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ABSTRACT

This thesis concerns the derivation and analysis of macroscopic mathematical

models for coupled biological oscillators. Circadian rhythms, heart beats, and brain

waves are all examples of biological rhythms formed through the aggregation of the

rhythmic contributions of thousands of cellular oscillations. These systems evolve in

an extremely high-dimensional phase space having at least as many degrees of freedom

as the number of oscillators. This high-dimensionality often contrasts with the low-

dimensional behavior observed on the collective or macroscopic scale. Moreover, the

macroscopic dynamics are often of greater interest in biological applications.

Therefore, it is imperative that mathematical techniques are developed to extract

low-dimensional models for the macroscopic behavior of these systems. One such

mathematical technique is the Ott-Antonsen ansatz. The Ott-Antonsen ansatz may

be applied to high-dimensional systems of heterogeneous coupled oscillators to derive

an exact low-dimensional description of the system in terms of macroscopic variables.

We apply the Ott-Antonsen technique to determine the sensitivity of collective oscil-

lations to perturbations with applications to neuroscience.

The power of the Ott-Antonsen technique comes at the expense of several lim-

itations which could limit its applicability to biological systems. To address this

we compare the Ott-Antonsen ansatz with experimental measurements of circadian

rhythms and numerical simulations of several other biological systems. This analy-

sis reveals that a key assumption of the Ott-Antonsen approach is violated in these

systems. However, we discover a low-dimensional structure in these data sets and

xvi



characterize its emergence through a simple argument depending only on general

phase-locking behavior in coupled oscillator systems. We further demonstrate the

structure’s emergence in networks of noisy heterogeneous oscillators with complex

network connectivity. We show how this structure may be applied as an ansatz to

derive low-dimensional macroscopic models for oscillator population activity. This

approach allows for the incorporation of cellular-level experimental data into the

macroscopic model whose parameters and variables can then be directly associated

with tissue- or organism-level properties, thereby elucidating the core properties driv-

ing the collective behavior of the system.

We first apply our ansatz to study the impact of light on the mammalian circa-

dian system. To begin we derive a low-dimensional macroscopic model for the core

circadian clock in mammals. Significantly, the variables and parameters in our model

have physiological interpretations and may be compared with experimental results.

We focus on the effect of four key factors which help shape the mammalian phase

response to light: heterogeneity in the population of oscillators, the structure of the

typical light phase response curve, the fraction of oscillators which receive direct light

input and changes in the coupling strengths associated with seasonal day-lengths. We

find these factors can explain several experimental results and provide insight into

the processing of light information in the mammalian circadian system.

In a second application of our ansatz we derive a pair of low-dimensional mod-

els for human circadian rhythms. We fit the model parameters to measurements of

light sensitivity in human subjects, and validate these parameter fits with three ad-

ditional data sets. We compare our model predictions with those made by previous

phenomenological models for human circadian rhythms. We find our models make

new predictions concerning the amplitude dynamics of the human circadian clock and

the light entrainment properties of the clock. These results could have applications

to the development of light-based therapies for circadian disorders.
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CHAPTER I

Introduction

Synchronization of coupled oscillators is a fundamental phenomenon for many

biological processes including neural activity, circadian rhythms and cardiac dynam-

ics. Accurate mathematical models for these systems are extremely high dimensional

as they describe the complex dynamics of each individual oscillator embedded in

a network of thousands of oscillators. This high dimensionality contrasts with the

low-dimensional dynamics observed at the collective or macroscopic scale for many

of these systems, for example epileptic seizure activity, circadian activity cycles and

normal heart beats. Moreover, this high dimensionality can obscure insights pro-

vided by the biological accuracy of the models and makes simulations of such systems

costly. On the other hand, phenomenological macroscopic-level models developed for

coupled oscillator systems can address the dimensionality issues, but at the expense

of the biological fidelity of the results.

Thus, it is imperative that mathematical techniques are developed which can

extract a low-dimensional macroscopic model from a high-dimensional microscopic

model in a systematic manner. In 2008, Edward Ott and Thomas Antonsen in-

troduced such a macroscopic reduction for large systems of heterogeneous coupled

oscillators [114, 113]. This discovery led to an explosion of results in the coupled os-

cillator literature over the last decade. The Ott Antonsen technique has been used to
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study diverse issues such as chimera states, hierarchical synchrony, circadian rhythms

and neuroscience [93, 115, 102]. However, despite the tremendous success and popu-

larity of the Ott-Antonsen approach, its efficacy for describing real biological systems

has not been evaluated in the literature.

In Chapter II, we compare the assumptions of the Ott-Antonsen approach with

experimental measurements from cells in the mammalian circadian pacemaker and

numerical simulations of several models of coupled biological oscillators. We find a

core assumption of the Ott-Antonsen approach is not valid for these systems. Inter-

estingly, we find a different, but related, ansatz which describes these diverse systems

accurately. Our key results are to demonstrate the generality of our ansatz, which

we call the m2 ansatz, in networks of coupled oscillators and illustrate its use in

extracting low-dimensional macroscopic models. We characterize the emergence of

our ansatz based on the nature of the heterogeneity in the oscillator ensemble, and

contrast this with conditions which yield the Ott-Antonsen relation. We find our

ansatz can describe systems of noisy heterogeneous oscillators with complex network

connectivity-extending the validity of our approach beyond the range of the Ott-

Antonsen technique. In biological applications, our approach allows for the incorpo-

ration of cellular level experimental data into the macroscopic model whose parame-

ters and variables can be directly associated with tissue-or organism-level properties,

thereby elucidating the core properties driving the collective behavior of the system.

In many biological applications, we are interested in how perturbations imposed

on individual oscillators will affect the collective rhythm produced by the coupled

ensemble. In Chapter III, I apply the Ott-Antonsen procedure to study collective

phase-resetting in large ensembles of coupled oscillators. This work has its origins

in the study of phase response curves (PRC) which are a useful tool from both a

theoretical and experimental prospective [156, 124]. Phase response curves describe

the effect of an external perturbation on the phase of an oscillator. For example, in
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a rhythmically firing neuron a voltage stimulus may be applied at some phase in the

oscillation and the effect on the timing of the next action potential measured. If this

shift is measured over a sampling of initial phases, a continuous phase response curve

may be estimated. The amplitude, shape and zeros of the phase response curve can

be used to determine the entrainment properties of the oscillator [156].

However, biological oscillators are usually found integrated into large assemblages

of rhythmic components rather than as single isolated systems. Collective phase re-

sponse curves extend phase response theory from considering a single oscillator to

considering an entire population of coupled oscillators. Here phase shifts are mea-

sured in terms of the mean phase of a population of oscillators in response to a

perturbation applied to the individual oscillators. In the neuronal example, we are

interested in how phase shifts on the individual neuron scale are integrated into the

collective oscillations of an entire brain region. This transformation is affected by sev-

eral factors including the phase distribution of the individual cells and the coupling

between the oscillators. In Chapter III, I develop an analytical framework, based on

the Ott-Antonsen approach, for computing the collective phase response curve from

knowledge of how the individual oscillators react to the stimulus. This work shows

the impact of the Fourier composition of the individual phase response curve. The

first harmonic of the individual phase response curve is seen to be amplified in the

collective phase response as the individual oscillators lose synchrony. Higher harmon-

ics in the phase response curve are damped out on the collective scale. This leads to a

predictable change in the amplitude, shape and zeros in the collective phase response

curve thereby affecting the entrainment properties of the ensemble.

In Chapter IV, we return to the m2 ansatz formalism and examine the impact

of light on the mammalian circadian rhythm. The mammalian circadian rhythm

has been localized to a small region of the hypothalamus known as the suprachias-

matic nucleus (SCN) [103, 139]. The SCN is composed of thousands of individual
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clock neurons each of which contain an intricate genetic feedback loop which cycles

with a period of about twenty-four hours [92]. The mammalian circadian rhythm

is produced as an emergent phenomenon through the aggregation of the rhythmic

contributions of each of these molecular clocks. A defining property of circadian

rhythms is their ability to be entrained to environmental cycles. In mammals, the

most powerful entraining signal is the daily light cycle [123]. However, only a fraction

of the clock neurons in the SCN are recipients of light information [98]. Therefore,

we divide the circadian oscillator population into a ventral population which receives

light information and a dorsal population which does not receive direct light input

[98]. Making use of the m2 ansatz we derive a low-dimensional model for the re-

sponse of the mammalian circadian clock to a light pulse. Using our reduced model,

we derive analytical results on how the coupling strengths between the ventral and

dorsal populations shape the collective response to a light stimulus. Our analysis

provides a parsimonious explanation for an experimentally observed reduction in the

sensitivity of the mammalian circadian clock to light during summer months when

organisms are exposed to long day-lengths [126, 147]. The simplicity of our derived

model, along with the physiological interpretations of the variables and parameters

also allows the change in coupling predicted by the model to be checked for consis-

tency with other experimental data. Significantly, this analysis reveals that seasonal

effects, light-resetting and after-effects of light entrainment are all intimately related

phenomena.

In Chapter V, we employ the m2 ansatz to derive a macroscopic model for the

master circadian clock in humans. Experimental measurements of the circadian light

response in humans are used to determine model parameters. In order to allow

for noise in experimental measurements, as well as the population variability of the

circadian light response, we make use of a Markov Chain Monte Carlo (MCMC)

approach to produce a parameter ensemble which is consistent with the experimental
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data. We validate the fitted model through the use of three additional data sets, and

discuss the differences between the model’s predictions and earlier models of human

circadian rhythms.

Finally, the overall conclusions from my graduate work are discussed in Chapter

VI. The remainder of this chapter is devoted to introducing key mathematical results

(Sec. 1.1) and providing an introduction to circadian rhythms, (Sec. 1.2) the principal

biological application considered here.

1.1 Mathematical Background

1.1.1 Kuramoto Model

While still an undergraduate, Art Winfree, began studying large systems of cou-

pled oscillators motivated by his interest in biological rhythms [158, 141]. He intu-

itively grasped that oscillators on a stable limit cycle may be described using a single

phase variable describing their progress along a circular orbit. This mode of analysis,

now known as phase reduction, was put on mathematical footing by Yoshiki Ku-

ramoto in his 1984 book “Chemical Oscillations, Waves, and Turbulence” [86]. Here

he also presented a derivation of his now famous equation describing the dynamics of

coupled oscillators,

dφi
dt

= ωi +
K

N

N∑
j=1

sin(φj − φi) i = 1, 2 . . . N (1.1)

where φi gives the phase of the oscillator, ωi the natural frequency and K the coupling

strength between the oscillators. The natural frequencies ωi are typically assumed to

be drawn from some distribution g(ω) and describe the frequency of the oscillators in

the absence of coupling (this is often called heterogeneity). As the coupling strength

(K) between the oscillators increases the oscillators begin to spend more time close

to one another in phase. Finally, at some critical coupling strength Kc an ordered

5



synchronized state emerges out of the previous disorder. This synchronization transi-

tion can be beautifully observed throughout nature: Southeast Asian fireflies firing in

unison, fish schools moving as a superorganism, cardiac cells firing together to form

a heartbeat, brain waves and many other phenomena [141]. The broad applications

and mathematical tractability of the Kuramoto model have made it the go-to model

for studying synchronization for over forty years.

Equation 1.1 provides a mean-field model for studying synchrony, although it may

be generalized in several ways to more closely match application areas. For a general

network of coupled limit cycle oscillators we may apply the phase-reduction procedure

to derive a model of the form:

dφi
dt

= ωi +
N∑
j=1

Γij(φj − φi), (1.2)

where Γij is a 2π periodic coupling function describing the influence of the jth oscil-

lator on oscillator i. I will outline the general phase reduction procedure in Sec. 1.1.4,

and specify the added assumptions which allow for simplification to the Kuramoto

model (Eq. 1.1).

1.1.2 Self-Consistency Arguments

Along with deriving the model which bears his name, Kuramoto’s seminal work

also introduced a powerful mode of analysis called self-consistency analysis. This

technique enabled him to derive the first analytical results describing the onset of

synchrony in a population of heterogeneous oscillators. These self-consistency argu-

ments dominated early studies of large systems of coupled oscillators, and are still

used frequently in the literature today [149, 65, 150]. In this section I will give a

brief overview of the original self-consistency argument used by Kuramoto to derive

a formula for the critical coupling strength in the Kuramoto model [142, 86]. For the
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purposes of this section we consider the distribution of natural frequencies g(ω) in

the Kuramoto model (Eq. 1.1) to be smooth, unimodal and symmetric.

A first step in studying synchrony is establishing an order parameter which indi-

cates when synchrony is present in the oscillator population. The Kuramoto order

parameter is given by,

Z(t) = Reiψ = 〈eiφ〉 =
1

N

N∑
j=1

eiφj ∈ C, (1.3)

where R ∈ [0, 1] is called the phase coherence of the population and ψ is the mean-

phase. Geometrically, Z(t) is the centroid of the oscillator population placed on

the complex unit circle. If R = 0 the oscillators are uniformly distributed on the

unit circle (desynchrony) and R = 1 when they are all in the same phase (perfect

synchrony). For intermediate values 0 < R < 1 the order parameter retains its utility,

as it measures the degree of synchrony in the population. For these intermediate

values of R the Kuramoto model shows partial synchrony, a state in which some

oscillators are phase-locked in a synchronized pack and others are drifting relative to

this synchronized pack.

Critically, the Kuramoto equation may be re-written making use of the Kuramoto

order parameter,

dφi
dt

= ωi +KR(t) sin(ψ(t)− φi). (1.4)

Examining Eq. 1.4 we notice the interaction between the oscillators now depends

only on the global order parameter. Moreover, we can begin to see how synchronized

solutions may emerge from this system: as R(t) grows from zero, the synchronized

pack grows and this increases the pull on the oscillators to join the synchronized pack.

This positive feedback mechanism leads synchronized solutions to grow quickly above

the critical coupling Kc strength.
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We now seek synchronized solutions for which R(t) is constant and ψ rotates with

a constant frequency Ω. Changing to a rotating frame of reference θi = φi − Ωt,

ω̂i = ωi − Ω and choosing the coordinate frame such that the mean phase vanishes

(ψ = 0) we may write our system as,

θ̇i = ω̂i −KR sin(θi). (1.5)

If R(t) is constant then the equations for each of the oscillators decouple, and we see

that θi will go to a constant value if and only if |ω̂| ≤ KR. These are the oscillators

which are locked to the mean-field oscillation, meaning they move with the collective

frequency Ω in the synchronized pack. Those oscillators at the extreme frequencies

|ω̂i| > KR will drift relative to the mean-field and are not synchronized. They will

drift in and out of phase with the mean-field oscillation over time. Thus, we may

divide the population of oscillators into two classes based on their frequencies |ω̂i|:

1. Locked oscillators with |ω̂i| ≤ KR will evolve to a fixed θi such that sin(θi) =

ω̂i/KR,

2. Drifting oscillators with |ω̂i| > KR, where |θi| grows without bound as time

increases.

This analysis may now be compared with the original definition of the Kuramoto

order parameter (Eq. 1.3) for consistency (hence the name self-consistency argument).

To check for consistency we break the population into the locked and drifting popu-

lations,

R = 〈eiθ〉lock + 〈eiθ〉drift, (1.6)

where I have used that we set the mean phase to zero (ψ = 0) in our coordinate frame.

First, we evaluate the contribution of the locked oscillators using our assumption that
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g(ω̂) is a unimodal and symmetric distribution of natural frequencies centered about

zero. Thus, we find the locked oscillator contribution is given by,

〈eiθ〉lock =

∫ KR

−KR
eiθ(ω̂)g(ω̂)dω̂ =

∫ KR

−KR
cos(θ(ω̂))g(ω̂)dω̂, (1.7)

using that g(ω̂) is symmetric and sin is an odd function. Changing variables from ω̂

to θ in the integral gives,

〈eiθ〉lock = KR

∫ π/2

−π/2
cos2(θ)g(KR sin(θ))dθ. (1.8)

It turns out the corresponding integral for the drifting oscillators vanishes, i.e. 〈eiθ〉drift =

0. Intuitively, this is what our order parameter should tell us: the drifting oscilla-

tors are not synchronized and so we expect that Rdrift=0. Thus, the self-consistency

condition reduces to,

R = 〈eiθ〉lock = KR

∫ π/2

−π/2
cos2(θ)g(KR sin(θ))dθ. (1.9)

The self-consistency condition (Eq. 1.9) shows that the desynchronized solution, R =

0, is always a solution regardless of the coupling strength K. However, we may also

have solutions on a second branch with R > 0,

1 = K

∫ π/2

−π/2
cos2(θ)g(KR sin(θ))dθ. (1.10)

These solutions will emerge continuously from the R = 0 branch at a critical coupling

strength Kc given by,

Kc =
2

πg(0)
, (1.11)

found by taking R → 0+ in Eq. 1.10. Therefore, Kuramoto had demonstrated the
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emergence of synchronized solutions above a specified critical coupling strength Kc.

While self-consistency analysis is a powerful tool for analyzing the Kuramoto

model, this formalism proved to be the wrong choice for analyzing the stability of

solutions. The challenge of analyzing stability ushered in an era of large center man-

ifold reductions which proved up to the task of analyzing stability of the Kuramoto

model [24, 142, 25]. In the next section we skip forward to the predominant current

technique.

1.1.3 Ott-Antonsen Theory

In the last decade the dominant tool for analyzing systems of coupled phase oscil-

lators has been Ott-Antonsen (OA) theory [114, 113]. This powerful ansatz is capable

of reducing the Kuramoto model to a closed system of ordinary differential equations

for the Kuramoto order parameter. Ott-Antonsen theory served as an inspiration and

jumping off point for my dissertation research.

To begin we consider a slight generalization of the Kuramoto model, known as

the Kuramoto-Sakaguchi model [129],

dφi
dt

= ωi +
K

N

N∑
j=1

sin(φj − φi + β), (1.12)

where −π
2
< β < π

2
. The additional parameter β is known as the shear parameter

and introduces a cosine component into the coupling function of the classic Kuramoto

equation [101]. Significantly, when β 6= 0 the coupling function between the oscillators

is no longer an odd function of the phase difference. In Chapter III, we will see this

makes the collective frequency of the synchronized oscillators vary with the collective

amplitude of the system and can have significant effects on the dynamics of the system

following a perturbation.

Similar to the classical Kuramoto equation we may re-write the coupling terms in
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the Kuramoto-Sakaguchu model using the Kuramoto order parameter (Eq. 1.3),

1

N

N∑
j=1

sin(φj − φi + β) = Im[eiβe−iφiZ] (1.13a)

dφi
dt

= ωi +KIm[eiβe−iφiZ], (1.13b)

where again we see the interaction between the oscillators depends only on the order

parameter Z. We now consider the continuum limit of this system, that is the limit

as the number of oscillators approaches infinity (N →∞). This enables us to define

the continuous phase density function for this system as f(ω, φ, t) where fdφdω gives

the fraction of oscillators at phase φ with natural frequency ω at time t. Assuming

the number of oscillators at each frequency is conserved gives a continuity equation

for the dynamics of the system,

ft +
∂

∂φ
[f(ω +KIm[eiβe−iφZ])] = 0 (1.14a)

ft +
∂

∂φ
[fω +

fK

2i
(Zeiβe−iφ − Z∗e−iβeiφ)] = 0 (1.14b)

where I have used the property that Im[z] = z−z∗
2i

for z ∈ C and stars denote the

complex conjugate. In the continuum limit the Kuramoto order parameter Z(t) may

be defined as,

Z(t) = Reiψ =

∫ ∞
−∞

∫ 2π

0

f(ω, φ, t)eiφdφdω, (1.15)

making the continuity equation (Eq. 1.14b) a nonlinear partial integro-differential

equation through its dependence on Z(t). We may consider the Fourier series of

f(ω, φ, t) in φ,

f(ω, φ, t) =
g(ω)

2π

∞∑
n=−∞

An(ω, t)einφ, A0 = 1. (1.16)

11



Now we introduce the Ott-Antonsen ansatz and restrict our phase distribution func-

tions f(ω, φ, t) to those which have a special property,

A1(ω, t) = α(ω, t) An(ω, t) = [α(ω, t)]n, (1.17)

in their Fourier series representations. We add the restriction that |α(ω, t)| ≤ 1 so

this series does not diverge. Remarkably, if we restrict to this space of distribution

functions the continuity equation (Eq. 1.14b) simplifies to,

∂α(ω, t)

∂t
+
K

2

(
Zeiβ[α(ω, t)]2 − Z∗e−iβ

)
+ iωα(ω, t) = 0. (1.18)

Furthermore, we may also find an expression for the order parameter Z(t) in the

space of Ott-Antonsen distribution functions,

Z∗(t) =

∫ ∞
−∞

∫ 2π

0

g(ω)

2π
[e−iφ +

∞∑
n=1

αn(ω, t)ei(n−1)φ + α∗(ω, t)nei(−n−1)φ]dφdω (1.19)

Exchanging the integral and sum, causes all terms but n = 1 to go to zero giving,

Z∗(t) =

∫ ∞
−∞

g(ω)α(ω, t)dω, Z(t) =

∫ ∞
−∞

g(ω)α∗(ω, t)dω. (1.20)

It should be noted that the Ott-Antonsen ansatz (Eq. 1.17) has not achieved a

dimension-reduction as of yet-as the system is still infinite dimensional through the ω

variable. That is not to say the transformation constructed so far is without use. A

restriction to these special phase distribution functions has eliminated the φ depen-

dence in the continuity equation, which reduces the numerical burden of simulation

and allows for more powerful analytical analysis [112].
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1.1.3.1 Dimension Reduction in the Ott-Antonsen Theory

As noted thus far we have not achieved a dimension reduction through the use

of the Ott-Antonsen ansatz. To achieve a dimension reduction we need to assume

a special form for g(ω), the distribution of natural frequencies of the system. The

most common assumption on the distribution of natural frequencies is to consider the

Cauchy (Lorentzian) distribution of natural frequencies,

g(ω) =
γ

π[(ω − ω0)2 + γ2)]
, (1.21)

where ω0 is the median frequency and γ controls the range of heterogeneity in the

oscillator population. The Cauchy distribution has very heavy tails-in fact, the heavy

tails of the Cauchy distribution endow it with several pathological properties such as

a divergent second moment. However, for the purposes of the Ott-Antonsen technique

it has the important property that it has a pole in the lower-half complex plane at

ω = ω0 − iγ. Thus, if we add the restriction on our space of distribution functions

that α(ω, t) may be analytically continued into the lower half complex plane we may

compute the integral for the order parameter Z(t) (Eq. 1.20) using a semi-circle

contour in the lower half-plane,

Z(t) =

∫ ∞
−∞

g(ω)α∗(ω, t)dω = α∗(ω0 − iγ). (1.22)

Therefore, for the case of a Cauchy distribution of natural frequencies the infinite

frequency modes all collapse to an evaluation at a single complex frequency (ω =

ω0 − iγ). Evaluating our system for α(ω, t) at this point gives,

∂α

∂t
+
K

2
(Zeiβα2 − Z∗e−iβ) + iωα = 0 (1.23a)

dZ∗

dt
+
K

2
(Zeiβ(Z∗)2 − Z∗e−iβ) + iω0Z

∗ + γZ∗ = 0, (1.23b)
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which is a complex ordinary differential equation for the order parameter Z∗(t). If

we substitute Z∗(t) = R(t)e−iψ(t) into the system we get,

Ṙe−iψ − iRψ̇e−iψ + γRe−iψ + iω0Re
−iψ +

K

2
(R3eiβe−iψ −Re−iβe−iψ) = 0 (1.24a)

Ṙ− iRψ̇ + γR + iω0R +
K

2
(R3eiβ −Re−iβ) = 0. (1.24b)

Separating the real and imaginary parts of the expression, we find a two-dimensional

system for the mean-phase ψ and phase coherence R of the oscillator population,

Ṙ =
K cos(β)

2
R(1−R2)− γR (1.25a)

ψ̇ = ω0 +
R sin(β)

2
(1 +R2). (1.25b)

We may apply a similar procedure for any distribution of natural frequencies g(ω)

which has a finite number of poles in the complex plane [114]. In general, for this di-

mension reduction technique we will see two dimensions in the macroscopic reduction

for each pole of the natural frequency distribution g(ω).

1.1.3.2 Ott-Antonsen Manifold and Generalizations

The derivation we presented here can in fact be generalized to consider any infinite

ensemble of oscillators whose dynamics can be put into the form,

dφj
dt

= ωj + Im[H(t)e−iφj ] j = 1, 2, ...N (1.26)

as N → ∞. For example, the Kuramoto model takes this form with H(t) = KZ(t).

Ott and Antonsen showed that the space of distribution functions defined by their

ansatz, the Ott-Antonsen manifold, contains both the desynchronized (α = 0) and

perfect synchrony (α = 1) distribution functions [114]. In addition, they demon-

strated that when these systems are initialized on the Ott-Antonsen manifold it will
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stay on this manifold for all time [114]. Finally, they demonstrated that all the

long-time attractors of the system (Eq. 1.26) are captured within this manifold [113].

The proof of these theorems enabled the analytical study of systems of heteroge-

neous coupled oscillators which had previously only been accessible through numerical

studies. However, it is worth noting that the power of Ott-Antonsen theory comes at

the price of several limitations. First, the coupling function between the oscillators

can only have a single harmonic component [95]. Secondly, OA theory is not valid

for systems which are subjected to stochastic forces. The final issue of note is one

of practicality rather than of a mathematical nature. As noted when the dimension

reduction was demonstrated, the dimension reduction to a macroscopic model relies

on the distribution of natural frequencies taking the form of a rational function. In

particular, the simplest choice of a Cauchy distribution has several pathological prop-

erties stemming from its heavy polynomial tails which may limit its applicability for

biological systems. A major focus of this thesis is to evaluate the validity of these as-

sumptions for biological systems, and to introduce modifications to the Ott-Antonsen

approach to more closely model biological systems.

1.1.4 Phase Resetting

A key property of oscillating systems is their stability to perturbations off the

attracting limit cycle. For a stable limit cycle small perturbations along the limit

cycle will be retained, while small perturbations off the attracting cycle will decay

asymptotically. It is precisely this neutral stability along the limit cycle which allows

weak interactions among oscillators to give rise to synchronization and entrainment

[118].

Thus, studying the sensitivity of the phase of an oscillator to perturbations can

reveal much about how the oscillator synchronizes when coupled with similar systems

and its entrainment by periodic perturbations from outside forces. For example,
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in the study of circadian rhythms it is common to introduce a perturbation, such

as a light stimulus, at a sampling of points across the twenty-four hour cycle. The

phase of the circadian rhythms may be assessed before and after the application of the

stimulus through the monitoring of circadian markers such as wheel-running behavior

in hamsters or core body temperature oscillations in humans. These experiments

produce a map from the initial phase measured just prior to the stimulus to the final

phase assessed after the stimulus. This map φi → φf is called a phase transition

curve (PTC). Equivalently, we may define a phase response curve (PRC) mapping

the initial phase to the phase shift induced by the stimulus φi → ∆φ. Phase response

curves are also widely used in studying neuronal oscillators where the stimulus may

be a current pulse and the phase shifts are determined by the effect on the timing of

the next action potential.

Interestingly, the theory of phase response curves arises in a theoretical context

in the derivation of Kuramoto’s equation [86]. Since phase response theory figures

prominently in this thesis I give an outline of the phase reduction process here. Let

Ẋ = ~F (X) define a dynamical system with a hyperbolic limit cycle solution and ~p(t)

define a general time-dependent perturbation of the system scaled by the parameter

ε.

Ẋ = ~F (X) + ε~p(t), X ∈ RM . (1.27)

For the unperturbed oscillator equation let the limit cycle be denoted as C, a curve

in RM . Then while the solution trajectory is on the limit cycle we can parametrize its

position in RM using a single parameter φ ∈ [0, 2π] called the phase of the oscillator.

Let the parametrization be defined such that dφ
dt

= ω. The phase of the oscillator

is easily defined on the unperturbed (ε → 0) limit cycle of the oscillator, but in

order to consider the case of ε 6= 0 we need to extend this definition to define the

16



phase of the oscillator for points in some neighborhood of the limit cycle. Call this

tubular ring neighborhood about the limit cycle G. To extend our phase function

φ : C ⊂ RM → R to φ : G ⊂ RM → R, we will need the concept of asymptotic phase.

Definition I.1 (Asymptotic Phase). We say two points P ∈ G and Q ∈ G have the

same asymptotic phase if as t→∞, φP = φQ

Definition I.2 (Isochron). I(φ)={x ∈ G| asymptotic phase of x = φ} is a M − 1

dimensional hypersurface embedded in RM and is called an isochron of the oscillator

[156].

Notice that nothing about our definition of isochrons needs to be restricted to

a small neighborhood of the limit cycle. In fact, isochrons can be uniquely defined

throughout the basin of attraction of the limit cycle. Points where isochrons cross

one another (and thus a phase cannot be defined) are called phase singularities. The

presence of phase singularities can give rise to interesting spatiotemporal behavior

[86, 59, 156].

Applying our definitions of the phase φ(X) and the dynamical system reveals,

dφ(X)

dt
= ∇φ · dX

dt
, (1.28a)

dφ(X)

dt
= ∇φ · ~F (X) + ε∇φ · ~p(t), (1.28b)

dφ(X)

dt
= ω + ε∇φ · ~p(t), (1.28c)

using that ∇φ · ~F (X) = ω on the unperturbed limit cycle. We assumed the pertur-

bation is small so we know X is close to X0(φ), where X0(φ) is the intersection of the

isochron I(φ) with the limit cycle C. Thus to leading order in ε we can replace X

with its value on the limit cycle X0(φ).

dφ

dt
= ω + ε∇φ|X0(φ) · ~p(t) (1.29)
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Now we define ~Q(φ) = ∇φ|X0(φ) to be the infinitesimal phase response curve. Notice

that it is just the gradient of the isochron I(φ) evaluated on the limit cycle. If the

isochron hypersurface is a hyperplane then this approximation will be exact, whereas

significant curvature in the isochron surface will degrade the accuracy of this linear

approximation. If we assume that ~p(t) is a perturbation in just one variable of our

system, (e.g. the voltage in a neuronal model), then the vector equation (Eq. 1.29)

simplifies to the following:

dφ

dt
= ω + εQ(φ)p(t). (1.30)

The finite phase response curve Q̂(φ) in response to a perturbation defined by p(t)

will then be given by the difference in phase between this perturbed system and an

unperturbed system as t → ∞. If we make the change of variables ψ = φ − ωt this

measures the phase difference between the perturbed system and an unperturbed

system.

dψ

dt
= εQ(ψ + ωt)p(t) (1.31a)∫ ∞

0

dψ

dt
dt =

∫ ∞
0

εQ(ψ + ωt)p(t)dt (1.31b)

Q̂(ψ) = ε

∫ ∞
0

Q(ψ + ωt)p(t)dt (1.31c)

Therefore, the finite phase response curve Q̂(θ) can be approximated as

Q̂(θ) = ε

∫ ∞
0

Q(θ + ωt)p(t)dt = εQ ∗ p (1.32)

where ∗ denotes convolution. Recall the approximation here comes as a result of

approximating ~Q(φi) = ∇φ|X0(φ), which is valid only to leading order in ε (small

perturbation off the limit cycle). If p(t) is given by a Dirac delta function then

the infinitesimal and finite phase response curves are seen to coincide Q̂(θ) = Q(θ),
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hence the name infinitesimal for Q(θ). Therefore, the infinitesimal phase response

curve is often approximated experimentally by giving very short and weak stimuli to

the system and measuring the phase shifts induced. Moreover, Eq. 1.32 shows how

the infinitesimal phase response curve may be used to approximate the finite phase

response of the oscillator to a general stimulus p(t).

Finally, we note that phase reduction may also be applied to systems of coupled

oscillators. This situation may be described in its full form by the following system

of differential equations:

Ẋ1 = ~F1(X1) +K~V (X1, X2) (1.33a)

Ẋ2 = ~F2(X2) +K~V (X2, X1) (1.33b)

where X1,2 ∈ RM , ~F1,2 define the uncoupled dynamics of the oscillators, ~V is the

interaction function between the oscillators and is assumed to be symmetric between

the oscillators. Here our time dependent perturbation ~p(t) is defined by the interaction

function V . Once again we may parameterize the autonomous limit cycles such that

dφ
dt

= ω1,2 on the limit cycle respectively for F1 and F2 and extend this definition into

a neighborhood of the limit cycle using the concept of isochrons. The calculation

follows the same form as the phase response calculation, except we now consider the

coupling strength K a small parameter,

φ̇1 = ω1 +K ~Q1(φ1) · ~V (X1(φ1), X2(φ2)), (1.34a)

φ̇2 = ω2 +K ~Q2(φ2) · ~V (X2(φ2), X1(φ1)), (1.34b)

where ∇φ(X0(φ) = ~Q(φ). Grouping the interaction terms together and evaluating
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the functions on the limit cycle we have the following expression,

φ̇1 = ω1 +KM1(φ1, φ2) (1.35a)

φ̇2 = ω2 +KM2(φ2, φ1) (1.35b)

We simplify Eq. 1.35 further by considering the double Fourier series for the interac-

tion functions M and plugging-in the zero order solutions for φ1 ≈ ω1t and φ2 ≈ ω2t.

Considering only the first oscillator gives,

M1(φ1, φ2) =
∑
k,l

ak,le
i(kω1+lω2)t. (1.36)

M1 has fast oscillating as well as slow oscillating terms. The slow terms satisfy the

resonance condition kω1 + lω2 ≈ 0. The fast terms lead to phase deviations of order

K but the slow terms act on the timescale 1
K

and can induce large changes in the

phase [118].

If we assume that ω1 ≈ ω2 then only terms of the form l = −k will satisfy the

resonance condition. In general we could have the terms of the form nω1−mω2 which

would give higher order phase locking [118]. The assumption of ω1 ≈ ω2 allows us to

define,

Γ1(φ1 − φ2) =
∑
k

a−k,ke
ik(ω1−ω2)t =

∑
k

a−k,ke
ik(φ1−φ2) (1.37)

where the periodic function Γ(θ) is known as the coupling function. We note the

coupling function is derived from both the interaction function ~V (X1, X2) in the full

limit cycle model and the infinitesimal phase response curve Q(φ). Written in terms
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of these coupling functions the system (Eq. 1.35) becomes,

dφ1

dt
= ω1 +KΓ1(φ2 − φ1) (1.38a)

dφ2

dt
= ω2 +KΓ2(φ1 − φ2). (1.38b)

Now, we see the simple Kuramoto coupling function arises if we take only the sin(θ)

term in a Fourier series of the full coupling functions Γ1,2(θ).

1.2 Biological Background

The mathematical theory of coupled oscillators and the study of biological rhythms

have a rich shared history, with breakthroughs in either field fueling innovations in

the other. This exchange of ideas may be traced back to early studies of biological

oscillations, where the study of daily cycles in behavior and physiologically inspired

the development of a suite of mathematical tools for studying oscillatory phenomena

[156, 123, 28]. Following in this tradition, daily or circadian rhythms are the principal

biological application considered in my graduate work.

1.2.1 Whole Organism Studies

Circadian rhythms in behavior and physiology have been observed in every taxa

of life ranging from single cellular organisms to plants, fungi, insects and mammals.

Pioneering studies of circadian rhythms focused on characterizing circadian rhythms

at the level of whole organisms, as localized circadian pacemakers were unknown prior

to 1968 [28, 78, 139]. These studies characterized the sensitivity and precision of these

rhythms using behavioral markers such as wheel-running activity in hamsters, perch

hopping in finches or eclosion rhythms in Drosophila [122, 123]. Typically, researchers

manipulated the environmental stimuli provided to the circadian cycle (e.g. light

cycles, temperature cycles) and measured the effect on the marker rhythms to infer
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the effect on the circadian clock [28].

Studies of circadian rhythms at the whole organism scale were vital in the de-

velopment of the theory of entrainment [28]. Experimentally, it was discovered that

circadian rhythms may be entrained to periods of slightly less than or greater than

24 hours, and that this entrainment range varies with the stimulus type, species, age,

and light history of the organism [123, 28, 9]. Two competing hypothesis emerged to

explain circadian entrainment known as parametric and non-parametric entrainment

[29]. Non-parametric entrainment theory focuses on the phasic aspects of light input

and posits that entrainment may be explained by the determination of the phase

response curves to short stimuli [28]. While non-parametric entrainment focuses on

tonic effects of light on the circadian cycle. Each of these theories have their merits,

although the role of non-parametric entrainment is better understood [53]. Some of

the strongest evidence for parametric entrainment is the changes in the circadian pe-

riod of organisms kept in constant light conditions (τLL). By comparing the effects

of constant light exposure among species, Jurgen Aschoff, discovered a trend that

nocturnal animals generally show longer periods τLL > τDD, while diurnal animals

show a period shortening under constant light τLL < τDD [8].

In addition to being instrumental in developing a theory for circadian entrain-

ment, whole organism studies also uncovered a large number of peculiar properties

of circadian oscillators [122]. Especially important for this work are the so-called

light entrainment after-effects [122]. After-effects describe stable changes observed in

the free-running period τ (the circadian period as measured in an enviroment free

from time cues) and may be distinguished from transient effects on the circadian pe-

riod by their longer lasting effects and apparent quasi-stability [122]. For example,

after-effects to large phase shifts in the light schedule may be observed in several

species where large phase advances lead to an increase in the period and phase de-

lays a decrease in the period [122]. Another prominent after-effect may be observed
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when organisms are entrained to light schedules either longer or shorter than the free-

running period of the organism. Entrainment to long periods leads to an increase in

the free-running period, while entrainment to short periods show the opposite trend

with a decrease in the free-running period [11, 122] . These entrainment after-effects

were found to persist for 50-100 days following a release into free-running conditions

[122].

Light entrainment after-effects may also be observed for light entrainment to vary-

ing photoperiods. The photoperiod of a light signal describes the fraction of the

periodic cycle in which the organism is exposed to light. In a natural setting the

photoperiod is short during winter days and lengthens in long summer days. Gener-

ally, when nocturnal mammals are entrained to long photoperiods they will show a

shortened period when moved into darkness [122, 105]. Entrainment to light cycles

with a short photoperiod leads to the opposite effect and organisms show a longer

free-running period [122, 105].

Exposure to photoperiods of different lengths was also found to alter the response

of the circadian circuit to brief light pulses. In particular, when organisms are exposed

to long day-lengths the phase shifting response to light is seen to be attenuated [126,

147]. This attenuation effect and its relationship with the photoperiodic after-effect

will be considered in Chapter IV.

1.2.2 The Master Circadian Clock

Crucially, whole organism studies of circadian rhythms led to a consensus three

component definition of circadian rhythms. First, the rhythm must be endogenous,

meaning it must persist in the absence of time cues and cycle with a period close

to 24 hours. Secondly, the rhythm must be entrainable by external time cues called

zeitgebers (german for “time givers”). Finally, the rhythm must be temperature com-

pensated such that the period does not vary strongly with the ambient temperature.
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This definition of circadian rhythms, together with technological advances, allowed

for the genetic screens to be applied looking for mutations affecting the circadian

phenotype. Genetic screens identified a host of “clock” genes involved in circadian

timekeeping [78, 148]. The tools of molecular biology then revealed that circadian

dynamics observed in whole organisms originate from a molecular clock at the single

cell level [154]. This intricate genetic feedback loop produces molecular oscillations

with a period of about 24 hours [92]. Simultaneously, neurobiologists searched for

brain regions associated with circadian rhythms. In mammals, a small region of the

anterior hypothalamus known as the Suprachiasmatic Nucleus (SCN) was found to

house the master circadian clock [139]. From this neural command center the master

clock sends out daily signals to a system of peripheral clocks located throughout the

body [33].

Localization of the master circadian clock enabled the neural tissue to be excised

and studied in culture [145]. The tools of electrophysiology could now be applied to

study the neuronal properties of the clock cells. It was found that the firing rates

of the clock neurons also vary in a circadian manner, with a peak firing rate near

the middle of the circadian day [58, 56]. The organism level circadian rhythm is

produced in an emergent manner through the aggregation of the molecular rhythms

of the roughly twenty thousand clock neurons in the SCN.

In order to produce a coherent rhythm these clock neurons are coupled to one an-

other through a large suite of neurotransmitters [87]. These coupling neurotransmit-

ters act to oppose the tendency of intrinsic noise and heterogeneity in the individual

clock neurons to cause the molecular clocks to desynchronize [86, 92]. Additionally,

the coupling forces in the SCN establish a characteristic circadian waveform within

the SCN tissue, allowing information to be encoded at a network level [39]. Changes

in the environment conditions, such as the seasonal day-length, induce changes in this

waveform allowing the SCN to act as a seasonal calendar as well as a daily clock [38,
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105, 32]. Measurements of the changes in the circadian waveform may be integrated

with the whole organism data describing how the changes in these same factors (en-

vironmental conditions, age, light history, zeitgeber character) affect the entrainment

properties of the core circadian clock.

Studies of the structure of the SCN have revealed it may be functionally and

physiologically clustered into two principal regions: the ventral (core) and dorsal

(shell) phase clusters [45, 106]. These regions have been found to have distinct roles in

determining the circadian waveform produced by the SCN holistically [39]. In addition

to differences in the primary coupling forces between the ventral and dorsal SCN, a

fundamental difference between these regions lies in the reception of light information.

Photic information in mammals is channeled to the clock along a dedicated neural

track from the retina. Interestingly, only a fraction of the clock neurons in the SCN

are recipients of this light information largely located in the ventral SCN [98]. The

consequences of this imbalance between the ventral and dorsal SCN in the reception

of light information is examined in Chapters IV-V of this thesis.
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CHAPTER II

Macroscopic Models of Coupled Biological

Oscillators

2.1 Introduction

The study of coupled oscillators is important for many biological and physical

systems, including neural networks, circadian rhythms and power grids [156, 43,

141]. Mathematical models of these coupled oscillator systems can be extremely high-

dimensional, having at least as many degrees of freedom as the number of oscillators

as well as additional dimensions for the coupling mechanisms between oscillators.

However, this microscale complexity is belied by the elegant simplicity which emerges

at the macroscopic scale in many coupled oscillator populations. Quite generally,

these systems demonstrate a phase transition as the coupling between the oscillators

is strengthened leading to the emergence of a self-organized synchronized state [157].

This emergence of a synchronized state from the dynamics of a very high-dimensional

dynamical system, suggests that a low dimensional representation of this system

should be possible. A major step in this direction was proposed by Art Winfree

in 1967 when he intuitively grasped that for systems of weakly coupled, limit cycle

oscillators the time evolution of each oscillator and the effects of coupling with its

neighbors may be described by a single phase variable [158]. This method, known
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as phase reduction, reduces the dimension of the coupled system to the number of

constituent oscillators and has been used to analyze diverse coupled oscillator systems

[86, 156, 130].

In the following years Kuramoto formalized the mathematical procedure for phase

reduction and used it to derive his now famous model for N coupled heterogeneous

oscillators,

φ̇j = ωj +
K

N

N∑
n=1

sin(φn − φj), j = 1, N (2.1)

where φj gives the phase of the jth oscillator, K is the coupling strength and ωj

gives the natural frequency of the oscillator [86]. The natural frequencies of the

oscillators are typically assumed to be drawn from a distribution g(ω) which reflects

the heterogeneity in the oscillator population. The Kuramoto model captures the

essential features of many coupled oscillator systems and has been used to study the

phase transition to synchrony in detail [142].

However, many biological systems contain thousands of oscillators, making even

the phase model a very high-dimensional representation of the dynamical system. A

recent breakthrough occurred when Ott and Antonsen discovered an ansatz that can

be applied to a family of Kuramoto-like systems to derive a low-dimensional model

for the macroscopic behavior of the coupled population [114]. When the ansatz is

applied, the long-time behavior of a system of N →∞ heterogeneous oscillators can

accurately be described by two differential equations, one for the mean phase of the

coupled oscillators, and the other for their collective amplitude [113]. Despite the

hundreds of recent papers that use the Ott-Antonsen dimension reduction procedure,

the authors are not aware of any carefully done experiments to test whether this

powerful ansatz holds for biological systems.

In this chapter we test the applicability of the Ott-Antonsen ansatz using a recent

27



experimental data set collected from neurons in the suprachiasmatic nucleus (SCN),

the mammalian circadian pacemaker, and through simulations of several models of

coupled biological oscillators [2]. We find that a core assumption of the Ott-Antonsen

ansatz is not valid in our test systems. However, we find that a different, but related,

ansatz more accurately describes the data. Using a simple argument, we demonstrate

the validity of our ansatz for a wide-class of models. We then apply this ansatz to

derive a two-dimensional macroscopic model for the population activity of a system

of coupled, heterogeneous noisy oscillators. The generality of our procedure should

allow for the derivation of low-dimensional macroscopic models of many coupled oscil-

lator systems, allowing for fundamental insights into the core principles driving many

biological phenomena.

2.2 Results

The development of the Ott-Antonsen ansatz initiated a revolution in the coupled

oscillator literature [119]. The impact of their ansatz stems from the fact that the

macroscopic equations exactly capture all the long-time attractors of the Kuramoto

(Eq. 2.1) and closely related systems [113]. The ability to derive strong analytic

results has led to its application to a vast array of application areas [94, 61, 102].

Recently, the Ott-Antonsen procedure was applied directly to the study of circadian

rhythms for the first time [93].

The power of the Ott-Antonsen procedure comes at the price of several limitations.

First, it may only be applied to systems where the interaction between the oscillators

is described by a coupling function with a single harmonic [95]. Secondly, the ansatz

is not valid for systems whose oscillators evolve with a stochastic component [136].

Each of these limitations could severely restrict its applicability to biological systems:

complex coupling forces between biological oscillators often induce higher harmonic

components in the model’s coupling function [63, 15], and biological oscillators are
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invariably subjected to noise [15].

A further limitation of the Ott-Antonsen procedure is one of practicality rather

than a formal mathematical restriction. In its most powerful form, the Ott-Antonsen

procedure requires the assumption that the distribution of natural frequencies of the

oscillators be a rational function g(ω) = a(ω)/b(ω), which is typically taken to be a

Cauchy (Lorentzian) distribution,

g(ω) =
γ

π[(ω − ω0)2 + γ2)]
, (2.2)

where ω0 is the median frequency and γ controls the strength of the heterogeneity in

the oscillator population. Making this assumption on the frequency distribution is a

crucial step in achieving the dimension reduction to the macroscopic model. For more

general frequency distributions, the Ott-Antonsen procedure is still mathematically

valid, although it produces an infinite set of integro-ordinary differential equations

rather than the two-dimensional ordinary differential equation macroscopic model.

Let us refer to the Ott-Antonsen reduction procedure with the additional assumption

of a Cauchy distribution of frequencies as Cauchy Ott-Antonsen (COA).

The ansatz of the COA procedure takes a particularly simple form when written

in terms of the Daido order parameters for the distribution of phases of the coupled

oscillators. As seen in the introductory chapter, the Daido order parameters [31, 30]

are given by,

Zm(t) = Rm(t)eiψm(t) =
1

N

N∑
j=1

eimφj(t), (2.3)

where φj are the phases of the oscillators, Rm are the phase coherences and ψm are

the mean phases. Typically, only the first term is considered Z1 = R1e
iψ1 and is

known as the Kuramoto order parameter. Here R1 measures the amplitude of the

collective behavior of the oscillator population with R1 ≈ 0 indicating desynchrony
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among the oscillators and R1 = 1 perfect synchrony. The COA ansatz is a simple

geometric relation between the Daido order parameters,

Zm = (Z1)m (2.4a)

Rm = Rm
1 ψm = mψ1 COA (2.4b)

When the phase distribution of the oscillators is unimodal and symmetric about its

mean phase, we expect the mean phase relation ψm = mψ1 to hold generally, and we

will focus on that case. However, the prediction that Rm = Rm
1 is more subtle and

its accuracy has not been evaluated for biological systems.

To test the COA ansatz, we computed the Daido order parameters for a recently

published data set measuring the approximate 24 hour oscillations of protein expres-

sion in neurons from whole SCN explants [2]. Phases were computed from hourly

measurements of protein expression in individual neurons over a week long period

as the neurons resynchronized following the application of a desynchronizing pertur-

bation (see Methods). We examined this data set for evidence of the COA relation

Rm = Rm
1 at each time point. We found that the phase coherences did not follow this

relation (Fig. 2.1(A)). Additionally, numerical simulations of several different cou-

pled populations of biological oscillator models also reveal the COA ansatz does not

provide a good representation of the equilibrium phase coherences for these systems

(Fig. 2.1(b-d)).

Instead, in each of these systems, we found that the relation,

Rm = Rm2

1 ψm = mψ1 m2 ansatz (2.5)

better captures the properties of the phase distribution. We refer to this alternate

scaling of the Daido order parameters as the m2 ansatz.
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Figure 2.1: A low-dimensional structure in the phase distribution of coupled oscil-
lator systems: (A) experimental SCN neuron data [2], (B) simulation of coupled
heterogeneous Repressilator oscillators [50], (C) simulation of coupled heterogeneous
Morris-Lecar neural oscillators, (D) simulation of coupled noisy modified Goodwin os-
cillators [76] (see Appendix A). (A) Top row: Green dots show the phase coherences
computed from hourly measurements of cell protein expression in the SCN neurons.
The solid black line shows the relation Rm = Rm2

1 and the dashed line shows the
COA ansatz Rm = Rm

1 . Inset plots show the circular mean vector of ψm − mψ1

across all observations. Bottom row: Histogram (left) and first ten phase coherences
(right) of the phase distribution computed from the data point indicated by the blue
star in the top row panels, compared to the phase distribution satisfying the m2

ansatz (black curves). Bottom right: The first ten phase coherences for the phase
distribution computed from the data (green dots in top panels) compared to the m2

ansatz relation (black curve). (B-D) Top row: Histogram of the simulated equilib-
rium phase distribution computed from model simulations for two different coupling
strengths (left panel: strong coupling, right panel: weak coupling), compared to the
m2 ansatz phase distribution. Bottom row: The first ten phase coherences for the
simulated equilibrium phase distributions for two coupling strengths (green dots =
strong coupling, blue squares = weak coupling) compared to the m2 ansatz relation
(solid curves).
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2.2.1 Emergence of the Scaling

The m2 ansatz may be derived under more general assumptions than those re-

quired by the Ott and Antonsen procedure. Let us consider a population of N

coupled oscillators with an equilibrium phase distribution φ∗j such that φ∗j ≈ 0 for

j = 1, 2 . . . , N . A Taylor series expansion of the Daido order parameters may be

written as

Zm ≈ 1 +
im

N

N∑
j=1

φ∗j −
m2

2N

N∑
j=1

(φ∗j)
2 + .... (2.6a)

Making use of our assumption that the equilibrium phase distribution is unimodal

and symmetric, we have that ψm = mψ1 and without loss of generality we may set

ψ1 = 0. Thus, introducing the notation ||φ∗||kk =
∑N

j=1(φ∗j)
k gives

Rm ≈ 1− m2||φ∗||22
2N

≈
(

1− ||φ
∗||22

2N

)m2

, (2.7a)

Rm ≈ Rm2

1 , (2.7b)

which holds whenever the quantity ||φ∗||22 can be considered small and justifies the

emergence of the m2 ansatz we found in both the experimental and simulated data

(Fig. 2.1).

This analysis begs the question of how the COA ansatz Rm = Rm
1 and the m2

ansatz can both be true. The root of the discrepancy is in the fat-tails of the Cauchy

distribution for the natural frequencies of the oscillator population. The slow decay

of the tails of the Cauchy distribution profile results in a significant fraction of os-

cillators whose phases are not locked to the mean phase but instead drift relative

to the population rhythm. This effect keeps the quantity ||φ∗||22 large for any finite

coupling strength. However, for natural frequency distributions with exponential tails

(e.g. Gaussian) the fraction of locked oscillators grows quickly as coupling strength
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increases and the m2 ansatz emerges for moderate coupling strengths. Fig. 2.2(a,b)

shows the phase coherences for simulations of the Kuramoto system (Eq. 2.1) with

Gaussian and Cauchy distributions of natural frequencies. Thus, we conclude the m2

ansatz provides a close approximation for systems with natural frequency distribu-

tions with exponential tails, while the COA procedure provides an exact relation for

systems with a Cauchy distribution of natural frequencies.

In fact, we may introduce a correction to our ansatz which takes into account

the presence of phase-locked and phase-drifting oscillators in the population. Let p

be the fraction of the population whose phases are locked to the mean phase. Then

the Daido order parameters can be expressed as Zm = pZ locked
m + (1 − p)Zdrift

m and

|Zdrift
m | ≈ 0 for the drifting population. Then the same Taylor-series based argument

in Eqs. 2.6 and 2.7 considering only the contribution of the locked population gives,

Rm ≈
Rm2

1

pm2−1
, (2.8)

which collapses to Eq. 2.7b as p→ 1. Additionally, this analysis shows that assuming

p = 1 gives a lower-bound on the Daido order parameter. In particular, Rm ≥ Rm2

1

and Rm → Rm2

1 as p → 1. For the Kuramoto model (Eq. 2.1) we may calculate the

fraction of phase-locked oscillators as the coupling strength increases p(K) as [86,

142]

p(K) =

∫ KR1

−KR1

g(ω)dω. (2.9)

For the Kuramoto model with Gaussian or Cauchy distributions of oscillator natural

frequencies g(ω), we may solve for p(K) using Eq. 2.9. The comparatively slow growth

of the fraction of locked oscillators as K increases for the Cauchy distribution relative

to a Gaussian distribution of natural frequencies is shown in Fig. 2.2(c).
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Figure 2.2: The Kuramoto model (Eq. 2.1) with Gaussian and Cauchy distributions
for the natural frequencies of the oscillators, g(ω). (a,b) Relation among the Daido or-
der parameters computed from numerical simulations (circles) and predicted (curves)
by (a) the m2 ansatz for Gaussian g(ω) and (b) the COA ansatz for Cauchy g(ω)
for increasing coupling strength. Colors indicate different coupling strengths K nor-
malized to the critical coupling strength Kc where partially synchronized solutions
emerge [86, 142]: K/Kc = 1.1 (red), K/Kc = 1.5 (blue) and K/Kc = 3.0 (green). (c)
The fraction of oscillators phase-locked to the mean phase p as a function of normal-
ized coupling strength K/Kc for a Cauchy (dashed green) and Gaussian (solid black)
g(ω).

2.2.2 Complex Networks and Noise

The simplicity of our derivation makes it clear the m2 ansatz should hold quite

generally. In this section we characterize its emergence for the case of systems with

complex network coupling and intrinsically noisy oscillators. To explore this, we

consider a model network of N noisy heterogeneous phase oscillators,

φ̇i = ωi +
K

di

N∑
j=1

AijH(φj − φi) +
√
Dηi(t), (2.10)

where ηi is a white noise process with 〈ηi〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2δ(t− t′)δij, where

δij is the Kronecker delta. Network connectivity is defined by the adjacency matrix A

and we assume an undirected network such that A is symmetric and Aij = Aji = 1(0)

if oscillators i and j are coupled (uncoupled). The degree of the oscillator is then

given by di =
∑N

j=1Aij. Let the coupling function H be a 2π periodic function and

34



we assume that H ′(0) > 0. We note that Eq. 2.10 is quite general and may be derived

in many applications from higher dimensional, limit cycle oscillator network models

under the assumption of weak coupling [7].

We consider the case of strong coupling between the oscillators such that, φj−φi ≈

0 for all oscillator pairs. In this case, we can linearize about the phase-locked state

to give

φ̇i = ω̃i −KH ′(0)
N∑
j=1

Lijφj +
√
Dηi(t), (2.11)

where L is a normalized Laplacian matrix given by Lij = δij − Aij/di and ω̃i =

ωi + KH(0). Our assumptions on the network connectivity dictate that L has real

eigenvalues that may be ordered λ1 = 0 ≤ λ2 ≤ ...λN with associated eigenvectors

{v1, ...,vN}. For the linear system (Eq. 2.11) in the absence of noise (D → 0) we may

solve for the deterministic steady state φ∗ using the Moore-Penrose pseudoinverse of

the normalized Laplacian L†,

φ∗ =
L†ω̃

KH ′(0)
, with L† =

N∑
j=2

vjv
T
j

λj
. (2.12)

Allowing for stochastic fluctuations about the deterministic steady state φ∗, we may

compute the quantity E [||φ∗||22]t as,

E
[
||φ∗||22

]
t

=
N∑
j=2

[(
|vj · ω̃|

λjKH ′(0)

)2

+
D

λjKH ′(0)

]
, (2.13)

where details of this derivation are given in Appendix A. If the quantity E [||φ∗||22]t

is small, then our expansion of the Daido order parameters (Eq. 2.7a) tells us that

the m2 ansatz will provide a good approximation for the phase distribution. Thus,

considering Eq. 2.13 we see that the m2 ansatz will hold for sufficiently strong coupling

strengths for any connected network where ||ω̃|| is finite. Additionally, Eq. 2.13 can be
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Figure 2.3: The equilibrium phase distribution of complex network phase oscillators
converges to the m2 ansatz as the coupling strength between the oscillators increases:
(a) Barabasi-Albert Scale-Free network (b) Watts-Strogatz Small World network.
Circles show the results from simulations of networks of N = 1000 coupled oscillators
with noise amplitude D = 1 and oscillator frequencies drawn from a Gaussian distri-
bution with σ = 1. Solid lines show Rm = Rm2

1 . Colors indicate different coupling
strengths as in Fig. 2.2. Details of these simulations are given in Appendix A

used to study how the emergence of the ansatz depends on the network connectivity,

noise strength and the arrangement of the heterogeneous frequencies in the network

[133].

These results are confirmed by numerical simulations of Eq. 2.10 for the noisy,

heterogeneous Kuramoto model (where H(θ) = sin(θ)) with different network con-

nectivity topologies (Fig.2.3). In particular, we find the m2 ansatz provides a quality

approximation to the Daido order parameters for both Watts-Strogatz small world

[153] and Barabasi-Albert scale-free [12] network topologies. For each network topol-

ogy, the accuracy of the approximation increases with the strength of the coupling as

predicted by Eq. 2.13.

2.2.3 Macroscopic Model

A principal strength of the Ott-Antonsen approach is that the dynamics of the

Kuramoto model (Eq. 2.1) for a large system of coupled oscillators can be reduced
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to the following two dimensional macroscopic model [114]:

Ṙ1 =

(
K

2
− γ
)
R1 −

K

2
R3

1 (2.14a)

ψ̇1 = ω0, (2.14b)

where w0 is the median frequency of the oscillators and γ is the dispersion parameter

of the Cauchy distribution of natural frequencies (Eq. 2.2). In this section, we apply

the m2 ansatz to extract a similar macroscopic model for a large network of noisy,

heterogenous oscillators. In particular, we employ the m2 ansatz as a motivated

moment closure to extract a macroscopic model for the order parameter Z1 for the

noisy heterogeneous Kuramoto equation (Eq. 2.10). We consider a fully-connected

network with coupling function H(θ) = sin(θ). Under these conditions we may write

the system using the Kuramoto order parameter Z1 = R1e
iψ1 [86],

φ̇i = ωi +KR1 sin(ψ1 − φi) +
√
Dηi(t). (2.15)

Following the Ott-Antonsen procedure [114] we consider the continuum limit N →∞

of Eq. 2.15 and find the continuity equation for the phase density function f(ω, φ, t)

∂f

∂t
+

∂

∂φ
(fv) +D

∂2f

∂φ2
= 0, (2.16a)

v = ω +K Im[e−iφZ1], (2.16b)

where Im denotes the imaginary part of the expression. The Fourier series decompo-

sition of f is given by

f =
g(ω)

2π

(
1 +

[ ∞∑
n=1

An(ω, t)einφ + c.c.

])
, (2.17)
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where c.c. stands for the complex conjugate of the expression and g(ω) is the distri-

bution of natural frequencies of the oscillators. Substitution of the Fourier series for

f into the continuity equation yields

Ȧn
n

+ (iω +Dn)An +
K

2

(
Z1An+1 − Z̄1An−1

)
= 0. (2.18)

where barred quantities are the complex conjugate. In the continuum limit the Daido

order parameters Zm are given by

Zm(t) =

∫ 2π

0

∫ ∞
−∞

f(ω, φ, t)eimφdωdφ ∈ C (2.19a)

=

∫ ∞
−∞

Ām(ω, t)g(ω)dω, (2.19b)

using that all oscillating terms in the Fourier series for f integrate to zero except for

n = m. It is at this point in the Ott-Antonsen procedure where the assumption of

a Cauchy distribution of natural oscillator frequencies becomes important. If g(ω) is

given by a Cauchy distribution with median ω0 and dispersion parameter γ (Eq. 2.2),

the integral (Eq. 2.19b) can be evaluated as a residue by arguing that Am(ω, t) may

be analytically continued into the lower half of the ω plane [114]. To continue the

derivation of the macroscopic model, we assume a Cauchy distribution of natural

frequencies and obtain Zm(t) = Ām(ω0− iγ, t). Using this substitution for the Daido

order parameters allows us to re-write Eq. 5.9 as follows

Żn
n

= (iω0 − γ −Dn)Zn +
K

2
(Z1Zn−1 − Z̄1Zn+1). (2.20)

Finally, we set n = 1 and apply the moment closure Zm = |Z1|(m
2−m)Zm

1 or Rm =

Rm2

1 , ψm = mψ1, which yields an equation of motion for the Kuramoto order param-
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eter Z = Z1,

Ż1 = (iω0 − γ −D)Z1 +
K

2

(
Z1 − |Z1|2(Z1)2Z̄1

)
(2.21)

Separating the real and imaginary parts Z1 = R1e
iψ1 gives the macroscopic equations

Ṙ1 =

(
K

2
−D − γ

)
R1 −

K

2
R5

1 (2.22a)

ψ̇1 = ω0. (2.22b)

In previous work, Sonnenschein and Schimansky-Geier [136] derived Eq. 2.22 for

the special case of the noisy Kuramoto model assuming homogeneous oscillator fre-

quencies (γ → 0) by employing an ad-hoc Gaussian moment closure on the phase

distribution. Interestingly, the Gaussian moment closure follows the m2 ansatz found

here. In agreement with our findings, they found the macroscopic system (Eq. 2.22)

captured the dynamics of the microscopic noisy homogeneous Kuramoto model accu-

rately, particularly at strong coupling strengths [136] .

Here, we find the m2 ansatz provides an accurate approximation for the macro-

scopic dynamics of the noisy heterogeneous Kuramoto model. In Fig. 2.4 we show the

predictions of the macroscopic model (Eq. 2.22) compared to numerical simulations of

the microscopic model in the continuum limit found by using the first fifty moments

of Eq. 5.11[136].

In the limit of zero noise amplitude (D → 0), the accuracy of the m2 ansatz breaks

down under the assumption of a Cauchy distribution of oscillator natural frequencies.

This is to be expected given that the zero noise limit of Eq. 4.5 has been proven to

follow the COA ansatz Rm = Rm
1 [113]. However, in the case of weak to moderate

heterogeneity relative to the noise strength s = γ/D ≤ 1 we find the m2 ansatz also
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Figure 2.4: The equilibrium phase coherence R1 as a function of the coupling strength
K for the noisy, heterogeneous Kuramoto model (Eq. 2.15) for different relative levels
of heterogeneity (γ) and noise amplitude (D) (a) s = γ/D = 0.05 (b) s = 0.5 (c)
s = 1. (d-e) The transient dynamics of R1 for (d) s=0.05 and (e) s=1.0 for different
coupling strengths: K = 1.2 (magenta), K = 1.5 (red) and K = 3.0 (blue). In all
panels, solid curves show the macroscopic model predictions (Eq. 2.22) and dashed
curves show numerical simulations of the microscopic model in the continuum limit
(Eq. 5.11). Parameters chosen such that critical coupling strength Kc = 1 for the
microscopic model. Insets show curves in the rectangular regions.

provides an accurate description of the macroscopic dynamics (Fig. 2.4). Moreover,

we find the m2 ansatz provides a useful upper-bound for the collective amplitude R1

and the accuracy improves with increased coupling strength. This may be explained

by our result that Rm ≥ Rm2

1 and that Rm → Rm2

1 as the entire oscillator population

is locked to the mean-field.

As discussed above, the breakdown of the m2 ansatz is related to the fat-tails of the

Cauchy distribution, which cause the fraction of oscillators locked to the mean-field

to grow slowly as coupling strength increases. If the natural frequency heterogeneity

has less density in the tails of the distribution, our analysis predicts the m2 ansatz

should become more accurate. In the next section we investigate how the m2 ansatz

may be used to derive macroscopic models for systems with strong heterogeneity and

exponential tails.
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Oscillator Heterogeneity

In the derivation of the macroscopic model for the noisy Kuramoto system (Eq. 2.22),

we achieved the dimension reduction by assuming that the oscillator frequency distri-

bution g(ω) took the form of a rational function, specifically the Cauchy distribution

(Eq. 2.2). However, our analysis has shown that the m2 ansatz is best applied to

frequency distributions with exponential tails. For a general frequency distribution

g(ω), the m2 ansatz may be applied using

Z1(t) =

∫ ∞
−∞

Ā1(ω, t)g(ω)dω (2.23a)

Zm = |Z1|m
2−mZm

1 . (2.23b)

However, without further simplification the advantage of our approach is largely

negated as this is an infinite set of integro-differential equations which yield an

approximate solution. In this section, we derive an approximate two-dimensional

macroscopic model for systems where oscillator frequencies follow a general symmet-

ric, unimodal distribution.

For a general symmetric and unimodal distribution of oscillator frequencies g(ω)

with a maximum at ω0, we can approximate it with a Cauchy distribution gc(ω, γ).

Let h(ω, γ) = g(ω)− gc(ω, γ), then the solution to Eq. 2.23a is

Z1(t) = Ā1(ω0 − iγ, t) + E1(γ, t) ≈ Ā1(ω0 − iγ, t) (2.24a)

E1(γ, t) =

∫ ∞
−∞

Ā1(ω, t)h(ω, γ)dω. (2.24b)

Thus, the approximation for Z1 in Eq. 2.24a allows for the dimension reduction and

the accuracy of the macroscopic model will depend on choosing the dispersion pa-

rameter γ = γ̂ such that the magnitude of the error term |E1(γ, t)| is minimized. The

m2 ansatz yields the higher order Daido order parameters with error O(E1) using
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Eq. 2.23b.

To compute the error term |E1(γ, t)|, consider the function A1(ω, t) ∈ C as a

frequency-dependent version of the Kuramoto order parameter Z1. For oscillators

which are entrained to the mean-field we may write

A1(ω, t) = ρ(ω)ei(θ(ω)+Ωt), (2.25)

where Ω gives the frequency of the mean-field, ρ(ω) describes the collective ampli-

tude and θ(ω) the entrainment angle for oscillators with natural frequency ω. When

oscillators with frequency ω are locked to the mean-field we have ρ(ω) = 1 [112].

For the Kuramoto model, oscillators with ω ≤ KR1 are locked to the mean-field

with entrainment angle θ(ω) = arcsin( ω
KR1

) ≈ ω
KR1

. Therefore we may approximate

the magnitude of the error integral by considering only the locked oscillators

|E1(γ)| ≈ |L1(γ)| =
∣∣∣∣∫ KR1

−KR1

e
i ω
KR1 h(ω, γ)dω

∣∣∣∣ . (2.26)

Thus, γ̂ should be chosen such that |L1(γ)| is minimized. For example, for a Gaussian

distribution of frequencies it is possible to find γ̂ such that |L1(γ̂)| = 0. In general, γ̂

will depend on the coupling strength K both directly and implicitly through R1(K).

Therefore, the approximate macroscopic model for the heterogeneous Kuramoto

model is

Ṙ1 =

(
K

2
− γ̂(K)

)
R1 −

K

2
R5

1 (2.27a)

ψ̇ = ω0. (2.27b)

For KR1 ≈ 0 we may solve for γ̂ by setting |h(ω0, γ̂)| = 0 which yields γ̂ = 1/[πg(ω0)].

Therefore, the approximate macroscopic model captures the critical coupling strength

Kc = 2γ̂ as determined by the classical self-consistency approach reviewed in the
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Figure 2.5: The equilibrium phase coherence R1 against the coupling strength K for
the Kuramoto model for (a) g(ω) Gaussian (b) g(ω) ∝ e−ω

4/a distributions of natural
frequencies. Exact solutions obtained from classical self-consistency theory [86, 142]
are shown as dashed green, and the solution according to the m2 ansatz solid black

introductory chapter [142, 86]. Moreover, we find the macroscopic model (Eq. 2.27)

provides a close approximation to R1(K) as the coupling strength increases as shown

in Fig. 2.5 for g(ω) Gaussian and g(ω) ∝ e−ω
4/a.

Finally, we note that the error in the approximation in Eq. 2.26 for the error

term |E1(γ)| scales with the fraction of locked oscillators p. Thus, the approximation

of a Cauchy frequency distribution and the m2 ansatz each introduce errors which

scale with the fraction of locked oscillators. Therefore, employing the Cauchy ap-

proximation alongside the m2 ansatz does not add any additional assumptions to the

approximation and does little to affect the accuracy of the approach.

2.3 Discussion

In the past decade, the powerful ansatz discovered by Ott and Antonsen [114]

has been used to resolve many open problems in the coupled oscillator literature

and has been applied to an increasing number of application areas [94, 102, 93]. In

this chapter, we provide the first evaluation of the suitability of the Ott-Antonsen

reduction procedure for extracting macroscopic models of real biological networks.

Our examination of a recent experimental data set of circadian oscillator activity
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[2], as well as simulations of several biological oscillator networks, revealed that these

systems did not follow the Ott-Antonsen ansatz. Instead, we identified a new relation,

them2 ansatz, which captures the phase distribution of these systems more accurately.

A simple argument showed the emergence of the m2 ansatz for systems of coupled

oscillators which have a high percentage of the oscillators phase-locked to the mean-

field oscillation. We found the m2 ansatz emerged at moderate coupling strengths for

oscillator populations whose frequency heterogeneity has exponential tails. In con-

trast, the Ott-Antonsen ansatz holds at any coupling strength when the frequency

heterogeneity has a Cauchy distribution (polynomial tails). For noisy heterogeneous

coupled oscillator systems, the m2 ansatz robustly emerged for sufficiently strong cou-

pling strengths. Further, the m2 ansatz may be used as a moment closure to extract

a low-dimensional macroscopic model for noisy heterogeneous oscillator networks.

The low-dimensional system we derive differs slightly from the Ott-Antonsen ap-

proach as it produces a term of order R5 in the collective amplitude equation as

compared with the cubic scaling R3 in the Ott-Antonsen equations [114, 93]. We

note that a cubic scaling is expected for coupling strengths near the critical coupling

strength Kc as predicted by the normal form for a Hopf bifurcation [60]. Therefore,

we expect our ansatz would overestimate the growth of the phase coherence about the

critical coupling strength and may not be an appropriate tool for studying the scaling

of the order parameter about the critical coupling. However, as we demonstrated,

our approach provides a close approximation to the equilibrium phase coherence as

the coupling between oscillators is strengthened.

In the case of human circadian rhythms, several results suggest that models for col-

lective amplitude dynamics should include higher order terms. For example, higher-

order terms in the amplitude growth have previously been required to accurately

model the collective amplitude dynamics of the human circadian rhythm in response

to a desynchronizing light-pulse [68]. Additionally, the R5 term which appears in
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our model predicts it should be difficult to increase the amplitude of the circadian

rhythm by applying light pulses to an equilibrium circadian amplitude. This is in

accordance with experimental results that light pulses administered during the day

do not significantly affect the circadian amplitude [69, 71]. Finally, we note that a

previous comparison of two phenomenological van der Pol models for human circa-

dian rhythms showed that the model with higher order terms better explained human

circadian amplitude data [67].

A principal strength of both the Ott-Antonsen procedure and our results is that

the parameters and variables of the derived macroscopic models have direct physical

interpretations. Therefore, the predictions of the models may be compared with ex-

perimental data from the cellular, tissue and whole organism levels. For example, Lu

et al [93] made use of the COA ansatz to study jet-lag resynchronization asymmetry

using readily available data on the mean-period of circadian oscillator cells [16, 27].

Future work could use this formalism to synthesize cellular-level data on the coupling

mechanisms[105], network connections [2] and cellular periods [106] of SCN neurons

with behavioral circadian abnormalities observed at the whole organism level. We

will apply the m2 ansatz to study the impact of light on the mammalian circadian

rhythm in Chapter IV and to derive a low-dimensional model for human circadian

rhythms in Chapter V.

To conclude, the m2 ansatz allows derivations of macroscopic models for pop-

ulations of oscillators with more general frequency distributions and phase-locked

behavior than required by the COA ansatz. Our analysis of the phase-locked dynam-

ics of neurons in the mammalian circadian pacemaker suggest that other biological

oscillator systems may also be better represented by the m2 ansatz.
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2.4 Methods

The circadian time-series shown in Fig. 2.1(a) was collected as described by Abel

et al [2], who generously made their data set publicly available. Briefly, the time-series

was collected from whole SCN mouse explants cultured for 14 days. The expression of

the circadian marker PERIOD2::Luciferase was monitored under a microscope, with

bioluminescence measurements collected every hour. On day six in culture tetrotoxin

(TTX) was added to the culture in order to block neuronal signaling and desynchro-

nize the neurons. The TTX solution was washed away and the culture was allowed to

resynchronize. For our purposes we removed the time-points when the TTX solution

was added in order to study the phase distribution of the coupled neurons during

resynchronization. Plots of additional SCN explants adherance to the m2 ansatz are

shown in Appendix A.

The raw bioluminscience data were processed following established methods [106].

First, the raw bioluminscience data was de-trended by removing the Hodrick-Prescott

baseline trend with a large penalty parameter λ = 106 to minimize loss of the oscil-

latory signal component. The time-dependent protophase of each oscillator was ex-

tracted by dimensional embedding with an six hour embedding lag [134]. Finally, the

time-dependent phase was estimated using the protophase to phase transformation

as specified in the DAMOCO Matlab toolbox [83, 82].

Details for the mathematical models used in Fig. 2.1(b-d) are given in Appendix

A. The estimation of the phase distribution for the in silco data was carried out in

much the same manner as described for the experimental data. However, due to

the large number of data points available in the simulated data we used the Hilbert

transform to estimate the protophase of the oscillators.
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CHAPTER III

Collective Phase Response Curves for

Heterogeneous Coupled Oscillators

3.1 Introduction

Many biological rhythms are produced in a collective manner by a large ensemble

of coupled heterogeneous oscillators. For example, the mammalian circadian clock

consists of approximately twenty thousand coupled heterogeneous neuronal oscillators

[92]. The collective oscillation produced by the ensemble of individual neurons drives

the behavioral circadian rhythm [92]. Similar phenomena have been observed in

the generation of brain rhythms, cardiac pacemaker cells, and many other biological

systems [55, 116, 51].

For weakly coupled limit-cycle oscillators the dynamics of each oscillator may be

reduced to a single phase variable and the collective properties of the system may be

revealed through the study of the coupled phase equations [86, 135, 158]. One of the

best characterized systems of coupled phase oscillators is the mean-field Sakaguchi-

Kuramoto model [142, 86]. In this model the oscillators are assumed to be all-to-all

coupled through a sinusoidal coupling function. The existence, stability and phase

distribution of the synchronized state in the Sakaguchi-Kuramoto equations has been

the subject of extensive mathematical investigation [142, 4]. In particular, several
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dimension-reduction techniques have been developed for this system which allow for

analytical investigation [114, 54, 120, 152, 22].

The properties of oscillating systems are often studied both experimentally and

theoretically by characterizing their response to perturbations applied at different

phases in the oscillation [72, 135]. Commonly, the effect of the perturbation is mea-

sured in terms of a phase shift and the resulting curve is termed a phase response

curve (PRC).

For a single oscillator, the (microscopic) PRC is well defined both mathematically

and experimentally and can provide insights into the stability, synchronization and

entrainment behaviors of the oscillator [130, 156, 118]. Of particular importance are

the amplitude and zeros of the PRC. For entrainment by a weak resetting signal, the

amplitude of the PRC determines the range of frequencies the oscillator can entrain

to and the stable zeros give the phase difference between the entraining force and the

oscillator [118].

Comparatively little is known about the (macroscopic) collective phase response

curve. Here, an external stimulus perturbs each individual oscillator which induces

a phase shift according to the microscopic PRC. These microscopic shifts interact

to produce a macroscopic shift in the collective rhythmicity of the population. The

phase shift in the macroscopic phase gives the collective PRC for the ensemble of

oscillators.

For a population of oscillators with identical phases the collective and microscopic

phase PRCs will coincide. However, when the oscillator population has some variance

in the phase distribution, the collective PRC will generally differ from the microscopic

PRC [156]. A central question is how the collective and the microscopic PRCs may

be related for a population of heterogeneous oscillators.

Mathematically, several factors have been identified which can lead to significant

differences between the microscopic and collective PRCs. The nature of the coupling
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function as well as the connectivity between the individual oscillators is known to

have important effects on how the collective PRC differs from the microscopic PRC

[81]. The effect of a general network structure on the collective PRC is discussed in

[81] for the case of small deviations from a global limit cycle attractor. Furthermore,

the effect of a non-odd coupling function on collective phase shifts is examined in

Levnajic and Pikovsky [89] using the Ott-Antonsen dimension reduction technique

[114, 113]. The effect of non-odd coupling functions is also examined in Ko and

Ermentrout [77] using symmetry properties of the coupling function. Moreover, the

phase distribution of the ensemble of oscillators is known to effect the shape of the

collective PRC [156].

In this work, we consider an all-to-all coupled network and focus on the effect of

the phase distribution and the coupling function in determining the collective PRC.

We study a globally coupled system of Sakaguchi-Kuramoto oscillators with a non-odd

sinusoidal coupling function. Each individual oscillator experiences an instantaneous

phase shift according to a microscopic PRC-where we make no assumptions on the

form of the microscopic PRC. We analytically determine an asymptotic expansion

for the collective phase response curve making use of the formalism developed in [89]

based on the Ott-Antonsen reduction [114, 113].

The resulting analytical formula reveals the effect of heterogeneity. The formula

predicts the collective PRC differs from the microscopic PRC by an amplification of

the first harmonic and dissipation of the higher harmonics. In addition, an important

effect of coupling is shown to be a shift in the zeros of the collective PRC. Significantly,

these results give a characteristic scaling for the amplitude and change in the zeros

of the collective PRC as a function of the mean phase coherence of the system. We

also derive the instantaneous amplitude response function for the coupled system

which characterizes the transient effect of perturbations on the phase coherence of

the system.
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Our work builds upon that of Levnajić and Pikovsky [89] in that we consider

general microscopic phase response curves and derive a characteristic scaling for the

collective phase response curve. We also focus on the deterministic case, whereas in

Refs. [73, 74] they consider a stochastic system.

This chapter is organized as follows: in Sec. 3.2 we define the model to be studied,

components of the collective phase response curve and the Ott-Antonsen reduction

approach. In Sec. 3.3 we derive an asymptotic formula for the collective phase re-

sponse curve. In Sec. 3.4 we test the analytical theory against numerical simulations

for phase oscillators. In Sec. 3.5 we demonstrate the applicability of the theory to bi-

ological systems by studying a population of coupled neuronal oscillators. The results

and conclusions are discussed in Sec. 3.6.

3.2 Formulation of the Model

3.2.1 Model Definition

We consider an ensemble of N heterogeneous oscillators characterized by their nat-

ural frequencies ωk and whose dynamical states may be described as phase variables

φk, k = 1, 2...N . Further we assume a Sakaguchi-Kuramoto type sinusoidally cou-

pled system where each individual oscillator responds to a instantaneous perturbation

according to a microscopic phase response curve Q(φ):

φ̇k = ωk +
K0

N

N∑
j=1

sin(φj − φk + β) + εQ(φk)δ(t− t′) (3.1)

for β ∈ (−π
2
, π

2
). The ε parameter will be used to control the magnitude of the phase

shifts. The collective dynamical state of the ensemble is described through the set of
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Daido order parameters Zn defined according to [31, 30],

Zn =
1

N

N∑
k=1

einφk ∈ C. (3.2)

When n = 1 we refer to |Z1| = R as the phase coherence of the system and

Arg(Z1) = ψ as the mean or collective phase. The collective PRC will be expressed

as a function of the mean phase ψ. In the limit as N →∞ we may convert Eq. (3.1)

to a partial differential equation for the continuous density function f(ω, φ, t) such

that f(ω, φ, t)dφdω gives the fraction of oscillators at phase φ with natural frequency

ω at time t. The continuity equation as N →∞ is given by,

∂f

∂t
+

∂

∂φ
[f(ω, φ, t)v] = 0, (3.3a)

v = ω +K0Im[eiβe−iφZ] + εQ(φ)δ(t− t′). (3.3b)

The generalized Daido order parameter Zn for a continuous density function is given

by,

Zn(t) =

∫ π

−π

∫ ∞
−∞

f(ω, φ, t)einφdωdφ ∈ C. (3.4)

Finally, we assume the distribution of natural frequencies follows a Cauchy distribu-

tion with mean ω0 and dispersion parameter γ,

g(ω) =
1

π

γ

(ω − ω0)2 + γ2
. (3.5)

3.2.2 Components of the Phase Response Curve

The shift induced on the collective phase in this system may be separated into two

components: (1) The prompt phase shift induced on the system at t = t′ governed by

the microscopic phase response curve, and (2) the slower acting phase shift mediated
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by the coupling function as the ensemble returns to its asymptotic state [89] (see

Fig. 3.1). Assume that just before the perturbation occurs the order parameter is

given by Z0 and the mean phase ψ0. Barred quantities will refer to the system just

after the perturbation.

Definition III.1 (pPRC ∆0 ). Let us define the prompt phase response curve as the

phase shift of the mean phase just after the perturbation t = t′.

∆0(ψ0) = ψ̄ − ψ0 = Arg
Z̄

Z0

Definition III.2 (fPRC ∆∞). Let us define the final (t→∞) phase resetting value

as the final phase response curve where

∆∞(ψ0) = lim
t→∞

[ψ̄(t)− ψ(t)] = lim
t→∞

Arg
Z̄(t)

Z(t)

In the long-time limit the dynamics of Eq. (3.3) for heterogeneous oscillators

collapses to the so-called Ott-Antonsen manifold [113]. Within the Ott-Antonsen

manifold the dynamics of Z are described by a two dimensional system for the phase

coherence R and the mean phase ψ:

Ṙ = −γR +
K0 cos(β)

2
R(1−R2) (3.6a)

ψ̇ = w0 +
K0 sin(β)

2
(1 +R2) (3.6b)

These equations are solved analytically in [89] to give a prediction for the final phase

shift as,

∆∞ = Arg

[
Z̄

Z0

]
+ tan(β) ln

∣∣∣∣ Z̄Z0

∣∣∣∣ = ∆0 + ∆R. (3.7)

Here we define ∆R as the relaxation phase shift or the phase shift incurred during
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∆0∆
R

Z 0Z̄

Figure 3.1: The order parameter just before the perturbation is at Z0. Just after the
perturbation it is shifted to Z̄. ∆0 tracks the shift in the mean phase that occurs in
the movement from Z0 to Z̄ and ∆R gives the relaxation phase shift of the collective
oscillator. The isochrons here show the case where β = −1

2
.

the relaxation of the system to equilibrium. The dynamics of the order parameter

only collapse to two-dimensions (Eqs. 3.6) for continuous density functions which lie

strictly within the Ott-Antonsen Manifold [113] [95]. However, as demonstrated in

Levnajić and Pikovsky [89] numerically and further validated in this work, we expect

Eqs. (3.7) to provide a good approximation for sufficiently small deviations off the

manifold.

Using the Ott-Antonsen reduced system (Eqs. 3.6) we can analyze the isochrons

of the collective oscillator for states lying within the OA manifold. When β = 0

the coupling function is odd and the isochrons of the collective oscillator are radial.

For radial isochrons a change in the phase coherence will not affect the phase and

∆R = 0 meaning ∆∞ = ∆0. However, when β 6= 0 the collective oscillator (Eqs. 3.6)

has spiral isochrons and a change in the phase coherence will induce an additional

rotation (Fig .3.1).

From Eqs. (3.7) we can see the collective PRC (∆∞) is determined by the mapping

Z0 → Z̄ at the instant the perturbation is applied (Fig. 3.1). We will now show that

the nature of this mapping depends on the Fourier decomposition of the microscopic

PRC Q(φ).

53



3.3 Analytical Approximation of Z̄

As N → ∞ we may replace Eq. (3.1) by the continuity equation (Eq. 3.3) de-

scribing the time evolution of f(ω, φ, t) the continuous density function. To ease the

notation in this section we set the time of the perturbation t′ = 0.

As t → ∞ the continuous density function f(ω, φ, t) will collapse to the Ott-

Antonsen manifold [113]. Within the Ott-Antonsen manifold the higher moments of

Z may be expressed as powers of Z such that Zn = (Z)n and Z−n = (Z∗)n where ∗

denotes the complex conjugate. This property will be exploited to obtain the map

from Z0 → Z̄ for a general Q in closed form.

For times sufficiently close to the moment of the perturbation (t = t′ = 0) the

εQ(φ) term will dominate the velocity of f and the continuity equation can be ap-

proximated as,

ft +
∂

∂φ
[εQ(φ)f(ω, φ, t)δ(t)] ≈ 0. (3.8)

Applying the method of characteristics (see Appendix B for more details) to Eq. 3.8

yields the characteristic equations,

dφ

dt
= εδ(t)Q(φ) (3.9a)

dh

dt
= −εδ(t)Q′(φ)h (3.9b)

where h(t) = f(ω, φ, t). In order to obtain an analytical solution for Eqs. (3.9) we

assume ε is a small parameter and conduct a perturbation expansion. The expansion

will be valid for small changes in the mean phase ψ. To leading order in ε we find,

φ(t) = φ0 + εQ(φ0) (3.10a)

h(t) = h0e
−εQ′(φ0), (3.10b)
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for t > 0 where φ0, h0 indicate the quantities just prior to the perturbation.

Since Q(φ) = Q(φ0)+O(ε) we approximate φ0 ≈ φ−εQ(φ). Thus, we approximate

f̄(ω, φ) the distribution after the perturbation as,

f̄(ω, φ) = f(ω, φ− εQ(φ))e−εQ
′(φ−εQ(φ)) (3.11)

to leading order in ε. We integrate out the ω dependence and define ρ(φ) which gives

the fraction of oscillators at phase φ,

ρ(φ) =

∫ ∞
−∞

f(ω, φ)dω. (3.12)

Therefore, we can write

ρ̄(φ) = ρ(φ− εQ(φ))e−εQ
′(φ−εQ(φ)) (3.13)

Eq. 3.13 gives an expression, valid for small ε, for the continuous phase distribution

just after the perturbation ρ̄(φ) in terms of the phase distribution prior to the per-

turbation ρ(φ). We now convert Eq. 3.13 into an expression for the order parameter

and derive a form for the desired mapping Z0 → Z̄. We expand Eq. (3.13) to leading

order in ε, multiply by eiφ and integrate to get an expression in terms of the order

parameter Z.

Z̄ = Z0 − ε
∫ π

−π
ρ(φ)Q′(φ)eiφdφ− ε

∫ π

−π
ρφQ(φ)eiφdφ (3.14)

Integrating the second term by parts and simplifying gives

Z̄ = Z0 + iε

∫ π

−π
ρ(φ)Q(φ)eiφdφ. (3.15)

In order to express the integral in Eq. 3.15 in terms of powers of Z0 we replace Q(φ)
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with its Fourier Series representation,

Q(φ) =
A0

2
+
∞∑
n=1

Ane
inφ + A∗ne

−inφ. (3.16)

This gives the following expression,

Z̄ = Z0 + iε

(
A0

2
Z0 +

∞∑
n=1

∫ π

−π
Anρe

i(n+1)φ + A∗nρe
i(1−n)φ

)
. (3.17)

Since ρ(φ) describes a system on the Ott-Antonsen manifold we have the special

property,

∫ π

−π
ρ(φ)einφdφ = (Z0)n

∫ π

−π
ρ(φ)e−inφdφ = (Z∗0)n. (3.18)

Applying this moment closure allows us to close Eq. 3.17,

Z̄ = Z0 + iε

(
A0

2
Z0 +

∞∑
n=1

AnZ
n+1
0 + A∗n(Z∗0)n−1

)

This can be rearranged to give,

Z̄ = Z0

(
1 + iεQ̂(ψ)

)
(3.19a)

Q̂(ψ) =
A0

2
+
∞∑
n=1

Rn−1(RAne
inψ +

A∗n
R
e−inψ). (3.19b)

Eqs. (3.19) gives an expression for Z̄ in terms of Z0 valid for small values of ε in

terms of the Fourier series for the microscopic PRC.

Notice that Q̂(ψ) is closely related to the microscopic phase response curve Q(φ).

For values of the phase coherence ≈ 1 the spread of the phase distribution is small

and Q̂(ψ) ≈ Q(ψ). However, as the phase coherence decreases, Q̂(ψ) diverges from

the microscopic phase response curve.
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In addition, we note the Ott-Antonsen reduction has only been applied as a mo-

ment closure in this derivation. In particular, the integral equation Eq. 3.15 may be

used for cases for which the Ott-Antonsen reduction cannot be applied and be adapted

to moment-closure schemes which close the moments at a higher order. In Chapter

IV we will adapt this procedure for the study of mammalian circadian rhythms using

the m2 ansatz in place of the Ott-Antosen ansatz.

3.3.1 Prompt Phase Response Curve ∆0

With an analytical expression for the order parameter after the perturbation is

applied (Eqs. 3.19) we may derive an expression for the prompt phase resetting curve

∆0.

∆0 = Arg

[
Z̄

Z0

]
= Arg

Z0

(
1 + iεQ̂(ψ)

)
Z0


= arctan

(
εRe[Q̂(ψ)]

1− εIm[Q̂(ψ)]

)

≈ εRe[Q̂(ψ)] +O(ε2)

Taking the real part of Q̂(ψ) yields,

∆0(ε, R, ψ) =
ε

2

{
A0 +

∞∑
n=1

Rn−1

(
R +

1

R

)
[an sin(nψ) + bn cos(nψ)]

}
(3.20)

which is an asymptotic expansion valid as ε→ 0 for the prompt phase resetting curve

as a function of the Fourier Series for the microscopic phase response curve and the

phase coherence (R) of the system. Lower phase coherence values affect the Fourier

modes of the microscopic phase response curves differently.

Specifically, Eq. 3.20 predicts a scaling for the amplitude of the collective PRC.

In particular, for microscopic PRCs which are dominated by their first harmonic the
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Figure 3.2: A representative plot of the prompt phase response curve ∆0 for various
values of R and Q(ψ) = sin(ψ)+sin(4ψ) with ε = 0.1. The first harmonic is amplified
and higher harmonics are dissipated in the collective PRC.

amplitude of the collective PRC should scale like R + 1
R

and for a microscopic PRC

whose principal Fourier coefficient is of order N the amplitude of the collective PRC

should scale like RN + RN−2. For microscopic PRCs composed of several modes we

expect the first harmonic to be amplified and higher harmonics to be damped in the

collective PRC resulting in a change in shape of the PRC (Fig. 3.2).

3.3.2 Amplitude Response Curve

The formalism developed here allows us to predict not only the phase shift of the

collective phase but also how perturbations of individual oscillators affect the phase

coherence of the population. Since we are operating within the Ott-Antonsen frame-

work we expect that after a perturbation the system will return to its equilibrium R

value for long times. However, it is interesting to consider how the phase coherence

is transiently altered by perturbations. To study this we introduce the amplitude

response curve Λ(ψ,R, ε) where Λ is defined as the ratio of the phase coherence after

the perturbation to the phase coherence prior to the perturbation.
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Λ0(ψ,R, ε) =

∣∣∣∣ Z̄Z0

∣∣∣∣ ≈
∣∣∣∣∣Z0 + εiZ0Q̂(ψ)

Z0

∣∣∣∣∣
=

√
1− 2εIm[Q̂] + ε2(Re[Q̂]2 + Im[Q̂]2)

= 1− εIm[Q̂] +O(ε2)

Therefore using that Im[z] = (z − z∗)/2i we have that

Im[Q̂] =
∞∑
n=1

Rn−1(
1

R
−R) Im[A∗ne

−inψ]

Im[Q̂] =
1

2

∞∑
n=1

Rn−1(
1

R
−R)(an cos(nψ)− bn sin(nψ))

Where an is the nth sine coefficient and bn is the nth cosine coefficient in the Fourier

Series of Q(ψ). This gives the following expression for Λ0:

Λ0(ψ,R, ε) ≈ 1 +
ε

2

∞∑
n=1

Rn−1

(
1

R
−R

)
[bn sin(nψ)− an cos(nψ)] (3.21)

Notice that

bn sin(nψ)− an cos(nψ) ∝ −dQ
dψ

,

so we expect the amplitude shifts to be greatest around the zeros of the microscopic

phase response curve, with increases in R around stable points and decreases around

unstable points (Fig. 3.3).

In addition, we note this derivation contains two expected limits: as ε → 0 or

R→ 1 we expect the amplitude changes to be unchanged by the perturbation.
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Figure 3.3: A representative plot of the amplitude response curve Λ for various values
of the phase coherence with Q(ψ) = 1

2
sin(ψ) − cos(ψ) and ε = 0.1. Perturbations

around stable fixed points of Q(ψ) give transient increases in the phase coherence
and perturbations about unstable fixed points of Q(ψ) give decreases in the phase
coherence.

3.3.3 Relaxation Phase Response Curve ∆R

We now consider the case where the system (Eq. 3.1) evolves with a non-odd

coupling function β 6= 0. In this case we expect the relaxation phase shift (∆R) to be

non-zero. If the deviation off the Ott-Antonsen manifold is small enough we expect

that Eq. 3.7 will provide a good estimate for ∆R.

∆R = tan(β) ln

(∣∣∣∣Z̄Z
∣∣∣∣) = tan(β) ln[Λ0(R,ψ, ε)]

Therefore, the relaxation phase shift depends on the logarithm of the amplitude

response curve. Expanding this system to leading order in ε we get:

∆R =
ε

2
tan(β)

∞∑
n=1

Rn−1

(
1

R
−R

)
[bn sin(nψ)− an cos(nψ)] (3.22)

where an is the nth sine coefficient and bn is the nth cosine coefficient in the Fourier

Series for Q(ψ). Once again as the phase coherence goes to one the relaxation phase

shift goes to zero. Also, we expect the effect of the relaxation phase shift to be
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strongest around the zeros of the microscopic phase response curve Q(ψ) because the

amplitude response curve is maximal at those points (Fig. 3.3).

Therefore, for systems with β 6= 0 we expect the collective PRC to have shifted

zeros compared to the microscopic phase response curve. Moreover, this shift will

become more exaggerated when the microscopic phase response curve is dominated

by low harmonics and the ensemble has a small phase coherence.

3.3.4 Collective Phase Response Curve ∆∞

Having computed the prompt phase response curve ∆0 and the relaxation curve

∆R we can now write down an expression for the collective phase response curve ∆∞

valid for small ε,

∆∞ = ∆0 + ∆R (3.23a)

∆0 =
ε

2

{
A0 +

∞∑
n=1

Rn−1

(
R +

1

R

)
[an sin(nψ) + bn cos(nψ)]

}
(3.23b)

∆R =
ε

2
tan(β)

∞∑
n=1

Rn−1

(
1

R
−R

)
[bn sin(nψ)− an cos(nψ)]. (3.23c)

Therefore we have expressed the collective phase response function in terms of the

Fourier coefficients of the microscopic phase response function and the phase coher-

ence of the equilibrium state.

We may now find an approximation for the shift in zeros for the collective phase

response curve. If ∆∞(ψ0) = 0 then we have ∆0(ψ0) = −∆R(ψ0). Let Q(ψ) be a

microscopic PRC which is dominated by its nth harmonic, then applying Eqs. 3.23

we get that,

tan(nψ0) = tan(β)

(
2

1 +R2
− 1

)
(3.24)
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Let ψ∗ be the zero of the microscopic PRC Q(ψ∗) = ∆0(ψ∗) = 0 and let ∆ψz = ψ0−ψ∗

be the shift in the zero for the collective PRC. We expand Eq. 3.24 about ψ∗ to get

an expression for the shift in the zero ∆ψz,

∆ψz =
1

n

(
2

R2 + 1
− 1

)
tan(β). (3.25)

Thus, the shift in the zeros of the collective phase response curve relative to the

microscopic PRC will increase like 1
R2+1

for smaller values of the phase coherence and

will be attenuated like 1/n when the microscopic phase response curve is dominated

by higher harmonics.

In summary, Eqs. 3.23 make the following predictions concerning the difference be-

tween the microscopic phase response curve Q and the collective PRC for sinusoidally

coupled heterogeneous phase oscillators:

1. The amplitude of the nth harmonic in the collective PRC should scale like

Rn−1(R + 1
R

) relative to the microscopic PRC.

2. For non-odd coupling functions (β 6= 0) the zeros of the collective PRC should

be shifted in a manner that scales with 2
R2+1

− 1 relative to the microscopic

PRC.

We now test these predictions numerically for coupled phase oscillators and for a

model of electrically coupled neurons.

3.4 Numerical Results

In this section we present numerical results in order to test the theoretical find-

ings from the previous section. For each simulation we set N = 104 oscillators and

numerically integrate (Eq.3.1) to find the stationary phase distribution. The natural

frequencies of the oscillators were drawn from a Cauchy distribution (Eq. 3.5) with
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dispersion parameter γ = 0.5 and mean w0 = 0.0. In order to generate phase distribu-

tions with differing phase coherence (R) values the strength of the coupling constant

K0 in Eq. 3.1 was varied. Ott-Antonsen theory predicts and numerics validate that the

equilibrium phase coherence and coupling constant are related by, K0 = 2γ
(1−R2) cos(β)

.

A stationary phase distribution was generated by numerically integrating Eq. 3.1 for

long-times.

A stimulus was applied to the stationary phase distribution at a sampling of

mean phase values ψ ∈ [0, 2π) and the order parameter was recorded just after the

application of the stimulus. The system was numerically integrated for a long-time

until a steady state phase shift in the mean phase was recovered relative to the

unperturbed system. These numerical collective PRCs were compared against the

theoretical predictions from Sec. 3.3.

As a first case, we consider a simple microscopic PRC Q(ψ) = sin(ψ) (Fig. 3.4).

This provides validation that the first harmonic is amplified like R+ 1
R

in the collective

PRC and the zeros of the microscopic PRC are shifted proportional to tan(β)( 1
R
−R)

in the collective PRC (Fig. 3.4).

In Fig. 3.5 we consider more general microscopic PRCs and once again see good

agreement between the theoretical prediction (Eq. 3.23) and numerical simulations.

As can be seen in Fig. 3.5 the collective PRC can deviate significantly from the

microscopic PRC and these differences can largely be understood as an amplification

of the first harmonic and dissipation of higher harmonics.

When the microscopic PRC is composed of several harmonics this amplifica-

tion/dissipation can be manifest in a significant change in shape from the microscopic

to the collective PRC (Fig. 3.5(d)). For example, in Fig. 3.5(d) the collective PRC

has a phase delay region which is not present in the microscopic PRC. Moreover, the

collective PRC in Fig. 3.5(d) has a stable entrainment point where the microscopic

PRC has only a neutrally stable region (ψ > π).
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Figure 3.4: Change in the amplitude and entrainment points for a sinusoidal micro-
scopic PRC. Here we set Q(ψ) = sin(ψ), ε = 0.1 and β = 0.5. The coupling strength
K0 was varied to produce phase distributions with differing phase coherence (R) val-
ues in the synchronized state. Blue stars in Fig. (a,b) indicate the values of R which
are plotted in (c,d). (a) The amplitude of the collective phase response curve scales
like R + 1

R
with the phase coherence. (b) The shift in the zero at ψ = π scales like

tan(β)
(

2
R2+1

− 1
)
. (c) Microscopic, predicted collective PRC and numerical collective

PRC for R = 0.7 (d) Microscopic, predicted collective PRC and numerical collective
PRC when R=0.5.
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Figure 3.5: Comparing theoretical predictions against numerical results for the col-
lective PRC for various microscopic PRC with ε = 0.1 and β = 0.5. The cou-
pling strength K0 was varied to produce phase distributions with differing phase
coherence (R) values in the synchronized state. Microscopic PRC (solid black),
∆∞ (dashed green), numerical simulation (red ’+’). Let H(ψ) be the heaviside
step function. (a) Q(ψ) = sin(ψ) + 1

4
sin(5ψ) (b) Q(φ) = sin(ψ) + sin(4ψ) , (c)

Q(ψ) = H(ψ − π)(− sin(2ψ)− sin(2ψ) cos(2ψ)) (d) Q(ψ) = H(−ψ − π).
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3.5 Applications

3.5.1 Application to a Neuronal Model

In order to investigate the broader application of this theory, we considered a

system of coupled neurons modeled by the Morris-Lecar Model. The Morris-Lecar

model is a two-dimensional conductance-based neuronal firing model which is com-

monly used as a general neural model [104]. For model details and parameter values

see Appendix E.

We consider an all-to-all connected system of Morris-Lecar neurons with electrical

coupling between the neurons. Specifically, the coupling term in the current balance

equation for neuron i is
∑

j gsyn(Vj − Vi) where j sums over all other neurons in

the network. The population of neurons is set to fire with heterogeneous frequencies

distributed in a Cauchy manner. The Morris-Lecar model is capable of producing both

Type I and Type II microscopic phase response curves for different parameter values

[37]. This classification of neuronal PRCs distinguishes between two physiologically

observed neuronal firing properties and is linked to the neural membrane properties

and the bifurcation which births the oscillations. In a Type I neuronal system the

PRC is characterized by having a large region of phase advances and a comparatively

small region of phase delays in response to an applied current [37]. A Type II PRC is

characterized by having regions of both phase advances and delays. In this context the

distinction allows us to test the collective PRC theory for two qualitatively different

and physiologically relevant microscopic phase response curves.

In order to evaluate the utility of the theoretical predictions of this work we

computed the individual neuron phase response curves, the Ott-Antonsen predicted

collective phase response function and the numerical collective phase response func-

tion in both the Type I and Type II parameter regimes. The numerical curves were

produced using a short weak applied current pulse (Iapplied = 1.0 uA
cm2 , ∆t = 1ms) to
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each individual neuron and then measuring the phase shift in the mean phase for an

ensemble of N = 103 neurons. Ensembles of neurons with differing phase coherence

(R) values in the equilibrium state were generated by varying the strength of the

coupling through the gsyn parameter.

We first consider the Type I parameter regime for the Morris-Lecar model. We

numerically determined the collective phase response curve for various values of the

phase coherence. For R ≈ 1 all oscillators are phase locked together and the mi-

croscopic, asymptotic Ott-Antonsen collective and numerical collective PRC agree.

However, as R was decreased we observed several changes in the shape of the collec-

tive phase response curve. First, higher harmonic Fourier terms in the microscopic

PRC damped out quickly. Secondly, the amplitude of the first harmonic grows as R

decreases and finally we saw a slight phase shift in the zeros of the curve. The asymp-

totic Ott-Antonsen procedure correctly predicted each of these qualitative changes

(Fig. 3.6).
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Figure 3.6: Comparing theoretical predictions against numerical results for the col-
lective PRC of Morris-Lecar neurons. Inset plots show individual neurons action
potentials (mV) for 400 ms in the synchronized state for the two parameter regimes.
Microscopic PRC (solid black), ∆∞ (dashed green), numerical simulation (red ’+’)
(a) Collective PRC for Type I Morris-Lecar Neurons with R = 0.67 and mean applied
current of 50.0 µA

cm2 . (b) Type II Morris-Lecar system with R = 0.70 and mean applied

current of 95 µA
cm2 .

These conclusions carried through to the case of Type II neurons as well. However,
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for the Type II regime we did not see as prominent a phase shift between the collective

and microscopic phase response curves. This can be explained by the β term in the

Ott-Antonsen asymptotic method. The β term for both the Type I and II parameter

regimes was computed numerically by truncating the Fourier series for the coupling

function determined in the course of the phase reduction of the coupled Morris-Lecar

system (see Appendix E for more details). For electrically coupled neurons with

Type II microscopic PRCs β = 0.25 while for electrically coupled neurons with Type

I microscopic PRCs β = −0.65. This implies that the Type II system isochrons are

closer to radial so we see a smaller resetting shift (∆R) due to the perturbation.

In both of these cases we see that the Ott-Antonsen derived collective phase

response curve gives a good approximation to the numerical case and provides an

accurate approximation for the shape, zeros and amplitude of the collective phase re-

sponse curve. We note the asymptotic procedure matches numerical simulations well

despite a violation of the assumptions of the Ott-Antonsen reduction. In particular,

the coupling functions for both the Type I and Type II parameter regimes have higher

harmonic terms which violates a principal assumption of the Ott-Antonsen approach

[95]. Finally, this theory makes the experimentally testable prediction that a coupled

system of Type II neurons will be able to entrain to a smaller frequency range than

the individual neurons with the opposite being true for coupled Type I neurons.

3.6 Conclusions

We have constructed an asymptotically valid analytic formula for the collective

phase response function in terms of the microscopic phase response curve for glob-

ally coupled Sakaguchi-Kuramoto phase oscillators interacting via an non-odd cou-

pling function. Our analytic results extend the framework developed in Levnajić and

Pikovsky [89] to consider a general microscopic PRC and determines a characteristic

scaling for changes in the amplitude and zeros of the collective PRC relative to the
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microscopic PRC. These results were validated through comparison with numerical

simulations for a variety of microscopic PRCs. By studying a system of coupled neu-

rons we demonstrated the broader applicability of the theory to biological systems.

In particular, the theory predicts the amplitude and zeros of the collective PRC.

For weakly forced systems a larger amplitude PRC indicates a broader range of fre-

quencies which can entrain the system and the zeros predict the phase offset between

the entraining force and the mean phase of the population of oscillators. Therefore,

a better understanding of how these properties may be altered by coupling between

large ensembles of oscillators has direct application to many biological systems. For

instance, in experimental studies of the mammalian circadian rhythm, it was found

that weaker coupling between the neurons or a greater variance in the phase distri-

bution of the oscillators decreased the entrainment time to light input and increased

the entrainment range [5, 3]. This suggests the collective PRC has a larger amplitude

than the microscopic PRC in the circadian system as predicted by our analysis.

Moreover, the collective PRC is shown to have a change in shape when the mi-

croscopic PRC is composed of several harmonics. The first harmonic is amplified and

higher harmonics are dissipated as the phase coherence of the population is decreased.

This can result in the introduction of advance/delay regions in the collective PRC

which are not observed in the microscopic PRC and an overall smoothing of the curve.

The Ott-Antonsen dimension reduction is a key component allowing for an analyt-

ical investigation of the collective PRC presented in this chapter. The Ott-Antonsen

reduction is strictly valid for sinusoidally coupled heterogenous Sakaguchi-Kuramoto

phase oscillators. However, as demonstrated numerically, for a Morris-Lecar neuronal

system here and for Stuart-Landau oscillators in [89], it provides a useful approx-

imation even for systems which have not been shown to rigorously collapse to the

Ott-Antonsen manifold. Moreover, additional dimension-reduction techniques have

been developed which may be useful in studying the collective phase response curve in
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the future [22, 120, 152, 54, 136]. In Chapter IV I develop a theory of collective phase

resetting for mammalian circadian rhythms using the m2 ansatz as the dimension

reduction tool.

The prompt phase shift, ∆0, can be estimated when the Ott-Antonsen moment

closure cannot be applied using the integral equation Eq. 3.15 either numerically

or analytically by using an appropriate higher order moment closure. However, in

the absence of the Ott-Antonsen reduction the computation of the relaxation phase

shift ∆R presents a challenge. In this case we cannot assume the collective oscillator

has simple spiral isochrons as exploited in [89] to derive Eq. 3.7. Therefore, the

computation becomes much more difficult. In Chapter IV, I develop a perturbation

approach for the calculation of the relaxation phase shift which may be used to

approximate these phase shifts in a general context.
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CHAPTER IV

Seasonality and Light Phase-Resetting in

Mammalian Circadian Rhythms

4.1 Introduction

Daily or circadian cycles in behavior and metabolism can be observed for virtually

all forms of life. The utility of circadian rhythms relies on the proper timing of these

cycles relative to external environmental oscillations. Thus, a defining property of

circadian rhythms is their ability to be entrained to external time cues or zeitgebers.

The principal zeitgeber for the mammalian circadian clock is light [123]. Therefore,

a crucial component to understanding mammalian circadian rhythms is an improved

understanding of the impact of light on the circadian cycle. A first step in this

endeavor is understanding the response of the circadian circuit to a brief light pulse.

The theory of phase response curves (PRC) provides a natural language for study-

ing the effects of external stimuli on endogenous rhythms with a rich history of ap-

plication to circadian biology [72, 156]. Phase response curves characterize the phase

shift induced by the application of the stimulus at different phases of the oscillation.

For instance, the amplitude of the PRC gives the entrainment range of the system to

a weak resetting signal and the zeros of the PRC specify the entrainment angle [118].

Phase response curve theory figured prominently in early investigations of circa-
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dian rhythms, where organisms were exposed to a sensory stimulus at a sampling

of points across the daily cycle and phase shifts were measured relative to to some

behavioral or physiological marker [28, 156]. However, the discovery of the location

of the master circadian clock in a small region of the hypothalamus known as the

suprachaismatic nucleus (SCN) provided a neurological basis for circadian rhythms

in mammals [103, 139]. The SCN was found to contain thousands of coupled clock

neurons which each contain a biochemical oscillator with a period of approximately

twenty-four hours [92]. Daily activity cycles are driven by this large ensemble of

coupled oscillators acting collectively to produce a reliable circadian oscillation.

Thus, a light stimulus applied to the mammalian circadian rhythm does not act

by shifting a single limit cycle oscillator, but rather acts by shifting the oscillations

of individual clock neurons which in turn induce a shift in the collective rhythms

produced by the ensemble. The recognition of this distinction helped motivate the

development of the theory of collective phase response curves which describe the

collective phase shift of an entire population of coupled oscillators subjected to a

stimulus [73, 77, 81, 89]. Collective phase resetting is especially important for the

mammalian circadian response to light, because only a fraction of the clock cells are

phase shifted in response to the stimulus [98]. This may induce non-trivial transient

dynamics on the system following a light perturbation and forms a major focus of

this work [107].

In general, the phase-shifting behavior of a coupled ensemble of oscillators differs

from the behavior of a single autonomous oscillator. In this work we study the trans-

formation between the response of a single circadian cell to a light-pulse (microscopic

PRC) and the collective phase response described by the shift in the mean-phase

of the population of oscillators. A growing literature on collective phase resetting

has revealed coupling, oscillator heterogeneity and network structure can all lead to

significant differences between the microscopic and collective PRCs in networks of
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coupled oscillators [89, 81, 77, 73]. Within the circadian literature, examinations of

collective phase resetting have led to the formation of a rule of thumb that increasing

phase dispersion in the oscillator population leads to a monotonic increase in the

amplitude of the collective phase response [125, 3] and thus the entrainment range of

the collective oscillator [156].

In addition to the role of light input in ensuring the circadian clock is synchronized

to the outside environment, the SCN is also responsible for storing seasonal day-

length information [23, 97, 143]. The ability of seasonal day-lengths to alter the

core circadian clock was established in early circadian studies, where it was noticed

that entrainment of mammals to long/short day-lengths caused lasting changes in the

endogenous circadian period when organisms were transfered to a dark environment

[122]. These effects are known as seasonal after-effects and have been described for

many mammal species [28, 122].

Recently, significant progress has been made in characterizing the physiological

changes in the SCN underlying seasonal day-lengths changes [147, 106, 105, 40, 18].

The physiological changes in the SCN which encode the seasons have been shown to

affect the phase response to brief light pulses. When organisms are entrained to long

(summer) days the phase shift caused by brief light pulse is seen to decrease [126, 147].

This seemingly contradicts the rule of thumb for collective phase resetting, because

experimental evidence has also shown the phase dispersion in the SCN increases in

longer day-lengths [147]. A primary goal of this work is to provide a unified theory

of collective phase resetting to light in mammals, consistent with seasonal changes in

SCN physiology.

In order to study phase resetting to light we make use of the m2 ansatz (Chap-

ter. II) to derive a three-dimensional model for the core circadian clock. Significantly,

the m2 ansatz is supported by experimental evidence and the resulting model gives

variables and parameters which may be interpreted physiologically in the SCN [93].
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Our work utilizes the framework for studying collective phase resetting developed in

Levnajic and Pikovsky [89], and we apply this theory specifically to light induced

phase resetting in mammals. We extend the results of Chapter III to consider os-

cillator networks where only a fraction of the population receives the phase-shifting

stimulus. Additionally, we develop a perturbation technique which can be applied

generally to characterize the effects of coupling on collective phase resetting.

The principal biological impacts of our work are three-fold. First, we provide a

general theory for the effect of the collective amplitude on the phase-shifting capacity

of the circadian clock. Our analysis reveals that the rule of thumb that lower ampli-

tude rhythms give larger phase shifts in response to a stimulus is incomplete and more

detailed analysis is required for many real-world phase response curves. Secondly, our

analysis reveals that the reduction in light-shifting capacity observed for organisms

entrained to long day-lengths may be explained by an adjustment of the coupling

strengths with the seasonal day-length. Finally, we find this adjustment of coupling

strengths is consistent with current theories for seasonal day-length encoding and is

required to explain seasonal after-effects to light entrainment in mammals.

This chapter is organized as follows: In Sec. 4.2 we specify the circadian model,

define the components of the collective PRC and derive the collective phase response

for a single population model. In Sec. 4.3 we derive the collective phase response curve

for the two population circadian model, In Sec. 4.4 we study the effect of seasonal

day-length on light phase resetting in mammals. The results and conclusions are

discussed in Sec. 4.5.
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4.2 Formulation of the Model

4.2.1 Circadian Model

The suprachaismatic nucleus (SCN) is a collection of about 20, 000 neurons which

form the core circadian pacemaker in mammals. Individual neurons in the SCN con-

tain a biochemical feedback loop which cycles with a period of approximately 24 hours.

While the SCN produces a variety of spatiotemporal patterns it can be functionally

and physiologically broken into the ventral (core) and dorsal (shell) populations [45].

In mammals light input comes in through the eyes and is channeled to the SCN

along the retinohypothamic tract (RHT) [98]. It is remarkable that the core circadian

clock receives light information through a direct pathway from the eyes, which under-

scores the importance of light in entraining mammalian circadian rhythms. However,

only a fraction of the clock cells in the SCN receive light input directly with the ma-

jority of cells receiving input in the ventral region [98]. Therefore, for the purposes

of our model we split the SCN into ventral and dorsal phase clusters and allow light

input into only the ventral population (Fig. 4.1).

Coupling between clock neurons in the SCN is mediated by a large suite of neu-

rotransmitters [87]. In this chapter we focus on the functional coupling between

the regions, although it may assist the reader to give an interpretation of the cou-

pling in reference to two predominant neurotransmitters in mammalian circadian

rhythms: vasoactive intestinal polypeptide (VIP) and γ-aminobutyric acid (GABA)

whose properties have been characterized experimentally. Perhaps, the best under-

stood coupling agent in the SCN is VIP which is released by the ventral population

and is received by all or nearly all the oscillators [6]. VIP is known to be a synchro-

nizing force in the SCN (phase attractive) [96]. Recent experimental results [105,

42] and detailed mathematical modeling [32] suggest that GABA mediated coupling

is more subtle. GABA is released and received by all or nearly all clock neurons in
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Figure 4.1: Subpopulations and coupling in the SCN. Light input comes into the
sensor cells in the ventral SCN through the retino-hypothalamic tract (RHT). The
majority of the dorsal cells do not receive direct input from the RHT but are bidirec-
tionally coupled to the ventral sensor cells. Coupling terms are labeled as in Eqs. 4.1.

the SCN and has been identified as both a synchronizing [91] and desynchronizing

[48, 10] agent among clock cells, although recent evidence suggests these properties

vary spatially in the SCN [105, 32]. Evidence suggests that both VIP and GABA are

involved in the communication of phase shifts between the ventral and dorsal SCN

as well as the storage of seasonal day-length information in the SCN [99, 105, 32, 19]

Here we assume the combined action of VIP and GABA act to modulate the

strength of the coupling between the ventral and dorsal phase clusters in the SCN

as a function of the entrained day-length. This conceptional model, summarized in

Fig. 4.1, may be translated into a coupled phase oscillator system,

dφvk
dt

= ωvk +
Kvv

Mv

Mv∑
j=1

sin(φvj − φvk) +
Kdv

Md

Md∑
j=1

sin(φdj − φvk) + εQ(φvk)δ(t− t′) +
√
Dηvk(t)

(4.1a)

dφdk
dt

= ωdk +
Kdd

Md

Md∑
j=1

sin(φdj − φvk) +
Kvd

Mv

Mv∑
j=1

sin(φvj − φdk) +
√
Dηdk(t), (4.1b)

where Q(φ) gives the microscopic phase response curve of the ventral oscillators to

light and ηv,dk defines a white noise process i.e. 〈ηk(t)〉 = 0 and 〈ηk(t)ηl(t′)〉 = 2δklδ(t−

t′). The ε factor scales the microscopic phase response curve and is taken to be a small

parameter. The coupling strengths are given as Kfrom,to and we let Mv,d indicate the

total number of oscillators which fall into the ventral and dorsal phase clusters. We
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define q = Mv/(Mv + Md) to be the fraction of ventral (sensing) oscillators in the

population and p = 1− q.

Finally, we allow the oscillators within the ventral and dorsal regions to be hetero-

geneous in their intrinsic frequencies and assume each cluster has a Cauchy (Lorentzian)

distribution of frequencies,

gv,d(ω) =
1

π

γ

(ω − ωv,d0 )2 + γ̂2
, (4.2)

with the mean frequency ωv,d0 and dispersion parameter γ̂.

In addition to daily timekeeping, the SCN is also responsible for storing seasonal

day-length information [23, 97, 144]. It has been shown by several experimental

groups that the phase difference between the dorsal and ventral clusters grows with

the seasonal day-length, making this a leading hypothesis for how seasonal infor-

mation is encoded in the SCN[105, 40]. Additionally, it has been suggested the

physiological root of this seasonal variation in the phase difference is alterations in

the coupling forces in the SCN [105, 32, 18]. Thus, we incorporate seasonal effects

(day-lengths) into our model by allowing the coupling strengths Kvd and Kdv to vary

with the seasonal day-length, as these coupling terms will be seen to control the phase

difference between the ventral and dorsal populations.

4.2.2 Macroscopic Model

The model for the mammalian SCN as given in Eq. 4.1 gives a high-dimensional

representation of the dynamical state of the circadian rhythm as Mv +Md = O(104).

This high dimensional representation of the system makes analytical analysis of the

light-response difficult. Therefore, we make use of the m2 ansatz to derive a low-

dimensional macroscopic model for the ventral and dorsal phase clusters (see Chap-

ter. II). Crucially, the use of this ansatz may be justified through comparison of the
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core assumption with experimental data on the phase distribution of cellular oscilla-

tors in the mammalian SCN.

First, we define the Daido order parameters [31, 30] for the ventral and dorsal

phase clusters as:

Zv
n =

1

Mv

Mv∑
j=1

einφ
v
j , Zd

n =
1

Md

Md∑
j=1

einφ
d
j , (4.3a)

where n ∈ Z. The special case of n = 1 gives the classical Kuramoto order parameter

Zv,d
1 = Rv,d

1 eiψ
v,d
1 , where R is known as the phase coherence and gives a measure of

the overall synchrony in the population: when R1 = 1 the population is phase locked

in perfect synchrony and R1 = 0 when the population is completely desynchronized.

Additionally, ψ1 gives the mean phase of the population. For simplicity of notation

we will drop the subscript for the Kuramoto order parameters, i.e. Zv,d
1 = Zv,d =

Rv,deiψ
v,d

. Using these order parameter definitions we may rewrite Eqs. 4.1 as,

dφvk
dt

= ωvk +Kvv Im[e−iφ
v
kZv] +Kdv Im[e−iφ

v
kZd] +

√
Dηvk(t) (4.4a)

dφdk
dt

= ωdk +Kdd Im[e−iφ
d
kZd] +Kvd Im[e−iφ

d
kZv] +

√
Dηdk(t), (4.4b)

with Im denoting the imaginary part of the expression. In the continuum limit

Ms,n → ∞ Eqs. 4.4 give rise to continuity equations for the phase density functions

f v,d(ω, φ, t),

∂f v,d

∂t
+

∂

∂φ
(f v,dWv,d) +D

∂2f v,d

∂φ2
= 0 (4.5a)

Wv = ω +Kvv Im[e−iφZv] +Kdv Im[e−iφZd] (4.5b)

Wd = ω +Kdd Im[e−iφZd] +Kvd Im[e−iφZv]. (4.5c)
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Let us consider the Fourier series representation of the phase density functions f v,d(ω, φ, t),

f v,d =
gv,d(ω)

2π

(
1 +

[ ∞∑
k=1

Av,dk (ω, t)eikφ + c.c

])
, (4.6)

where c.c stands for the complex conjugate. Inserting the Fourier series representation

into the continuity equation gives a system for the Fourier coefficients Av,dk (ω, t),

(Avk)
′

k
+ (iω +Dk)Avk +

Kvv

2

[
Z̃vAvk+1 − ZvAvk−1

]
+
Kdv

2

[
Z̃dAvk+1 − ZdAvk−1

]
= 0,

(4.7a)

(Adk)
′

k
+ (iω +Dk)Adk +

Kdd

2

[
Z̃dAdk+1 − ZdAdk−1

]
+
Kvd

2

[
Z̃vAdk+1 − ZvAdk−1

]
= 0,

(4.7b)

with the tilde representing the complex conjugate. In the continuum limit the Daido

order parameters Zv,d
n are given by,

Zv,d
n (t) =

∫ 2π

0

∫ ∞
−∞

f v,d(ω, φ, t)einφdωdφ, (4.8a)

=

∫ ∞
−∞

Ãv,dn (ω, t)gv,d(ω)dω, (4.8b)

using that all the terms in the Fourier series integrate to zero except the n =

k term. Further, since we approximate the natural frequency distribution as a

Cauchy/Lorentzian distribution (Eq. 4.2) we may evaluate the integral (Eq. 4.8b)

under the assumption that Ak(ω, t) may be analytically continued into the complex

ω plane [114]. Thus we have that,

Zv,d
n (t) = Ãv,dn (ωv,d0 − iγ̂, t). (4.9)
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This substitution into Eqs. 4.7 gives,

(Zv
k)′

k
= iωZv

k − γ̂Zv
k +

Kvv

2

[
ZvZv

k−1 − Z̃vZv
k+1

]
+
Kdv

2

[
ZdZv

k−1 − Z̃dZv
k+1

]
−DkZv

k

(4.10a)

(Zd
k)′

k
= iωZd

k − γ̂Zd
k +

Kdd

2

[
ZdZd

k−1 − Z̃dZd
k+1

]
+
Kvd

2

[
ZvZd

k−1 − Z̃vZd
k+1

]
−DkZd

k

(4.10b)

Finally, we consider the system with k = 1 and apply them2 ansatz (Zm = |Z1|m
2−mZm

1

or Rm = Rm2

1 , ψm = mψ1). Applying the m2 ansatz and separation into the real and

imaginary parts of the expressions gives a four dimension system describing the phase

coherence Rv,d and mean phase ψv,d of each cluster. However, with a change of vari-

ables θ = ψd−ψv (“phase gap”) and letting ∆ω = ω̄d− ω̄v and γ = γ̂v,d+D we arrive

at a three dimensional system of equations:

Ṙv = −γRv +
Kvv

2
Rv(1−R4

v) +
Kdv

2
Rd(1−R4

v) cos(θ) (4.11a)

Ṙd = −γRd +
Kdd

2
Rd(1−R4

d) +
Kvd

2
Rv(1−R4

d) cos(θ) (4.11b)

θ̇ = ∆ω −G sin(θ) (4.11c)

G =
RvRd

2

[
Kvd

(
R2
d +

1

R2
d

)
+Kdv

(
R2
v +

1

R2
v

)]
. (4.11d)

By setting ω̄ = qωv0 + pωd0 , we can define Ω = qψ̇v + pψ̇d as the collective frequency of

the system in a synchronous state,

Ω = ω̄ +H sin(θ) (4.12a)

H =
RvRd

2

[
qKdv

(
R2
v +

1

R2
v

)
− pKvd

(
R2
d +

1

R2
d

)]
(4.12b)

We note that both the collective amplitudes Rv, Rv and the frequency Ω depend on

the phase gap variable θ within our model. In order to facilitate our analysis we define
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Parameter Value
ω̄v 2π/24.5
ω̄d 2π/23.5
γ 0.024
Kvv 0.095
Kdd 0.07
Kvd αKdv

Kdv 0.05
α 2.0
q 0.5

Table 4.1: Parameter sets used for numerical simulations in this chapter (default
parameter set). These parameters give steady state values of R∗v = 0.81, R∗d = 0.84,
θ∗ = 0.06. To ease the numerical simulations we assume γ is determined by the
heterogeneity and set the noise strength to zero (D = 0).

a default parameter set for this model given in Table 4.1. Under this parameter set

Eqs. 4.11 evolve to a fixed point (R∗v, R
∗
d, θ
∗) with a collective frequency Ω∗-we will

use starred quantities to refer to fixed points solutions.

Finally, we note that experimental evidence has shown that the phase gap between

the dorsal and ventral populations is typically a small variable θ∗ ∈ [0, 0.5] radians

for photoperiods in the range of 6-18 hours of light [105], although it may grow

considerably when mice are kept in twenty hours or more of light each day [40].

4.2.3 Components of the Collective Phase Response Curve

The collective phase response to a stimulus may be defined by the shift in the

mean-phase ψ = Arg(Z) induced by the light perturbation. For a brief (Dirac δ(t−t′)

function) stimulus we may break the collective phase shift into two components [89]:

1. The prompt phase shift (∆0) induced at t = t′ the instant the stimulus is

applied.

2. The relaxation phase shift (∆R) which results from phase shifts induced as the

system relaxes back to its asymptotic state.
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The collective phase shift (∆∞) is then given by,

∆∞ = ∆0 + ∆R = Arg

(
Z̄

Z0

)
+ ∆R (4.13)

where we define Z0 as the order parameter just prior to the perturbation and Z̄ as

the order parameter just after the perturbation. Notationally, barred quantities will

refer to the quantity just after the perturbation is applied.

It is also useful to define the amplitude response curve Λ as a measure of the

perturbations transient effect on the amplitude of the collective rhythm,

Λ =

∣∣∣∣ R̄R0

∣∣∣∣ . (4.14)

Given the assumed stability of the limit cycle, perturbations of the amplitude R are

expected to decay, thus the amplitude response curve is defined in terms of the initial

amplitude reduction imposed on the system.

4.2.4 Single Population Case

We first consider the collective phase response for a single population of oscillators,

that is, we consider the case where all oscillators in the population receive the light

stimulus. These results will aid our consideration of the two population case, as they

can be used to describe the initial phase shift in the ventral oscillator population. In

Chapter III, we derived an asymptotic formula for the collective phase response of a

single population of Kuramoto-Sakaguchi oscillators making use of the Ott-Antonsen

formalism. In this section we adapt those results to study phase shifts in a population

which follows the m2 ansatz as has been found in experimental measurements of the

SCN phase distribution (Chapter II). For times close to the perturbation t ≈ t′ we
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may approximate the single population continuity equation as,

ft +
∂

∂φ
[εf(ω, φ, t)Q(φ(t))δ(t)] . (4.15)

We have previously shown that for small ε we may approximate the solution of Eq. 4.15

as,

f̄(ω, φ, t) = f(ω, φ− εQ(φ))e−εQ(φ−εQ(φ)), (4.16)

by employing the method of characteristics. Expanding Eq. 4.16 to leading order in

ε, multiplying by eiφ and integrating with respect to φ and ω gives an expression

relating the order parameter after the perturbation Z̄ to the order parameter just

prior to the perturbation Z0.

Z̄ ≈ Z0 + iε

∫ π

−π

∫ ∞
−∞

f(ω, φ, t)Q(φ)eiφdωdφ. (4.17)

Now, we replace the microscopic PRC Q(φ) with its Fourier Series representation,

Q(φ) =
A0

2
+
∞∑
n=1

Ane
inφ + Ãne

−inφ, (4.18a)

=
A0

2
+
∞∑
n=1

an sin(nφ) + bn cos(nφ). (4.18b)

Substitution of the Fourier series representation into Eq. 4.17 and applying the defi-

nition of the Daido order parameters gives,

Z̄ = Z0 + iε

[
A0

2
Z0 +

∞∑
n=1

AnZn+1 + A∗nZn−1

]
. (4.19)
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Now we apply the m2 ansatz [Rm = Rm2
, ψm = mψ] to arrive at an expression for Z̄

in terms of Z0,

Z̄ = Z0(1 + iεQ̂(ψ,R)) (4.20a)

Q̂ =
A0

2
+

1

R

∞∑
n=1

AnR
(n+1)2einψ + A∗nR

(n−1)2e−inψ. (4.20b)

By applying Eq. 4.13 and Eq. 4.14 we may derive expressions for the prompt resetting

∆0 and the amplitude response curve Λ respectively,

∆0 = Arg

(
Z̄

Z0

)
= εRe[Q̂(ψ)] (4.21a)

Λ =

∣∣∣∣ R̄R0

∣∣∣∣ = 1− εIm[Q̂(ψ)]. (4.21b)

The real part of Q̂(ψ) can be compactly expressed in terms of the Fourier series for

the microscopic PRC Eqs. 4.18,

Re[Q̂] =
A0

2
+
∞∑
k=1

fk(R)[ak sin(kψ) + bk cos(kψ)] (4.22a)

fk(R) =
1

2
Rk2(R2k +

1

R2k
). (4.22b)

From these expressions we can see the principal effect of the phase distribution on the

shape of PRC is to re-weight the Fourier harmonics according to fk(R). As R→ 1 we

have that fk → 1 and the collective and microscopic prompt phase response curves

coincide. However, when R < 1 the first harmonic of the microscopic phase response

curve is amplified like R3 + 1
R

while the higher harmonics are damped out by higher

powers of R.
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The imaginary part of Q̂(ψ) can be expressed as,

Im[Q̂] =
∞∑
k=1

gk(R)[ak cos(kψ)− bk sin(kψ)] (4.23a)

gk(R) =
1

2
Rk2(

1

R2k
−R2k). (4.23b)

In this case we see that the modulation term gk(R) goes to zero as R → 1 meaning

the amplitude is unaffected by the stimulus in this limit. Additionally we observe

that,

ak cos(kψ)− bk sin(kψ) ∝ dQ

dψ
,

so we expect the amplitude shifts Λ to be greatest around the zeros of the microscopic

phase response curve, with transient increases in R around stable points and decreases

around unstable zeros.

4.2.5 Application to Light PRCs

The mammalian phase response curve to light has been characterized over a

large variety of species and conditions [137, 72]. Generally, the mammalian circa-

dian rhythm shows small sensitivity to light during the subjective day, phase delays

during the early subjective night and phase advances in the late subjective night [121].

Although we expect our results to hold more generally we will focus our attention on

phase response curves with this general shape.

The single population results derived in the last section indicate that for micro-

scopic PRC’s dominated by their first harmonic, as are commonly assumed in the

circadian literature [125, 3], a general amplification in the phase response is expected

as the oscillators are more dispersed in phase (either through weaker coupling or

greater frequency heterogeneity in the population). This expectation has surfaced in

the circadian literature under a variety of guises in the context of both phenomeno-

logical and biochemically motivated models [3].
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These observations have led to the formation of a rule of thumb in the circadian

literature that the magnitude of the phase response should increase when the col-

lective amplitude (phase coherence) decreases [3]. However, our analysis shows this

prediction will only hold when the underlying individual/microscopic phase response

curve is dominated by its first harmonic-otherwise an overall reduction in the ampli-

tude may be observed [61] (Eq. 4.22). An example of this effect is shown in Fig. 4.2

for a first harmonic phase response curve and a light-like PRC shape. The first har-

monic curve shows a uniform increase in amplitude as the phase coherence of the

sensing population decreases, whereas the light-like PRC shows a initial decrease in

amplitude as the higher harmonics are dissipated.

The general shape of the mammalian phase response curve to light has significant

power at higher harmonics [137]. Therefore, the rule of thumb does not necessarily

apply in this case. For example, the phase coherence of the ventral (sensor) population

is known to decrease with increasing day-length [17] which leads to the expectation

of increasing amplitude in the response to light. However, as previously noted the

opposite trend has been observed experimentally where organisms entrained to longer

day-lengths show decreased sensitivity to light-pulses [147].

This reduction in amplitude of the collective phase response, in spite of a reduction

in the phase coherence of the sensing population, may be at least partially explained

when the higher harmonics in the microscopic phase response to light are taken into

consideration. This effect has been noted in the course of simulations [147] and is

readily explained by the theory given here using the m2 ansatz and detailed previously

for cases adhering to the Ott-Antonsen ansatz (Chapter III) [61].

In the following section we investigate the effects of only having a fraction of the

total population shift in response to a light pulse. This analysis reveals an additional

effect which allows the amplitude of the collective phase response to be modulated

depending on the degree of asymmetry in the coupling between the ventral and dorsal
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Figure 4.2: Collective phase response curves for two assumed microscopic phase re-
sponse curves: (left) Simple phase response curve Q(ψ) = sin(ψ) , (right) Light-like
PRC shape Q(ψ) = H(− sin(ψ)) sin(−2ψ). Shown for three phase coherence R values:
R=1 (solid black) R=0.6 (dashed green) and R=0.3 (red circles)

populations.

4.3 Two Population Phase Response Curves

We now consider the collective phase response of the circadian model Eqs. 4.11

to brief light pulses using that ∆∞ = ∆0 + ∆R. In the first section we compute the

prompt phase shifting behavior ∆0 for the circadian model with a subset of sensor

cells and observe the effects on the initial phase shifting behavior (∆0). In the next

subsection, we present a perturbation technique to determine the relaxation phase

shift (∆R).

In the figures for this section we consider a microscopic phase response curve Q(ψ)

which is fit to experimental measurements of the human phase response curve to brief

light pulses [137].

4.3.1 Prompt Resetting ∆0

We begin by studying the prompt phase shifting curve ∆0 for the circadian model.

By applying Eq. 4.20 and using that the dorsal population is unaffected by the per-

turbation, we find the order parameter just after the perturbation Z̄ = qZ̄v + pZ̄n =
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qZv(1 + iεQ̂(ψv)) + pZd. Therefore the prompt phase shift ∆0 for the SCN model can

be derived as:

∆0 = Arg

(
Z̄

Z

)
= Arg

(
qZv(1 + iεQ̂(ψv)) + pZd

qZv + pZd

)
(4.24a)

= Arg
(

1 + iεµQ̂(ψv)
)
, µ =

Rv

Rv + ηRdeiθ
(4.24b)

= arctan

(
εRe[µQ̂(ψv)]

1− εIm[Q̂(ψv)]

)
(4.24c)

= εRe[µQ̂(ψv)] +O(ε2) (4.24d)

where η = p/q is the ratio of dorsal to ventral (sensors) in the population. We may

now expand Eq. 4.24d,

C =
Rv[Rv +Rdη cos(θ)]

R2
v + 2RvRdη cos(θ) +R2

dη
2

(4.25a)

D =
RvRdη sin(θ)

R2
v + 2RvRdη cos(θ) +R2

dη
2

(4.25b)

∆0 = C∆v
0 +D(Λv − 1). (4.25c)

Which gives an analytical expression for the prompt resetting in our system using our

expressions for ∆v
0 and Λv for a single population of oscillators (Eqs. 4.21). We note

that Eq. 4.25 has the expected limits: As η → 0, ∆0 → ∆v
0 and the system converges

to the behavior of a single population of oscillators, in addition as the dorsal popula-

tion grows (η →∞) we see that ∆0 → 0 causing the system to become unresponsive

to perturbations. This analytical approximation gives an accurate approximation for

the prompt resetting curve when compared with numerical simulations (Fig. 4.3).

It is interesting to note the differences between our system and a single population

of oscillators which all shift in response to the stimulus. In the two population system

the damping of higher harmonics in the microscopic PRC is also observed, however we

additionally see a decrease in the initial shift as a function of the fraction of oscillators
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Figure 4.3: Prompt resetting curve with the fraction of sensors in the population q =
0.50 and the default parameter values. The microscopic phase response curve (solid
black) is fit to the human PRC to a brief light pulse, direct numerical simulations of
Eq. 4.1 with N = 104 (red crosses) and the theoretical prediction Eq. 4.25 (dashed
green).

which receive the light pulse. We note that under the assumption that θ ≈ 0 we may

approximate Eq. 4.25a as,

C ≈ qRv

qRv + pRd

, (4.26)

and C ≈ q when Rv ≈ Rd, providing the intuitive result that the overall amplitude of

the initial response scales with the fraction q of ventral sensor cells in the population.

In addition, unlike the single population case we see the prompt phase response

curve depends on the amplitude response function Λv. This dependence leads to a

slight change in the zeros (entrainment points) of the prompt PRC when compared

to the microscopic PRC since Λv will be largest about the zeros of Q. Moreover,

this effect is dependent on having a non-zero phase gap between the two populations

(θ 6= 0).

4.3.2 Relaxation Phase Shift ∆R

We now consider the relaxation shift ∆R which describes the phase shift induced

during the return of the system to equilibrium following a perturbation. For the

single population case this relaxation phase shift was directly computable from the
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Ott-Antonsen equations describing the collective dynamics [89]. This computation

relied on the relatively simple spiral isochrons of the Kuramoto-Sakagucki coupling

scheme [61, 118, 89].

For the circadian model presented here this quantity can no longer be easily com-

puted by direct integration. However, the relaxation phase shift occurs during the

transient decay of the system back to the dynamical fixed point (R∗v, R
∗
d, θ
∗) of the

macroscopic model. The collective frequency of the unpreturbed system is given by

Ω∗ = Ω(R∗v, R
∗
d, θ
∗). Therefore, the phase shift induced as the system relaxes back to

the equilibrium state is given as,

∆R =

∫ ∞
0

Ω(Rv(t), Rd(t), θ(t))− Ω∗dt =

∫ ∞
0

∆Ω(t)dt (4.27)

Thus, we may calculate the relaxation phase shift by integrating the frequency mis-

match between the perturbed system and the steady state system along the trajectory

of the system as it returns to equilibrium. The relaxation trajectory may be approx-

imated by a perturbation about the fixed point under the assumption the light-pulse

does not induce a large deviation from (R∗v, R
∗
n, θ
∗). We set,

Rv(t) = R∗v + σR1
v(t) +O(σ2) (4.28a)

Rd(t) = R∗d + σR1
d(t) +O(σ2) (4.28b)

θ(t) = θ∗ + σθ1(t) +O(σ2) σ << 1, (4.28c)

with initial conditions Rv(0) = R∗v + ∆Rv, Rd(0) = R∗d, θ(0) = θ∗+ ∆θ using that the

dorsal population is initially unaffected by the light stimulus. The initial changes in

Rv and θ can be written in terms of the prompt phase and amplitude response curves

for the ventral population: ∆Rv = Rv(1 − Λv) and ∆θ = (ψd − ψ̄v) − (ψd − ψv) =

ψv − ψ̄v = −∆v
0.
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Therefore, the leading order terms in σ for the relaxation phase shift is given by,

∆R ≈ A(1− Λv)−B∆v
0, (4.29)

with the (A,B) constants determined by the model parameters. In practice we find the

leading order term in σ is sufficient to provide a good approximation to the numerical

solutions (see Fig. 4.4) although higher order terms may be taken in the perturbation

series (Eq. 4.28) if additional accuracy is required. We note that (A,B) are a measure

of the sensitivity of the collective frequency of the system to perturbations in the

amplitude (Rv) and phase gap θ respectively, and are weighted by the stiffness of the

system to perturbations in those directions.

To gain intuition of how the circadian model parameters will affect the relaxation

phase shifts, we solve for the relaxation terms analytically for a simplified system

(see Appendix C). If the amplitude of the ventral and dorsal populations are fixed

(without loss of generality let Rv,d = 1) we find that,

B =
q − pα
1 + α

, α =
Kvd

Kdv

. (4.30)

From this simplification we can see that B ∈ [−p, q] when both coupling terms are

positive. Moreover the change occurs at α = q
p

from a positive to negative value.

Note, for symmetric coupling ( α = 1 ) between the regions and q = p = 1
2

we have

B = 0. In Fig. 4.5 we show the variation of B with α using both the perturbation

approach and the simplified formula Eq. 4.30.
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Figure 4.4: Relaxation phase response curve ∆R using a first order perturbation series
to calculate (A,B) in Eq. 4.29 (dotted green) versus numerical simulation(red crosses)
for the default parameter values.
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Figure 4.5: Network resistance to phase shifts B versus α = Kvd/Kdv for the first
order perturbation theory (circles) with the default parameter values varying Kvd

and the approximate formula Eq. 4.30 (solid line) with q = 0.5 (red), q = 0.8 (blue),
q = 0.2 (green).
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4.3.3 Collective Phase Response Curve

When the prompt phase shift ∆0 is combined with the relaxation shift ∆R we find

the collective phase response curve ∆∞,

∆∞ = ∆0 + ∆R = (C −B)∆v
0 + (D − A)(1− Λv), (4.31)

with the constants (A,B,C,D) as defined in the previous sections. In general, we

find this approximate formula provides a good approximation to the numerically

determined collective phase response (Fig. 4.6). To improve our understanding of

the role of light-input to the mammalian circadian system we analyze these results

further. Of particular importance is the amplitude of the collective phase response

as this determines the entrainment range for weakly forced systems [156].

We first note that the collective PRC for the circadian system carries over many of

the trends of the single population model. Namely, we expect that higher harmonics in

the microscopic phase response curve will be damped with the first harmonic amplified

like R3
v + 1

Rv
. This transformation in the shape leads to an overall smoothing effect

and is tied to the disorder in the underlying population.

Additionally, we note that the term proportional to the amplitude response curve

(D − A)(1 − Λv) is expected to be of comparatively small magnitude as it is pro-

portional to 1
Rv
− R3

v → 0 as Rv → 1. Moreover the amplitude response curve

reaches its maximum values around the zeros of the individual phase response curve.

Thus, the amplitude of the collective phase response curve is largely determined by

the (C − B)∆v
0 term, while a shift in the entrainment points is determined by the

(D − A)(1− Λv) term.

From Eq. 4.31 we see the amplitude of the collective PRC is influenced by the

sign of the B constant as determined by the relaxation dynamics. Positive values of

B indicate the relaxation shift acts to decrease the initial phase shift thus providing
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Figure 4.6: Collective phase response curve for the theoretical curve (Eq. 4.31) (dotted
green) versus numerical simulation (red crosses) for the default parameter values.

a resistance to the phase shift. Negative values of B indicate the initial shift is

reinforced/increased during the transient relaxation, while a value near zero indicates

the relaxation shift has a small effect on the collective phase response.

The simplified expression in Eq. 4.30 allows for intuition on the scale and sign of B.

In particular we can see the value of B scales with the ratio of the feedforward coupling

strength Kvd to the feedback strength Kdv. For a balanced system Kvd = Kdv, q = 0.5

we observe that B = 0, although by varying this ratio of coupling strengths the system

can toggle between a resistant/reinforcing behavior to the initial phase shifts.

For a pure feedforward network, where Kdv = 0, the B term is positive and the

effect of having a fractional sensor population on the amplitude of the collective phase

response disappears. In this limit the phase shift in the ventral population is imposed

on the dorsal population over time. Thus, when Kdv 6= 0 the non-sensing dorsal

population can act as a feedback on the phase shifts and integrate the current phase

shift against the past history.

Therefore, we see that the entrainment range of a two-population system is cru-

cially dependent on the ratio of the coupling strengths between the sensing (ventral)

and non-sensing (dorsal) populations (Fig. 4.7). By adjusting the ratio of these cou-

pling strengths the size of the light response may be modulated.
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Figure 4.7: The amplitude of the collective phase response curve as a function of
α = Kvd/Kdv. The range of the numerical collective phase response is highlighted in
yellow and the theoretical prediction of the amplitude ( Eq. 4.31) is shown as dotted
green lines.

4.4 Seasonal Effects on Light Resetting

Our study of the collective phase response in a two-population model identified

the relative strengths of the intra-population coupling forces as an important factor in

determining the amplitude of the phase response. Experimental evidence has found

that the amplitude of phase shifts induced by a light-stimulus decreases in mammals

entrained to long day-lengths [147, 126]. This could be explained in our framework

by an increase in the network resistance to the phase shift (B), for animals exposed

to long day-lengths.

To evaluate this hypothesis we may check for consistency against two other sea-

sonal light effects on mammalian circadian rhythms: Seasonal encoding and light

entrainment after-effects. First, we consider seasonal encoding. Experimental evi-

dence has indicated that the phase difference between the dorsal and ventral phase

clusters grows with the day-length [105, 40]. Within our model this corresponds to

the variable |θ∗| growing with the entrained day-length. We make use of the hypoth-

esis that these changes in θ occur through an adjustment of the couping strengths

rather than a change in the intrinsic periods in the ventral/dorsal SCN [32, 105, 40].

Thus, we consider the intrinsic periods to be constant while allowing the coupling
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strengths to vary, an assumption which has some experimental justification [40].

Let χ ∈ [0, 1] be the photoperiod, or the fraction of the circadian day in which

the organism is exposed to light. Considering Eq. 4.11 we see the steady state phase

gap θ∗ is given by,

θ∗(χ) = arcsin

(
∆ω

G(χ)

)
≈
(

∆ω

G(χ)

)
(4.32a)

d|θ∗|
dχ

=
−|∆ω|G′(χ)

G(χ)2
(4.32b)

From this we can see that we must have G′(χ) < 0 to allow the absolute value of the

phase gap to increase with the photoperiod length.

Additionally, we observe that θ∗ will only show significant variation for a small

range G(χ) = O(∆ω) and will asymptote to a small value for G(χ) outside this range.

This nonlinear dependence of the phase gap θ∗(χ) with asymptotic values for short

photoperiods has been observed in experiments using both Per2 and Bmal circadian

phase markers [105, 40].

Moreover, the macroscopic model also identifies a fundamental trade-off as the

photoperiod is lengthened. As G(χ) decreases towards ∆ω the phase gap increases

quickly. However, a further increase in χ will cause the system to undergo a bifurca-

tion where the ventral and dorsal regions decouple from one another. Thus, we predict

that organisms which show robust seasonal adjustment necessarily must approach a

bifurcation to desynchrony/large phase gaps at long photoperiods. Therefore, organ-

isms which show robust decreases in G(χ), thereby showing larger changes in the

phase gap variable θ∗ as the photoperiod lengthens, will also approach a bifurcation

to desynchrony more closely and display rhythm abnormalities.

In fact, several species of mammals show desynchrony or large phase gaps when

perturbed outside their normal photoperiodic range by unnatural lighting conditions

(e.g. constant light) [40, 162, 111]. Moreover, it has been observed that hamsters
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which show robust seasonal adjustments to short daylengths have a higher propensity

for rhythm abnormalities under constant lighting conditions-illustrating the trade-off

identified by our analysis [38].

In order to relate these properties to reduced light phase-resetting responses

at long photoperiods we now recall a predominant circadian after-effect to light-

entrainment in mammals [105, 123]: Mammals entrained under short day-lengths

show a transient increase in period when moved to a dark environment. The long

day length after-effect works in an opposite direction by inducing a short period with

the magnitude of the period change increasing with the entrained day length. In the

context of our model this implies that dΩ
dχ
> 0 in Eq. 4.12. Expanding this condition

gives,

dΩ

dχ
= H ′(χ) sin(θ∗) +H(χ) cos(θ∗)

dθ∗

dχ
> 0. (4.33)

Applying the assumption that θ∗ is a small variable we may simplify this condition

to give,

∆ω

[
H ′(χ)G(χ)−H(χ)G′(χ)

[G(χ)]2

]
> 0, (4.34)

and we consider the case that ∆ω > 0 as indicated by experimental evidence [11,

105, 106]. Under the approximation that Rv ≈ Rd we have that 2H(χ) ≈ qKdv(χ)−

pKvd(χ) and G(χ) ≈ Kdv(χ) + Kvd(χ). This simplification allows us to express our

approximation for the network resistance to phase shifts B (Eq. 4.30), in terms of H

and G,

1

2
B(χ) ≈ H(χ)

G(χ)
. (4.35)

97



Thus, taking the derivative with respect to the the photoperiod χ,

1

2

dB

dχ
=
H ′(χ)G(χ)−H(χ)G′(χ)

[G(χ)]2
> 0, (4.36)

we see that the network resistance to phase shifts B will increase with the photope-

riod directly from the after-effect condition (Eq. 4.34). This gives the surprising result

that seasonal entrainment after-effects and the reduced sensitivity to light-pulses at

long photoperiods are intimately related to one another. In fact, the presence of one

implies the other in our model. Additionally, we see that the seasonal adjustment

condition G′(χ) < 0 is consistent with the after-effect and increasing phase shift re-

sistance condition (Eq. 4.36). Therefore, we find the adjustment of couping strengths

required to explain three predominant light mediated circadian effects are all mutually

consistent within our model.

4.5 Conclusions

In this work we focus on phase resetting to light in mammalian rhythms making

use of the m2 ansatz to derive a simplified model of the central clock. The reduced

model holds the advantage that the collective variables (Rv, Rd, θ) all have physiolog-

ical interpretations and are measurable in experimental treatments. We have focused

on the effects of heterogeneity in oscillator frequencies, the shape of the microscopic

phase response curve to light, the effects of only a fraction of populations receiving

direct light input and variation of the coupling strengths between regions on the phase

resetting response.

Similar to previous work on this subject we find heterogeneity of the population

changes the shape, amplitude and zeros of the collective phase response curve [61, 89].

Moreover, we note these alterations occur through a re-weighting of the Fourier com-

ponents of the collective phase response with the first harmonic amplified and higher
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harmonics being damped out as the oscillators spread out in phase. We find exami-

nation of only the first harmonic terms may give misleading results when considering

phase resetting to light in mammals.

The effect of having a fraction of the population receive light-input can lead to

a reduction in the overall amplitude of the collective phase response. However, we

find this effect is dependent on the coupling between the oscillators in the SCN. In

a feedforward network, where the sensing ventral cells project more strongly on the

non-sensing dorsal cells than the feedback connection, the initial shift induced on the

sensing population is largely imposed on the total population over time. Thus, for

pure feedforward network architectures the effect of a fractional sensing population

is to induce a time delay on the shift of the population mean phase.

However, when feedback coupling from the dorsal cells to the sensing ventral pop-

ulations is significant we see the reduction in the initial shift caused by the fractional

sensing is retained and even reinforced over time. This leads to the conclusion that

the relative coupling strengths between the ventral and dorsal oscillators allows the

system to weight phase shifts induced by light differently. The re-weighting of the

coupling strengths between the subpopulations with seasonal changes in day length

may act like the aperture on a camera by allowing the sensitivity of the clock to light

to vary with the total amount of light input received. In short days the feed-forward

connection is weighted more strongly to allow for larger responses when light input is

more scarce. In contrast, relative weighting of the feedback connection more strongly

in long days results in a reduction in light sensitivity when more light is received over

the course of the day.

These results may also have applications to the study of aging in the circadian

clock. In a similar manner to long-day lengths, older animals tend to show reduced

phase coherence and the clock neurons are thought to be more weakly coupled as the

animals age [41, 110, 109]. Moreover, these aged animals also show reduced phase-

99



shifts in response to light stimuli and slower entrainment to shifted light schedules [13,

131, 146, 14]. Our analysis reveals this reduction in phase shifting capacity may be

explained in terms of a reduction in the ratio of the feed-forward to feedback coupling

between the ventral and dorsal populations.

Our results are consistent with current ideas of how seasonal information is en-

coded in the mammalian circadian clock [105, 39] and provide an explanation for

mammals showing reduced phase shifts to light when entrained to long day lengths

[147, 126]. Furthermore, our model reveals an intimate connection between sea-

sonal day-length encoding, seasonal entrainment after-effects and the amplitude of

the phase-response to light. Additionally, we find the change in coupling strengths

with the day-length required to explain each of these phenomena are mutually con-

sistent within our model.

However, our results remain to be strengthened both from a biological and the-

oretical standpoint. In order to derive these results we have assumed an all-to-all

connectivity between clock cells in the SCN and simple sinusoidal coupling between

the oscillators. However, the connectivity in the SCN is known to be much more

complex [2]. An important extension of these results would be to consider phase

resetting in a general circadian network building on previous results [80, 79].

From a biological standpoint it remains to be tested whether an increasing resis-

tance to phase shifts under long-day lengths underlies the decreased sensitivity to light

pulses for organisms entrained to long day-lengths. This prediction seems testable

by measuring initial phase shifts to light and comparing these with the asymptotic

phase shifts obtained over long-times. This would be particularly interesting if the

effect was seen to vary with the entrained day-length and could provide evidence for

a variation in the relative coupling strengths between the ventral and dorsal SCN

with seasonal day-length. Recent experimental evidence suggests that the coupling

strength, as determined globally in the SCN, decreases with increasing day-lengths
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which could provide indirect evidence for this hypothesis [18].
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CHAPTER V

Macroscopic Models for Human Circadian

Rhythms

5.1 Introduction

Disrupted circadian rhythms have been implicated in a vast array of both mental

and physical health maladies including cancer, diabetes, addiction, depression and

sleep disorders [1, 64, 49, 90]. Moreover, the efficacy of health treatments has been

found to vary in a circadian manner meaning knowledge of a patient’s circadian phase

could allow for more effective treatments with reduced side-effects [88, 66]. Therefore,

it is a matter of vital importance to understand and predict human circadian rhythms.

The maintenance of healthy circadian rhythms requires them to be synchronized

to environmental cycles by outside forces known as zeitgebers. In mammals, the

most powerful zeitgeber is the daily light cycle [123]. Daily light cycles are sensed

in the retina and passed directly along the retino-hypothalmic tract to the master

circadian clock [98]. The mammalian master circadian clock has been localized to

the suprachiasmatic nucleus (SCN) a cluster of twenty thousand neurons in the hy-

pothalamus [103, 139] . Each of these thousands of clock neurons in the SCN contain

an intricate genetic feedback loop which cycles with a period close to 24 hours [92].

The emergent rhythm produced collectively by these clock neurons drives peripheral
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circadian cycles found throughout the body [33].

The study of human circadian rhythms has been approached using three princi-

pal paradigms. First, through the use of model organisms which allow for invasive

examinations of the master clock, coupling agents and molecular details of the clock.

Secondly, through careful laboratory based human studies which track circadian dy-

namics through the use of one of several reliable markers for the human circadian

rhythm. Finally, in recent years technological advances have allowed for the collection

of large datasets of self-reported survey data from individuals outside the laboratory

setting [151, 128, 159].

Studies in model organisms have revealed the details of the genetic feedback loop

present in each clock neuron as well as the coupling forces between the neurons which

help shape the circadian waveform produced by the SCN. The circadian waveform is

known to vary under a variety of conditions including age, seasonal day-length and

light history of the animal [39]. Laboratory studies of human circadian rhythms have

produced an increased understanding of how light-input is integrated into the master-

circadian clock as well as careful measurements of key parameters such as the human

circadian period. Large datasets of self-reported circadian data have been used to

study the variation in circadian dynamics across the human population [151, 128,

159]. In particular, these studies have begun to uncover the prevalence of different

chronotypes, defined by the angular relationship between the light and circadian

cycles, in the human population.

From a mathematical modeling perspective, the increased knowledge of the details

of circadian timekeeping has led to a divergence in the field. Detailed high-dimensional

models have been created to explain and predict the molecular data sets generated

through study of model organisms [32, 76]. In contrast, models of human circadian

data have remained phenomenological and low-dimensional to avoid over-fitting the

available data and to reduce the computational burden of simulations. However, these
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two modeling approaches have not been integrated to allow for the exchange of knowl-

edge between the molecular and human paradigms. In order to incorporate molecular

data, models of human circadian dynamics need to be derived systematically from

more detailed high-dimensional models of the master circadian clock.

A mathematical technique capable of supporting such a derivation was introduced

by Edward Ott and Thomas Antonsen in 2008 [114]. Their technique can be used to

reduce a large system of heterogeneous coupled phase oscillators to a low-dimensional

macroscopic model. Recently this technique was applied to the study of circadian

rhythms directly for the first time [93]. However, recent evidence has shown the

accuracy of the Ott-Antonsen approach can be improved upon for describing mam-

malian circadian rhythms [62]. In Chapter II we introduced a new ansatz, the m2

ansatz, which provides a systematic procedure for the extraction of low-dimensional

macroscopic models for biological networks of coupled oscillators [62].

In this work we demonstrate the use of the m2 ansatz [62] in modeling the light-

response of human circadian rhythms. Starting from a phase oscillator description of

the SCN we derive a low-dimensional model for the human circadian clock and fit the

parameters to available data. The flexibility and extensibility of our approach allows

for the derivation of both a single population and a two population description of the

core clock. We validate the model parameter fits against three additional data sets,

and compare the predictions of our models against a predominant phenomenological

model for the human circadian clock.

5.2 Results

5.2.1 Previous Models

The most prolific models of human circadian dynamics are based on the van der

Pol (VDP) limit cycle oscillator model [84, 155, 46]. The VDP oscillator provides a
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low-dimensional and well understood basis to model the overt circadian rhythms as

measured by markers such as core body temperature and melatonin levels. As our

knowledge of the light-response of the human circadian rhythm has grown, a series

of modifications have been introduced to the original models [68, 85, 46]. These

progressive modifications have allowed the VDP models to continue to make accurate

quantitative and qualitative predictions of the light-response of the human circadian

rhythm.

For our purposes we choose to study the simplest VDP model currently used in

predicting human circadian rhythms [46],

dx

dt
=

π

12
(xc +B(t)) (5.1a)

dx

dt
=

π

12

{
µ

(
xc −

4x3
c

3

)
− x

[(
24

0.99669τx

)2

+ kB(t)

]}
. (5.1b)

The parameters τx and µ determine the period of the oscillator and the stiffness of

the oscillator, respectively. In Eq. 5.1 the variable B(t) is a transformed version of

the light stimulus L(t) according to the Process L formalism [85]. The dynamics of

Process L adds one dynamical dimension to the model and is given by,

dn

dt
= 60 [α(L)(1− n)− βn] (5.2a)

B̂(t) = G(1− n)α(L) (5.2b)

α(L) =

(
L(t)

I0

)p
(5.2c)

B(t) = B̂(1− 0.4x)(1− 0.4xc). (5.2d)

We note that Eq. 5.2d, called the sensitivity modulation, assumes the amplitude of the

transformed light input B(t) varies as a function of the phase of the master circadian

clock [46]. In order to tie the limit cycle to an experimental circadian marker, the

minimum value of the dynamic variable x is taken to coincide with the core body
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temperature minimum. The parameter values we use are as specified in Serkh et al

[132]. The accuracy and simplicity of this model has led to its application to many

open questions in human chronobiology including jet-lag, sleep dynamics and the

treatment of circadian disorders [117, 52, 132, 151].

Despite the tremendous success of the VDP formalism in modeling human circa-

dian rhythms, the lingering phenomenological basis remains and can limit the models

utility. The variables (xc, x) and parameter µ do not have interpretations which can

be tied to the known physiology of the master circadian clock. Thus, the circadian

phase and amplitude measured experimentally can be only loosely interpreted within

the VDP formalism. In addition, the lack of a physiological origin for the parame-

ters makes the incorporation of many molecular data sets problematic. For example,

the overt circadian rhythm described by the VDP models is known to be produced

through the aggregation of the rhythmic contributions of thousands of coupled noisy

heterogeneous biochemical oscillators. This large ensemble of coupled oscillators pro-

duces an intricate circadian waveform within the SCN which varies with age, seasonal

day-length, light history, and a host of other factors [41, 38, 39]. The VDP model

formalism has only a limited use in the study these phenomena.

In addition, large data sets have begun to shed more light on the diversity of

chronotypes present in the human population [151, 128, 159]. In understanding hu-

man chronotypes the phenomenological basis for the VDP model could cripple the

ability of researchers to incorporate differences between individual’s circadian rhythms

beyond variations in the intrinsic circadian period [117]. Variations in the circadian

period can only partially explain the variation observed in human chronotypes [35,

34]. In applications, the diagnosis and treatment of circadian disorders will likely

require additional knowledge beyond variations in the intrinsic circadian period [34].
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5.2.2 Derivation of a Macroscopic Model

Overcoming the limitations of the VDP modeling formalism will require moving

beyond a phenomenological paradigm. In this spirit we begin with a high-dimensional

model which describes the phase of each clock cell in the SCN. We assume the clock

neurons are weakly coupled, that is we make the assumption that deviations off the

autonomous limit cycle induced by the coupling forces are sufficiently small to be

safely ignored. Additionally, we assume the coupling between the oscillators is all-

to-all and is sufficiently weak that the contributions may be averaged into a coupling

function with a single harmonic [86]. We allow for heterogeneity in the natural fre-

quency ωi of each clock cell and include a white noise factor in time progression of

each oscillator. These assumptions lead to the following model for each clock neuron

i = 1, 2...N ,

dφi
dt

= ωi +
√
Dηi(t) +

K

N

N∑
j=1

sin(φj − φi) +B(t)Q(φi) (5.3a)

Q(φi) = σ − A1 sin(φi + β1)− A2 sin(2φi + β2) (5.3b)

where ηi is a white noise process with 〈ηi〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2δ(t − t′)δij, and

δij is the Kronecker delta. For reasons that will become apparent in the course of the

dimension reduction we will assume that the heterogeneity in the natural frequencies

of the clock neurons follows a Cauchy (Lorentzian) distribution,

g(ω) =
γ

π[(ω − ω0)2 + γ2)]
, (5.4)

where ω0 is the median frequency and γ sets the spread of the distribution about the

median value. The Q(φ) function describes the phase response curve of the individual

clock neuron to a brief light-stimulus and the coefficients A1, A2 scale the first and

second harmonic components of the phase response curve respectively. Finally, as in
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the VDP model the time-dependent input B(t) gives the form of the light stimulus

after processing by the visual system. We model the processing of light information

along the retino-hypothalamic tract using a slight modification in the α(L) term

of the Kronauer-Jewett Process L formalism (Eq. 5.2) [85]. That is, we define the

transformation from the raw light input L(t) to the processed light input to the

circadian clock B(t) as,

dn

dt
= 60 [α(L)(1− n)− δn] , (5.5a)

α(L) =
α0L(t)p

L(t)p + I0

, (5.5b)

B(t) = G(1− n)α(L). (5.5c)

For a large system of coupled phase oscillators it is useful to define the Daido order

parameters of the phase distribution [31, 30] as,

Zm(t) = Rm(t)eiψm(t) =
1

N

N∑
j=1

eimφj(t), (5.6)

where φj are the phases of the oscillators, Rm are the phase coherences and ψm are

the mean phases. Typically, only the first term is considered Z1 = R1e
iψ1 and is

known as the Kuramoto order parameter. Here R1 measures the amplitude of the

collective behavior of the oscillator population with R1 near zero indicating a near-

uniform distribution of phases among the oscillators and R1 = 1 perfect synchrony

with all oscillators in the same phase.

While the phase model coarse-grains over the biochemical details of each clock

neuron, the large number of neurons in the SCN means it is still very high dimen-

sional N = O(104) model. Given this high-dimensionality it is natural to consider

the continuum limit as the number of oscillators grows to infinity N → ∞. In the

continuum limit, the oscillator population may be described as a phase density func-
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tion f(ω, φ, t) which gives the density of oscillators with frequency ω at phase φ. The

time-evolution of f is given by a continuity equation,

∂f

∂t
+

∂

∂φ
(fv) +D

∂2f

∂φ2
= 0, (5.7a)

v = ω + σB(t) + Im
[
Ke−iφZ1 +H1(t)e−iφ +H2(t)e−2iφ

]
(5.7b)

H1(t) = A1e
−iβ1B(t) H2(t) = A2e

−iβ2B(t)

(5.7c)

where Im denotes the imaginary part of the expression. The Fourier series decompo-

sition of f is given by

f =
g(ω)

2π

(
1 +

[ ∞∑
n=1

An(ω, t)einφ + c.c.

])
, (5.8)

where c.c. stands for the complex conjugate of the expression and g(ω) is the distri-

bution of natural frequencies of the oscillators. Substitution of the Fourier series for

f into the continuity equation yields

Ȧn
n

+ (iω + iσB(t) +Dn)An +
K

2

(
Z1An+1 − Z̄1An−1

)
(5.9)

+
1

2

(
H1An+1 − H̄1An−1

)
+

1

2

(
H2An+2 − H̄1An−2

)
= 0.

where barred quantities are the complex conjugate. In the continuum limit the Daido

order parameters Zm are given by

Zm(t) =

∫ 2π

0

∫ ∞
−∞

f(ω, φ, t)eimφdωdφ =

∫ ∞
−∞

Ām(ω, t)g(ω)dω ∈ C (5.10a)

using that all oscillating terms in the Fourier series for f integrate to zero except for

n = m. If g(ω) is given by a Cauchy distribution with median ω0 and dispersion

parameter γ (Eq. 5.4), the integral (Eq. 5.10a) can be evaluated as a residue by
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arguing that Am(ω, t) may be analytically continued into the lower half of the ω

plane [114]. Evaluation of the contour integral gives Zm(t) = Ām(ω0 − iγ, t). Using

this substitution for the Daido order parameters allows us to re-write Eq. 5.9 as

follows,

Żn
n

= (iω0 + σB(t)− γ −Dn)Zn +
K

2
(Z1Zn−1 − Z̄1Zn+1)+ (5.11)

+
1

2
(H1Zn−1 − H̄1Zn+1) +

1

2
(H2Zn−2 − H̄2Zn+2).

Now, we set n = 1 to get an equation of motion for the Kuramoto order parameter

Z1 = R1e
iψ1 ,

Ż1 = (iω0 + iσB(t)− γ −D)Z1 +
K

2

(
Z1 − Z2Z̄1

)
+

1

2
(H1 − H̄1Z2) +

1

2
(H2Z̄1 − H̄2Z3).

(5.12)

However, we note that Eq. 5.12 is not a closed system for Z1, as it depends on higher

order Daido order parameters (Z2, Z3). Therefore, some simplification is required to

achieve a reduction in the dimensionality of the system.

In Chapter II, we found that the higher order Daido order parameters may be

expressed in terms of Z1 for a large class of coupled oscillator networks [62]. We

termed the relation the m2 ansatz and it is given by, Zm = |Z1|(m
2−m)Zm

1 or Rm =

Rm2

1 , ψm = mψ1. Significantly to this work, examination of the phase distribution

of clock neurons in whole SCN explants shows the m2 ansatz describes the phase

distribution accurately [2, 62].

Applying this moment-closure and separating the real and imaginary parts for Z1
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gives the following two-dimensional model for the human circadian clock:

Ṙ =

(
K

2
−D − γ

)
R1 −

K

2
R5

1 + LR(R,ψ) (5.13a)

ψ̇ = ω0 + Lψ(R,ψ) (5.13b)

LR(R,ψ) =
A1

2
B(t)(1−R4) cos(ψ + β1) +

A2

2
B(t)R(1−R8) cos(2ψ + β2)

Lψ(R,ψ) = σB(t)− A1

2
B(t)

(
1

R
+R3

)
sin(ψ + β1)− A2

2
B(t).(1 +R8) sin(2ψ + β2)

where we have dropped the subscripts on the Kuramoto terms Z1 = Reiψ. The two

variables of the model have the benefit of having direct physiological interpretations:

R ∈ [0, 1] measures the collective amplitude of the oscillator population and ψ gives

the mean phase of the population. The terms LR and Lψ give the impact of the

light input on the amplitude and mean phase of the circadian clock respectively.

Our systematic derivation also allows the parameters of the macroscopic model to

be traced back to the properties of the high-dimensional microscopic model for each

phase oscillator.

5.2.3 Two Population Model

Another advantage of our modeling approach is that alterations in the microscopic

model may be easily incorporated and a new macroscopic model derived. To illustrate

this process we note that physiological investigations of the mammalian SCN have

revealed it may be functionally clustered into two principal regions: the ventral (core)

and the dorsal (shell) clusters [45]. Especially pertinent to the study of light on

the mammalian circadian clock, is the discovery that light information channeled

to the SCN from the eyes along the retino-hypothalamic tract projects mainly onto

the ventral cluster of oscillators [98]. As discussed in Chapter IV this can have

significant effects on the phase-resetting properties of the system as only a fraction

of the oscillator population phase-shifts in response to a stimulus. This also allows
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for more complex processing of the light-information as the phase-shift of the sensing

ventral population is integrated against the non-sensing population to produce a

composite phase-shift (see Chapter IV).

Within our formalism we may easily generalize the derivation used for a single

population model of the SCN to include the division of neurons into the ventral and

dorsal clusters (see Chapter IV for a two population derivation). We assume the

same structure and coupling terms as depicted in Fig. 4.1. The addition of the dorsal

population of oscillators yields a five-dimensional macroscopic model for the circadian

clock which describes the collective amplitude of the ventral and dorsal populations

(Rv, Rd) and the mean phase of each population (ψv, ψd), along with the Process L

light-processing variable B(t). The two population model is given by,

Ṙv = −γvRv +
Kvv

2
Rv(1−R4

v) +
Kdv

2
Rd(1−R4

v) cos(ψd − ψv) + LR(Rv, ψv)

(5.14a)

Ṙd = −γdRd +
Kdd

2
Rd(1−R4

d) +
Kvd

2
Rv(1−R4

d) (5.14b)

ψ̇v = ωv +
Kdv

2
Rd(

1

Rv

+R3
v) sin(ψd − ψv) + Lψ(Rv, ψv) (5.14c)

ψ̇d = ωd −
Kvd

2
Rv(

1

Rd

+R3
d) sin(ψd − ψv) (5.14d)

LR =
A1

2
B(t)(1−R4

v) cos(ψv + β1) +
A2

2
B(t)Rv(1−R8

v) cos(2ψv + β2) (5.14e)

Lψ = σB(t)− A1

2
B(t)

(
1

Rv

+R3
v

)
sin(ψv + β1)− A2

2
B(t)(1 +R8

v) sin(2ψv + β2),

(5.14f)

with the Process L light-processing variable B(t) defined as for the single population

model. A distinct advantage of the two-population model is that it allows for finer

adjustments of the coupling forces within the SCN. Thus, the coupling strengths may

be adjusted to allow for seasonal variations in the circadian waveform found in model

organisms. For example, studies in rodents have found that in longer day-lengths
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the ventral and dorsal populations tend to separate in phase [105]. Within the two-

population model this may be included by allowing the inter-region coupling strengths

Kvd, Kdv to decrease in increasing day-lengths. As shown in the last chapter this

manipulation of the coupling strengths can lead to the reduction in the phase-shifting

response observed experimentally when organisms are entrained to long day-lengths

as seen experimentally [126, 147].

5.2.4 Parameter Fitting

In order to allow for prediction of human circadian rhythms we fit our model

to available data on the human circadian light response. We make use of three

experimental measurements of the human phase response curve to light to calibrate

our model [75, 138, 26]. These three phase response curve studies use a similar

protocol for the assessment of circadian phase shifts while varying the light stimulus

applied considerably. Hilaire et al [138] use a single bright white stimulus one-hour in

length, while Khalsa et al [75] employ a 6.7 hour bright light pulse. Finally, Czeisler

et al [26] use a three pulse stimulus delivered over a period of 72 hours. The single

light pulse curves show weak or Type 1 phase resetting, meaning the phase response

curve is continuous and the phase transition curve (initial phase plotted against final

phase) shows an average slope of one [156]. Conversely, the three pulse phase response

curve shows Type 0 resetting where the phase transition curve has an average slope

of zero [26, 156]. Type 0 resetting is associated with the stimulus driving the system

to a phase singularity and produces large phase shifts in the circadian phase [156].

In addition to the phase resetting data-sets, we also make use of experimental

measurements of the human light intensity dose response curve [163]. These results

study the effects of the differing light intensities on the magnitude of phase delays

induced by a light stimulus applied during the early subjective night. The intensity

response curve was found to be nonlinear and sigmoidal, with the inflection point

113



near the light intensities typical of indoor lighting [163].

In order to compare a model with experimental data we define the collective phase

ψ = π in the single population model and ψv = π in the two population model, to

correspond with the minimum of the core body temperature in humans. In addition,

for the two-population model we make the assumption that the core body temperature

marker is driven by the ventral SCN. We find this assumption is required for the model

to provide good fits to the Type 0 resetting data.

Optimal parameters sets were found using a genetic algorithm based global op-

timization over the parameter space, with a least-squares cost function. Similar to

the process used to fit the VDP model [46], we fit the parameters to a biharmonic

function for the Type I phase resetting curves and a smoothed curve for the Type

0 data (Fig. 5.1). In addition, we constructed Markov Chain Monte Carlo (MCMC)

ensembles about these optimal parameter sets in order to see the effects of parameter

variations on model performance (see Methods). Optimal parameters sets for both

models and MCMC quantiles may be found in Appendix D.

A comparison between the VDP model [46] and our models shows each of them

are capable of describing the phase response curve data well (Fig. 5.1). However, the

alteration of the light processing we introduce allows for an improved fit to the light

intensity dosage response curve in our models (Fig. 5.1). In addition, we note that

in order to achieve fits to the data for the VDP model the authors introduced an

ad-hoc sensitivity modulation function (Eq. 5.2d), which requires the assumption of

a significant variation in the light processing as a function of the circadian phase [46].

In fitting our models we find this sensitivity function is not required to describe the

phase shifting data.
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Figure 5.1: (a-c) Single population model parameter fits plotted for three experimen-
tal measurements of the human phase response curve to light. (d) Shows the light
intensity dosage response curve fits. Thick blue curves show the single optimal pa-
rameter fits and the green shading shows the density across the MCMC parameter
ensemble. Green dots show experimental data points [75, 138, 26, 163]. Thin black
lines show fits using the VDP model [46] for parameter values as given in [132].

115



0 5 10 15 20

CT

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

P
ha

se
Sh

if
t

(a)

1 Hour Light Stimulus

0 5 10 15 20

CT

−5

−4

−3

−2

−1

0

1

2

3

P
ha

se
Sh

if
t

(b)

6.7 Hour Light Stimulus

0 5 10 15 20

CT

−10

−5

0

5

10

P
ha

se
Sh

if
t

(c)

Three Pulse Light Stimulus

0 1 2 3 4

log(lux)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
ha

se
D

el
ay

(d)

Light Intensity Response Curve

Figure 5.2: (a-c) Two population model parameter fits plotted for three experimental
measurements of the human phase response curve to light. (d) Shows the light inten-
sity dosage response curve fits. Thick blue curves show the single optimal parameter
fits and the green shading shows the density across the MCMC parameter ensemble.
Green dots show experimental data points [75, 138, 26, 163]. Thin black lines show
fits using the VDP model [46] for parameter values as given in [132].
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5.2.5 Model Validation

In addition to the data sets used in the parameter fitting procedure, we also

simulated the model response for three additional experimental protocols in order to

validate our parameter fits. The first two of these data sets consider phase-resetting

in subjects exposed to intermittent light exposures in the phase delay [57] and phase

advance regions [127] of the phase response. In the Rimmer et al experiments subjects

were exposed to intermittent bright light exposures of 5.3 and 46 minute lengths

alternating with episodes of darkness over a total of 5 hours [127]. The phase shifting

efficacy of these intermittent exposures were compared with a base line constant

bright light exposure of 5 hours. These intermittent light exposures were found to

produce nearly the same magnitude of phase advances as the full light exposure, with

the 90 minute intermittent light schedule yielding approximately 90% of the baseline

phase shift and the 25 minute schedule producing 70% of the value of the baseline

phase shift measured in terms of the median phase shifts of each group. For this

validation data set we find the two-population model out performs both the single

population and the VDP model (Fig. 5.3(a)). Although each of the models have

the property that intermittent light exposures retain a large percentage of the phase

shifting capacity of the base line constant light exposures.

The second validation data set measured the effects of intermittent light exposures

in the phase delay region of the phase response [57]. Subjects were exposed to a

intermittent light schedule consisting of six 15 minute bright light pulses separated

by sixty minutes in very dim light. The phase delaying effects of this intermittent

light schedule were compared against a baseline light exposure of 6.5 hours of constant

bright light. For this data set we find each of the models capture the experimental

data closely (Fig. 5.3(b)).

The third validation data set we considered is a duration response curve, measur-

ing the phase delays induced by bright light exposures of different lengths (0.2,1.0,2.5
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Figure 5.3: Results for the three validation data sets (Exp) using the single population
model (SP), two population model (TP) and the VDP model (VDP). Error bars for
the single and two population models are taken from the probability density estimated
by the MCMC parameter ensemble.

and 4.0 hours) [21]. Similar to the intermittent light experiments, we find each model

reproduces the qualitative results. Both the single and two population model were

found to reproduce the mean phase shifts accurately (Fig. 5.3). While the VDP model

matches the experimental results for shorter light pulses with degrading accuracy for

the longer light pulses (Fig. 5.3(c)).

5.2.6 Differences in Model Predictions

A major difference between the VDP model and the models we propose here lies in

the assumed sensitivity modulation function (Eq. 5.2d) of the VDP based models. The

sensitivity modulation function introduces a strong circadian phase dependence into

the amplitude of the processed light input B(t) presented to the circadian oscillator.
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The sensitivity function allows the VDP model to match the Type 0 (three-pulse)

phase resetting experimental data. Functionally, the sensitivity modulation function

amplifies the phase shifts in the critical region for stimuli occurring near the core

body temperature minimum. This enables the VDP model to demonstrate Type 0

resetting for relatively high stiffness values µ, which in the absence of the sensitivity

function would prevent the oscillator from showing Type 0 resetting. Our formalism

does not require the introduction of an ad-hoc sensitivity function to match the Type

0 phase resetting behavior. To compensate for the loss of the sensitivity function, the

amplitude recovery dynamics of our models differ significantly from the VDP model.

We find the amplitude recovery rates of the models differ significantly in the

absence of time cues. In both the single and two population models, circadian ampli-

tude recovery from small amplitudes takes significantly longer than is predicted by the

VDP model (Fig. 5.4(a)). However, when the light entrainment cues are provided the

amplitude recovery rate speeds up considerably, such that it is comparable with the

rate predicted by the VDP model (Fig. 5.4(b)). This slower amplitude recovery has

been observed in laboratory treatments when participants are exposed to circadian

amplitude suppressing bright light pulses [70, 69]. The one participant who was kept

in darkness following an amplitude suppression showed little evidence of amplitude

recovery after four circadian cycles [69]. However, in participants who received an

additional light pulse following amplitude suppression, the circadian amplitude was

observed to recover to typical levels within three circadian cycles [69]. This over-

estimate of the amplitude recovery rate from small amplitudes by the VDP model

has been noted previously in the literature [67]. However, attempts to remedy this

deficiency for VDP based models introduced higher order terms into the dynamics of

the amplitude recovery [67]. By comparison, our models do not require higher order

terms in the amplitude recovery function, but rather make the hypothesis of weaker

coupling forces in the SCN. For small amplitude reductions both the VDP model

119



0 5 10 15
Time (days)

0.2

0.4

0.6

0.8

1.0

A
(t
)

A
f

(a)

Amplitude Recovery in Darkness

5 10 15 20
Time (days)

(b)

Amplitude Recovery with Light Forcing

Single Pop
Two Pop
VDP

Figure 5.4: Amplitude recovery from small initial amplitudes in the models (a) Shows
the recovery of amplitude for the VDP, Single and Two Population models in darkness.
(b) Shows amplitude recovery when subjected to a regular 16:8 LD light schedule of
100 lux light following the amplitude reduction.

and our models predict the amplitude recovery will occur quickly, in accordance with

experimental results [69].

The difference in the amplitude recovery dynamics also manifests itself in the

entrainment of the models to regular light schedules. To study the entrainment of

the models we compute the days required to entrain to shifted light schedules in each

of the models. To assess entrainment times we compute the number of days required

to entrain to within 0.1 radians or ≈ 22 minutes of the final stable entrainment angle

beginning from all amplitude states and initial phases. The single and two population

models make similar predictions for the number days required to entrain to the shifted

schedules, however the VDP model predicts significantly longer entrainment times for

larger phase shifts (Fig. 5.5). Observing the entrainment dynamics via stroboscopic

plots we see our models entrain more quickly due to increased circadian amplitude

suppression in response to large shifts in the light schedule (Fig. 5.5). Finally, we

note that similar to the VDP model our models demonstrate an asymmetry between

the entrainment times for east and west shifts in the light schedule. Of note we find

this asymmetry in our models for experimentally measured values of the circadian

clock period ≈ 24.2 hours [27, 20]. This contrasts with the mechanism suggested
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Figure 5.5: Entrainment times to sudden time zone shifts in the single population,
two population and VDP models. Colors indicate the days required to entrain to a
regular light schedule starting from the amplitude and phase indicated in the circular
plot. The amplitudes are normalized between the models to allow comparison, and
the orientation of the VDP model plot is reversed for the same reason. Arrows show
stroboscopic snapshots of the phase and amplitude at 24 hour intervals during the
entrainment process.

by a recent macroscopic model, using the Ott-Antonsen ansatz, which requires an

assumption that the human circadian period exceed 24.5 hours [93].

The differences between the model’s predictions for entrainment time following

a sudden shift in the light schedule should alter model predictions of light therapy

prescriptions used in the treatment of circadian maladies [132]. In particular, the

increased amplitude malleability of our models will likely have significant effects on

predictions of optimal light schedules for re-entrainment, which typically seek to push

the system towards the phase singularity to allow for a faster entrainment [132].

In addition to the amplitude recovery and entrainment time differences, we find

the entrainment angle is more sensitive to the strength of the entraining stimulus

in our models than is predicted by the VDP model. For example, for an individual

living on a regular 16:8 light dark schedule with room light levels (100 lux) the core

body temperature (CBT) minimum lights occurs 2.9 hours before lights on in both

the single and two population models. Under the same 100 lux lighting conditions
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the VDP model makes a similar prediction that the CBT minimum will occur 2.4

hours before lights on. However, when the light intensity is raised to 10, 000 lux

(typical of outdoor sunlight) our models predict that lights on will occur at an earlier

biological time [2.6 hours (single population) and 2.3 hours (two population) after

the CBT minimum]. The VDP model predicts a shift in the opposite direction with

the difference between lights on and the CBT minimum increasing to 2.8 hours under

bright light entrainment. Therefore, our models predict individuals who receive higher

light intensities during day-light hours will wake at an earlier biological time. A

similar trend was found when subject’s circadian markers were compared between

natural/outdoor light:dark cycles and an artificial light dominated environment [160].

5.3 Discussion

Them2 ansatz is consistent with experimental measurements of the phase distribu-

tion of circadian neurons and allows for the systematic reduction of high-dimensional

stochastic phase oscillator models to low-dimensional macroscopic models. In this

work we have shown how the m2 ansatz may be applied to derive two new models

for human circadian dynamics. The m2 ansatz and the associated dimension reduc-

tion procedure are extremely extensible, enabling our models and assumptions to be

updated to incorporate new experimental results.

Since our models are derived from high-dimensional phase models describing the

phase of each circadian neuron in the SCN, the variables and parameters have inher-

ent physiological interpretations which can be traced back to the high-dimensional

single cell model. This allows for the easier incorporation of new experimental re-

sults and greater falsifiability than can be achieved with phenomenological models

currently in use [46]. Moreover, as our knowledge of population variability increases

the physiological interpretations of parameters in our models could allow for person-

alized models to be constructed based on the peculiar properties of each individual’s
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circadian dynamics.

To provide predictive models, we fit our macroscopic models to measurements of

the human circadian light response. The parameter fits were validated against three

additional data sets to evaluate the accuracy of the model predictions. Moreover,

we highlight some key differences between our model predictions and a previous phe-

nomenological model based on the van der Pol oscillator. In particular, we find the

elimination of the sensitivity modulation function used in the VDP model significantly

alters the model predictions on the amplitude recovery dynamics. Our models predict

a slower amplitude recovery at smaller amplitudes in the absence of time cues, with

a much faster recovery of amplitude predicted when rhythmic light input is provided.

This is consistent with available experimental data on circadian amplitude recovery

[70, 69].

In addition, we find our models differ significantly from the VDP model in pre-

dictions of entrainment times. Weaker coupling in our models leads to predictions

of shorter entrainment times to large shifts in the light schedule than predicted by

the VDP model. This difference in predictions could significantly change predictions

of optimal light based chronotherapies for circadian misalignment [132]. Finally, we

observe that our models and the VDP model make opposite predictions on the influ-

ence of zeitgeber strength on the entrainment angle. Our models predict entrainment

to bright light conditions, typical of the outdoors, will shift circadian rhythms earlier

in the solar day while the VDP model shows a weak effect in the opposite direction.

Our models predictions align with an experimental study of the influence of outdoor

living on circadian rhythms [160].

5.4 Methods

Model simulations were run using a custom C++ library, employing a variable

step-size fourth order Runga-Kutta explicit solver for the ODE integrations. Light
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schedules for the fitting and validation were reproduced in silco from the various

experimental protocols [75, 138, 26, 163]. The model was entrained to a regular light

schedule for 50 days prior to initialization of the experimental protocols. To mimic

the experimental circadian phase determination, the core body temperature (CBT)

crossing times [defined to be ψ = π, ψv = π for our models] were used to determine

the phase shifts induced by the light stimulus.

To quantify the model’s adherence to the fitting data sets, we defined a least-

squares cost function. Model outputs were evaluated against functions fit to the

experimental data, rather than the raw data points. For the Type 1 resetting data we

fit a biharmonic function to the data sets [75, 138]. For the Type 0 data each branch

of the discontinuous PRC was fit to a function of the form a+bx+cx2+d/(θ−x)2 [26].

Given the ambiguity present in the data on the exact placement of the discontinuity,

θ was allowed to vary in the range θ ∈ [8.8, 10.05] and the minimum distance was

assumed in each comparison with the model simulations. For light intensity response

curve data we used the four parameter logistic function as specified by the authors in

the original work [163].

Optimal parameters were identified using a genetic algorithm for global optimiza-

tion using a population size of 200 and running for 100 generations. The optimal

parameter sets were then selected from the final population produced by the genetic

algorithm.

We also implemented a MCMC algorithm in order to explore the cost basin around

our optimal parameter sets. Statistical inferences based on the parameter ensemble

require knowledge of the variance of the measurements in our fitting data sets. Given

the small sample sizes of human studies, estimates of the variance of measurements

are lacking. Thus, we assume fixed variances for each measurement in the four experi-

mental protocols used in fitting [σC = 0.85 (Type 0), σK = 0.50 (6.7 hour), σH = 0.50

(1 hour), σZ = 0.30 (Intensity response)]. The MCMC algorithm was implemented
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as a custom Metropolis-Hasting’s walk across the cost basin. Simulations were run

for N = 1000 steps in the parameter space and thinned by a factor of five to remove

any autocorrelation from the random walk.
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CHAPTER VI

Conclusions

A crucial choice in the art of mathematical modeling is the choice of what to leave

out of the model. In many cases this choice can be aided by focusing on a scale

for the model commensurate with the experimental data the model seeks to explain.

For example, in building a model of the circadian rhythms at the cellular scale, the

inclusion of a large number of biological components may be appropriate [47, 76,

100, 32]. This level of detail will allow the model to be compared against detailed

measurements of the components, and enable the model to make testable predictions

of the phenotypes of mutant cells with components removed [47, 76, 100]. However,

at the scale of whole organism circadian rhythms a low-dimensional phenomenological

model may be more appropriate and offer greater insights into the phenomena [46,

156].

However, biological systems and circadian rhythms in particular are inherently

multiscale phenomena and models which are limited to one spatial or temporal scale

will suffer from inherent predictive limitations [161]. In circadian rhythms, daily os-

cillations in behavior and physiology are produced by cellular processes which operate

on very short time and spatial scales. These molecular clocks are then integrated into

a complex spatial network of interacting clock neurons. This spatial network pro-

duces the collective oscillations which drive behavioral oscillations emergently from
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the rhythmic contributions of thousands of clock neurons.

Therefore, multiscale mathematical models must be developed which can synthe-

size hierarchical data and make predictions across divergent time and spatial scales.

One answer to the multiscale challenge is the development of numerical methods

which allow for the efficient simulation of multiscale models [32]. Alternatively, the

multiscale challenge may be addressed through the development of mathematical tech-

niques which allow for freedom of movement between temporal and spatial scales. In

this work we have focused on the development of mathematical tools which enable

the study of multiscale dynamics in coupled oscillator networks.

The Ott-Antonsen approach is a powerful example of a multiscale mathematical

technique which may be applied to coupled oscillator systems to move from a high-

dimensional microscopic model to a low-dimensional macroscopic model [114]. We

apply the Ott-Antonsen technique to study the response of collective oscillations

to perturbations in Chapter III. The application of the Ott-Antonsen technique

allowed for the derivation of analytical results detailing how the phase sensitivity of

an oscillator population differs from its component oscillators.

In addition, we provide the first investigation of the applicability of the Ott-

Antonsen technique to the study of coupled biological oscillators (Chapter II). To

assess the applicability of the Ott-Antonsen technique to biological systems we ex-

tracted phase distribution estimates from measurements of cellular timecourses in the

mammalian circadian clock [2]. We also generated several phase distribution in silco

data sets for coupled biological oscillators (Repressilators [36, 50], Morris-Lecar neu-

rons [104], and Noisy Modified Goodwin Oscillators [76, 140]). Analysis of these data

sets showed that a key assumption of the Ott-Antonsen technique is invalid for these

systems. However, we do find evidence of low-dimensional macroscopic dynamics and

discover a modification of the Ott-Antonsen technique, the m2 ansatz, which does

describe these systems well. The emergence of the m2 ansatz is justified through a
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simple argument relying on the general phase-locking of oscillators. Moreover, we

demonstrate the validity of the m2 ansatz for a wider class of models then can be

studied with the Ott-Antonsen approach (Chapter II). Finally, we demonstrate how

the m2 ansatz may be used to extract a macroscopic model for the stochastic hetero-

geneous Kuramoto equation.

We apply the m2 ansatz in Chapter IV to characterize the impact of light on

mammalian circadian rhythms. Our analysis clarifies the conditions for a rule of

thumb in the circadian literature that oscillators show increasing phase sensitivity as

the oscillator amplitude is decreased [125, 3, 156]. In particular, we find this rule

depends on the harmonic content of the oscillator’s phase response to the stimuli and

provide analytic scaling results for the dependence of phase shifting on the collective

amplitude. Surprisingly, our analysis reveals an intimate connection between three

light-induced effects of mammalian circadian rhythms: seasonal encoding, seasonal

after-effects to light entrainment and reduced light sensitivity in long-day lengths.

We find each of these phenomena can be parsimoniously explained within our model

by an adjustment of coupling forces within the master circadian clock as a function

of entrained day-length.

Finally, in Chapter V we apply the m2 ansatz to derive two simple models for

human circadian rhythms. We fit the parameters of our models using the phase re-

sponse curve measurements in human subjects for three different light stimuli [138, 75,

26]. In addition, we use an experimental human intensity response curve to calibrate

and fit our model [163]. We validate our parameter fits through comparison with

three additional data sets, and compare our model’s predictions with a popular phe-

nomenological model for human circadian rhythms based on the van der Pol (VDP)

oscillator [46]. We find our models predict slower amplitude growth than the VDP

oscillator model in the absence of light input. This also induces differences between

our model’s and the VDP based model’s predictions of entrainment times to abrupt
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shifts in the light schedule. This has particular significance in applications for light

based treatments of circadian misalignment disorders such as jetlag or shift work.

Finally, we find our models make different predictions on the effect of bright light

on the entrainment angle of the circadian clock. Our models predict that extended

exposure to bright light typical of the outdoors will lead to circadian alignment such

that lights on occurs at an earlier biological time, while the VDP model makes a

prediction of a slight shift in the opposite direction.
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APPENDIX A

Supplementary Information for the m2 ansatz

Data and Mathematical Model Details

Circadian Data

The circadian data shown in Figure. 2.1(a) of the main text is described in detail

in Abel et al 2016 [2] and was generously provided publicly by those authors and

may be downloaded from https://github.com/JohnAbel/scn-resynchronization-data-

2016. In total the public data set has measurements from five different whole SCN

explants. In the main text we show the estimated equilibrium phase distribution for

SCN 1 in the Abel et al data set. In Fig. A.1 we show the plots for SCN 1-3 (A-C)

and SCN 5(D). We excluded SCN 4 from our analysis due to difficulties in estimating

the phases of the oscillators from the raw bioluminescence data.

m2 Ansatz Phase Distribution Function

For the plots in Figure. 2.1 of the main text we show the experimental (numerical)

data phase distribution against a theoretical m2 phase distribution. In this section

we show how the theoretical distribution was calculated. We consider the phase
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Figure A.1: The low-dimensional structure in the phase distribution of coupled os-
cillator systems from the Abel et al 2016 [2] circadian data set. (A-D) Show the
results from whole suprachaismatic nucleus (SCN) recordings for four different SCN
samples (top row) Each green point shows a time measurement of the phase distri-
bution of circadian oscillators. The solid black line shows the relation Rm = Rm2

1

and the dashed line the COA relation Rm = Rm
1 . Inset plots show the circular mean

vector of ψm −mψ1 across all observations. (bottom left) shows a histogram of the
experimental phase distribution indicated by the blue star in in top row, against the
m2 ansatz phase distribution black line. (bottom right) We plot the first ten Daido
order parameters for the experimental phase distribution (green circles) against the
m2 ansatz prediction (black line).
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distribution function f(ω, φ, t) in the limit as N → ∞ so that it may be considered

continuous. Now, consider the Fourier series decomposition of the phase distribution,

f(ω, φ, t) =
g(ω)

2π

(
1 +

∞∑
m=1

Am(ω, t)eimφ + Ām(ω, t)eimφ

)
, (A.1)

where the bar indicates the complex conjugate and g(ω) is the distribution of natural

frequencies. Integrating both sides with respect to ω yields and expression in terms

of the Daido order parameters,

f(φ, t) =
1

2π
+

1

2π

∞∑
m=1

Z̄m(t)eimφ + Zme
−imφ, (A.2)

using the property that

Zm(t) =

∫ ∞
−∞

Ām(ω, t)g(ω)dω. (A.3)

Finally, applying the m2 anstaz Zm = Rm2

1 eimψ and simplifying gives,

fMS(φ, t) =
1

2π
+

1

π

∞∑
m=1

Rm2

cos(m(φ− ψ)), (A.4)

where fMS is the m2 ansatz phase distribution. To compare with experimental and

numerical data we set ψ = 0 and choose R to match the experimental (numerical)

data.

Coupled Repressilator Model

We used the coupled repressilator model largely as specified in Garcia-Ojalvo et

al 2004 [50]. The repressilator is a network of three transcriptional repressors which

each mutually inhibit one another [36]. For our purposes we consider a large collection

(N = 104) of cells which each contain a repressilator genetic oscillator. As in Garcia-
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Ojalvo 2004, we assume the cells are coupled through a mean-field quorum-sensing

mechanism. The model for each cell i is given by,

dai
dt

= −ai +
α

1 + Cn
i

(A.5a)

dbi
dt

= −bi +
α

1 + Ani
(A.5b)

dci
dt

= −ci +
α

1 +Bn
i

+
κSi

1 + Si
(A.5c)

dAi
dt

= βi(ai − Ai) (A.5d)

dBi

dt
= βi(bi −Bi) (A.5e)

dAi
dt

= βi(ci − Ci) (A.5f)

dSi
dt

= −ks0Si + ks1Ai − η(Si −QS̄), S̄ =
1

N

N∑
i=1

Si, (A.5g)

where lower case variables refer to mRNA and upper case values the protein form

of a gene. The parameter values were as specified in Garcia-Ojalvo 2004, for Figure

1(B). We vary the parameter Q to change the coupling strengths between the oscilla-

tors. Additionally, heterogeneity was added to the population by drawing βi from a

normal distribution ( µ = 1 , σ2 = 0.05) which produces period heterogeneity in the

repressilator population [50].

Morris-Lecar Neural Model

The Morris-Lecar neuronal model [104] for N = 103 neurons with all-to-all elec-

trical coupling was simulated with parameter values as given in Table. E.1 for the
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type II membrane regime. The Morris-Lecar model for each neuron is given by,

C
dVi
dt

= −ḡcam∞(Vi)(Vi − Vca)− ḡKwi(Vi − VK)− ḡL(Vi − VL) (A.6a)

+
1

N

N∑
j=1

gsyn(Vj − Vi) + I iapp (A.6b)

dwi
dt

= φ
w∞(Vi)− wi

τw(Vi)
(A.6c)

m∞(Vi) =
1

2

[
1 + tanh

(
Vi − V̄1

V̄2

)]
(A.6d)

w∞(Vi) =
1

2

[
1 + tanh

(
Vi − V̄3

V̄4

)]
(A.6e)

τw(Vi) =
1

cosh
(
Vi−V̄3

2V̄4

) (A.6f)

Heterogeneity was added such that the firing frequencies of the neurons were normally

distributed. Coupling strengths between the neurons were adjusted through the gsyn

parameter.

Stochastic Modified Goodwin Model

The modified Goodwin model is a simple model of the genetic oscillator in mam-

malian circadian neurons [76]. Each cell in the population of N = 103 oscillators is

modeled using the modified Goodwin oscillator,

dMi

dt
= α1f(Pi, Ai, Kd)− β1Mi + κ(M̄ −Mi) +

√
Dη1(t) (A.7a)

dPci
dt

= α2Mi − β2Pci +
√
Dη2(t) (A.7b)

dPi
dt

= α3Pci − β3Pi +
√
Dη3(t) (A.7c)

f(P,A,Kd) =
A− P −Kd +

√
(A− P −Kd)

2 + 4AKd

2A
(A.7d)

M̄ =
1

N

N∑
i=1

Mi (A.7e)
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The coupled modified Goodwin oscillator uses the model and parameters as de-

scribed in Kim et al [76]. The coupling term is taken to be a mean-field average M̄

of the mRNA in the population. The oscillators were taken to be identical using the

parameters as specified in Kim et al [76] with a weak white-noise term with strength

D = 10−6 added to each of the species. This system was integrated using a Euler-

Maruyama scheme with step-size h = 0.001 to generate the in silco data. Coupling

strengths were manipulated through the κ parameter.

Emergence of the m2 Ansatz for Complex Networks

Here we give the details of the derivation for the m2 ansatz for general noisy

heterogeneous networks in the main text (Eq. 2.13). Let us begin with the linearized

phase oscillator equation from the main text (Eq. 2.11),

φ̇i = ω̃i −KH ′(0)
N∑
j=1

Lijφj +
√
Dηi(t), (A.8)

If we assume each φj ≈ 0 in equilibrium state φ∗ the Daido order parameters Zm may

be written as,

Zm =
1

N

∞∑
j=0

(im)j||φ||jj
j!

(A.9a)

≈ 1 +
im

N

N∑
k=1

φk −
m2

2N

N∑
k=1

φ2
k + ... (A.9b)

Introducing a suitable rotation and using our symmetry assumption on the phase

distribution allows us to set ψm = mψ1 = 0. Considering the expected value in time

gives,

E[Rm]t ≈ 1− m2

2N
E
[
||φ||22

]
t
≈ E[Rm2

1 ]t, (A.10)
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for E [||φ||22]t small. We now consider Eq. A.8 about the deterministic steady state

φ∗ = L†ω̃/(KH ′(0)) where L† =
∑N

j=2

vjv
T
j

λj
is Moore-Penrose pseudoinverse of the

normalized Laplacian matrix L. Our assumptions on the network mean that L has

real eigenvalues that may be ordered λ1 = 0 ≤ λ2 ≤ ...λN with associated eigenvectors

{v1, ...,vN}. A change of basis to the eigenvector basis such that ci = vi · φ gives a

system of decoupled stochastic differential equations,

δċi = −KλiH ′(0)δci +
√
Dη̃i(t), (A.11)

where δci = ci − c∗ gives the deviation off the deterministic steady state c∗i = vi ·φ∗.

This gives a classic Ornstein-Uhlenbeck process for each δci and we find,

E[(δci)
2]t =

D

KλiH ′(0)
(A.12)

E[c2
i ]t = (c∗i )

2 +
D

KλiH ′(0)
(A.13)

Taking the long-time limit and considering fluctuations about the equilibrium gives,

E[||φ∗||22]t =
N∑
j=1

(c∗j)
2 +

N∑
j=2

D

KλjH ′(0)
, (A.14a)

=
N∑
j=2

(
|vj · ω̃|
KλjH ′(0)

)2

+
D

KλjH ′(0)
. (A.14b)

Therefore, we have derived the condition for the accuracy of the m2 ansatz as given

in the main text (Eq. 2.13).

Network Simulation Details

For the simulations of the heterogeneous noisy Kuramoto equation over complex

networks shown in the main text (Fig. 2.3) we considered networks with N = 103

nodes with noise strength D = 1 and Gaussian heterogenity with σ = 1. These
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networks were run for a long-time in order to find the equilibrium phase distribution

using a Euler–Maruyama scheme.

The networks were generated using the networkx python package. Barabasi-Albert

networks we created using the preferential attachment algorithm with parameter k =

5 [12]. Watts-Strogatz networks were generated by local connections to the nearest

five neighbors and randomly rewiring the edges with probability p = 0.2 [153].
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APPENDIX B

Method of Characteristics for Phase Resetting

In this appendix we will consider the partial differential equation version for small

perturbations of a coupled oscillator system. At the moment of the perturbation the

continuity equation will look like:

ft +
∂

∂φ
(εQ(φ)f(ω, φ, t)δ(t)) = 0 (B.1a)

ft + εδ(t)Q′(φ)f + εδ(t)Q(φ)fφ = 0 (B.1b)

ft + εδ(t)Q(φ)fφ = −εδ(t)Q′(φ)f (B.1c)

This may be solved using the method of characteristics. This yields three ordinary

differential equations:

dt

ds
= 1 =⇒ t = s+ t0 =⇒ t = s (B.2a)

dφ

ds
= εδ(t)Q(φ) (B.2b)

dh

ds
= −εδ(t)Q′(φ)h (B.2c)

To leading order in ε we get that φ(t) = φ0 + εQ(φ0) and h(t) = h0e
−εQ′(φ0). Thus,
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Figure B.1: Depiction of the characteristic curves for the system Eq. B.1c

the distribution after the perturbation f̄(ω, φ) may be expressed as,

f̄(ω, φ) = f(ω, φ− εQ(φ))e−εQ
′(φ−εQ(φ)) (B.3)

to leading order in ε. Defining ρ(φ) as the phase density function,

ρ(φ) =

∫ ∞
−∞

f(ω, φ)dω, (B.4)

and integrating Eq. B.3 with respect to ω gives,

ρ̄(φ) = ρ(φ− εQ(φ))e−εQ
′(φ−εQ(φ)). (B.5)

Let us expand equation B.5 under the assumption of small epsilon,

ρ̄(φ) ≈ ρ(φ)− ερ(φ)Q′(φ)− ερφ(φ)Q(φ) +O(ε2), (B.6)
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and recall that

Z0 =

∫ π

−π
ρ(φ)eiφdφ Z̄ =

∫ π

−π
ρ̄(φ)eiφdφ. (B.7)

Therefore, multiplying B.6 by eiφ and integrating gives

Z̄ = Z0 − ε
∫ π

−π
ρ(φ)Q′(φ)eiφdφ− ε

∫ π

−π
ρφQ(φ)eiφdφ (B.8)

Integrating the second term by parts, in order to move the φ derivative yields,

Z̄ = Z0 − ε
∫ π

−π
ρ(φ)Q′(φ)eiφdφ− ε

(
[ρQ(φ)eiφ]|π−π −

∫ π

−π
ρ(φ)

d

dφ
[Q(φ)eiφ]dφ

)

Simplifying this results gives,

Z̄ = Z0 + iε

∫ π

−π
ρ(φ)Q(φ)eiφdφ (B.9)

141



APPENDIX C

Two Population Relaxation Phase Shift

Simple Coupling

Here we derive a analytical approximation for the B factor in Eq. 4.29 which de-

scribes effect of the relaxation (return to equilibrium) on the collective phase response.

Considering Eqs. 4.11, 4.12 we make the approximation that Rv, Rd are constant and

without loss of generality we set Rv, Rd = 1 as any deviation from unity may be ab-

sorbed into the coupling strengths Kvd, Kdv. With this approximation the expressions

simplify to give,

θ̇ = ∆ω − (Kvd +Kdv) sin(θ) (C.1a)

Ω = ω̄ + (qKdv − pKvd) sin(θ). (C.1b)

Now we assume the coupling strengths are sufficiently strong for a steady state θ∗ to

exist with collective frequency Ω∗. We linearize θ(t) ≈ θ∗ + ∆θ(t) to give,

∆θ̇ = −(Kvd +Kdv)∆θ(t) (C.2)

∆θ(0) = −ε∆0(ψ). (C.3)
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The induced phase shift as the system returns to its equilibrium value is thus given

by,

∆R =

∫ ∞
0

Ω(θ(t))− Ω∗dt (C.4)

≈
∫ ∞

0

(qKdv − pKvd)∆θ(t)dt. (C.5)

Therefore, we find that the relaxation shift may be approximated by:

∆R ≈ ε∆0
qKdv − pKvd

Kdv +Kvd

. (C.6)

Therefore, the B factor may be written as,

B =
q − pα
1 + α

α =
Kvd

Kdv

, (C.7)

as given in the main text (Eq. 4.30).

General Coupling

Here we show the details of the first order calculation of the relaxation phase shift

for two coupled phase oscillators with a general coupling function. Specifically we

consider,

dφv
dt

= ωv +KbΓ(φd − φv) + εQ(φv)δ(t− t′) (C.8)

dφd
dt

= ωd +KfΓ(φv − φd) (C.9)
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where Γ is a general coupling function between the two phase oscillators. Make the

change of variables to θ = φd − φv and Ω = d
dt
φv+φd

2
yields,

θ̇ = ∆ω − Γo(θ) (C.10a)

Ω = ω̄ + Γe(θ) (C.10b)

Γo(θ) = KfΓ(θ)−KbΓ(−θ) (C.10c)

Γe(θ) =
1

2
[KfΓ(θ) +KbΓ(−θ)] , (C.10d)

with ∆ω = ωd − ωv and ω̄ = 1
2
(ωd + ωv). We assume the coupling is sufficiently

strong for an equilibrium phase locked state θ∗ = Γ−1
0 (∆ω) to exist. A perturbation

according to the phase response curve Q(φv) at time t′ gives ∆θ(0) = −εQ(φv).

Linearization about the fixed point θ∗ gives,

∆θ(t) ≈ ∆θ(0)e−Γo(θ∗)t = −εQ(φv)e
−Γo(θ∗)t. (C.11)

The linear term for the frequency difference ∆Ω = Ω(t)− Ω∗ is given by,

∆Ω(t) = Γ′e(θ
∗)∆θ(t) (C.12)

Therefore, the phase shift as the system returns to equilibrium can be approximated

by,

∆R =

∫ ∞
0

∆Ω(t)dt =
−εQ(φv)Γ

′
e(θ
∗)

Γ′o(θ
∗)

, (C.13)

for a general coupling function between the two populations.
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APPENDIX D

Human Model Supplementary Information

Parameter Values

Optimal parameter fits for the single population (Table. D.1) and two population

(Table. D.2) are given below. In addition, we show the parameters of each model

which were allowed to vary in the Markov Chain Monte Carlo (MCMC) algorithm

(those parameters which were fixed during the MCMC run have N/A as quantiles).

Given that the variability of the data-points is largely unknown for the fitting data

sets, a strict statistical interpretation should not be assumed for the quantiles pro-

vided. However, the magnitude of the quantiles does give a measure of the how well

the parameter values are constrained by the fitting data. In particular, we note that

the parameters β1 and β2 are not well-constrained by the data. The β1 parameter

plays an important role in determining the entrainment angle of the model. This can

be observed by plotting the entrainment angle (as measured by the phase at lights-on

for a regular light schedule) against β1 and β2 (Figures. D.1 and D.2). The correlation

between the β parameters and the entrainment angle means the entrainment angle is

also poorly constrained by the data.
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Figure D.1: For the single population human model the MCMC parameter ensemble
reveals the β1 parameters is poorly constrained by the data and correlates strongly
with the entrainment angle. The β2 parameter is seen to be better constrained by
the data and shows a weaker correlation with the entrainment angle.

In applications, this variation is significant because the entrainment angle to reg-

ular light schedules may be used to define an individual’s chronotype [128]. Chrono-

types has been found to vary over a large range in human populations, similar to the

large range observed for the MCMC ensemble [128, 151]. From the small sample sizes

used in fitting the model it is unclear whether the principal source of the variation in

the entrainment angle is due to differing chronotypes between study participants or

if this variation may be soley attributed to noise in the data.
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Figure D.2: For the two population human model the MCMC parameter ensemble
reveals the β1,2 parameters are poorly constrained by the data and each correlates
with the entrainment angle.

Parameter Optimal Value MCMC 95% Quantile
τ 24.18 [24.09,24.33]
K 0.065 N/A
γ 0.024 N/A
σ 0.05 N/A
A1 0.40 [0.377,0.40]
A2 0.20 [0.18,0.22]
β1 0.20 [-0.18,0.41]
β2 -1.80 [-4.57,-0.31]
G 33.75 N/A
α0 0.05 N/A
δ 0.0075 N/A
p 1.5 N/A
I0 9325.0 N/A

Table D.1: Single Population Model Parameter Values
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Parameter Optimal Value MCMC 95% Quantile
τv 24.25 N/A
τd 24.00 N/A
Kvv 0.05 N/A
Kdd 0.04 N/A
Kvd 0.05 N/A
Kdv 0.01 N/A
γ 0.024 N/A
σ 0.07 N/A
A1 0.43 [0.35,0.43]
A2 0.28 [0.26,0.40]
β1 0.09 [-0.33,0.41]
β2 -1.49 [-2.99,-0.11]
G 33.75 N/A
α0 0.05 N/A
δ 0.0075 N/A
p 1.5 N/A
I0 9985.0 N/A

Table D.2: Two Population Model Parameter Values
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APPENDIX E

Phase Model Approximation of the Morris-Lecar

Model

In this appendix we give the details for the Morris-Lecar neural model as used

in Chapter. III to assess the applicability of the Ott-Antonsen based collective phase

resetting results to biological systems. In addition, I give some additional details on

how the comparison was made between the phase resetting by the full neural system

and the analytical theory based on the Ott-Antonsen reduction of the Kuramoto-

Sakaguchi equation.

Morris-Lecar Model

The Morris-Lecar model is a two dimensional conductance based model for neu-

ronal firing originally derived to study Barnacle muscle fiber, but may also be used as

a relatively simple model for neuronal firing [104]. The Morris-Lecar model is com-

monly used when studying the properties of Type I and Type II neurons, because by

varying the model parameters we can see both Type I and Type II phase resetting.

The Morris-Lecar dynamical system used in Chapter. III is shown in (Eq. E.1) with

the parameter values shown in Table. E.1.
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Parameter Type I Type II
C 20 uF/cm2 20 uF/cm2

gCa 4.0 mS/cm2 4.4 mS/cm2

gK 8.0 mS/cm2 8.0 mS/cm2

gL 2.0 mS/cm2 mS/cm2

VCa 120 mV 120 mV
VK -84.0 mV -84.0 mV
VL -60 mV -60 mV
V̄1 -1.2 mV -1.2 mV
V̄2 18.0 mV 18.0 mV
V̄3 12.0 mV 2.0 mV
V̄4 17.4 mV 30.0 mV
φ 1/15 0.04

Table E.1: Parameter values used for the Morris-Lecar model for the Type I and
Type II regimes.

C
dVi
dt

= −ḡcam∞(Vi)(Vi − VCa)

− ḡKwi(Vi − VK)− ḡL(Vi − VL) +
gsyn
N

N∑
j=1

(Vj − Vi) + I iapp (E.1a)

dwi
dt

= φ
w∞(Vi)− wi

τw(Vi)
(E.1b)

m∞(Vi) =
1

2

[
1 + tanh

(
Vi − V̄1

V̄2

)]
(E.1c)

w∞(Vi) =
1

2

[
1 + tanh

(
Vi − V̄3

V̄4

)]
(E.1d)

τw(Vi) =
1

cosh
(
Vi−V̄3

2V̄4

) (E.1e)

Numerical Phase Reduction

To begin the numerical phase model reduction we computed the infinitesimal phase

response curve to voltage pulses for the Morris-Lecar model for both the Type I and

Type II parameter regimes for a variety of applied current values (Iapp) (Figure. E.1).
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Figure E.1: Infinitesimal phase response curve for the Morris-Lecar type I/II system
for different values of applied current. For higher values of applied current and thus
higher frequency oscillations the phase response curves becomes attenuated.

In order to compute the infinitesimal phase response curves we implemented a direct

solver using the fundamental matrices about the limit cycle solution [108].

The attenuation of the phase response curves at increased applied voltages has

been noted in previous work [44]. This property is only of importance for this work

because we must ensure that we pick Iapp values near the respective bifurcation points

in order to guarantee the individual phase response curves really are Type I and Type

II shaped. We choose Iapp = 50.0 for the Type I parameter regime and Iapp = 95.0

for the Type II parameters.

The infinitesimal phase response curves Q(φ) can be used to find the averaged

coupling functions for the Morris-Lecar system, as seen theoretically in Section 1.1.4.

We estimate the coupling functions from the integral [86],

Γ(ψ) =
1

T

∫ T

0

Q(ψ + t) [V (ψ + t)− V (t)] dt, (E.2)

where T is the period of the oscillator and [V (ψ + t)− V (t)] is the interaction function

between the neurons. For the simple electrical coupling assumed in our model the

interaction function is just the voltage difference for values taken along the limit cycle.
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Coupling Functions for Morris-Lecar Neurons
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(a) Type I, β = −0.65
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(b) Type II, β = 0.25

Figure E.2: Coupling function for the Morris-Lecar gap junction coupled system with
Type I/II parameters. Blue dotted curves show the full numerical coupling functions,
while the solid green curve shows the first harmonic approximation for the coupling
functions.

Finally, in order to apply the analytical techniques utilizing the Ott-Antonsen di-

mension reduction technique we must truncate the Fourier terms of coupling function

to include only the first order terms [95]. Figure. E.2 shows the numerical coupling

functions for the Morris-Lecar system with excitatory coupling via gap junctions and

the first harmonic truncation to approximate the coupling function. The first har-

monic truncation of the coupling functions may then be used to build a Kuramoto-

Sakaguchi model to approximate the full Morris-Lecar model (Eq. E.1).
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