉𝐷𝐷(𝛾𝑁 + 𝛾𝑃) + 𝑉𝑜𝑣)𝑉𝑜𝑣

𝑉𝐷𝐷
2 . (6.30) 

Assuming 𝛾𝑁 = 𝛾𝑃 = 𝛾 and 𝑉𝐷𝐷(𝛾𝑁 + 𝛾𝑃) ≫ 𝑉𝑜𝑣, (6.30) simplifies to 

𝑁𝐸𝑃𝐶 ≅
𝜋2

3
𝑆 (
𝛭

𝛴
)𝑘𝑇𝛾

𝑉𝑜𝑣
𝑉𝐷𝐷

, (6.31) 

which has the dimension of energy in the form of 𝑘𝑇 multiplied by some design factors. 

From Nuzzo’s analysis [50] on a single-stage regenerated comparator [38] illustrated in 

Figure 6.10(a), its input-referred voltage noise power 𝜎𝑣𝑛
2  is derived as 
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𝜎𝑣𝑛
2 = 𝜎𝑀1

2 + 𝜎𝑆1
2 + 𝜎𝑀3−5

2 + 𝜎𝑆3
2 . (6.32) 

 

Figure 6.10 Conventional dynamic comparators. (a) Single-stage [38], [50]. (b) Two-stage [39]. 

 

Assuming the comparator’s noise is optimized enough so that 𝜎𝑀1

2  becomes dominant, 

(6.32) is simplified to 

𝜎𝑣𝑛
2
𝑆𝑆
≅ 𝜎𝑀1

2 =
2𝑘𝑇𝛾

𝐶𝑋

𝑉𝑜𝑣
𝑉𝑡ℎ

. (6.33) 

where 𝑉𝑡ℎ and 𝑉𝑜𝑣 are 𝑉𝑇𝑛3 and 𝑉𝑜𝑣1,1 in the original equation in [50], which means the threshold 

voltage of 𝑀3 and overdrive voltage of 𝑀1 during comparison phase 1 defined in [50], respectively. 

During a comparison, this comparator discharges 𝑋1 and 𝑋2 from 𝑉𝐷𝐷 to 0. Either node 

between the two output nodes is also fully discharged. The other output node is discharged down 

to around half of𝑉𝐷𝐷 where the current through 𝑀3−4 and 𝑀5−6 are balanced. Assuming most of 

the energy for comparison is used in recharging these nodes, this comparator consumes energy 

𝐸𝑆𝑆 ≅ (2𝐶𝑋 + 1.5𝐶𝑂)𝑉𝐷𝐷
2  (6.34) 
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per comparison. Using (6.29), this comparator’s performance norm is 

𝑁𝑆𝑆 = 𝐸𝑆𝑆×
𝜎𝑣𝑛
2

𝑆𝑆

𝑉𝐷𝐷
2 ≅ 4𝑘𝑇𝛾 (1 +

3

4

𝐶𝑂
𝐶𝑋
)
𝑉𝑜𝑣
𝑉𝑡ℎ

 (6.35) 

and following the assumption 𝐶𝑂 ≅ 𝐶𝑋 in [50], it is further simplified to 

𝑁𝑆𝑆 ≅ 7𝑘𝑇𝛾
𝑉𝑜𝑣
𝑉𝑡ℎ

. (6.36) 

From Elzakker’s analysis [39] on a two-stage comparator illustrated in Figure 6.10(b), its 

input-referred voltage noise power 𝜎𝑣𝑛
2  is derived as 

𝜎𝑣𝑛
2
𝑇𝑆
= 4𝑘𝑇

1

𝑉𝑡ℎ𝐶𝐹

𝐼

𝑔𝑚
=
2𝑘𝑇𝛾

𝐶𝐹

𝑉𝑜𝑣
𝑉𝑡ℎ

 (6.37) 

by substituting 𝑔𝑚  with 2 𝐼 𝑉𝑜𝑣⁄ , and restoring the omitted 𝛾 by the assumption 𝛾 = 1 in [39]. 

During a comparison, the drain nodes of the two input transistors are discharged from 𝑉𝐷𝐷 to 0, 

each of which is connected to a large capacitor 𝐶𝐹 . Therefore, the energy to replenish these 

capacitors dominates the total energy consumption, which is 

𝐸𝑇𝑆 ≅ 2𝐶𝐹𝑉𝐷𝐷
2  (6.38) 

per comparison. Therefore, the comparator’s performance norm is 

𝑁𝑇𝑆 = 𝐸𝑇𝑆×
𝜎𝑣𝑛
2

𝑇𝑆

𝑉𝐷𝐷
2 = 4𝑘𝑇𝛾

𝑉𝑜𝑣
𝑉𝑡ℎ

. (6.39) 

All comparators’ performance norms estimated in (6.31), (6.36) and (6.39) share the same 

dimension and similar form factored by 𝑘𝑇𝛾. Ratios among those norms are 
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𝑁𝐸𝑃𝐶: 𝑁𝑆𝑆: 𝑁𝑇𝑆 = 𝑆 (
𝐴

𝐵
)
𝜋2 3⁄

𝑉𝐷𝐷
:
7

𝑉𝑡ℎ
:
4

𝑉𝑡ℎ
, (6.40) 

showing that the EPC has relatively smaller norms than the other two, even when 𝑣𝑖𝑛 = 0 and 𝑆 =

1 where the EPC does not benefit from the scaling factor 𝑆 at all. This efficiency gain comes from 

(a) Saving energy used for output regeneration (versus a single-stage comparator only), by 4 7⁄  

(b) Increased voltage integration swing from 𝑉𝑡ℎ to 𝑉𝐷𝐷 2⁄ , by 𝑉𝐷𝐷 

(c) EPC’s bidirectional operation similar to [51], where both pull-up and pull-down currents are 

used for phase integration, by 1/2 

(d) Fixed phase difference shift threshold for an output decision that prevents a decision with 

insufficient signal integration, by 𝜋2 12⁄ . 

In addition to the above, the EPC can further reduce the average comparison energy due to 

automatic energy scaling. For example, the EPC consumes only around 1.86x energy per single 

SAR ADC conversion as discussed in Section 6.4.2, which is comparable to the energy level for 

only a single comparison of other comparators. 

Figure 6.11 shows the simulation results of the three comparators compared. With similar 

levels of input-referred noise (Figure 6.11(a)), the edge-pursuit comparator shows large energy 

savings from automatic energy scaling, while the other two comparators show nearly constant 

energy consumption. The ratio among the energy consumption at 𝑣𝑖𝑛 = 0 does not match with 

equation (6.40) as shown in Figure 6.11(b), because some important design parameters such as 𝑉𝑜𝑣 

differ among the simulated designs. If the 𝑉𝑜𝑣  is matched by increasing the size of MOSFET 

(MCLK), the ratio of the energy consumption becomes similar to the equation (6.40). 
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Figure 6.11 Comparison of simulated comparator performances among EPC and conventional 1-

stage [38], [50] and 2-stage [39] comparators. (a) Probability for output “high”, inferring input-

referred noise. (b) Comparison energy vs. input signal difference. 

 

6.4.4 Offset 

The mismatch of the MOSFET causes an input-referred offset voltage, 𝑉𝑂𝑆, and it makes a 

small delay difference, ∆𝑡𝑑 of each delay cell. Since mismatch factors among every delay cell are 

uncorrelated, the standard deviation of accumulated delay difference when the edge runs a lap of 

N-stage delay cells is √𝑁 ∙ ∆𝑡𝑑. According to [42], the voltage to time gain of the N-stage delay 

cell is 𝑁 ∙ ∆𝑡𝑑/𝑉𝑂𝑆, thus the input-referred offset voltage of the N-stage delay cells, 𝑉𝑂𝑆_𝑁 is 

𝑉𝑂𝑆_𝑁 =
1

√𝑁
∙ 𝑉𝑂𝑆 (6.41) 

Therefore, the input-referred offset voltage is dependent on the total area of delay cells. 

Figure 6.12 shows that the Monte-Carlo simulation result and the offset voltage is reduced when 

the number of delay cell is increased. 
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Figure 6.12 Simulated input-referred offset voltage vs. number of delay cell. 

 

 

 

Figure 6.13 15-bit SAR ADC architecture with EPC and dual CDAC for high resolution. 
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6.5 SAR ADC with Edge-Pursuit Comparator 

The EPC is applied to a 15-bit high resolution synchronous SAR ADC that is composed of 

a CDAC and digital logic as shown in Figure 6.13. The EPC uses 16 delay cells without load 

capacitor. The EPC has a meta-stability issue because the comparison time is automatically 

changed according to the input voltage difference. The performance and the comparison time of 

the EPC is maximized in meta-stability condition. For this reason, the sampling rate of the ADC 

should be decided by considering the comparison time when the input voltage difference is very 

small. Figure 6.14 shows that the transient noise simulation result when the input voltage 

difference is 0. Most of the comparison time is smaller than 3.5 µs, thus the sampling rate of the 

ADC is decided to 20 kS/s.  

 

Figure 6.14 Probability distribution function of the comparison time at VIN=0. 

 

The CDAC of the SAR ADC consist of the 10-bit coarse CDAC, the 5-bit fine CDAC and 

the 9-bit common-mode to differential gain tuning CDAC. The unit capacitance of the coarse and 

fine CDACs is 16 fF and unit capacitance of the tuning CDAC is 4 fF. The 10-bit differential 
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CDAC is implemented using a split capacitor array [52] to reduce the switching power. The 5-bit 

fine CDAC shares top plates with the CDAC (VINP, VINM) and has the same unit capacitor size as 

the coarse CDAC. An intentional difference between tuning the capacitors CTUNEP and CTUNEM 

induces a small differential voltage change as the shared bottom plates of the fine CDAC change, 

allowing high resolution without significantly increasing the overall CDAC capacitance. 

 

Figure 6.15 Operation of 5-bit find CDAC during fine-bit decision. (a) Initial state. (b) After a 

comparison with “COMP=0” (c) After another comparison with “COMP=0”. 

 

Differing from a conventional bridge-capacitor technique [53], [54], the 5-bit fine CDAC 

has shared bottom plates for each pair of capacitors. Figure 6.15 shows the detailed operation of 

the bottom node switching. First, all bottom nodes of the fine CDAC are reset to GND during the 

sampling phase. After finishing the 10-bit MSB decision using a differential CDAC, the shared 

bottom node of the fine DAC’s MSB is set to VDD (Figure 6.15(a)). It changes the differential 
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input voltage into the comparator by half a LSB of the coarse DAC (Figure 6.16, upwards arrow) 

to form a middle point for the 11th bit decision. After the comparison, the voltage of the MSB 

bottom node is set according to the comparison result (0 in the example in Figure 6.15, Figure 

6.16), and the bottom node of the second MSB is switched to VDD for the 12th bit decision (Figure 

15(b)). In this manner, the fine CDAC switches its shared bottom nodes in the same way as a usual 

single-ended SAR ADC (Figure 6.15(c)). Because the bottom node switching injects the same 

charge into both CDAC top output nodes, switching a capacitor only shifts the common mode 

voltage of the two output nodes and does not impact the SAR as long as the two CDACs are 

completely matched. However, by creating a small imbalance between the total capacitance to 

ground of the two CDAC output nodes, this common mode shift will also translate into a small 

differential voltage difference (Figure 6.16). This common mode charge injection to differential 

voltage gain is fine-tuned using the two tuning capacitors CTUNEP and CTUNEM (Figure 6.13). 

 

Figure 6.16 Operation principle of the fine-bit CDAC generating small voltage change. 

 

As depicted in Figure 6.17, both the bridge-capacitor technique and common-mode CDAC 

technique use tuning capacitor arrays to control the fine-to-coarse CDAC gain. Tuning switches 

in these capacitor arrays have parasitic capacitances whose values vary as the corresponding top 
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to the bridge-capacitor technique, the common-mode CDAC technique is less affected by this 

distortion because the top plate is shared between the coarse and fine CDAC, where voltage across 

the tuning capacitors always stays near the input common-mode voltage whenever a fine 

comparison is performed (Figure 6.17(b)). On the other hand, the top plate voltage of the fine 

CDAC does not converge to the same level in the bridge-capacitor technique, so the value of the 

parasitic capacitor can vary more. Hence, the proposed top-plate shared fine CDAC structure 

shows improved linearity over the bridge-capacitor technique by reducing the non-linearity 

introduced by the non-linear parasitic capacitance of the switches controlling CTUNEP and CTUNEM. 

 

 

Figure 6.17 Comparison between techniques for high-resolution CDAC. (a) Bridge-capacitor 

scheme [53], [54] (b) Presented common-mode switching CDAC. 
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The 5 bit CDAC with common-mode shifting shares its top node, thus a mismatch of the 

fine CDAC can cause more error than the bridge capacitor technique. However, the total size of 

the fine CDAC is 16 times smaller than the total CDAC size and the mismatch factor of the MOM 

capacitor which is used to design the CDAC is 0.2%.If we assume that the mismatch error follows 

a Gaussian distribution, the mismatch error caused by the fine CDAC does not make significant 

effect to the 15 bit CDAC. Also, the mismatch error can be calibrated using several techniques like 

a redundancy capacitor. On the other hands, it is very hard to reduce the non-linearity from the 

voltage dependent capacitor of switches. 

The common-mode rejection ratio is also important design factor for the fine comparison. 

The maximum common-mode voltage changing at the fine comparison is about 30 mV and it can 

change the noise and delay from the current-limiting MOSFETs. However, the EPC has a 

symmetric structure and the two edges in the EPC propagate through the same delay cells and each 

delay cell has both PMOS and NMOS for current-limiting. For this reason, two propagation edges 

have same delay, when the input voltage difference is 0, even though the common-mode voltage 

is shifted. Therefore, the input-referred offset of the EPC causing the common-mode shifting is 

negligible. Also the 9-bit tuning capacitance range of the common-mode to differential gain is 

made sufficiently wide to cover this common-mode change issue. 

 

6.6 Measured Results 

The ADC with the EPC was fabricated in a 40nm CMOS process with a total area of 0.315 

mm2 (Figure 6.18). Shown as a white dot in the middle, the EPC has a very small area of 54µm2 , 

considering its low noise level. The EPC is not located at the center between the CDACs because 
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there are many digital signal lines at the center. Therefore, we move the EPC down to prevent the 

noise. The different distance between the plus/minus CDAC and comparator lead to different 

parasitic capacitance of the CDAC top node, but this capacitance value is much smaller than the 

unit capacitance and the sampling rate of the ADC is slow.  

 

Figure 6.18 Die photograph of 15-bit SAR ADC with EPC. 

 

Figure 6.19 Measured average comparison energy of the EPC vs. SAR ADC bit position. 

 

Figure 6.19 shows the measured average comparison energy for each bit position. The 

comparison energy for the MSB and LSB bit position differ more than 67 times, proving its wide-
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LSB and a minimum DNL/INL is -1/-3.2 (Figure 6.20). Tuning capacitor values of the CTUNEP 

and CTUNEM are decided approximately by checking the output code of the ADC when the very 

slow and small amplitude is applied and is optimized to get a best DNL and INL. However, the 

tuning capacitor cannot remove the missing code perfectly and it limits the ENOB to 12 bit. 

 

Figure 6.20 Measured DNL and INL 

 

Figure 6.21 Measured SNDR and SFDR vs. input signal frequency. 
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SFDR and SNDR are 95.1dB and 74.12 dB at the Nyquist frequency (Figure 6.21), which 

corresponds to 12.02b ENOB. Figure 6.22 shows the measured frequency spectrum when the input 

frequency is 0.999 kHz (Figure 6.22(a)) and 9.999 kHz (Figure 6.22(b)). The measured frequency 

spectrum shows that spurs increase when the input signal frequency is reduced, because the 

bandpass filter has a lower harmonics suppression and a larger signal attenuation at low input 

frequency. Figure 6.23 shows that the EPC consumes 104nW at the Nyquist frequency, 

representing only 8.9% of the total ADC power of 1.17 μW. 

 

Figure 6.22 Measured frequency spectrum. 
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Figure 6.23 Measured power consumption of the SAR ADC at Nyquist frequency. 

 

Table 6.1 ADC Performance summary and comparison. 

 

 
Comparator

104 nW (8.9%)

CDAC

621 nW

(53.1%)

Calibration

294 nW

(29.4%)

Logic

100 nW

(8.6%)
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Table 6.1 summarizes the performance of the implemented ADC with the EPC, and 

compares it with other similar works on SAR or pipeline-assisted SAR ADCs. To compare the 

EPC’s efficiency with other ADCs adopting different architecture more clearly, a new figure of 

merit, named FoMC, is derived from the Schreier FoM. In FoMC, the total power consumption 

term of the original Schreier FoM is replaced by the power consumption of the noise-critical blocks 

only, such as the comparators in SAR ADCs, amplifiers in pipelined ADCs, and integrators in 

delta-sigma ADCs, giving more emphasis on the energy efficiency of noise-critical blocks except 

for the logic and CDAC power. 

𝐹𝑜𝑀𝐶 ≡ 𝑆𝑁𝐷𝑅 + 10𝑙𝑜𝑔 (
𝐹𝑆

2×(𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟)
). (6.42) 

While the FoMS of the ADC is 173.4 dB, the FoMC of the EPC in this SAR ADC is calculated 

to be 184 dB, which compares favorably to other similar designs. This underscores the 

applicability of the EPC to other low-power SAR ADC topologies. 

 

6.7 Conclusion 

An energy efficient comparator, named the edge-pursuit comparator (EPC), with an 

automatic energy scaling capability according to the input difference is presented. Capacitors in 

the oscillation path are recycled many times during phase-based operation, which allows for 

accurate comparisons with a small area and total capacitance. Bidirectional signal integration 

naturally occurs as edges propagate, offering extra efficiency gain. A 15-bit SAR ADC using a 

small EPC of 54 µm2 shows a 74.12 dB SNDR and a 173.4 dB FoMS at the Nyquist frequency of 

10kHz. The EPC shows 67× automatic energy scaling between the MSB and LSB bit decisions 
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without any external control, saving a significant portion of the energy for the MSB decision. It 

also has a 184 dB FoMC, which is the best number among the designs compared. 
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CHAPTER 7  

Fully-Integrated Voltage / Temperature Lock  

with On-Chip Oven Control 

7.1 Introduction 

PVT variation forces overdesign of many circuits to ensure robust operation, incurring area 

and power overhead. Techniques that lock circuit operation relative to a reference input such as a 

reference voltage, current, and frequency are widely used to relieve this variation, but these 

approaches require an accurate reference, creating another design overhead. Even with an accurate 

reference, temperature variation usually remains present as every single transistor is affected by 

temperature change. 

To reduce variation due to temperature, several prior works use temperature compensation 

by tuning the circuit according to the measured temperature [55]. This requires temperature- 

specific tuning of the circuit and adds significant cost. In other applications such as accurate 

frequency generators and MEMS sensors, system temperature is directly controlled at a constant 

level using a heater [56]. Some optical links use in-silicon local heating of the optical ring resonator 

to fine-tune its resonance frequency [57]. Though this oven-control temperature locking has been 

rarely implemented in fully-integrated monolithic circuit, internal heaters have been used in 

sensors and calibration circuits [55], [58]. 
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This paper presents an on-chip local 2-D voltage / temperature lock for removing both 

voltage and temperature variation by locking these variables concurrently. A fully integrated 

structure, including controller, in-domain heater, and sensing components, enables significant 

power and area (system volume) reductions for both the heating and heat control. Temperature and 

voltage sensing and locking paths are integrated together to further reduce design and area 

overhead. After locking, only static process variation remains and can be easily compensated by 

an inexpensive 1-point calibration. A wide range of circuits can be placed in the local locked region 

for extra accuracy and robustness; for example, on-chip reference generators such as bandgap 

references and relaxation oscillators can achieve much higher accuracy than previously reported 

when used in conjunction with the proposed technique. 

 

Figure 7.1 Main concept of the voltage / temperature simultaneous lock. 
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implemented in the region to be temperature-locked. These three sensors are tuned to have 

different output sensitivities to voltage and temperature changes. The three sensing circuits’ 

relative outputs are regulated at a fixed ratio by 2-D  simultaneous voltage and temperature 

feedback. An example is illustrated in Figure 7.1 where the output of the three sensors, OA, OB and 

OC are locked at a:b:c. This locking point will be at the intersection of two contour lines 

corresponding to OA:OB = a:b and OA:OC = a:c. If these two lines cross at a unique point within a 

wide reasonable voltage-temperature operating region, the locking circuits will attempt to lock the 

ratio OA:OB:OC to a:b:c by moving the voltage and temperature onto this unique crossing point, 

resulting in a fixed voltage and temperature level. 

This method does not require complex sensors or references for measuring an absolute 

voltage or temperature level. Instead, the ratio of three sensors (a:b:c) can be sampled at a certain 

operating point during testing and used to lock the domain at the same point during runtime. Once 

locked, the locked voltage and temperature themselves or outputs from simple circuits can be used 

as simple references. In addition, one can improve the temperature coefficient of any pre-existing 

circuit by placing it in the locked domain. 

 

7.3 Implementation Detail 

Figure 7.2 shows the actual implementation of the test circuit. Three differently tuned ring-

oscillators (ROs) are used as sensors because they are sensitive to both voltage and temperature, 

easy to implement, and their frequency outputs are easy to process. To lock the frequencies to a 

certain ratio, two fractional phase frequency detectors (PFDs) are individually used to control the 

voltage regulator and heater. To ensure proper feedback that moves toward locking, the frequency 
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weighting factors, KA, KB, and KC, are differently tuned for the two PFDs. The output of each PFD 

is fed into a charge pump to control the VDD or heater current. Implemented outside of the locked 

domain, the PFDs and charge pumps are implemented digitally using standard cells, ensuring 

robust operation over a wide voltage and temperature range and offering ease of design and 

portability. 

 

 

Figure 7.2 Overall architecture of the implemented test circuit. 
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Figure 7.3 Detailed oscillator implementation. 

 

 

Figure 7.4 Structure of the on-chip heater. 
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devices in oscillator A and standard-VT devices in oscillator B. When the shared VDD of these 

two oscillators is high, their overdrive voltage difference is relatively small and gives rise to a 

frequency ratio fA:fB near 1. When the shared VDD level reduces, fA:fB increases as the relative 

overdrive voltage difference becomes large. Therefore, by locking this ratio at a certain 

intermediate value, one can ensure that the two oscillators operate in the near-threshold region, 

which is helpful in controlling the RO frequency and power dissipation levels. Oscillator C uses a 

stack of three ROs, hence the voltage across a single stack is lower and the operating point is 

moved towards the sub-threshold region where frequency is more sensitive to temperature. In this 

way, sufficient sensitivity to both voltage and temperature is achieved even in the presence of 

process variation.  

For effective and uniform heating throughout the domain, heater elements are inserted 

between the inverters in ROs, as depicted in Figure 7.4. The heater current flows through the gate 

electrodes so that the heat is generated uniformly in the gate area. 

 

7.4 Measurement Results 

To experimentally demonstrate the concept of 2-D voltage / temperature lock and evaluate 

its performance, a test chip is fabricated in a 14nm FinFET process (Figure 7.5). 

 



120 

 

 

Figure 7.5 Die micrograph. 
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Figure 7.6 Measurement Results. 
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Heater power dissipation is almost linear with the provided temperature increase, with a 

slope of ~2mW/°C. Measured heater performance (Figure 7.6c) shows that the heater accurately 

replicates the effect of an ambient temperature change, indicating its uniform heating over the 

locked domain. The test chips and packages do not use any heat insulation – an open ceramic 

package is used, with conductive epoxy that lowers thermal resistance and renders the heaters less 

effective. Plastic packaging without special heat-removal components would further improve the 

heater’s efficiency. 

The measured results with both locks active (Figure 7.6d) shows the total frequency spread 

is ~7-8%, which is ~100× less than the frequency spread without the locking mechanism. This 

indicates that concurrent V/T locking performs as well as each locking mechanism in isolation. 

Table 7.1 summarizes the performance of this work, showing the effectiveness of monolithic oven-

control to replace off-chip approaches. 

 

Table 7.1 Performance summary. 

Technique
2-D Voltage / Temperature 

lock

Process 14nm FinFET

Supply Voltage 

Sensitivity

< 0.0066 V/V

@ 25 C - 100 C

Ambient Temperature 

Sensitivity

0.013  C/ C

(locked at ~25 C)

0.007  C/ C

(locked at ~60 C)

Power Consumption
Heater: ~2mW /  C

Others: < 2.4mW @ 0.9V

Overall Area 0.3mm  0.4mm 

Area of Sensors Only 7.5µm  12.5µm 
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CHAPTER 8  

Conclusion 

8.1 Summary of Contributions 

This dissertation has discussed the new challenges in small sensor systems arising in 

important non-digital blocks. Since these circuit do not follow the traditional scaling trend, new 

observations and techniques are required to solve these challenges. 

Chapter 2 and Chapter 3 have discussed the circuits related to power management in remote 

systems, as their small form factor limits both the energy storage capacity and energy harvesting 

availability. Therefore, high-efficiency power conversion has become necessary over a wide power 

range down to several nanowatts, which has introduced new challenges. This dissertation 

presented low-power energy harvester and power regulator circuits maintaining high efficiency in 

wide power ranges from nanowatts level, which are realized by several newly proposed techniques 

such as a power efficient self-oscillating structure, cascaded 2:1 converter topologies for widely 

reconfigurable conversion ratio control, and a stable frequency control over a wide power range 

using leakage-based oscillators and load-proportional feedback control scheme. Chapter 4 also 

proposed a new cascaded converter topology with more ratio reconfigurability and improved 

conversion efficiency using negative voltage feedback. 
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Chapter 5 and Chapter 6 have addressed challenges in analog circuits essential to sensor 

interface implementation. Difficulties in area scaling in traditional analog circuits from their noise 

requirement and limited density of passive devices are overcome by shifting their operation into 

more digital-like manner. Analog operation in phase and frequency domain using simple 

combinations of digital logic blocks have realized similar or better performance than traditional 

analog operation in voltage and current domain, while saving lots of area by eliminating passive 

analog elements. Using this approach, Chapter 5 presented a capacitance-to-digital sensor interface 

with the best figure of merit, and Chapter 6 presented a new clocked comparator with automatic 

energy scaling capability and best energy efficiency among other previous works compared. 

Chapter 7 discussed the PVT variation and its mitigation, which is becoming more important 

in advances technologies as the effect of variation becomes more serious due to its small device 

size and lower supply voltage level. A 2-D simultaneous voltage / temperature locking technique 

using an on-chip heater is presented in this chapter, by which a system in the locked domain can 

remove the variation from external voltage and temperature changes. After locking, only static 

process variation remains and can be easily compensated by an inexpensive 1-point calibration. 

 

8.2 Future Research Directions 

Chapter 2 through Chapter 6 have presented several techniques to overcome challenges from 

the small size of IoT systems, focusing on power and energy efficiency. In addition, Chapter 7 has 

presented a technique to operate these efficient circuits with high accuracy without the impact of 

variation. These techniques open many future research directions that can further improve the 
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quality and efficiency or relieve challenges or restrictions in applying these techniques in other 

circuits, some of which are discussed in this section. 

Techniques used in energy harvesting and power management in this dissertation are all 

based on the switched-capacitor conversion technique, whose performance largely depends on the 

size and quality of the on-chip capacitors. Works in this dissertation mostly used low-density 

metal-insulator-metal (MIM) capacitors, but using higher density capacitors such as trench 

capacitor and capacitors with ferroelectric devices can greatly improve the overall performance.  

The iterative discharge technique used in the CDC can be improved in many ways. 

Implementing a similar circuit in advanced technology can improve its resolution due to the 

reduced quantization noise and more noise averaging over periods. Energy loss in level converters 

and other auxiliary circuits can also be reduced by more design optimization. In addition, this 

digital-like circuit modification can be applied to other similar sensor interfaces such as resistance 

sensors and temperature sensors. 

The great energy efficiency improvement of the edge-pursuit comparator can initiate many 

following research work. As shown in the measured results of the EPC in a SAR ADC, this 

comparator now consumes less energy than a CDAC in a SAR ADC, or an analog amplifier for 

low-noise signal amplification, which implies that it has a potential to reduce a complexity of a 

multi-stage sensor frontend or A/D interface to less stages. 

The variation removal loop can be easily improved in its performance and efficiency. As 

shortly discussed in Section 7.4, implementing any heat insulation around the test chip or locked 

domain can improve the heater efficiency. Measured data on the behavior of the temperature loop, 
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which is difficult to simulate before fabrication, can be used to design more stable feedback loop 

in the future. 
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