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ABSTRACT 
To realize personalized treatment for cancer patients, it is crucial to identify and monitor 

the molecular drivers of tumors. Currently, the molecular analysis of tumors is mostly performed 

on tissue biopsies. However, due to the invasiveness of the procedure, biopsies typically cannot 

be obtained repeatedly during the course of treatment and thus cannot reveal the dynamic 

evolution of tumors on both the genetic and epigenetic levels.  There is a pressing need to 

monitor tumor evolution and to predict the treatment response to guide the clinical decision-

making in the practice of personalized therapy. Circulating tumor cells (CTCs) shed from the 

primary tumor, travel through the blood, and have the potential to cause metastases. As CTCs 

can be frequently sampled from peripheral blood, CTC isolation and analysis hold great potential 

as a biomarker in real-time monitoring of tumor status. 

This work highlights the clinical utility of CTCs for providing prognostic and predictive 

information for specific treatments in cancer patients. First, dynamic changes of PD-L1(+) CTCs 

during radio(chemo)therapy were investigated in NSCLC. The real-time monitoring of PD-L1 

expression in tumor microenvironment is crucial in guiding the therapeutic management of anti-

PD-1/PD-L1 immunotherapy. CTCs were isolated using a nanomaterial based microfluidic 

device, the GO chip. PD-L1 (+) CTCs were detected in 25 out of 36 (69%) samples from 12 

NSCLC patients undergoing radiation or radiochemotherapy. After the initiation of radiation, the 

proportion of PD-L1 (+) CTCs in total CTCs increased significantly (median 4% vs 24%, 

P=0.018). Furthermore, patients who were PD-L1 positive (5% of CTCs stained with PD-L1) at 



	
	 xiii	

baseline had shorter PFS, suggesting the prognostic value of PD-L1 (+) CTCs (6.7 months vs 

14.75 months, P = 0.017) 

Secondly, CTC number and the molecular features of CTCs were monitored at different 

time points during the course of treatment for locally advanced pancreatic patients. The reduction 

of CTC numbers after chemotherapy correlated with shorter progressed free survival (PFS), 

indicating that changes of CTC numbers may be an early indicator for treatment failure (6.5 

months vs 13.5 months, P value= 0.002). Furthermore, in the mRNA profiling of CTCs, the 

expression levels of three genes that have been shown to play a role in drug resistance, BAX, 

CHK1 and EZH2, are associated with poor prognosis, which could act as makers to predict and 

monitor the treatment response. 

Thirdly, this work presents two technical advances of CTC technologies. A highly 

sensitive microfluidic device to capture and release circulating tumor cells from whole blood of 

cancer patients is developed. Graphene oxide is embeded into a thermoresponsive polymer film 

to serve as the first step of an antibody functionalization chemistry. As the temperature decreases 

to around 5 °C, the polymer film dissolves and detaches from the device and captured cells are 

released. Over 90% capture efficiency and release efficiency have been achieved. Released 

CTCs were viable and structurally intact, enabling subsequent analysis such as standard clinical 

cytopathological and genetic testing. Finally, to develop a high throughput CTC isolation 

technology, a herringbone mixer is incorporated into the previously developed GO chip and 

optimized the structure of the herringbone mixer and the channel geometry to maximize the 
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throughput while achieving high capture efficiency (> 80%) and cell viability (> 90%).  The time 

required to process a 1-mL blood sample is reduced to 10 minutes, 6 times faster than in the 

previous design.
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CHAPTER 1 
 

1 Introduction 
 

1.1 Circulating Tumor Cells as 'Liquid Biopsy' 

Distant metastases are the cause of about 90% of deaths of cancer patients[1]. Cancer 

metastasis is an exceedingly complex process, which consists of five sequential steps: (a) 

Detachment from primary tumor, (b) Invasion into blood circulation, (c) Survival in circulation, 

(d) Extravasation into distant organs, (e) Proliferation at the secondary site (Figure 1.1). 

Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor and travel 

through the blood to distant anatomic sites. With the potential to initiate metastases, CTCs 

provide a unique opportunity to study the biology of tumor metastasis [2]. Moreover, because 

CTCs can be easily sampled at various time points during the treatment, the isolation and 

analysis of CTCs provides a strategy for monitoring the molecular features of tumor tissues to 

provide predictive and prognostic information for the selection of personalized treatment [3]. 
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Figure 1.1 Tumor metastasis and circulating tumor cells 
 

1.2 Microfluidic Application in Circulating Tumor Cell Isolation  

These circulating tumor cells (CTCs) are incredibly rare and may be present at a 

frequency as low as one CTC per one billion normal blood cells. Engineers have accelerated the 

development of technologies that achieve this goal based on exploiting differences between 

tumor cells and surrounding blood cells such as varying expression patterns of membrane 

proteins or physical characteristics [4]. Collaboration with biologists and clinicians has allowed 

additional analysis and will lead to the use of these rare cells to their full potential in the fight 

against cancer.   There have been several macroscale attempts to isolate CTCs based on how they 

differ from the surrounding blood cells, including the FDA approved CellSearch system [5] and 

Isolation by Size of Tumor cells [ISET]) platform. However, these technologies suffered from 

drawbacks such as the low yield and sensitivity, fixation requirements, and high white blood cell 

(WBC) contamination [6]-[9]. The successful sensitive selection of viable cells was greatly 

advanced through the introduction of the CTC Chip [10], a microfluidic technology that also 

marked the entry of engineers into this field. Microfluidic systems offer the advantages of low 

footprint, small sample volume, low reagent usage, pre-established inexpensive rapid 



	
	 3	

prototyping methods, diffusion dominated transport, and a length scale on par with cellular 

systems [11], making them a natural fit for use in CTC research. 

Engineers continue to play an integral role in the further optimization of CTC isolation, 

aiming for increased sample throughput, target cell sensitivity and purity, and viability to 

ultimately allow the complete interrogation of this useful cell population. As the interest and 

publication of CTC technologies continues to increase [12], engineers working with teams of 

clinical collaborators are using varied principles and techniques within microfluidic capture 

devices (Figure 1.2). Exploitation of expression of cell surface markers, size variation, and other 

differences have allowed some success and will be covered below, in addition to applications of 

such devices and potential future directions and challenges.  
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Figure 1.2 Circulating tumor cell (CTC) isolation technologies. 
A brief history of CTC isolation technologies beginning with the first FDA approved technique, 
CellSearch. Microfluidics was introduced in 2007 with the CTC Chip. Subsequent developments 
have occurred in the areas of immunocapture and size based isolation [4].  
 

1.2.1 Immunocapture of CTCs: a biomarker dependent but highly 
specific technique 

Immunocapture, which is used by CellSearch, the CTC Chip, and many subsequent 

devices (Figure 1.3), takes advantage of the variety in proteins expressed on the cell membrane 

of CTCs but not of WBCs, such as the epithelial cellular adhesion molecule (EpCAM), that may 

be targeted by antibodies against such moieties that are tethered to a surface or feature. The CTC 
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Chip consisted of 780,000 microposts etched in silicon which were then functionalized with 

antibodies against EpCAM (anti-EpCAM) and was validated with blood samples from lung, 

prostate, pancreatic, breast and colon cancer patients. This device viably detected cells in a 

greater percentage of patients and at lower levels and with higher purity than shown by the 

CellSearch system. This enabled the molecular characterization of CTCs demonstrating tumor 

specific genetic alterations present in CTCs [13]. However the need for higher throughput, 

sensitivity, and the ability to further characterize and study these cells beyond enumeration 

prompted further developments. 

 

Figure 1.3 Immunocapture methods for microfluidic circulating tumor cell (CTC) isolation. 
Examples of a number of techniques used to improve metrics such as sensitivity, purity, 
throughput, and ease of use or fabrication of immunocapture devices include the use of silicon 
microposts, thermoplastics, micromixers, radial flow, nanomaterials, and immunomagnetic 
separation [4]. 

 

Computational fluid dynamics simulation assisted the redesign of micropost shape and 

layout in the geometrically enhanced differential immunocapture (GEDI) octagonal micropost 
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device that has been functionalized with anti-prostate specific membrane antigen (PSMA) [14] or 

anti-HER2 to target breast and gastric cancers as validated with patient samples [15]. In contrast 

to micropost devices, high aspect ratio serpentine thermoplastic microchannels maximize 

collisions between anti-EpCAM functionalized channel walls and CTCs. By using 51 parallel 

microchannels embossed in polymethylmethacrylate (PMMA), the high throughput 

microsampling unit (HTMSU) enabled efficient sample processing followed by immediate 

enumeration of captured CTCs via platinum conductivity sensor [16]. Modifications to the inlet 

and outlet design as well as the substrate material, now cyclic olefin copolymer (COC), yielded 

the high-throughput (HT) CTC device [17]. In the NanoVelcro system, cells were released using 

a thermoresponsive polymer following capture on high surface area silicon nanopillars within a 

microfluidic chip capped with a chaotic micromixer to increase contact between cells and 

antibody functionalized surfaces [18]. 

The chaotic micromixer chamber was first used in the Herringbone (HB) Chip, a follow 

up to the CTC Chip [19]. Consisting of several parallel functionalized channels in 

polydimethylsiloxane (PDMS), this device detected CTCs in 14/15 prostate cancer patient 

samples. Subsequently, the herringbone chamber was integrated with a degradable layer-by-layer 

(LbL) assembled coating consisting of gelatin and functionalized nanoparticles to increase 

antibody presentation and allow both single cell and bulk release [20]. Utility was verified with 

breast and lung patient samples. 

Besides multiplexing to increase throughput, a radial flow strategy was used to increase 

flow rate while decreasing the linear velocity and therefore shear stress exerted on the cells. This 

OncoBean Chip [20] also featured a redesigned functionalized micropost structure to minimize 

flow separation, increasing the area on the post utilized in capture. 
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In contrast to the aforementioned 3D features, the GO Chip incorporated the 

nanomaterial graphene oxide (GO) for the first time to capture CTCs. GO allowed highly 

specific and selective capture of CTCs on an effectively 2D surface through a functionalization 

chemistry that presented the antibody on a high surface area material [21]. The device was 

verified by capturing CTCs from breast, lung, and pancreatic patient samples. 

An alternative to a functionalized surface is magnetic beads functionalized with 

antibodies that adhere to cells, which may then be separated using an external magnet. In the 

CTC-iChip, cells in blood samples were magnetically labeled in a preprocessing step, followed 

by the initial separation of small cells through deterministic lateral displacement (DLD) and 

alignment by inertial focusing (to be further discussed in ‘Size based capture’) and ultimate 

separation through magnetic sorting of the prelabeled cells [23]. In ‘positive selection’ mode, 

magnetic beads were functionalized to target CTCs, while in ‘negative selection’ mode, magnetic 

beads were functionalized against WBC markers, allowing those cells to be removed, leaving 

any remaining cells, including EpCAM negative cells, for further analysis. That the cells are not 

bound to a surface facilitated further study. 

Other immunomagnetic systems prioritize ease-of-use. The VerIFAST (Immiscible 

Filtration Assisted by Surface Tension) system [22] processed small volumes of peripheral 

mononuclear blood cells that have been prelabeled with functionalized magnetic beads. Using a 

handheld magnet, labeled cells are then dragged through successive chambers machined in 

polystyrene that are gated by oil trapezoids to separate CTCs from non-target cells and guide 

them into a staining well. This allowed for analysis of both blood and mini-bronchoalveolar 

lavage samples from lung cancer patients. 
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Immunoaffinity microfluidic separation has turned to a variety of materials and structures 

to improve in areas where isolation technologies are still lacking. Each device balances added 

functionality of various features and materials with the associated necessary expertise or 

increased fabrication logistics and costs. Downstream analysis is hindered when cells remain 

attached to the capture substrate, although the nascent field of cell release and immunomagnetic 

capture may counter this. A commonality among these devices is that a specific population is 

assumed to be the entirety of the target CTC population based on the choice of capture antibody, 

missing cells in transformations such as the epithelial to mesenchymal transition (EMT). Some 

of these drawbacks have been addressed through the incorporation of nanomaterials [23]. 

Another category of CTC isolation techniques prioritizes label free capture and often has the 

added advantage of high throughput, although this strategy has its own drawbacks.  

1.2.2 Size based capture 

CTCs also differ from blood cells in size and deformability, offering molecular marker-

independent, high-throughput, and inexpensive options for isolation (Figure 1.4). CTCs are 

generally larger and stiffer than WBCs, leading to the early use of commercial filters [24], [25]. 

To solve problems with earlier filters including fixation requirements, non-uniform pore sizes, 

and low pore density, the separable bilayer (SB) microfilter was microfabricated by etching 

parylene polymer via reactive ion etching to precisely control pore sizes and density [26]. 

Parylene is ideal for this application because it is mechanically strong while still malleable, with 

good biocompatibility and low membrane fouling. The bilayer design consisted of a bottom layer 

with 8 µm pores and a top layer with 40 µm pores, trapping CTCs between the two layers that 

could be separated easily, leaving CTCs accessible. A flexible micro spring array (FMSA) was 

designed as a high-porosity filter [27] capable of processing 7.5 mL whole blood without 
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clogging while still preserving viability. CTCs were detected in 76% of clinical samples from 

breast, colorectal, and lung cancer patients. Microclusters and multinucleated CTCs were 

enriched from patients from all three cancers. 

 

Figure 1.4 Size based technologies for circulating tumor cell (CTC) separation.  
On the basis of differences in size between CTCs and white blood cells, microfilters and inertial 
sorting techniques have been incorporated into microfluidic CTC isolation [4]. 

 

An alternative approach to separation exploited unique properties of particles moving in 

microchannels. Under laminar flow, deterministic lateral displacement (DLD) within an array of 

microposts has been used to separate particles of different sizes [28]. Depending on the geometry 

of the microarrays, particles above and below a certain size follow different and predetermined 

migration paths. The CTC-iChip (also mentioned in the Immunocapture section) utilized DLD to 

first separate nucleated cells (CTCs and WBCs) from red blood cells (RBCs) using an array of 

microposts with 32-µm gaps [31]. When flowing through the device, small cells like RBCs 
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remained along their original streamlines, whereas larger cells like CTCs and most WBCs were 

fully deflected into the coincident running buffer stream by the end of the array. 

Other separation approaches exploited inertial forces. Within microchannels, particles of 

different sizes can migrate across streamlines to focus at different positions due to the shear 

induced lift force and the wall induced lift force. In vortex technology, cells of various sizes are 

aligned by size in different streamlines in straight channels by inertial focusing followed by 

multiple expansion-contraction reservoirs to create laminar microvortices that can trap large cells 

within reservoirs [29]. As cells entered the expanding regions, wall lift forces were diminished 

and cells mainly experienced lateral lift forces, which are proportional to the cell volume. The 

larger lift forces on CTCs pulled them into the vortices while other blood cells experiencing 

smaller forces passed through the vortex and remained in the main stream. 

Curvature in microchannels causes particles to experience an additional lateral Dean drag 

force because fluids in curved channels develop a secondary lateral flow. The combination of the 

inertial lift force and the Dean force leads to particle migration which can result in high 

resolution separation. Single spiral, double spiral, cascaded spiral, and slanted spiral structures 

have been designed and optimized to maximize separation efficiency for various parameters 

including channel length, height, width, radius of curvature, and flow rate [29]-[33] . Generally, 

near the outlet of spiral devices, larger CTCs focus near the inner wall due to the combination of 

the inertial lift force and the Dean drag force. To this end, Hou et al. designed a multiplexed 

spiral device that detected CTCs in clinical samples from breast and lung cancer patients [34]. 

CTC enrichment by size offers a fast, inexpensive, and label-free way to harvest CTCs. 

However, as there is a wide range of CTCs sizes, sized based separation often suffers from low 

purity and the risk of losing smaller CTCs. Additionally, size based separation often requires 
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preprocessing of blood, like RBCs removal and further, dilution or runs the risk of device 

clogging. To date, size based technologies have shown proof-of-concept clinical validation but 

have not been applied in large scale clinical or biological investigation. 

Other separation methods based on physical properties include the interplay of 

dielectrophoresis (DEP) forces and inertial forces in microfluidic devices to lead to different 

patterns of cell migration to viably separate cells [35]. Similarly, acoustophoresis causes particles 

within the fluid to move toward regions with minimal acoustic radiation forces in distinct 

migration patterns [36], [37]. Although promising, approaches like DEP and acoustophoresis 

have the disadvantages of low throughput, low sensitivity and purity, and additional required 

steps like RBC lysis and may require further clinical validation. 

1.3 The biology of circulating tumor cells 

1.3.1 Epithelial–mesenchymal transition 

Occurrence of the epithelial-to-mesenchymal transition (EMT) process is observed in 

various types of human cancer and may play an important role in tumor metastasis and resistance 

to standard treatment [38]. During EMT, epithelial cells lose cell-cell contacts and their apical–

basal polarity and become spindle-shaped mesenchymal cells. These changes lead to the 

detachment of tumor cells from the extracellular matrix (ECM) and increase their ability to 

invade into the surrounding stroma and intravasate into the bloodstream, initiating the metastatic 

process [39].  

The functions of EMT may vary greatly depending on the cancer types. In squamous cell 

carcinoma, EMT driven by the activation of Akt is associated with enhanced motility and 

invasiveness [40]. In pancreatic cancer, EMT induces chemoresistance but has little effect on 
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increasing invasiveness or metastasis [41]. In breast cancer, Mani et al. observed that after the 

induction of EMT, cells acquire stem cell properties such as self-renewal [42].  

At the molecular level, the expressions of many epithelial junction proteins such as E-

Cadherin and α-catenin are down-regulated or lost during EMT [43], [44]. Furthermore, 

intermediate filaments are rearranged, typically switching from cytokeratins to vimentin. EMT 

can be induced by both intrinsic and extrinsic factors including multiple transcription factors 

(e.g. Snail, Twist, Slug, ZEB1, FOXC2), growth factors (e.g. epidermal growth factor (EGF), 

transforming growth factor β (TGF-β)), and small non-coding RNAs (micro-RNAs, e.g. miR-200 

or miR-155). Several signaling pathways play an important role during EMT, e.g. Ras/MAPK, 

PI3 K/Akt/GSK, and Wnt/β-catenin.  

The loss of epithelial markers (e.g. E-Cadherin), the up-regulation of mesenchymal 

markers (e.g. Vimentin and N-Cadherin) and the activation of EMT regulator (e.g. Snail, Twist, 

Slug and ZEB1) have been use to characterize EMT process in cancer cells [38]. Molecular 

analysis of tumor specimens revealed that the expression of EMT markers have emerged as 

independent prognostic markers in various cancer types such as breast cancer [45], lung cancer 

[46], gastric cancer [45], and oral squamous cell carcinoma [50].  

The analysis of EMT markers in CTCs is another exciting research area. CTCs 

undergoing EMT may not be captured by many CTC isolation assays relying on the expression 

of epithelial marker like EpCAM. This could be resolved by applying a cocktail of antibodies 

targeting both epithelial and mesenchymal markers or by using physical property based 

separation. These approaches identified a population of mesenchymal like CTCs in various 

cancer types such as breast, lung, and prostate cancer [47]-[50]. In these studies, the expression 

of EMT markers in CTCs was found to be heterogeneous and CTCs were classified into different 
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subgroups using EMT markers, including epithelial CTCs, intermediate CTCs and mesenchymal 

CTCs.  

The expression of EMT markers in CTCs could undergo dynamic changes throughout the 

treatment course.  Yu et al studied the changes of EMT characteristics of CTCs after 

chemotherapy using RNA–in situ hybridization (ISH) assay among breast cancer patients [51]. 

Using a panel of epithelial and mesenchymal genes they identified a spectrum of CTCs ranging 

from exclusively epithelial to intermediate and exclusively mesenchymal. The comparison of 

CTC features in samples before and after chemotherapy showed that the increase of 

mesenchymal like CTCs after treatment were associated with disease progression. After 

analyzing CTCs by RNA sequencing, the authors reported that 170 transcripts were enriched in 

CTCs captured at a mesenchymal predominant time point, and suggested that aberrant 

expression of FOXC1, along with TGF-β activation, may be a contributor to EMT in human 

breast cancer. This result suggested that the expression of EMT markers in CTCs could be 

used as a potential biomarker of therapeutic resistance and cancer progression. Furthermore, 

studying the mechanism of EMT regulation in CTCs could bring insights into developing 

potential drug targets for cancer treatment. 

1.3.2 Circulating tumor microemboli 

Circulating tumor microemboli (CTM), or CTC cluster, are clusters formed by more than 

two CTCs. In addition, CTCs have been observed to associate with leukocytes, platelets, and 

stromal cells such as fibroblasts to form clusters [52], [53]. CTM have been detected by various 

CTC technologies in different cancer types such as breast, lung, prostate, and pancreatic cancer 

[54]-[56]. The presence of CTM is associated with poor prognosis in pancreatic and small cell 

lung cancer [57], [58]. Change et al demonstrated that in pancreatic cancer patients CTM were 
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abundantly present in 81% of patients and that the number of CTM is an independent prognostic 

marker of overall survival (OS) and progression free survival (PFS) [57].  

CTC clusters have been proposed to have higher metastatic potential compared to single 

CTCs [56]. Possible explanations for this phenomenon include resistance to anoikis, presence of 

stromal cells providing a permissive microenvironment and presence of blood cells for immune 

escape [59]. 

Cells generally undergo apoptosis after they lose contact with neighboring cells or with 

extracellular matrix (ECM), in a process named ‘anoikis’. The ability to resist anoikis is essential 

for CTCs to initiate cancer metastases. The avoidance of anoikis can be attributed to the cell 

junctions preserved by CTMs [56]. In metastatic breast cancer, the expression level of cell–cell 

junction marker plakoglobin in CTM is found to have a 200-fold increase than that of single 

CTC [56]. Plakoglobin knockdown triggered the dissociation of CTM and resulted in a reduced 

number of lung metastases in mouse models. Therefore, while epithelial tumor cells that are shed 

into the blood circulation and lose cell-cell contact generally undergo anoikis, CTMs still 

preserve some level of cell junction and could survive in the circulation.  

Several blood cell types, such as platelets, leukocytes, and myeloid-derived suppressor 

cells (MDSC), have been proposed to shield tumor cells escape from immune surveillance, 

facilitating the formation of distant metastases [60]-[62]. Additionally, platelets adhere to CTCs 

has been shown to induce EMT activation in tumor cells and promote metastasis. Bastid et al 

suggested that CTCs can enter the vasculature as epithelial tumor cells and upon stimulation by 

platelets-derived TGF-β can change into mesenchymal tumor cells [63]. This work showed that 

the co-culture with platelets resulted in an increased number of metastatic foci generated by 
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tumor cells injected into the tail-vein of the examined mice. In contrast, selective knock-out of 

TGF-β in platelets and megakaryocytes led to the reduction of metastatic events.  

The effect of stromal cell presence in CTM has been studied in mouse models [64]. It is 

demonstrated that CTCs can attach to cancer-associated fibroblast (CAF), which results in higher 

viability of cancer cells in circulation and the increased early growth of metastatic colonies in 

lung. By bringing its own soil (stromal cells), tumor cells can gain a favorable traveling and 

seeding niche to form metastatic colonies.  

1.4 Clinical use of CTCs — non–small-cell lung cancer (NSCLC) 

Lung cancer is the leading cause of cancer-related death in US and worldwide, with non–

small-cell lung cancer (NSCLC) accounting for more than 80% of those cases[65]. CTC analysis 

provides opportunities in early diagnosis, prognosis, evaluation of curative efficacy, and 

molecular analysis of lung cancer for targeted therapies [66], [67]. 

1.4.1 CTCs as prognostic and predictive markers  

Many studies have shown that the presence of CTCs is associated with shorter PFS or OS 

time using different technologies and thresholds. Krebs et al used CellSearch Assay to isolate 

CTCs from 101 untreated stage III/IV NSCLC patients. Stage IV patients were found to have 

higher CTC counts than stage III patients. Patients with >5 CTCs at baseline had shorter PFS 

(2.4 vs. 6.8 months) and OS (4.3 vs. 8.1 months) than those with <5 CTCs at baseline (P<0.001).  

Additionally, CTCs were measured after one cycle of chemotherapy, and the reductions of CTCs 

after chemotherapy were associated with improved PFS (5.4 vs. 1.9 months; P < 0.001) and OS 

(8.3 vs. 3.3 months; P < 0.009). Using another CTC isolation technology ISET, Hofman et al 

identified CTCs in 49%(102 out of 208) of patients by morphological examination [68]. The 
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presence of 50 or more CTCs was associated with worse disease free survival (DFS) for both 

early-stage I + II- and later-stage III + IV-resectable NSCLCs (P = 0.05, and P < 0.0001, 

respectively).  

To compare these two commercialized CTC isolation methods, Hofman et al conducted 

another study isolating CTCs by the CellSearch Assay™ and by ISET from 210 patients 

undergoing radical surgery for NSCLC [68]. CTCs were detected in 104 of 210 (50%) and 82 of 

210 (39%) patients using ISET and CellSearch, respectively. Patients with CTCs detected by 

CellSearch alone or by ISET alone had worse DFS than patients without CTCs (p < 0.0001). 

However, no correlation between the presence of CTCs and disease stage, or other 

clinicopathologic parameters was observed in this study.  

CTCs are typically isolated from peripheral blood of cancer patients. To increase the 

likelihood of CTC enrichment, Hashimoto et al. sampled pulmonary vein (PV) blood to isolate 

CTCs from in patients undergoing surgery. CTCs were more frequently observed in PV blood 

than in peripheral blood (73.3% vs 6.7%). Interestingly, CTC number increased significantly 

after surgical manipulation and the increase of CTCs in PV blood was significantly associated 

with lymphatic invasion (P = 0.043). Another phenomenon observed in PV blood by Funaki et al 

was the presence of CTC clusters (present in 33% of the patients) . The existence of CTC 

clusters was correlated to worse disease-free survival rate (P<0.001). This is consistent with 

other reports about the prognostic value of CTC clusters [57],	[58],	[69]. 

The predictive value of CTCs for assessing treatment response was examined by a 

study investigating the correlation between CTC enumeration and radiographic appearance 

[70]. Treatment response to chemotherapy agents is generally assessed by comparing baseline 

and post-treatment positron emission tomographic (PET) imaging and computed tomographic 
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(CT) scans. Punnoose et al correlated the changes in CTC levels with CT scans, which is 

evaluated via Response Evaluation Criteria in Solid Tumors (RECIST), and 

fluorodeoxyglucose-PET (FDG-PET) imaging. The authors showed that patients with partial or 

complete responses tend to have higher baseline CTC counts than patients with stable disease 

or progressive disease. Meanwhile, the reductions of CTC counts after chemotherapy were 

associated with FDG-PET and RECIST response (P = 0.014 and P = 0.019) and longer PFS (P = 

0.050), suggesting that monitoring of the changes in CTC numbers could be used as an early 

indication of response. Similarly, additional studies showed that the decreases in CTC number 

were associated with shorter PFS and OS, indicating that CTCs could be used as surrogate 

biomarker for evaluating the effectiveness of chemotherapy [71], [72]. 

1.4.2 CTCs as a biomarker for early detection and diagnosis  

Because of the low cost and the minimal invasiveness of CTC isolation, CTCs have the 

potential to offer a cost efficient way to screen patients with a high risk of lung cancer. Ilie et al 

examined the presence of CTCs among 168 patients with Chronic obstructive pulmonary disease 

(COPD)[73]. Within 1 to 4 years after CTC detection, the 5 CTC-positive patients were detected 

with lung nodules by CT scan, which led to prompt surgical resection and the diagnosis of early-

stage lung cancer. This result indicated that CTCs could be used to monitor COPD patients for 

the early detection of lung cancer. 

To study the diagnostic value of CTCs, Fiorelli et al conducted a study using CTCs to 

differentiate benign from malignant lung lesions [74]. Malignant circulating cells (their term for 

CTCs) were detected in 54 of 60 (90%) malignant patients and in 1 of 17 (5%) benign patients 

whereas benign circulating cells were detected in 1 of 60 (1%) malignant patients and in 15 of 17 

(88%) benign patients. CTCs shared morphological features similar to those of the corresponding 
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primary tumor and lead to the same histologic diagnosis in 72% cases. Although promising, the 

early detection and diagnosis of CTCs still need to be validated in large-scale clinical studies. 

However, the low abundance of CTCs present in early stage cancer may hinder the detection 

rate, thus more sensitive technologies are needed to allow the advances in this area.  

1.4.3 CTCs as a biomarker for early detection and diagnosis markers 

Due to the low cost and the minimal invasiveness of CTC isolation, CTCs have the 

potential to offer a cost efficient way to screen patients with high risk of lung cancer. Ilie et al 

examined the presence of CTCs among 168 patients with Chronic obstructive pulmonary disease 

(COPD) [73]. Within 1 to 4 years after CTC detection, the 5 CTC-positive patients were detected 

with lung nodules by CT scan, which leads to prompt surgical resection and the diagnosis of 

early-stage lung cancer. This result indicated that CTCs could be used to monitor in COPD 

patients for the early detection of lung cancer. 

To study the diagnostic value of CTCs, Fiorelli et al conducted a study to use CTCs to 

differentiate benign from malignant lung lesions [74]. Malignant circulating cells or CTCs were 

detected in 54 of 60 (90%) malignant patients and in 1 of 17 (5%) benign patients whereas 

benign circulating cells CTCs were detected in 1 of 60 (1%) malignant patients and in 15 of 17 

(88%) benign patients. CTCs shared similar morphological features and lead to the same 

histologic diagnosis of the corresponding primary tumor in 72% cases. Although promising, the 

early detection and diagnosis of CTCs still need to be validated in large scale clinical studies. 

Besides, the low abundance of CTCs present in early stage cancer may hinder the detection rate 

and thus more sensitive technologies are needed to allow the advances in this area.  

1.4.4 CTCs used for the molecular analysis in targeted therapy 
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Nearly two thirds of the patients with advanced lung cancer acquire at least one of the 

recognized “driver mutations”, which are specific gene mutations that are involved in driving the 

development of lung cancer [75]. The most common driver mutations are mutations in epidermal 

growth factor receptor (EGFR) and the rearrangement of ALK gene. Other genomic aberrations 

such as HER2, KRAS, PIK3CA, AKT and BRAF mutation and amplification have also been 

extensively studied. The development of targeted agents, such as EGFR inhibitors and ALK 

inhibitors has changed paradigms of management of patients with these mutations. Biopsies may 

not provide enough samples for mutation analysis at the time of diagnosis and cannot be sampled 

frequently during treatment. Thus CTCs may provide an additional way of assessing and 

monitoring the tumor genotypes.  

Maheswaran et al conducted the first study to monitor EGFR mutations in CTCs isolated 

by CTC chip during targeted therapy among metastatic NSCLC patients [76]. EGFR mutation 

was detected in CTCs from 11 of 12 patients (92%). Furthermore, the emergence of a treatment 

resistance mutation, T790M, was found in CTCs samples during the treatment and was 

associated with tumor progression. These findings indicated that CTCs could monitor the 

mutation status of tumor tissue and might predict the treatment outcomes. Using an RT-PCR 

assay, Breitenbuecher et al. were able to detect EGFR mutations in CTCs among all 8 EGFR 

mutant patients [77]. After following the patients through the treatment, they demonstrated that 

patients without EGFR-mutant CTCs during treatment were more likely to respond to therapy 

than those with persisting EGFR-mutant CTCs. 

Several other studies have investigated the detection of ALK rearrangement in CTCs. 

Pailler et al examined the ALK status in CTCs via a filtration enrichment technique and filter-

adapted fluorescent in situ hybridization (FA-FISH) [78]. All ALK-positive patients had four or 
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more ALK-rearranged CTCs per 1 mL of blood whereas no or one ALK-rearranged CTC was 

detected in ALK-negative patients. Furthermore, they detected the changes of ALK-rearranged 

CTC levels in patients being treated with a tyrosine kinase inhibitor of ALK, crizotinib. Similar 

results are reported in a study using a microfluidic platform, NanoVelcro chip[79]. The ALK 

status detected in CTCs accurately matched the status of tumor samples when applying a cutoff 

of 3 ALK-rearranged CTCs. Overall, these studies using different isolation technologies 

suggested that CTCs could be used for ALK-gene status pre-screening on a routine basis for 

patients with lung cancer and open new opportunities for real-time monitoring of targeted 

therapies. 

1.5 Clinical use of CTCs — Pancreatic cancer 

1.5.1 CTCs as a biomarker for diagnosis and staging  

Pancreatic cancer is a very aggressive cancer type; the five year survival rate is only 8% 

[80].  It is usually diagnosed at an advanced stage and is resistant to treatment. Even when 

patients are diagnosed with small primary tumors (<2 cm) and have no clinical evidence of 

metastatic disease, 5-year survival after surgery is less than 18% because of metastatic disease 

[81]. More interestingly, some patients undergoing surgery for chronic pancreatitis will develop 

disseminated pancreatic adenocarcinoma (PDAC), although only precancerous lesions of 

pancreas, but no tumors, are found locally [82]. These observations suggest that tumor 

dissemination may occur before the formation of large primary tumors or the diagnosis of the 

tumor.  

Rhim et al showed that circulating pancreatic cells were detected in liver before the 

formation of pancreatic tumor in a lineage-labeled genetic model of pancreatic cancer, 
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suggesting that metastatic seeding could occur before tumor formation[83]. To validate this 

finding in a clinical setting, Rhim et al reported that more than 3 circulating pancreas epithelial 

cells/mL were detected via GEDI chip in 7 of 21 (33%) patients with cystic lesions and no 

clinical diagnosis of cancer [84]. This result indicates that circulating pancreas epithelial cells 

could be useful as a biomarker for risk assessment in patients with high risk of pancreatic cancer 

or even for early detection of pancreatic cancer. 

Clinical staging of pancreatic cancer based on multi-section CT or MRI imaging may not 

be sensitive enough to detect small-volume metastatic lesion, which causes under-staging. 

Approximately 80% of patients who undergo successful surgery will experience metastatic 

recurrence, indicating that distant metastases may be present at the time of surgery [85]. In these 

cases, surgery may not be the proper initial treatment. Thus a biomarker that could improve the 

accuracy of staging is needed to assist the selection of frontline therapy. Ankeny et al processed 

blood samples from 100 pancreatic cancer patients using the microfluidic NanoVelcro CTC chip 

and demonstrated that a cut off of ≥  3 CTC in 4 ml blood could discriminate between 

local/regional and metastatic disease [86]. In addition, they performed mutational analysis of 

KRAS codon 12 in CTCs and achieved 100% concordance of KRAS mutation subtype between 

CTCs and primary tumor tissue in five patients tested. This study showed that CTCs could be 

used as an adjunct biomarker for molecular diagnosis and staging of PDAC at the time of disease 

presentation.  

1.5.2 CTCs as a biomarker for prognosis  

Han et al conducted a meta-analysis to evaluate the prognostic value of CTCs in 

pancreatic cancer [87]. In this meta- analysis, nine cohort studies were included with a total of 

623 pancreatic cancer patients consisting of 268 CTC-positive patients and 355 CTC- negative 
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patients. Four studies used CellSearch technology to enumerate CTCs while the other four 

studies use RT-PCR to detect the expression of CTC specific genes. The meta-analysis revealed 

that patients in the CTC-positive group were significantly associated with poor progression-free 

survival (PFS) and overall survival (OS) (P<0.001, P<0.001) [87].  

Furthermore, as most cancer deaths are associated with metastases and CTCs can 

potentially initiate metastatic spread, CTCs can be used to identify specific genes to serve as 

prognostic markers in patients with pancreatic cancer. Sergeant et al studied the gene-expression 

profiles of CTCs isolated by FACS-based negative depletion among patients who underwent 

surgery for PDAC [92]. Based gene expression analysis and pathway analysis, they developed a 

CTC gene signature consisting of TGF-β1 involved in the p38 MAPK pathway and 9 other genes 

associated with both p38 MAPK signaling and cell motility. They validated the prognostic value 

of this CTC gene signature in 78 primary tumor tissue samples and revealed that high co-

expression of TGF-β1 and the cell motility panel in primary pancreatic cancer was an 

independent predictor of disease-free (DFS) and overall survival (OS) (p=0.041, p=0.047). 

Recently, the prognostic value of CTM in pancreatic cancer was investigated by Chang et 

al [57]. They detected CTM in 81% (51 of 63) of patients with mean (SD) 29.7 (1101.4). With a 

cutoff of 30 CTMs per 2 ml, patients are categorized into favorable and unfavorable CTM group. 

Compared to the favorable CTM group, the unfavorable CTM group had much shorter PFS (2.7 

vs 12.1 months; P <0.0001) and OS (6.4 vs 19.8 months; P <0.0001).  
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CHAPTER 2 
 

2 Monitoring Dynamic Changes of PD-L1 (+) CTCs in Non-
Small Cell Lung Cancer During Radio(chemo)therapy 

	

2.1 Abstract 

The development of immune checkpoint inhibitors such as anti-PD-1/PD-L1 marks a new 

era in treating cancer with immunotherapies. Preclinical studies demonstrated that radiation up-

regulates PD-L1 expression in tumor cells, which provides the primary rationale for combining 

PD-1/PD-L1 inhibitors with radiation. These results haven’t been validated among non-small cell 

lung cancer (NSCLC) patients because it is difficult to obtain serial biopsy samples to monitor 

the PD-L1 expression in NSCLC. Measuring the PD-L1 expression of circulating tumor cells 

(CTCs), which could be sampled repeatedly with minimal invasiveness, enables the real-time 

monitoring of immune activation in tumor. Using a nanomaterial based microfluidic device (the 

GO chip), we obtained serial blood samples from 12 non-metastatic NSCLC patients undergoing 

radiation or radiochemotherapy. CTCs were detected in all 36 samples with the average of 20.8 

CTCs/ml (range 4-72) and PD-L1 (+) CTCs were detected in 24/36 samples (66.7%) with an 

average number of 4.7/ml (range 0-43). After the initiation of radiation, the proportion of PD-L1 

(+) CTCs among total CTCs increased significantly (median 0.7% vs 24.7%, P < 0.01), 

indicating the upregulation of PD-L1 expression in tumor cells during radiation. In addition, 
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patients who were PD-L1 positive (5% of CTCs stained positive for PD-L1) at baseline had 

shorter PFS time (6.7 months vs 14.75 months, P < 0.05), while the total CTC number is not 

associated with poor prognosis. The mRNA levels of PD-L1 were significantly higher in the 

samples from patients with poor prognosis (PFS < 9 months) than in those from good prognosis 

patients (PFS > 9 months). Therefore, PD-L1 expression in CTCs may have prognostic value and 

may serve as a biomarker to monitor tumor immunity among non-metastatic NSCLC patients. 

2.2 Introduction 

Lung cancer is the leading cause of cancer-related death in the US and worldwide, with 

non–small cell lung cancer (NSCLC) accounting for over 80% of those cases [65], [80].  Non-

metastatic NSCLC patients who are medically inoperable or unresectable are generally offered 

radiotherapy with or without concurrent chemotherapy which yields 5-year overall survival rates 

ranging from 10–35% [88]-[90]. New treatment options are urgently needed for these patients. 

Recent development in checkpoint immunotherapy draws the beginning of a new era in 

NSCLC treatment. Programmed death 1 (PD-1) receptor and its ligand (PD-L1) are key 

checkpoint molecules for regulating antitumor immune responses [91]. The binding of PD-L1 to 

PD-1 can inhibit T cell function and proliferation and result in immune tolerance. As PD-L1 

expression has been found in various tumors including NSCLC [92], the blockage of PD-1/PD-

L1 has emerged as a new therapeutic approach that can restore the antitumor immunity. 

Exciting results from clinical trials of PD-1/PD-L1 inhibitors have shown improved 

overall survival with low toxicity among NSCLC patients [93]-[95]. Based on data from the 

recent phase 3 trial, the PD-1 inhibitor pembrolizumab was approved by the US Food and Drug 

Administration (FDA) for the first-line treatment of metastatic NSCLC whose tumors have 50 

percent or more PD-L1 expression with no EGFR or ALK genomic tumor aberration [96]. To 
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further improve the response rate and duration and to extend the benefit to additional patients, 

the idea of combining anti–PD-1/PD-L1 therapies with radiation or radiochemotherapy has been 

proposed and tested in clinical trials among non-metastatic NSCLC patients [97]-[99]. Growing 

evidence demonstrates that radiation can elicit adaptive immune response, but this immunogenic 

effect of radiation could be undermined by the upregulation of PD-L1 in tumor 

microenvironment. This provides the primary rationale for combining PD-1/PD-L1 inhibitors 

with radiation [100], [101]. However, the upregulation of PD-L1 expression during radiation has 

not been validated among NSCLC patients because it is difficult to obtain serial biopsy samples 

to monitor the PD-L1 expression in solid tumors due to the invasiveness of biopsies. 

Alternately, isolation of circulating tumor cells (CTCs), as a mean of liquid biopsy, 

provides a minimally invasive method to repeatedly sample tumor cells from the patient’s blood  

and to monitor PDL-1 expression on tumor cells over time. The potential of CTCs as a 

prognostic and surrogate biomarker for NSCLC has been investigated using the FDA approved 

CellSearch System [67], [70], [72], [102]. However, due to the low detection sensitivity of this 

assay, the CellSearch system has been reported to undercount CTCs and has a limited ability to 

detect CTCs in non-metastatic NSCLC patients, which largely limits its clinical utility [71]. 

Microfluidic based CTC isolation technologies have emerged as an approach to capture 

CTCs with high sensitivity and have demonstrated the capacity to characterize the molecular 

traits of tumors, such as EGFR mutations [4], [13], [22], [67], [79]. Previously we developed a 

nanomaterial based microfluidic platform for CTC isolation, the GO chip, which consists of a 

microfluidic chamber and a substrate coated with graphene oxide (GO) nanosheets where the 

antibodies are tethered [21]. This technology takes advantage of the increased surface area 
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afforded by graphene oxide to achieve higher antibody coating density, and thus improved 

sensitivity for CTC capture.  

In this study, to investigate whether radiation therapy can increase PD-L1 expression in 

CTCs, we monitored the dynamic changes of PD-L1 expression in CTCs via the GO chip among 

12 non-metastatic NSCLC patients who received radiation alone or with concurrent 

chemotherapy (Figure 2.1). Furthermore, we evaluated whether PD-L1 (+) CTC counts and PD-

L1 mRNA expression level have correlation with disease progression. 
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Figure 2.1 An	overview	of	this	study 
An overview of this study, with sample collection and circulating tumor cell (CTC) isolation 
before treatment, during treatment and months after treatment (follow up). The GO chip 
configuration and work mechanism is also shown by the schematic representations of  CTC 
isolation within the microfluidic chamber and of antibody conjugation chemistry. 

2.3 Materials and Methods 

2.3.1 GO Chip production and surface functionalization 

The GO Chip is made of a gold patterned silicon substrate and a PDMS top layer.  Chips 

were fabricated and functionalized as previously described [21]. In brief, PDMS top layer was 

fabricated using standard soft lithography. Master molds were fabricated using SU8-2025 



	 28	

photoresist (Microchem Corp.). A 10:1 ratio of polydimethylsiloxane (PDMS) polymer to curing 

agent (Dow-Corning) was well mixed and de-bubbled prior to pouring over the SU8 molds. 

After curing at 65⁰C for over 6 hours, PDMS were manually cut from the mold, trimmed to size, 

and inlet/outlet holes were punched. Cr and Au films were deposited onto a silicon oxide coated 

silicon wafer by evaporation and were patterned by conventional photolithography. Patterned 

silicon substrates were dipped in a GO suspension for 10 minutes and rinsed with DI water and 

isopropanol. Then a silicon substrate and a PDMS chamber were bonded by corona discharge 

treatment to form a microfluidic chamber. The device was infused with N-γ-maleimidobutyryl-

oxysuccinimide ester (GMBS) in ethanol.  After 30-minute incubation, the excess GMBS 

solution was washed out by ethanol. NeutrAvidin in phosphate buffered saline (PBS, Gibco) was 

flowed through the chip and incubated for 50 minutes.  Afterwards, the excess NeutrAvidin was 

washed out by PBS. A biotinylated antibody cocktail (anti-EpCAM, anti-CD133 and anti-EGFR 

at a concentration of 10µg/mL) was flowed through the chip and incubated for 30 minutes.  After 

washing with PBS, 3% bovine serum albumin (BSA, Sigma-Aldrich) blocking solution was 

injected and incubated for 30 minutes.   

2.3.2 Cell preparation  

Cell culture reagents were purchased from ThermoFisher Scientific unless otherwise 

specified. H1440 (provided by David Beer lab) and H1650 cells (purchased??) were cultured in 

RPMI medium containing 10% fetal bovine serum and 1% penicillin–streptomycin solution. 

When cells reached 70–80% confluence, they were collected. To perform the capture efficiency 

experiments, cells were labeled with a green cell tracking dye (Invitrogen, CellTracker Green 

CMFDA, C7025).  



	
	 29	

2.3.3 Human Blood Sample Collection and Processing 

Blood samples were drawn from NSCLC patients and healthy donors after obtaining 

informed consent under an IRB-approved protocol. All samples were collected in EDTA tubes 

and were processed within 3 hours. 1 ml blood was flowed through each device at 1 mL/hr by a 

syringe pump. After flowing blood, the captured cells were washed with PBS, fixed with 

4% paraformaldehyde (PFA), and stored at 4°C until immunofluorescent staining. 

2.3.4 Immunofluorescence Staining of Isolated CTCs 

Cells were permeabilized with 0.2% Triton-X (Sigma-Aldrich) and incubated for 30 min 

followed by a PBS wash. The device was incubated for 30 min with blocking buffer containing 

2% normal goat serum and 3% BSA. Anti-cytokeratin(Pan) (Bio Rad), anti-CD45 (Bio Rad) and 

anti-PD-L1 (BioLegend) were antibodies were flowed through the graphene oxide chip,  

incubated for 1 h, and washed with PBS. Anti-cytokeratin(Pan), anti-CD45 and anti-PD-L1 were 

probed respectively with Alexa Fluor 546 IgG1 (Invitrogen),  Alexa Fluor 488 IgG2a 

(Invitrogen), and Alexa Fluor 647 IgG2b (Invitrogen). These secondary antibodies were flowed 

through the graphene oxide chip, incubated for 1 h, and washed with PBS. To stain the nuclei of 

the captured cells, DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (Invitrogen) was 

flowed through the device. The device was incubated for 15 min and washed with PBS. The 

device was imaged using Nikon Eclipse Ti fluorescence microscope. 

2.3.5 RNA extraction and RT-qPCR 

Arcturus PicoPure RNA Extraction buffer (Life Technologies) was flowed through the 

chip to lyse the captured cells immediately after PBS wash. After incubation at 42 °C for 30 min, 
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the device was washed with water and the effluent were collected. The effluents, which were the 

total RNA samples, were stored at -80 °C until cDNA preparation. The cDNAs were synthesized 

from the total RNA samples and then pre-amplified for the selected 96 genes using the 

corresponding pool of 96 TaqMan gene expression assays (Life technologies). The expression 

patterns of preamplified cDNAs for each sample were determined by qPCR using the same 

TaqMan gene expression assays and the BioMark HD system (Fluidigm). 

2.3.6 Statistical analysis 

Paired sample test the CTC counts and the proportion of PD-L1 (+) CTCs between 

different visits was compared by the Wilcoxon rank sum test using paired observations. The 

Wilcoxon rank sum test was done between the patients with disease progression and those with 

stable disease on the number of PD-L1 (+) CTCs. Differences were considered significant, if p 

value was less than 0.05. To analyze expression levels of selected genes between different 

patient groups, each transcript was normalized to the average of three house-keeping genes 

(HKGs: GAPDH, ACTB, and UBB), and reported as -ΔCT, where ΔCT = CT gene – CT (HKGs). The 

Ct values equal or above 35 was considered as no expression [104]. All data analysis was 

performed using R software. 

2.4 Results 

2.4.1  Isolation of lung cancer cells from model blood samples 

The performance of the GO chip for CTC isolation has been previously tested using 

breast and prostate cancer cell line[21]. To validate the performance of the GO chip for lung 

cancer, fluorescence labeled human lung cancer cell lines H1650 and H441 (1000 cells/mL) were 
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spiked into blood obtained from healthy donors and flowed through the GO chip at 1mL/hr. The 

capture efficiency of H441 and H1650 was 91% and 97% respectively (Figure 2.2A). 

The specificity of the PD-L1 antibody was tested by immunofluorescent staining of lung 

cancer cell lines. After capture on the chip, cells were stained for anti-Pan cytokeratin (CK) 

(tumor marker), anti-CD45 (leukocyte marker), anti-PD-L1 and DAPI (nuclear stain) and 

respective secondary antibodies. White blood cells were identified as positive for DAPI and 

CD45, while cancer cells were identified as positive for DAPI and CK, but negative for CD45. 

PD-L1 positive cell line H441 stained positive for PD-L1 (Figure 2.2C) while no PD-L1 

expression was detected in PD-L1 negative cell line H1650 (Figure 2.2B).  

 

Figure 2.2 Capture	efficiency	and	fluorescence	images	of	lung	cancer	cell	lines 
(A) Capture efficiency of lung cancer cell lines H441 (n=3) and H1650 (n=3). (B) Representative 
images of immunofluorescence staining of H1650 lung cancer cells along with WBCs captured 
on the chip. (C) Representative images of immunofluorescence staining of H441 lung cancer 
cells along with WBCs captured on the chip 

2.4.2 Isolation of CTCs in non-metastatic NSCLC patients undergoing 
radiation or radiochemotherapy 

Demographics of 12 NSCLC patients enrolled in this study are shown in Table 2.1. We collected 

serial blood samples from 12 patients with non-metastatic NSCLC who received radiation alone 

(n=4) or radiochemotherapy (n=8) (Table 2.1). Serial blood samples from the patients enrolled in 
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the study were collected at the following time points: before the initiation of treatment (visit 1), 

during treatment (visit 2), and at follow up at least one month after treatment (visit 3). The 

flowchart in Figure 1 provides an overview of the recruitment process and the method of CTC 

isolation.  Depending on the length of the treatment, we might receive multiple samples during 

treatment.  In these cases, we reported here the averaged CTC number for visit 2. 

Table 2.1 Demographics of patients 

Patient	 Age	 Sex	 Histology	 T	 N	 M	
RT	
dose	

RT	
fractio
n	size	

Concurr-
ent	

chemo	
Concurrent	
chemo	drugs	

Adjuva-
nt	

chemo	
Patient	
1	 60	 Male	

Adenocarcin
-oma	 2a	 1	 0	 60	 2	 No	 N/A		 No	

Patient	
2	 79	 Male	 Carcinoma	 2	 0	 0	 70	 2	 No	 	N/A		 No	

Patient	
3	 64	 Male	

Adenocarcin
-oma	 1	 0	 	0	 	50	 	10	 	No	 	N/A	 No	

Patient	
4	 73	 Male	 Squamous	 1a	 3	 0	 50		 	5	 	No	 	N/A	 No	

Patient	
5	 72	 Male	 Squamous	 2a	 1	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
6	 67	 Male	

Sarcomatoid
-	carcinoma	 3	 2	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
7	 65	 Male	 Squamous	 4	 3	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
8	 63	 Male	 Squamous	 2b	 0	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
9	 82	 Male	 Squamous	 3	 2	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
10	 60	 Male	

Adenocarcin
-oma	 4	 3	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 Yes	

Patient	
11	 57	 Male	 Squamous	 1b	 3	 0	 60	 2	 Yes	

Carboplatin/
Taxol	 No	

Patient	
12	 67	 Male	 Squamous	 2b	 2	 0	 60	 2	 Yes	

Cisplatin/	
Etoposide		 No	

	

After cells were captured on the chips, GO chips were stained and imaged, and CTCs 

were identified as CK+/CD45−/DAPI+ cells. Figure 2.3A and Figure 2.3B shows representative 

micrographs of PD-L1 (+) CTC and PD-L1(-) CTC. While the majority of captured CTCs were 

single cells, clusters of 2- 4 CTCs were observed in most patients (10/12) (Figure 2.3C). Blood 
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samples from healthy donors gave a counting of 2 or 3 CTCs/ml and thus a threshold of ≥ 3 

CTCs /ml was used for CTC detection in patient samples (Figure 2.3D).  

 

Figure 2.3 CTC counts and images isolated by GO chip from different visits of 12 NSCLC 
patients 
(A) – (C) Representative images of CTCs isolated from NSCLC patients stained by antibodies 
against cytokeratin (red), a leukocyte marker CD45 (green), and a nuclear stain (DAPI).  (A) 
CK+/PD-L1+ CTC, (B) CK+/PD-L1- CTC, (C) CTC cluster.  Scale bar is 10 µm. (D) CTC 
enumeration from blood samples of healthy donors (n=3) and from blood samples of NSCLC 
patients (n=36). (E) Number of CTCs isolated by GO chip from blood samples from different 
visits of 12 NSCLC patients (P1 through P12). P1 stands for ‘patient 1’. Blue bar represents the 
number of CK+/PD-L1- CTCs. Red bar represents the number of CK+/PD-L1+ CTCs. 
 
	

CTCs were detected in all samples with the average of 20.8 CTCs/ml (range 4-72) 

(Figure 2.3D, Table 2.2).  The average number of CTCs for visit 1, visit 2, and visit 3 were 29.2 

CTCs/ml, 20.3 CTCs/mL, and 14.6 CTCs/mL respectively (Table 2.2). For the eight patients 



	 34	

receiving radiochemotherapy (patient 5-12), a decrease in CTC numbers was observed in visit 2 

and visit 3 compared to visit 1 among 6 patients (75%) although it was not statistically 

significant (Figure 2.3D). Among the rest of the four patients who received radiation therapy 

only (patient 1-4), CTC numbers increased 10 folds and 3 folds during radiation in patient 1 and 

patient 4 respectively (Figure 2.3D, Table 2.3).   

Table 2.2 Statistics of total CTC number and PD-L1 (+) CTC number at different visits  
(Unit, cells per mL; SD: standard deviation) 

 
CTC range 

Average 
CTC 

SD for 
CTC 

Median 
CTC 

PD-L1 (+) 
CTC range 

Average 
PD-L1 (+) 

CTC 

SD for PD-
L1 (+) CTC 

Median 

PD-L1 (+) 
CTC 

Total 5 – 79 21.3 20.3 13.5 0 - 32 4.1 6.8 1.5 

Visit 1 5 – 79 29.2 27.1 18.5 0 - 14 2.6 4.2 1 

Visit 2 3.5-68 20.3 20.7 14.3 0 - 32 6.7 9.5 3 

Visit 3 5 - 32 14.6 8.5 12.5 0 - 17 3 4.7 1 

 
Table 2.3 A list of total CTC number, PD-L1 (+) CTC number and the fraction of PD-L1 (+) 
CTCs at different visits for 12 patients 

Patient 

Visit 1 Visit 2 Visit 3 

CTCs 

( /mL) 

PD-L1 (+) 
CTCs       
( /mL) 

Proportion 
of PD-L1 
(+) CTCs 

CTCs 

( /mL) 

PD-L1 (+) 
CTCs       
( /mL) 

Proportion 
of PD-L1 
(+) CTCs 

CTCs 

( /mL) 

PD-L1 (+) 
CTCs        
( /mL) 

Proportion 
of PD-L1 
(+) CTCs 

Patient 1 6 1 17% 68 32 47% 32 17 53% 

Patient 2 50 0 0% 15.5 0.5 3% 17 2 12% 

Patient 3 7 1 14% 5.5 3 55% 7 0 0% 

Patient 4 5 0 0% 21 3 14% 9 0 0% 

Patient 5 79 3 4% 57 21.5 38% 24 1 4% 

Patient 6 14 0 0% 13 1.5 12% 5 0 0% 

Patient 7 73 9 12% 21 8.5 40% 13 6 46% 
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Patient 8 50 14 28% 3.5 0 0% 12 5 42% 

Patient 9 9 0 0% 15.5 3.5 23% 22 4 18% 

Patient 10 23 0 0% 10 1.5 15% 5 1 20% 

Patient 11 28 1 4% 6 1.5 25% 20 0 0% 

Patient 12 6 2 33% 7.5 3.5 47% 9 0 0% 

 

2.4.3 CTCs and PD-L1 expression of CTCs in non-metastatic NSCLC 
patients undergoing radiation or radiochemotherapy 

PD-L1 (+) CTCs were detected in 24 samples (66.7%) with an average number of  4.7/ml 

(range  0-43) (Figure 2.3D, Table 2.3). The average number of PD-L1 (+) CTCs for visit 1, visit 

2, and visit 3 were 2.7 CTCs/ml, 6.7 CTCs/mL, and 3 CTCs/mL respectively (Table 2.2). The 

PD-L1 (+) CTCs number in visit 2 sample is significantly high compared to that in visit 3 (P = 

0.037) (Figure 2.4A). The proportion of PD-L1 (+) CTCs to total CTCs ranged from 0 to 61.4% 

with an average of 17.1% (Table 2.2). Compared to the proportion of PD-L1 (+) CTCs isolated 

before treatment (mean 7.1%, SD 8.6%), the proportion of PD-L1 (+) CTCs during treatment 

increased in 11 out of 12 patients (mean 28.3%, SD 24.7%) . This difference reached statistical 

significance (P = 0.0068) (Figure 2.4B), suggesting that radiotherapy or radiochemotherapy 

induces PD-L1 expression in CTCs.  
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Figure 2.4 Dynamic changes of PD-L1 (+) CTC proportions at different visits 
(A) Dynamic changes of PD-L1 (+) CTC proportions at visit 1, visit 2, and visit 3 for 12 patients. 
P1 stands for ‘patient 1’. Red bar represents the percentage of PD-L1 (+) CTC number in total 
CTC number. Blue bar represents the percentage of PD-L1(-) CTCs in total CTCs. (B) The 
fraction of PD-L1 (+) CTCs out of total CTCs in different visits (n=12). 
 

2.4.4 Prognostic significance of PD-L1 status in CTCs at baseline 

Patient 3 were lost to follow-up after 3 months. For the rest 11 patients, progression-free 

survival (PFS) was analyzed according to the baseline CTC number and PD-L1 (+) CTC 
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number. No significant difference in PFS was found in the patients with high CTC number 

(CTCs≥20 /ml) (median 9.9 months) compared to those with low CTC number (CTCs < 20/ml) 

(median 6.95 months).  The commonly used cutoff value for assessing PD-L1 positivity in tissue 

biopsy staining is 5% [105], which is close to the mean value of PD-L1 (+) CTC% (7.1%) at 

baseline.  If ≥5% of PD-L1 (+) staining among CTCs is used as cutoff for PD-L1 positivity, PD-

L1 positive patients have much shorter PFS as compared with PD-L1 negative patients (median 

6.7 months, range 5.7 – 9.9 month vs median ≥14.75 months, range 7.5 - 18.9 months: P=0.016) 

(Figure 2.5B). Notably, patient 1 who had high PD-L1 (+) CTC counts at visit 2 and visit 3 was 

put on therapy with PD-1 inhibitor pembrolizumab after initial progression and has had stable 

disease for  7 months. 

 

Figure 2.5 Kaplan–Meier life-table analysis of the PFS time in all patients. 
Kaplan–Meier life-table analysis of the PFS time in all patients. Grouping was done according to 
(A) CTC number more or less than 20/ml (B) PD-L1 (+) CTC% more or less than 5%. 
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Table 2.4 Progression-free survival (PFS) of Patient. 
("NED" stands for "no evidence of disease") 
 

Patient  Status PFS (months) PFS censor 

Patient 1 Alive, Progressed 6.7 0 
Patient 2 Alive, NED 2.3 1 
Patient 3 Alive, NED 9.9 1 
Patient 4 Alive, NED 9.6 1 
Patient 5 Alive, NED 14.6 1 
Patient 6 Alive, NED 18.9 1 
Patient 7 Dead 6.5 0 
Patient 8 Dead 5.7 0 
Patient 9 Alive, NED 14.9 1 

Patient 10 Alive, NED 17.5 1 
Patient 11 Dead 7.4 0 
Patient 12 Alive, Progressed 7.5 0 

	

2.4.5 Gene expression profiling of CTCs 

To further investigate the molecular signature of CTCs from patients and study the 

association with treatment outcomes, mRNA profiling of the captured CTCs was carried out by 

performing quantitative RT-PCR for selected panel of 96 genes consisting of lung cancer related 

genes, epithelial and mesenchymal genes and immune checkpoint-related genes (Table 2.5). 

After normalization to average of internal house-keeping genes (HKGs: GAPDH, ACTB, and 

UBB) using the ΔCt method, the PD-L1 mRNA expression at different visits were compared. 

Among visit 1 samples, 30% of the samples had detectable levels of PD-L1 mRNA expression. 

Whereas, 70% of visit 2 samples and 25% of visit 3 samples showed detectable PDL-1 gene 

expression (Figure 2.6A). The expression level of PD-L1 in visit 2 samples are significantly 

higher than those in visit 1 and visit 3 samples (P = 0.043 and P = 0.026, respectively), which is 

consistent with the results of PD-L1 (+) CTC number. To investigate the prognostic value of 
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CTC gene expression, patients were classified into poor prognosis (PP group) and good 

prognosis (GP group) based on a cutoff at 9 month PFS. This cutoff is chosen based on the 

median PFS time of patients. Five patients had disease progression within 9 months while the 

other seven patients had stable disease in a time period of 9 months or more. The mRNA levels 

of PD-L1 is detected in 9 out of 12 samples in PP group while the mRNA levels of PD-L1 is 

detected in 3 out of 14 samples in the GP group. The mRNA levels of PD-L1 were significantly 

higher in the samples from PP group than that of GP group (P = 0.025) (Figure 2.6B).  Similarly, 

from the results of IF staining, samples from PP group tend to have higher proportion of PD-L1 

(+) CTCs than those from GP group, although not reaching statistical significance (median 22% 

vs 7.8%, P=0.063, Figure 2.6C). MTOR gene which is related to PD-L1 upregulation in tumor 

cells [106] also displayed increased level of expression in PP samples(Figure 6D). In addition, 

Ki67 and CD33 were highly expressed in the samples from PP group (P = 0.042 and 0.042 

respectively) (Figure 2.6E and F).   

Table 2.5 The 96 gene panel for CTCs in NSCLC 
 

GAPDH TGFB1 CD20 BCL-xL CTNND1 FOXC2 MTOR SNAI1 
ACTB EMP2 CD45 BMi1 CXCL16 IGFBP5 MUC1 SNAI2 
UBB TROP2 EGFR CASP3 CXCR1 IL6 NFKB1 SPARC 

ALDH1A1 KRT5 KRAS CCND1 DSP IL8 NTRK2 STAT3 
ALDH1A3 KRT7 MKI67 CD146 ELF3 JUP PIK3CA TIMP1 

CD24 KRT8 AR CD33 ERCC1 KLF4 PKP2 TIMP2 
CD44 KRT14 PD-1 CD34 ERG KLK3 PSME3 TMPRSS2 

CD44v6 CDH1 PDL-1 CHP1 ETV1 LGALS3BP PTCH1 TP53 
CD133 CDH2 XIST COL1A2 EVPL MAPK1 PTEN XBP1 

EPCAM CDH11 HOTAIR COL3A1 FGF18 MLPH PTPRN2 XIAP 
ERBB2 CD3D ABCG2 CTNNA1 FOLH1 MMP2 RB1 ZEB1 

VIMENTIN CD11B ALK CTNNB1 FOXC1 MMP9 SERPINB6 ZEB2 
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Figure 2.6 mRNA profiling of CTCs. 
(A) mRNA level (-∆𝐶!) of PD-L1 in visit 1 samples(n=10), visit 2 samples(n=10) and visit 3 
samples (n=8); (B),(D)-(E) mRNA level (-∆𝐶!) of differentially expressed genes PD-L1 (B), 
mTOR (D), Ki67(D), and CD33 (E) in PP samples (n=12) versus GP samples (n=14). P-value < 
0.05 (*); (C) PD-L1 (+) CTC proportion in PP samples (n=15) versus GP samples (n=21). 
	

2.5 Discussion 

Preclinical studies have demonstrated that the combination of radiotherapy and PD-1/PD-

L1 checkpoint blockade synergistically enhances antitumor immune activity and increase the 

treatment efficacy of either therapy alone [100], [101]. A suggested mechanism is that the 

inflammatory response after radiation up-regulates the PD-L1 expression in tumor cells and 

surrounding cells, resulting in an immune-suppressive microenvironment [100], [101]. These 
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findings, however promising, have not been validated in clinical settings for NSCLC. CTC 

isolation provides a noninvasive way to monitor PDL-1 expression in tumor cells over time. The 

feasibility of analyzing PD-L1 (+) CTCs has been demonstrated in breast cancer and NSCLC 

[107], [108]. In a recent study, the persistence of PD-L1 (+) CTCs detected by CellSearch 

System was shown to be correlated with immunotherapy resistance in 14 metastatic NSCLC 

patients treated with PD-1 inhibitor Nivolumab, indicating that PD-L1 (+) CTCs may be a 

marker of immunotherapy escape [108]. However, the small number of PD-L1 (+) CTCs 

detected cannot reflect the dynamic changes of PD-L1 expression. In this study, we were able to 

detect sufficient number of CTCs via the GO chip at different time points to monitor changes of 

PD-L1 expression. Several features of the GO chip contribute to the improved sensitivity of CTC 

isolation compared to conventional methods: 1) graphene oxide increases the surface area on 

which the tumor specific capture antibody was present, 2) microfluidic structure obtains 

optimized flow pattern for cell capture, 3) an antibody cocktail of anti-EpCAM, anti-EGFR and 

anti-CD133 enables the isolation of CTCs expressing variable levels of epithelial and 

mesenchymal markers. Furthermore, as the white blood cell contamination within the GO chip is 

very low, the captured CTCs maintained high purity and thus enabled downstream gene analysis 

[21].  

In this study, we demonstrated for the first time that PD-L1 expression in CTCs is up-

regulated through the course of radio(chemo)therapy in non-metastatic NSCLC patients. At 

baseline, 42.9% of samples showed PD-L1 staining in CTCs if a 5% threshold for positivity is 

used. This is in line with previous studies reporting that a range of 20% to 57.5% of solid biopsy 

samples from stage I-III NSCLC patients express PD-L1 [109]-[111]. During radiation, the PD-

L1 expression in CTCs increased significantly (P=0.018). This finding is consistent with the 
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results of preclinical studies and might represent a mechanism of tumor immune escape. 

However, it is still unclear whether PD-L1 expression is obtained in primary tumor before 

intravasation or could be acquired within the blood circulation. Future studies that compare the 

PD-L1 expression of tissue biopsies or surgical specimens with that of CTCs will be very helpful 

to investigate the mechanism of PD-L1 expression in CTCs and to understand the significance of 

PD-L1 (+) CTCs. 

Furthermore, we revealed that PD-L1 positivity in CTCs may serve as a prognostic 

marker among non-metastatic NSCLC patients receiving radiation or radiochemotherapy. If 

more than 5% CTCs showing PD-L1 staining is considered to be PD-L1 positive, PD-L1 positive 

patients have much shorter PFS compared with PD-L1 negative patients. A possible explanation 

is that these PD-L1 (+) CTCs reflect immunosuppressive tumor microenvironment which 

promotes tumor relapse. In addition, with the capacity of evading immune response in a foreign 

environment, PD-L1 (+) CTCs may have higher metastatic potential. Indeed, two patients who 

later developed metastases showed PD-L1 positivity at baseline. However, the current study is 

limited due to the small patient cohort and the limited follow-up interval. Future studies in a 

large cohort would be valuable to investigate the potential of PD-L1 (+) CTCs for predicting 

disease progression for this subgroup of patients. Notably, patient 1 with high PD-L1 expression 

(>50% CTCs expressing PD-L1) at follow-up time point (visit 3) was treated with PD-1 inhibitor 

pembrolizumab one month after the follow-up visit and the tumor has been stable till now for 7 

months. As 50 percent or more PD-L1 expression in tissue samples has been used as a predictive 

biomarker for pembrolizumab, PD-L1 expression in CTCs could serve as a biomarker for 

selecting and monitoring patients for pembrolizumab therapy. 
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Furthermore, as we examined the mRNA expression pattern of CTCs for a 96-gene panel, 

PD-L1, Ki67 and CD33 was found to be highly expressed in patients who had disease 

progression within 9 months compared to patients who had stable disease for 9 months or more. 

The differences of PD-L1 mRNA expression levels between different visits are similar to that of 

the PD-L1 (+) CTC counts via the immunofluorescent staining, further confirming our findings 

in the upregulation of PD-L1 during radiation. The high expression of PD-L1 mRNA in poor 

prognosis group also supports the prognostic value of PD-L1. The expression of Ki67, a 

proliferation marker, has been associated with chemoresistance and poor prognosis [112], [113]. 

Ki67+ CTCs were detected in various cancer types including NSCLC and is associated with 

shorter overall survival [55], [114]. CD33, a myeloid cell marker, has been shown to be 

upregulated in the adenocarcinoma of NSCLC compared to the adjacent non-neoplastic lung 

tissue because of the infiltrated myeloid cells in tumor tissue [115]. Furthermore, myeloid-

derived suppressor cells (MDSC), an immune-suppressive population of myeloid cells, can form 

clusters with CTCs to protect CTCs from immune surveillance and may facilitate the formation 

of distant metastases [62]. Thus CD33 mRNA signal we detected may come from myeloid cells 

adhering to CTCs. Indeed, we frequently observed clusters of CTC and CD45+ blood cells 

captured in the chip. It is also possible that this signal comes from the non-specific binding of 

CD33+ blood cells on the chip, as the overexpression of CD33+ MDSC is observed in the 

peripheral blood of advanced stage NSCLC and is associated with immune suppression [116].  

The high purity of captured CTCs within the GO chip enabled downstream gene analysis 

such as qPCR. However, as it is unrealistic to achieve 100% purity, mRNA was extracted from a 

mixed population of CTCs and WBCs captured in the GO chip. Thus the mRNA levels detected 

here contained signals from both CTCs and the blood cells. This limitation could be overcome by 
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developing single cell gene analysis technique to differentiate the CTC population with the 

contaminating blood cells.  

To create successful combinations of immunotherapy, radiation, and chemotherapy, 

many concerns need to be addressed such as how to select patients and how to choose the 

optimal treament regimen and sequence when combined with PD-1/PD-L1 inhibitors. CTC 

enumeration and molecular characterization can be a useful tool to help in this decision making 

process as CTCs can be sampled frequently without an invasive procedure. As we demonstrated 

the feasibility of monitoring PD-L1 (+) CTCs in this study, this CTC subgroup could potentially 

act as a biomarker to monitor the tumor immunity to facilitate treatment selection for 

combinational immunotherapies. Future efforts should incorporate dynamic monitoring of PD-

L1(+)CTC for the timed administration of PD-1/PD-L1 inhibitors such as pembrolizumab in 

patients with locally advanced NSCLC.  
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CHAPTER 3 
 

3 Investigating the Potential of CTCs for Monitoring Tumor 
Status and Predicting Treatment Response in Locally 

Advanced Pancreatic Cancer 
	

3.1 Abstract 

The median overall survival of locally advanced pancreatic cancer patients ranges only 

from 9 to 10 months. For those patients, treatment options range from chemotherapy alone to 

combination of radiation therapy and chemotherapy. To improve the treatment outcome, there is 

a pressing need to develop biomarkers to monitor treatment response and to provide valuable 

information for treatment selection and adaption. CTCs can be isolated from peripheral blood of 

patients and hold the promise of being a real time biomarker for cancer detection and 

management. In this study, CTCs were isolated via the GO chip from blood samples taken at 

different time points during the course of chemotherapy and subsequent radiation therapy from 

26 patients with the locally advanced pancreatic cancer. Patients with decreased number of CTCs 

after chemotherapy had longer progression free survival (PFS) than patients with increase or no 

change in CTC counts prognosis (13.5 months vs 6.5 months, P value= 0.002), indicating that 

changes of CTC numbers may be an early indicator for treatment failure. Furthermore, the 

persistence of high expression of Vimentin, an epithelial-mesenchymal transition (EMT) marker, 

in CTCs is correlated with shorter PFS (7.55 vs 14 months, P=0.019). In mRNA profiling of 
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CTCs, the mRNA expression levels of three genes, BAX, CHK1 and EZH2 are associated with 

poor prognosis, which is in line with previous preclinical studies that these genes are involved in 

drug resistance. 

3.2 Introduction 

Pancreatic cancer is the 4th leading cause of death in the United States with a five-year 

survival rate of only up to 8% [80]. Approximately 30% of patients with pancreatic cancer are 

being diagnosed with locally advanced disease [122]. For these patients, systemic chemotherapy 

or any combined forms of radiation therapy and chemotherapy are typically the treatment options 

available. Although no evidence of metastasis is observed at the time of diagnosis, the median 

overall survival rate of those patients only range from 9 to 10 months. Pancreatic cancer is highly 

resistant to chemotherapy drugs, which leads to the failure of chemotherapy and thus contributes 

to the high mortality rate [123]. 

Several mechanisms and signaling pathways involved in the drug resistance process of 

pancreatic cancer have been proposed. For instance, it has been found that the cell cycle 

checkpoint proteins can help tumor cells escape the cytotoxic effects of the drugs by inducing 

cell cycle arrest for the repair of DNA damage caused by chemotherapy [124]. Therefore, the 

inhibition of cell cycle checkpoints such as Wee1 and CHK1 can sensitize the tumor cells to 

chemotherapy and enhance the treatment efficacy. Moreover, many recent studies have 

demonstrated that cancer cells with EMT phenotypes and stem cell properties play pivotal roles 

in treatment resistance [125]. Thus, analyzing the molecular signature of drug resistance in tumor 

samples from pancreatic cancer patients can assist the investigation of the resistance mechanism 

and the discovery of new therapeutic targets. Furthermore, in clinical practice, characterizing and 

monitoring the molecular feature of tumor cells for drug resistance markers is particularly 
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important for the prediction of treatment outcome in order to select the most effective therapy 

and limit the toxicity to patients. 

Currently, serial sampling of tumor tissues for molecular analysis during the course of 

treatment is impractical. Circulating tumor cells (CTCs) are tumor cells that are shed from tumor 

and enter the blood circulation and hold the potential to provide an alternative to biopsy for the 

real-time monitoring of tumor status. As CTCs can be easily sampled at various time points, the 

isolation and analysis of CTCs can substitute biopsies for monitoring the molecular features of 

pancreatic cancer to provide predictive and prognostic information for the selection of 

personalized treatment for patients. Evidence from recent studies showed that the presence of 

CTCs are associated with poor outcome [87], but relatively low levels of CTCs can be detected 

in most pancreatic cancer patients compared to other types of malignancies [5], [117].The 

limitation of current widely used technologies to detect CTCs in sufficient number in pancreatic 

cancer patients poses as a potential barrier for their use as an effective biomarker.	

Microfluidic technologies have emerged as a solution to isolate CTCs with high 

sensitivity and purity[4]. Previously we developed a nanomaterial based microfluidic chip, the 

GO chip, for capture and proteomic analysis of CTC [21]. The GO Chip consists of a 

microfluidic chamber and a substrate coated with graphene oxide (GO) nanosheets where the 

antibodies are tethered. This technology takes advantage of the increased surface area afforded 

by graphene oxide to achieve higher antibody coating density, thus improving sensitivity for 

CTC capture. Furthermore, antibodies are specifically patterned onto the flower patterns rather 

than the entire surface (as shown in Figure 1), which results in high purity of captured cells.  

In this study, we isolated CTCs using the GO chip from locally advanced pancreatic 

cancer patients and monitored the changes of CTC numbers over the course of treatment. Also 
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we characterized the captured CTCs using a DNA damage marker (H2AX) and an EMT marker 

(Vimentin) (Figure 3.1). Furthermore, mRNA expression of CTCs was analyzed using RT-PCR 

using a panel of genes specific to pancreatic cancer and resistance. Finally, we investigated the 

correlation between the numbers and the molecular features of CTCs and the patients’ clinical 

outcome to assess treatment outcome and disease progression among patients with locally 

advanced pancreatic cancer. 

 

Figure 3.1 An overview of this study. 
An overview of this study, with sample collection and circulating tumor cell (CTC) isolation at 
baseline, after chemotherapy and during radiation and months after treatment (follow up) 

3.3 Materials and Methods 

3.3.1 Patient selection and sampling 

We selected patients with histologic or cytologic proof of pancreatic cancer, for whom 

the treatment plan at the time of enrollment is chemotherapy and radiation therapy. Patients may 

be enrolled on other clinical trials. The target population of this study is locally advanced, 
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unresectable patients with no evidence of metastatic disease.  A total of 50 patients were planned 

to be enrolled for the study. Patients signed an informed consent indicating that they were aware 

of the investigational nature of this study, in keeping with the policies of UM hospital.  

Selected patients had blood samples drawn at the following time points: 

(1) At baseline, prior to the start of chemotherapy or radiation therapy for pancreatic 

cancer (if the patient already received chemotherapy for pancreatic cancer then this time point 

will be omitted).   

(2) After the first 3 weeks of induction chemotherapy are complete and prior to the start 

of radiation therapy.  Note: For patients receiving more than three weeks of induction 

chemotherapy an additional sample will be obtained after induction chemotherapy has been 

completed (and prior to the start of radiation therapy).  

(3) After completion of approximately 60% of the planned radiation dose (e.g. if 25 

fractions of radiation are planned the sample would be obtained no earlier than the 14th fraction 

and no later than the 19th).   

(4) After completion of radiation therapy and adjuvant chemotherapy.  Typically, this 

will occur one to two weeks after completing adjuvant chemotherapy. 

3.3.2 GO device Fabrication 

The fabrication and functionalization of GO chip has been previously described9. Briefly, 

gold films were deposited onto a silicon oxide coated silicon wafer by evaporation and were 

patterned by conventional photolithography. Graphene oxide nanosheets are absorbed onto gold 

patterns on the silicon substrate, then chemically functionalized with EpCAM antibodies. A 

polydimethylsiloxane (PDMS) layer were bonded with silicon substrate to forms a microfluidic 

chamber with a height of 50 µm and total volume of 45 µl.  
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3.3.3 Patient Sample Processing 

Patient blood samples were obtained according to the schedule described above. Most of 

the patients had 3 or 4 blood draws over the course of the study depending on the length of their 

induction chemotherapy. Within 3 hours of collection, blood samples were processed by GO 

chips at a flow rate of 1 mL/hr.  

3.3.4 CTC enumeration and characterization  

After sample processing, one chip containing bound CTCs were used for CTC 

enumeration and evaluating the expression of certain proteins by immunostaining. To 

differentiate captured CTCs and white blood cells, immunostaining was performed using anti-

cytokeratin(Santa Cruz), and anti-CD45(Bio Rad), where white blood cells were identified as 

positive for 4′ ,6-diamidino-2-phenylindole (DAPI) (Invitrogen) and CD45, a common 

leucocyte antigen, while CTCs were identified as positive for DAPI and cytokeratin (CK) or 

ZEB1, but negative for CD45. An additional marker, a DNA damage marker H2AX (Millipore) 

or an EMT marker Vimentin (BD), were used for immunostaining. 

The other chip were used for RNA analysis. RNA was extracted from captured 

circulating tumor cells with commercially available extraction kit, Arcturus	 PicoPure	 RNA	

Extraction	buffer	(Life	Technologies). RNA Extraction buffer was flowed through the chip to 

lyse the captured cells immediately after PBS wash. After incubated at 42 °C for 30 min, the 

device were washed with water and the effluent were collected. The effluents, which were the 

total RNA samples, were stored at -80 °C until cDNA preparation. The cDNA was synthesized 

from the total RNA and then pre-amplified for the selected 96 genes using the corresponding 

pooled TaqMan gene expression assays (Life technologies). The expression patterns of 
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preamplified cDNA were analyzed by a quantitative polymerase chain reaction (qPCR) setting 

using the same TaqMan gene expression assays and the Biomark HD system (Fluidigm). 

3.3.5 Statistical analysis 

The number of CTCs and CTC subpopulations between different visits was compared by 

the Wilcoxon rank sum test. Logrank test was done for calculating the P value of Kaplan–Meier 

survival plot. if p value was equal to or less than 0.05, the differences were considered 

significant. To analyze expression levels of selected genes between different patient groups, each 

transcript was normalized to house-keeping gene GAPDH and reported as -ΔCT, where ΔCT = 

CT gene – CT GAPDH. If the CT values were above 40, which indicates that the amplification 

was not detected during the 40-cycle qPCR, it is regarded as off-scale data.  Therefore, an 

arbitrary cycle number of CT gene = 40 was assigned for numerical analysis36. All statistical 

analysis was performed using R software. 

3.4 Results 

3.4.1 Patient characteristics  

A total of 26 patients with locally advanced pancreatic cancer undergoing chemotherapy 

and subsequent radiation therapy were enrolled in our study for CTC isolation and analysis. The 

demographics of all patients are summarized in Table 3.1. For each patient, 2 mL of whole blood 

was processed at the following three time points for analysis (Figure 3.1): a. 3 weeks after 

completion of chemotherapy prior to the following radiation therapy (after-chemo); b. After an 

approximate of 60% of the scheduled radiation dosage was applied (during-radio); c. after 

completion of radiation and adjuvant chemotherapy (follow-up). An additional blood sample was 
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obtained from 12 patients who were treatment naïve at the time of study enrollment (baseline) to 

monitor and evaluate changes in CTC counts during treatment.  

Table 3.1 Patient information 
“Y” stands for “Yes”, “N” stands for “No”, and “N/A” stands for “Not available”. 

 

 

3.4.2 Monitoring changes in CTC number during treatment  

Each blood samples were processed through individual GO chips to quantify the number 

of CTCs from patients with pancreatic cancer. CTCs were identified using immunofluorescence 

staining showing positivity in pan-cytokeratin (pan-CK), DAPI, and negative for CD45. 

Concurrently, whole blood from healthy donors (n=3) was processed identically for negative 



	
	 53	

controls. The average CTC counts from healthy individuals were 2.67 /ml, ranges 2 ~ 3 

CTCs/mL, thus a 3 CTCs/mL threshold applied for CTC positivity in our analysis. Overall, 

CTCs were detected in 90.3% of blood samples. The mean number of CTCs for each visit 

(baseline, after-chemo, during-radio, and follow-up) was 31, 23, 14, and 21 cells/ml respectively 

(Figure 3.2A).  No statistical significance was observed in CTC numbers between samples after-

chemo, during-radio and follow-up time points. However, 12 out of 21 patients, for whom we 

collect blood samples for all four time points (who were treatment naïve at the time of 

enrollment), resulted in a significant decrease (P= 0.033) in CTC counts after chemotherapy 

compared to CTC counts prior to chemotherapy (Figure 3.2B). To correlate these results with 

clinical outcomes including progression free survival (PFS), patients were further divided into 

two groups depending on whether or not CTCs decreased after chemotherapy. Patients with 

decreased number of CTCs after chemotherapy experienced a longer PFS with statistical 

significance (13.5 months vs 6.5 months, P value= 0.002) than patients with increase or no 

change in CTC counts (Figure 3.2C), suggesting that CTC counts during the first cycle of 

chemotherapy may be a surrogate of sensitivity to chemotherapy. 



	 54	

 

Figure 3.2 Number of CTCs at different visits. 
(A) Number of CTCs isolated from blood samples of different visits among 12 treatment naïve 
patients (n=12). (B) Number of CTCs isolated from blood samples of different visits among 9 
patients who have been previously treated (n=8).  (C) Kaplan–Meier life-table analysis of the 
PFS time in 12 patients. Grouping was done according to the change of CTC number in after 
chemo sample compared to baseline sample. A decrease of CTC number in after chemo sample 
compared to baseline sample (red, n = 3) and an increase or unchanged CTC number in after 
chemo sample compared to baseline sample (blue, n = 9). 
 

3.4.3 Molecular characterization of CTCs using H2AX and Vimentin 

The phosphorylated histone H2AX, a marker for DNA double stranded breaks (DSBs), 

has been used for monitoring DNA damage in clinical trials of various chemotherapy agents 

[118]. To assess the DNA damages during treatment, we studied the H2AX expression of CTCs 

using IF in 4 patients. H2AX+ CTCs were detected in 10 out of 15 (67.7%) samples with a 

median number of only 1/ml (Figure 3.3). Interestingly, CK-/H2AX+/CD45- cells were 

frequently observed which might indicate that CTCs undergoes EMT and have decreased or lost 

CK expression. If CK-/H2AX+/CD45- cells could be considered as CTCs, patient W126 would 

have a high proportion of H2AX+ CTCs (92%) at the endpoint of chemotherapy, indicating that 

severe DNA damage in tumor cells was induced by chemotherapy. 



	
	 55	

 

Figure 3.3 CTCs stained with H2AX 
Number of CTCs isolated by GO chip from blood samples from different visits of 4 patients. 
Blue bar represents the number of CK+/H2AX- CTCs. Orange bar represents the number of CK-
/H2AX+ CTCs. Grey bar represents the number of CK+/H2AX+ CTCs.‘1’, ’2’, ‘3’ and ‘4’ in X 
axis represents visit 1, visit 2, visit 3, and visit 4 respectively.  
 
 

To further characterize EMT in CTCs, an additional marker vimentin (Vim) was applied 

to the captured CTCs using IF staining. Three CTC subtypes were identified including epithelial-

like (CK+/Vim-/CD45- cells), intermediate (CK+/Vim+/CD45- cells), and mesenchymal-like 

CTCs (CK-/Vim+/CD45- cells). Overall, CTCs with epithelial-like or intermediate phenotypes 

were more abundantly observed in our study population compared to completely mesenchymal-

like CTCs (Figure 3.4A). The median numbers of these epithelial, intermediate, and 

mesenchymal-like CTCs were 11.5, 11.5 and 1 cells/mL respectively. The median percentage of 

Vim+ CTCs (Vim + %) after-chemo, during-radio and follow-up samples were 63.5, 68.5, and 

32.4%, respectively (Figure 3.4B). The proportions of Vim+ CTCs in samples after-chem and 

after-radio were significantly high compared to that in follow-up samples (P=0.034 and P=0.014, 

respectively) (Figure 3.4C).  
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Samples were stratified into high expression (>30%) and low expression of vimentin 

(≤30%) based on Vim+%. The persistence of high vimentin expression in all three samples 

correlated with worse PFS (7.55 vs 14 months, P=0.019) (Figure 3.4D). 

 

Figure 3.4 CTCs stained with Vimentin  
 (A).CTC number of three CTC subtypes were identified, epithelial CTCs (CK+/Vim-/CD45- 
cells), intermediate CTCs (CK+/Vim+/CD45- cells), and mesenchymal CTCs (CK-
/Vim+/CD45- cells). (B) Number of Vim+ CTCs from blood samples of different visits among 
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3.4.4 mRNA profiling of CTCs  

To further investigate the molecular signature of CTCs related to treatment resistance and 

study their association with treatment outcomes, CTCs were isolated from 13 patient samples for 

mRNA expression analysis. Using quantitative RT-PCR, a selected panel of 96 genes consisting 

of pancreatic cancer related genes, DNA damage- and cell cycle-related genes, and EMT related 

genes were used (Table 3.2). The quality of RNA was verified by the internal control, GAPDH, 

which was also used as a housekeeping gene for normalization purposes. The RNA expression 

data was analyzed using the comparative Ct method (2-ΔΔCt) and correlated to PFS of patients 

with pancreatic cancer.   

We evaluated the prognostic value of genes expressed in CTCs at after-chemo visit 

among 13 patients. Patients with low expression of BAX, a pro-apoptotic gene, had 

shorter/worse PFS (8.15 vs 14.7, P value= 0.050) (Figure 3.5); whereas the high expression 

levels of CHK1 and EZH2 are also associated with shorter PFS (7.55 vs 9.2, P = 0.043; 6.8 vs 

9.6, P = 0.0023) (Figure 3.5).  

15 patients;	(C) The proportion of Vim+ CTCs in total CTCs from blood samples of different 
visits among 15. (D) Kaplan–Meier life-table analysis of the PFS time in 12 patients. Grouping 
was done according to the persistence of high vimentin expression (Vim+% > 30%) in three 
samples (after chemo, during radio and follow-up sample). Patients with high vimentin 
expression in these three samples (red, n = 4) and patients with low vimentin expression in one 
or more samples (blue, n = 8).  
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Figure 3.5 Kaplan–Meier life-table analysis of the PFS time for patient subgroups as 
defined by mRNA expression of different genes. 
Kaplan–Meier life-table analysis of the PFS time for patient subgroups as defined by mRNA 
expression of BAX (A), mRNA expression of CHK1 (B), and mRNA expression of EZH2 (C). 
The P value is calculated by logrank test. 
 

Table 3.2 The 96 gene panel for pancreatic CTCs. 
CDH1 CD20 EZH2 JUN WEE1 MCM10 PALB2 CDH1 
KRT7 CD33 BMi1 MMP2 CCNE1 MYT1 TROP2 KRT7 

KRT14 CD34 MUC1 MMP6 CCNE2 PARP1 COL1A2 KRT14 
KRT20 CD3D NES TIMP1  CDK1 RB1 ANXA2 KRT20 
MKI67 CD45 ATDC KRAS CDKN1A FBXW7 ANXA10 MKI67 

EPCAM CD56 TWIST1 BRAF CDKN2A HSP27 RRM1 EPCAM 
BAX CD66b ZEB1 cMYC CHK1 HSP90 RRM2 BAX 
BCL2 CD90 CDH2 CTNNB1 CTNNB1 HEY1  ERCC1 BCL2 
BNIP3 PIK3CA VIMENTIN JUN FBXW7 HIF1A hCNT1 BNIP3 
TYMP MTOR GLi1 MET TP53 MSLN SMAD4 TYMP 
TYMS AKT1 MUC1 STAT1 XRCC1 PDX1 TBX4 TYMS 
DPYD  MAPK1 TGFB1 ABL1 ATM CDA MYT1 DPYD 

 

3.5 Discussion 

Patients with locally advanced pancreatic cancer, which are unresectable, are typically 

treated with chemotherapy with or without radiotherapy. However, the survival rate beyond 2 

years is less than 10%. This poor clinical outcome has been closely associated with drug 

resistance [129]. Understanding the resistance mechanisms at the molecular level brings new 
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insights in designing new therapeutic strategies. Because these emerging therapeutic approaches 

target specific molecular abnormalities, molecular characterization of tumor cells has becomes 

critical for selecting appropriate therapy. Furthermore, since tumor cells can evolve and acquire 

resistance during treatment, monitoring tumor cells for the early assessment of treatment 

response is necessary to adapt therapy and limit toxicity in non-responding patients. The 

molecular analysis of circulating tumor cells (CTCs) holds potential as a ‘real time’ biomarker in 

monitoring treatment response and tumor progression and can potential guide the selection of 

personalized therapy. 

In this study, we quantified the number of CTCs among locally advanced pancreatic 

cancer patients and analyzed changes in its protein and gene expression levels of specific 

markers in these CTCs to correlate with the outcome of the patients.  

We first demonstrated that the CTC number tends to decrease during chemotherapy and 

that the reduction of CTC number after chemotherapy is associated with longer PFS.  This is in 

agreement with previous studies in lung cancer showing that the decreases in CTC number were 

associated with better treatment response and prognosis [71], [72]. These results indicate that 

change in the number of CTC can be used as surrogate biomarker for evaluating the 

effectiveness of chemotherapy. 

Standard chemotherapeutic drugs for pancreatic cancer such as gemcitabine and 5-

fluorouracil (5-FU) eliminate cancer cells because of their DNA damaging properties [130]. γ-

H2AX, a double-strand breaks (DSBs) has emerged as a biomarker to monitor the clinical 

response to DNA targeted therapies such as DNA damaging chemotherapy drugs, ionizing 

radiation or combinations thereof [118]. To evaluate the DNA damages in the tumors during 

treatment, we characterized CTCs using DNA damage marker H2AX in four patients. H2AX+ 
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CTCs were detected at a low level (median 1 cell/ml). Interestingly, in the after-chemo sample of 

patient W126, CK-/H2AX+/CD45- cells were detected at a level of 45 cells/ml. As CK-

/H2AX+/CD45- cells may be CTCs undergoing EMT, the elevated level of H2AX+/CD45- cells 

may indicate severe DNA damage in tumor cells during the treatment with Wee1 inhibitor and 5-

FU. Indeed, so far this patient has the longest PFS among all patients (PFS 20.5 months without 

progression).  

Because cytokeratin is down-regulated in mesenchymal cells, we may miss CTCs 

undergoing EMT if we use cytokeratin as the only marker. Furthermore, as EMT has been shown 

to induce resistance to treatment in pancreatic cancer [41], CTCs with EMT phenotypes may be 

important CTC subgroups to study. To investigate the EMT properties of CTCs, we 

characterized the vimentin expression of CTCs and identified three CTC subtypes: epithelial 

CTCs, intermediate CTCs, and mesenchymal CTCs. We observed the dynamic changes of the 

proportion of Vim+ CTCs (intermediate/mesenchymal CTCs), which greatly increased during 

the treatment. The persistence of high vimentin expression in CTCs in all samples during and 

after treatment is correlated with poor prognosis. We postulated that the abundance of Vim+ 

CTCs throughout the treatment might be an indicator of tumors undergoing EMT, which is a 

significant contributor to therapy resistance and leads to tumor progression.  

Furthermore, we profiled the mRNA expression of CTCs using a 96-gene panel to 

identify additional molecular features with prognostic value in pancreatic cancer. For samples 

taken at the endpoint of chemotherapy, mRNA expression levels of three genes, BAX, CHK1 

and EZH2 are associated with poor prognosis. BAX, a member of Bcl-2 protein family, is a pro-

apoptotic gene that induces cell death. BAX expression has been found to be a stronger indicator 

of survival in pancreatic cancer [132]. As an important regulator of G2/M checkpoint, CHK1 
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inhibits CDC25 in response to DNA damage and induces cell cycle arrest to allow the repair of 

damaged DNA before cells enter mitosis [133]. In addition, CHK involves in homologous 

recombination for DNA repair. Thus due to its role in DNA damage repair, CHK1 have been 

shown to contribute to therapy resistance of DNA damage agents. EZH2 is a member of the 

polycomb group (PcG) proteins that involve in the epigenetic control of gene expression. EZH2 

has been shown to play an important role in tumor growth, liver metastasis and cancer stem cell 

self-renewal activity in pancreatic cancer [134], [135]. Inhibitors for EZH2 and CHK1 and the 

induction of BAX have been shown to sensitize pancreatic cancer cells to chemotherapy agents 

and/or radiochemotherapy [119]. This is in concordance with our findings that the high 

expression of EZH2 and CHK1 and the low expression of BAX at the endpoint of chemotherapy 

correlate with shorter PFS. Thus our data support previous results in preclinical models, 

indicating that EZH2, CHK1 and BAX may be candidate therapeutic targets in treating 

pancreatic cancer [119]. Furthermore, because, as we have illustrated, detecting the expression of 

these genes during treatment is feasible, these genes could act as makers to predict and monitor 

the treatment response of chemotherapy for pancreatic cancer patients. 

The major limitation of the current study is the small sample size. The prognostic value 

of CTCs should be further validated in a larger cohort. Moreover, a longer follow-up time might 

allow for better evaluation of the prognostic value of CTCs. We will follow these patients in long 

term for future analysis. 
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CHAPTER 4 
 

4 Tunable Thermal-Sensitive Polymer-Graphene Oxide 
Composite for Efficient Capture and Release of Viable 

Circulating Tumor Cells 
* This chapter was previously published as H. J. Yoon, A. Shanker, Y. Wang, M. Kozminsky, Q. Jin, N. 
Palanisamy, M. L. Burness, E. Azizi, D. M. Simeone, M. S. Wicha, J. Kim, and S. Nagrath, “Tunable 
Thermal-Sensitive Polymer-Graphene Oxide Composite for Efficient Capture and Release of Viable 
Circulating Tumor Cells,” Advanced Materials, vol. 28, no. 24, pp. 4891–4897, Jun. 2016 [103]. 

4.1 Abstract 

The rarity of CTCs poses huge technical challenges for its isolation and down-stream 

analysis.  Immunoaffinity based technologies can harvest CTCs with high sensitivity and purity, 

but has the drawback of tethering cells within the device. Overcoming this limitation, a highly 

sensitive microfluidic system to capture circulating tumor cells from whole blood of cancer 

patients is developed. The device incorporates graphene oxide into a thermoresponsive polymer 

film to serve as the first step of an antibody functionalization chemistry. The LCST of around 13 

°C for the polymer matrix made it possible to process blood through the device at room 

temperature. As the temperature decreases to around 5 °C, captured cells can be released for 

subsequent analysis such as standard clinical cytopathological and genetic testing. Over 90% 

capture efficiency and release efficiency is achieved. Released CTCs were viable and structurally 

intact, enabling subsequent analysis such as standard clinical cytopathological and genetic 

testing. To demonstrate the CTC capture and release in clinical samples, we processed blood 

samples obtained from 10 metastatic breast cancer patients and 3 pancreatic cancer patients. 
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CTCs were successfully recovered from 10 out of 13 samples (ranging from 2 to 20 CTCs 

mL−1). Furthermore, we examined the feasibility of detecting HER2 amplification by 

fluorescence in situ hybridization (FISH). CTCs released from the chip were made into “cell 

blocks” to perform FISH analysis and HER2 amplification was detected in CTCs isolated from 

one breast cancer patient. The downstream analysis facilitated by the efficient release of captured 

cells highlights the potential for this device's use in basic and clinical cancer investigation. 

4.2 Introduction 

With over 1600 people dying of cancer in the United States every day [120],  the 

prevention of the second leading cause of death is a clear area of research interest in the medical 

community. The spread of tumor cells to distant locations in the body, or metastasis, is the cause 

of 90% of cancer related deaths [143], presenting an impetus for the study of those cells most 

responsible for cancer mortality. Circulating tumor cells (CTCs) are those cells shed from the 

primary tumor into the blood circulation, potentially en route to forming a secondary tumor, and 

are present at the incredibly low frequency of on the order of one in one billion normal blood 

cells in the peripheral blood of cancer patients [144]. CTCs can not only provide biological 

insight into primary and metastatic tumors but also have the potential to serve as real time 

biomarkers for making treatment decisions and monitoring drug efficacy [121]. Indeed, over 270 

clinical trials have now been proposed using CTCs as surrogate biomarkers [122]. However, to 

date, CTCs have not been incorporated into clinical practice for management of patients with 

cancer. The main challenges to this field include: (i) reaching the sensitivity needed to isolate 

these extremely rare cells from the surrounding blood cells (1 in 1 billion), (ii) minimizing 

processing to preserve the viability of cells, and (iii) achieving the specificity necessary to 

acquire pure population to enable meaningful genomic and functional analysis. 
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Microfluidic technologies have emerged as a solution to isolate live CTCs from small 

amounts of blood collected from cancer patients. A common separation technique involves 

immunocapture, the tethering of an antibody against a CTC-specific marker to a surface or 

structure to bind CTCs but not the normal blood cells. Functionalized microposts have been used 

in a number of CTC isolation devices [10], [14], [23]. Antibody-functionalized silicon 

microposts for CTC capture were used in the first microfluidic device designed for this purpose, 

the CTC Chip [123]. Subsequent microfluidic CTC capture devices also featured microfeatures 

coated with antibodies, such as the geometrically enhanced differential immunocapture (GEDI) 

chip [148], chaotic micromixer HB CTC Chip [19], high throughput microsampling unit 

(HTMSU) [16] and the HD-CTC module of an integrated system [149]. These immunocapture 

devices included features fabricated from polymers such as polydimethylsiloxane (PDMS), 

poly(methyl methacrylate) (PMMA), and cyclic olefin copolymer (COC). In order to push the 

field to realize the opportunities afforded by these cells, which may be captured at early stage as 

well as mid-metastasis, orthogonal techniques and materials would be necessary to enhance the 

sensitivity. Nanomaterials provide one such avenue, with advantageous properties such as a high 

surface area to volume ratio and a length scale on the order of magnitude of extracellular 

features. Many different classes of nanomaterials have been incorporated into CTC research [23], 

[124]. One example, graphene oxide (GO) has a number of proven biomedical applications 

[125]-[127]. We have recently developed a graphene oxide (GO) based device, the GO Chip, that 

took advantage of the increased surface area afforded by graphene oxide for highly sensitive and 

selective cell capture [21]. Using this method, we were able to demonstrate the capture of CTCs 

from peripheral blood samples from pancreatic, breast, and early stage lung cancer patients with 

low white blood cell contamination. However, this device shares the common drawback across 
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most immunoaffinity based technologies reliant on antibodies attached to a surface: the 

limitation of post-capture analysis because of difficulty in releasing viable cells from the capture 

substrate.  

Thermoresponsive polymers, a class of stimuli-responsive polymers that respond to 

temperature changes by undergoing conformational changes, have found wide applications in 

drug delivery,  tissue engineering [128], controlling cell adhesion [129] and bacterial growth 

[130], protein encapsulation [131], and the release of captured CTCs from the surface of such 

capturing devices [132], [133]. Alternative CTC release techniques take advantage of alginate 

hydrogel [133], [134] or layer-by-layer assembled [161] degradable capture substrates. However, 

these approaches all feature performance limitations in throughput [134], purity requiring 

additional processing [18], ability to process blood collected by standard conditions,[133] 

immense fabrication facility requirements [18], [132], time-consuming chemistry [135], and 

inconvenient experimental temperature conditions [135].  

Graphene- and graphene oxide (GO)-based polymer composites are a new class of 

materials which combine the excellent properties of graphene, such as high surface-to-volume 

ratio, high Young’s modulus, and high thermal and electrical characteristics [136], with the easy 

processability of polymers. Such composites have found uses in fields ranging from energy 

storage [137] and electronic devices [138], [139], to biomedical applications such as drug and 

gene delivery [140], cancer therapy [141], cell differentiation [142], [143], coating of biomedical 

implants [144], [145], and bio-imaging [140].  

We hypothesized that the combined advantages of a biocompatible functionalized 

nanomaterial with a thermoresponsive polymer that promotes effective cell release could address 

the challenge of sensitive capture while simultaneously allowing viable cell release. This could 



	 66	

lead to improvement in downstream analysis such as fluorescence in situ hybridization (FISH), 

molecular analysis, and single cell analysis. We present a new tunable thermal-sensitive 

polymer-GO Chip for highly efficient capture and subsequent release of CTCs incorporated into 

a microfluidic device (Figure 4.1A).  
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Figure 4.1 Schematic concept of a polymer-GO microfluidic device 
(A) Schematic concept of a polymer-GO microfluidic device for the capture/release of CTCs. (B) 
Enclosure within polydimethylsiloxane chamber and photograph of patient blood samples being 
processed by the polymer-GO devices.  

 

4.3 Materials and Methods 

4.3.1 Polymer Synthesis 
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N-acryloyl piperidine was synthesized through reaction between acryloyl chloride and 

piperidine (Figure 4.1A) [146]. In short, 0.11 mol of piperidine and 0.12 mol of triethylamine 

were dissolved in 100 mL of dichloromethane maintained at 0-5oC. A solution of acryloyl 

chloride (0.10 mol) in 15 mL of dichloromethane was added drop-wise to the above solution 

over 2 hours under constant stirring. After complete addition, the reaction mixture was stirred at 

room temperature for 24 hours and was extracted with water and purified by column 

chromatography (hexane:ethyl acetate, 1:1) to yield colorless to light yellow liquid. N,N-

diethylacrylamide was passed through a basic alumina column prior to polymerization. AIBN 

was recrystallized from methanol before use. In a typical polymerization reaction, the required 

amount of monomers was dissolved in anisole and 0.3 mol% (of total monomer content) of 

AIBN was added to the solution. The reaction flask was completely sealed and the solution was 

purged with Argon for 20 minutes. The reaction was carried out at 65°C for 20 hours. After the 

reaction, all the solvent was evaporated at high temperature under vacuum to obtain white solid 

residue. The residue was re-dissolved in chloroform and then twice precipitated in ethyl acetate 

to obtain white solid mass. The precipitate was recovered and dried at 60°C under vacuum for 2-

3 days. 

4.3.2 Polymer Characterization 

The synthesized polymers were characterized by gel permeation chromatography (GPC, 

Waters Inc., 1515 Isocratic HPLC pump and 2414 RI detector) using 3 Styragel columns- HR2, 

HR3 and HR4 in series maintained at 35oC with chloroform as eluent (flow rate- 1 mL/min, total 

elution time- 40 min). The instrument was calibrated with polystyrene standards. LCST was 

ascertained by measuring UV-vis transmittance (Varian Cary 50 Bio) of a 0.1 wt.% aqueous 

solution of polymers as a function of temperature. A thermocouple was used for real-time 



	
	 69	

measurement of temperature, with the metal junction dipped in the cuvette during the 

measurement. For effective measurement, the polymer solution was cooled down to 2-3°C along 

with the metal cuvette holder to slow down the heating up of sample in ambient condition. CaCl2 

was placed inside the UV-vis spectrophotometer chamber to ensure humidity-free environment. 

This was necessary to prevent atmospheric water vapor from condensing on the cold cuvette 

walls. UV-vis spectrum was measured from 200-800 nm at every 0.2-0.5°C with more frequent 

measurements near the transition temperature. Transmittance at 400 nm was plotted against 

temperature and the temperature for 50% transmittance was noted as the LCST. Molecular 

weights and LCSTs of different polymer batches are noted (Table 4.1).  

Table 4.1 Molecular weights, PDI, and LCST of different batches of synthesized polymers       
used in the study 
 

Polymer Mn (kDa) Mw(kDa) PDI LCST (oC) 

P1 209.246 308.086 1.47 13.6 

P2 151.332 253.380 1.67 12.7 

P3 175.085 255.778 1.46 12.0 

P4 173.019 303.009 1.75 11.8 

 

Materials Kapton polyimide tape was purchased from Cole Parmer. Ethanol, acetone, 

chloroform, and isopropanol were solvent grade and were used without further purification. 

Surface modifying agents – (Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorsilane (HFTCS) 

and 2-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG-silane) – were purchased from 

Gelest Inc. Microscope glass slides were purchased from Fisher.  

 

4.3.3 Device Fabrication 
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The glass slides were sequentially washed with chloroform, acetone, and isopropanol via 

sonication for 5 minutes each. The glass slides were then air dried and treated in a UV-ozone 

generator for 30 minutes to remove any carbon contamination and to obtain a high density of 

surface hydroxyl groups. The cleaned substrates were patterned using Kapton tape by masking 

the active device area. Kapton tape was chosen for its impermeability to silane vapors and good 

stability at high temperatures. The patterned substrates were then cleaned with wipes dipped in 

ethanol to remove any adhesive residue and treated with HFTCS via vapor phase surface 

modification at 100°C for 30 minutes. HFTCS treatment results in hydrophobic fluoroalkyl 

groups on the unmasked peripheral regions of the substrates which prevent the use of any 

physical confining barrier to pattern the device with polymer-GO film by drop-casting method. 

After HFTCS treatment, the Kapton tape mask was removed and the glass slides were washed 

with copious amounts of ethanol to remove any physisorbed silane as well as any adhesive 

residue. The second surface modification was done in liquid phase by immersing the glass slides 

in 3.35mM of PEG-silane in ethanol for 12-15 hours. Subsequently, the glass slides were again 

washed with ethanol to remove any physisorbed silane. A polymer-GO blend solution containing 

10 mg/mL of polymer in 975 µL DMF and 25 µL of GO-PEG solution was then drop-casted in 

requisite amount on the surface modified glass substrates and allowed to dry at 60°C in an oven. 

The PDMS chamber was assembled on the glass substrate with polymer-GO composite film 

through corona discharge to produce a microfluidic device (Figure 4.2). 
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Figure 4.2 Schematic for CTC device fabrication 

4.3.4 Fluorescent biotin assay 

To verify the ability to immobilize biotinylated antibody to the polymer-GO film surface, 

surface coverage by a fluorescently labeled biotin (Biotin (5-fluorescein) conjugate, Sigma 

Aldrich) was assessed (Figure 4.3A). Three polymer-GO films underwent the entirety of the 

conjugation chemistry (i.e. treatment with the GMBS crosslinker and NeutrAvidin; termed 

“Condition”) with fluorescent biotin addition as the terminal step. To account for non-specific 

binding, three polymer-GO films were treated only with the fluorescent biotin to serve as a 

control in an analogous fashion to an isotype control (termed “Control”). ImageJ was used to 

quantify the fluorescence. This technique showed a statistically significant increase in 

fluorescence intensity relative to the control (Figure 4.3B). 
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Figure 4.3 Fluorescent biotin assay to verify the immobilization biotinylated antibody. 
(A) Schematic represents fluorescent biotin assay and negative control. (B) The full conjugation 
chemistry features statistically higher fluorescence than the negative control as assessed via 
optical density (p = 0.019). 
 

4.3.5 Cell labeling for optimization experiments 

Cells were stained with CellTracker™ Green CMFDA Dye (ThermoFisher Scientific) 

according to the manufacturer’s protocol. The staining process takes approximately two hours 

and was performed in parallel with device preparation. 

4.4 Results 

4.4.1 Thermal-Sensitive Polymer-Graphene Oxide Composite Synthesis 

In the current work, the microfluidic device bottom substrate was coated with a 

composite film of functionalized GO dispersed in a matrix of thermoresponsive polymer with a 

lower critical solution temperature (LCST) of 13°C. Surface available functionalized GO 

(described below) provided anchors for attaching the CTC capture antibody while the polymer 

matrix provided temperature dependent modulation of capture or release functionality. The 

microfluidic assembly facilitated the processing of patient blood samples within a simple planar 

device (Figure 4.1B). Drop-casting the polymer-GO blend on a patterned and surface modified 
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substrate made such a device cheap and easy to fabricate. Moreover, the LCST of around 13°C 

for the polymer matrix made it possible to use the device at room temperature as opposed to 

higher temperatures [18], such that there are no concerns about inadvertently releasing the cells 

during the capture step. Additionally, cell release occurred under gentle conditions, maximizing 

the viability of released cells. The consolidation of the advantageous properties of GO-based 

capture with superior release functionality of the chosen polymer yielded a device that enables 

the study of these clinically interesting cells without many of the shortcomings of past 

technologies (Table 4.2), while simultaneously presenting an easy, scalable fabrication method. 

Table 4.2 Comparison of CTC isolation technologies 
Both commercially available and recently developed CTC isolation technologies are compared 
across multiple relevant metrics and abilities, showing the high versatility and performance of 
the technology put forth in this work. [21], [71], [146]-[151] 
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To create a tunable thermal responsive polymer, copolymer poly(N-acryloyl piperidine-

co-N,N-diethyl acrylamide) was synthesized via free radical polymerization using AIBN as an 

initiator and was characterized for its molecular weight and LCST (Figure 4.4A). LCST was 

modulated by employing a copolymerization technique using two acrylamide monomers with 

different degrees of hydrophobicity: N-acryloyl piperidine (AP) and N,N-diethyl acrylamide 

(DEA). The homopolymers poly(N-acryloyl piperidine) (PAP) and poly(N,N-diethyl acrylamide) 

(PDEA) have LCSTs of 4oC and 25oC respectively [152]. The required capture/release 

modulation temperature for the CTC device can be achieved by changing the ratio of the two 

monomers in the copolymer. For example, a copolymer synthesized with 7:3 molar ratio of 

AP:DEA showed a critical temperature of around 12-13oC, which was used in this study (Figure 

4.4B).  
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Figure 4.4 Polymer-GO composite 
(A) Synthetic scheme for copolymer. (B) UV-vis transmittance vs temperature plots for different 
polymer batches. (C) SEM image of polymer-GO surface. Arrows indicate GO. (D) 
Fluorescence images of polymer-only and polymer-GO films. Dye incubation was done at 40°C. 
Scale bar: 20.0 µm. 
 

4.4.2 Antibody Functionalization Chemistry 

GO nanosheets were functionalized with phospholipid-polyethylene-glyco-amine 

according to an earlier reported method [21]. The polymer-GO nanocomposite films were 

prepared through drop-casting a DMF solution of polymer and functionalized GO. The drop-cast 

films were dried at 60°C in oven for 2-3 hours to yield 3-4 µm thick composite film. Figure 4.4C 

shows the SEM image of Polymer-GO composite surface. The polymer-GO microfluidic devices 

for cell capture and release were fabricated in two steps (Figure 4.2). Poly(ethylene glycol) 
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(PEG) is well known to render surfaces non-fouling [153]. The PEG monolayer was necessitated 

to avoid recapturing of the released CTCs on the glass substrate. In the first step, the polymer-

GO composite film was deposited on a patterned and surface modified glass substrate followed 

by assembly with a PDMS chamber to form a microfluidic device. In the second step, the device 

was functionalized by immobilizing anti-EpCAM on the surface available GO through a cross-

linker and avidin-biotin mediated bio-conjugation, providing cell capture/release functionality.  

To show the surface availability of the amine groups from the GO-PEG in polymer-GO 

composite films, the drop-cast films were incubated with 0.25mM aqueous solution of an amine 

reactive dye, FSE (5-(and-6)-carboxyfluorescein, succinimidyl ester; Life Technologies (C1311)) 

for 30 minutes at 40°C and then washed with copious amount of DI water. The dye treated films 

were then imaged with fluorescence microscope (Olympus BX51 coupled with Olympus DP71 

camera and EXFO X-cite Series 120 light source). While polymer-GO composite films showed 

bright green fluorescence from the surface tethered dye, polymer-only films showed very low to 

no fluorescence (Figure 4.4D). Though the possibility of physically adsorbed dye molecules 

cannot be completely ruled out, it is most likely that the dye molecules were primarily tethered to 

the surface through covalent bonding between the amine groups on film surface and 

succinimidyl ester groups on the dye, as suggested by large contrast in fluorescence intensity 

from polymer-GO and polymer-only films. Time dependence of dissolution of polymer-GO 

composite films in cold water was also determined. Dye treated films were dipped in cold water 

for different lengths of time and the fluorescence images before and after dipping were 

compared. Films were dipped in cold water (5°C) for 5, 10, 20, and 30 minutes, and in room 

temperature water (20°C) for 30 minutes. The beakers with the dipped films were kept on an 

orbital shaker to weakly simulate conditions in microfluidic devices where the films are 
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subjected to shearing by the flowing fluids. Figure 4.5 shows the fluorescent images of the films 

before and after dipping in water at 5°C. 

 

 

Figure 4.5 Fluorescence microscopy images of polymer-GO films in either cold (5°C) or 
room temperature (20°C) water. 
Fluorescence microscopy images of polymer-GO films incubated with FSE dye before and after 
being dipped in either cold (5°C) or room temperature (20°C) water for the specified time 
durations. Scale bar: 200 µm 
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To verify the steps of the conjugation chemistry, experiments were performed to compare 

capture by (1) a polymer film lacking GO alone; (2) a polymer film lacking GO with the addition 

of anti-EpCAM; and (3) the polymer-GO film with full conjugation chemistry. The two control 

films showed significantly lower levels of capture with the polymer film and the polymer film 

with antibody capturing at 6.4% and 11.0% the level of the full chemistry, respectively (Figure 

4.6A), with the increase in capture of the polymer with antibody condition a likely a result of 

physically adsorbed anti-EpCAM. This also suggests that very little of the capture antibody on 

the fully functional device is non-specifically bound. 
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Figure 4.6 Cell Capture and Release Efficiency 
(A) Capture efficiency of microfluidic devices featuring only the thermosensitive polymer, the 
thermosensitive polymer and non-specifically bound anti-EpCAM, and the polymer-GO film 
with specific conjugation chemistry as normalized by this last condition. (B) Cell capture 
efficiency of the microfluidic polymer-GO device at various flow rates evaluated using a breast 
cancer cell line (MCF-7). Error bars show standard deviations (n=6). (C) Capture efficiency of 
cell lines of varying origin and EpCAM expression levels. MCF-7 (n=8), PANC1, H1650, 
LNCaP, Hs578T (n=6). (D) Release efficiency of the microfluidic polymer-GO device (MCF-7 
cells were spiked into 1 mL of buffer or blood). (E) Fluorescence microscope images of devices 
after capture and release (MCF-7).  
	

4.4.3 Cell Capture and Release Efficiency 

To test the performance of the GO-polymer device for CTC capture, fluorescence labeled 

human breast cancer cell lines MCF-7 cells (1,000 cells/mL) were spiked into buffer and flowed 

through the GO-polymer device at different flow rates (1-10 mL/hr). The captured cells in the 

device and the non-captured cells collected in the waste were then counted. As expected, the 

capture efficiency decreased with flow rate. We observed that the efficiency rapidly decreased at 
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flow rates ≥ 5mL/hr. In the 1–3 mL/h range, the average capture efficiency was over 88.2% (n = 

6 at each flow rate) (Figure 4.6B) with the highest capture of 95.21% at 1mL/hr. To further 

investigate the effect of tumor type and EpCAM expression on capture efficiency, three high 

EpCAM expressing cell lines for various cancer types (MCF-7 breast cancer cells, LNCaP 

prostate cancer cells, and H1650 lung cancer cells), one low EpCAM expressing cancer-cell line 

(Panc-1 pancreatic cancer cells), and one EpCAM negative cancer cell lines (Hs578T breast 

cancer cells) were selected for capture experiments at the flow rate of 1 mL/hr. The cells were 

fluorescently labeled and spiked into buffer at a concentration of 1000 cells/ml. The results in 

Figure 4.6C indicate that the anti-EpCAM-coated GO-polymer device achieved high capture 

efficiency (84.93-95.21%) for EpCAM-positive cancer cells. In contrast, a relatively low number 

of EpCAM-negative cells (Hs578T) were captured. Furthermore, the device is comparably 

effective in capturing different tumor cells, indicating the robust sensitivity of the device.  After 

capturing cells on the devices, cell release experiments were carried out by flowing 1 mL PBS 

through the devices in a room maintained at 5°C at 100 µL/min (Figure 4.6E). Quantification of 

the cells in the devices before and after release showed an average cell release of 95.21% and 

91.56% in buffer and blood experiments, respectively (Figure 4.6D). The released cells are 

linked with GO nanosheets through the antibody-GO conjugation. Graphene oxide nanosheets 

have been demonstrated to have good biocompatibility and can enhance cell proliferation [154]. 

We tested the viability of the released cells by live dead assay, 91.68% of cells remained viable 

after release (Table 4.3). The high viability of released cells enables further cell expansion and 

functional experiments. 
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Table 4.3 Experimental results from Live/Dead assay (MCF-7). 
 

Device	
Live cells 

after release	
Dead cells 

after release	
Live/Dead (%)	

D1	 264	 22	 92.31	

D2	 353	 7	 98.06	

D3	 174	 10	 94.57	

D4	 270	 35	 88.52	

D5	 152	 27	 84.92	

Average	 91.68	

 

4.4.4 CTC Isolation and Analysis from Clincial Samples  

To demonstrate the CTC capture and release in clincial samples using the tunable 

polymer-GO composite film based device, we processed blood samples obtained from 10 

metastatic breast cancer patients and 3 pancreatic cancer patients. Whole blood samples collected 

into EDTA tubes were processed at a flow rate of 1 mL/hr. Following a washing step, cells were 

released from the chip and deposited/spun onto glass slides by a cytospin centrifuge. CTCs in 

these samples were identified as DAPI-positive (shown in blue) nucleated cells staining positive 

for tumor markers (cytokeratin 7/8, visualized with a secondary antibody tagged with Alexa 

Fluor 546, shown in red) and negative for leukocyte markers (CD45, visualized with a secondary 

antibody tagged with Alexa Fluor 488, shown in green) (Figure 4.7A, B). CTCs were 

successfully recovered from 8 breast cancer patient samples and 2 pancreatic cancer patients 
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(ranging from 2 to 20 CTCs/mL) (Figure 4.7C). The average number of CTCs recovered from 

breast samples was 5.6 CTCs/mL and from pancreatic samples was 8.3 CTCs/mL.  

 

Figure 4.7 CTC isolation and analysis from clinical samples 
(A) Fluorescence images of CTCs from breast cancer patient sample. Nucleated cells (blue) 
staining positive for cytokeratin 7/8 (red) and negative for the white blood cell marker CD45 
(green) were enumerated as CTCs. Scale bar = 10 µm. (B) CTC enumeration results from 10 
breast cancer patients and 3 pancreatic cancer patients. (C) Fluorescence in situ hybridization 
(FISH) image of CTCs of breast cancer patient sample Br10. HER2 (green)/centromere 17 
probe(red). 
 

Released CTCs were viable and structurally intact, and hence could be readily 

investigated via standard clinical cytopathological and genetic testing. Here, we examined the 

feasibility of detecting HER2 amplification by fluorescence in situ hybridization (FISH). CTCs 

released from the chip were subsequently made into “cell blocks” by first fixing them with 

ethanol and then embedding them in Histogel (Thermo Scientific). Blocks were then formalin 

fixed and stored in 70% ethanol until slide preparation. Blocks were paraffin embedded and 

sectioned at the University of Michigan Histology Core. FISH was conducted using probes for 

HER2 (BAC clone RP11-94L15) and chromosome 17 control probe (BAC clone RP11-100E5), 

revealing HER2 amplification in one breast cancer patient (Figure 4.7D). FISH hybridization and 

image capture were performed essentially as previously described [155]. One green signal 
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indicates the presence of one copy of HER2, while one red signal indicates one copy of 

centromere 17 probe; the multiple green signals in the figure imply HER2 amplification. 

The downstream analysis facilitated by the efficient release of captured cells highlights 

the potential for this device’s use in basic and clinical cancer investigation. Through the 

incorporation of a composite that combines the advantages of a temperature-sensitive modality 

and sensitive nanomaterial-enabled capture, the polymer-GO film that serves as the basis of this 

technology overcomes some of the key shortcomings of previous CTC capture technologies 

(Table 4.2). As evidenced by data obtained from physiologic solutions containing spiked labelled 

cancer cells from multiple cancers and the processing of primary breast and pancreatic cancer 

patient blood samples, isolation of these rare cells with this device is highly feasible, completing 

the first step to unlocking the research opportunities presented by CTCs.  

4.5 Conclusion 

Compared with other CTC isolation strategies, immunoaffinity based technologies 

harvest CTCs with high sensitivity and purity [156], but has the drawback of tethering cells 

within the device. Overcoming this limitation, we are able to collect viable and intact CTCs in 

suspension after immunocapture, making it ideal for various downstream analysis that requires 

the high integrity and purity of the targeted cell population, such as genotyping and single cell 

profiling.  This advanced analysis of CTCs could become a ‘real-time’ indicator to develop 

personalized therapy, as well as to bring valuable insights into the mechanism underlying cancer 

metastasis. Due to the low cost and ease of fabrication, this technology is scalable for 

commercialization. Future study will optimize it for large-scale clinical study and investigate its 

clinical utility for therapeutic marker discovery, treatment selection, and management.  

	



	 84	

	

	

	

CHAPTER 5 
 

5 HBGO chip for High Throughput Circulating Tumor Cell 
Isolation  

5.1 Abstract 

To improve the throughput for CTC isolation, we incorporated a herringbone mixer to the 

existing GO chip. We further optimized the design of the herringbone mixer to maximize the 

collision of cells with the substrate of microchannels, resulting in a herringbone (HB) GO chip 

(HBGO chip) for efficient CTC capture at high flow rate. The grooved-herringbone mixer consists 

of repetitive mixing units, each of which has a set of twelve chevrons staggered asymmetrically 

with another set of twelve chevrons. The average cell capture efficiency for the unmodified GO 

Chip dramatically dropped below 70% at 50 and 100 µL/min, and further decreased below 50% 

at 200 µL/min, whereas the HBGO Chip maintained a target yield of > 80% up to 200 µL/min 

with no significant decrease in overall capture efficiency. Moreover, up to a flow rate of 200 

µL/min, > 90% of cells were viable, which is equivalent to the cell viability at lower flow rates.  

We further analyzed the spatial distribution of the cells captured on the chip surface and 

investigated the correlation between the channel length and flow rates at different capture 

efficiencies (60%, 70% and 80%). At the flow rate ranging from 50 to 200 µL/min, there is a 

strong linear relationship between flow rate and the required channel length to achieve a specific 

capture efficiency. 
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5.2 Introduction 

Metastasis is responsible for over 90% of cancer-associated death. It is widely accepted 

that the development of metastatic disease is mediated by circulating tumor cells (CTCs) that are 

shed from the primary tumor and circulate through the bloodstream of cancer patients. 

Consequently, CTCs holds great potential to act as a biomarker in the area of predicting disease 

progression, real-time monitoring of tumor status, and identifying novel therapeutic targets. 

However, CTCs are rare with a frequency of only 1-10 present in one mL of patient blood 

surrounded by billions of blood cells, which poses significant challenges for CTC isolation and 

analysis.  

Microfluidic technologies have emerged as a solution to isolate CTCs as they 

provide large surface area-to-volume ratio and high precision flow control. Many microfluidic 

devices have been developed based on the immune-affinity based capture strategy, which takes 

advantage of proteins expressed on the cell membrane of CTCs but not on blood cells resulting 

in a high-purity isolation. Antibodies against antigens of tumor cells, such as the epithelial 

cellular adhesion molecule (EpCAM), are tethered to the surface of the microfluidic channels to 

capture CTCs. However, one major drawback of immune-affinity based capture devices is the 

low throughput, typically ranging from 1 to 3 ml blood per hour, which limits the blood volumes 

that could be analyzed. Small blood volume used for CTC analysis results in a statistical 

variability associated with rare event detection [88] and may fail to capture the inherent 

heterogeneity of CTCs.  

We have previously developed a nanomaterial based microfluidic device, the GO chip, 

which consists of a microfluidic chamber and a substrate coated with graphene oxide (GO) 

nanosheets where the antibodies are tethered [21]. The throughput of the GO chip for processing 
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blood samples is only 1mL/hr. This is because that under laminar flow condition within 

microchannels, cells follow streamlines and have minimal diffusion across the flow channel. 

Under high flow rates, cells are likely to flow out of the chamber without being in close 

proximity with the antibodies coated on the substrate of the GO chip (as shown in Figure 5.1A). 

Therefore, to improve the throughput of the current GO chip, we need to design a structure to 

disrupt the streamlines and maximize the interactions of cells with the antibody-coated substrate 

of the microchannels. 

Herringbone micromixer, which incorporates arrays of herringbone-like micro-structures, 

can enhance the transverse flow and generate chaotic mixing in microchannels [188]. The 

geometries of the herringbone micromixer has been studied to maximize and direct the cell -

surface interactions [189]. The incorporation of herringbone structure into several CTC isolation 

platforms has generated high capture efficiency at a relatively high throughput [19], [79], [157]. 

However, different from most of the devices in which antibodies are coated on both the bottom 

and the walls of microchannels, the GO chip needs to be engineered in a way that the flow 

pattern directs the cells to the substrate where the antibodies are present.  

 Herein, we optimized the design of the herringbone-mixing channel to maximize the 

collision of cells with the substrate of microchannels and developed a herringbone GO chip 

(HBGO chip) for high throughput CTC capture.  
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Figure 5.1 Design rationale of the HBGO-CTC Chip 
Schematic illustration and time elapse fluorescent image of the trajectory of cell flowing through 
the GO chip (A) and the HBGO chip (B). 
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5.3 Materials and Methods 

5.3.1 Fabrication of System Manifold and HBGO-CTC Chip 

The design of the system manifold was created by CAD software (Solidworks) and 

fabricated using a high-resolution 3D printer (Projet 3500 Max). An acrylic based resin, M3 

crystal, was used for the printing process for its mechanical integrity and biocompatibility. Each 

component including the pump, heparin injector, power source, and micro controller were placed 

in the designated compartment and enclosed. The production of the HBGO-CTC Chip involved 

two separate processes. First, to fabricate the chip substrate, Cr and Au was evaporated onto a 4-

inch silicon dioxide wafer and patterned. The wafer was then diced into individual pieces. Next, 

to fabricate the PDMS (polydimethylsiloxane) structure, a silicon master mold was created by 

standard photolithography. Negative photoresist (SU-8 2050, MicroChem) was patterned on a 4 

inch bare silicon wafer using two separate masks: one for the main fluidic channel (40 µm 

height) and the other for the herringbone grooves (60 µm). The height of each layer was 

measured after each process with a surface profilometer (Veeco Dektak 6M). PDMS pre-

polymer mixed with cross linkers at a 10:1 weight ratio was poured onto the mold, degassed, and 

baked in an oven at 65°C for 24 hours. The cured PDMS structure was then carefully peeled off 

and cut. At last, two through holes were punched at both ends of the channel to feed and connect 

tubing.  
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5.3.2 HBGO-CTC Chip Assembly and Surface Functionalization 

To chemically modify the chip surface, tetrabutyl ammonium hydroxide intercalated GO 

nanosheets grafted with phospholipid-polyethylene glycol-amine were prepared and assembled 

on the gold patterned silicone dioxide substrate as described previously [21]. [103]. The 

substrates and PDMS replicas were subjected to oxygen plasma treatment and bonded to form 

the final device. N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS) was flowed through the 

chip using a syringe pump (Harvard apparatus) and incubated for 30 min. The chip was then 

flushed with 70% ethanol to pre-sterilize the inner chamber wall. Subsequently, neutravidin and 

biotinylated anti-EpCAM antibody was introduced followed by 3% bovine serum albumin 

(BSA) to block the remaining binding surface. 

5.3.3 Cell Culture and Labeling 

Human epithelial breast cancer cell line MCF-7 was purchased from the American Type 

Culture Collection (ATCC, LGC Standards). MCF-7 cells were cultured at 37°C with 5% CO2 

and maintained by regular passage in complete media consisting of Dulbecco’s Modified Eagle’s 

Media (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution 

(GIBCO®, Life Technology). When cells reached a confluency of 70-80%, they were collected 

and fluorescently labeled with green cell tracker dye (Invitrogen, CellTracker Green CMFDA, 

C7025) for cell capture experiments.  

5.3.4 Cell Viability Assay 

To measure cell viability after processing samples through the HBGO CTC-Chip, a 

live/dead viability/cytotoxicity assay kit (GIBCO®, Life Technology) was used. The chip was 
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washed with 1× PBS (phosphate buffered saline, GIBCO®, Life Technology) after capturing the 

cells. Subsequently, a live/dead reagent consisting of calcein AM and ethidium homodimer-1 

was prepared according to the manufacturer’s instruction and applied. Following 30 min 

incubation, cells were imaged and manually counted under a fluorescent microscope for 

quantification. 

5.4 Results and discussion 

5.4.1 Design of HBGO CTC-Chip 

The HBGO-CTC Chip consists of a 24.5 × 60 mm silicon dioxide substrate with gold 

patterned thin film layer bonded to a polydimethylsiloxane (PDMS) structure containing four 

bifurcating microchannels with herringbone grooves embedded on their top surface. Functional 

GO nanosheets are assembled onto the gold layer presenting high density of anti-EpCAM 

antibodies on the substrate surface through chemical cross-linkers (Figure 5.2A). The geometry 

of the herringbone structure has been determined based upon previous designs used for chaotic 

mixing at low Re number (laminar flow). However, in order to maximize the cell to substrate 

contact frequency, unlike early devices where the interaction mainly takes place near the 

grooves, several modifications have been applied for optimization.  

The grooved-herringbone (HB) mixer consists of repetitive mixing units, each of which 

has a set of twelve chevrons staggered asymmetrically with another set of twelve chevrons. 

(Figure 5.2B). The distribution of these points where a vertical drag force is induced by adjacent 

micro vortexes increased the chance for cells to be directed toward the antibody coated substrate. 

The dimension of the groove height, width, and spacing was also adjusted to decrease the 

hydraulic resistance in the groove. This unbalanced resistance between the channel and grooves 
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increased the overall fluidic circulation by deflecting a significant portion of fluid and cells into 

the groove, and subsequently, improved the interactions of cells with the channel bottom when 

cells exit he grooves. Cells flowing through the herringbone moved in a zigzag trajectory until 

captured which increased its traveling time and distance within the chip (Figure 5.1B).  Forbes et 

al. demonstrated that the ratio of the groove width and the groove spacing has a significant effect 

on the pattern and frequency of particle-surface interaction[191]. The simulation results showed 

that when the groove width increased to over 3 times of the groove spacing, the hydraulic 

resistance in the groove decreased significantly, allowing for a large portion of the particles in 

the fluid to enter and flow along the grooves. Therefore, the groove width was selected to be four 

times of the groove spacing to maximize the surface contact of the streamlines with the channel 

bottom for high-performance cell capture (Figure 5.2B). The final dimension of the PDMS 

structure was as followed: overall height of the main fluidic channel was 40 µm, with a groove 

height set to 60 µm; the groove pitch and width was 200 and 160 µm respectively and the angle 

between the chevrons was 45°.  
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Figure 5.2 Characterization of the HBGO-CTC Chip 
(A) Schematic of the chip demonstrating the device dimension and the surface chemistry. (B), 
the layout of the herringbone structure with detailed parameters and SEM image illustrating the 
structure of the herringbone grooves. (C), Comparison of the CTC capture efficiency using the 
GO-CTC chip and HBGO-CTC Chip. Time elapse fluorescent image showing the trajectory of 
cell with in the two chips. (D), Cluster of tumor cells captured on the chip, labeled with green 
cell tracker dye and stained with a nuclear stain (DAPI). (E), the viability of tumor cells captured 
on the chip at 200 µL/min using LIVE/DEAD assay, live cells stained with Calcein-AM (green) 
and dead cells with EthD-1 (red). 
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5.4.2 Evaluation of HBGO-CTC Chip by Capture of Cancer Cell Lines 

To validate the performance of the HBGO-CTC Chip for CTC capture at high flow rates, a 

flat chamber GO-CTC Chip previously reported was used for comparison. Human breast cancer 

cell-line, MCF-7 cells were labeled with a fluorescent cell-tracker dye and spiked into 5 mL of 

PBS buffer solution with a concentration of 50-200 cells/mL. After processing the samples, both 

cells captured on-chip and non-captured cells collected in waste were counted to calculate the 

capture efficiency. At a flow rate of 1 mL/hr (16.67 µL/min), where most affinity based 

microfluidic devices operate, the GO chip showed high capture efficiency (mean yield > 90%) 

[21]. However, at higher flow rate, the average cell capture efficiency for the GO-CTC Chip 

dramatically dropped below 70% at 50 and 100 µL/min, and further decreased to below 50% at 

≥200 µL/min. In contrast, the HBGO-CTC Chip maintained a target yield of > 80% up to 200 

µL/min with no significant decrease in overall capture efficiency which indicates that the 

herringbone mixer improved cell surface interaction (Figure 5.2C). The drop of capture 

efficiency of GO chip at high flow rate is due to two reasons: (1) the reduced resident time that 

the cells flow through the chip; (2) the increased shear force to overcome the cell adhesion force 

or disrupt adhesion bonds [158]. Whereas, The HBGO-CTC Chip achieves high capture 

efficiency up to 200 µL/min because of the improved interactions of cells with the channel 

bottom and the increased resident time of cells moving in the zigzag trajectory. 

 In addition, cell viability was assessed at different flow rates to determine the effect of 

shear force induced by increasing flow rates during the isolation process. Cell viability was one 

of the critical factors as low viability could adversely affect further downstream analysis of the 

captured cells. Greater than 90% of cells remained viable at the flow rate of 200 µL/min (Figure 

5.2D). Moreover, majority of cell aggregates spiked into buffer to mimic CTC clusters preserved 
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their shape and were intact upon isolation. However, at 300 µL/min, the high shear stress results 

in the significant decrease of the cell viability (70%) and the dissociation of cell aggregates. 

The spatial distribution of the captured cells along the channel was also analyzed by 

dividing the flow chamber of the chip into ten areas (the length of each area is 5mm) (Figure 

5.3A). At a flow rate of 50 µL/min, a wide spread distribution was observed in the GO Chip, 

whereas most cells were captured near the inlet of the HBGO Chip. Over 70% were captured 

within the first 20% of the device. When the flow rate increased to 300 µL/min, the location of 

these cells became more scattered along the chip resulting in a mean yield of <70%. We further 

investigated the correlation between the minimum required length of the channel and the flow 

rates at different capture efficiencies (60%, 70% and 80%) (Figure 5.3B). At the range of 50 ~ 

200 µL/min, a strong linear relationship between the flow rate and the required channel length to 

achieve a specific capture efficiency was observed (Figure 5.3C). We speculated that the channel 

length increased linearly in order to compensate for the reduced duration that cells interacts with 

the substrate per unit length at higher flow rate. However, as the flow rate increased from 100 

µL/min to 300 µL/min, the required channel length appeared to increase exponentially to achieve 

a capture efficiency of 60%, which may be caused by the increased shear disrupting the antigen-

antibody bonding, in addition to reduced residue time. These results provide us rationale for 

optimizing the chip geometry and selecting the proper flow rate. For instance, at the flow rate of 

50 µL/min, the channel length could be decreased to 30 mm to achieve 80% capture efficiency 

while minimizing possible cell damages caused by shear stress. Higher flow rates could be 

achieved by increasing the width of the channels or by stacking multiple chips together. 

As only a few data points are available, the interpretation of graphical data may be 

adversely affected by random errors in experiments. For future study, the relationship between 
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channel length and flow rate will be further investigated using a single unit cell of the HBGO 

chip, which is 1/4th the width and twice the length of the original chip. Due to the difference in 

scale, the flow rates tested in the unit cell should be 1/4th of those in the full size HBGO chip. The 

capture efficiency and the distribution of captured cells along the chip will be characterized at 

the flow rate ranges from 10 to 100 µL/min.  

 

 

 

Figure 5.3 The spatial distribution of the cells captured on the HBGO-CTC Chip 
(A), Spatial distribution of the captured CTC captured along the channel. (B), The 
relationship between the minimum required channel length and the flow rate at different 
capture efficiencies (60%, 70% and 80%). (C), The linear relationship between the flow 
rate and the required channel length to achieve a specific capture efficiency (60%, 70% 
and 80%). 
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CHAPTER 6 
 

6 Conclusions  
	

6.1 Summary of Research 

6.1.1 Monitoring dynamic changes of PD-L1 (+) CTCs during 
radio(chemo) therapy in NSCLC  

The feasibility of monitoring dynamic changes of PD-L1 (+) CTCs is demonstrated 

among 12 NSCLC patients undergoing radiation or radiochemotherapy. CTCs were detected in 

all 36 samples (100%), and PD-L1 (+) CTCs were detected in 24 samples (66.7%). After the 

initiation of radiation or radiochemotherapy, the proportion of PD-L1 (+) CTCs in total CTCs 

increased significantly, indicating the upregulation of PD-L1 expression in tumor cells during 

radiation. This validates previous findings in preclinical models that PD-L1 expression in the 

tumor environment increased after the initiation of radiation, which provides a rationale for the 

combination of anti-PD-1/PD-L1 immunotherapy and radiation therapy. In addition, patients 

who were PD-L1 positive (> 5% of CTCs stained with PD-L1) at baseline had shorter PFS time, 

suggesting that PD-L1 expression in CTCs may have prognostic value among non-metastatic 

NSCLC patients. 
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6.1.2 Investigating the potential of CTCs for monitoring tumor status 
and predicting treatment response in locally advanced pancreatic 
cancer 

CTC isolation and analysis may act as a ‘real time’ biomarker to monitor treatment 

response for pancreatic cancer patients. In this study, CTCs were isolated via the GO chip from 

blood samples taken at different time points during the course of chemotherapy and subsequent 

radiation therapy among 26 patients with the locally advanced pancreatic cancer. Either the 

increase of CTC number after chemotherapy or the persistence of high expression of Vimentin in 

CTCs throughout the treatment course is correlated with poor prognosis. In mRNA profiling of 

CTCs, the expression levels of three genes, BAX, CHK1 and EZH2, are associated with poor 

prognosis, which is in line with previous preclinical studies showing that these three genes are 

involved in drug resistance. This study highlights the clinical utility of assessing the molecular 

features of CTCs and monitoring the changes of CTCs over the treatment course. 

6.1.3 Tunable Thermal-Sensitive Polymer-Graphene Oxide Composite 
for Efficient Capture and Release of Viable Circulating Tumor Cells  

A highly sensitive microfluidic system to capture circulating tumor cells from whole 

blood of cancer patients is presented. The device incorporates graphene oxide into a 

thermoresponsive polymer film to serve as the first step of an antibody functionalization 

chemistry. As the temperature decreases to around 5 °C, the polymer-GO composite detaches 

from the microfluidic chamber, and subsequently captured cells are released and thus become 

available for standard clinical cytopathological and genetic testing such as fluorescence in situ 

hybridization (FISH). Over 90% capture efficiency and release efficiency is achieved. CTCs 

were successfully recovered from 10 out of 13 samples (ranging from 2 to 20 CTCs/mL). HER2 

amplification was detected via FISH analysis from released CTCs from a breast cancer sample.  
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The downstream analysis facilitated by the efficient release of captured cells highlights the 

potential for this device's use in basic and clinical cancer investigation. 

6.1.4 HBGO chip for High Throughput Circulating Tumor Cell Isolation 

A high throughput immunoaffinity based CTC isolation platform, the HBGO chip, was 

developed by incorporating a herringbone mixer into the GO Chip. To generate micro vortices to 

direct cells toward the bottom of the microchamber, twenty-four chevrons, two sets of twelve 

staggered asymmetrically, was defined as a single herringbone mixing unit and periodically 

shifted along the channel axis to place the vertex points with a spacing of 25 µm. The average 

cell capture efficiency for the unmodified GO Chip dramatically dropped to below 50% at 200 

µL/min, while the HBGO Chip maintained a target yield of > 80% up to 200 µL/min. The 

correlation between the channel length and flow rates at different capture efficiencies (60%, 70% 

and 80%) was further investigated. At the range of 50 ~ 200 µL/min, a strong linear relationship 

between flow rate and the required channel length to achieve a specific capture efficiency was 

observed.  

6.2 Limitations and Future Directions 

6.2.1 CTC isolation technologies 

In the past two decades, various CTC isolation platforms are developed based on the 

differences between tumor cells and surrounding blood cells such as varying expression patterns 

of membrane proteins or physical characteristics. Based on these different design principles, 

CTC isolation technologies can be categorized into immunoaffinity based isolation and physical 

properties based isolation [4]. The ultimate goal of CTC isolation is to capture CTC with (1) high 
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capture efficiency, (2) high purity of CTCs by removing surrounding blood cells, and (3) high 

throughput for handling large volumes of blood sample, and (4) the feasibility for downstream 

analysis [159].  

Immunoaffinity based technologies isolate CTCs using antibodies against cell surface 

markers that are expressed by tumor, but not by leukocytes. Anti-Epithelial cell adhesion 

molecule (EpCAM) is the mostly commonly used antibody as it is universally expressed in cells 

of solid tumors. The advantage of immunoaffinity based CTC isolation strategy is high purity of 

the isolated CTCs, which is important for downstream analysis, as contaminating leukocytes will 

affect the accuracy of the analysis [159]. Moreover, many immunoaffinity based platforms can 

process whole blood directly without any preprocessing process such as red blood cell lysis 

which may cause the loss of CTCs.  

However, immunoaffinity based isolation also have a few drawbacks. As CTCs may 

undergo EMT, in which the epithelial markers are down-regulated, isolation based on EpCAM 

may fail to capture this subgroup of CTCs. The GO Chip (used in Chapter 2 and Chapter 3), an 

immunoaffinity based approach, incorporates nanomaterial to achieve high antibody coating 

density of anti-EpCAM and thus enables the isolation of CTCs with low level of EpCAM 

expression [21]. Moreover, to capture additional CTCs subgroups, cocktails of antibodies (anti-

EpCAM, anti-CD133, and anti-EGFR for NSCLC; anti-EpCAM and anti-CD133 for pancreatic 

cancer) were incorporated in the GO chip.  

The GO chip shares another common drawback across most technologies with antibodies 

attached to a surface: the limitation of post-capture analysis because of the difficulty in releasing 

viable cells from the capture substrate. To overcome this problem, temperature-sensitive 

polymer-graphene oxide composite based chip was developed (Chapter 4). Over 90% capture 
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efficiency and release efficiency is achieved. Released CTCs were viable and structurally intact, 

enabling subsequent analysis such as standard clinical cytopathological and genetic testing. The 

polymer-GO nanocomposite films were prepared through drop-casting a DMF solution of 

polymer and functionalized GO. Drop-casting is a quick and easy method to generate thin films 

without wasting materials [160]. However, when using drop casting method, differences in 

evaporation rates across the substrate or concentration fluctuations can result in variations in film 

thickness and poor uniformity of the internal structure. In a series of experiments, we did 

observed high variations in the capture and release efficiency of tumor cells when different 

batches of polymer-GO composite were used. The robustness of the device may be improved by 

applying different solvents [161] or changing the deposition technique [162].  

Another major concern for microfluidic affinity-based devices is the low throughput, 

which limits the blood volume that could be processed. For instance, in the CTC-chip, when the 

flow rate increased from 1 to 3 mL/hr, the capture efficiency dropped drastically [10]. This is 

because of that under high flow rate, the shear force overcomes antibody-antigen affinity 

interactions [158], [159]. The GO chip currently processes blood sample at 1mL/hr. To reduce 

the processing time for high volume of blood (5 ~ 10 ml), we developed the HBGO chip by 

incorporating a herringbone mixer into the GO chip (Chapter 4). The herringbone structure 

generates micro vortices to direct cells to the substrate where the antibodies are tethered. By 

maximizing the cell-antibody collisions, over 90% capture efficiency is achieved at 200 µL/min 

(12 mL/hr). This device will be further tested with clinical samples from cancer patients to 

further validate its performance. 

6.2.2 Validation of the clinical utility of CTCs 
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In this thesis, serial blood samples from 26 locally advanced cancer patients and 12 

NSCLC patients were analyzed using the GO chips. While CTC counts and their molecular 

features are correlated with the progression free survival time of patients in this small patient 

cohort, these findings need further validation with a larger sample size in order to confirm the 

prognostic value of CTCs. Additionally, in this study with pancreatic cancer (Chapter 2), patients 

enrolled in the study are on different chemotherapy regimens, which may have distinct effects on 

the key regulators for drug resistance. Thus the molecular profiling of CTCs should be studied in 

a group of patients receiving the same treatment regimen to investigate the potential of CTCs for 

predicting treatment response [163]. Once the correlations are validated, the changes in CTC 

number and the molecular features of CTCs can be used to create a predictive model for 

treatment response and tumor progression and can be tested in an independent patient group.  

 In another study on NSCLC (Chapter 3), because we demonstrated the up-regulation of 

PD-L1 expression in CTCs during radiation or radiochemotherapy, we suggested that PD-L1 

expression in CTCs have the potential to act as a pharmacodynamic marker to guide the 

combination of anti- PD-1/PD-L1 therapies with radiation. When combination therapies are 

applied, treatment dose, fraction, timing and sequence need to be carefully planned and 

monitored to enhance, rather than compromise, the effectiveness of monotherapy [99]. Future 

efforts should incorporate dynamic monitoring of PD-L1 (+) CTCs in clinical trials with 

combined therapy for assessing the optimal timing and sequence. For instance, once the increase 

of PD-L1 (+) CTC number is observed, it may indicate tumor immune escape and can give the 

guidance as to the optimal time point to start immunotherapy 

6.2.3 Genetic analysis of CTCs 



	 102	

The extremely low prevalence of CTCs not only poses a challenge for CTC isolation, but 

also hinders the molecular analysis of CTCs. Genetic assays have traditionally been used to 

analyze tissue fragments or large number of cells.  RT-PCR has been used to detect tumor-

associated antigens in the peripheral blood and the sensitivity could be as high as one CTC per 

105 or 106 leukocytes [164] . However, the sensitivity of detection and accuracy varies, 

depending on the tumor type and the choice of genes of interest. In this thesis, CTCs were first 

isolated by the GO chip and then analyzed for mRNA profiling via a RT-PCR protocol suitable 

for detecting the expression of low-abundance mRNAs. 

 However, although the purity of CTCs isolated via the GO chip is much higher than via 

other conventional methods [21], the enriched cell population still contains a surplus of 

leukocytes. Therefore, the genetic analysis of CTCs may be masked by signals from the 

contaminating leukocytes and result in false negatives. To overcome this challenge, the single 

cell profiling of CTCs has been established for different genetic analysis methods such as 

transcriptome analysis and whole-genome sequencing [165], [166]. Moreover, single cell 

analysis can address the heterogeneity of CTCs, which may be shed from distinct subclones 

within the tumor or from primary and/or different metastatic sites.  The polymer-GO chip 

reported in Chapter 3 enables the release of CTCs after isolation, and the collected cell solution 

can be readily processed for single cell profiling using platforms such as C1 machine from 

Fluidigm.  

6.2.4 Developing an in-vivo CTC isolation system 

One major drawback of the existing immunoaffinity based CTC isolation technologies is 

the low throughput, which typically ranges from 1 ~ 3 ml blood per hour [159]. Because only a 

limited blood volume can be processed in practice, a low number of CTCs are captured, which 
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may not be sufficient for downstream analysis. Furthermore, the small number of CTCs may not 

accurately reflect the spectrum of tumor cell heterogeneity and may lead to statistical variability. 

In order to harvest a sufficient number of CTCs in peripheral blood, we envisioned developing 

an in-vivo CTC isolation system that can be worn on patients and continuously collect CTCs 

directly from the peripheral vein via a dual lumen catheter. Using this system, blood can be 

routed at a define flow rate (over 0.2 mL/min) through the CTC capture device for several hours, 

permitting the screening of large blood volumes for improved probability of detection and 

statistical accuracy of the analysis. One major challenge of building such system is the 

development of a CTC isolation device which achieves efficient cell capture at high flow rate. 

In chapter 4, we presented the HBGO chip, which is developed on the basis of the GO chip 

and achieved an over 10-fold increase in throughput. In addition to shortening the processing 

time of blood samples for in-vitro CTC isolation, the HBGO chip provides unique advantages to 

realize the in-vivo CTC isolation. The HBGO chip is a great fit for in-vivo CTC isolation for the 

following reasons: (1) it achieve high capture efficiency (>80%) at high flow rate (up to 200 

µL/hr); (2) it can process whole blood at a high flow rate without any preprocessing step or 

infusion of any solution; (3) the device has low chance of clogging; (4) the device is portable. 

Therefore, the HBGO chip can be incorporate into an indwelling catheter system for in-vivo CTC 

isolation. 

To achieve continuous blood sampling for CTC isolation, this system is designed to 

consist of a CTC capture module (the HBGO chip), peristaltic pump for continuous blood 

sampling from the peripheral vein through a dual-lumen catheter, a microcontroller to manage 

the flow rate, and a heparin injector to prevent blood clot formation during operation. Future 
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study will focus on the integration of the system and the safety of the cannulization and 

apheresis. This system could be tested in living vertebrate animal (such as experimental dogs).  

6.3 Concluding remarks 

This work highlights the clinical utility of CTCs as a potential biomarker to predict and 

monitor the treatment response and outcome in pancreatic cancer and NSCLC. The nanomaterial 

based microfluidic devices introduced here utilize various strategies to capture CTC with high 

sensitivity and can be applied in CTC studies for various cancer types. Ultimately, these studies 

hold the potential to help improve personalized therapy for cancer patients and identify 

promising therapeutic targets. 
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