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ABSTRACT	

	

Despite	the	successes	of	the	Clean	Air	Act	in	the	United	States,	ambient	air	pollution	continues	

to	be	an	important	public	health	and	environmental	justice	challenge.	These	challenges	are	

especially	evident	at	the	local	scale,	where	gradients	in	exposures,	risks,	and	vulnerability	may	

be	sharp	and	align	spatially,	leading	to	disproportionate	impacts.	The	goals	of	this	dissertation	

are	to	use	quantitative	health	impact	assessment	(HIA)	techniques	with	inequality	metrics	to	

estimate	the	health	burden	attributable	to	ambient	air	pollution	at	a	local	scale,	to	better	

understand	how	health	burdens	are	distributed	across	populations,	and	to	assess	air	quality	

management	(AQM)	strategies	for	reducing	this	burden.	The	work	is	based	in	Detroit,	MI	and	

several	adjacent	cities,	an	urban	area	with	a	legacy	of	air	quality	challenges.	The	first	aim	

examines	health	impact	metrics	used	in	the	literature	and	makes	recommendations	about	

which	metrics	are	most	appropriate	for	AQM	studies.	Multiple	metrics	are	recommended	to	

meet	the	diverse	needs	of	AQM	stakeholders,	specifically	the	number	of	attributable	cases	of	

mortality	and	morbidity,	disability-adjusted	life	years,	and	monetized	impacts.	The	second	aim	

quantifies	the	health	burden	and	inequality	due	to	ambient	air	pollutants	in	Detroit,	and	

apportions	this	burden	to	source	types,	e.g.,	regional,	point,	and	mobile	sources.	The	HIA	

results	show	fine	particulate	matter	(PM2.5)	and	ozone	have	the	highest	total	health	burdens	on	

the	population	and	that	exposures	to	PM2.5,	sulfur	dioxide	(SO2),	and	nitrogen	dioxide	(NO2)	
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from	point	and	mobile	sources	have	disproportionate	impacts	on	vulnerable	populations.	The	

third	aim	examines	the	potential	health	benefits	of	two	strategies	to	reduce	air	pollutant	

exposures:	decreasing	SO2	emissions	at	nearby	industrial	facilities	and	installing	particulate	

matter	filters	in	homes	and	schools	in	the	area.	The	first	strategy	analysis,	which	compares	

alternative	approaches	to	reducing	emissions	of	SO2	at	major	point	sources	in	the	study	area,	

demonstrates	that	using	health	and	inequality	metrics	when	comparing	alternatives	can	

identify	point	source	controls	strategies	that	better	meet	AQM	and	health	goals.	This	study	also	

suggests	the	control	strategy	proposed	by	the	Michigan	Department	of	Environmental	Quality	

to	attain	compliance	with	the	SO2	standard	will	have	only	modest	health	benefits	for	residents	

of	Detroit	and	will	do	little	to	alleviate	disparities	in	SO2	health	burdens.	The	second	strategy	

analysis,	which	estimates	the	benefits	of	filters	with	different	efficiencies,	indicates	that	the	

widespread	use	of	filters,	especially	in	schools,	can	be	a	cost-effective	strategy	for	reducing	

asthma	burdens	for	school-aged	children	in	the	area.	Overall,	the	results	of	this	dissertation	

indicate	air	pollution	continues	to	be	public	health	and	environmental	justice	challenge	for	

Detroit,	MI,	and	that	quantitative	HIA	metrics	combined	with	key	inequality	metrics	can	support	

AQM	decision-making	to	select	alternatives	that	improve	public	health	and	reduce	health	

disparities.	
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Chapter	1	

INTRODUCTION	

	

Background	

Ambient	air	pollutant	exposures	are	an	important	environmental	risk	factor	for	morbidity	and	

mortality	with	a	large	impact	on	public	health.	The	associations	between	air	pollutant	

exposures	and	many	adverse	health	effects	are	well	documented.	Studies	in	the	US	and	

elsewhere	have	demonstrated	the	link	between	premature	mortality	and	exposures	to	

particulate	matter	(PM)	(Hoek	et	al.	2013;	Krewski	et	al.	2009)	and	ozone	(O3)	(Bell	et	al.	2005;	

Jerrett	et	al.	2009).	PM	likely	contributes	to	the	development	of	cardiovascular	disease	and	can	

trigger	adverse	cardiovascular	events,	e.g.,	heart	attacks,	primarily	among	susceptible	

individuals	(Brook	et	al.	2010).	Exposures	to	O3,	nitrogen	dioxide	(NO2),	and	PM	have	been	

associated	with	exacerbations	of	respiratory	diseases	such	as	asthma,	chronic	obstructive	

pulmonary	disease	(COPD),	and	respiratory	infections	(Kelly	and	Fussell	2011).	There	is	also	

emerging	evidence	that	air	pollutant	exposures	are	associated	with	non-cardiopulmonary	

outcomes,	e.g.,	autism	spectrum	disorder	(Volk	et	al.	2013),	neurological	diseases	(Loane	et	al.	

2013),	and	adverse	birth	outcomes	(Sapkota	et	al.	2012),	although	the	evidence	for	these	

associations	is	weaker	and	causality	has	not	yet	been	established.	
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The	burden	of	disease	attributable	to	ambient	air	pollutant	exposures	in	the	United	States	and	

globally	is	substantial.	In	the	US,	exposures	to	PM	with	an	aerodynamic	diameter	less	than	2.5	

µm	(PM2.5)	and	O3	are	responsible	for	6%	of	annual	premature	mortalities	nationally,	ranging	

from	under	about	4%	in	the	upper	Midwest	and	Southwest	portions	of	the	country	to	almost	

10%	in	the	industrial	Midwest	and	southern	California	(Fann	et	al.	2012).	Morbidities	due	to	

these	pollutants	are	numerous	and	include	150,000	hospitalizations	for	respiratory	and	

cardiovascular	diseases,	2.5	million	days	with	asthma	symptoms,	and	11	million	missed	school	

days	each	year	(Fann	et	al.	2012).	Globally,	ambient	PM2.5	and	O3	exposures	are	estimated	to	

cause	4.2	million	and	0.25	million	deaths,	respectively,	each	year,	resulting	in	a	total	of	107	

million	disability-adjusted	life	years	(DALYs)	lost	(Forouzanfar	et	al.	2016).	Much	of	this	health	

burden	is	avoidable	since	most	exposures	can	be	mitigated	through	appropriate	air	quality	

management	approaches.		

	

Ambient	air	pollution	continues	to	also	be	an	important	environmental	justice	challenge	in	the	

United	States,	in	particular	within	urban	areas.	Concentrations	of	ambient	air	pollutants	may	

vary	widely	across	a	city,	and	higher	exposure	levels	often	coincide	with	individual-	and	

population-level	factors	that	increase	susceptibility	or	vulnerability	to	air	pollution.	

Susceptibility	refers	to	intrinsic	factors	that	tend	to	intensify	the	response	due	to	an	exposure,	

such	as	advanced	age	or	the	presence	of	chronic	disease;	vulnerability	refers	to	extrinsic	factors	

that	can	increase	exposures	or	reduce	the	ability	to	respond	to	exposures,	such	as	the	location	

of	a	residence	relative	to	a	pollutant	source	or	lower	socioeconomic	status	(SES)	(O’Neill	et	al.	
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2012;	Sacks	et	al.	2011).	The	combination	of	these	factors	at	the	individual	and	community	level	

can	lead	to	sensitive	subpopulations	with	characteristics	that	increase	the	risk	of	air	pollution-

related	health	effects	(Sacks	et	al.	2011).	Often,	these	sensitive	subpopulations	are	racial	or	

ethnic	minority	groups	and	low-income	communities.	As	an	example,	traffic	is	a	significant	

source	of	air	pollution	in	urban	areas	that	displays	high	spatial	variability	(Health	Effects	

Institute	2010).	Minority	and	low-income	populations	in	the	United	States	are	more	likely	to	

live	near	major	roads	(Boehmer	et	al.	2013),	and	may	experience	inequitable	health	outcomes	

as	a	result	of	higher	pollutant	exposures	(Stuart	et	al.	2009).	In	many	urban	areas	(including	

Detroit,	Michigan),	minority	and	low-income	populations	are	exposed	to	multiple	

environmental	and	social	stressors,	e.g.,	proximity	to	hazardous	land	uses	or	low	educational	

attainment,	that	increase	their	vulnerability	or	susceptibility	to	ambient	air	pollution	(Sadd	et	

al.	2011;	Schulz	et	al.	2016).	Thus,	the	combination	of	environmental	exposures,	social	

stressors,	biological	susceptibility,	and	social	vulnerability	that	results	in	cumulative	adverse	

impacts	for	some	subpopulations	in	the	urban	environment	should	be	considered	when	

establishing	air	quality	management	policies	(Morello-Frosch	et	al.	2011).		

	

Air	quality	management	in	the	United	States	

Current	air	quality	regulation	in	the	US	is	based	on	the	framework	established	in	the	Clean	Air	

Act	(CAA;	1970)	and	the	subsequent	CAA	Amendments	of	1990.	The	CAA	Amendments	

establish	programs	designed	to	establish	health	protective	standards	for	ambient	

concentrations	of	pollutants,	monitor	air	quality	using	reproducible	and	quality-assured	

approaches,	control	emissions	though	technological	controls	on	stationary	(i.e.,	point)	and	
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mobile	sources,	and	ensure	compliance	with	these	health	protective	standards	through	

permitting	programs	(42	USC	§7401-7671).		

	

Under	the	authority	of	the	Clean	Air	Act,	the	US	Environmental	Protection	Agency	(US	EPA)	

Administrator	establishes	National	Ambient	Air	Quality	Standards	(NAAQS)	for	individual	

pollutants.	The	NAAQS	are	established	based	on	the	strength	of	the	existing	toxicological	and	

epidemiological	data	and	are	intended	to	be	protective	of	sensitive	populations	(NRC	2004).	

Relevant	data	are	summarized	in	the	Integrated	Science	Assessments	(ISA;	e.g.,	US	EPA	2008b,	

2009,	2013,	2016)	and	used	to	identify	a	value	for	the	standard,	including	the	concentration	

and	averaging	time,	e.g.,	daily	mean	or	8-hour	maximum	concentration.	US	EPA	staff	also	

develop	a	Risk	and	Exposure	Assessment	and	a	Policy	Assessment	to	inform	the	agency	

Administrator’s	decision	(Sacks	et	al.	2015).	

	

NAAQS	compliance	determinations	are	based	on	ambient	concentrations	over	relatively	large	

geographical	areas,	typically	using	measured	concentrations	at	air	quality	monitors	in	an	urban-

scale	airshed.	National	monitoring	(“trend”)	sites	are	chosen	to	obtain	broadly	representative	

concentration	measurements,	and	state	and	local	air	monitoring	stations	are	positioned	to	

provide	additional	spatial	coverage	(MDEQ	2015b;	US	EPA	2008a).	Monitors	are	sometimes	

strategically	placed	in	areas	where	concentrations	are	expected	to	be	high,	e.g.,	near-roadway	

monitors	for	NO2	(MDEQ	2015b).	In	some	cases,	compliance	can	be	determined	using	air	

quality	models	that	simulate	the	processes	of	emissions	and	dispersion.		
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For	areas	that	do	not	meet	the	NAAQS,	states	are	mandated	by	the	CAAA	to	develop	state	

implementation	plans	(SIPs)	to	achieve	compliance	with	the	national	standards	and	any	other	

state-level	requirements	for	air	quality	(Cote	et	al.	2008).	SIPs	are	developed	using	emissions	

inventories	and	air	quality	models	to	determine	if	and	where	emissions	reductions	are	required	

(NRC	2004).	The	goal	of	a	SIP	is	to	reduce	emissions	enough	to	ensure	ambient	concentrations	

are	below	the	standard.		

	

Though	the	CAA	Amendments	have	been	successful	in	reducing	emissions	and	ambient	

concentrations	of	criteria	pollutants	since	their	implementation,	current	AQM	programs	may	

not	be	fully	protective	of	public	health	for	several	reasons.	First,	the	language	of	the	CAA	

Amendments	indicates	that	NAAQS	should	be	protective	of	public	health,	even	for	sensitive	

subpopulations.	However,	population-level	thresholds	below	which	exposures	are	thought	to	

not	cause	health	effects	have	not	yet	been	established	(Bell	et	al.	2006;	Cesaroni	et	al.	2013;	

Daniels	et	al.	2004;	Schwartz	et	al.	2002).	In	the	absence	of	known	thresholds,	the	NAAQS	are	

ultimately	policy	decisions	that	result	in	residual	risks	of	adverse	health	effects	(Bachmann	

2007;	McClellan	2012),	e.g.,	recent	studies	having	identified	mortality	risks	for	PM2.5	and	O3	

exposures	below	the	current	NAAQS	(Di	et	al.	2017;	Schwartz	et	al.	2017;	Shi	et	al.	2016).	

Further	reducing	air	pollutant	concentrations	below	NAAQS	levels	can	lead	to	additional	public	

health	benefits	(Pope	et	al.	2015).	Second,	monitoring	networks	used	in	compliance	

determinations	are	often	sparse	and	fail	to	capture	intra-urban	variation	of	pollutant	levels	

(Hubbell	2012;	Levy	and	Hanna	2011;	Matte	et	al.	2013).	The	small-scale	variation	in	

concentration	gradients	at	the	urban	scale	results	in	exposures	that	are	heterogeneous,	e.g.,	
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higher	exposures	can	occur	near	pollutant	sources	such	as	near	highly	trafficked	roads	(Isakov	

et	al.	2009);	some	exposures	could	exceed	the	NAAQS	even	when	an	area	is	designated	as	in	

attainment	of	the	standard.	Third,	cumulative	impacts	are	still	not	well	incorporated	into	the	

regulatory	process	(Alves	et	al.	2012).	As	discussed	earlier,	populations	experiencing	multiple	

social	and	environmental	stressors,	including	other	air	pollutants,	are	likely	to	respond	more	

strongly	to	the	same	exposure	concentration	than	populations	with	lower	cumulative	impacts.	

Other	factors	that	may	result	in	lower	public	health	protections	include	the	lengthy	process	of	

first	designating	an	area	as	non-attainment	and	then	developing	the	SIP,	during	which	

populations	are	exposed	to	unacceptable	levels	of	pollutants,	and	the	focus	on	single	pollutant	

exposures	rather	than	mixtures	of	air	pollutants	(NRC	2004).		

	

Addressing	the	public	health	challenge	of	ambient	air	pollution	at	the	urban	scale	

Addressing	the	public	health	challenge	of	ambient	air	pollution	at	the	urban	scale	can	be	done	

at	several	levels,	e.g.,	national,	regional,	or	local,	and	using	different	approaches.	The	CAA	

provides	a	regulatory	framework	focused	primarily	on	limiting	emissions	of	air	pollutants,	e.g.,	

through	permitting	programs,	enforcement	and	compliance	actions,	and	the	SIP	process.	In	

addition	to	federal	regulations,	states	and	municipalities	can	also	pass	their	own	clean	air	

legislation	to	limit	emissions,	e.g.,	Detroit’s	anti-idling	ordinance	to	reduce	emissions	of	diesel	

particulate	matter	(DPM).	Outside	the	regulatory	framework,	emissions	and	exposure	reduction	

strategies	can	be	useful.	Examples	of	local-scale	strategies	that	can	be	implemented	by	

governmental	and	non-governmental	actors	include	encouraging	sensitive	individuals	to	remain	

indoors	on	days	with	poor	air	quality	(Wen	et	al.	2008),	limiting	school	bus	diesel	emissions	
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near	schools	(Ryan	et	al.	2013),	utilizing	buffers	near	roads	to	disperse	traffic	pollutants	

(Baldauf	et	al.	2008;	Hagler	et	al.	2012),	and	increasing	the	use	of	filtration	in	sensitive	

environments	such	as	schools	and	homes	located	near	major	roads	(Batterman	et	al.	2012;	

McCarthy	et	al.	2013;	Polidori	et	al.	2013).		

	

This	dissertation	focuses	on	one	regulatory	approach,	i.e.,	the	use	of	control	technologies	to	

reduce	emissions	of	pollutants	at	stationary	(point)	sources,	and	one	exposure	reduction	

approach,	i.e.,	the	use	of	filters	to	reduce	indoor	exposures	to	outdoor	pollutants.	These	

strategies	are	discussed	next.	

	

The	SIP	process	mandated	by	the	CAA	Amendments	favors	the	use	of	technology-based	source	

controls	for	existing	major	point	sources	of	criteria	pollutants	(NRC	2004).	Point	source	

emission	controls	have	long	been	used	to	remove	pollutants	from	waste	effluents	before	they	

can	be	emitted	into	the	air,	e.g.,	using	electrostatic	precipitators	and	scrubbers	to	remove	

particulate	and	gaseous	pollutants	(Crawford	1976;	Stern	1968).	Using	a	technology-based	

approach	was	originally	thought	to	bring	about	broad	and	diffuse	environmental	and	health	

benefits	(Ingram	1978).	However,	more	recent	analyses	indicate	the	health	benefits	of	point	

source	controls	vary	based	on	the	location	of	a	facility,	its	specific	source	characteristics	e.g.,	

stack	heights,	local	meteorology,	proximity	of	sources	to	populations,	and	population	

susceptibility	or	vulnerability	(Fann	et	al.	2009);	not	all	approaches	to	controlling	point	source	

emissions	will	result	in	optimal	reductions	in	health	risks	or	inequality	(Levy	et	al.	2009).	Thus,	it	

is	important	to	consider	the	unique	distribution	of	sources	and	populations	in	an	urban	area	
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when	designing	control	strategies	to	achieve	compliance	with	the	NAAQS	to	simultaneously	

optimize	health	benefits	and	minimize	inequities.		

	

When	emissions	reductions	are	impractical	or	infeasible,	e.g.,	when	an	area	is	in	attainment	of	

the	NAAQS	and	there	is	no	regulatory	pressure	to	reduce	emissions,	reducing	exposures	

becomes	an	important	strategy	for	lowering	health	burdens	due	to	ambient	air	pollution.	

Exposure	reduction	strategies	such	as	filters	are	an	attractive	option	at	the	local	scale	because	

there	are	often	multiple	sources	of	pollutants	which	are	not	easily	controlled,	e.g.,	local	point	

and	mobile	sources	and	secondary	formation	from	regional	pollutant	emissions.	As	is	the	case	

with	point	source	controls,	the	potential	benefits	from	emissions	reductions	strategies	depends	

on	several	local	factors.	As	an	example,	the	effectiveness	of	filters	to	reduce	exposures	to	

particulate	matter	depends	on	building-	and	location-specific	parameters,	e.g.,	how	long	filters	

are	used,	outdoor	conditions	(e.g.,	wind	direction,	temperature),	tightness	of	the	building	

envelope,	and	particle	composition	and	size	(Breen	et	al.	2014;	Hodas	et	al.	2012;	Isaacs	et	al.	

2013;	Stephens,	2015),	as	well	as	individual-level	characteristics,	e.g.,	underlying	susceptibility	

and	time-activity	patterns.	Because	these	parameters	can	vary	widely	between	cities,	place-

based	assessments	are	needed	to	determine	if	filters	(or	other	exposure	reduction	strategies)	

are	likely	to	have	a	substantial	health	benefit.	

	

As	discussed	above,	effectively	implementing	strategies	to	reduce	the	health	burden	due	to	

ambient	air	pollution	at	the	urban	scale	requires	detailed	information	on	where	health	impacts	

occur	and	how	effective	various	air	quality	management	strategies	might	be.	Therefore,	a	
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framework	for	assessing	benefits	of	emissions	and	exposure	reductions	that	accounts	for	these	

location-specific	factors	is	needed.	Such	a	framework	needs	to	be	flexible	enough	to	account	

for	important	place-based	factors	that	affect	air	pollutant	exposures	and	health	burdens	

(Hubbell	2012)	and	amenable	to	the	use	of	various	health	impact	and	health	equity	metrics	to	

aid	in	decision	making.	

	

Health	impact	assessment	

Health	impact	assessment	(HIA)	provides	a	framework	for	evaluating	potential	AQM	strategies.	

HIA	aims	to	identify	the	health	impacts	of	a	project	or	policy	and	recommend	steps	to	mitigate	

them	(Collins	and	Koplan	2009).	The	framework	for	HIA	is	similar	to	that	used	in	environmental	

impact	assessment.	Full	HIAs	include	six	key	steps:	screening	for	decision	alternatives;	scoping	

the	assessment	by	selecting	which	determinants	and	health	outcomes	to	include;	assessing	

existing	conditions	and	predicting	the	health	impacts	of	the	project	or	policy;	developing	

recommendations	for	addressing	the	health	impacts;	reporting	findings	to	stakeholders	and	

decision	makers;	and,	evaluating	the	HIA	process	and	the	outcomes	of	the	assessment	(Bhatia	

et	al.	2014).	Recognizing	that	decisions	in	non-health	sectors,	e.g.,	transportation	or	urban	

planning,	affect	public	health,	HIAs	are	conducted	to	ensure	that	potential	health	impacts	are	

considered	in	the	broader	urban	policy	context	(Bhatia	and	Corburn	2011;	Collins	and	Koplan	

2009;	Dannenberg	and	Wernham	2013;	Gase	et	al.	2013;	NRC	2011).	

	

HIA	uses	a	combination	of	tools,	procedures,	and	methods	to	predict	intended	and	unintended	

health	impacts	of	proposed	projects,	policies	and	plans	across	public	sectors	(Bhatia	et	al.	2014;	
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Dannenberg	and	Wernham	2013).	HIA	methods	have	been	used	to	evaluate	the	disease	burden	

due	to	pollution	(Fann	et	al.	2012),	to	predict	the	incremental	impact	of	alternative	policies	and	

scenarios,	e.g.,	different	levels	of	an	ambient	standards	(Yang	and	Kao	2013),	and	to	apportion	

health	impacts	by	source	industry	(Fann	et	al.	2013).	At	regional	(sub-national),	urban,	and	

project	scales,	HIAs	can	be	conducted	in	a	policy	context,	but	more	commonly	are	used	to	

gauge	potential	impacts	and	benefits	of	specific	actions,	e.g.,	transportation	planning	(James	et	

al.	2014;	Maizlish	et	al.	2013).	Due	to	limitations	in	scope	and	available	data,	most	HIAs	

conducted	in	the	US	have	been	qualitative	rather	than	quantitative	(Rhodus	et	al.	2013).	While	

qualitative	assessments	can	convey	the	direction	and	magnitude	of	impacts,	quantitative	

methods	offer	more	explicit	information	regarding	impacts	of	potential	interventions	or	the	

status	of	abatement	policies	(Bhatia	and	Seto	2011).		

	

Several	tools	have	been	developed	to	facilitate	HIAs.	Qualitative	assessments	can	benefit	from	

environmental	justice	screening	tools	such	as	EJSCREEN	(US	EPA	2015b).	These	tools	are	useful	

for	describing	the	baseline	characteristics	of	a	study	area	in	an	HIA	and	identifying	potentially	

overburdened	communities,	but	they	do	not	quantify	health	impacts	attributable	to	specific	

exposures,	e.g.,	ambient	air	pollution.	In	contrast,	quantitative	tools	for	HIAs,	including	US	

EPA’s	Benefits	Mapping	and	Assessment	Program	(BenMAP),	use	epidemiological	data	

describing	the	associations	between	environmental	determinants	of	health	and	the	risk	of	

adverse	health	outcomes	to	calculate	the	fraction	of	mortality	or	morbidity	attributable	to	

exposures	(Anenberg	et	al.	2015;	US	EPA	2015a).	BenMAP	and	other	quantitative	tools	can	be	

customized	to	fit	various	HIA	scales,	e.g.,	national	(Berman	et	al.	2012;	Voorhees	et	al.	2014)	or	
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urban	(James	et	al.	2014),	using	area-specific	data,	but	are	usually	limited	to	health	impact	

metrics	(e.g.,	attributable	cases	of	morbidity	and	mortality)	and	do	not	include	metrics	for	

inequality	or	environmental	justice.	None	of	the	existing	tools	is	capable	of	comprehensively	

assessing	the	AQM	strategies	considered	in	this	research	with	respect	to	health	and	equity	

concerns.	Therefore,	a	new	analysis	framework	that	combines	health	and	inequality	metrics	is	

needed.		

	

Objectives	and	Specific	Aims	

The	objectives	of	this	dissertation	are	to	use	quantitative	health	impact	assessment	(HIA)	

techniques	with	inequality	metrics	to	estimate	the	health	burden	attributable	to	ambient	air	

pollution	at	a	local	scale,	to	better	understand	how	health	burdens	are	distributed	across	

populations,	and	to	assess	air	quality	management	(AQM)	strategies	for	reducing	this	burden.	

The	research	uses	quantitative	HIA	methods	with	environmental	justice	metrics	to	evaluate	

AQM	strategies	and	strategies	to	reduce	exposures	with	the	intention	of	developing	an	

evidence	base	for	decision	makers	about	how	to	effectively	and	equitably	reduce	ambient	air	

pollutant	exposures	and	their	impacts	in	an	urban	environment.		

	

The	specific	aims	of	this	dissertation	are:	

Specific	Aim	1:	Identify	quantitative	health	impact	metrics	that	are	appropriate	for	studies	

meant	to	inform	air	quality	management	decisions.	Previous	work	has	established	methods	for	

estimating	attributable	health	impacts,	which	can	be	expressed	using	several	metrics,	but	
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guidance	on	best	practices	for	the	development	and	use	of	HIA	metrics	for	environmental	

heath	decision	making	is	lacking.		

	

Specific	Aim	2:	Assess	the	public	health	burden	and	health	disparities	attributable	to	current	

levels	of	ambient	air	pollutants	in	the	study	region	using	a	quantitative	impact	assessment	

framework	that	considers	population	vulnerabilities,	spatial	resolution,	and	uncertainty,	and	

that	uses	a	comprehensive	set	of	health	and	inequality	metrics.	Quantifying	the	public	health	

burden	and	health	disparities	due	to	pollutant	exposures	in	the	study	area	is	important	for	

identifying	which	air	pollutants	or	air	pollutant	sources	should	be	the	focus	of	local-scale	AQM	

and	exposure	reduction	efforts.	

	

Specific	Aim	3:	Evaluate	selected	strategies	for	reducing	air	pollutant	concentrations,	exposures	

and	health	impacts	in	the	study	region	using	quantitative	HIA	methods.	This	aim	is	intended	to	

demonstrate	how	HIA	methods	can	be	used	to	generate	policy-relevant	information	in	

regulatory	and	non-regulatory	contexts.	Two	different	approaches	to	reduce	health	burdens	

are	considered:	point	source	controls	to	reduce	emissions	and	filters	to	reduce	exposures	

indoors.	

	

Research	context	

A	study	area	that	includes	Detroit,	Michigan	and	several	adjacent	“downriver”	cities	

(Hamtramck,	Highland	Park,	Dearborn,	Melvindale,	Allen	Park,	Lincoln	Park,	Ecorse,	and	River	

Rouge)	offers	an	ideal	setting	for	using	quantitative	HIA	methods	to	evaluate	intra-urban	scale	
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approaches	to	burden	of	disease	studies	and	HIAs	of	alternative	air	quality	management	

strategies.	Figure	1.1	shows	where	these	cities	are	located	in	southeast	Michigan.	Air	pollution	

continues	to	be	an	important	environmental	health	concern	for	residents	of	southeast	

Michigan	and	Detroit	in	particular	(Lougheed	2014).	Currently,	Michigan	is	in	attainment	of	the	

particulate	matter	(PM2.5	and	PM10),	NO2,	lead1,	and	O3	NAAQS	(MDEQ	2015a).	A	portion	of	the	

I-75	Corridor	in	Wayne	County,	which	includes	the	study	area	and	is	represented	by	the	

monitor	at	Southwest	High	School,	does	not	meet	the	1-hour	SO2	standard	(MDEQ	2016b),	and	

recently	the	Michigan	Department	of	Environmental	Quality	(MDEQ)	submitted	to	US	EPA	a	

recommendation	that	the	entire	seven	county	region	of	southeast	Michigan	be	designated	as	

non-attainment	with	the	2015	O3	standard	(MDEQ	2016a).	Although	most	of	the	NAAQS	are	

now	attained,	residents	of	the	study	area	experience	adverse	health	effects	due	to	ambient	air	

pollutant	exposures.	For	example,	7.3%	of	premature	mortalities	in	Wayne	County	have	been	

attributed	to	PM2.5	and	O3	exposures	(Fann	et	al.	2015).	The	area’s	history	as	an	industrial	

center	means	there	are	many	point	sources	in	the	area,	including	steel	mills,	coal	fired	power	

plants	and	oil	refineries,	as	well	as	a	legacy	of	much	higher	pollutant	concentrations.	

Transportation	is	also	an	important	source	of	air	pollution	in	the	region.	Southeast	Michigan	

has	over	23,000	miles	of	major	roads,	4,000	miles	of	truck	routes,	five	commercial	marine	ports	

and	seven	rail	and	truck	terminals	(SEMCOG	2013).		

	

																																																								
1	There	is	a	small	section	of	Ionia	county	that	is	currently	designated	as	non-attainment	for	the	lead	NAAQS	(MDEQ	
2015a).	US	EPA	recently	approved	the	state’s	request	to	re-designate	the	area	as	in	attainment	effective	July	31,	
2017	(US	EPA	2017).	
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Residents	of	the	study	area	experience	health	disparities	that	can	be	addressed	in	part	by	

reducing	exposures	to	ambient	air	pollutants.	The	population	of	Detroit,	the	largest	city	in	the	

study	area,	is	primarily	minority	(83%	Black	and	7%	Latino)	and	39%	live	below	the	poverty	line	

(US	Census	Bureau	2015).	Demographics	across	the	study	area	are	similar,	e.g.,	66%	identify	as	

Black	or	African	American,	7.5%	identify	as	Hispanic	or	Latino,	and	37%	live	below	the	poverty	

line	(Table	1.1;	US	Census	Bureau,	2014).	Demographics	and	poverty	status	vary	between	cities	

included	in	the	study	area,	which	was	selected	based	on	the	potential	for	high	exposures	to	air	

pollutants.	The	percentage	of	residents	who	are	persons	of	color	ranges	from	12.5%	in	Allen	

Park	to	94.2%	in	Highland	Park,	and	the	percentage	of	residents	who	are	in	poverty	ranges	from	

7.2%	in	Allen	Park	to	48.5%	in	Hamtramck	(Table	1.1).	Asthma	disparities	between	the	study	

area	and	the	rest	of	Wayne	County	or	Michigan	as	a	whole	are	significant,	e.g.,	the	population-

weighted	asthma	hospitalization	rate	for	the	study	area	(41.3	cases	per	10,000	per	year)	

exceeds	that	of	Wayne	County	(28.9	per	10,000)	and	the	state	of	Michigan	as	a	whole	(14.8	per	

10,000;	Table	1.1)	(MDHHS,	2017).	Residents	also	experience	a	high	prevalence	of	obesity,	

diabetes,	and	smoking	compared	to	the	state	as	a	whole	(MDHHS	2015),	suggesting	increased	

vulnerability	to	adverse	health	impacts	of	air	pollutants.	Recent	studies	have	documented	the	

health	effects	of	cumulative	social	and	environmental	exposures	on	residents	of	Detroit	in	

particular,	e.g.,	higher	cortisol	levels	among	older	African	Americans	living	in	neighborhoods	

with	high	disadvantage	scores	(Zilioli	et	al.	2017)	and	stronger	relationships	between	PM2.5	

exposures	and	blood	pressure	for	residents	in	southwest	Detroit	reporting	higher	levels	of	

stress	(Hicken	et	al.	2014),	suggesting	Detroit	residents	and	residents	of	similarly	impacted	

cities	would	benefit	from	policies	designed	to	improve	environmental	conditions.	
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Portions	of	the	work	in	this	dissertation	were	conducted	to	support	an	ongoing	community	

based	participatory	research	(CBPR)	study.	Community	Action	to	Promote	Healthy	

Environments	(CAPHE)	is	a	CBPR	partnership	working	to	develop	and	implement	strategies	to	

reduce	the	adverse	health	effects	of	air	pollution	in	Detroit.	Partners	include	local	universities,	

community	based	organizations,	environmental	groups,	and	state	and	local	agencies.	The	work	

of	the	CAPHE	Core	Team	and	the	Steering	Committee	helped	inform	several	of	the	analyses	

presented	here,	including	the	identification	of	preferred	strategies	for	AQM	in	the	area	(Specific	

Aim	3).	This	research	is	intended	to	inform	a	variety	of	stakeholders	interested	in	improving	

urban	health.	While	the	research	focuses	on	Detroit,	Michigan	and	several	adjacent	cities,	

methods	and	potentially	many	key	results	would	apply	to	other	urban	areas.	

	

Outline	of	the	dissertation	

This	dissertation	is	organized	into	six	chapters.	Chapter	1	provided	an	overview	of	the	health	

effects	of	ambient	air	pollutants,	described	the	current	framework	for	AQM	in	the	United	

States	and	the	limitations	of	this	framework	with	respect	to	public	health,	introduced	the	HIA	

framework	used	in	the	dissertation,	identified	the	specific	aims	for	the	work,	and	described	the	

study	area.		

	

Chapter	2	presents	and	evaluates	quantitative	metrics	used	in	HIAs	and	similar	analyses	that	

are	relevant	to	air	quality	management	at	urban	and	potentially	regional	scales	(Specific	Aim	1).	

The	analysis	fills	an	important	gap	in	the	literature	by	identifying	which	metrics	are	most	
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important	for	the	local-scale	analyses	featured	in	this	dissertation.	The	metrics	are	evaluated	

using	explicit	criteria,	and	demonstrated	using	a	case	study	that	focuses	on	PM2.5.	The	chapter	

concludes	with	recommendations	for	metrics	that	can	best	inform	decision-makers.	The	

findings	from	Chapter	2	inform	the	remaining	data	chapters	in	the	dissertation.		

	

Chapter	3	examines	the	health	burden	and	health	disparities	attributable	to	air	pollutant	

exposures	in	Detroit,	Michigan	and	adjacent	downriver	cities	(Specific	Aim	2).	These	cities,	

shown	in	Figure	1.1,	have	the	potential	for	high	exposures	and	high	health	impacts	due	to	a	

number	of	important	factors,	including	the	proximity	of	point	sources	and	heavily	trafficked	

roads,	higher	baseline	health	rates,	and	potentially	higher	degrees	of	vulnerability	or	

susceptibility.	Few	burden	of	disease	studies	at	the	urban	scale	have	been	conducted,	and	this	

is	the	first	burden	of	disease	assessment	for	Detroit,	MI.	In	this	chapter,	the	quantitative	HIA	

framework	developed	in	Chapter	2	is	expanded	to	include	inequality	metrics	relevant	to	

environmental	justice	studies.	The	analysis	uses	a	comprehensive	HIA	dataset	for	the	study	area	

that	contains	spatially-	and	temporally-resolved	data	on	demographics,	health	outcomes,	

ambient	air	pollutant	concentrations	and	source-receptor	relationships,	concentration-

response	functions	and	the	social	and	environmental	determinants	of	health.	Impacts	due	to	

five	pollutants	(PM2.5,	NO2,	SO2,	O3,	and	diesel	exhaust	particulate	matter)	are	evaluated	in	a	

spatially	explicit	analysis.	Results	are	presented	for	total	exposures	and	exposures	to	specific	

source	categories,	e.g.,	point	or	mobile	sources.	Sensitivity	of	the	results	to	spatial	resolution	

and	study	boundaries	is	examined,	and	recommendations	for	intra-urban	studies	are	discussed.	
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The	results	of	Chapter	3	are	used	to	identify	which	pollutants	or	pollutant	sources	are	included	

in	the	analyses	to	address	Specific	Aim	3.	

	

Chapters	4	and	5	address	Specific	Aim	3	by	evaluating	air	quality	management	strategies	for	the	

study	area.	Chapter	4	investigates	emission	control	strategies	aimed	at	reducing	the	burden	of	

disease	and	health	burden	inequalities	from	point	sources	of	SO2,	which	are	identified	in	

Chapter	3	as	having	a	disproportionate	impact	on	susceptible	or	vulnerable	populations	in	the	

area.	The	analysis	is	timely	because	a	portion	of	the	study	area	is	currently	out	of	attainment	

with	the	SO2	NAAQS,	and	in	response	to	this	designation	MDEQ	was	required	to	develop	a	SIP	

to	address	SO2	emissions.	Alternative	strategies	to	reduce	emissions	are	formulated	and	

evaluated	in	terms	of	ambient	concentrations,	total	health	benefits,	and	the	distribution	of	

health	impacts	across	an	urban	population.	The	analysis	quantifies	the	potential	trade-offs	

between	emission	reductions,	health	impacts,	and	inequality,	and	demonstrates	how	health	

burden	and	inequality	metrics	might	be	used	at	an	urban	scale	and	in	a	regulatory	context.		

	

Chapter	5	evaluates	the	health	benefits	among	school-aged	children	in	the	study	area	of	using	

filters	in	schools	and	homes	to	reduce	indoor	exposures	to	ambient	PM2.5.	PM2.5	is	identified	as	

a	major	contributor	to	the	air	pollution-related	health	burden	experienced	by	study	area	

residents,	and	emissions	point	and	mobile	sources	in	the	area	disproportionately	impact	

vulnerable	populations	(Chapter	3).	The	public	health	benefits	of	filters	among	children	has	

received	little	attention	in	the	literature,	and	this	analysis	addresses	this	gap	by	focusing	on	the	

two	microenvironments	(e.g.,	schools	and	homes)	in	which	children	spend	most	of	their	time.		
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Chapter	6	summarizes	the	main	findings;	discusses	the	tradeoffs	of	selected	air	quality	

management	(AQM)	strategies	for	Detroit;	examines	how	quantitative	HIA	methods	can	be	

used	to	guide	local	decision	making	and	how	including	HIA	methods	in	the	environmental	

decision	process	can	potentially	lead	state	and	national	environmental	policy	towards	more	

equitable	goals;	addresses	barriers	and	challenges	for	local	scale	assessments,	including	

communicating	results	to	decision	makers;	and,	suggests	directions	for	future	studies.	
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Table	1.1	Selected	demographic	and	economic	characteristics,	and	crude	rates	of	all-cause	mortality	and	asthma	hospitalization	for	
the	study	area,	Wayne	County,	Michigan,	and	individual	cities	within	the	study	area.	Some	baseline	health	rates	are	not	available	at	
the	city	level	and	are	omitted.		
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Demographics	and	Poverty	 	
%	Black	or	African	American	 65.9	 40.9	 15.3	 3.2	 4.1	 82.5	 44.5	 14.5	 92.7	 7.2	 16.1	 62.3	
%	Hispanic	or	Latino	 7.3	 5.5	 4.6	 8.6	 3.5	 7.3	 14.5	 1.1	 0.3	 16.6	 12.6	 13.2	
%	Non-Hispanic	white	 24.4	 49.8	 76.1	 87.5	 87.3	 8.7	 38.4	 56.0	 5.8	 75.3	 67.7	 33.0	
%	Persons	in	Poverty	 36.8	 24.8	 23.7	 7.2	 28.6	 39.8	 27.1	 48.5	 47.6	 19.5	 28.6	 39.4	
Baseline	Incidence	Rates1	 	
Crude	mortality1	 1024.8	 985.4	 902.5	 1153.5	 822.5	 1047.7	 	 666.6	 1456.2	 1056.0	 	 	
Asthma	hospitalization2	 41.3	 28.9	 14.8	 	 	 47.9	 	 	 	 	 	 	

1	Population-weighted	incidence	rates	for	the	study	area	are	estimated	from	data	at	the	ZIP	code	level.	Incidence	rates	are	not	restricted	by	age.	Mortality	and	
hospitalization	rates	for	Wayne	County,	Michigan,	and	the	individual	cities	are	taken	from	MDHHS	(2017)	
2	Crude	mortality	rate	calculated	per	100,000	
3	Asthma	hospitalization	rate	calculated	per	10,000	
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Figure	1.1	Map	showing	the	cities	included	in	the	primary	study	area.	
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Chapter	2	

HEALTH	IMPACT	METRICS	FOR	AIR	POLLUTION	MANAGEMENT	STRATEGIES	

	

Abstract		

Health	impact	assessments	(HIAs)	inform	policy	and	decision	making	by	providing	information	

regarding	future	health	concerns,	and	quantitative	HIAs	now	are	being	used	for	local	and	

urban-scale	projects.	HIA	results	can	be	expressed	using	a	variety	of	metrics	that	differ	in	

meaningful	ways,	and	guidance	is	lacking	with	respect	to	best	practices	for	the	development	

and	use	of	HIA	metrics.	This	chapter	reviews	HIA	metrics	pertaining	to	air	quality	management	

and	presents	evaluative	criteria	for	their	selection	and	use.	These	are	illustrated	in	a	case	study	

where	PM2.5	concentrations	are	lowered	from	10	to	8	µg/m
3
	in	an	urban	area	of	1.8	million	

people.	Health	impact	functions	are	used	to	estimate	the	number	of	premature	deaths,	

unscheduled	hospitalizations	and	other	morbidity	outcomes.	The	most	common	metric	in	

recent	quantitative	HIAs	has	been	the	number	of	cases	of	adverse	outcomes	avoided.	Other	

metrics	include	time-based	measures,	e.g.,	disability-adjusted	life	years	(DALYs),	monetized	

impacts,	functional-unit	based	measures,	e.g.,	benefits	per	ton	of	emissions	reduced,	and	other	

economic	indicators,	e.g.,	cost-benefit	ratios.	These	metrics	are	evaluated	by	considering	their	

comprehensiveness,	the	spatial	and	temporal	resolution	of	the	analysis,	how	equity	

considerations	are	facilitated,	and	the	analysis	and	presentation	of	uncertainty.	In	the	case	
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study,	the	greatest	number	of	avoided	cases	occurs	for	low	severity	morbidity	outcomes,	e.g.,	

asthma	exacerbations	(n=28,000)	and	minor-restricted	activity	days	(n=37,000);	while	DALYs	

and	monetized	impacts	are	driven	by	the	severity,	duration,	and	value	assigned	to	a	relatively	

low	number	of	premature	deaths	(n=190	to	230	per	year).	The	selection	of	appropriate	metrics	

depends	on	the	problem	context	and	boundaries,	the	severity	of	impacts,	and	community	

values	regarding	health.	The	number	of	avoided	cases	provides	an	estimate	of	the	number	of	

people	affected,	and	monetized	impacts	facilitate	additional	economic	analyses	useful	to	policy	

analysis.	DALYs	are	commonly	used	as	an	aggregate	measure	of	health	impacts	and	can	be	used	

to	compare	impacts	across	studies.	Benefits	per	ton	metrics	may	be	appropriate	when	changes	

in	emissions	rates	can	be	estimated.	To	address	community	concerns	and	HIA	objectives,	a	

combination	of	metrics	is	suggested.		

	

Introduction	

Air	quality	management	requires	the	consideration	of	a	complex	array	of	technical,	economic,	

legal	and	political	factors.	In	the	U.S.,	statutory	obligations	are	placed	on	state	and	local	

governments	to	attain	ambient	concentrations	and	meet	other	standards	set	by	the	US	

Environmental	Protection	Agency	(US	EPA).	Historically,	compliance	with	standards	has	been	

achieved	by	emissions	reduction	strategies	that	addressed	a	single	pollutant	at	a	time,	and	

targeted	local	and	culpable	sources	for	emissions	reductions,	at	the	same	time	incorporating	

effects	of	the	broader	emission	reductions	accomplished	by	national	emissions	standards.	As	air	

quality	standards	continue	to	be	strengthened	and	easily	implemented	controls	become	rarer,	

decision	makers	must	consider	a	wider	range	of	policy	measures.	Since	interventions	aimed	at	
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reducing	ambient	pollution	levels	can	affect	the	health	of	those	living	and	working	in	the	

affected	area	(Henschel	et	al.	2012),	it	is	becoming	increasingly	important	to	assess	the	nature	

and	magnitude	of	potential	health	impacts,	thus	avoiding	both	unintended	health	

consequences	and	missed	opportunities	to	improve	public	health	(NRC,	2011).		

	

Health	impact	assessments	(HIAs)	use	a	variety	of	techniques	to	evaluate	and	compare	

potential	health	impacts	of	proposed	projects,	policies	and	plans	with	the	key	objectives	of	

understanding	the	direction,	magnitude,	severity,	and	distribution	of	impacts	(Bhatia	et	al.	

2014).	HIAs	and	similar	analyses	have	been	conducted	at	multiple	scales	and	for	different	

purposes.	At	the	national	or	global	scale,	accountability	research,	burden	of	disease,	and	other	

studies	are	used	to	evaluate	the	disease	burden	due	to	pollution	(Fann	et	al.	2012b;	Lim	et	al.	

2012),	the	incremental	impact	of	alternative	policies	and	scenarios,	e.g.,	different	levels	of	

ambient	standards	(Chanel	et	al.	2014;	Dias	et	al.	2012;	Heal	et	al.	2013),	to	apportion	health	

impacts	by	source	industry	(Fann	et	al.	2013),	and	to	explain	the	benefits	of	standards,	e.g.,	the	

avoided	230,000	premature	deaths	annually	by	2020	due	to	implementation	of	PM2.5	controls	

between	1990	and	2005	in	the	US	(US	EPA,	2011).	At	regional	(sub-national),	urban	and	project	

scales,	HIAs	can	be	conducted	in	a	policy	context,	but	more	commonly	to	gauge	potential	

impacts	and	benefits	of	specific	actions.	In	particular,	HIAs	conducted	by	health	departments,	

academic	researchers	or	advocacy	groups	often	aim	to	incorporate	health	outcomes	in	policy	

and	decision	making	(Dannenberg	and	Wernham,	2013).		
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Due	to	limitations	in	the	scope	and	available	data,	most	HIAs	have	been	qualitative	rather	than	

quantitative	(Rhodus	et	al.	2013).	While	qualitative	assessments	can	convey	the	direction	and	

magnitude	of	impacts,	quantitative	methods	offer	more	explicit	information	regarding	impacts	

of	potential	interventions	or	the	status	of	abatement	policies	(Bhatia	and	Seto,	2011).	Several	

guides	for	the	design	and	implementation	of	HIAs	have	provided	recommendations	for	

screening,	scoping,	and	impact	assessment	steps	of	the	HIA	process.	However,	there	are	few	

recommendations	for	reporting	and	communicating	results	(Hebert	et	al.	2012).	Metrics	that	

effectively	communicate	impacts	to	stakeholders	and	decision-makers	need	to	be	identified.		

	

Tools	developed	to	facilitate	the	systematic	quantification	of	impacts	produce	different	metrics.	

The	Environmental	Benefits	Mapping	and	Analysis	Program	(BenMAP)	developed	by	US	EPA	

and	the	Air	Quality	Benefits	Assessment	Tool	(AQBAT)	used	by	Health	Canada	report	impacts	as	

attributable	cases	and	monetized	impacts	(Judek	et	al.	2006;	US	EPA,	2015a).	Air	pollution	

accountability	research	tends	to	favor	these	metrics	(Bell	et	al.	2011).	The	Integrated	

Environmental	Health	Impact	Assessment	System	developed	for	the	European	Union	(Briggs,	

2008)	uses	time-based	health	metrics	(e.g.,	disability	adjusted	life	years,	DALYs).	Originally	

developed	for	the	comparative	risk	assessment	framework	(Murray,	1994),	these	metrics	

summarize	different	health	effects	with	varying	degrees	of	severity	into	a	single	figure	(de	

Hollander	and	Melse,	2006;	Hofstetter	and	Hammitt,	2002).		

	

Health	impacts	associated	with	air	pollution	vary	by	duration	(chronic	or	transient),	degree	

(severe	or	minor)	and	temporality	(caused	shortly	after	exposures	or	lagged	by	several	years).	
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Urban-scale	HIAs	can	address	projects	or	policies	that	affect	the	entire	urban	area	or	a	specific	

segment	of	the	population.	Thus,	the	applicability	of	the	certain	health	metrics	may	depend	on	

the	boundary	of	the	HIA,	the	severity	of	the	predicted	impacts,	and	community	values	

regarding	health.	Previous	reviews	have	discussed	differences	between	qualitative	and	

quantitative	HIAs	(Bhatia	and	Seto,	2011;	O’Connell	and	Hurley,	2009),	but	the	types	of	metrics	

used	in	quantitative	urban-scale	HIAs	have	not	been	addressed.		

	

The	goal	of	this	chapter	is	to	evaluate	quantitative	metrics	used	in	HIAs	and	similar	analyses	

that	are	relevant	to	air	quality	management	at	the	urban	and	potentially	regional	scales.	The	

metrics	are	evaluated	using	explicit	criteria,	and	demonstrated	using	a	case	study	that	focuses	

on	particulate	matter	less	than	2.5	μm	in	diameter	(PM2.5).	The	chapter	concludes	with	

recommendations	for	those	metrics	that	can	best	inform	decision-makers.	

	

Methods	

Literature	published	between	2011	and	2015	was	reviewed	to	identify	HIA	metrics	used	for	

both	project	and	policy	applications.	Reviews	and	critiques	of	HIAs	(in	both	the	peer-reviewed	

and	grey	literature)	and	original	peer-reviewed	articles	were	examined,	and	included	studies	

that	evaluated	the	burden	of	disease	attributable	to	ambient	air	pollution,	the	health	benefits	

of	proposed	ambient	air	quality	standards,	and	policies	to	reduce	pollutant	levels	(e.g.,	active	

transport).	The	HIAs	identified	in	the	literature	ranged	in	scale	from	multi-national	to	urban.	

Recent	regulatory	impact	analyses	(RIAs)	by	US	EPA	were	also	reviewed	(US	EPA,	2015b,	2014,	
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2012a).	Selected	metrics	include	the	predicted	number	of	cases,	time-based	metrics,	impacts	

per	unit	emissions,	and	monetized	impacts.		

	

Evaluative	criteria	were	identified	from	two	sources.	First,	findings	of	the	reviewed	quantitative	

HIAs	were	used	to	identify	key	characteristics	relevant	to	air	quality	metrics,	e.g.,	metrics	

should	account	for	population	dynamics	since	pollution-related	health	effects	can	lag	years	

behind	exposures	(Flachs	et	al.	2013).	Second,	review	articles	and	commentaries	from	the	

health	indicator	literature	were	examined	to	identify	additional	criteria,	e.g.,	the	comparability	

of	metrics	across	populations	of	different	size	(Walker	et	al.	2007).	

	

A	case	study	demonstrates	the	formulation,	use,	strengths	and	limitations	of	the	metrics	using	

Wayne	County,	a	mostly	urban	and	suburban	region	(area	of	1600	km
2
,	population	of	1.8	

million)	with	a	mix	of	industrial,	commercial,	area,	and	mobile	emission	sources,	as	the	study	

area.	The	county	scale	was	selected	due	to	the	availability	of	emission	and	other	data.	A	

scenario	is	evaluated	in	which	PM2.5	concentrations	are	uniformly	lowered	across	the	county	

from	10	to	8	µg/m
3
,	reflecting	a	policy	that	further	reduces	concentrations	below	the	current	

national	ambient	air	quality	standard	of	12	µg/m
3	
(US	EPA,	2013a).	The	analysis	follows	the	

method	reported	by	Fann	et	al.	(2012)	with	several	differences.	To	examine	potential	

differences	between	HIA	methodologies,	two	methods	(detailed	below)	are	used	to	estimate	

mortalities	attributable	to	changes	in	PM2.5	levels.	In	addition	to	the	concentration-response	

(CR)	estimates	included	in	the	BenMAP	software,	cause-specific	mortality	CR	estimates	

developed	for	the	recent	Global	Burden	of	Disease	(GBD)	study	(Burnett	et	al.	2014;	Lim	et	al.	



	

34	

2012)	are	used.	To	assess	the	sensitivity	of	results	to	national,	county	and	local	scale	data,	

attributable	rates	for	premature	mortality	are	calculated	using	baseline	rates	for	the	US	as	a	

whole,	Wayne	County	(including	Detroit),	and	Detroit	separately.	To	facilitate	these	analyses,	a	

simple	spreadsheet	model	is	used	that	does	not	represent	spatial	differences	in	air	quality,	

population	or	impacts	across	the	study	area.	Uncertainty	in	the	number	of	avoided	cases	

predicted	for	the	case	study	is	simulated	using	a	Monte	Carlo	(MC)	analysis	(@Risk	for	Excel,	

Palisade	Corporation).	For	each	CR	estimate,	the	distribution	around	the	regression	coefficient	

is	specified	based	on	the	reported	standard	error.	The	simulation	uses	5000	iterations	to	

estimate	the	mean	number	of	avoided	cases	and	to	construct	95%	confidence	intervals	around	

the	mean.	The	uncertainty	in	the	number	of	avoided	cases	is	propagated	to	the	DALY	and	

monetized	impact	metrics.	Other	sources	of	uncertainty	for	these	summary	metrics,	e.g.,	

uncertainty	in	disability	weights	or	monetized	values,	are	not	included.	Additional	information	

on	the	case	study	is	found	in	Appendix	A2.	

	

Emissions-based	metrics	(e.g.,	benefits	per	ton)	use	sector-specific	2011	PM2.5	emissions	

information	for	Wayne	County	(US	EPA,	2012b).	Annual	emission	rates	are	listed	in	Table	A2.6.	

Following	source	apportionments	performed	for	Detroit	(Buzcu-Guven	et	al.	2007;	Gildemeister	

et	al.	2007;	Milando	et	al.	2016),	half	(5	μg/m
3
)	of	the	initial	and	existing	PM2.5	is	assumed	to	

arise	from	local	sources	(e.g.,	direct	PM2.5	emissions	from	industrial	point	sources,	diesel	and	

gasoline	mobile	sources,	construction	and	road	dust	emissions,	other	non-point	sources)	that	

collectively	emit	approximately	7,000	tons	per	year;	the	other	half	arises	from	regional	sources	

and	the	formation	of	secondary	PM2.5.	Using	a	“roll-back”	method,	a	2	µg/m
3
	reduction	is	
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achieved	by	reducing	local	emissions	by	40%,	or	2,800	tons	per	year.	While	simple,	this	

approach	attains	results	that	reflect	those	from	more	complex	methods	that	explicitly	model	

sources	and	spatial	variation	(described	later),	and	that	are	suitable	for	demonstrating	the	

alternative	health	metrics.	The	benefits	per	ton	metric	is	calculated	by	dividing	avoided	impacts	

(e.g.,	avoided	cases	and	monetized	impacts	per	year)	estimated	using	a	health	impact	function	

by	the	emission	reduction.		

	

Results	

Literature	Review	

HIA	metrics	in	previous	air	quality	and	other	studies	

HIA	applications	have	been	summarized	and	critiqued	in	several	reviews	published	in	the	peer-

reviewed	and	'grey'	literature	(Bhatia	and	Seto,	2011;	Dannenberg	and	Wernham,	2013;	Hebert	

et	al.	2012;	O’Connell	and	Hurley,	2009;	Rhodus	et	al.	2013;	Schuchter	et	al.	2014).	Many	HIAs	

have	been	made	publically	available	(Pew	Charitable	Trusts,	2014;	UCLA	HIA-CLIC,	2015).	The	

following	emphasizes	HIAs	involving	air	quality	analyses.		

	

Most	urban	scale	HIAs	have	been	conducted	for	urban	planning,	transportation,	and	land	use	

projects.	In	a	review	of	81	transportation,	housing	and	infrastructure,	land	use,	and	waste	

management	HIAs	conducted	between	1999	and	2012	in	the	United	States,	52%	considered	air	

quality	impacts,	in	part	due	to	the	availability	of	models	and	other	assessment	tools,	but	only	

28%	used	quantitative	methods	(Rhodus	et	al.	2013).	In	contrast,	nearly	all	(37	out	of	38)	HIAs	

examined	in	the	peer-reviewed	literature	used	quantitative	metrics,	and	most	of	these	studies	
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(71%)	were	conducted	outside	of	the	United	States.	(These	studies	are	summarized	in	Table	

A2.1.)	Typically,	impacts	are	reported	as	the	number	of	(avoided)	cases	attributable	to	changes	

in	ambient	concentration.	Fewer	studies	have	reported	impacts	using	DALYs	or	monetized	

impacts.	Only	eight	of	these	HIAs	used	multiple	metrics.	Sometimes	these	metrics	were	

calculated	using	standardized	platforms,	e.g.,	BenMAP.	Other	metrics	in	HIAs	or	regulatory	

analyses	include	cost-effectiveness	and	cost-benefit	indicators.	A	few	studies	used	indicators	

designed	for	life	cycle	assessment	(LCA).	These	metrics	are	detailed	below.		

	

Predicted	cases	

As	noted,	the	most	common	quantitative	HIA	metric	is	the	number	of	morbidities	or	premature	

mortalities	attributed	to	a	change	in	pollutant	concentration.	The	number	of	predicted	cases	is	

calculated	using	two	similar	approaches.	The	population	attributable	fraction	(PAF)	method,	

endorsed	by	the	WHO	(Prüss-Ustün	et	al.	2003),	represents	the	fraction	of	risk	for	an	outcome	

attributable	to	a	specific	exposure.	It	is	estimated	for	specific	exposure	concentrations	using	

concentration-dependent	relative	risks	(RR):		

	

!"# = %&((()*)
%& (()* ,	*	 	 	 	 	 	 	 	 	 		(2.1)	

	

where	RR	=	relative	risk	for	the	outcome,	e.g.,	./01	for	a	log-linear	risk	coefficient	where	Δx	=	

change	in	ambient	concentration,	β	=	the	regression	coefficient,	and	Pe	=	the	probability	of	

exposure	(i.e.,	the	fraction	of	the	population	that	is	exposed;	Steenland	and	Armstrong,	2006).	

For	air	pollution,	the	PAF	is	typically	used	to	estimate	the	burden	of	disease	relative	to	non-
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anthropogenic	background	levels.	Multiplying	the	PAF	by	the	baseline	rate	in	the	population	

(y0,	cases	person-1	year-1)	and	the	number	of	people	in	the	population	(P)	gives	the	number	of	

attributable	cases	in	the	population.	Recently,	this	approach	has	been	used	to	estimate	the	

burden	of	disease	attributable	to	air	pollution	(Cárdaba	Arranz	et	al.	2014;	Hänninen	et	al.	

2014),	and	to	compare	PM2.5	standards	in	Taiwan	(Yang	and	Kao,	2013).	

	

The	second	method	uses	a	health	impact	function	(HIF)	to	estimate	changes	in	outcome	

incidence.	The	HIF	represents	a	simplified	PAF	where	the	entire	population	is	considered	

exposed	(e.g.,	Pe=1).	The	HIF	depends	on	the	form	of	the	CR	function,	e.g.,	a	log-linear	CR	

estimate	gives:	

	

∆3 = 	45	 1 − .)/∆1 !	 	 	 	 	 	 	 	 		(2.2)	

	

where	ΔY	=	incremental	change	in	the	number	of	cases,	y0	=	baseline	incidence	rate	(cases	

person
-1	
year

-1
),	β	=	CR	estimate	(log	relative	risk),	Δx	=	expected	or	measured	change	in	

concentration	(μg/m
3
	or	ppb),	and	P	=	exposed	population	(US	EPA,	2015a).	The	HIF	can	

estimate	the	incidence	attributable	to	pollution	relative	to	'pristine'	or	'background'	levels	

(Fann	et	al.	2012b),	but	generally	is	used	to	evaluate	incremental	impacts	associated	with	a	

change	in	concentration,	e.g.,	effects	of	a	new	standard	relative	to	existing	concentrations	

(Berman	et	al.	2012;	Boldo	et	al.	2014;	US	EPA,	2012a).	

	



	

38	

Both	PAF	and	HIF	methods	require	information	including	the	size	of	the	exposed	population,	

baseline	incidence	rates	for	diseases	associated	with	pollutants,	baseline	and	exposure	

concentrations,	and	CR	estimates	or	relative	risks	for	each	pollutant-outcome	pair.	Prospective	

applications	also	require	projections	of	population	size	and	baseline	rates;	retrospective	

applications	need	current	and	historical	data.	CR	estimates	are	drawn	from	the	epidemiological	

literature,	including	large	observational	studies	(e.g.,	Jerrett	et	al.	2009;	Krewski	et	al.	2009),	as	

well	as	smaller	studies	of	targeted	populations	(e.g.,	Mar	et	al.	2004).	CR	estimates	can	be	

chosen	from	a	single	study	or	pooled	across	multiple	studies.	'Counterfactual'	concentrations	

(CFCs)	for	PM2.5	between	5.8	and	8.8	μg/m
3
	have	been	used	as	comparison	or	baseline	

conditions	to	represent	non-anthropogenic	'background'	levels	(Burnett	et	al.	2014;	Krewski	et	

al.	2009;	Murray	et	al.	2003).	

	

Disability-adjusted	life	years	

Duration	metrics	consider	the	time	lived	with	disability	or	the	time	lost	due	to	early	death,	and	

are	derived	from	the	number	of	predicted	cases.	Years	of	life	lost	(YLL)	is	the	difference	

between	the	age-specific	remaining	life	expectancy	(LE)	and	the	age	of	premature	death.	Years	

living	with	a	disability	(YLD)	is	the	time	spent	living	with	a	morbidity	(i.e.,	the	case	duration),	

weighted	by	a	disability	weight	(DW)	that	reflects	the	degree	of	impairment	as	assigned	using	

trade-off	methods	(Prüss-Ustün	et	al.	2003),	e.g.,	a	panel	evaluation	where	experts	judge	which	

hypothetical	person	with	a	randomly	assigned	disease	is	healthier	(Salomon	et	al.	2012).	YLL	

and	YLD	are	calculated	for	each	population	stratum	(e.g.,	age	group,	sex,	or	race/ethnicity):	
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3889,; = <9,;	×	8>;	 	 	 	 	 	 	 	 	 		(2.3)	

	

38?9,; = <9,;	×	?	×	?@	 	 	 	 	 	 	 	 		(2.4)	

	

where	Nj,a	=	number	of	avoided	cases	in	stratum	j	and	age	group	a,	LEa	=	standard	remaining	life	

expectancy	for	age	group	a	(in	years),	D	=	duration	of	the	disease	state	(in	years),	and	DW	=	

disability	weight	for	the	morbidity	outcome.	DWs	range	from	0	(perfect	health)	to	1	(death).		

	

The	calculation	of	YLLs	requires	the	use	of	standard	life	tables	to	determine	the	remaining	life	

expectancy	for	each	age	group.	Life	tables	can	be	developed	for	each	year	of	life	and	particular	

age	intervals	using	age-specific	mortality	rates	for	the	population	of	interest	(Anderson,	1999);	

this	information	is	available	at	country	and	state	levels	(MDCH,	2015;	World	Health	

Organization,	2015).	

	

DALY	metrics	sum	YLL	and	YLD	(eqs.	2.3	and	2.4)	across	the	population,	thus	aggregating	across	

different	outcomes	(e.g.,	asthma	exacerbation	and	premature	mortality).	DALYs	are	commonly	

used	in	burden	of	disease	studies	(Flachs	et	al.	2013;	Hänninen	et	al.	2014),	and	have	been	used	

in	policy	evaluations	(Rojas-Rueda	et	al.	2013)	and	life	cycle	impact	assessments	(Kassomenos	

et	al.	2013).	

	

Quality-adjusted	life	years	(QALYs)	provide	an	alternative	approach	to	DALYs.	QALYs	were	

developed	to	provide	a	comprehensive	measure	of	health	in	multiple	dimensions,	e.g.,	physical	
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health	and	social	well-being	(Gold	et	al.	2002)	using	weights	that	range	from	1	(perfect	health)	

to	0	(death;	Sassi,	2006).	Weights	assigned	to	QALYs	are	not	tied	to	a	particular	disease	status,	

but	rather	look	at	an	individual’s	overall	health	state.	In	contrast,	DALYs	use	disability	weights	

that	focus	on	a	single	disease	and	comorbidities	are	not	considered	(Gold	et	al.	2002).	In	this	

paper,	DALYs	are	used	as	a	summary	measure	of	health	given	their	use	in	previous	studies	

(Table	A2.1).	

	

Monetized	impacts	

Mortality	and	morbidity	outcomes	can	be	monetized	to	facilitate	cost-benefit	and	cost-

effectiveness	analyses.	For	deaths,	valuations	often	use	the	value	of	a	statistical	life	(VSL),	a	

monetary	value	assigned	to	a	premature	mortality	based	on	willingness	to	pay	(WTP),	derived	

as	what	an	individual	would	pay	to	reduce	their	risk	of	dying	in	the	next	year	by	a	small	amount,	

e.g.,	1	in	100,000	(Hammitt,	2000).	An	alternative	measure	is	the	value	of	a	statistical	life	year	

(VSLY),	a	value	assigned	to	each	YLL	rather	than	to	each	premature	death	(Hammitt,	2007).	For	

morbidity,	valuations	use	the	WTP	or	the	average	cost	of	an	illness	(COI),	which	incorporates	

medical	expenses	and	societal	costs,	e.g.,	lost	wages	(Akobundu	et	al.	2006).	Valuations	can	be	

discounted	to	account	for	the	time-value	of	money,	e.g.,	for	an	assumed	20	year	lag	between	a	

concentration	reduction	and	premature	mortality,	US	EPA	(2012a),	suggests	apportioning	30%	

of	the	mortality	in	the	year	following	the	concentration	reduction,	50%	in	the	2
nd
	through	4

th
	

years,	and	the	remaining	20%	between	6
th
	and	20

th
	years,	and	applying	discount	rates	from	3	to	

7%	per	year	(OMB,	2003).	Valuations	without	lags	represent	the	“maximum	impact”	case	since	

all	impacts	are	assumed	to	occur	immediately	following	the	concentration	change.	
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Functional	unit-based	metrics		

Additional	health	metrics	are	used	in	life	cycle	assessments	(LCA),	which	provide	a	

comprehensive	assessment	of	a	product	or	service.	Most	LCAs	use	streamlined	approaches	that	

quantify	impacts	on	the	basis	of	a	functional	unit,	e.g.,	per	ton	of	PM2.5	emitted.	

Characterization	factors	relate	environmental	stressors	evaluated	in	an	LCA	to	health	

outcomes,	e.g.,	the	ReCiPe	framework	defines	DALYs	per	kg	of	PM2.5	emitted	(Goedkoop	et	al.	

2009).		

	

Regulatory	analyses	have	used	metrics	expressed	as	outcomes	per	ton	of	emissions.	Such	

metrics	may	be	advantageous	when	changes	in	emissions	(rather	than	ambient	concentrations)	

are	estimated,	e.g.,	a	rule	requiring	increased	efficiencies	for	residential	wood-burning	heaters	

estimated	monetized	benefits	of	$380,000	per	ton	of	PM2.5	emissions	reduced	(US	EPA,	2015).	

This	metric	was	derived	using	the	expected	change	in	emissions,	dispersion	modeling	to	

estimate	concentrations,	HIFs	to	predict	avoided	cases,	and	economic	valuations	to	monetize	

outcomes	(US	EPA,	2013).		

	

Economic	metrics	

Economic	metrics	incorporate	health	measures	along	with	resource	constraints,	typically	

expressed	as	the	cost	of	implementing	a	policy	or	project.	For	example,	cost-effectiveness	

metrics	using	benefit-cost	ratios	can	compare	monetized	benefits,	in	part	derived	from	HIAs,	to	

expected	costs	(Johannesson,	1995).	Such	metrics	are	sometimes	required,	e.g.,	proposed	
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regulation	in	the	US	undergo	a	regulatory	impact	analysis	to	demonstrate	their	cost-

effectiveness	(US	EPA,	2010).	The	total	cost	of	an	air	quality	management	strategy	includes	the	

direct	expenditures	made	by	polluters,	e.g.,	costs	of	equipment,	operation	and	maintenance,	

subsidies	and	financial	incentives,	and	costs	to	air	pollution	control	districts	for	planning,	

monitoring	and	enforcement;	benefits	include	all	avoided	health,	social,	and	environmental	

impacts	(Bower	and	Brady,	1981).	It	can	be	difficult	to	monetize	all	benefits	of	air	quality	

management,	particularly	for	secondary	and	tertiary	impacts,	e.g.,	climate	change	mitigation;	

the	scope	and	uncertainty	of	such	analyses	can	present	challenges.	In	addition,	cost-benefit	

analyses	may	mask	equity	concerns	given	their	focus	on	efficiency	and	overall	costs	and	

benefits	rather	than	benefits	to	specific	groups	(de	Groot,	1998).	Despite	their	complexity	and	

limitations,	cost-benefit	analyses	can	help	select	effective	strategies,	particularly	for	multi-

pollutant	strategies	that	may	have	high	implementation	costs	but	substantial	health	benefits	

(Chestnut	et	al.	2006).	

	

The	present	analysis	focuses	on	health	metrics.	The	PM2.5	reduction	in	the	case	study	might	be	

achieved	by	a	number	of	management	strategies,	which	would	likely	vary	in	costs.	Given	the	

study's	emphasis,	the	analysis	does	not	identify	a	specific	strategy	and	thus	does	not	estimate	

control	costs	or	calculate	economic	metrics.	While	a	full	discussion	of	economic	metrics	utilizing	

HIAs	is	beyond	the	scope	of	this	chapter,	guidelines	for	conducting	economic	analysis	for	

environmental	policy	assessment	have	been	presented	elsewhere	(US	EPA,	2010).	
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Case	study		

The	case	study	uses	a	2	μg/m
3
	reduction	in	PM2.5	concentrations	to	illustrate	the	health	impacts	

of	the	health	metrics	in	urban	scale	air	quality	HIAs.	The	metrics	could	be	used	to	compare	

control	strategies	directly,	and	they	might	be	incorporated	into	broader	environmental	impact	

assessments,	such	as	those	specified	by	the	National	Environmental	Policy	Act	(Bhatia	and	

Wernham,	2008).	As	discussed	previously,	they	also	are	necessary	for	cost-benefit	and	cost-

effectiveness	analyses,	although	the	present	paper	is	limited	to	an	analysis	of	health	impacts.	

The	next	section	discusses	implications	for	using	health	metrics	in	air	quality	management.	

	

Predicted	impacts	

HIA	results	for	the	case	study	are	summarized	in	Table	2.1.	Additional	details	are	provided	in	

Tables	A2.7	and	A2.8	in	Appendix	A2.	Lowering	PM2.5	levels	from	10	to	8	µg/m
3
	is	estimated	to	

prevent	190	premature	all-cause	deaths,	230	cause-specific	deaths	(the	sum	of	chronic	

obstructive	pulmonary	disease	(COPD),	lung,	trachea	and	bronchus	cancers,	ischemic	heart	

disease	(IHD),	and	stroke	deaths),	28,000	avoided	asthma	exacerbations,	and	37,000	minor	

restricted	activity	days	per	year	(MRAD),	i.e.,	days	when	individuals	avoid	typical	activities	and	

instead	switch	to	less	strenuous	tasks	without	missing	work	or	school.	Attributable	rates	for	

avoided	premature	deaths	are	higher	when	based	on	Detroit	mortality	rates	compared	to	those	

for	all	of	Wayne	County	or	the	U.S.	(Table	2.2).	Similar	distributions	of	impacts	have	been	

reported	in	the	several	studies	that	evaluated	both	mortality	and	morbidity	outcomes	(Berman	

et	al.	2012;	Chart-asa	and	Gibson,	2015;	Fann	et	al.	2013,	2012b;	Jakubiak-Lasocka	et	al.	2015;	
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Voorhees	et	al.	2014).	All	of	these	studies	show	that	less	severe	outcomes	make	up	the	majority	

of	avoided	cases.		

	

Avoided	YLL,	YLD,	and	DALYs	in	the	case	study	total	3052,	47	and	3099	years,	respectively	

(Table	2.3).	YLL	are	greatest	for	the	60-64	year	age	group	(17	premature	deaths	contribute	394	

YLL;	Figure	2.1).	Premature	deaths	account	for	98.5%	of	the	total	DALYs	avoided	in	the	

population.	Among	morbidity	outcomes,	asthma	exacerbations	make	the	greatest	contribution	

to	population	DALYs	(30	YLD	per	year,	Table	A2.7).	Comparable	contributions	of	YLL	and	YLD	to	

the	overall	DALYs	have	been	reported	elsewhere	(de	Hollander	et	al.	1999;	de	Hollander	and	

Melse,	2006;	Hofstetter	and	Hammitt,	2002).	

	

The	total	monetized	health	benefit	of	the	2	µg/m
3
	reduction	in	Wayne	County	exceeds	$1.9	

billion	annually,	most	of	which	(95%)	is	due	to	premature	mortality	(Table	2.3,	Table	A2.7).	The	

most	important	morbidity	outcomes	are	non-fatal	myocardial	infarctions	(n=160,	$23	million)	

and	unscheduled	hospitalizations	(n=	150,	$5.5	million).	More	common	but	less	severe	

outcomes	include	work	loss	days	(n=21,000,	$3	million)	and	minor	restricted	activity	days	

(MRAD)	(n=37,000,	$2.5	million).	Though	less	frequent,	hospitalization	outcomes	account	for	a	

large	share	of	the	monetized	morbidity	impacts.	The	large	and	dominant	contribution	of	

mortalities	to	the	total	monetized	value	parallels	the	PM2.5	RIA	(US	EPA,	2012)	and	a	recent	HIA	

in	China	(Voorhees	et	al.	2014).	
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For	emissions-based	metrics,	the	total	monetized	benefit	(all	mortality	and	morbidity	

outcomes)	is	$660,000	per	ton	of	PM2.5,	again,	mostly	due	to	mortality	($640,000	per	ton;	Table	

2.4).	Expressed	using	the	number	of	cases,	the	more	severe	outcomes	had	the	lowest	benefit	

per	ton,	e.g.,	premature	mortality	were	only	0.07	deaths	avoided	per	ton,	while	avoided	asthma	

exacerbations	were	9.8	cases	per	ton	and	avoided	MRAD	were	13.1	cases	per	ton.	The	

literature	shows	a	wide	range	but	generally	lower	benefits	($46,000	to	$510,000	per	ton	PM2.5;	

Fann	et	al.	2012a).	The	higher	estimates	in	the	case	study	likely	result	from	the	simplified	roll-

back	approach,	which	incompletely	accounts	for	distance	and	dispersion	between	sources	and	

people,	e.g.,	reductions	from	elevated	stacks	and	sources	farther	removed	from	populations	

are	expected	to	have	lower	impacts	per	ton	of	pollutant	emitted	(Fann	et	al.	2009).	

Nevertheless,	the	estimates	produced	by	the	case	study	are	reasonable	given	its	limitations,	

e.g.,	uniform	reduction	and	rollback	approach.	

	

Case	study	limitations	

The	case	study	has	a	number	of	limitations.	First,	the	same	age-stratified	baseline	rates	are	

applied	across	the	population,	and	other	sources	of	variability	(e.g.,	neighborhood,	gender)	are	

omitted.	Second,	the	population	is	held	constant.	Recent	work	demonstrates	some	sensitivity	

to	population	growth	or	mobility	(Baccini	et	al.	2015;	Flachs	et	al.	2013;	Tchepel	and	Dias,	

2011).	Third,	a	single	CR	estimate	is	used,	although	other	valid	CR	estimates	are	available	and	

can	be	used	to	represent	uncertainties	(described	later).	Fourth,	lags	and	discounting	are	

ignored,	which	can	overestimate	premature	mortality	impacts	and	further	increase	the	

dominance	of	mortality	impacts	since	YLL	estimates	are	higher	for	deaths	at	younger	ages	
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(based	on	life	expectancy).	Fifth,	the	exposure	scenario	does	not	account	for	urban	scale	spatial	

heterogeneity	(Batterman	et	al.	2014;	Sparks	et	al.	2014),	which	should	be	considered	to	

accurately	predict	impacts	(Punger	and	West,	2013;	Thompson	et	al.	2014).	Sixth,	impacts	due	

to	only	PM2.5	are	considered.	Pollution	control	policies	can	affect	multiple	pollutants	and	have	

additional	impacts	and	co-benefits.	Lastly,	both	annual	and	daily	concentrations	are	assumed	to	

undergo	the	same	change	(2	μg/m
3
),	following	methods	used	in	other	HIAs	(Fann	et	al.	2012b).	

However,	this	approach	may	underestimates	changes	in	daily	peak	concentrations,	which	often	

arise	from	local	sources,	and	it	assumes	that	the	same	areas	and	populations	are	affected	by	

annual	and	peak	concentrations.	Alternately,	daily	changes	in	PM2.5	and	HIFs	drawn	from	

studies	of	short-term	exposures	could	be	used	to	determine	short-term	health	impacts.	Despite	

these	limitations,	the	case	study	results	mirror	trends	seen	in	other	air	pollution	HIAs,	and	the	

evaluations	and	comparisons	of	the	different	metrics	should	be	valid	and	applicable	to	other	

cities	and	scenarios.		

	

Evaluation	of	HIA	metrics	

The	criteria	suggested	for	evaluating	HIA	metrics	(Table	2.5)	reflect	several	goals.	First,	metrics	

should	be	accurate	and	comprehensive	with	respect	to	the	overall	impacts	expected	on	a	

population,	otherwise	impacts	may	be	underestimated	and	lead	to	biased	evaluations.	Second,	

metrics	should	consider	the	spatial	and	temporal	distribution	of	impacts,	thus	accounting	for	

the	variation	in	exposure	and	population	susceptibility.	This	variation,	along	with	equity	

considerations,	will	likely	require	stratification	by	factors	related	to	individual	or	group-level	

susceptibilities,	e.g.,	age,	socioeconomic	status,	or	race/ethnicity	(O’Neill	et	al.	2008).	Third,	
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since	impacts	are	associated	with	both	short-	and	long-term	exposure	to	pollutants,	and	long-

term	impacts	may	lag	several	years,	accounting	for	lags	is	important.	Fourth,	metrics	should	be	

easily	understood	by	a	wide	audience,	particularly	given	limited	understanding	of	HIA	

techniques,	pollutant	impacts,	and	the	presence	of	competing	interests,	e.g.,	economic	or	

political	considerations.	Fifth,	predicted	impacts	and	valuations	in	the	metrics	are	inherently	

uncertain,	and	uncertainties	are	propagated	as	the	number	of	required	data	inputs	increases.	

Both	quantitative	uncertainty	analyses	and	descriptive	characterizations	are	needed	to	describe	

uncertainties	and	aid	interpretation.	The	next	section	contrasts	each	metric	against	the	

evaluative	criteria,	drawing	on	case	study	results	to	highlight	key	points.	Table	2.6	summarizes	

this	evaluation.		

	

Predicted	cases	

The	inclusion	of	MRAD,	work	loss	days,	and	other	transient	but	relatively	common	morbidity	

outcomes	yields	more	comprehensive	analyses	by	indicating	the	numbers	of	people	potentially	

affected.	This	can	increase	the	HIA's	salience,	especially	for	diseases	like	childhood	asthma	that	

represent	important	public	health	issues.	The	case	study	(like	most	other	HIAs)	included	only	

those	outcomes	where	the	weight	of	evidence	for	an	association	is	strong.	Less	evidence	exists	

regarding	associations	between	PM2.5	and	other	outcomes,	including	cancer	and	adverse	birth	

outcomes.	Following	US	EPA	methods	(US	EPA,	2012a),	these	impacts	are	excluded.	Such	

omissions	may	lead	to	systematic	negative	biases	(O’Connell	and	Hurley,	2009).		

The	CR	function	is	arguably	the	most	important	and	most	uncertain	input	in	predicting	

attributable	cases.	The	case	study	uses	a	single	CR	function	for	most	outcomes.	Other	CR	
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estimates	may	be	valid	and	available,	and	can	be	used	to	bound	expected	ranges	or	show	

uncertainties,	e.g.,	Fann	et	al.	(2012)	noted	a	2.5-fold	variation	in	the	number	of	premature	

deaths	using	CRs	derived	from	two	large	multicity	observational	studies	(Laden	et	al.	2006;	RR=	

1.16	per	10	µg/m
3
	vs.	Krewski	et	al.	2009,	RR=1.06	per	10	µg/m

3
).	This	variation	may	reflect	

differences	in	study	population	demographics,	exposure	patterns,	and	other	factors.	CR	

estimates	should	be	drawn	from	well	conducted	epidemiological	studies	with	sufficient	

statistical	power.	For	local-scale	HIAs,	city-specific	CR	estimates,	ideally	from	large	multi-city	

studies,	may	be	advantageous	because	they	account	for	specific	population	characteristics.	

However,	such	estimates	often	are	not	available.	Large	multicity	cohort	studies	or	meta-

analyses	can	have	considerable	statistical	power,	but	may	not	be	fully	representative	of	the	

population	for	the	HIA.	When	selecting	CR	estimates	for	local-scale	HIAs,	it	is	important	to	

consider	how	the	original	study	population	differs	from	the	one	included	in	the	HIA	(Hubbell	et	

al.	2009).		

	

Table	2.2	demonstrates	the	sensitivity	of	HIA	results	to	the	baseline	health	data.	Compared	to	

national	averages	(CDC,	2014),	attributable	rates	increase	when	using	data	specific	to	Wayne	

County	(by	18%)	and	Detroit	(by	22%).	Thus,	the	same	2	μg/m
3	
reduction	yields	a	larger	impact	

in	Detroit	given	the	susceptible	population.	Using	local	data	in	urban-scale	HIAs	can	account	for	

population	susceptibility.	In	addition,	baseline	health	as	well	as	other	vulnerability	or	

susceptibility	factors	are	likely	to	be	unevenly	distributed	across	an	urban	region,	e.g.,	rates	of	

asthma	hospitalizations	vary	3-fold	across	the	study	region	and	some	of	the	highest	rates	are	

seen	in	more	polluted	areas	(DeGuire	et	al.	2016).	Areas	with	higher	asthma	rates	are	expected	
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to	have	more	avoided	asthma	exacerbations	than	areas	with	lower	rates,	given	the	same	PM2.5	

level.	The	use	of	spatially-resolved	health	and	exposure	data	should	increase	the	accuracy	of	

HIA	results,	and	could	allow	for	the	development	of	strategies	that	target	pollutant	reductions	

in	areas	that	confer	the	greatest	benefits		

	

Most	(74%)	of	the	cause-specific	deaths	are	due	to	ischemic	heart	disease	(IHD,	Table	A2.8).	

The	number	of	cause-specific	deaths	avoided	(n=230)	slightly	exceeds	the	number	of	all-cause	

premature	deaths	(n=190;	Table	1).	The	CR	functions	used	for	cause-specific	mortality	were	

developed	specifically	for	the	latest	GBD	study	(Lim	et	al.	2012).	These	non-linear	functions	

were	derived	from	studies	examining	ambient	air	pollution,	active	smoking,	secondhand	smoke	

exposure,	and	cooking	smoke	exposure	(Burnett	et	al.	2014).	The	shape	of	each	cause-specific	

CR	curve	differs	(see	Burnett	et	al.	2014,	Figure	2.1),	e.g.	for	IHD,	the	slope	is	steeper	at	lower	

concentrations	and	tends	to	flatten	at	higher	PM2.5	levels.	At	low	concentrations	(including	the	

8	to	10	μg/m
3
	in	the	present	analysis)	where	the	IHD	CR	function	is	steepest,	the	PAF	method	

gives	a	higher	number	of	cause-specific	deaths	than	the	all-cause	deaths	estimated	by	the	HIF.	

Generally,	predictions	using	non-linear	CR	functions	depend	on	the	baseline	and	scenario	

concentrations,	e.g.,	lowering	PM2.5	concentrations	from	11	to	9	μg/m
3
	avoids	182	cause-

specific	mortalities	(21%	fewer	deaths	than	the	10	to	8	μg/m
3
	scenario).	The	numbers	of	deaths	

predicted	for	these	concentrations	(679	and	498	deaths	at	11	and	9	μg/m
3
,	respectively)	exceed	

those	in	the	original	case	study	(596	and	370	deaths	at	10	and	8	μg/m
3
,	respectively),	but	

differences	between	the	baseline	and	scenario	deaths	decreases	at	higher	concentrations.	

These	differences	are	small	compared	to	uncertainties,	as	discussed	below.	
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The	case	study	also	compared	estimates	of	all-cause	mortality	predicted	by	the	HIF	and	PAF	

methods	using	the	same	CR	function	from	Krewski	et	al.	(2009)	(Table	2.1).	For	the	specified	

scenario,	the	two	methods	gave	the	same	number	of	avoided	deaths	(n=190).	Differences	

between	the	HIF	and	PAF	methods	also	result	from	differences	in	how	health	impacts	are	

calculated,	i.e.,	the	HIF	method	uses	the	concentration	difference	(Δx	=	2	µg/m3
	in	the	

scenario),	while	the	PAF	method	compares	attributable	burdens	across	scenarios	(Δx	=	10	

µg/m
3
	–	CFC).	Thus,	lowering	PM2.5	from	20	to	18	µg/m

3
	still	gives	190	avoided	all-cause	

premature	deaths	using	the	HIF	method,	but	PAF	predictions	decrease	to	176	premature	

deaths.	While	these	differences	are	small,	the	influence	on	DALYs	and	monetized	impacts	is	

large	given	the	high	values	assigned	to	premature	mortalities	(discussed	later).	

	

The	HIF	(eq.	2.1)	in	the	case	study	can	predict	short-term	impacts,	but	with	greater	uncertainty	

than	for	long-term	impacts.	This	paper	focuses	on	changes	in	long-term	(annual	average)	

concentrations,	and	mortality	CR	functions	based	on	studies	of	chronic	exposures	are	used,	

although	the	morbidity	CR	estimates	come	from	short-term	exposure	studies	(Table	A2.3).	To	

derive	short	term	impacts,	it	may	be	preferable	to	use	mortality	CR	estimates	drawn	from	

short-term	exposures	studies	(e.g.,	time	series	studies)	with	estimates	of	short-term	pollutant	

concentrations	(e.g.,	daily	PM2.5	concentrations).	As	noted	earlier,	short-term	exposures	likely	

will	exhibit	greater	spatial	and	temporal	variation	than	annual	average	concentrations,	

depending	on	proximity	to	the	local	emissions	sources,	meteorology,	and	other	factors.		
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Disability-adjusted	life	years	

YLLs,	YLDs	and	DALYs	facilitate	comparison	of	impacts	among	different	groups	or	cohorts	in	the	

population.	For	example,	the	number	of	avoided	deaths	in	the	60-64	year	age	group	is	36%	

lower	than	avoided	deaths	in	the	80-84	year	age	group,	but	the	avoided	YLLs	in	the	younger	

group	is	62%	higher	(Figure	2.1).	Given	the	severity	of	premature	deaths	(quantified	as	the	YLL),	

the	60-64	year	age	group	receives	the	greatest	benefit	from	the	PM2.5	reduction.	YLL	may	be	

particularly	meaningful	for	premature	mortality	since	deaths	are	delayed,	rather	than	avoided	

(Rabl,	2003).	

	

YLDs	tend	to	deemphasize	morbidity	outcomes	given	the	short	durations	of	these	impacts	(e.g.,	

1	to	5	days)	and	the	small	DWs	assigned	(Table	2.3,	Table	A2.4).	For	example,	given	the	

duration	of	an	asthma	exacerbation	(0.005	years)	and	its	DW	(0.22),	the	28,000	asthma	

exacerbations	avoided	annually	in	the	case	study	contribute	only	30	YLDs	to	the	total	3,100	

DALYs	predicted	(Table	A2.7).	For	asthma,	estimated	YLDs	due	to	emergency	department	visits	

or	exacerbations	may	be	underestimated	since	asthma	exacerbations	are	under-reported	

(Reddel	et	al.	2009)	and	the	time	lost	to	avoidance	behaviors	(e.g.,	not	participating	in	

recreational	activities)	are	excluded,	potentially	biasing	HIA	results.		

	

This	discussion	highlights	several	issues	when	disparate	health	outcomes	are	combined	on	the	

basis	of	duration	and	severity.	In	contrast,	metrics	using	the	number	of	cases	avoided	treat	

each	outcome	equally	and	avoid	issues	related	to	subjective	weightings	(de	Hollander	and	
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Melse,	2006).	Others	argue	that	consideration	of	duration	and	severity	is	required	to	make	

trade-off	comparisons	between	high	and	low	impact	outcomes	(Wong	et	al.	2003).	

	

Monetized	Impacts	

Like	DALYs,	monetized	benefits	of	air	pollution	reductions	depend	on	outcomes	included,	but	

are	driven	by	mortality,	again	due	to	the	high	value	assigned	to	a	statistical	life.	The	VSL	used	

for	mortality	($9.6	million)	far	exceeds	values	for	each	morbidity	outcomes	(Table	A2.5).	The	

lack	of	cessation	lags	and	discounting	in	the	case	study	is	not	expected	to	substantially	alter	

results	given	the	low	social	discount	rates	(3	to	7%)	recommended	(US	EPA,	2012a).	The	

valuation	method	endorsed	by	US	EPA	and	used	in	the	case	study	does	not	monetize	deaths	

based	on	age	using	the	VSLY	or	other	approaches	(unlike	the	DALYs	in	the	previous	section	that	

considered	the	timing	of	death	in	estimating	YLLs)	(US	EPA,	2010).	VSL	may	overstate	the	value	

of	premature	deaths	since	deaths	are	delayed,	rather	than	completely	avoided.	However,	VSLY	

or	methods	that	adjust	VSL	based	on	age	can	raise	contentious	issues	regarding	the	value	of	a	

life	saved	for	older	populations	(Robinson,	2007),	and	US	EPA	has	found	little	evidence	to	

support	age	adjustments	in	VSL	estimates	(US	EPA,	2010).		

	

Monetized	impacts,	like	DALYs,	deemphasize	morbidity	outcomes	due	to	their	low	and	

uncertain	valuations.	Morbidity	outcomes	are	difficult	to	monetize	accurately,	and	the	WTP	

may	underestimate	the	true	societal	costs.	For	example,	asthma	exacerbations	account	for	only	

0.08%	of	the	total	monetized	impacts	in	the	case	study,	despite	being	the	second-most	

frequently	avoided	morbidity	outcome	(Table	A2.7).	The	value	of	$58	assigned	to	each	
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exacerbation	(Rowe	and	Chestnut,	1986)	may	incompletely	account	for	medical	costs	or	time	

lost	at	work	or	school.	Monetized	metrics	may	not	reflect	the	sentiments	of	affected	

communities	in	Detroit	and	other	urban	areas	where	asthma	outcome	rates	greatly	exceed	

state	and	national	norms	(DeGuire	et	al.	2016).	The	dominance	of	mortality	outcomes	has	been	

demonstrated	in	Shanghai,	China	where	air	pollution-related	deaths	made	up	92.5%	of	total	

monetized	impacts	(800	deaths	monetized	at	1.2	billion	yuan	compared	to	420,000	morbidities	

monetized	at	0.09	billion	yuan)	(Voorhees	et	al.	2014).	Similarly,	US	EPA's	recent	RIA	for	ozone	

(O3)	showed	that	98%	of	the	total	monetized	benefits	($2.0	to	$3.4	billion)	of	a	70	ppb	ozone	

standard	would	be	due	to	avoided	premature	mortality	from	both	short-	and	long	term	

exposures	(880	to	1,020	avoided	deaths)	(US	EPA,	2014).	

	

Monetized	metrics	have	been	used	in	HIAs	to	facilitate	comparisons	among	heath-	and	non-

health	outcomes.	For	example,	greater	utilization	of	public	transport	that	lowers	pollutant	

levels	(due	to	less	personal	vehicle	use)	will	increase	physical	activity	(due	to	additional	

walking),	which	promotes	health.	In	a	recent	assessment	of	a	Boston	area	proposal	to	alter	

transit	pricing,	the	monetized	impacts	of	physical	activity	($75	million)	far	exceeded	air	

pollution’s	impacts	($1.5	million)	(James	et	al.	2014).	Including	the	co-benefits	of	air	quality	

management	can	provide	decision	makers	with	information	about	the	total	impact	of	a	strategy	

on	public	health,	and	potentially	additional	impetus	for	recommendations.	Such	analyses	can	

increase	the	HIA’s	scope,	complexity	and	uncertainty,	but	may	be	of	particular	value	when	the	

co-benefits	are	substantial.		
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Emissions	based	metrics	

Emissions-based	metrics	are	useful	when	it	is	more	feasible	to	estimate	changes	in	emissions	

rather	than	ambient	concentrations,	e.g.,	for	a	policy	that	requires	the	use	of	a	specific	control	

technology.	Emission-based	metrics	also	can	identify	specific	emission	sources	that	impose	the	

greatest	burden	on	the	population	given	that	contributions	from	specific	sources	to	local	air	

quality	are	known.	The	degree	to	which	a	specific	source	impacts	the	health	of	a	population	

depends	on	a	number	of	factors,	including	the	proximity	of	the	source	to	the	population	and	

local	meteorological	patterns.	In	order	to	use	emissions-based	metrics	effectively,	emissions	

inventory	data	need	to	be	combined	with	dispersion	modeling,	population	data,	HIFs	and	the	

other	data	described	previously	(Fann	et	al.	2009).	The	case	study	assumes	a	2	μg/m
3
	PM2.5	

reduction	using	equal	emissions	reductions	across	multiple	sectors,	does	not	account	for	the	

distribution	of	sources	in	the	population,	and	calculates	aggregate	benefits	per	ton.	The	highest	

benefit	per	ton	of	emissions	reduced	likely	will	occur	for	sources	or	sectors	in	populated	areas	

that	release	pollutants	near	ground	level,	e.g.,	on-	and	off-road	diesel	engines	in	densely	

populated	cities.	Such	analyses	can	be	data	intensive	and	potentially	complex,	thus	data	gaps	

and	model	uncertainties	should	be	recognized	and	communicated	to	key	decision	makers	and	

stakeholders.	In	cases,	national	average	values	for	benefits	per	ton	are	available	(e.g.,	US	EPA,	

2013b).	However,	each	HIA	scenario	and	each	city	may	uniquely	influence	effects	of	location-

specific	characteristics	(e.g.,	location,	type,	meteorological	trends).		
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Uncertainty	in	health	impact	metrics	

A	simplified	uncertainty	analysis	demonstrates	the	variability	of	HIA	results	due	to	CR	

estimates,	identified	as	the	single	most	important	source	of	uncertainty	for	urban-scale	HIAs	

(Chart-asa	and	Gibson,	2015).	The	most	uncertain	impacts	are	the	low-severity	outcomes,	as	

shown	by	the	wide	confidence	intervals	(CIs)	for	the	number	of	avoided	impacts	(Table	2.1).	The	

CIs	are	symmetrical	for	mortality,	respiratory	and	cardiovascular	hospitalizations,	emergency	

department	visits,	MRAD	and	WLD	since	the	underlying	CR	estimates	use	log-linear	models,	

while	asymmetrical	CIs	result	for	non-fatal	heart	attacks	and	asthma	exacerbations	since	these	

outcomes	are	based	on	logistic	regression	models.	For	the	latter,	the	large	upper	"tail"	of	the	

distribution	can	greatly	increase	impacts,	e.g.,	the	MC	analyses	for	non-fatal	heart	attacks	and	

asthma	exacerbations	give	means	that	are	6	and	11%	higher,	respectively,	than	the	

deterministic	estimates	that	use	the	mean	CR	estimate	(Table	2.1).	Large	CIs	can	cause	

additional	issues,	e.g.,	16%	of	the	MC	simulations	for	asthma	exacerbations	show	disbenefits	

(negative	avoided	impacts)	when	using	the	HIF	estimate	in	Table	A2.3	and	a	CR	function	drawn	

from	a	single	study	(Mar	et	al.	2004).	Such	implausible	outcomes	highlight	the	need	to	use	CR	

estimates	from	well-powered	studies	that	have	small	standard	errors,	to	pool	CR	estimates	

among	multiple	studies,	or	to	truncate	negative	avoided	impacts.	

	

Uncertainty	estimates	due	to	parameter	uncertainty	have	been	estimated	using	MC	analyses,	

Bayesian	methods,	and	sensitivity	analyses,	and	a	few	HIAs	have	considered	uncertainties	in	

model	structures	(e.g.,	Baccini	et	al.	2015;	Chanel	et	al.	2014;	Chang	et	al.	2014;	Chart-asa	and	

Gibson,	2015;	Woodcock	et	al.	2014;	Xia	et	al.	2015;	reviewed	in	Mesa-Frias	et	al.	2013).	For	the	
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number	of	avoided	cases,	uncertainty	arises	from	CR	estimate,	baseline	health	outcome	rates,	

and	changes	in	exposure	concentrations.	These	uncertainties	are	propagated	to	and	potentially	

increase	for	other	metrics,	e.g.,	as	mentioned,	additional	uncertainties	in	DALYs	include	the	

duration	of	outcomes	and	the	subjective	assignment	of	disability	weights.	Similarly,	monetized	

metrics	must	contend	with	the	subjectivity	and	variability	of	valuations.	Ideally,	uncertainty	

analyses	would	consider	all	sources	of	variability,	including	dependencies	among	inputs.	If	the	

total	uncertainties	among	competing	mitigation	strategies	are	very	large,	then	quantitative	

HIAs	may	not	inform	the	remedy	selection,	and	decisions	may	rest	on	economic	or	other	

criteria.	However,	estimates	of	both	health	impacts	and	uncertainties	can	motivate	the	need	

for	mitigation,	especially	if	decision	makers	are	risk	averse	(IOM,	2013).	For	example,	an	MC	

analysis	examining	health	impacts	due	to	vehicle	emissions	in	Chapel	Hill,	North	Carolina	

(examining	uncertainty	in	CR	estimates,	PM2.5	emissions,	exposure	concentrations	and	

demographics)	gave	a	substantially	higher	number	of	cases	compared	to	deterministic	results	

(Chart-asa	and	Gibson,	2015).	Such	uncertainties	should	be	calculated	and	reported	to	decision	

makers.	

	

Quantitative	uncertainty	analyses	themselves	have	shortfalls.	There	are	substantial	data	gaps	

regarding	the	variability	and	uncertainty	of	data,	as	well	as	the	interactions	among	variables.	

Many	analyses	use	a	simplified	bounding	approach	that	does	not	indicate	the	likelihood	or	

confidence	intervals	of	possible	outcomes.	As	mentioned,	weight-of-evidence	limitations	may	

preclude	consideration	of	potentially	important	outcomes.	For	these	reasons,	characterizing	

the	limitations	of	the	uncertainty	analysis	itself	is	important.		
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Co-benefits	of	air	pollution	management	

Although	excluded	in	the	case	study,	HIA	metrics	can	incorporate	co-benefits	of	pollution	

control	policies.	For	example,	incentivizing	active	transportation	to	replace	short	car	trips	

reduces	emissions	and	can	increase	physical	activity	with	significant	health	benefits	(Maizlish	et	

al.	2013).	Strategies	that	promote	active	and	public	transportation	also	decrease	the	frequency	

of	traffic-related	car	crashes	(Rojas-Rueda	et	al.	2013;	Xia	et	al.	2015).	Increasing	tree	cover	in	

cities	removes	pollutants	from	urban	air	sheds	(Nowak	et	al.	2013)	and	can	be	advantageous	for	

surface	cooling	and	storm	water	management	(Loughner	et	al.	2012;	Wang	et	al.	2008).		

	

Climate	change	mitigation	and	adaptation	are	major	co-benefits	of	air	pollution	management.	

The	transportation	sector	is	responsible	for	27%	of	total	greenhouse	gas	(GHG)	emissions	in	the	

US	(US	EPA,	2015c)	and	23%	of	CO2	emissions	globally	(IEA,	2014).	Transportation	policies	

aimed	at	reducing	primary	pollutant	emissions,	particularly	those	that	reduce	travel	demand	or	

fuel	consumption,	lead	to	reductions	in	GHG	emissions	(McCollum	and	Yang,	2009).	

Comparisons	between	policy	options	should	consider	the	health	impacts	of	reduced	primary	

pollutant	emissions	as	well	as	the	environmental	and	health	benefits	of	reduced	GHG	

emissions.		

	

Co-benefits	can	be	indirect,	secondary	in	nature	and	long	term,	and	thus	difficult	to	assess.	Still,	

using	common	metrics	to	link	these	outcomes	to	public	health	makes	the	health	metrics	more	
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comprehensive	and	compelling.	Again,	appropriate	outreach	and	education	may	be	required	to	

inform	decision	makers.		

	

Challenges	of	the	use	of	quantitative	HIA	methods	

A	number	of	challenges	may	be	encountered	when	applying	the	methods	in	this	paper	to	other	

regions.	First,	urban-scale	HIAs	are	best	conducted	using	local	baseline	health	data	that	reflect	

the	health	status	of	the	population	(Hubbell	et	al.	2009).	Sub-national	health	data	may	not	be	

available	where	public	health	resources	are	limited,	e.g.,	developing	countries,	especially	for	

morbidity	outcomes	(Boerma	and	Stansfield,	2007).	Second,	most	epidemiological	studies	have	

been	conducted	in	the	USA	and	Europe	where	concentrations	tend	to	be	lower	than	other	parts	

of	the	world,	and	CR	estimates	derived	from	these	studies	used	in	other	populations	have	

limitations,	e.g.,	while	the	GBD	risk	estimates	combine	several	exposure	sources,	estimates	

include	only	mortality	outcomes	and	respiratory	infections	in	young	children	(Burnett	et	al.	

2014).	Third,	suitable	(e.g.,	long-term)	air	quality	data	for	exposure	assessment	may	not	be	

available	in	many	regions.	While	concentrations	can	be	estimated,	e.g.,	satellite	data	and	global	

chemical	transport	models	have	been	used	to	derive	concentrations	at	coarse	spatial	resolution	

(10	km	x	10	km,	van	Donkelaar	et	al.	2010),	such	methods	also	have	uncertainties	and	may	not	

capture	urban-scale	patterns	necessary	for	local-scale	HIAs.	Fourth,	regions	differ	with	respect	

to	pollutant	sources,	e.g.,	vehicle	emissions	may	dominate	exposures	in	the	developed	

countries,	while	cooking	and	home	heating	emissions	from	biomass	combustion	may	dominate	

exposures	in	developing	countries.	Such	differences	will	shape	the	nature	of	control	strategies.	

Due	to	these	and	possibly	other	reasons,	site-specific,	comprehensive,	and	quantitative	HIAs	
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may	not	be	feasible	in	some	regions.	Still,	approximations	using	the	approach	with	surrogate	or	

estimated	data	may	be	valuable,	and	can	serve	to	highlight	data	gaps.	

	

Recommendations		

Several	recommendations	follow	from	our	analysis	of	the	literature	and	the	case	study.	First,	if	

requisite	data	are	available,	HIAs	should	use	quantitative	metrics	to	assess	health	impacts	and	

provide	meaningful	evidence	regarding	health	benefits	to	decision	makers	formulating	air	

quality	management	plans	(Fann	et	al.	2011).	Quantitative	analyses	permit	explicit	comparisons	

between	options,	better	characterization	of	the	magnitude	of	impacts	for	specific	outcomes,	

estimates	of	the	total	number	of	people	affected,	and	a	framing	of	health	outcomes	in	the	

same	manner	as	other	policy	considerations.	Quantitative	metrics	also	enable	decision	makers	

to	more	readily	incorporate	HIA	results	into	the	policy	process	(Davenport	et	al.	2006).	Because	

they	describe	concentration-dependent	impacts,	such	metrics	allow	estimates	of	benefits	for	

air	quality	improvements	that	go	beyond	standard	attainment.	The	case	study	example	was	

limited	to	PM2.5	reductions,	but	multi-pollutant	frameworks	should	be	used	(Dominici	et	al.	

2010;	Johns	et	al.	2012;	Oakes	et	al.	2014).		

	

Second,	since	no	single	metric	fully	meets	the	evaluative	criteria,	the	use	of	several	

complementary	indicators	is	recommended.	The	number	of	cases	avoided	is	simple	and	easy	to	

interpret,	but	does	not	account	for	the	severity	of	the	outcome.	To	be	comprehensive,	urban-

scale	HIAs	should	report	the	number	of	avoided	cases	for	multiple	relevant	health	outcomes,	

and	cases	should	be	disaggregated	into	subgroups	to	allow	consideration	of	equity,	location,	
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race/ethnicity,	age,	and	other	relevant	factors.	Consideration	of	multiple	health	outcomes	in	

quantitative	HIAs	yields	estimates	of	the	total	number	of	people	affected,	an	important	

indicator	itself.	However,	such	estimates	may	undercount	the	total	number	of	people	affected	

since	not	all	outcomes	are	captured.	In	addition,	estimates	of	morbidity	outcomes	can	have	

considerable	uncertainty,	and	possible	outcomes	with	limited	evidence	are	excluded.	Despite	

these	limitations,	inclusion	of	morbidity	outcomes	is	important	for	evaluating	strategies	that	

may	not	lead	to	substantial	numbers	of	avoided	deaths,	and	for	minimizing	biases	that	would	

tend	to	underestimate	the	public	health	impacts.	Estimates	of	morbidity	outcomes	and	the	

number	of	people	affected	should	be	recognized	as	"low	end"	estimates	that	complement	all-

cause	mortality	estimates,	and	that	provide	additional	information	useful	for	comparing	among	

management	options.	DALYs	incorporate	the	severity,	duration	and	timing	of	outcomes,	but	are	

complex	and	require	additional	data	inputs	(including	uncertain	disability	weights);	moreover,	

decision	makers	may	not	readily	understand	this	metric.	Still,	DALYs	find	widespread	use	in	

studies	of	population	health,	and	can	aggregate	health	impacts	of	policies	and	programs	

allowing	comparisons	across	studies.	Monetized	impacts	share	many	of	the	same	uncertainties	

as	DALYs,	and	similarly,	are	driven	by	mortality,	however,	these	metrics	are	familiar	to	decision	

makers	and	can	be	used	in	other	policy	evaluations	(e.g.,	cost-benefit	analysis).	No	single	

summary	measure	fully	captures	societal	impacts	associated	with	morbidity.	Still,	HIAs	should	

utilize	a	composite	indicator	like	DALYs	or	monetized	values	that	allow	ranking	of	options.		

	

Third,	metrics	should	be	tailored	to	the	local	context.	Some	metrics	may	be	particularly	useful	

and	favored	in	certain	applications.	For	example,	emissions-based	metrics	can	facilitate	
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comparisons	between	sectors	and	between	options	within	a	sector,	and	maybe	particularly	

useful	if	policy	options	involve	control	technologies	or	if	monetized	benefits	per	ton	vary	

considerably	by	sector	and	source.	Urban-scale	HIAs	are	not	limited	to	an	emissions	context,	

and	can	also	be	used	to	inform	decision	makers	about	the	benefits	of	alternative	exposure	

reduction	strategies,	e.g.,	use	of	vegetative	buffers	along	highways,	rerouting	trucks	to	avoid	

residential	neighborhoods,	or	use	of	indoor	air	filtration.	Evidence	from	quantitative	HIAs	can	

encourage	decision	makers	to	implement	such	interventions,	especially	when	the	number	of	

people	affected	is	high	and	the	intervention	is	viewed	as	cost-effective.	

	

Fourth,	community	values	should	be	considered	in	selecting	metrics	that	are	appropriate	for	

urban	scale	HIAs.	DALYs	and	monetized	impacts	place	a	high	value	on	mortality.	However,	

morbidity	outcomes	are	far	more	common.	DALYs	or	dollars	might	poorly	capture	local	

attitudes	regarding	less	severe	outcomes,	e.g.,	asthma	exacerbations.	Engagement	with	

stakeholders	at	early	stages	of	the	HIA	would	best	serve	to	prioritize	outcomes	and	metrics	

(Dannenberg	et	al.	2006).	Stakeholder	engagement	could	be	achieved	using	a	number	of	

techniques,	e.g.,	community	meetings,	focus	groups,	and	advisory	committees.	The	choice	of	

which	stakeholder	engagement	strategies	are	most	appropriate	will	depend	on	the	timeframe	

of	the	HIA	process,	the	level	at	which	the	decision	is	made	(e.g.,	local,	national)	and	other	

factors	(NRC	2011).		

	

Fifth,	HIAs	are	strengthened	by	drawing	on	local	information,	including	emission	and	dispersion	

data,	to	understand	source-receptor	relationships,	including	spatial	variability,	demographic	
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and	vulnerability	information,	and	epidemiological	evidence	for	concentration-response	

functions.		

	

Sixth,	environmental	and	health	co-benefits	of	air	quality	management	strategies,	including	

climate	change	mitigation,	should	be	identified.	When	requisite	data	are	available,	these	co-

benefits	should	be	quantified	using	the	same	metrics	selected	for	air	pollution	health	impacts,	

thus	increasing	the	comprehensiveness	of	the	overall	assessment	of	control	strategies.	

	

Lastly,	quantitative	HIAs	may	underestimate	the	total	impact	of	a	policy	or	program	because	

certain	environmental	or	health	impacts	cannot	be	reliably	quantified.	Qualitative	methods	can	

augment	the	quantitative	analyses	and	identify	potential	health	and	environmental	outcomes	

that	do	not	have	reliable	CR	estimates,	e.g.,	cancer	and	adverse	birth	outcomes.		

	

Conclusions		

This	study	reviewed	quantitative	metrics	in	recent	HIAs	addressing	air	pollutant	exposure,	and	

developed	evaluative	criteria	for	selecting	and	using	metrics.	The	metrics	were	illustrated	in	a	

case	study	for	the	Detroit,	Michigan	area.	Quantitative	metrics	describing	the	direction,	

magnitude	and	severity	of	expected	health	impacts	can	help	inform	decision	makers	and	

elevate	health	concerns	to	the	level	of	other	political	and	economic	drivers	into	evaluations	of	

projects,	programs	and	policies.	Different	metrics	prioritize	different	health	outcomes.	For	

examples,	the	number	of	avoided	cases	emphasizes	common	but	lower	severity	impacts	(e.g.,	
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minor	restricted	activity	days	and	asthma	exacerbations),	while	monetized	impacts	and	DALYs	

emphasize	the	relatively	small	number	of	premature	mortalities.		

	

A	number	of	recommendations	were	developed	for	selecting	metric	appropriate	for	air	quality	

applications.	Metrics	should	be	comprehensive,	identify	the	number	of	people	affected	for	each	

morbidity	and	mortality	outcome,	and	clearly	communicate	both	direct	and	indirect	impacts.	

Further,	metrics	should	use	local	data	(e.g.,	baseline	rates	from	the	study	population),	

incorporate	outcomes	of	high	public	health	importance,	and	represent	the	spatial	and	temporal	

dimensions	of	impacts.	Uncertainties	and	limitations	should	be	characterized	quantitatively	and	

qualitatively,	and	reported	to	decision	makers.	While	appropriate	metrics	depend	on	the	

application,	most	HIAs	would	benefit	from	several	metrics	that	capture	impacts	to	specific	

population	groups	as	well	as	overall	health	impacts.	
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Table	2.1.	Number	of	premature	deaths	and	morbidities	avoided	per	year	in	Wayne	County	due	

to	a	reduction	in	PM2.5	concentration	from	10	to	8	μg/m
3
.	

	 Avoided	cases
1	

Percent	

attributable	 Attributable	rate	
Outcome	(age	group)	 (cases	per	year)	 (%)	 (per	100,000)	
All-cause	premature	mortality	(>29	years,	HIF)	 190	(130-260)	 1.16	 10.48	

All-cause	premature	mortality	(>29	years,	PAF)	 190	(120-240)	 1.13	 10.22	

Cause-specific	mortality	(>24	years,	PAF)
2
	 230	 3.55	 12.61	

Infant	mortality	(<1	year)	 2	(0-3)	 0.77	 0.09	

Minor	restricted	activity	days	(18-64	years)	 37,000	(15,000-58,000)	 0.44	 2,040	

Asthma	exacerbations	(6-18	years)
3
	 28,000	(-34,000-76,000)	 2.49	 12,639	

Work	loss	days	(18-64	years)	 21,000	(17,000-24,000)	 0.92	 1,148	

Asthma	emergency	department	visit	(>	1	year)
3
	 190	(49-323)	 1.11	 86.42	

Non-fatal	MI	(≥	18	years)
	

160	(29-260)	 4.93	 8.92	

CV	hospitalization	(≥	20years)	 84	(56-110)	 0.30	 4.71	

Pneumonia	hospitalization	(>64	years)
	

26	(4-47)	 0.79	 1.45	

COPD	hospitalization	(≥20	years)	 25	(15-36)	 0.40	 1.42	

Asthma	hospitalization	(<65	years)	 19	(7-30)	 0.66	 1.05	
1	
Number	of	avoided	cases	is	rounded	to	two	significant	digits;	95%	confidence	interval	in	parentheses.	

2	
Sum	of	IHD,	stroke,	LC	and	COPD	deaths	estimated	using	the	PAF	method.	

3	
Among	persons	with	asthma.	
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Table	2.2.	Rates	of	premature	mortality,	years	of	life	lost,	and	monetized	impacts	attributable	

to	a	reduction	in	PM2.5	concentration	from	10	to	8	μg/m
3
	based	on	baseline	mortality	rates	for	

the	United	States,	Wayne	County,	and	Detroit		
	

Premature	deaths	 Avoided	YLL	 Monetized	impacts
1	

Baseline	Rate	Source	 (per	100,000)	 (years	per	100,000)	 (1000$	per	100,000)	
National	 8.6	 124.0	 83,000	

Wayne	County	(including	Detroit)		 10.5	 163.6	 101,000	

Detroit	 11.0	 194.6	 105,000	
1	
Monetized	benefits	are	in	2010$	projected	to	a	2020	income	level	and	rounded	to	the	nearest	whole	number	

with	two	significant	digits	
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Table	2.3.	DALYs	and	monetized	impacts	avoided	per	year	for	deaths,	unscheduled	

hospitalizations,	and	morbidity	outcomes	in	Wayne	County	due	to	a	reduction	in	PM2.5	

concentration	from	10	to	8	μg/m
3
.	95%	confidence	interval	in	parentheses.	

Outcome		 DALYs
1	
(years)	 Monetized	impacts

2	
(1000$)	

Premature	mortality
3
	 3052	(2011	-	4074)	 1,800,000	(1,200,000	-	2,400,000)	

All	morbidities	 47	(-28	-	108)	 36,000	(8,900	-	57,000)	

Total	 3099	(1982	-	4182)	 1,900,000	(1,200,000	-	25,000,000)	

Percent	attributable	to	mortality	 98.5	%	 94.8%	
1	
DALYs	are	YLL	for	mortality	outcomes	and	YLD	for	morbidity	outcomes.		

2
	Monetized	impacts	are	calculated	using	2010$	projected	to	a	2020	income	level	and	rounded	to	the	

nearest	whole	number	with	two	significant	figures.		
3
	Premature	mortality	is	the	sum	of	premature	mortality	among	adults	(>29	years,	HIF	method)	and	infant	

mortality	(<1	year).	
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Table	2.4.	Benefits	per	ton	for	a	2800	tons	per	year	reduction	of	directly	emitted	PM2.5	in	

Wayne	County.	

	 Avoided	Cases
	

Monetized	Impacts
1	

Outcome	(age	group)	 (cases	per	ton)	 ($	per	ton)	
All-cause	premature	mortality	(>29	years,	HIF	method)	 0.067	 643,845	

Infant	mortality	(<1	year)	 0.001	 5,364	

Minor	restricted	activity	days	(18-64	years)	 13.058	 888	

Asthma	exacerbations	(6-18	years)
2
	 9.844	 571	

Work	loss	days	(18-64	years)	 7.346	 1,102	

Asthma	emergency	department	visit	(>	1	year)
2
	 0.067	 29	

Non-fatal	MI	(≥	18	years)	 0.057	 8,173	

CV	hospitalization	(≥	20years)	 0.030	 1,247	

Pneumonia	hospitalization	(>64	years)	 0.009	 334	

COPD	hospitalization	(≥20	years)	 0.009	 264	

Asthma	hospitalization	(<65	years)	 0.007	 107	

Total	monetized	benefits	 	 661,442	
1	
Monetized	benefits	are	in	2010$	projected	to	a	2020	income	level	

2
	Among	persons	with	asthma	
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Table	2.5.	Criteria	used	to	evaluate	potential	metrics	or	urban-scale	health	impact	assessments.	
Criterion	 Description	and	Implications	 References	

Interpretability	 Readily	understood	by	lay	audiences	without	need	for	complex	

technical	explanations	

AbouZahr	et	al.	2007;	

Murray,	2007;	

Sanderson	et	al.	2006	

Comparability	 Can	be	compared	between	different	populations,	control	

scenarios	or	policy	alternatives	

Walker	et	al.	2007	

Comprehensiveness	 Measures	the	total	impact	on	population	health	by	including	all	

relevant	outcomes	relevant	to	the	pollutant	of	interest	

Considers	timing	and	severity	of	the	outcomes	

Includes	multiple	exposure	pathways	or	health	determinants	

(e.g.,	a	public	transit	policy	may	reduce	air	pollution	exposures	

and	promote	physical	activity)	

Bell	et	al.	2011;		

Rabl,	2003;		

Wong	et	al.	2003	

Representativeness	 Data	inputs	reflect	the	baseline	health	status	and	

demographics	of	the	study	population	

Bell	et	al.	2011;	Hubbell	

et	al.	2009	

Spatial	Resolution	 Air	pollution	concentration	estimates	and	baseline	health	data	

reflect	the	heterogeneity	in	a	population’s	demographics,	

health	status	and	exposures	

The	boundaries	of	the	HIA	are	appropriate	for	the	proposed	

project	or	policy	(i.e.,	city-wide	policies	vs.	localized	projects	or	

programs)	

Batterman	et	al.	2014;	

Kheirbek	et	al.	2013;	

Thompson	et	al.	2014	

Temporal	

Resolution	

Impacts	of	acute	and	chronic	exposures	assessed	

Accounts	for	anticipated	changes	in	population	(e.g.,	age	

structure,	baseline	rates)	over	time		

Considers	lag	between	the	timing	of	exposure	and	outcome	

occurrence	

Bell	et	al.	2011;		

Flachs	et	al.	2013	

Relevant	

environmental	

stressors	

Considers	changes	in	multiple	pollutants	and	pollutant	

interactions	(e.g.,	a	policy	to	reduce	PM	may	also	influence	NOx	

or	O3	concentrations	which	have	additional	impacts)	

Burnett	et	al.	2005;	

Dominici	et	al.	2010	

Equity	 Disaggregates	population	subgroups	by	vulnerability	or	

susceptibility	(i.e.,	race/ethnicity,	age,	geographic	location)	

	

Jerrett	et	al.	2004;	

O’Neill	et	al.	2008	

Consideration	of	

uncertainty	

Identifies	and	evaluates	uncertainty		

Uncertainties	are	communicated	effectively	

Walker	et	al.	2007	
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Table	2.6.	Summary	of	strengths	and	weaknesses	of	metrics	used	in	urban-scale	health	impact	

assessments.	
	 Metric	 Strengths	 Limitations	

1a	

Predicted	number	

of	premature	

deaths,	disease	

cases	or	

unscheduled	

hospitalizations	

e.g.,	190	

premature	

mortalities	

avoided	in	Wayne	

county	per	year	

	

Easy	to	interpret	

Demonstrates	the	magnitude	of	an	

impact	on	a	population	based	on	the	

number	people	potentially	affected	

Population	specific	input	data	lead	to	

estimates	that	reflect	underlying	health	

status	and	susceptibility	to	adverse	

outcomes	

Stratification	based	on	vulnerability	or	

susceptibility	may	lead	to	equity	

considerations		

Comprehensiveness	is	dependent	on	the	

identification	and	inclusion	of	all	relevant	

outcomes	

Dependent	on	selection	of	CR	and	on	the	

baseline	rates	for	outcomes	

Provides	no	information	on	the	duration	or	

permanence	of	the	impacts	

Not	all	health	impacts	are	independent;	

can	lead	to	biased	estimates	if	this	

dependence	is	not	accounted	for		

Cannot	be	compared	directly	across	

populations	of	differing	size	

1b	

Percent	

attributable		

e.g.,	1.16%	of	

annual	deaths	in	

Wayne	County	

would	be	avoided	

Explains	what	fraction	of	the	population	

burden	is	attributable	to	air	pollution	

Indicates	which	option	may	be	more	

beneficial	in	reducing	the	incidence	of	a	

specific	adverse	outcome	

Interpretation	can	be	limited	if	estimates	

for	other	exposures	are	not	available	for	

comparison	

1c	

Attributable	rate	

e.g.,	10.5	avoided	

premature	

moralities	per	

100,000	people	

Makes	metrics	comparable	between	

populations	of	differing	size	

	

Rates	can	be	harder	to	interpret	for	those	

unfamiliar	with	their	use	(Walker	et	al.	

2007)	

2	 DALYs	

Measures	mortality	and	morbidity	in	

one	metric	using	time	as	a	common	unit	

Accounts	for	the	severity	and	

permanence	of	an	outcome	(e.g.,	

duration	and	disability	weight)	

Age-weighting	and	assignment	of	disability	

weights	can	be	uncertain	or	controversial	

Diminished	importance	of	morbidity	

outcomes	due	to	weighting	factors	

3	
Monetized	

impacts		

Often	used	in	regulatory	analyses	and	

HIAs;	can	facilitate	comparisons	with	

other	types	of	impacts	(e.g.,	economic)	

Frames	health	outcomes	in	the	same	

manner	as	non-health	considerations	

Facilitate	cost-effectiveness	or	cost-

benefit	analyses	

US	EPA	methods	for	monetized	premature	

mortality	does	not	consider	the	number	of	

years	of	life	lost,	only	the	total	number	of	

premature	deaths		

May	not	accurately	reflect	the	total	societal	

costs	of	morbidity	outcomes	

4	

Functional-unit	

based	metrics	

(e.g.,	benefits	per	

ton)	

Appropriate	when	changes	in	ambient	

concentrations	are	difficult	to	predict	

but	estimated	changes	in	emissions	are	

available.	Can	identify	emission	sources	

for	targeted	reductions	(e.g.,	sector	

specific	metrics)	

Need	to	account	for	the	location,	proximity	

to	populations,	and	type	of	emissions	

source	

Impacts	(benefits)	per	ton	estimates	can	be	

very	uncertain	depending	on	the	data	

inputs	
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Figure	2.1.	Number	of	avoided	premature	deaths	and	years	of	life	lost	(YLL)	per	year	by	age	

group	in	Wayne	County	for	a	reduction	in	PM2.5	concentration	from	10	to	8	μg/m
3
.		
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Appendix	A2	

SUPPLEMENTAL	MATERIALS	FOR	CHAPTER	2	

	

Wayne	County,	MI	Case	Study	

As	described	in	the	methods,	the	health	impact	metrics	evaluated	in	the	paper	are	

demonstrated	using	a	case	study	of	Wayne	County,	MI	in	2012.		

	

The	study	population	is	stratified	into	5-year	age	groups	following	2012	demographics	(CDC,	

2014).	Asthma	prevalence	among	children	and	adults	in	Wayne	County	(2011-2013)	is	used	to	

estimate	the	at-risk	population	for	asthma	emergency	department	visits	and	asthma	

exacerbations	(AIM,	2014).	Age-	and	cause-specific	non-injury	mortality	rates	use	Wayne	

County	averages	for	2012	(CDC,	2014),	and	hospitalization	rates	are	drawn	from	the	Michigan	

Resident	Inpatient	Database	(MDCH,	2014).	Age-stratified	baseline	rates	for	Wayne	County	

were	not	available	for	asthma-related	emergency	department	(ED)	visits	or	non-fatal	

myocardial	infarction,	so	national	averages	were	used	(CDC,	2012;	Moorman	et	al.	2012).	

Baseline	incidence	rates	for	asthma	exacerbations,	minor-restricted	activity	days	(MRAD)	and	

work	loss	days	(WLD)	were	also	not	available	for	Wayne	County,	so	the	case	study	uses	rates	

from	the	recent	PM2.5	RIA	(Table	5.3,	US	EPA	2012a).	Age-stratified	population	and	baseline	

health	rates	used	in	the	case	study	are	listed	in	Table	A2.2.
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CR	estimates	used	in	the	HIF	method	are	drawn	from	epidemiological	studies	meeting	US	EPA	

criteria	which	considered	sample	size,	study	design	and	location,	and	the	demographics	of	the	

study	population	(US	EPA,	2012a).	These	CR	estimates	are	either	log-linear	or	logistic	and	do	

not	vary	with	age,	except	for	two	outcomes.	Chronic	obstructive	pulmonary	disease	(COPD)	

hospitalizations	and	cardiovascular	(CV)	hospitalization	use	separate	CR	estimates	for	the	20-64	

year	age	groups	and	the	65+	year	age	groups.	The	PAF	method	uses	cause-specific	CR	estimates	

for	premature	mortality	developed	using	a	nonlinear	function;	the	CR	function	decreases	with	

age	for	IHD	and	stroke	mortalities	(Burnett	et	al.	2014).	Specific	CRs	used	are	listed	in	Table	

A2.3.	To	contrast	the	two	calculation	methods,	the	PAF	method	is	used	to	estimate	the	all-

cause	mortality	burden	of	air	pollution	at	each	scenario	concentration	relative	to	the	

counterfactual	concentration	(5.8	µg/m
3
)	and	reports	the	difference	between	the	two	

scenarios,	and	the	HIF	method	is	used	to	estimate	the	incremental	change	in	incidence	due	to	

the	change	in	exposure	concentration	(Δx	=	2	µg/m3
).	

	

Duration	metrics	in	the	case	study	include	YLL	and	YLD.	YLL	metrics	use	age-specific	average	

remaining	life	expectancies	(LE)	based	on	data	for	Michigan	residents	in	2012	(MDCH,	2015).	

Variation	in	LE	due	to	gender,	race,	or	ethnicity	is	not	considered.	Durations	of	unscheduled	

hospitalizations	use	the	average	length	of	stay	in	US	hospitals	(CDC,	2012).	Other	outcomes,	

e.g.,	asthma	exacerbations,	work	loss	days	and	minor	restricted	activity	days,	are	assumed	to	

have	durations	from	1	to	2	days.	Disability	weights	(DWs)	for	the	US	are	unavailable,	and	while	

the	GBD	group	has	updated	its	DW	values	(Salomon	et	al.	2012),	few	air	pollution-related	

outcomes	included	in	the	HIA	have	been	assigned	DWs.	This	analysis	uses	DW	values	from	an	
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analysis	comparing	health	metrics	(de	Hollander	et	al.	1999).	Durations	and	DWs	are	listed	in	

Table	A2.4.	Outcomes	are	assumed	to	occur	in	the	year	when	PM2.5	levels	are	reduced,	i.e.,	lags	

are	not	used.	Following	the	most	recent	GBD	study,	DALY	estimates	are	not	age-weighted	or	

discounted	(Murray	et	al.	2012).		

	

Because	economic	valuations	specific	to	Wayne	County	are	not	available,	dollar	values	for	

monetized	benefits	in	the	case	study	follow	US	EPA	values	(US	EPA,	2010).	The	currently	VLS	is	

derived	from	26	studies;	VSLY	is	not	currently	used.	Since	WTP	for	reduced	mortality	risk	

depends	in	part	on	income,	US	EPA	projected	values	to	1990	and	2020	income	levels	(US	EPA	

2012a),	and	the	case	study	uses	the	2020	values.	Values	of	each	incident	death	or	morbidity	

outcome	are	listed	in	Table	A2.5.		
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Supplemental	Tables	

Table	A2.1.	Summary	of	HIA	studies	of	air	pollution	reviewed	(n=38)	
Study	 Scope	 Scale	 Exposures	 Outcomes	included	 Metrics	Used	

Chart-asa	and	Gibson,	2015	
Project	

assessment	
Urban	

Short-term	PM2.5	

(TRAP)	

Mortality;	

hospitalizations	
Cases	

Hutter	et	al.	2015	
Policy	

assessment	

Urban;	

Rural	
NO2,	PM10,	PM2.5	 Mortality	 Cases	

Adamkiewicz	et	al.	2015	 BOD	 Urban	 PM10	(TRAP)	 Mortality,	morbidity	 DALYs	

Jakubiak-Lasocka	et	al.	

2015	
BOD	 Urban	 PM22.5,	PM10	

Mortality,	unscheduled	

hospitalizations,	other	

morbidities	

Cases	

Baccini	et	al.	2015	 BOD	 Urban	 PM10	 Mortality	 Cases	

Xia	et	al.	2015	
Policy	

assessment	
Urban	

PM2.5	(TRAP);	

also	physical	

inactivity	

Mortality,	morbidity,	

physical-inactivity	

related	diseases	

Cases,	DALYs	

Chalbot	et	al.	2014	 BOD	 Urban	
Traffic-related	

noise,	PM2.5	

CVD	and	respiratory	

mortality	
Cases	

Tobías	et	al.	2014	 BOD	 State	 PM2.5	

Non-accidental,	CVD,	

stroke	and	lung	cancer	

mortality	

Cases	

Hänninen	et	al.	2014	 BOD	 National	 O3,	PM2.5	 Mortality	 DALYs	

Riojas-Rodríguez	et	al.	2014	
Policy	

assessment	
Urban	 PM10,	O33	

Mortality,	unscheduled	

hospitalizations	
Cases	

Cárdaba	Arranz	et	al.	2014	 BOD	 Urban	 PM10,	PM2.5,	O3	 Mortality	 Cases	

Chang	et	al.	2014	 BOD	 Urban	 O3	 ED	visits	for	asthma	 Cases	

Thompson	et	al.	2014	 BOD	 Urban	 PM2.5,	O3	 Mortality	 Cases	

James	et	al.	2014	
Policy	

assessment	
Urban	 PM2.5	

Mortality;	Unscheduled	

hospitalization	

Cases,	monetized	

impacts	

Woodcock	et	al.	2014	
Policy	

assessment	
Urban	

PM2.5	(also	

physical	activity,	

traffic	incidents)	

Mortality;	morbidities	 DALYs	

Chanel	et	al.	2014	
Policy	

assessment	
National	 SO2	 Mortality	

Cases,	monetized	

impacts	

Voorhees	et	al.	2014	
Policy	

assessment	
Urban	 PM10,	PM2.5	

Mortality,	unscheduled	

hospitalizations	

Cases,	monetized	

impacts	

Boldo	et	al.	2014	
Policy	

assessment	
National	 PM2.5	 Mortality	 Cases	

Rojas-Rueda	et	al.	2013	
Policy	

assessment	
Urban	

PM2.5	(also	

physical	activity,	

traffic	incidents	

Morbidity	outcomes	 Cases,	DALYs	

Punger	and	West,	2013	 BOD	 National	 PM2.5,	O3	 Mortality	 Cases	

Pappin	and	Hakami,	2013	
Policy	

assessment	

Regiona

l	
NOx,	VOCs	 Mortality	(short	term)	

Cases,	monetized	

impacts	

Kassomenos	et	al.	2013	 BOD	 Urban	 PM10,	O3	

Mortality	(short-term	

and	chronic),	Morbidity	
DALYs	
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Study	 Scope	 Scale	 Exposures	 Outcomes	included	 Metrics	Used	

Heal	et	al.	2013	 BOD	 National	 O3	

Mortality,	unscheduled	

hospitalizations	
Cases	

Kheirbek	et	al.	2013	 BOD	 Urban	 PM2.5,	O3	

Mortality,	unscheduled	

hospitalizations	
Cases	

Fann	et	al.	2013	 BOD	 National	 PM2.5,	O3	

Mortality,	unscheduled	

hospitalizations,	other	

morbidity	outcomes	

Cases	

Yang	and	Kao,	2013	
Policy	

assessment	
National	 PM2.5	 Mortality	 Cases	

Flachs	et	al.	2013	 BOD	 National	 PM2.5	 Mortality	
Cases,	YLL,	

monetized	impacts	

Vu	et	al.	2013	 BOD	 Urban	 PM10	(TRAP)	

Mortality,	unscheduled	

hospitalizations,	other	

morbidity	outcomes	

Cases	

Perdue	et	al.	2012	
Policy	

assessment	
Urban	 	

Changes	to	

environmental	

determinants	of	health	

None	

Dias	et	al.	2012	 BOD	 National	 PM10	 Mortality	 Cases	

Berman	et	al.	2012	 BOD	 National	 O3	

Mortality,	unscheduled	

hospitalizations,	other	

morbidity	outcomes	

Cases	

Grabow	et	al.	2012	
Policy	

assessment	
Urban	 PM2.5,	O3	

Mortality,	morbidity,	

physical-inactivity	

related	diseases	

Cases,	monetized	

impacts	

Rojas-Rueda	et	al.	2012	
Policy	

assessment	
Urban	 PM2.5	 Mortality	 Cases	

Holm	et	al.	2012	
Policy	

assessment	
Urban	 PM2.5	

Mortality,	morbidity,	

physical-inactivity	

related	diseases	

DALYs	

Baccini	et	al.	2011	
Policy	

assessment	

Sub-

national	
PM10	 Mortality	(short	term)	 Cases	

Rojas-Rueda	et	al.	2011	
Policy	

assessment	
Urban	 PM2.5	 Mortality	 Cases	

Boldo	et	al.	2011	 BOD	 National	 PM2.5	 Mortality	 Cases	

Tchepel	and	Dias,	2011	
Policy	

assessment	
Urban	 PM10	 Mortality	 Cases	

Abbreviations:	BOD:	burden	of	disease;	DALYs:	disability-adjusted	life	years;	NO2:	nitrogen	dioxide;	NOx:	oxides	of	nitrogen;	O3:	ozone,	PM10:	

particulate	matter	less	than	10	μm	in	diameter;	PM2.5:	particulate	matter	less	than	2.5	μm	in	diameter;	TRAP:	traffic	related	air	pollution;	YLL:	

years	of	life	lost	
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Table	A2.2.	Population	estimates	and	baseline	health	rates	by	age	group	for	Wayne	County,	MI	used	in	the	case	study.	
	 Population	 Mortality	rates	 Unscheduled	hospitalization	rates	 Other	morbidity	rates	

Age	 Total1	

With	
asthma

2	 All-Cause	 COPD	 LC	 IHD	 Stroke	 PN	 COPD	 Asthma	 CV	 ED	Visit	
Non-

fatal	MI	 SB	 WLD	 MRAD	

(years)	 (n)	 (n)	
(Per	

100,000)	
(Per	

100,000)	
(Per	

100,000)	
(Per	

100,000)	
(Per	

100,000)	
(Per	

10,000)	
(Per	

10,000)	
(Per	

10,000)	
(Per	

10,000)	
(Per	
100)3	

(Per	
10,000)	 	 	 	

<1	 22758	 	 887.6	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	to	4	 93080	 9960	 	 	 	 	 	 	 	 	 	 20.8	 	 	 	 	
5	to	9	 118597	 12690	 	 	 	 	 	 	 	 	 	 9.5	 	 0.076	 	 	
10	to	14	 125987	 13481	 	 	 	 	 	 	 	 	 	 9.5	 	 0.076	 	 	
15	to	17	 128014	 13697	 	 	 	 	 	 	 	 	 33.7	 6.5	 	 0.076	 	 	

18	to	24	 131027	 16902	 	 	 	 	 	 	 2.6	 17.2	 33.7	 9.1	 1.86	 	 0.0054	 0.02137	
25	to	29	 109571	 14135	 56.58	 0.1	 0.2	 1.4	 0.9	 	 2.6	 17.2	 33.7	 8.2	 1.86	 	 0.00678	 0.02137	
30	to	34	 109197	 14086	 82.42	 0.1	 0.6	 3.5	 1.7	 	 2.6	 17.2	 33.7	 8.2	 1.86	 	 0.00678	 0.02137	
35	to	39	 108669	 14018	 122.39	 0.4	 1.3	 15.64	 3	 	 2.6	 17.2	 33.7	 6.9	 1.86	 	 0.00678	 0.02137	
40	to	44	 122813	 15843	 222.29	 1.3	 4.4	 33.38	 5.4	 	 2.6	 17.2	 198.5	 6.9	 1.86	 	 0.00678	 0.02137	
45	to	49	 124210	 16023	 327.67	 4.2	 13.69	 58.77	 9.66	 	 51.6	 37.6	 198.5	 6.9	 24.9	 	 0.00492	 0.02137	
50	to	54	 132771	 17127	 603.29	 9.79	 55.74	 119	 21.84	 	 51.6	 37.6	 198.5	 6.9	 24.9	 	 0.00492	 0.02137	
55	to	59	 125525	 16193	 975.9	 19.92	 105.95	 262.1	 36.65	 	 51.6	 37.6	 198.5	 6.9	 24.9	 	 0.00492	 0.02137	
60	to	64	 103861	 13398	 1411.5	 48.14	 153.09	 360.1	 48.14	 	 51.6	 37.6	 689.7	 6.9	 24.9	 	 0.00492	 0.02137	
65	to	69	 74641	 9629	 1889.04	 92.44	 214.36	 484.99	 62.97	 138.7	 157.1	 	 689.7	 4.0	 81.3	 	 	 	
70	to	74	 51462	 6639	 2827.33	 194.32	 299.25	 623.76	 124.36	 138.7	 157.1	 	 689.7	 4.0	 81.3	 	 	 	
75	to	79	 39937	 5152	 4146.53	 315.5	 393.63	 833.81	 237.87	 138.7	 157.1	 	 689.7	 4.0	 81.3	 	 	 	

80	to	84	 34075	 4396	 6761.56	 410.86	 466.62	 1461.48	 369.77	 138.7	 157.1	 	 689.7	 4.0	 81.3	 	 	 	
≥85	 36170	 4666	 13790.43	 624.83	 342.83	 3212.61	 865.36	 138.7	 157.1	 	 33.7	 4.0	 81.3	 	 	 	

1	Population	estimates	from	CDC	WONDER,	Wayne	County	2012	(CDC	2014)	
2	Estimate	of	persons	with	asthma	is	based	on	the	Wayne	County	asthma	prevalence	2011-2013:	10.7%	in	children	and	12.9%	in	adults	(AIM	2014)	
3	Rate	is	among	persons	with	asthma	
Abbreviations:	COPD:	chronic	obstructive	pulmonary	disease;	CV:	cardiovascular;	ED:	emergency	department;	IHD:	ischemic	heart	disease;	LC:	lung,	bronchus	
and	trachea	cancer;	MI:	myocardial	infarction;	MRAD:	minor	restricted	activity	day;	PN:	pneumonia;	SB:	asthma	exacerbation	(as	shortness	of	breath);	WLD:	
work	loss	day;		
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Table	A2.3.	Concentration-response	estimates	for	each	pollutant-outcome	pair	included	the	
case	study.1,2	

Outcome	(age	group)	 β	 SE	 Source	

Premature	Mortality	 	 	 	
All-cause	(>29	years)	 0.005827	 0.000963	 Krewski	et	al.	2009	
All-cause	(>24	years)	 0.014842	 0.00417	 Laden	et	al.	2006	
All-cause	infant	(<1	year)	 	 0.003922	 0.001221	 Woodruff	et	al.	1997	
Trachea,	bronchus	and	lung	cancer	(≥	25	years)	 IER	 	 Burnett	et	al.	2014	
Ischemic	heart	disease	(≥	25	years)	 IER	 	 Burnett	et	al.	2014	
Cerebrovascular	disease	(≥	25	years)	 IER	 	 Burnett	et	al.	2014	
COPD	(≥	25	years)	 IER	 	 Burnett	et	al.	2014	
Pneumonia	hospitalization	(>64	years)		
ICD-9:	480-486,	480-487	

0.003979	 0.001659	
Ito,	2003	

COPD	hospitalization	(20-64	years)		
ICD-9:	491-492,	494-496	490-496	

0.00217	 0.000733	
Moolgavkar,	2000	

COPD	hospitalization	(>64	years)		
ICD-9:	491-492,	494-496	490-496	

0.00185	 0.000524	
Moolgavkar,	2000	

Asthma	hospitalization	(18-64	years)		
ICD-9:	493	

0.003324	 0.001045	
Sheppard,	2003	

Cardiovascular	hospitalization	(20-64	years)		
ICD-9:	390-429	

0.0014	 0.000341	
Moolgavkar,	2000	

Cardiovascular	hospitalization	(>64	years)		
ICD-9:	390-429	

0.00158	 0.000344	
Moolgavkar,	2003	

Asthma-related	emergency	department	visits	(all	ages)	 0.0056	 0.0021	 Mar	et	al.	2010	
Non-fatal	myocardial	infarction	(≥18	years)	 0.024121	 0.009285	 Peters	et	al.	2001	
Asthma	exacerbations	(Asthmatics	6-18	years)	as	
shortness	of	breath	

0.0122	 0.0138	
Mar	et	al.	2004		

Work	loss	days	(18-64	years)	 0.0046	 0.00036	 Ostro,	1987	
Minor	restricted	activity	days	(18-64	years)	 0.0022	 0.000658	 Ostro	and	Rothschild,	1989	

1	Adapted	from	Fann	et	al.	(2012)	Supplemental	Materials	and	US	EPA	(2015)	
2	Fann	et	al.	(2012)	used	annual	PM2.5	concentrations	as	a	surrogate	when	assessing	impacts	due	to	short-term	
exposure.	The	same	approach	is	applied	here.	
Abbreviations:	β:	concentration-response	regression	coefficient	reported	by	each	study;	SE:	standard	error	
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Table	A2.4.	Duration	and	DW	estimates	used	in	DALY	calculations	for	the	case	study.	
	 Duration		 	 	

Outcome	 (years)	 DW	 Sources	
Premature	mortality	 YLL	 1	 MDCH,	2015	
Pneumonia	hospitalization	 0.014	 0.64	 CDC,	2012;	de	Hollander	et	al.	1999	
COPD	hospitalization	 0.012	 0.64	 CDC,	2012;	de	Hollander	et	al.	1999	
Asthma	hospitalization	 0.009	 0.64	 CDC,	2012;	de	Hollander	et	al.	1999	
Cardiovascular	hospitalization	 0.0126	 0.71	 CDC,	2012;	de	Hollander	et	al.	1999	
Asthma-related	ED	visits	 0.0027	 0.51	 de	Hollander	et	al.	1999	
Non-fatal	myocardial	infarction		 0.015	 0.42	 CDC,	2012;	de	Hollander	et	al.	1999	
Asthma	exacerbations	 0.005	 0.22	 de	Hollander	et	al.	1999		
Work	loss	days	 0.092	 0.0027	 Murray,	1994;	Ostro,	1987	
Minor	restricted	activity	days	 0.092	 0.0027	 Murray,	1994	

Abbreviations:	COPD:	chronic	obstructive	pulmonary	disease;	DW:	disability	weight;	ED:	emergency	department;	
YLL:	years	of	life	lost	
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Table	A2.5.	Economic	valuations	assigned	to	each	incident	outcomes		
	 Valuation	

Outcome	(age	group)	 (2010$)	
Mortality	(all	ages)	 $9,600,000	
Pneumonia	hospitalization	(>64	years)	 $36,000	
COPD	hospitalization	(20-64	years)	 $21,000	
COPD	hospitalization	(>64	years)	 $36,000	
Asthma	hospitalization	(<65	years)	 $16,000	
CV	hospitalization	(20-64	years)	 $42,000	
CV	hospitalization	(>64	years)	 $41,000	
Asthma	ED	Visit	(all	ages)	 $430	
Non-fatal	myocardial	infarction	(all	ages)2	 $143,000	
Asthma	exacerbation	(all	ages)	 $58	
Work	loss	days	(all	ages)	 $150	
Minor	restricted	activity	day	(all	ages)	 $68	

1Adapted	from	US	EPA,	2012a.	Monetized	impacts	are	estimated	using	2010$	projected	to	a	2020	income	level.	
2Average	of	the	highest	and	lowest	costs	at	a	7%	discount	rate	
Abbreviations:	COPD:	chronic	obstructive	pulmonary	disorder;	CV:	cardiovascular;	ED:	emergency	department	
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Table	A2.6.	Direct	PM2.5	emissions	in	Wayne	County,	MI	(2011)	
	 Emissions	 Percent	of	Total	

Source	Sector	 (tons	per	year)	 (%)	

Point	sources	 1610	 23	

On-road	diesel	exhaust	 725	 10	

On-road	gasoline	exhaust	 335	 5	

On-road	other	 128	 2	

Non-road	other	 350	 5	

Non-road	diesel	 143	 2	

Non-point	construction	dust	 18	 0	

Non-point	raved	road	dust	 573	 8	

Non-point	other		 3194	 45	

Total	emissions	 7,076	 100	
Source:	US	EPA	2012b	
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Table	A2.7.	Number	of	avoided	cases,	DALYs,	and	monetized	impacts	per	year	in	Wayne	County,	MI	due	to	a	reduction	in	PM2.5	

concentration	from	10	to	8	µg/m3	

	 Avoided	cases2	
Percent	

attributable	
Attributable	

rate	

Rank	by	
number	

of	
avoided	
cases	per	
year	

DALYs2,3	

Rank	by	
number	of	
avoided	
DALYs	per	

year	

Monetized	impacts2,4	

Rank	by	
avoided	

monetized	
impacts	per	

year1	Outcome	(age	group)	 (n	per	year)1	 (%)	 (per	100,000)	 (years)1	 (1000$	per	year)1	

Premature	mortality	(>29	years,	HIF	
method)	

190	
(130,	250)	 1.16	 10.48	 	 2900	

(2000,	3900)	 1	 1,800,000	
(1,200,000,	2,400,000)	 1	

Premature	mortality	(>29	years,	PAF	
method)	

190	
(125,	240)	 1.13	 10.22	 	 2900	

(1900,	3,800)	 1	 1,800,000	
(1,200,000,	2,300,000)	 1	

Infant	mortality	(<1	year)	 2	
(0.5,	3)	 0.77	 0.09	 	 120	

(47,	200)	 2	 15,000	
(5,700,	24,000)	 3	

Minor	restricted	activity	days	(18-64	
years)	

37,000	
(15,000,	58,000)	 0.44	 2,040	 1	 9	

(3.7,	14)	 4	 2,500	
(1,000,	4,000)	 6	

Asthma	exacerbations	(6-18	years)5	 28,000	
(-34,000,	76,000)	 2.49	 12,639	 2	 30	

(-37,	84)	 3	 1,600	
(-1950,	4,400)	 7	

Work	loss	days	(18-64	years)	 21,000	
(17,000,	24,000)	 0.92	 1,148	 3	 5	

(4.3,	5.9)	 5	 3,100	
(2,600,	3,600)	 5	

Asthma	ED	visit	(>	1	year)5	 190	
(49,	323)	 1.11	 86.42	 4	 0.26	

(0.07,	0.44)	 8	 81	
(21,	140)	 11	

Non-fatal	MI	(≥	18	years)	 160	
(29,	260)	 4.93	 8.92	 5	 1.0	

(0.19,	1.6)	 6	 23,000	
(4,200,	37,000)	 2	

CV	hospitalization	(≥	20years)	 84	
(56,	110)	 0.30	 4.71	 6	 0.75	

(0.50,	1.0)	 7	 3,500	
(2,300,	4,600)	 4	

Pneumonia	hospitalization	(>64	years)	 26	
(4,	47)	 0.79	 1.45	 7	 0.23	

(0.04,	0.42)	 9	 940	
(156,	1,700)	 8	

COPD	hospitalization	(≥20	years)	 25	
(15,	36)	 0.40	 1.42	 8	 0.19	

(0.11,	0.28)	 10	 740	
(420,	1,000)	 9	

Asthma	hospitalization	(<65	years)	 19	
(7,	30)	 0.66	 1.05	 9	 0.11	

(0.04,	0.17)	 11	 300	
(110,	480)	 10	

Total6	 	 	 	 	 3100	
(2000,	4200)	 	 1,900,000	

(1,200,000,	2,500,000)	 	
1	95%	confidence	interval	in	parentheses.		 	 	 	 	 	 2	Metrics	have	been	rounded	to	the	nearest	number	with	two	significant	digits.	
3	DALYs	are	YLL	for	mortality	outcomes	and	YLD	for	morbidity	outcomes	 	 	 4	Monetized	impacts	are	calculated	using	2010$	projected	to	a	2020	income	level.		
5	Among	persons	with	asthma		 	 	 	 	 	 	 6	Excludes	premature	mortality	estimated	using	the	PAF	method		
Abbreviations:	COPD:	chronic	obstructive	pulmonary	disease;	CV:	cardiovascular;	DALY:	disability-adjusted	life	year;	ED:	emergency	department;	MI:	myocardial	infarction;	MRAD:	minor	restricted	
activity	days;	WLD:	work	loss	days;	YLD:	years	living	with	disability;	YLL:	years	life	lost
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Table	A2.8.	Number	of	avoided	cases,	DALYs,	and	monetized	impacts	for	cause-specific	
mortalities	per	year	in	Wayne	County,	MI	due	to	a	reduction	in	PM2.5	concentration	from	10	to	
8	µg/m3.	

	
Avoided	
cases1	

Percent	
attributable	

Population	
rate	 DALYs1,2	

Monetized	
impacts1,3	

Cause-specific	mortality		
(n	per	
year)	 (%)	 (per	100,000)	 (years)	

(1000$	per	
year)	

Ischemic	heart	disease	 170	 4.61	 9.45	 3000	 1,600,000	
Stroke	 23	 2.95	 1.31	 390	 220,000	
Lung,	bronchus	and	trachea	cancer	 21	 1.80	 1.15	 360	 200,000	
Chronic	obstructive	pulmonary	
disease	 13	 1.67	 0.71	 160	 120,000	

Total	 230	 3.55	 12.61	 4000	 2,200,000	
1	Metrics	have	been	rounded	to	the	nearest	whole	number	with	two	significant	digits.	
2	DALYs	are	YLL	for	mortality	outcomes	and	YLD	for	morbidity	outcomes	
3	Monetized	impacts	are	calculated	using	2010$	projected	to	a	2020	income	level.		
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Chapter	3	

DISEASE	AND	HEALTH	INEQUALITIES	ATTRIBUTABLE	TO	AIR	POLLUTANT	EXPOSURE	IN		
DETROIT,	MICHIGAN	

	

Abstract	

The	environmental	burden	of	disease	is	the	mortality	and	morbidity	attributable	to	exposures	

of	air	pollution	and	other	stressors.	The	inequality	metrics	used	in	cumulative	impact	and	

environmental	justice	studies	can	be	incorporated	into	environmental	burden	studies	to	better	

understand	the	health	disparities	of	ambient	air	pollutant	exposures.	This	study	examines	the	

health	burden	and	disparities	attributable	to	air	pollutants	for	the	Detroit	urban	area.	We	

identify	the	environmentally	attributable	fraction	of	disease	burden,	apportion	this	burden	to	

various	classes	of	emission	sources	and	pollutants,	and	show	how	the	burden	is	distributed	

among	demographic	and	socioeconomic	subgroups.	The	analysis	uses	spatially-resolved	

estimates	of	exposures,	baseline	health	rates,	age-stratified	populations,	and	demographic	

characteristics	that	serve	as	proxies	for	increased	vulnerability,	e.g.,	race/ethnicity	and	income.	

Based	on	current	levels,	exposures	to	PM2.5,	O3,	SO2,	and	NO2	are	responsible	for	more	than	

10,000	disability-adjusted	life	years	(DALYs)	per	year,	causing	an	annual	monetized	health	

impact	of	$6.5	billion.	This	burden	is	mainly	driven	by	PM2.5	and	O3	exposures,	which	cause	660	

premature	deaths	each	year	among	the	945,000	million	individuals	in	the	study	area.	NO2	

exposures,	largely	from	traffic,	are	important	for	respiratory	outcomes	among	older	adults	and	
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children	with	asthma,	e.g.,	46%	of	air-pollution	related	asthma	hospitalizations	are	due	to	NO2	

exposures.	Based	on	quantitative	inequality	metrics,	the	greatest	inequality	of	health	burdens	

within	the	study	area	results	from	industrial	and	traffic	emissions.	The	inequality	metrics	also	

show	disproportionate	burdens	among	Hispanic/Latino	populations	due	to	industrial	emissions,	

and	among	low	income	populations	due	to	traffic	emissions.	These	results	depend	on	the	study	

boundaries	and	consider	inequality	only	within	the	study	area.	Attributable	health	burdens	are	

a	function	of	exposures,	susceptibility	and	vulnerability	(e.g.,	baseline	incidence	rates),	and	

population	density.	Because	of	these	dependencies,	inequality	metrics	should	be	calculated	

using	the	attributable	health	burden	when	feasible	to	avoid	potentially	underestimating	

inequality.	Quantitative	health	impact	and	inequality	analyses	bring	value	to	assessing	health	

and	environmental	justice	considerations	in	urban	settings,	and	provide	important	information	

to	decision	makers	to	help	prioritize	strategies	for	addressing	exposures	at	the	local	level		

	

Introduction	

Background	

Cumulative	impact	analyses	aim	to	understand	the	way	social	and	environmental	factors	

combine	to	increase	adverse	health	risks	and	impacts	across	a	population	(Solomon	et	al.	2016).	

This	information	can	identify	areas	where	social	and	environmental	stressors	together	create	

environmental	justice	(EJ)	concerns,	such	as	disproportionate	impacts	and	health	disparities	

among	low	income	communities	and	communities	of	color	(Mohai	et	al.	2009),	often	with	the	

goal	of	helping	disadvantaged	groups	gain	access	to	the	resources	needed	to	improve	existing	

conditions	(Solomon	et	al.	2016).	These	studies	often	focus	on	susceptible	and	vulnerable	
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populations.	Susceptibility	typically	refers	to	intrinsic	factors	that	tend	to	intensify	the	biological	

response	that	results	from	exposure	to	a	stressor,	such	as	advanced	age	or	underlying	disease;	

vulnerability	typically	refers	to	extrinsic	factors	that	can	increase	exposures	or	reduce	the	ability	

to	mitigate	them,	such	as	living	near	a	pollutant	source	or	having	lower	socioeconomic	status	

(SES)	(O’Neill	et	al.	2012;	Sacks	et	al.	2011).	Disproportionate	impacts	can	result	where	

exposures	are	high	and	residents	are	susceptible	or	vulnerable.		

	

Cumulative	impact	analysis	frameworks,	which	are	intended	to	quantify	the	degree	to	which	

segments	of	the	population	are	disproportionately	impacted	(Morello-Frosch	et	al.	2011),	have	

been	developed	to	incorporate	several	social	and	environmental	hazards,	e.g.,	air	pollutants,	

temperature,	high	rates	of	disease,	and	proximity	to	hazardous	land	uses.	These	studies	often	

use	a	weighted	index	or	similar	metric	to	combine	factors	into	a	single	score	that	can	be	used	to	

compare	burdens	across	groups.	Air	pollution	is	a	frequently	cited	environmental	hazard	in	

cumulative	impact	assessments,	e.g.,	disproportionate	impacts	from	exposures	to	nitrogen	

oxides	(NOx),	particulate	matter	(PM2.5),	and	diesel	particulate	matter	(DPM)	have	been	shown	

at	the	census	tract	level	for	minority	populations	in	California	(Su	et	al.	2012,	2009),	and	for	

traffic-related	exposures	among	non-white	and	low	SES	populations	in	Minneapolis	(Pratt	et	al.	

2015).	Using	exposures	as	a	proxy	for	air	pollution	health	impacts,	however,	may	be	

problematic	for	several	reasons.	First,	many	cumulative	impact	studies	use	poorly-resolved	

exposure	data.	For	example,	estimating	exposures	using	distance-weighted	concentrations	at	

the	nearest	ambient	monitoring	station	(Meehan	August	et	al.	2012)	may	poorly	represent	

intra-urban	gradients	in	exposure	that	affect	the	distribution	of	impacts	(Levy	and	Hanna,	2011;	
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Matte	et	al.	2013).	Second,	exposures	alone	do	not	account	for	other	vulnerability	factors	that	

increase	the	risk	of	an	adverse	health	impact	(Morello-Frosch	et	al.	2011).	These	factors	are	

especially	important	for	pollutants	that	have	limited	spatial	variability,	e.g.,	ozone	(O3);	for	

these	pollutants,	inequalities	will	be	driven	by	differences	in	susceptibility	or	vulnerability	

rather	than	exposure.	Other	issues	with	using	exposures	as	a	proxy	for	health	risks	include	the	

difficulty	in	assigning	weights	to	pollutants	that	have	different	health	effects	(Sadd	et	al.	2011),	

the	limited	ability	to	assess	exposures	to	multiple	pollutants,	and	difficulty	of	identifying	

culpable	sources	or	source	categories.	

	

There	is	a	growing	effort	to	incorporate	cumulative	impact	analyses	into	regulatory	and	

decision-making	processes	to	advance	policy	goals	and	public	health	initiatives	(US	EPA,	2016a).	

One	approach	is	to	expand	the	use	of	quantitative	health	impact	assessment	(HIA)	methods	to	

better	include	equity	concerns.	Quantitative	HIAs	combine	information	on	population	

exposures,	baseline	health	rates,	concentration-response	functions,	and	other	data	to	estimate	

the	fraction	of	health	impacts	attributable	to	exposures.	HIAs	are	becoming	preferred	tools	for	

decision	making,	and	several	applications	have	included	ambient	air	pollution	as	an	important	

environmental	exposure	(Rhodus	et	al.	2013).	HIA	techniques	are	routinely	used	to	help	set	the	

National	Ambient	Air	Quality	Standard	(NAAQS;	e.g.,	US	EPA,	2010a,	2010b,	2012a,	2014).	HIAs	

for	air	pollution	have	estimated	the	health	burden	in	the	U.S.	attributable	to	PM2.5	and	O3	

exposures,	which	totals	130,000	premature	deaths,	180,000	hospitalizations	and	emergency	

department	(ED)	visits,	and	100	million	restricted	activity	days	in	the	USA	annually	(Fann	et	al.	

2012).	HIAs	at	the	local	scale,	which	incorporate	more	spatially-resolved	exposure	estimates	
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and	data	on	population	susceptibility	and	vulnerability,	have	shown	that	health	impacts	are	not	

evenly	distributed	and	that	socially	disadvantaged	populations	often	carry	heavier	burdens	

(Fann	et	al.	2011;	Kheirbek	et	al.	2013).	HIAs	incorporating	spatially	explicit	analyses	of	

susceptibility	and	vulnerability	factors	can	identify	where	pollutants	have	the	greatest	impact	

and	which	groups	are	most	adversely	affected.	These	analyses	could	support	public	health	

actions	aimed	at	minimizing	health	burdens	attributable	to	environmental	exposures,	

representing	a	major	transition	from	current	practices	that	tend	to	be	narrowly	focused	on	

compliance	with	regulations	and	standards	such	as	the	NAAQS.		

	

Objectives		

This	study	examines	the	health	burden	and	health	disparities	(or	inequities)	attributable	to	air	

pollutant	exposures	at	the	urban	scale.	Impacts	due	to	five	pollutants	(PM2.5,	NO2,	SO2,	O3,	and	

diesel	exhaust	particulate	matter)	are	evaluated	using	HIA	techniques	and	inequality	metrics	in	

a	spatially-resolved	analysis	of	Detroit,	Michigan	and	neighboring	cities.	The	analysis	

distinguishes	impacts	due	to	different	source	types,	e.g.,	point	(i.e.	industrial)	and	mobile	(i.e.	

on-road	traffic)	emission	sources,	and	examines	the	sensitivity	of	results	to	spatial	resolution	

and	study	boundaries.		

	

Detroit	and	the	surrounding	communities	makes	a	compelling	study	location	due	its	density	of	

heavy	industry,	historically	high	pollutant	levels,	and	individual	and	population-level	

characteristics	that	increase	vulnerability	and	susceptibility.	A	portion	of	the	study	area	has	

been	designated	as	non-attainment	for	the	SO2	NAAQS,	and	the	entire	area	is	likely	to	be	
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designated	as	non-attainment	for	O3	(MDEQ,	2016a,	2016b).	Area	residents	have	high	rates	of	

diseases	associated	with	environmental	exposures,	e.g.,	asthma	hospitalization	rates	in	the	

study	area	are	nearly	three	times	the	state	average	(MDHHS	2014),	and	characteristics	that	

increase	their	vulnerability	to	air	pollutants,	including	proximity	to	industry,	lower	educational	

attainment,	high	rates	of	poverty,	and	linguistic	isolation	(Schulz	et	al.	2016).	The	study	

approach	and	many	results	are	applicable	to	other	EJ	and	cumulative	impact	analyses	as	well	as	

environmental	policy-making.		

	

Methods	

The	health	burden	and	disparities	analyses	use	exposure	information	derived	from	air	quality	

monitoring	and	dispersion	modeling,	quantitative	HIA	techniques,	and	inequality	metrics,	

elements	described	below.	Additional	details	are	in	Appendix	A3.	

	

Study	area,	spatial	resolution,	and	study	population	

The	study	area	encompasses	Detroit	and	the	adjacent	cities	of	Hamtramck,	Highland	Park,	River	

Rouge,	Ecorse,	Lincoln	Park,	Melvindale,	Dearborn,	and	Allen	Park	(Figure	3.1).	This	area	has	a	

total	population	of	945,000.	Across	the	entire	study	area,	66%	of	residents	identify	as	Black	or	

African	American,	7.3%	identify	as	Hispanic	or	Latino,	and	37%	live	below	the	poverty	level	(US	

census	Bureau,	2014).	In	Detroit,	the	largest	city	in	the	study	area,	more	than	92%	of	the	

population	is	non-white:	82.7%	identify	as	Black	or	African	American	and	7.8%	identify	as	

Hispanic	or	Latino	(US	Census	Bureau,	2015a).	Across	the	study	area,	demographics	and	poverty	

status	vary.	The	percentage	residents	who	identify	as	persons	of	color	ranges	from	12.5%	in	
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Allen	Park	to	94.2%	in	Highland	Park,	and	the	percentage	of	persons	in	poverty	ranges	from	

7.2%	in	Allen	Park	to	48.5%	in	Hamtramck	(US	Census	Bureau,	2014).	The	percentage	of	the	

population	that	are	persons	of	color	is	higher	in	the	study	area	(75.6%)	than	in	Wayne	County	

(50.2%)	and	the	state	of	Michigan	as	a	whole	(23.9%)	(US	Census	Bureau,	2014).	Similarly,	the	

percentage	of	the	population	that	lives	below	the	poverty	level	in	the	study	area	(36.8%)	is	

higher	than	in	Wayne	County	(24.8%)	and	the	state	as	a	whole	(23.7%).		

	

Selection	of	the	study	boundaries	is	based	on	several	considerations.	First,	we	focus	on	cities	in	

southeast	Michigan	which	may	have	higher	exposures	as	a	result	of	close	proximity	to	industrial	

facilities	and	major	highways	or	higher	degrees	of	vulnerability	and	susceptibility,	e.g.,	higher	

percentages	of	minority	populations	or	populations	in	poverty;	these	cities	have	potentially	

high	health	burdens	due	to	air	pollutant	exposures.	Second,	we	use	the	municipal	boundaries	of	

each	city	to	reflect	the	domain	within	which	local	decision	makers	may	act.	Third,	the	

dispersion	models	used	(discussed	later)	are	computationally	intensive,	and	modeling	larger	

study	areas	at	a	fine	spatial	resolution	(≤1	km)	can	be	impractical.	Thus,	the	analysis	focuses	on	

the	most	heavily	impacted	cities	in	the	Detroit	metropolitan	area.	(Potential	differences	in	the	

inequality	metrics	arising	from	the	use	of	different	geographical	boundaries	are	examined	in	

the	Discussion	section	of	this	chapter.)		

	

Census	blocks	are	selected	as	the	unit	of	analysis	for	the	exposure,	health,	and	inequality	

metrics	given	the	need	to	balance	fine-scale	exposure	gradients	with	the	availability	of	

population	and	baseline	health	data,	which	is	typically	available	only	at	coarser	resolution,	e.g.,	
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ZIP	codes	(Batterman	et	al.	2014b).	Exposures	are	based	on	residential	location,	following	

epidemiological	studies	from	which	the	HIA	concentration-response	coefficients	(discussed	

below)	are	drawn.	Census	block-level	population	data	are	taken	from	the	2010	census	

TIGER/Line	shapefiles	(US	Census	Bureau,	2015b).	Block-level	age-specific	subgroups	are	

estimated	using	the	age	distribution	of	the	census	block	group	based	on	the	most	recent	5	year	

estimates	(2010	–	2014)	of	the	2014	American	Community	Survey	(ACS)	(US	Census	Bureau,	

2014).		

	

Health	impact	assessment	

The	numbers	of	mortality	and	morbidity	cases	attributable	to	air	pollution	exposures	are	

estimated	using	health	impact	functions	which	use	baseline	incidence	rates,	census	block-level	

air	pollutant	concentrations,	and	concentration-response	coefficients	(Martenies	et	al.	2015).	

Conclusions	of	the	most	recent	Integrated	Science	Assessments	(US	EPA,	2008,	2009,	2013,	

2016b,	2016c)	are	used	to	select	only	those	outcomes	with	established	causal	links.	Exposure	

thresholds	are	not	used	because	reliable	population-level	thresholds	have	not	been	identified	

in	the	epidemiologic	literature	(e.g.,	Bell	et	al.	2006;	Daniels	et	al.	2000;	Schwartz	et	al.	2008).	

The	excess	cancer	risk	attributable	to	diesel	particulate	matter	(DPM)	is	estimated	using	

methods	described	by	Propper	et	al.	(2015).	Annual	and	daily	concentrations	are	used	in	health	

impact	functions,	following	the	exposure	estimates	used	in	the	original	epidemiology	studies,	

and	annual	concentrations	are	used	in	the	estimates	of	excess	cancer	risk.	Additional	details	on	

outcomes,	concentration-response	coefficients,	and	baseline	outcome	rates	are	presented	in	

Appendix	A3.	
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The	health	burden	is	quantified	using	three	metrics:	the	number	of	incident	cases	of	mortality	

or	morbidity	attributable	to	pollutant	exposure	(attributable	cases);	disability-adjusted	life	

years	(DALYs);	and	monetized	impacts.	DALYs	and	monetized	impacts	are	derived	from	the	

number	of	attributable	cases.	DALY	calculations	require	a	disability-weight	(DW)	and	duration	

(D)	for	each	outcome	(Murray,	1994).	Health	impacts	are	monetarized	using	valuations	in	the	

most	recent	PM2.5	standard	analysis	(US	EPA,	2012a)	and	reported	in	2010	dollars	projected	to	

a	2020	income	level.	DW,	duration,	and	monetized	values	are	in	Appendix	A3.	

	

Exposure	assessment	

Spatially-resolved	and	current	exposures	of	PM2.5,	O3,	NO2,	and	SO2	are	estimated	using	air	

quality	monitoring	and	dispersion	modeling.	Contributions	from	regional,	point,	mobile,	and	

area	sources	are	broken	out	separately.		

	

Ambient	air	quality	monitoring	data	from	the	US	and	Canada	for	2011-2015	were	retrieved	

from	U.S.	and	Canadian	monitoring	networks	(Ontario	MECC,	2016;	US	EPA,	2016b).	For	PM2.5,	

we	use	12	sites	in	the	Detroit	area;	two	Canadian	sites	are	excluded	due	to	differences	in	

measurement	methods.	For	O3,	we	use	six	sites	in	Detroit	and	two	sites	in	Canada.	Five	of	the	

six	US	sites	collected	data	only	during	the	April	to	September	period.	Missing	cold	season	hourly	

data	at	the	five	warm-season	monitors	are	derived	from	data	collected	at	the	Allen	Park	site	

(US)	and	the	two	Canadian	sites	using	multiple	imputation	with	predictive	mean	matching	in	R	

(van	Buuren	and	Groothuis-Oudshoorn,	2011).	NO2	data	are	taken	from	five	sites	in	Detroit	and	
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two	in	Canada,	including	two	near-road	sites.	For	SO2,	two	monitoring	sites	in	the	US	and	two	in	

Canada	operated	throughout	the	study	period;	four	additional	sites	around	the	Marathon	

Refinery	collected	data	from	2014	onwards.	Data	from	the	year	2012	are	used	in	the	exposure	

assessment	to	coincide	with	the	point	and	mobile	source	emissions	inventories	(discussed	

below).		

	

Air	quality	dispersion	modeling	complements	the	exposures	information	provided	by	the	

monitoring	data.	Point	source	emissions	of	PM2.5,	SO2,	and	NOx	are	taken	from	the	Michigan	Air	

Emissions	Reporting	System	(MAERS;	MDEQ,	2001)	and	the	National	Emissions	Inventory	(NEI;	

US	EPA,	2012b).	The	5-year	average	emission	rate	is	used	except	for	a	few	facilities	that	

experienced	large	and	known	changes;	these	cases	used	the	most	recent	years.	Block-level	

concentrations	of	PM2.5,	SO2,	and	NOx	from	point	sources	are	estimated	using	the	software	

package	Framework	for	Rapid	Emissions	Scenario	and	Health	impact	Estimation	(FRESH-EST)	

(Milando	et	al.	2016a),	which	uses	a	pre-computed	source-receptor	transfer	coefficient	matrix	

from	the	AERMOD	dispersion	model	(Cimorelli	et	al.	2005),	local	meteorology,	and	an	adaptive	

receptor	grid	(200	m	spacing	near	major	sources,	and	1	km	spacing	elsewhere).	For	major	

sources	(>100	tons	yr-1),	emissions	are	modeled	at	the	stack	level;	other	sources	are	modeled	at	

the	facility-level	using	representative	stack	parameters.	Receptor	concentrations	are	

interpolated	using	inverse	distance	weighting	to	a	25	m	raster	that	covers	the	study	area,	and	

block-level	concentrations	are	estimated	as	areal	averages	of	overlapping	raster	cells.	

Concentrations	are	predicted	at	the	hourly	level	and	averaged	to	the	daily	and	annual	periods	

used	by	the	health	impact	functions.	For	NO2,	we	assume	that	all	NOx	is	converted	to	NO2.		
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For	SO2,	point	source	emissions	account	for	nearly	all	emissions	in	the	study	area	(US	EPA,	

2012b,	2016e),	and	background	levels	are	very	low.	We	use	FRESH-EST	to	estimate	daily	SO2	

exposures	in	2012,	and	monitoring	data	are	used	to	understand	the	extent	to	which	FRESH-EST	

correctly	predicts	this	pollutant.	The	health	impact	functions	use	baseline	health	rates	that	do	

not	vary	temporally;	therefore,	the	primary	concern	is	whether	the	modeled	SO2	data	represent	

the	distribution	of	measured	concentrations	well,	not	if	they	have	perfect	temporal	

concordance.	Distributions	of	estimated	and	observed	daily	mean	SO2	concentrations	at	the	

Southwestern	High	School	(SWHS,	which	triggered	the	non-attainment	status	for	a	portion	of	

southeastern	Michigan)	and	the	four	closest	FRESH-EST	receptors	(all	within	200	m	of	the	

monitoring	site)	show	no	statistically	significant	differences	(Kolmogorov-Smirnov	test,	all	p	

values	<	0.05;	Figure	A3.3).	While	the	highest	concentrations	(over	85th	percentile,	Figure	A3.3)	

measured	at	the	SWHS	monitor	are	under-predicted,	overall,	the	modeled	results	provide	

acceptable	estimates	of	SO2	exposures	for	the	study	population,	a	conclusion	based	on	non-

significant	differences	between	the	distributions	of	modeled	and	measured	concentrations.		

	

Mobile	source	contributions	to	PM2.5,	NOx,	and	diesel	particulate	matter	(DPM)	are	estimated	

using	the	RLINE	dispersion	model	(Snyder	et	al.	2013),	a	detailed	link-based	emission	inventory	

for	Detroit	developed	using	the	MOVES	emissions	model	(US	EPA,	2015a),	6900	receptors,	and	

hourly	meteorology.	Due	to	the	computational	burden,	every	6th	day	in	2012	is	modeled.	We	

use	the	same	areal	averaging	methods	from	the	FRESH-EST	framework	to	estimate	daily	
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average	block-level	concentrations	(Milando	et	al.	2016a).	As	for	point	sources,	complete	

conversion	of	NOx	to	NO2	is	assumed,	which	may	overestimate	NO2	near	major	roads.		

	

Apportionment	of	exposures	to	source	categories	

Exposures	are	apportioned	into	regional,	local,	point,	mobile,	and	area	source	categories.	Point	

and	mobile	source	exposures,	which	are	estimated	using	dispersion	modeling	described	earlier,	

and	area	source	exposures	are	spatially	resolved.		

	

Exposures	due	to	“regional”	sources,	representing	long-range	transport	and	secondary	

formation	of	PM2.5,	NO2,	and	O3,	are	based	on	monitoring	data,	and	all	blocks	are	assigned	the	

same	daily	regional	concentration.	For	PM2.5	and	NO2,	the	daily	“regional”	component	of	

exposure	is	defined	as	the	second	lowest	concentration	in	the	monitoring	network	on	that	day.	

The	second	lowest	concentration	is	usually	similar	to	the	lowest,	but	it	avoids	possible	

anomalies	associated	with	possibly	erroneous	or	unrepresentative	measurements.	For	O3,	a	

secondary	pollutant	without	direct	primary	emissions,	the	“regional”	exposure	is	the	average	

across	all	monitors	in	the	area.	This	is	supported	by	ambient	monitoring	that	typically	shows	

only	modest	changes	in	O3	levels	across	the	study	area.	

	

“Local”	exposures	of	PM2.5	and	NO2,	representing	the	fraction	of	these	pollutants	that	come	

from	local	sources,	including	point,	mobile,	area,	and	secondary	formation,	are	estimated	from	

monitoring	data.	The	“local	increment”	is	estimated	as	the	highest	daily	mean	across	the	

monitoring	network	minus	the	“regional”	estimate.	For	PM2.5,	the	local	increment	is	spatially	
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resolved	by	assigning	near	road	blocks	(within	200	m	of	a	major	freeway)	the	full	local	

increment;	this	accounts	for	local	PM2.5	emissions	not	included	in	the	dispersion	model	(e.g.,	

secondary	formation	or	dust)	that	are	higher	in	the	near-road	environment;	more	distant	blocks	

are	assigned	half	of	the	increment.	This	approach	is	justified	by	the	current	emissions	inventory,	

which	shows	that	mobile	sources	account	for	approximately	50%	of	the	PM2.5	emissions	in	

Detroit	(US	EPA,	2016e),	and	by	receptor	modeling	results	that	show	15	to	30%	of	PM2.5	is	due	

to	diesel	exhaust	and	other	mobile	sources	(Milando	et	al.	2016b).	

	

Estimates	of	area	sources	are	included	in	the	emissions	inventory,	but	these	lack	spatial	and	

temporal	resolution,	and	uncertainties	may	be	high,	especially	for	fugitive	dust.	Rather	than	

model	area	sources	based	on	these	uncertain	emissions	inventories,	we	estimate	“area”	

exposures	as	the	“local”	source	exposures	minus	the	point	and	mobile	source	exposures	at	

each	census	block.	Any	local	exposures	not	accounted	for	by	the	point	and	mobile	source	

dispersion	models	are	captured	in	the	“area”	exposures.		

	

A	complete	dataset	is	obtained	using	days	for	which	both	monitoring	and	modeling	results	are	

available.	This	results	in	48	of	61	possible	days	modeled	in	2012.	Daily	exposures	are	estimated	

by	drawing	from	the	distribution	for	complete	days,	and	used	in	the	health	impact	functions.	

	

Inequality	metrics		

Inequality	of	exposures	and	attributable	health	impact	risks	are	evaluated	at	the	census	block.	

Risks	are	evaluated	as	the	risk	of	a	DALY	per	year,	which	allows	impacts	to	be	summed	across	
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health	outcomes	and	age	groups	while	accounting	for	differences	in	the	frequency	and	severity	

of	outcomes.	Two	inequality	metrics	are	used.	The	Atkinson	Index	(AI),	which	assesses	

inequality	across	census	blocks	using	the	average	health	impact	risk	as	a	reference	group	

(Harper	et	al.	2013),	was	originally	developed	for	income	inequality;	more	recently,	it	has	been	

applied	to	air	quality	impacts	(Fann	et	al.	2011;	Levy	et	al.	2009,	2007).	The	AI	includes	a	

subjective	“inequality	aversion”	parameter,	which	is	set	to	0.75	following	earlier	work	(Fann	et	

al.	2011).	The	second	inequality	metric,	the	concentration	index	(CI),	evaluates	how	ambient	

concentrations	and	health	burdens	are	distributed	across	units	(e.g.,	individuals	or	census	

blocks)	ranked	by	demographics	or	socioeconomic	status	(O’Donnell	et	al.	2008).	Negative	CI	

values	indicate	that	less	socially	advantaged	groups	carry	heavier	burdens.	Prior	cumulative	

impact	assessment	work	applied	this	metric	to	environmental	hazards,	including	ambient	air	

pollutant	exposures	(Cushing	et	al.	2015;	Sadd	et	al.	2011;	Su	et	al.	2012,	2009).		

	

The	spatially-resolved	demographic	and	vulnerability	measures	used	by	the	CI	are	drawn	from	

block	group-level	data	in	the	2014	5-year	American	Community	Survey	(US	Census	Bureau,	

2014),	specifically:	percentages	of	the	population	that	are	non-white,	identify	as	Hispanic	or	

Latino,	are	persons	of	color,	are	foreign	born,	and	with	less	than	a	high	school	diploma;	

percentage	of	households	with	past	year	income	below	the	poverty	level;	and	median	

household	income	(in	inflation-adjusted	2014	dollars).	The	block-group	SES	variables	are	

downscaled	to	the	block	level.	(These	are	mapped	in	Appendix	A3.)	
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The	sensitivity	of	the	inequality	analysis	results	to	study	boundaries	and	spatial	resolution	is	

examined	using	additional	analyses.	The	full	study	domain	(493	km2,	945,000	persons)	is	

compared	to	a	subdomain	in	southwest	Detroit	(79.5	km2,	131,000	persons,	Figure	3.1),	

selected	as	it	contains	a	large	number	of	major	point	sources	and	heavily	trafficked	roads;	this	

area	also	has	been	designated	as	non-attainment	of	the	SO2	standard.	Both	the	original	study	

area	and	the	subdomain	are	within	the	modeling	domain	for	the	point	and	mobile	source	

dispersion	models.	For	spatial	resolution,	health	and	inequality	impacts	at	block-	and	ZIP	code-

level	are	compared.	ZIP	codes	are	selected	as	the	unit	of	comparison	in	the	sensitivity	analysis	

because	they	are	the	smallest	unit	for	which	health	data	are	available.		

	

Results		

Daily	population	exposures	at	the	census	block	level		

NO2	and	O3	concentrations	show	the	expected	seasonal	variation,	e.g.,	daily	NO2	concentrations	

peak	in	winter	and	daily	8-hour	maximum	concentrations	of	O3	peak	in	summer,	while	daily	

PM2.5	levels	remain	relatively	consistent.	Long	term	trends	in	average	concentrations	(2011-

2015)	are	not	apparent	based	on	linear	regression	of	the	daily	metrics	(Figure	A3.4).		

	

Daily	PM2.5	exposures	are	dominated	by	regional	sources,	which	contributed	an	average	of	8.3	

µg/m3	across	the	study	area,	compared	to	2.9	µg/m3	for	point,	mobile	and	area	sources	

combined	(Table	3.1).	DPM	accounts	for	most	(90%)	PM2.5	from	on-road	mobile	sources.	For	

PM2.5	and	NO2,	average	concentrations	from	on-road	mobile	sources	(0.6	µg/m3	and	10.2	ppb,	

respectively)	exceed	those	from	point	sources	(0.5	µg/m3	and	1.4	ppb,	respectively).	On-road	
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mobile	sources	account	for	an	average	of	42%	of	NO2	exposures	at	the	block	level.	In	contrast	

to	PM2.5,	NO2	and	O3,	only	point	sources	contribute	to	SO2	exposures.		

	

Burden	of	disease		

Exposures	to	O3,	PM2.5,	SO2,	and	NO2	result	in	just	over	10,000	DALYs	per	year	incurred	by	

residents	of	Detroit	and	the	adjacent	cities;	this	represents	over	$6.5	billion	annually	in	

monetized	impacts	(Table	3.2).	The	fraction	of	mortalities	and	morbidities	attributable	to	air	

pollutant	exposures	varies	by	outcome.	We	estimate	that	5.5	and	1.5%	of	annual	deaths	are	

attributable	to	PM2.5	and	O3	exposures,	respectively,	which	is	comparable	to	previous	estimates	

of	attributable	health	burdens	in	the	U.S.	(Fann	et	al.	2012).	For	morbidities,	attributable	

fractions	range	from	1.6%	of	cardiovascular	disease	hospitalizations	to	37%	of	ED	visits	for	

asthma.	The	sum	of	regional,	point,	mobile,	and	area	source	impacts	is	about	6%	lower	than	

impacts	for	(total)	exposure	of	PM2.5	and	NO2	due	to	nonlinearities	in	the	health	impact	

functions.	Most	of	the	health	burden	is	due	to	premature	mortality	caused	by	O3	and	PM2.5	

exposures	(140	and	520	deaths	per	year	among	adults	over	29	years	of	age,	respectively).	The	

most	frequent	attributable	outcomes	are	minor	restricted	activity	days	(760,000	per	year),	

missed	school	days	(570,000	per	year),	and	work	loss	days	(59,000	per	year);	these	impacts	are	

also	driven	by	O3	and	PM2.5	exposure.	Asthma	exacerbations	among	children,	which	are	linked	

to	all	four	pollutants,	are	also	common.	Air	pollutant	exposures	account	for	3,300	emergency	

department	(ED)	visits	for	asthma	each	year,	largely	driven	by	associations	with	O3	and	NO2.	

PM2.5	and	O3	account	for	most	of	the	attributable	cases	of	the	health	outcome	examined.	The	

exceptions	are	COPD	hospitalizations	and	days	with	one	or	more	asthma	symptoms,	which	are	
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driven	by	NO2.	The	burden	attributed	to	mobile	sources,	which	exceeds	that	of	point	sources,	is	

driven	by	premature	mortality	from	PM2.5	and	asthma-related	health	impacts	from	both	NO2	

and	PM2.5.	

	

The	excess	cancer	risk	from	DPM	exposure	averages	417	(SD	=	199)	per	106	per	year,	and	ranges	

from	0	to	1,500	per	106	per	year	at	the	block	level.	Our	results	are	based	on	an	average	DPM	

concentration	of	0.5	µg/m3	(range:	0	–	2.6	µg/m3)	across	all	census	blocks	in	the	study	area.	

Similar	results	have	been	reported	in	California:	for	a	state-wide	average	DPM	concentration	of	

0.58	µg/m3
	in	2012,	the	excess	cancer	risk	was	520	per	106	residents	per	year	(Propper	et	al.	

2015).	Excess	cancer	risks	are	highest	in	downtown	and	southwest	Detroit	where	annual	

average	DPM	concentrations	are	highest	(Figure	A3.5).	

	

Spatial	distribution	and	inequality	of	exposures	and	attributable	health	burden	

Health	burdens	attributable	to	air	pollution	exposure	are	unevenly	distributed	across	the	study	

area,	and	source	categories	show	large	differences.	Regional	sources	show	the	least	variation	in	

health	burdens	(Figure	3.2B),	as	expected,	and	variation	is	entirely	due	to	differences	in	at-risk	

populations	and	baseline	health	rates.	(Regional	PM2.5,	O3,	and	NO2	exposures	are	assumed	to	

be	homogeneous	across	the	study	area.)	Point	source	emissions	show	the	heaviest	burdens	in	

central	and	southwest	Detroit,	reflecting	the	dispersal	of	point	source	emissions	largely	

occurring	in	southwest	Detroit	(Figure	3.2C).	Mobile	sources	make	their	largest	impacts	near	

major	roadways,	especially	interstate	highways	with	a	large	fraction	of	heavy	duty	diesel	trucks,	
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reflecting	the	sharp	gradients	in	concentrations	near	roads	(Figure	3.2D).	(Maps	of	health	

impacts	due	to	individual	pollutants	are	included	in	Appendix	A3.)	

	

Atkinson	Index	

Table	3.3	contrasts	AI	values	for	exposure	concentrations	(left)	and	health	risks	(right);	these	

quantify	the	spatial	variation	seen	in	Figure	3.2.	Inequality	in	exposure	concentrations	

measured	by	the	AI	(0.003	to	0.130)	is	lower	than	those	for	health	impact	risks	(0.040	to	0.245).	

Inequality	is	lowest	for	total	exposures	to	PM2.5	(AI	=	0.003)	and	NO2	(AI	=	0.009)	because	these	

pollutants	are	dominated	by	regional	sources	that	produce	similar	exposures	across	the	study	

area	(Table	3.2).	In	contrast,	AI	values	for	PM2.5,	NO2,	and	SO2	from	point	and	mobile	sources	

are	higher	(e.g.,	point	source	exposure	AIs	are	0.101,	0.034	and	0.064	for	PM2.5,	NO2	and	SO2,	

respectively;	mobile	source	exposure	AIs	are	0.079	and	0.084	for	PM2.5	and	NO2,	respectively)	

because	the	dispersion	models	represent	spatial	variability	and	small-scale	variation.	These	

results	demonstrate	the	importance	of	using	methods	that	account	for	exposure	variability	at	

the	intra-urban	scale;	otherwise,	key	factors	that	influence	vulnerability	may	be	missed.		

	

The	inequality	of	health	risks	is	especially	apparent	for	some	pollutants	and	sources,	e.g.,	PM2.5	

(AI	=	0.126	and	0.126	for	point	and	mobile	sources,	respectively),	NO2	(AI	=	0.159	and	0.191,	

respectively),	and	point	sources	of	SO2	(AI	=	0.155).	AI	values	for	the	health	risks	(0.040	to	

0.245)	are	considerably	higher	than	those	for	exposures	(0.003	to	0.130),	because	they	account	

for	spatial	variability	in	exposures	and	baseline	health	risks	and	temporal	variability	in	

exposures.	Temporal	variability	in	exposures,	which	affect	health	impact	estimates,	is	not	well	



	

	 119	

captured	by	averaging	exposure	concentrations	over	the	full	year.	Including	spatial	variability	in	

health	risks	and	temporal	variability	in	exposures	is	important	for	capturing	the	distribution	of	

burdens	across	the	population;	similar	exposures,	whether	daily	or	averaged	over	a	year,	in	two	

areas	with	differing	baseline	health	risks	will	result	in	unequal	health	burdens	that	are	not	

represented	by	exposures	alone.	This	contrast	between	inequality	in	exposures	and	health	risks	

is	especially	evident	for	total	exposures	to	PM2.5	and	NO2.	For	point	and	mobile	sources	of	these	

pollutants,	the	AI	for	health	risks	is	1.24	and	4.6	times	higher	than	the	AI	for	exposures;	for	total	

exposures,	the	AI	is	13	and	15	times	higher.	For	NO2,	accounting	for	the	distribution	of	baseline	

health	risks	across	the	population	increases	the	AI	from	0.009	for	exposures	to	0.137	for	health	

risks.	Without	accounting	for	the	underlying	susceptibility	of	the	population	at	the	intra-urban	

scale,	inequality	in	attributable	health	burdens	due	to	these	pollutants	is	underestimated,	and	

this	underestimate	may	lead	to	differing	conclusions	about	which	pollutants	result	in	the	

highest	degree	of	inequality	across	the	population.		

	

The	AI	results	depend	on	spatial	resolution.	While	results	depend	on	pollutant	and	source,	AI	

values	for	exposures	and	health	risks	at	the	ZIP	code	level	averaged	17	and	47%	lower,	

respectively,	than	values	at	the	census-block	level	(Table	3.3).	Larger	spatial	units	are	less	likely	

to	capture	gradients	in	exposures	and	other	risk	factors	that	can	increase	contrasts.	

Interestingly,	the	AI	value	increased	in	one	case:	point	source	emissions	of	PM2.5.	This	is	

because	the	highest	annual	average	point	source	concentrations	of	PM2.5	are	found	in	a	

relatively	small	area	near	the	sources	(Figure	3.3A),	and	this	variation	still	is	represented	at	the	
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ZIP	code	level.	Although	AI	values	tend	to	be	lower	at	the	ZIP	code	level,	many	of	the	inequality	

patterns	remain.	

	

AI	results	show	sensitivity	to	both	region	and	pollutant.	In	the	sub-region	(defined	by	the	SO2	

non-attainment	area),	effects	on	AI	values	for	health	risks	vary	by	pollutant	and	source,	but	

values	tend	to	decrease	(Table	3.3).	For	example,	AI	values	for	SO2	decrease	by	33	and	25%	for	

exposures	and	health	risk,	respectively,	in	the	sub-region.	Most	of	the	excluded	area	has	low	

SO2	exposure,	but	some	highly	burdened	areas	remain	(Figure	A3.6C).	In	contrast,	AI	values	

increase	for	point	and	mobile	sources	of	PM2.5	because	the	sub-region	contains	blocks	with	low	

burdens	from	these	sources	(Figure	3.2C)	and	excludes	more	highly	burdened	groups	in	Detroit.	

These	analyses	suggest	the	need	for	small	spatial	units	(i.e.,	census	blocks)	that	can	capture	

exposure	gradients,	and	study	areas	large	enough	to	capture	the	full	distribution	of	health	

impacts.	

	

Concentration	Index	

CIs	vary	by	pollutant,	source	type,	and	demographic	or	SES	characteristics	(Table	3.4),	reflecting	

the	spatial	variability	of	exposures,	health	impacts,	and	population	subgroups.	(CI	for	pollutant	

exposures	is	shown	in	Table	A3.3).	The	most	negative	values,	indicating	the	greatest	inequality,	

occur	for	point	source	emissions	when	blocks	are	ranked	by	the	percentage	of	residents	who	

identify	as	Hispanic	or	Latino	(CI	x	100	for	health	risks	from	point	source	emissions	of	PM2.5,	SO2	

and	NO2	are	-11.7,	-13.3	and	-9.3,	respectively).	Other	variables	with	high	CI	values	include	

percentage	of	the	population	with	less	than	a	high	school	diploma,	and	the	percentage	foreign	
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born,	which	are	moderately	correlated	(r	=	0.42	and	0.47)	to	the	Hispanic	or	Latino	percentage	

(Figure	A3.7).	Many	Hispanic	and	Latino	residents	live	near	locations	where	point	sources	make	

major	impacts	(Figure	3.3C).	However,	disproportionate	impacts	are	obscured	when	Hispanic	or	

Latino	residents	are	grouped	together	with	other	minority	groups	in	a	single	“persons	of	color”	

variable,	which	makes	up	most	of	the	study	population	(Figure	3.3D),	resulting	in	lower	

contrasts	between	risks	for	the	most-	and	least-	advantaged	census	blocks.	Mobile	source	

emissions	also	result	in	high	CI	values	for	rankings	by	income	(median	income	and	percentage	

of	households	below	the	poverty	level).	In	the	U.S.,	persons	earning	below	the	poverty	level	are	

more	likely	to	live	close	to	major	roads	and	thus	experience	higher	exposures	to	mobile	source	

emissions,	compared	to	whites	and	more	affluent	groups	(Boehmer	et	al.	2013;	Tian	et	al.	

2013).		

	

The	CI	appears	more	sensitive	to	study	boundaries	than	to	spatial	resolution	(Table	3.4).	Using	

ZIP	code	level	data,	increased	inequality	is	suggested	for	some	variables,	e.g.,	Hispanic	and	

Latino	populations,	but	the	same	groups	with	the	heaviest	burdens	are	identified,	suggesting	

that	larger	scale	data	may	capture	inequality	effects	when	they	are	representative	of	

population	trends.	However,	in	the	study	sub-region,	inequality	is	associated	with	different	

characteristics,	e.g.,	the	percentage	of	the	population	that	identifies	as	persons	of	color	is	

associated	with	disproportionate	burdens	from	point	source	emissions.	Disproportionate	

impacts	for	non-whites	can	be	more	pronounced	if	the	fractions	of	socially	advantaged	and	

disadvantaged	(i.e.,	white	and	non-white)	populations	are	more	equal.	Like	the	AI	analysis,	

these	results	suggest	the	importance	of	the	study	boundary,	the	need	to	include	exposed	
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populations,	the	use	of	spatial	units	small	enough	to	represent	demographics	and	exposures	

and,	in	addition,	whether	the	characteristics	used	to	identify	disproportionate	groups	are	

appropriate	for	the	study	area.	

	

Discussion	

The	burden	of	disease	and	inequality	assessments	show	that	ambient	air	pollutant	exposures	

can	result	in	significant	health	impacts	for	study	area	residents	and	contribute	to	environmental	

inequalities.	Five	trends	are	highlighted	for	further	discussion.	First,	exposure	to	air	pollutants	

imposes	a	substantial	health	burden,	even	where	concentrations	fall	below	the	national	

standards	(NAAQS).	Second,	impacts	are	unevenly	distributed	and	depend	on	pollutant,	source	

type,	and	spatial	patterns	of	exposure,	susceptibility,	and	vulnerability.	Third,	ambient	

monitoring	data	alone	is	insufficient	to	capture	the	small	scale	variation	in	exposures	that	affect	

health	burden	and	inequality	analyses.	Fourth,	exposures	as	a	proxy	of	health	risks	will	

underestimate	inequality,	which	may	hinder	prioritization	of	strategies	to	alleviate	health	

disparities.	Lastly,	health	impact	and	inequality	metrics	depend	on	study	boundaries	and	spatial	

resolution.	These	results	are	specific	to	the	study	area,	but	most	findings	appear	applicable	to	

other	urban	areas.	

	

Burden	of	disease	attributable	to	ambient	air	pollutant	exposures	below	the	NAAQS	

The	burden	of	disease	due	to	pollutant	exposure	is	significant.	As	noted,	a	portion	of	the	study	

area	is	considered	in	non-attainment	with	the	SO2	standard,	and	the	entire	southeast	Michigan	

region	may	be	designated	in	non-attainment	with	the	O3	standard	(MDEQ,	2016a,	2016b).	
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However,	the	area	is	in	compliance	with	the	PM2.5	and	NO2	standards,	and	PM2.5	is	estimated	to	

cause	most	(97%)	of	the	health	burden	(9,800	DALYs	per	year,	$5.1	billion	per	year).	This	

estimate	assumes	no	concentration	threshold	below	which	health	effects	are	not	expected,	

which	is	supported	by	recent	studies	showing	risks	below	the	current	NAAQS,	e.g.,	premature	

mortality	due	to	PM2.5	(Schwartz	et	al.	2017;	Shi	et	al.	2016).	Despite	uncertainty	regarding	

impacts	of	low	dose	exposures,	continued	reductions	in	ambient	pollutant	concentrations	are	

likely	to	yield	health	benefits	(Goodkind	et	al.	2014;	Pope	et	al.	2015).	Health	burden	studies	

can	help	guide	local,	state,	or	national	actions	to	further	reduce	concentrations,	even	in	areas	

meeting	current	regulatory	standards.	Substantial	benefits	could	be	achieved	by	focusing	on	

pollutants	which	are	subject	to	air	quality	management	actions	in	the	study	area.	For	example,	

NO2	emissions,	which	are	an	O3	precursor	and	involved	in	secondary	PM	formation	(Meng	et	al.	

1997),	are	likely	to	be	targeted	in	a	future	O3	State	Implementation	Plan	(SIP).	Reducing	NO2	

emissions	can	yield	large	health	benefits	due	to	lower	concentrations	of	secondary	PM2.5	and	

O3	(Sacks	et	al.	2015;	US	EPA,	2010b).	In	Detroit,	in	addition	to	its	role	on	O3	formation,	

reducing	traffic	emissions	of	NO2	also	would	reduce	health	inequalities	associated	with	

exposure	to	NO2	(Tables	3.3	and	3.4).	

	

Intra-urban	inequality	in	the	health	burden	attributable	to	ambient	air	pollution	

The	burden	and	inequality	associated	with	point	and	especially	mobile	sources	is	striking,	

resulting	in	the	highest	health	burden	and	disproportionately	impacts	on	Hispanic	or	Latino	and	

low	income	communities	within	the	study	area.	This	conclusion	reflects	the	pollutant	dispersion	

from	tall	stacks,	as	well	as	proximity	of	traffic	to	exposed	populations.	Both	can	cause	small	
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scale	variation	in	pollutant	concentrations,	e.g.,	elevated	concentrations	of	traffic-related	air	

pollutant	concentrations—and	health	impacts—near	roadways	(Batterman	et	al.	2015;	Padró-

Martínez	et	al.	2012;	Patton	et	al.	2014)	(Figure	3.2D),	as	shown	in	several	cumulative	impact	

studies	(Pratt	et	al.	2015;	Su	et	al.	2012,	2009).	While	exposures	from	point	sources	are	mostly	

low	(Table	3.1),	they	result	in	disproportionate	health	impacts	because	industry	tends	to	cluster	

together	(e.g.,	in	southwest	Detroit),	because	several	facilities	have	short	stacks	that	cause	local	

“hot-spots,”	and	because	predominantly	Hispanic/Latino	residents	live	nearby	(Figure	A3.2).	

These	results	depend	on	the	spatial	layout,	and	possibly	these	factors	are	less	aligned	

elsewhere,	e.g.,	where	industry	is	farther	removed	from	urban	area,	though	traffic	impacts	are	

common.	Site-specific	studies	provide	perhaps	the	only	way	to	understand	such	health	burden	

and	equity	implications.	Because	multiple	source	types	are	implicated	as	having	substantial	

health	burdens	on	different	groups,	strategies	aimed	at	addressing	environmental	inequalities	

should	target	multiple	source	types	to	ensure	that	disadvantaged	communities	benefit	from	

exposure	reductions.		

	

Subgroups	shown	to	suffer	disproportionate	health	impacts	within	the	study	area,	which	was	

selected	given	the	potential	for	high	exposures,	include	Hispanic/Latino	residents	and	low-

income	residents.	Typically,	EJ	and	cumulative	impact	analyses	use	a	single	variable	(persons	of	

color)	to	assess	inequality	by	race	and	ethnicity	(e.g.,	Sadd	et	al.	2011).	Across	the	larger	

metropolitan	area	(i.e.,	the	tri-county	metropolitan	region	or	seven-county	southeast	Michigan	

region),	aggregated	variables	may	be	sufficient	to	capture	inequalities	given	the	region’s	broad	

patterns	of	racial/ethnic	segregation	(e.g.,	Schulz	et	al.	2016);	however,	more	targeted	intra-
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urban	analyses	require	further	disaggregation	by	racial/ethnic	minorities,	otherwise,	important	

inequalities	may	be	missed.	Characteristics	used	in	an	inequality	assessment	should	reflect	key	

demographic	characteristics	important	to	the	specific	area	and	should	represent	a	reasonable	

fraction	of	the	population	to	avoid	artificially	increasing	inequality	metrics.	Addressing	

inequalities	in	exposure	or	risk	for	very	small	subgroups	may	not	be	feasible	through	public	

policy.	Although	establishing	a	uniform	threshold	for	the	size	of	the	subgroup	is	impractical,	

chosen	characteristics	should	start	by	identifying	characteristics	that	highlight	historical	

patterns	of	racial	and	ethnic	segregation	(Schulz	et	al.	2002)	and	socioeconomic	status	that	

influence	heath	disparities.	Within	the	study	area,	and	in	particular	within	the	city	of	Detroit	

(the	largest	city	within	the	study	area),	there	is	less	spatial	variability	in	race	(white	vs.	non-

white)	than	ethnicity	(Hispanic/Latino	vs.	non-Hispanic)	or	poverty	status	(Figure	A3.2),	and	

ethnicity	and	poverty	status	may	better	represent	demographic	gradients	than	race.	Inequality	

analyses	should	also	recognize	that	not	all	socially	disadvantaged	groups	can	be	identified	using	

available	data.	For	example,	in	the	city	of	Dearborn,	30%	of	the	population	identifies	as	Arab	or	

Arab	American	(de	la	Cruz	and	Brittingham,	2003),	many	of	whom	experience	high	exposures	to	

social	stressors	(Padela	and	Heisler,	2010;	Samari,	2016).	However,	the	US	Census	does	not	

include	data	on	Arab	ethnicity,	so	this	group	cannot	be	examined	with	respect	to	inequality	in	

health	burden.	In	some	cases,	proxy	characteristics,	e.g.,	the	percentage	of	the	population	that	

is	foreign	born,	can	be	used	instead	(Figure	A3.2).		

	

The	identification	of	disproportionately-impacted	populations	depends	in	part	on	which	

populations	are	included	or	excluded	from	the	analysis.	As	discussed	earlier,	the	study	
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boundary	for	this	analysis	included	the	area	expected	to	have	the	highest	potential	for	health	

impacts,	with	some	restrictions	in	scope	due	to	dispersion	modeling	constraints.	Focusing	on	

the	entire	Detroit	Metropolitan	area,	which	includes	Wayne,	Oakland,	and	Macomb	counties,	

would	likely	change	the	interpretation	of	the	inequality	metrics	and	demonstrate	

disproportionate	impacts	among	more	groups	known	to	be	socially	disadvantaged,	e.g.,	non-

Hispanic	Black/African	American	residents.	As	discussed	earlier,	the	study	area	has	higher	

proportions	of	persons	of	color	(75.6%)	compared	to	Wayne	County	as	a	whole	(50.2%)	(US	

Census	Bureau,	2014).	Compared	with	the	study	area,	Oakland	and	Macomb	counties	have	

lower	proportions	of	persons	of	color	(26.0%	and	17.9%,	respectively)	and	persons	living	below	

the	poverty	level	(10.4%	and	12.8%,	respectively)	(US	Census	Bureau,	2014).	Residents	in	these	

counties	tend	to	be	healthier	than	those	living	in	Wayne	County.	For	example,	in	2014,	Oakland	

and	Macomb	counties	ranked	22nd	and	39th	in	overall	health,	respectively,	among	counties	in	

Michigan;	Wayne	County	consistently	ranks	82nd	out	of	82	counties	in	the	state	(RWJ	

Foundation,	2017).	Due	to	their	distance	from	major	sources	the	presence	of	fewer	heavily	

trafficked	roads	in	Oakland	and	Macomb	counties,	we	expect	exposures,	and	thus	health	

impacts,	in	these	counties	to	be	lower	than	the	study	area.	Given	the	clustering	of	minority	and	

low-income	populations	in	the	study	area,	the	inequality	metrics	for	exposures	and	health	

burdens	are	expected	to	be	large	for	most	if	not	all	of	the	subgroups	included	in	this	study	

when	examined	within	the	context	of	the	broader	tri-county	area.		

	

Caution	is	needed	when	interpreting	the	results	of	the	inequality	assessment	for	the	study	area,	

as	the	result	are	only	intended	only	to	demonstrate	inequality	between	census	blocks	within	
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the	study	area.	The	results	presented	in	this	analysis	should	not	be	used	to	examine	issues	of	

inequality	between	residents	of	the	study	area	and	the	broader	southeast	Michigan	region.	The	

absence	of	evidence	of	a	disproportionate	impact	for	certain	groups,	e.g.,	among	census	blocks	

with	high	proportions	of	Black	or	African	American	residents,	should	not	be	interpreted	as	

evidence	that	these	residents	are	not	overburdened	by	their	environmental	exposures.	A	

previous	study	of	disparities	across	the	tri-county	region	(using	census	tracts	as	the	spatial	unit	

of	analysis)	demonstrated	residents	in	Detroit	experience	higher	cumulative	impacts	from	

hazardous	land	uses,	air	pollutant	exposures,	and	social	vulnerabilities	relative	to	other	

neighborhoods	in	the	region	(Schulz	et	al.	2016).	The	present	analysis,	limited	in	scope	by	the	

study	boundary,	is	intended	to	help	decisions	makers	identify	those	sections	within	the	study	

area	that	are	most	heavily	impacted,	information	which	can	be	used	to	prioritize	sections	within	

a	city	for	AQM	activities.	The	results	of	this	analysis	or	any	intra-urban	inequality	assessment	

should	be	interpreted	within	the	broader	body	of	evidence	on	environmental	justice	issues	in	

urban	areas.	

	

Exposures	as	a	poor	proxy	for	health	risks	in	urban-scale	inequality	assessments	

The	finding	from	the	inequality	assessment	that	exposures	alone	are	insufficient	for	

representing	health	inequalities	is	important.	Inequality	metrics	for	health	risks	are	driven,	in	

addition	to	exposures,	by	the	variability	in	baseline	health	risks,	demographic	variables,	income,	

and	other	characteristics	that	influence	vulnerability	or	susceptibility.	This	differs	from	many	or	

possibly	most	earlier	EJ	and	cumulative	impact	analyses	that	have	relied	on	exposure	indicators	

for	a	showing	of	disproportionate	impacts,	e.g.,	using	ambient	monitoring	and	dispersion	
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modeling	(e.g.,	Gray	et	al.	2013;	Jones	et	al.	2014;	Pope	et	al.	2016;	Pratt	et	al.	2015;	Prochaska	

et	al.	2014;	Su	et	al.	2012,	2009),	and	surrogates	such	as	proximity	to	traffic	or	point	sources	

(Batterman	et	al.	2014a;	Brender	et	al.	2011).	In	addition,	data	from	national	datasets	like	the	

National	Air	Toxics	Assessment	(US	EPA,	2015b)	and	air	quality	monitoring	networks	may	not	

have	the	needed	spatial	resolution	for	local	scale	analyses	of	industry	and	traffic	pollutants	

(Levy	and	Hanna,	2011;	Matte	et	al.	2013).	Factors	that	influence	the	necessary	resolution,	

including	the	proximity	of	the	source	to	exposed	populations,	source	characteristics	such	as	

stack	heights,	meteorology,	the	vulnerability	or	susceptibility	of	exposed	populations,	and	other	

factors	(Fann	et	al.	2009),	can	become	more	important	at	smaller	study	scales.		

	

The	choice	of	which	health	impact	metrics	to	use	to	assess	inequality	can	be	important	for	EJ	

and	cumulative	impact	analyses.	Prior	inequality	analyses	of	attributable	health	impacts	have	

focused	on	the	risk	of	specific	health	outcomes,	e.g.,	premature	mortality	or	hospitalizations,	

and	on	total	risk	rather	than	attributable	risk	(Fann	et	al.	2011;	Levy	et	al.	2009,	2007).	

However,	using	a	limited	number	of	outcomes	only	captures	a	portion	of	the	health	burden	due	

to	pollutant	exposures,	and	minor	outcomes	such	as	asthma	exacerbations	or	restricted	activity	

days	that	contribute	greatly	to	overall	health	burdens	(Table	3.2)	should	also	be	considered,	

especially	if	incidence	rates	vary	spatially	across	the	study	area.	DALYs	provide	a	composite	

measure	of	health	impacts	that	accounts	for	their	severity	and	frequency	and	may	be	

advantageous	in	inequality	analyses.	DALYs	can	help	clarify	which	exposures	and	which	sources	

are	most	important	from	a	public	health	perspective.	In	some	cumulative	impact	and	EJ	

analyses,	attributable	risk	may	be	more	appropriate	than	total	health	risk	(e.g.,	based	on	
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incidence	rates).	For	example,	transportation	planners	may	be	most	interested	in	inequality	in	

risk	of	mortality	attributable	to	traffic	emissions	rather	than	total	mortality	risk.	Although	there	

is	some	uncertainty	around	the	disability	weights	assigned	to	outcomes	for	DALYs	(de	Hollander	

et	al.	1999;	Haagsma	et	al.	2014),	using	DALYs	to	weight	health	impacts	may	be	preferred	over	

other	cumulative	impact	approaches	that	assign	uncertain	weights	to	environmental	and	social	

determinants	of	health,	e.g.,	pollutant	exposures	(Sadd	et	al.	2011).		

	

Also,	it	is	important	to	recognize	that	quantitative	HIA	methods	capture	some	of	the	burden	of	

disease,	but	cannot	account	for	other	health	risks	for	which	reliable	CR	coefficients	are	not	

available	(O’Connell	and	Hurley,	2009)	or	other	important	dimensions	of	environmental	justice,	

e.g.,	the	perception	that	communities	are	more	polluted	(Brody	et	al.	2004).	The	air	pollution-

related	outcomes	for	which	HIFs	are	available	are	limited,	and	other	metrics	of	exposure	and	

health	burden	may	still	be	important	considerations.	For	example,	proximity	to	environmental	

hazards	has	other	important	risks	beyond	exposure	to	ambient	air	pollutants,	e.g.,	living	near	

industrial	facilities	may	negatively	impact	mental	health	(Downey	and	Willigen,	2005),	and	

noise	pollution	from	roadways	may	contribute	to	sleep	disturbance	and	cardiovascular	disease	

(Basner	et	al.	2014).	Health	impact	and	inequality	analyses	designed	for	specific	public	health	

decisions	should	include	quantitative	and	qualitative	descriptions	of	the	health	impacts	of	air	

pollutants.	An	explicit	weighting	system	could	be	used	to	combine	effects	from	descriptive	and	

quantitative	assessments.	
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Using	urban-scale	HIAs	incorporating	inequality	metrics	in	AQM	decision	making		

Information	about	which	sources	and	pollutants	contribute	most	to	environmental	inequalities	

is	important	for	public	health	priority	setting,	particularly	at	the	local	level	where	resources	

might	be	constrained.	Quantitative	estimates	of	health	impacts	may	be	particularly	useful	for	

decision	makers,	especially	when	compared	to	established	health	targets	or	standards	(Bhatia	

and	Seto,	2011;	Fehr	et	al.	2012).	The	findings	that	mobile	source	emissions	have	

disproportionate	impacts	on	low	income	residents	could	be	used	to	focus	urban	greening	

projects	in	areas	with	both	high	exposures	and	high	percentages	of	low-income	residents,	thus	

helping	to	alleviate	health	burdens	and	disparities.	Because	increased	access	to	green	space	can	

increase	property	values	and	make	urban	neighborhoods	more	attractive,	programs	to	increase	

green	space	in	low-income	neighborhoods	should	be	coupled	with	programs	to	support	existing	

communities	to	avoid	potential	issues	of	gentrification	and	displacement	(Wolch	et	al.	2014).	

Likewise,	knowing	that	point	and	mobile	sources	of	PM2.5	have	a	disproportionate	impact	in	

southwest	Detroit	(Figure	3.2),	particularly	among	the	Hispanic	and	Latino	populations	that	live	

in	the	area	(Table	3.4),	could	be	used	to	prioritize	schools	in	southwest	Detroit	for	installation	

of	filters	to	reduce	exposures.	Despite	the	potential	benefits	of	using	inequality	metrics	to	

inform	environmental	decision	making,	we	do	not	necessarily	advocate	performing	equity	

analyses	by	pollutant	source	for	all	public	health	decisions	because	health	impacts	result	from	

the	totality	of	exposure.	The	previous	examples	of	increasing	green	space	and	using	filters	in	

schools	pertain	to	reducing	exposures	to	specific	air	pollutants.	Any	reduction	in	exposures	can	

lead	to	some	health	benefits,	so	identifying	groups	that	are	disproportionately	impacted	allows	

AQM	activities	to	be	targeted	to	simultaneously	reduce	health	impacts	and	health	disparities.	
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For	decisions	that	will	potentially	increase	emissions	or	exposures	for	some	subpopulations,	

however,	source-and	pollutant-specific	assessments	are	not	appropriate.	Decisions	related	to	

permitting	or	facility	siting,	for	example,	should	include	health	and	cumulative	impact	

assessments	that	consider	only	total	exposures	to	a	number	of	social	and	environmental	

hazards	to	avoid	increasing	cumulative	burdens	for	any	segment	of	the	population.		

	

Some	additional	considerations	for	urban-scale	HIAs	follow	from	the	results	of	this	study.	First,	

exposure	assessments	should	be	based	on	the	spatially-	and	temporally-resolved	data	that	best	

reflect	variability	over	the	urban	area.	For	example,	several	pollutants	demonstrate	high	

degrees	of	spatial	and	temporal	variability	that	can	lead	to	greater	exposures	for	subsections	of	

the	study	area	(Figure	3.3A,	Figure	3.3B,	and	Figure	A3.4),	and	assessing	exposures	at	larger	

spatial	units	(e.g.,	ZIP	codes)	smooths	exposure	gradients	across	the	study	area	(Table	3.3).	

Dispersion	or	land	use	regression	models,	though	time-	and	resource-intensive,	may	provide	a	

reasonable	option	to	estimate	exposures	with	the	necessary	spatial	resolution	(Batterman	et	al.	

2015,	2014a;	Bertazzon	et	al.	2015;	Hoek	et	al.	2008;	Jerrett	et	al.	2005).	Partnering	with	state	

or	local	agencies	or	academic	partners	could	be	helpful	in	building	capacity	to	model	pollutant	

exposures	at	the	local	level.	In	general,	studies	that	utilize	spatially-resolved	estimates	of	

exposure	and	health	risks	are	preferred	over	less	refined	exposure	assessments,	and	studies	

that	incorporate	health	burdens	in	the	assessment	are	preferred	overall.	

	

Second,	the	study	scale	and	spatial	resolution	should	be	appropriate	for	the	policy	context.	The	

sensitivity	of	the	inequality	determinations	to	study	boundaries	and	spatial	scale,	while	not	
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surprising,	emphasizes	the	need	to	structure	analyses	based	on	potential	impacts	(Harper	et	al.	

2013)	and	the	policy	or	intervention	context.	For	this	burden	of	disease	assessment,	the	study	

boundaries	are	based	on	the	potential	for	exposures	and	health	impacts,	on	the	ability	to	

model	these	exposures	and	health	impacts	at	a	sufficiently	fine	spatial	scale,	and	on	the	

decision-making	authority	of	local	governments.	As	discussed	above,	the	results	of	this	study	

could	be	used	by	decision	makers	with	authority	within	the	study	area	to	prioritize	AQM	

activities	in	their	respective	cities.	The	same	study	boundaries	may	not	be	appropriate	for	all	

intervention	analyses.	For	assessments	of	specific	AQM	policies	or	programs,	the	selection	of	

study	boundaries	needs	to	be	deliberate	and	explicitly	stated.	For	example,	a	decision	about	

routing	traffic,	which	could	be	influenced	by	a	local	government,	requires	a	finely	grained	

assessment	at	the	intra-urban	scale	where	impacts	are	expected	to	be	localized	to	the	area	

around	the	roadways;	regional-scale	decisions	about	how	to	reduce	O3	concentrations,	which	

involve	multiple	actors	and	require	coordination	across	governmental	agencies,	would	use	less	

spatially	resolved	data	and	a	larger	study	area.	The	study	scale	and	study	resolution	in	

particular	will	depend	on	the	availability	of	input	health	and	exposure	data.	Sensitivity	analyses	

should	be	used	to	explore	implications	and	the	robustness	of	selected	boundary	and	spatial	

unit.	

	

Third	the	characteristics	used	to	identify	inequalities	might	be	tailored	to	the	specific	study	

area.	Every	urban	area	will	have	a	unique	spatial	distribution	of	populations,	and	the	selection	

of	appropriate	proxies	for	vulnerability	will	vary.	Variables	used	to	examine	inequality	should	be	

selected	after	reviewing	historical	and	current	population	trends.	For	example,	this	study	area	
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contains	a	large	Arab	and	Arab	American	population	in	Dearborn,	MI	that	is	not	well	

represented	using	census	data.	However,	there	are	large	proportions	of	residents	that	are	

foreign	born	in	Dearborn	(Figure	A3.2).	Though	not	all	of	these	foreign-born	residents	will	be	

Arab	or	Arab	American,	this	variable	may	be	a	reasonable	proxy	for	the	Arab	population	within	

the	study	area.	

	

Lastly,	HIAs	using	inequality	metrics	in	a	decision-making	context	should	consider	the	entire	

policy	context,	not	just	metrics	of	health	and	inequality.	It	is	important	to	note	that	health	and	

inequality	metrics	alone	do	not	identify	optimal	strategies	or	prioritize	pollutants	or	source	

categories.	Similarly,	the	inequality	metrics	provide	relative	measures,	and	there	are	no	

thresholds	or	standards	for	inequality	or	equality.	For	example,	this	analysis	suggests	PM2.5	

from	regional	sources	has	the	highest	public	health	burden	but	the	lowest	degree	of	inequality,	

while	point	source	emissions	impose	a	relatively	low	burden	but	significant	degree	of	

inequality.	Whether	strategies	should	focus	on	achieving	the	greatest	overall	reductions	in	

health	burden	or	health	inequality	is	a	matter	of	policy.	In	addition	to	health	and	equity,	

decision	makers	will	need	to	consider	legal,	economic,	and	political	ramifications	of	public	

policy	decisions,	as	well	as	community	preferences	for	air	quality	management	strategies.	

	

Uncertainty	in	the	quantitative	health	impact	assessments	

Uncertainties	in	quantitative	HIA	methods	and	inequality	assessments	influence	the	

interpretation	of	results.	The	exposure	assessment	omits	time-activity	data,	which	may	

underestimate	exposure	when	people	spend	substantial	time	in	areas	with	higher	
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concentrations	than	their	residences	(Baccini	et	al.	2015;	Tchepel	and	Dias,	2011).	Uncertainty	

around	the	CR	coefficient	has	the	largest	influence	on	health	impact	estimates	(Chart-asa	and	

Gibson,	2015).	(This	study	presents	only	the	mean,	i.e.	expected,	health	impacts.)	Other	sources	

of	uncertainty	include:	the	appropriateness	and	generalizability	of	the	CR	coefficient;	whether	

the	form	of	the	HIF	is	appropriate;	whether	the	exposure-outcome	relationships	are	

reasonable;	the	downscaling	of	census	block	group	and	ZIP	code	level	demographic	and	

baseline	health	rate	data	to	the	census	block	scale;	the	disability	weights	and	duration	variables	

used	in	the	calculation	of	DALYs;	uncertainties	in	the	modeled	estimates	of	ambient	pollutant	

concentrations;	and,	potential	double-counting	of	impacts	when	estimating	attributable	

burdens	from	multiple	pollutants	(Briggs	et	al.	2009;	Fuentes,	2009;	Haagsma	et	al.	2014;	Levy,	

2003;	Mesa-Frias	et	al.	2013).	Despite	these	and	other	uncertainties,	the	use	of	HIAs	and	

inequality	metrics	offers	decision-makers	an	objective	approach	to	indicate	the	nature,	

magnitude,	and	distribution	of	health	impacts.	

	

Conclusions	

This	study	has	estimated	the	health	burden	attributable	to	exposures	of	PM2.5,	O3,	NO2	and	SO2	

in	the	Detroit	area,	identified	the	role	of	point,	mobile,	and	area	sources,	and	examined	

inequality	of	exposures	and	attributable	health	risks	for	population	subgroups	defined	by	

demographics	or	socioeconomic	characteristics.	Exposure	to	ambient	pollutants	imposes	a	

substantial	health	burden	on	Detroit	residences,	mostly	due	to	PM2.5	and	O3	exposures,	most	of	

which	arises	from	regional	sources.	While	local	point	and	mobile	sources	impose	lower	health	

impacts	overall,	these	sources	contribute	most	to	the	inequality	in	the	health	burden	
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experienced	by	socially	disadvantaged	populations.	The	methods	presented	can	be	used	to	

inform	decision	making	aimed	at	reducing	environmental	health	burdens	and	inequalities,	

including	identifying	culpable	sources	and	designing	air	quality	management	strategies	to	

improve	public	health.	
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Table	3.1.	Summary	statistics	of	daily	concentrations	of	PM2.5	and	DPM	(daily	mean,	µg/m3),	O3	
(daily	8-hr	max,	ppb),	SO2	(daily	mean,	ppb),	and	NO2	(daily	mean,	ppb).	Contributions	from	
regional,	point,	mobile	and	area	sources	are	separated.	Estimated	at	the	census	block	level.	
Pollutant	 Source	 Mean	(SD)	 Min	 25th	 Median	 75th	 95th	 Max	
PM2.5	(µg/m3)	 Regional	 8.3	(4.5)	 1.5	 5.2	 6.8	 11.3	 14.5	 29.5	
	 Point	 0.5	(0.9)	 0.0	 0.1	 0.3	 0.6	 1.4	 75.7	
	 Mobile	 0.6	(0.5)	 0.0	 0.3	 0.4	 0.7	 1.6	 12.7	
	 Area	 1.8	(2.8)	 0.0	 0.2	 1.0	 2.2	 6.3	 29.4	
	 Total	 10.7	(5.4)	 2.0	 6.5	 9.9	 13.5	 19.7	 82.4	
DPM	(µg/m3)	 Mobile	 0.5	(0.6)	 0.0	 0.2	 0.4	 0.6	 1.5	 12.3	
O3	(ppb)	 Regional	 38.3	(13.7)	 6.8	 28.2	 36.4	 46.9	 63.4	 103.8	
SO2	(ppb)	 Point	 1.1	(1.4)	 0.0	 0.1	 0.5	 1.6	 4.0	 19.4	
NO2	(ppb)	 Regional	 10.9	(5.1)	 2.6	 7.7	 9.7	 12.9	 23.0	 30.2	
	 Point	 1.4	(1.1)	 0.0	 0.5	 1.1	 1.9	 3.5	 17.0	
	 Mobile	 10.2	(9.0)	 0.0	 4.3	 7.6	 13.0	 27.1	 191.9	
	 Area	 1.7	(3.0)	 0.0	 0.0	 0.0	 2.6	 8.8	 17.2	
	 Total	 23.5	(10.5)	 5.8	 17.3	 21.9	 26.0	 43.1	 214.2	
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Table	3.2.	Estimated	annual	incidence	for	the	health	outcomes	of	interest	and	total	annual	
burden	of	disease	as	attributable	cases,	disability-adjusted	life	years,	and	monetized	impacts	
attributable	to	PM2.5,	O3,	SO2,	and	NO2	from	regional,	point,	mobile,	and	area	sources.	Rounded	
to	two	significant	figures.	
	 	 Attributable	Impacts	

	 	
	

Exposure	source	
%	of	attributable	burden	
due	to	each	pollutant	

Outcome	(age	group)	

Estimated	
annual	

incidence1	 Total	(%2)	 Regional	 Point	 Mobile	 Area	 PM2.5	 O3	 SO2	 NO2	

Mortality	(cases)	

All-cause	(>29)	 9,400	 520	(5.5)	 420	 24	 27	 84	 100	 0	 0	 0	

Non-accidental	(>29)	 8,800	 140	(1.5)	 140	 0	 0	 0	 0	 100	 0	 0	

Infant	(<1)	 200	 6	(4.0)	 5	 0	 0	 1	 100	 0	 0	 0	

Hospitalizations	(cases)	

Asthma	(<65)	 3,200	 210	(6.7)	 140	 17	 46	 16	 51	 0	 3	 46	

COPD	(>65)	 1,900	 419	(22.4)	 330	 48	 40	 12	 5	 62	 10	 23	

CVD	(>65)	 9,800	 160	(1.6)	 130	 7	 8	 8	 100	 0	 0	 0	

Pneumonia	(>65)	 1,500	 250	(17.3)	 240	 3	 3	 3	 23	 77	 0	 0	

Non-fatal	MI	(>17)	 2,600	 60	(2.3)	 48	 3	 3	 3	 100	 0	 0	 0	

Asthma	outcomes	(cases)	

Asthma	ED	visit	(<18)	 9,000	 3,300	(36.7)	 2600	 160	 450	 120	 15	 51	 2	 31	

Day	w/	cough	(6	–	14)	 1,700,000	 210,000	(12.5)	 170,000	 10,000	 11,000	 9,500	 100	 0	 0	 0	

Day	w/	wheeze	(6	–	14)	 1,100,000	 17,000	(1.6)	 13,000	 780	 820	 740	 100	 0	 0	 0	

Day	w/	SoB	(6	–	14)	 1,000,000	 21,000	(2.1)	 17,000	 1,000	 1,000	 940	 100	 0	 0	 0	

2+	symptoms	(6	–	14)	 2,000,000	 180,000	(8.6)	 110,000	 12,000	 45,000	 9,600	 0	 34	 3	 64	

Restricted	days	

MRAD	(18	–	64)	 4,600,000	 760,000	(16.7)	 700,000	 16,000	 18,000	 18,000	 44	 56	 0	 0	

WLD	(18	–	64)	 1,300,000	 59,000	(4.7)	 47,000	 2,800	 3,000	 3,100	 100	 0	 0	 0	

MSD	(6	–	14)	 2,700,000	 570,000	(21.3)	 570,000	 0	 0	 0	 0	 100	 0	 0	

Total	DALYs	(years)	 	 10,000	 8,100	 470	 560	 1,600	 97	 1	 0.06	 1.3	
Monetized	impact	
($million)	 	 6,600	 5,500	 240	 280	 830	 78	 21	 0.03	 0.5	
1	Estimated	annual	incidence	rates	based	on	block	group	population	and	ZIP	code	level	incidence	rates	
2	Percentage	of	the	estimated	annual	incidence	attributable	to	all	pollutant	exposures	
Abbreviations:	COPD:	Chronic	obstructive	pulmonary	disease;	CVD:	cardiovascular	disease;	DALYs:	disability-
adjusted	life	years;	ED:	emergency	department;	MI:	myocardial	infarction;	MRAD:	minor	restricted	activity	day;	
MSD:	missed	school	day;	SoB:	shortness	of	breath;	WLD:	work	loss	day	
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Table	3.3.	Atkinson	index	(AI)1	for	annual	average	pollutant	exposure	and	annual	health	impact	
(as	risk	of	a	DALY	per	year)	attributable	to	individual	pollutants	for	the	full	analysis,	and	for	
sensitivity	analyses	of	spatial	resolution	and	region.	Percentages	(in	parentheses)	show	change	
from	“all	blocks.”	Negative	percentages	indicate	increases	in	AI.		
	 	 Annual	average	exposures2	 Annual	health	impact	risk	
Pollutant	 Source	 All	blocks	 ZIP	codes	 NA	area3	 All	blocks	 ZIP	codes	 NA	area3	
PM2.5	 Regional4	 —	 —	 —	 0.041	 0.022	(46)	 0.038	(7)	
	 Point	 0.101	 0.139	(-37)	 0.107	(-5)	 0.126	 0.154	(-22)	 0.157	(-25)	
	 Mobile	 0.079	 0.057	(29)	 0.128	(-61)	 0.126	 0.084	(34)	 0.153	(-21)	
	 Area	 0.070	 0.019	(73)	 0.082	(-18)	 0.113	 0.045	(60)	 0.111	(1)	
	 Total	 0.003	 0.001	(62)	 0.003	(-13)	 0.045	 0.023	(49)	 0.041	(8)	
O3	 Regional4	 —	 —	 —	 0.040	 0.023	(43)	 0.038	(4)	
SO2	 Point	 0.064	 0.055	(13)	 0.043	(33)	 0.155	 0.075	(51)	 0.116	(25)	
NO2	 Regional4	 —	 —	 —	 0.133	 0.038	(72)	 0.096	(28)	
	 Point	 0.034	 0.027	(23)	 0.042	(-21)	 0.159	 0.057	(64)	 0.140	(12)	
	 Mobile	 0.084	 0.055	(34)	 0.126	(-50)	 0.191	 0.072	(62)	 0.203	(-7)	
	 Area	 0.130	 0.101	(22)	 0.163	(-26)	 0.245	 0.141	(43)	 0.225	(8)	
	 Total	 0.009	 0.011	(-18)	 0.012	(-25)	 0.137	 0.045	(67)	 0.104	(24)	

1	Inequality	aversion	parameter	set	to	0.75	
2	PM2.5,	SO2,	and	NO2	are	reported	as	the	average	of	daily	mean	concentrations	and	O3	is	reported	as	the	average	
of	daily	8-hr	maximum	concentrations.		
3	Subset	of	study	area	census	blocks	that	are	within	the	SO2	non-attainment	area.	
4	Regional	exposures	are	omitted	from	the	Atkinson	index	because	all	spatial	units	are	assigned	the	same	
concentration.	
Abbreviations:	NA:	Non-attainment	



	

148	

Table	3.4.	Concentration	index	values	(×	100)	for	annual	risk	of	a	DALY	per	year	attributable	to	
individual	pollutants	for	the	full	analysis,	and	for	sensitivity	analyses	of	spatial	resolution	and	
region.	Negative	values	indicate	disproportionately	high	health	burdens	in	socially	
disadvantaged	spatial	units.	Percentages	(in	parentheses)	show	change	from	“all	blocks.”		
	 	 Concentration	index	(×	100)	

Pollutant	 Source	 %	non-white	 %	Latino	 %	less	than	HS	 Median	income	%	HH	in	poverty	 %	POC	 %	FB	

All	census	blocks	

PM2.5	 Regional	 -6.7	 3.0	 -1.0	 -4.1	 -1.2	 -6.4	 6.5	

	 Point	 5.4	 -11.7	 -8.2	 -3.1	 -0.2	 3.8	 -5.7	

	 Mobile	 -6.6	 0.8	 -4.6	 -8.7	 -5.5	 -6.8	 6.1	

	 Area	 -7.6	 4.0	 0.4	 -4.5	 -1.8	 -7.0	 7.9	

	 Total	 -6.3	 2.4	 -1.3	 -4.4	 -1.5	 -6.1	 6.1	

O3	 Regional	 -6.2	 3.0	 -0.6	 -3.4	 -0.5	 -5.9	 6.1	

SO2	 Point	 8.1	 -13.3	 -11.1	 -3.3	 -6.9	 6.0	 -12.4	

NO2	 Regional	 1.3	 -2.1	 -3.6	 -0.8	 -5.0	 0.7	 -4.3	

	 Point	 5.8	 -9.3	 -8.9	 -2.8	 -7.0	 4.1	 -10.1	

	 Mobile	 -1.0	 -3.4	 -7.2	 -5.0	 -8.4	 -2.3	 -2.6	

	 Area	 3.6	 -0.6	 2.8	 4.4	 0.2	 4.1	 -4.7	

	 Total	 0.8	 -3.0	 -4.9	 -2.3	 -6.1	 -0.1	 -3.9	

ZIP	codes		

PM2.5	 Regional	 -8	(-19)	 4.1	(-35)	 -0.5	(49)	 -8.2	(-101)	 -4.3	(-269)	 -8.2	(-27)	 7.8	(-21)	

	 Point	 8.5	(-58)	 -23.7	(-102)	 -12.9	(-57)	 -6.1	(-95)	 -6.1	(-2973)	 2.2	(41)	 -8.2	(-44)	

	 Mobile	 -4.4	(33)	 -0.8	(193)	 -1.4	(70)	 -18.6	(-114)	 -13.5	(-143)	 -6.1	(11)	 1.1	(81)	

	 Area	 -9.2	(-22)	 8.7	(-121)	 1	(-139)	 -8.1	(-81)	 -4.8	(-165)	 -8.6	(-23)	 10.1	(-28)	

	 Total	 -7.7	(-21)	 3	(-25)	 -0.6	(57)	 -8.1	(-85)	 -3.9	(-166)	 -8	(-32)	 7.4	(-21)	

O3	 Regional	 -8.2	(-32)	 4.6	(-52)	 -0.8	(-35)	 -8.4	(-149)	 -4.2	(-823)	 -8.1	(-39)	 7.5	(-23)	

SO2	 Point	 11.1	(-37)	 -15.2	(-15)	 -18.7	(-68)	 -3.2	(4)	 -7.2	(-4)	 8.3	(-40)	 -12.1	(3)	

NO2	 Regional	 1.5	(-16)	 -0.9	(58)	 -6.5	(-84)	 1.6	(296)	 -2.2	(56)	 1.1	(-59)	 -3	(30)	

	 Point	 8.5	(-46)	 -11	(-19)	 -15.1	(-69)	 -1.1	(59)	 -5.7	(18)	 6.3	(-53)	 -10.1	(0)	

	 Mobile	 1.9	(295)	 -2.7	(20)	 -9.1	(-27)	 -7.8	(-55)	 -10.3	(-24)	 0.2	(107)	 -6.5	(-154)	

	 Area	 -3.9	(207)	 8.4	(1421)	 4.8	(-72)	 7.5	(-69)	 4.8	(-2110)	 -2.4	(158)	 9.4	(301)	

	 Total	 3.3	(-316)	 -4.4	(-47)	 -10.1	(-106)	 0.1	(105)	 -4.2	(32)	 2.1	(1867)	 -6.3	(-60)	

Census	blocks	in	the	SO2	non-attainment	area	

PM2.5	 Regional	 -3.8	(43)	 6.1	(-102)	 5.8	(702)	 0.6	(115)	 3	(362)	 -1.3	(79)	 7.1	(-10)	

	 Point	 -11.3	(310)	 2.7	(123)	 -3.2	(61)	 -8.9	(-184)	 -5.5	(-2663)	 -11.6	(406)	 6.2	(208)	

	 Mobile	 -9.2	(-40)	 -0.9	(205)	 -0.1	(98)	 -6	(31)	 -4.1	(26)	 -9.3	(-37)	 1.8	(71)	

	 Area	 -0.4	(95)	 7.8	(-98)	 10.9	(-2598)	 5.7	(227)	 6	(430)	 3.3	(147)	 7.7	(2)	

	 Total	 -4.4	(31)	 5.4	(-125)	 5	(486)	 -0.1	(97)	 2.1	(241)	 -2.2	(64)	 6.6	(-8)	

O3	 Regional	 -3.3	(46)	 6.5	(-117)	 6.5	(1168)	 1.5	(143)	 3.9	(965)	 -0.8	(87)	 7.1	(-18)	

SO2	 Point	 -6.1	(175)	 -11.2	(16)	 -12.6	(-13)	 -8.7	(-160)	 -10.9	(-58)	 -9.2	(254)	 -10.1	(19)	

NO2	 Regional	 -0.6	(148)	 -8.6	(-319)	 -8.4	(-137)	 -3.9	(-394)	 -6.1	(-24)	 -3.5	(609)	 -9	(-109)	

	 Point	 -5.9	(202)	 -12	(-29)	 -13.4	(-49)	 -9.7	(-252)	 -11.9	(-71)	 -9.7	(334)	 -11.2	(-11)	

	 Mobile	 -5.7	(-469)	 -16.8	(-392)	 -15.3	(-115)	 -10.2	(-103)	 -12.5	(-50)	 -11.1	(-375)	 -15	(-488)	

	 Area	 6.5	(-82)	 7.2	(1225)	 8.1	(-189)	 7.6	(-73)	 6.4	(-2835)	 9.2	(-125)	 7	(250)	

	 Total	 -2.6	(429)	 -11.3	(-279)	 -10.6	(-117)	 -6.1	(-170)	 -8.4	(-37)	 -6.2	(-5256)	 -10.6	(-171)	
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Figure	3.1.	Map	showing	the	full	study	area	boundary	and	the	study	boundaries	used	in	the	
sensitivity	analyses.	Black	dots	show	the	location	of	ambient	air	quality	monitors	in	the	area.	
The	shaded	area	has	been	classified	as	non-attainment	with	the	SO2	NAAQS.	
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Figure	3.2.	Maps	showing	the	annual	health	burden	as	DALYs	per	10,000	persons	per	year	
attributable	to	exposures	from	all	sources	(A),	and	exposures	from	regional	(B),	point	(C),	
mobile	(D),	and	area	sources	(E).	
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Figure	3.3.	Annual	average	ambient	concentrations	from	point	sources	of	PM2.5	(A)	and	SO2	(B);	
Percentage	of	the	population	identifying	as	Hispanic	or	Latino	(C),	or	as	persons	of	color	(D;	
excludes	non-Hispanic	whites).		
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Appendix	A3	

SUPPLEMENTAL	MATERIALS	FOR	CHAPTER	3	

	

Supplemental	Methods	

The	following	section	provides	additional	details	on	the	methods	used	in	this	study.	

	

Quantitative	health	impact	functions	

Each	HIF	predicts	the	number	of	attributable	cases	(Y)	and	requires	four	inputs:	1)	a	baseline	

incidence	rate	for	the	health	outcome	of	interest	(y0,	cases	per	person	per	day);	2)	a	

concentration-response	relating	an	exposure	concentration	to	a	change	in	health	outcome	risk	

(b,	risk	per	unit	exposure);	3)	an	estimate	of	the	exposure	concentration	(x,	units	of	

concentration,	e.g.,	ppb	or	µg/m3);	and	4)	an	estimate	of	the	exposed	population	(P,	persons).	

The	HIF	is	derived	from	the	expression	of	relative	risk,	and	the	form	of	the	equation	depends	on	

the	model	used	to	estimate	the	CR	coefficient.	This	study	relies	on	two	forms	of	the	HIF:	a	log-

linear	form	(eq.	A3.1)	and	a	logistic	form	(eq.	A3.2).		

	

Y	=	y0	(1	–	e	–	β	x	)	P	 	 	 	 	 	 	 	 											 		(A3.1)		

	

Y	=	y0	(1	–	1	/	{	[1	–	y0]	e	β	x	+	y0})	P	 	 	 	 	 	 											 		(A3.2)
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We	apply	the	HIF	for	each	pollutant-outcome	pair	to	each	census	block	u	using	block-specific	

estimates	of	baseline	rates	(y0,u),	exposure	concentrations	(xu),	and	exposed	populations	(pu)	to	

estimate	the	number	of	block-specific	attributable	impacts	(Yu).	The	total	number	of	

attributable	health	impacts	for	each	pollutant-outcome	pair	across	the	entire	study	area	is	

given	by	 !"#
"$% ,	where	n	is	the	total	number	of	census	blocks	in	the	study	area.		

	

The	health	outcomes	included	in	the	HIFs	were	chosen	based	on	the	strength	of	causal	

association	as	determined	by	the	US	EPA	in	their	Integrated	Science	Assessments	(ISAs;	US	EPA,	

2013,	2009a,	2009b,	2008).	Baseline	incidence	rates	used	in	the	HIFs	come	from	multiple	

sources	and	are	available	at	various	spatial	scales.	Rates	are	downscaled	to	the	census	block	

level.	Mortality	rates	at	the	ZIP	code	level	(2009-2013)	are	calculated	using	geocoded	mortality	

data	made	available	by	the	Michigan	Department	of	Health	and	Human	Services	(MDHHS)	and	

5-year	age-stratified	population	estimates	from	the	2013	ACS	survey	(US	Census	Bureau,	2015).	

Hospitalization	rates	at	the	ZIP	code	level	(2009-2013)	are	based	on	hospitalization	data	for	

Wayne	County	hospitals	and	2013	ACS	survey	population	estimates.	Rates	for	ED	visits	for	

asthma	are	available	at	the	ZIP	code	level	for	Detroit	and	the	county	level	outside	of	Detroit	

(DeGuire	et	al.	2016;	MDHHS,	2016).	Rates	for	Asthma	related	respiratory	symptom	day	rates	

are	taken	from	a	cohort	study	of	children	with	asthma	in	Detroit	(Batterman	et	al.	manuscript	in	

preparation).	Rates	for	other	health	outcomes,	including	non-fatal	heart	attacks,	work	and	

school	absence	days,	and	minor-restricted	activity	days	are	not	available	for	the	study	area,	so	

national	rates	used	in	HIA	conducted	by	the	US	EPA	are	substituted	(US	EPA,	2015).	Maps	

showing	the	ZIP-code	level	baseline	health	rates	are	included	below.	
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The	CRs	used	in	this	study	have	been	taken	from	studies	identified	by	the	US	EPA	for	inclusion	

in	Integrated	Science	Assessments	for	O3,	PM2.5,	SO2,	and	NO2	(US	Environmental	Protection	

Agency	[US	EPA],	2013,	2009a,	2009b,	2008).	The	BenMAP	User’s	Manual	(US	EPA,	2015)	and	

the	epidemiological	literature	were	also	reviewed	to	identify	other	potential	studies	for	

inclusion.	In	addition	to	the	studies	summarized	by	the	ISAs,	effect	estimates	from	studies	

conducted	in	Detroit	were	also	considered,	as	local	studies	may	better	reflect	the	underlying	

risk	than	studies	conducted	elsewhere,	but	can	be	subject	to	limitations	based	on	statistical	

power	or	study	design	(Hubbell	et	al.	2009).	CR	coefficients	apply	to	specific	age	groups	based	

on	the	study	populations	of	the	original	epidemiology	studies	from	which	they	are	drawn.	The	

CR	coefficients	for	each	of	the	pollutant-outcome	pairs	are	listed	in	Table	A3.1.	

	

The	HIA	methods	described	here	use	three	metrics	to	estimate	health	burden:	the	number	of	

incident	cases	of	mortality	or	morbidity	attributable	to	pollutant	exposure	(attributable	cases),	

disability-adjusted	life	years	(DALYs),	and	monetized	impacts.	DALYs	and	monetized	impacts	are	

derived	from	the	number	of	attributable	cases.	A	DALY	is	the	sum	of	years	of	life	lost	(due	to	

premature	mortality)	and	years	lived	with	disability	(due	to	morbidity),	and	calculations	require	

a	disability-weight	(DW)	and	duration	(D)	for	each	outcome	(Murray,	1994).	Monetized	values	

are	typically	assigned	to	mortalities	based	on	the	value	of	a	statistical	life	(VSL)	and	to	

morbidities	based	on	the	cost	of	illness	(COI)	or	willingness	to	pay	(WTP)	estimates	(US	EPA,	

2010).	In	order	to	monetize	the	health	impacts,	monetary	values	from	the	Regulatory	Impact	

Analysis	for	the	most	recent	particulate	matter	standard	in	the	US	are	used	(US	EPA,	2012).	
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Monetized	values	are	reported	in	2010	dollars	projected	to	a	2020	income	level.	DW,	duration	

and	monetized	values	for	each	of	the	health	outcomes	in	the	HIA	are	listed	in	Table	A3.2.	 	
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Supplemental	Tables	

Table	A3.1.	Pollutants,	health	outcomes,	age	groups,	and	concentration-response	coefficients	used	in	the	health	impact	functions	
Pollutant	 Health	Outcome	 Age	group	 CR	 Form	 Reference	
O3	 Non-accidental	mortality	 30+	 0.00041	 log-linear	 Smith	et	al.	2009	
	 ED	visit	for	asthma	 0-17	 0.01044	 log-linear	 Mar	and	Koenig,	2009	
	 Asthma	symptom	day	(one	or	more	symptoms)	 6-14	 0.00194	 logistic	 Schildcrout	et	al.	2006	
	 Pneumonia	hospitalization	 65+	 0.00521	 log-linear	 Schwartz,	1994	
	 COPD	hospitalization	 65+	 0.00549	 log-linear	 Schwartz,	1994	
	 Missed	school	day	 6-14	 0.00755	 log-linear	 Gilliland	et	al.	2001	
	 Minor	restricted	activity	day	 18-64	 0.00260	 log-linear	 Ostro	and	Rothschild,	1989	
PM2.5	 All-cause	mortality	 30+	 0.00545	 Log-linear	 Krewski,	2009	
	 Infant	mortality	 0-1	 0.00392	 logistic	 Woodruff	et	al.	1997	
	 Asthma	hospitalization	 0-64	 0.00332	 log-linear	 Sheppard,	2003	
	 COPD	hospitalization	 65+	 0.00117	 log-linear	 Ito,	2003	
	 CVD	hospitalization	 65+	 0.00158	 log-linear	 Moolgavkar,	2003	
	 Pneumonia	hospitalization	 65+	 0.00398	 log-linear	 Ito,	2003	
	 Non-fatal	heart	attack	 18+	 0.00222	 logistic	 Zanobetti	et	al.	2008	
	 ED	visit	for	asthma	 0-17	 0.00560	 log-linear	 Mar	et	al.	2010	
	 Asthma	symptom	day	(cough)	 6-14	 0.01906	 logistic	 Mar	et	al.	2004	
	 Asthma	symptom	day	(shortness	of	breath)	 6-14	 0.00256	 logistic	 Ostro	et	al.	2001	
	 Asthma	symptom	day	(wheeze)	 6-14	 0.00194	 logistic	 Ostro	et	al.	2001	
	 Minor	restricted	activity	day	 18-64	 0.00741	 log-linear	 Ostro	and	Rothschild,	1989	
	 Work	loss	day	 18-64	 0.00460	 log-linear	 Ostro,	1987	
SO2	 Asthma	hospitalization	 0-64	 0.00203	 log-linear	 Sheppard,	2003	
	 COPD	hospitalization	 65+	 0.02081	 log-linear	 Yang	et	al.	2005	
	 ED	visit	for	asthma	 0-17	 0.00853	 log-linear	 Ito	et	al.	2007	
	 ED	visit	for	asthma	(Detroit	CR)	 0-17	 0.00976	 log-linear	 Li	et	al.	2011	
	 Asthma	symptom	day	(one	or	more	symptoms)	 6-14	 0.00392	 logistic	 Schildcrout	et	al.	2006	
	 Asthma	symptom	day	(one	or	more	symptoms,	Detroit	CR)	 6-14	 0.01695	 logistic	 Batterman	et	al.	in	prep	
NO2	 Asthma	hospitalization	 0-64	 0.00140	 log-linear	 Linn	et	al.	2000	
	 COPD	hospitalization	 65+	 0.0024	 log-linear	 Moolgavkar,	2003	
	 ED	visit	for	asthma	 0-17	 0.00546	 log-linear	 Ito	et	al.	2007	
	 Asthma	symptom	day	(one	or	more	symptoms)	 6-14	 0.00431	 logistic	 Schildcrout	et	al.	2006	
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Table	A3.2.	Disability	weights,	duration,	and	monetary	values	used	to	estimate	disability-
adjusted	life	years	and	monetized	impacts	
Outcome	 Age	 DW	(--)		 D	(years)	 V	($)	 DW	Source	 D	Source	 V	Source	
Mortality	
All-cause	 30-34	 1	 49.327	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 35-30	 1	 44.645	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 40-44	 1	 39.978	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 45-49	 1	 35.406	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 50-54	 1	 30.962	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 55-59	 1	 26.726	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 60-64	 1	 22.653	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 65-69	 1	 18.745	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 70-74	 1	 15.056	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 75-79	 1	 11.68	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 80-84	 1	 8.627	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
All-cause	 85+	 1	 5.9	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
Infant	 0-1	 1	 77.923	 9600000	 	 MDHHS,	2015	 US	EPA,	2012	
Hospitalizations	
Asthma	 0-64	 0.64	 0.009	 16000	 de	Hollander	1999	 CDC,	2012	 US	EPA,	2012	
COPD	 65+	 0.64	 0.012	 36000	 de	Hollander	1999	 CDC,	2012	 US	EPA,	2012	
CVD	 65+	 0.71	 0.0126	 41000	 de	Hollander	1999	 CDC,	2012	 US	EPA,	2012	
Pneumonia	 65+	 0.64	 0.014	 36000	 de	Hollander	1999	 CDC,	2012	 US	EPA,	2012	
Non-fatal	MI	 18+	 0.42	 0.015	 143000	 de	Hollander	1999	 CDC,	2012	 US	EPA,	2012	
Asthma	outcomes	
ED	Visit	 0-17	 0.51	 0.0027	 430	 de	Hollander	1999	 	 US	EPA,	2012	
Cough	 	 0.22	 0.005	 58	 de	Hollander	1999	 	 US	EPA,	2012	
SoB	 	 0.22	 0.005	 58	 de	Hollander	1999	 	 US	EPA,	2012	
Wheeze	 	 0.22	 0.005	 58	 de	Hollander	1999	 	 US	EPA,	2012	
One	or	more	 	 0.22	 0.005	 58	 de	Hollander	1999	 	 US	EPA,	2012	
Restricted	activity	days	
MRAD	 	 0.092	 0.0027	 68	 Murray,	1994	 Ostro,	1987	 US	EPA,	2012	
WLD	 	 0.092	 0.0027	 150	 Murray	,1994	 	 US	EPA,	2012	
SLD	 	 0.092	 0.0027	 98	 	 	 US	EPA,	2016	

Abbreviations:	COPD:	chronic	obstructive	pulmonary	disease;	CVD:	cardiovascular	disease;	D:	duration;	DW:	
disability	weight;	ED:	emergency	department;	MI:	myocardial	infarction;	MRAD:	minor	restricted	activity	day;	SLD:	
school	loss	day	(school	absence);	WLD:	work	loss	day	
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Table	A3.3.	Concentration	index	values	(×	100)	for	annual	average	exposure	concentration	
attributable	to	individual	ambient	air	pollutants	for	the	full	analysis	and	the	two	sensitivity	
analyses.	Percentages	in	parentheses	are	the	percent	difference	between	the	sensitivity	
analysis	values	and	the	“all	blocks”	analysis.	
	 	 Concentration	index	(×	100)	

Pollutant	 Source	 %	non-white	 %	Latino	
%	less	than	

HS	
Median	
income	

%	HH	in	
poverty	 %	POC	 %	FB	

All	census	blocks	
PM2.5	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 12.9	 -15.4	 -8.9	 0.8	 0.7	 10.9	 -13.2	
	 Mobile	 -0.5	 -2.6	 -4.0	 -4.4	 -4.0	 -1.1	 0.0	
	 Area	 -1.1	 0.9	 1.7	 -0.2	 -0.2	 -0.8	 1.7	
	 Total	 0.4	 -0.7	 -0.4	 -0.3	 -0.2	 0.3	 -0.4	
O3	 Regional	 —	 —	 —	 —	 —	 —	 —	
SO2	 Point	 6.8	 -10.6	 -7.0	 -2.7	 -2.9	 5.7	 -7.8	
NO2	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 4.3	 -6.6	 -4.9	 -2.0	 -2.3	 3.5	 -5.2	
	 Mobile	 -2.0	 -1.0	 -3.6	 -4.5	 -4.1	 -2.6	 1.4	
	 Area	 3.4	 0.6	 6.4	 5.9	 6.1	 4.2	 -0.8	
	 Total	 -0.3	 -0.8	 -1.3	 -1.6	 -1.4	 -0.5	 0.2	

ZIP	codes	
PM2.5	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 0.139	(-37)	 16	(-23)	 -27	(-76)	 -14.8	(-66)	 1	(-35)	 -2.7	(508)	 9.7	(11)	
	 Mobile	 0.057	(29)	 2.7	(681)	 -4.5	(-71)	 -2.2	(46)	 -9.9	(-126)	 -8.4	(-110)	 1.2	(208)	
	 Area	 0.019	(73)	 -1.8	(-61)	 4.9	(-425)	 1.6	(10)	 -0.1	(55)	 -0.8	(-301)	 -0.9	(-13)	
	 Total	 0.001	(62)	 0.5	(-17)	 -1.2	(-72)	 0.1	(116)	 0.2	(185)	 0.5	(295)	 0.2	(26)	
O3	 Regional	 —	 —	 —	 —	 —	 —	 —	
SO2	 Point	 0.055	(13)	 9.5	(-40)	 -13.7	(-29)	 -10.7	(-53)	 -4.4	(-60)	 -4.8	(-64)	 7.7	(-36)	
NO2	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 0.027	(23)	 6.9	(-59)	 -9.8	(-48)	 -7.5	(-54)	 -2.6	(-31)	 -3.4	(-48)	 5.4	(-52)	
	 Mobile	 0.055	(34)	 1.1	(152)	 -2.5	(-163)	 -1.4	(60)	 -9.9	(-120)	 -8.5	(-109)	 -0.1	(95)	
	 Area	 0.101	(22)	 -4.8	(239)	 8.4	(-1278)	 7.9	(-24)	 4.2	(28)	 4.7	(23)	 -3.5	(183)	
	 Total	 0.011	(-18)	 1.6	(578)	 -3.1	(-291)	 -2.1	(-56)	 -0.6	(60)	 -0.9	(36)	 1.2	(315)	

Census	blocks	in	the	SO2	non-attainment	area	
PM2.5	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 0.107	(-5)	 -6.9	(153)	 -3.7	(76)	 -9.5	(-7)	 -9.5	(1328)	 -9.1	(1482)	 -9.4	(186)	
	 Mobile	 0.128	(-61)	 -4.7	(-914)	 -7.5	(-186)	 -6.4	(-58)	 -6	(-37)	 -6.3	(-57)	 -7.3	(-556)	
	 Area	 0.082	(-18)	 3.7	(429)	 2.2	(-134)	 5.8	(-233)	 5.2	(3341)	 4	(2091)	 5	(719)	
	 Total	 0.003	(-13)	 -0.5	(217)	 -0.7	(-2)	 -0.8	(-110)	 -0.7	(-178)	 -0.9	(-242)	 -0.7	(339)	
O3	 Regional	 —	 —	 —	 —	 —	 —	 —	
SO2	 Point	 0.043	(33)	 -6.4	(193)	 -4	(62)	 -5.8	(17)	 -6	(-118)	 -6.5	(-123)	 -6.7	(219)	
NO2	 Regional	 —	 —	 —	 —	 —	 —	 —	
	 Point	 0.042	(-21)	 -6.2	(244)	 -3.1	(53)	 -5.4	(-12)	 -6	(-199)	 -6.2	(-173)	 -6.7	(290)	
	 Mobile	 0.126	(-50)	 -4.8	(-133)	 -7.4	(-670)	 -6.6	(-82)	 -6.1	(-35)	 -6.4	(-58)	 -7.4	(-190)	
	 Area	 0.163	(-26)	 6.5	(-91)	 14.3	(-2242)	 15.7	(-145)	 10.8	(-85)	 12	(-95)	 11.5	(-171)	
	 Total	 0.012	(-25)	 -2	(-494)	 -2.4	(-207)	 -2.1	(-55)	 -2.2	(-38)	 -2.3	(-64)	 -2.8	(-412)	
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Supplemental	Figures	

Figure	A3.1.	Maps	of	baseline	health	rates	used	in	the	health	impact	functions.	
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Figure	A3.1	(continued).	Maps	of	baseline	health	rates	used	in	the	health	impact	functions.	
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Figure	A3.2.	Maps	of	SES	variables	used	to	rank	census	blocks	when	calculating	the	
concentration	index.	
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Figure	A3.2	(continued).	Maps	of	SES	variables	used	to	rank	census	blocks	when	calculating	the	
concentration	index.	
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Figure	A3.3.	Comparison	of	the	distributions	of	measured	daily	mean	SO2	concentrations	at	the	
Southwest	High	School	monitor	(2011-2015)	and	modeled	FRESH-EST	receptors	within	150	m	of	
the	monitor.	K-S	tests	for	each	receptor	are	all	non-significant	(p	>	0.05)	
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Figure	A3.4.	Daily	concentrations	of	NO2	(daily	mean,	ppb),	O3,	(daily	8-hour	max,	ppb),	and	
PM2.5	(daily	mean,	µg/m3)	averaged	across	monitors	in	the	Detroit,	MI	area.		
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Figure	A3.5.	Annual	diesel	particulate	matter	(DPM)	concentrations	(A,	µg/m3)	and	excess	
cancer	risk	(B,	excess	cases	per	106)	due	to	DPM	exposures	measured	at	the	census	block	level.	
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Figure	A3.6.	Maps	showing	the	burden	of	disease	(as	DALYs	per	10,000	per	year)	attributable	to	
total	exposures	of	(A)	PM2.5,	(B)	ozone,	(C)	SO2,	and	(D)	NO2.	The	sub-region	of	the	study	area	
that	is	in	non-attainment	of	the	SO2	National	Ambient	Air	Quality	Standard	is	shown	(blue	
polygon).	
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Figure	A3.7.	Correlations	between	block-level	demographic	and	socioeconomic	variables	in	the	
study	area	
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Chapter	4	

AIR	POLLUTANT	STRATEGIES	TO	REDUCE	ADVERSE	HEALTH	IMPACTS	AND	HEALTH	
INEQUALITIES:	A	QUANTITATIVE	ASSESSMENT	FOR	DETROIT,	MICHIGAN	

	

Abstract		

The	development	of	air	quality	management	(AQM)	strategies	provides	opportunities	to	

improve	public	health	and	reduce	health	inequalities.	This	study	evaluates	health	and	inequality	

impacts	of	alternate	SO2	control	strategies	in	a	section	of	southeast	Michigan	(including	

Detroit),	a	designated	non-attainment	area.	Control	alternatives	include	uniform	reductions	

across	sources,	ranking	approaches	based	on	total	emissions	and	health	impacts	per	ton	of	

pollutant	emitted,	and	optimizations	that	meet	concentration	and	health	goals.	Each	strategy	is	

evaluated	in	terms	of	ambient	concentrations,	health	impacts,	and	the	inequality	in	health	risks	

using	dispersion	modeling	and	quantitative	health	impact	assessment	(HIA).	The	health	burden	

attributable	to	SO2	emissions	in	the	study	area	falls	primarily	among	children	and	includes	70	

hospitalizations	and	6,000	asthma-related	respiratory	symptom-days	annually,	equivalent	to	7	

disability-adjusted	life	years	(DALYs).	The	health	burden	disproportionately	falls	on	

Hispanic/Latino	residents,	residents	with	less	than	a	high	school	diploma,	and	foreign-born	

residents.	Control	strategies	that	target	smaller	facilities	near	exposed	populations	provide	the	

greatest	benefit	in	terms	of	overall	health	burden	reductions	and	the	inequality	of	attributable	

health	risk;	conventional	strategies	that	target	the	largest	emissions	sources	can	increase	
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inequality	and	provide	only	modest	health	benefits.	The	assessment	is	novel	in	using	spatial	

analyses	that	account	for	urban	scale	gradients	in	exposure,	demographics,	vulnerability	and	

population	health.	The	analysis	shows	quantitative	HIA	methods	can	be	used	to	develop	AQM	

strategies	that	simultaneously	meet	environmental,	public	health,	and	environmental	justice	

goals,	advancing	AQM	beyond	its	current	compliance-oriented	focus.	

	

Introduction	

Background	

Air	quality	management	(AQM)	is	an	iterative	process	that	involves	setting	standards	for	air	

quality,	designing	and	implementing	control	strategies	to	achieve	these	standards,	and	then	

assessing	air	quality	status	and	progress	towards	these	standards	(NRC,	2004).	In	the	USA,	the	

operative	standards	used	by	states	and	the	federal	government	are	the	National	Ambient	Air	

Quality	Standards	(NAAQS),	which	are	intended	to	be	protective	of	public	health	with	an	

adequate	margin	of	safety	for	sensitive	subpopulations	(NRC,	2004).	Currently,	AQM	focuses	on	

compliance	with	these	standards.	However,	this	may	not	provide	the	desired	level	of	public	

health	protection	for	several	reasons.	First,	NAAQS	compliance	is	based	on	concentrations	

measured	at	a	limited	number	of	fixed	monitoring	stations,	which	may	not	reflect	the	spatial	

variation	in	concentrations	and	the	true	exposure	of	the	population	(Levy	and	Hanna,	2011;	

Matte	et	al.	2013).	Second,	the	NAAQS	may	fall	short	of	protecting	exposed	and	susceptible	or	

vulnerable	groups.	Susceptibility	refers	to	characteristics	that	may	increase	the	adverse	

response	to	an	exposure,	e.g.,	underlying	respiratory	disease,	and	vulnerability	refers	to	

characteristics	that	reduce	the	ability	to	avoid	or	mitigate	high	exposures,	e.g.,	low	
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socioeconomic	status	(O’Neill	et	al.	2012,	Sacks	et	al.	2011).	Susceptibility	and	vulnerability	can	

vary	spatially,	and	subpopulations	that	have	both	high	vulnerability	and	high	exposure	are	more	

likely	to	experience	adverse	health	impacts	than	the	general	population.	Third,	it	is	challenging	

or	perhaps	impossible	to	select	a	sufficiently	protective	regulatory	standard	when	no	effect	

threshold	(i.e.,	a	level	below	which	health	effects	do	not	occur)	has	been	identified.	Ambient	air	

quality	standards	are	informed	by	integrated	science	assessments	(previously	called	“criteria	

documents”)	and	staff	papers	which	summarize	and	synthesize	the	exposure,	toxicological,	and	

epidemiological	literature,	but	ultimately,	the	designation	of	the	standard	is	a	policy	decision	

made	by	the	US	EPA	administrator	(NRC,	2004).	Additional	concerns	for	AQM	strategies	based	

on	NAAQS	compliance	include	the	single	pollutant	approach	(i.e.,	the	exclusion	of	cumulative	

impacts),	delays	in	attaining	compliance	(in	part	due	to	the	need	for	multiple	years	of	

monitoring	data),	and	the	technical,	administrative,	and	legal	steps	involved	in	establishing	and	

implementing	policies	to	attain	the	NAAQS.	

	

Health	impact	assessment	(HIA)	uses	a	comprehensive	approach	to	evaluate	health	impacts	

that	arise	from	programs,	projects,	or	policies	(Bhatia	et	al.	2014;	Dannenberg,	2016).	HIA	is	

becoming	an	accepted	approach	for	estimating	the	health	impacts	of	air	quality	and	the	

benefits	of	AQM	options,	and	many	HIA	tools	have	been	developed	to	facilitate	HIA	analyses	

(Anenberg	et	al.	2015).	HIAs	for	AQM	can	incorporate	information	from	air	quality	models,	

ambient	air	monitoring,	population	demographics,	environmental	epidemiology,	and	other	

sources.	In	a	“full”	HIA	which	is	intended	to	inform	a	policy	decision	and	includes	screening	and	

scoping	of	alternatives,	assessment	of	impacts,	development	of	recommendations,	reporting,	
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and	evaluation	(NRC	2004),	quantitative	assessments	of	morbidity	and	mortality	attributable	to	

pollutant	exposures	would	be	complemented	by	qualitative	analyses	evaluate	the	benefits	and	

adverse	impacts	that	are	not	included	in	the	quantitative	assessment.	In	this	application,	we	

focus	on	the	more	narrow	quantitative	assessment	of	impacts	attributable	to	air	pollutant	

exposures,	following	the	approach	used	by	US	EPA	in	their	Regulatory	Impact	Analyses	(e.g.,	US	

EPA	2010a).	Quantitative	HIAs	have	been	used	to	examine	potential	impacts	from	power	plants	

and	other	source	types	at	regional	and	national	levels	(e.g.,	Buonocore	et	al.	2014;	Fann	et	al.	

2009).	Impacts	of	specific	pollution	sources	at	local	or	urban	levels	can	be	examined	given	

appropriate	input	data,	e.g.,	baseline	health	outcome	incidence	rates	and	exposure	estimates	

(Hubbell	et	al.	2009).		

	

Inequality	metrics	quantify	the	distribution	of	health	impacts	or	benefits	across	space	(e.g.,	

census	blocks)	or	groups	(e.g.,	minority	populations).	These	metrics	can	indicate	how	an	AQM	

option	affects	the	outcome	distribution	(Maguire	and	Sheriff,	2011),	key	information	for	

environmental	justice	analyses	that	evaluate	whether	certain	groups	experience	

disproportionate	adverse	effects	from	environmental	hazards	(Brulle	and	Pellow,	2006).	

Preferred	indicators	or	metrics	for	environmental	justice	analyses	have	been	identified	(Levy	et	

al.	2006).	For	example,	the	Atkinson	Index	(AI),	originally	developed	as	an	income	inequality	

parameter,	evaluates	inequality	across	individuals	or	units	(e.g.,	census	blocks).	It	includes	a	

subjective	“inequality	aversion”	parameter,	which	accounts	for	societal	attitudes	towards	

inequality,	and	it	can	be	decomposed	to	examine	differences	between	groups,	e.g.,	race	and	

ethnicity	groups	(Levy	et	al.	2006).	Larger	AI	values	indicate	greater	inequality	in	the	
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distribution	of	risk.	Another	inequality	metric,	the	concentration	index	(CI),	examines	the	

distribution	of	health	burdens	across	population	subgroups	ranked	by	social	status	(O’Donnell	

et	al.	2008).	The	CI	plots	the	cumulative	distribution	of	health	risks	against	the	cumulative	

ranking	of	census	blocks	ordered	by	the	selected	demographic	or	SES	variable,	and	is	calculated	

as	the	area	under	the	1:1	line	minus	the	area	under	the	concentration	curve.	Negative	CI	values	

indicate	that	less	socially	advantaged	groups	carry	disproportionately	heavier	health	burdens.	

This	metric	has	been	used	to	evaluate	a	variety	of	environmental	hazards,	e.g.,	PM2.5,	ozone,	

traffic	density,	and	proximity	to	toxic	release	sites	(Cushing	et	al.	2015;	Sadd	et	al.	2011;	Su	et	

al.	2012,	2009).	Despite	their	usefulness	in	quantifying	environmental	inequalities,	inequality	

metrics	are	not	routinely	used	in	regulatory	or	other	analyses	(Harper	et	al.	2013).	

	

Determining	whether	an	AQM	strategy	will	attain	ambient	standards,	minimize	health	impacts	

and	reduce	inequalities	requires	combining	health	impact	metrics	with	inequality	metrics	and	

possibly	other	information.	For	example,	a	study	examining	power	plant	emissions	in	the	U.S.	

found	that	controlling	sources	with	the	largest	health	impacts	per	unit	emissions	conferred	the	

greatest	health	benefits	and	inequality	reductions	(Levy	et	al.	2007).	A	study	investigating	

controls	for	PM2.5	and	ozone	precursors	in	Detroit,	MI	showed	that	a	multipollutant	approach	

achieved	better	health	and	inequality	benefits	compared	to	single	pollutant	strategies	(Fann	et	

al.	2011;	Wesson	et	al.	2010).	These	examples	combined	quantitative	health	impacts	and	

inequality	metrics	either	using	large	study	areas	with	coarsely-resolved	exposure	and	health	

data	(Levy	et	al.	2007)	or	pollutants	with	low	spatial	variability,	e.g.,	ozone	and	PM2.5	(Fann	et	

al.	2011;	Wesson	et	al.	2010).	AQM	strategies	evaluating	health	impacts	and	inequalities	have	
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not	been	applied	to	pollutants	that	have	significant	spatial-variability	at	the	intra-urban	scale,	

despite	their	considerable	promise	to	benefit	populations	and	their	relevance	to	many	

environmental	justice	applications.	

	

Objectives	

This	study	investigates	emission	control	strategies	aimed	at	reducing	the	burden	of	disease	and	

health	burden	inequalities.	Alternative	strategies	are	formulated	and	evaluated	in	terms	of	

ambient	concentrations,	total	health	benefits,	and	the	distribution	of	health	impacts	across	an	

urban	population.	The	analysis	quantifies	the	potential	trade-offs	between	emission	reductions,	

health	impacts,	and	inequality,	and	demonstrates	how	health	burden	and	inequality	metrics	

might	be	used	at	an	urban	scale	and	in	a	regulatory	context.		

	

Methods	

HIA	methods	are	used	to	estimate	the	burden	of	disease	attributable	to	SO2	exposures	in	

southeast	Michigan.	Two	sets	of	emission	control	strategies	are	considered.	The	first	reduces	

current	(ongoing)	emissions	at	major	sources	in	the	area,	and	thus	represents	actual	or	typical	

exposure	to	SO2	in	the	study	area.	The	second	examines	alternatives	to	a	proposed	state	

implementation	plan	(SIP)	that	follows	EPA	guidance,	which	starts	with	the	maximum	allowable	

emissions	based	on	existing	and	revised	permits	(US	EPA,	2005);	this	analysis	highlights	issues	

related	to	using	the	maximum	allowable	emissions	in	SIP	development.	The	study	area	includes	

the	portion	of	Wayne	County	designated	as	non-attainment	for	the	2010	SO2	ambient	air	

quality	standard	(MDEQ,	2016)	and	is	extended	to	also	include	Detroit	and	several	adjacent	
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cities	(Figure	4.1)	which	were	shown	in	a	previous	analysis	to	have	substantial	health	burdens	

due	to	point	source	emissions	of	SO2	(Chapter	3).	The	control	strategy	options,	evaluative	

metrics,	and	study	area	are	described	below.	Additional	information	regarding	the	HIA	methods	

and	data	sources	is	provided	in	Appendix	A3.	

	

SO2	emissions	inventory	and	estimates	of	population	exposures	

SO2	emission	estimates	are	derived	from	2010	to	2014	stack-level	data	retrieved	from	the	

Michigan	Air	Emissions	Reporting	System	(MDEQ,	2001).	For	major	sources	in	the	region	(i.e.,	

sources	emitting	more	than	100	tons	of	SO2	per	year),	emissions	are	modeled	at	the	stack	level;	

for	other	sources,	facility-level	emissions	are	used.	Eight	major	SO2	sources,	each	emitting	more	

than	100	tons	per	year,	fall	within	the	SO2	non-attainment	area	(Figure	4.1):	three	coal-

powered	electrical	generating	facilities	(DTE	Trenton	Channel,	DTE	River	Rouge,	Dearborn	

Industrial	Generation);	two	large	steel	facilities	(US	Steel	at	Zug	Island	and	Ecorse,	Severstal/AK	

Steel);	two	lime	and	coke	facilities	(EES	Coke,	Carmeuse	Lime);	and	an	oil	refinery	(Marathon).	

None	of	these	facilities	uses	add-on	control	technologies	for	SO2	(MDEQ,	2016).	The	analysis	

also	includes	126	other	point	source	facilities	in	the	area,	including	the	DTE	Monroe	power	

plant.	This	facility,	located	approximately	60	km	south	of	Detroit,	is	the	state’s	largest	coal-fired	

power	plant	(3,300	MW)	and	recently	installed	scrubbers	to	significantly	reduce	SO2	emissions.	

These	nine	sources	account	for	92%	of	SO2	point	source	emissions	in	southeast	Michigan.	

Because	reported	emissions	fluctuate	annually,	emissions	are	averaged	for	the	2010	to	2014	

period.	In	cases,	only	the	more	recent	data	were	used	to	account	for	known	changes	over	time.	

These	represent	current	or	“base	case”	emissions.	
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Population-level	exposures	are	estimated	using	the	Framework	for	Rapid	Emissions	Scenario	

and	Health	impact	Estimation	(FRESH-EST),	a	software	package	that	allows	rapid	assessment	of	

exposures	and	health	impacts	due	to	point	source	emissions	for	a	given	areal	unit,	e.g.,	census	

blocks	(Milando	et	al.	2016).	Briefly,	ambient	SO2	concentrations	attributable	to	point	source	

emissions	are	estimated	at	a	set	of	discrete	locations	(“receptors”)	using	a	source-receptor	or	

“transfer	coefficient”	matrix	developed	using	the	AERMOD	dispersion	model	(Cimorelli	et	al.	

2005),	local	meteorology,	and	an	adaptive	receptor	grid	(200	m	spacing	near	major	sources,	

and	1	km	spacing	elsewhere).	FRESH-EST	interpolates	from	the	receptor	grid	to	a	25	m	raster	

using	inverse-distance	weighting,	and	uses	the	average	of	raster	cells	overlapping	census	block	

polygons	to	estimate	exposure	concentrations.	FRESH-EST	includes	an	optimization	module	to	

minimize	point	source	emissions	to	attain	specified	receptor	concentrations	or	maximize	health	

benefits,	subject	to	other	constraints.	

	

Census	blocks	are	used	as	the	spatial	unit	of	analysis,	balancing	the	need	for	accurate	exposure	

assessment	with	the	available	population	and	baseline	health	data	(Batterman	et	al.	2014).	

Time-activity	patterns	that	account	for	working	and	living	in	areas	with	different	pollutant	levels	

are	not	considered.	Although	this	may	lead	to	exposure	measurement	errors	and	possible	

biases	in	health	impact	estimates,	the	epidemiological	studies	underlying	the	concentration-

response	coefficients	mostly	rely	on	area	monitors	and	residence	locations	to	assign	exposures.	
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SO2	emissions	control	alternatives	

Strategies	to	reduce	emissions	of	SO2	

Baseline	emissions	from	point	sources	are	used	to	represent	“current”	exposures	and	health	

impacts	attributable	to	these	sources	under	current	operating	conditions;	this	is	the	base	case	

strategy	designated	“S0”.	Five	types	of	strategies	are	considered	(Table	4.1).	Each	is	evaluated	

at	six	levels	that	represent	15,	30,	45,	60,	75,	and	90%	reductions	in	aggregate	SO2	emissions	

from	baseline	levels.	Individual	major	sources	are	allowed	to	reduce	emissions	by	up	to	90%,	

the	maximum	control	attainable	with	add-on	technologies,	e.g.,	flue	gas	desulfurization	

(Srivastava	and	Jozewicz,	2001).	We	focus	on	reducing	emissions	at	the	eight	major	sources	

located	within	the	non-attainment	area.		

	

The	simplest	approaches	apply	uniform	reductions	across	all	sources	(strategy	S1)	or	controls	at	

the	largest	facilities	first	(S2)	to	meet	reduction	goals.	The	“health	impact	ranking”	strategy	(S3)	

ranks	sources	by	the	health	impacts	per	ton	of	SO2	emitted,	and	imposes	reductions	on	the	

highest	ranked	sources	first	until	the	emissions	target	is	met	(Levy	et	al.	2007).	Strategies	S4	

and	S5	minimize	receptor	concentrations	and	maximize	health	benefits	(i.e.,	minimizing	

disability-adjusted	life	years;	DALYs),	respectively,	using	the	FRESH-EST	optimization	module	

with	constraints	that	limit	emissions	at	each	source	(allowing	between	10	and	100%	of	baseline	

emissions)	and	that	attain	the	emissions	target	(summed	across	major	sources).	For	all	of	these	

strategies,	emissions	at	DTE	Monroe	and	the	125	minor	facilities	remain	at	baseline.	
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SIP	base	case,	control	strategy,	and	optimized	alternatives		

The	SIP	strategy	proposed	by	Michigan	Department	of	Environmental	Quality	(MDEQ)	started	

with	the	maximum	allowable	SO2	emissions	and	considered	SO2	monitoring	data,	dispersion	

modeling,	and	Reasonably	Achievable	Control	Technology	(RACT)	analyses	(MDEQ,	2016).	It	

identified	five	culpable	sources	after	conducting	a	hotspot	analysis	(DTE	River	Rouge,	DTE	

Trenton	Channel,	US	Steel,	EES	Coke,	Carmeuse	Lime),	and	called	for	emissions	reductions	at	

the	DTE	plants	and	US	Steel,	the	shutdown	of	specific	boilers	at	the	DTE	plants,	and	the	

construction	of	a	taller	stack	at	Carmeuse	Lime;	no	changes	are	required	at	EES	Coke	(MDEQ,	

2016).	In	the	“SIP	maximum	allowable	case”	(strategy	S6),	we	use	the	existing	maximum	

allowable	emissions	at	major	sources	(MDEQ,	2016,	pp.	15–16)	and	current	emissions	at	other	

sources	(as	described	in	Section	2.1).	The	“SIP	control	strategy”	(S7)	implements	the	MDEQ	SIP	

strategy	(MDEQ,	2016)	with	other	emissions	unchanged	from	S6.		

	

Two	additional	alternatives	that	attain	the	overall	SO2	reduction	specified	in	the	SIP	(26,418	

tons	per	year)	are	evaluated.	Strategy	S8	minimizes	the	maximum	receptor	concentration,	and	

strategy	S9	maximizes	health	benefit.	Both	allow	emissions	reductions	at	only	the	five	culpable	

sources	identified	by	MDEQ;	stack	heights	are	unchanged.	For	strategies	S7-S9,	the	SIP	

maximum	allowable	case	(S6)	serves	as	the	comparison	(i.e.,	base	case)	strategy.		

	

Health	impact	assessment	

Outcomes	associated	with	SO2	exposure	include	hospitalizations	for	respiratory	diseases,	

asthma-related	emergency	department	visits,	and	asthma	symptom-days	among	children.	
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FRESH-EST	uses	health	impact	functions	to	estimate	the	numbers	of	these	outcomes	

attributable	to	SO2	exposures,	similar	to	those	in	other	HIA	tools	(US	EPA,	2015).	Only	health	

outcomes	for	which	a	causal	relationship	with	SO2	exposure	has	been	established	are	

considered,	as	determined	by	US	EPA	(US	EPA,	2008,	2016a),	which	may	under-predict	the	true	

health	burden.	The	analysis	assumes	a	no-threshold	concentrations-response	(CR)	relationship	

between	SO2	exposures	and	health	effects,	consistent	with	US	EPA	conclusions	regarding	the	

lack	of	evidence	of	a	population-level	exposure	threshold	(US	EPA,	2016a,	2008).	Health	

impacts	are	calculated	using	24-hr	average	SO2	concentrations,	which	is	consistent	with	the	

epidemiological	studies	from	which	CR	coefficients	are	drawn.	Uncertainty	in	the	health	impact	

estimates,	represented	as	a	95%	confidence	interval,	is	estimated	using	the	uncertainty	around	

the	CR	coefficient,	which	has	been	shown	to	account	for	substantial	portion	of	the	total	

uncertainty	in	quantitative	health	impact	estimates	(Chart-asa	and	Gibson,	2015).		

	

Evaluative	metrics		

Control	strategies	are	evaluated	using	concentrations,	health	impact,	and	inequality	metrics.	

For	the	concentration	metric,	the	analysis	uses	the	fourth	highest	1-hour	daily	maximum	SO2	

concentration	at	non-fenceline	receptors.	This	is	similar	but	not	identical	to	the	form	of	the	SO2	

NAAQS	definition,	which	uses	the	3-year	average	of	the	annual	fourth	highest	1-hour	daily	

maximum	concentrations	(US	EPA,	2010b).	We	use	concentrations	for	a	single	year	because	the	

reduced	form	model	employed	by	the	FRESH-EST	tool	uses	meteorology	for	a	single	year	

(2012).	Health	impacts	are	reported	as	the	number	of	attributable	cases	and	DALYs,	which	

aggregate	the	health	outcomes	into	a	single	summary	metric	based	on	time	lost	to	poor	health	
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(Murray,	1994).	DALYs	provide	a	measure	of	the	total	health	burden,	including	hospitalizations	

and	asthma	exacerbations	in	older	adults	and	children,	respectively,	by	more	heavily	weighting	

more	severe	but	less	frequent	outcomes,	e.g.,	hospitalizations,	than	more	frequent	but	less	

severe	outcomes,	e.g.,	days	with	asthma	symptoms.	Disability	weights	and	durations	for	DALYs	

are	drawn	from	existing	studies	(CDC,	2012;	de	Hollander	et	al.	1999;	Murray,	1994;	Ostro,	

1987).	Attributable	cases	are	monetized	using	values	(in	2010$	adjusted	to	a	2020	income	level)	

reported	by	the	US	EPA	in	the	most	recent	Regulatory	Impact	Assessment	for	fine	particulate	

matter	(US	EPA,	2012).	

	

Inequality	of	the	health	burden	is	examined	using	the	AI	and	the	CI.	For	the	AI,	the	inequality	

parameter	is	set	to	0.75	following	prior	AQM	work	(Fann	et	al.	2011).	For	the	CI,	the	required	

spatially-resolved	demographic	and	SES	data	to	rank	the	vulnerability	of	census	blocks	uses	

seven	(block	group	level)	variables	from	the	2014	5-year	American	Community	Survey	(Figure	

A3.2):	percentage	of	the	population	that	is	non-white,	Hispanic	or	Latino,	persons	of	color,	

foreign	born,	or	with	less	than	a	high	school	diploma;	median	household	income	(inflation-

adjusted	2014	dollars);	and	percentage	of	households	with	past	year	income	below	the	poverty	

level	(US	Census	Bureau,	2014).		

	

The	inequality	of	the	health	burden	is	based	on	the	risk	of	SO2-attributable	DALYs.	The	use	of	

attributable	(rather	than	total)	DALYs	helps	assess	whether	the	SO2	reduction	strategies	result	

in	“fair	treatment”	of	all	population	subgroups,	i.e.,	that	each	subgroup	receives	a	benefit	as	a	
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result	of	AQM	actions	(US	EPA,	2016b).	The	mean	estimate	of	DALYs	generated	by	the	health	

impact	functions	is	used	to	assess	health	impact	and	inequality	metrics.		

	

Description	of	the	study	area	and	population	

The	study	area	includes	a	large	section	of	Wayne	County,	Michigan,	including	the	designated	

SO2	non-attainment	area	(MDEQ,	2016)	(Figure	4.1).	A	total	of	1,140,000	people	lives	in	the	

study	area	(US	Census	Bureau,	2014).	Air	pollution	has	been	and	remains	an	important	

environmental	health	concern	for	southeast	Michigan	residents.	Due	to	its	industrial	legacy,	the	

study	area	contains	many	large	sources	that	are	primarily	responsible	for	population	exposures	

to	SO2.	Residents	in	the	study	area	are	likely	vulnerable	or	susceptible	to	these	SO2	exposures.	

The	study	area	has	higher	proportions	of	residents	that	identify	as	persons	of	color	(68%)	and	

residents	living	below	the	poverty	line	(31%)	compared	to	the	state	of	Michigan	as	a	whole	

(23.9	and	23.7%,	respectively)	(US	Census	Bureau,	2014)	Health	disparities	between	the	study	

area	and	the	state	as	a	whole	are	significant,	particularly	for	diseases	associated	with	air	

pollution,	e.g.,	the	annual	rate	of	asthma	hospitalizations	in	the	study	area	(37.9	per	10,000)	is	

more	than	twice	the	state	average	(14.8	per	10,000)	(MDHHS,	2015).	

	

Results	

Exposures	and	burden	of	disease		

SO2	exposures	across	the	study	area	vary	considerably.	Figure	4.2A	maps	annual	average	

concentrations	for	the	base	case	(S0).	Levels	are	highest	in	southwest	Detroit	(near	the	center	

of	the	study	area)	where	several	major	sources	are	clustered.	The	4th	highest	1-hour	daily	
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maximum	concentration	occurs	in	this	area,	but	areas	to	the	north	also	experience	high	

concentrations	(Figure	4.2B).	(The	4th	highest	1-hour	daily	max	concentrations	shown	are	not	

necessarily	contemporaneous.)	Table	4.2	summarizes	the	distribution	of	hourly	SO2	

concentrations	at	receptors,	daily	mean	SO2	concentrations	at	the	census	block	level,	and	daily	

1-hour	maximum	SO2	concentrations	at	Southwest	High	School	(SWHS).	Comparisons	of	

predicted	and	observed	daily	mean	SO2	concentrations	at	the	SWHS	monitor,	which	recorded	

the	highest	SO2	levels	in	the	area,	showed	no	significant	differences	(K-S	test,	p	>	0.05,	Figure	

A4.1),	suggesting	that	point	source	emissions	account	for	SO2	concentrations	in	the	area	and	

that	the	dispersion	model	replicates	the	observed	distribution.		

	

The	burden	of	disease	from	SO2	falls	mostly	among	children.	For	the	base	case,	health	impacts	

among	residents	in	the	study	area	include	7	hospitalizations	for	asthma,	95	ED	visits	for	asthma,	

and	over	6000	days	with	asthma-related	respiratory	symptoms	(i.e.,	exacerbations;	Table	4.3).	

This	is	equivalent	to	$2.7	million	in	monetized	impacts	each	year,	most	(>90%)	of	which	is	from	

asthma-related	respiratory	symptom-days.	Asthma	exacerbations	increase	4-fold	using	a	

Detroit-specific	CR	coefficient	(Batterman	et	al.	manuscript	in	preparation),	reflecting	the	

potentially	higher	vulnerability	of	Detroit	children	to	SO2	exposures.	These	estimates	only	

reflect	health	impacts	from	SO2	exposures	and	do	not	include	health	impacts	that	would	result	

from	the	formation	of	secondary	aerosols	(e.g.,	PM2.5)	from	SO2,	which	may	be	substantially	

exceed	the	impacts	from	SO2	alone	(US	EPA,	2010a).	
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Health	impacts	by	sources		

Table	4.4	lists	SO2	emissions,	attributable	health	impacts	as	DALYs	per	year,	and	annual	health	

impacts	per	100	tons	of	SO2	emitted	by	the	major	sources,	information	which	guides	the	

emissions	and	health-oriented	ranking	strategies	(S2	and	S3).	(For	comparison,	the	table	

includes	DTE	Monroe,	which	was	excluded	from	the	control	strategies	as	its	location	is	outside	

the	non-attainment	area.)	The	125	minor	sources	emit	8%	of	the	SO2	in	the	inventory	and	cause	

11%	of	the	health	burden.	Importantly,	rankings	of	major	sources	by	emissions,	DALYs	and	

health	impacts	differ,	e.g.,	the	highest	ranked	source	for	total	emissions	(excluding	DTE	

Monroe)	is	DTE	Trenton	Channel;	the	top	source	for	DALYs	is	US	Steel,	and	the	top	source	for	

DALYs	per	100	tons	SO2	is	Carmeuse	Lime.	Although	SO2	emissions	from	Carmeuse	Lime,	Detroit	

Industrial	Generation	and	Severstal/AK	Steel	are	relatively	small	(<	800	tons	per	year	each),	

their	proximity	to	residential	neighborhoods	and	low	stack	heights	increase	SO2	exposure	per	

ton	of	emissions,	thus	increasing	the	burden	attributable	to	these	facilities.		

	

Comparison	of	SO2	control	strategies		

Fourth	highest	1-hour	daily	maximum	SO2	concentration	

The	“peak”	(4th	highest	1-hour	daily	maximum)	SO2	concentrations	for	six	control	strategies	are	

shown	in	Table	4.5.	For	the	base	case	(0%	reduction),	the	peak	(79.5	ppb)	exceeds	the	NAAQS	

concentration	(75	ppb).	At	each	SO2	reduction	target,	the	“largest	emissions	first”	(S2)	approach	

gives	the	highest	peak	concentration;	the	“receptor-concentration	optimization	(S4)	gives	the	

lowest.	With	full	(90%)	reductions,	the	peak	concentration	falls	to	56.2	ppb.	Despite	the	high	

level	of	SO2	emission	reductions,	peak	concentrations	do	not	drop	further	because	emissions	
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from	excluded	facilities	(DTE	Monroe	and	the	minor	facilities),	which	emit	nearly	60%	of	the	

total	SO2	emissions	in	the	area	combined,	are	unchanged	from	baseline.	

	

Total	attributable	health	burden	

Trade-offs	between	health	improvements	(DALYs	per	year)	and	inequality	(AI)	are	depicted	in	

Figure	4.3	for	each	control	strategy	type.	(Comparable	figures	showing	the	tradeoffs	between	

health	impacts	and	the	CI	are	provided	in	Appendix	A4.)	The	health	burden	decreases	from	7.0	

DALYs	per	year	for	the	base	case	to	2.6	DALYs	per	year	for	90%	emission	reductions	(Table	4.6).	

The	health	burden	falls	less	than	90%	since	emissions	at	DTE	Monroe	and	the	minor	point	

sources	do	not	change.	While	any	emission	reduction	lowers	the	health	burden,	some	

strategies	are	more	effective.	The	uniform	reductions	strategy	(S1)	provides	nearly	linear	

improvements,	as	expected.	For	low	to	moderate	emissions	reductions	(15	–	45%),	reducing	

emissions	at	sources	with	the	highest	impacts	per	ton	of	emissions	(S3)	yields	greater	health	

benefits	than	the	uniform	percentage	(S1)	and	the	minimal	concentration	(S4)	strategies.	

Although	advantages	diminish	beyond	60%	reductions,	strategy	S3	still	outperforms	S1	and	S2	

due	to	its	emphasis	on	reducing	emissions	at	sources	near	large	populations,	i.e.,	sources	with	

the	highest	health	impact	per	unit	emissions	(Table	4.4).	The	concentration	optimization	

strategy	(S4)	outperforms	the	uniform	reductions	approach	for	smaller	reduction	targets	(15-

45%),	but	benefits	diminish	at	higher	reduction	goals.	Results	for	health	ranking	(S3)	and	health	

optimization	(S5)	strategies	are	nearly	identical	for	30,	45,	and	60%	reduction	goals,	and	the	

simpler	health-based	ranking	approach	(S3)	achieves	near-optimal	results.		
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Inequality	of	health	impacts		

Both	inequality	metrics	suggest	there	is	an	unfair	distribution	in	SO2-related	health	impacts	in	

the	study	area	(AI	for	the	base	case	=	0.136).	The	CI	indicates	that	the	SO2-related	health	

burden	tends	to	disproportionately	affect	areas	with	high	proportions	of	residents	who	are	

Hispanic	or	Latino,	have	less	than	a	high	school	diploma,	or	are	foreign-born	(Table	4.6;	Figure	

A3.2).	In	the	study	area,	these	variables	are	moderately	correlated	(Pearson	R:	0.35	–	0.47),	and	

census	blocks	with	the	highest	proportions	of	Hispanic	or	Latino	residents	coincide	with	the	

highest	SO2	exposures	(southwest	Detroit,	Figure	4.2A,	Figure	A3.2).	

	

All	of	the	strategies	with	one	exception	reduce	the	inequality	of	adverse	health	impact	risks	

associated	with	SO2	(Figure	4.3,	Table	4.6).	While	the	largest-emissions	first	approach	(S2)	

reduces	the	total	health	burden	(as	DALYs),	this	strategy	increases	inequality,	a	result	of	this	

strategy	increasing	the	relative	importance	of	SO2	“hotspots”	produced	by	smaller	facilities.	The	

lowest	inequality	occurs	for	the	health	impact	optimization	(S5)	with	a	75%	reduction	in	total	

emissions	(AI	=	0.116,	DALYs	per	year	=	2.58).	Increasing	removals	to	90%	slightly	lowers	

impacts	(DALYs	per	year	=	2.57)	though	inequality	slightly	increases	(AI	=	0.117)	since	

reductions	at	all	sources	tends	to	increase	inequality	(as	discussed	above).	Possibly	the	most	

striking	result	in	Figure	4.3,	however,	is	the	very	large	improvement	in	inequality	and	DALYs	

yielded	by	a	very	modest	(15%)	reduction	of	SO2	emissions	with	the	health	impact	optimization	

(S5)	strategy	due	to	the	high	benefits	per	ton	removed	for	the	targeted	sources	(Table	4.4);	this	

strategy	reduces	emissions	by	90%	at	AK	Steel,	Marathon,	Dearborn	Industrial	Generation,	
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Carmeuse	Lime,	and	US	Steel,	and	by	60%	at	EES	Coke,	while	emissions	at	DTE	Trenton	Channel	

and	DTE	River	Rouge	are	unchanged.		

	

The	distribution	of	benefits	from	SO2	reductions	across	social	groups	is	strategy-dependent.	The	

largest	changes	in	the	CI	at	intermediate	SO2	reduction	targets	occur	for	the	largest-health-

impacts-first	(S3)	and	the	health	optimization	(S5)	strategies.	These	strategies	are	shown	to	

benefit	Hispanic/Latino,	low	educational	attainment,	and	foreign-born	populations;	this	is	

important	because	these	groups	bear	heavier	burdens	in	the	base	case	(Table	4.6).	The	

“percentage	of	the	population	of	persons	of	color”	variable	does	not	indicate	a	

disproportionately	high	health	burden	from	SO2	because	a	majority	of	individuals	(68%)	in	the	

study	area	identify	as	non-Hispanic	Black	or	Hispanic/Latino	(US	Census	Bureau,	2015);	

aggregating	these	groups	using	a	single	variable	ignores	important	demographic	patterns	within	

the	study	area.		

	

SIP	versus	optimized	strategies	

Since	maximum	allowable	emissions	were	approximately	twice	that	of	the	actual	emissions,	the	

SIP	maximum	allowable	case	(S6),	SIP	(S7),	and	optimized	(S8	and	S9)	strategies	gave	

considerably	higher	concentrations	and	exposures	(Table	4.7)	than	those	using	actual	emissions	

(Tables	4.2	and	4.5).	The	peak	concentration	(111	ppb	for	strategy	S7)	differs	from	the	SIP	(74	

ppb;	(MDEQ,	2016,	p.	34)	due	to	differences	in	receptor	grids,	years	modeled,	and	the	

treatment	of	background.	(A	more	detailed	“hotspot”	analysis,	as	performed	by	MDEQ,	would	

be	needed	to	ensure	the	alternative	strategies	achieve	the	NAAQS	and	comply	with	US	EPA	
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criteria.)	Like	strategies	based	on	actual	emissions,	reducing	the	maximum	allowable	emissions	

yields	health	benefits,	and	all	strategies	based	on	maximum	allowable	emissions	reduced	

inequalities	(Figure	4.4).	The	SIP	control	(S7)	and	the	concentration	optimization	(S8)	strategies	

performed	similarly;	the	health	optimization	alternative	(S9)	outperformed	both	of	these	

strategies	with	respect	to	exposures,	health	benefits	and	inequality.	Note	that	strategies	S7,	S8	

and	S9	reduced	emissions	by	the	same	amount	(26,418	tons	per	year).	Based	on	the	CI,	the	

health-based	approach	is	particularly	beneficial	for	disproportionately	impacted	populations,	

e.g.,	areas	with	high	proportions	of	Hispanic	or	Latino	residents	(Table	4.8).		

	

Discussion	

Health-based	AQM	strategies	can	yield	large	decreases	in	health	burdens	and	the	inequality	of	

health	risks,	performing	better	than	current	strategies	that	prioritize	compliance	with	the	

NAAQS.	In	Detroit,	reducing	emissions	at	sources	with	the	largest	health	impacts	(S3,	S5)	

achieved	the	greatest	benefits	in	attributable	health	burden	and	inequality.	These	sources	tend	

to	be	smaller	and	closer	to	densely	populated	areas.	In	contrast,	strategies	focusing	on	the	

largest	sources	(S2)	only	modestly	reduced	health	burdens	and	increased	inequality.	These	

sources	mostly	have	tall	stacks,	are	far	from	populated	areas,	and	their	resulting	concentrations	

tend	to	be	low	and	well	dispersed.	While	emission	reductions	at	these	large	sources	lessen	the	

health	burden	across	broad	areas,	it	increases	the	relative	importance	of	smaller	sources,	thus	

increasing	inequality.	The	inefficiency	of	the	largest-emissions-first	strategy	in	terms	of	health	

benefits	and	its	tendency	to	increase	inequality	is	an	important	result	that	has	not	been	
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emphasized	elsewhere,	in	part	because	earlier	studies	primarily	focused	on	total	health	risks	

rather	than	pollutant-attributable	risks	(Levy	et	al.	2007).		

	

The	trade-offs	between	emissions	reduction,	health	burden	and	inequality	demonstrated	for	

the	study	area	are	scenario-	and	site-specific.	Still,	our	findings	appear	broadly	applicable.	For	

example,	a	national	assessment	of	power	plants	showed	that	reducing	emissions	at	sources	

with	the	highest	health	impacts	per	ton	of	pollutant	emitted	maximizes	improvements	in	health	

and	inequality	(Levy	et	al.	2007).	Trends	similar	to	those	determined	for	Detroit	are	expected	in	

other	urban	areas	that	have	industry	and	residential	areas	interspersed.		

	

Benefits	of	using	quantitative	HIA	analyses	in	the	air	quality	management	process	

The	development	of	a	control	strategy	represents	a	prime	opportunity	for	reducing	health	

burdens	and	disparities,	which	is	not	taken	advantage	of	in	the	current	compliance-oriented	

approach.	For	example,	the	Detroit	SO2	SIP	submission	specifies	emissions	reductions	at	three	

facilities	and	stack	height	increases	at	another	(MDEQ,	2016),	an	approach	derived	following	US	

EPA	guidelines,	negotiations	with	affected	facilities,	and	RACT	analyses.	Unfortunately,	this	plan	

targets	sources	that	have	relatively	low	health	impacts	per	ton	of	SO2	emitted	(Table	4.4),	and	it	

will	not	alleviate	disparities	associated	with	SO2	exposures.	This	is	supported	by	the	“actual	

emissions”	strategies	(S1-S5),	which	better	reflect	current	exposures	than	the	SIP	maximum	

allowable	case	(S6).	While	results	in	Figures	4.3	and	4.4	are	not	directly	comparable	(Figure	4.3	

is	based	on	health	impact	estimates	using	average	or	“actual”	emissions	and	Figure	4.4	is	based	

on	health	impact	estimates	using	maximum	allowable	emissions;	the	relationship	between	
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“actual”	and	maximum	allowable	emissions	is	not	consistent	across	sources),	they	each	show	

that	health-based	strategies	can	yield	bigger	improvements	in	public	health	and	health	

inequalities.	

	

The	use	of	the	maximum	allowable	emissions	is	currently	required	for	air	quality	modeling	

demonstrations	of	NAAQS	attainment	(US	EPA,	2005).	For	the	nine	major	SO2	sources	in	

Detroit,	these	maxima	exceeded	actual	emissions	by	1.6	to	4.0	times,	depending	on	the	source.	

In	consequence,	the	use	of	maximum	emissions	greatly	over-estimates	health	burdens	and	

might	not	target	the	sources	that	actually	cause	the	highest	concentration,	health	or	inequality	

impacts.	The	short-term	(1-hr)	NAAQS	must	be	attained	under	all	circumstance,	so	this	rule	is	

justifiable;	however,	a	second	analysis	using	actual	emissions	would	improve	the	realism	of	

exposure	and	health	analyses	and	potentially	result	in	healthier	and	fairer	outcomes.	

Alternatively,	the	difference	between	actual	and	maximum	allowable	emissions	could	be	

reduced,	perhaps	to	no	more	than	a	factor	of	1.5,	and	then	a	single	analysis	could	

simultaneously	demonstrate	that	a	proposed	SIP	strategy	attains	the	NAAQS,	maximizes	health	

benefits,	and	minimizes	inequality.	

	

Multipollutant	AQM	approaches	also	can	increase	both	health	and	inequality	benefits.	An	

integrated	and	least-cost	approach	for	PM2.5	and	ozone	in	Detroit	using	“population-oriented	

reductions”	was	predicted	to	attain	standards,	lower	total	health	impacts	and	reduce	inequality	

compared	to	strategies	that	addressed	pollutants	separately	(Fann	et	al.	2011;	Wesson	et	al.	
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2010).	While	we	focused	on	a	single	pollutant,	analyses	of	other	pollutants	could	inform	the	

evaluation	and	development	of	control	alternatives.		

	

Evolving	towards	more	comprehensive	and	equitable	air	quality	management	

Reorienting	AQM	from	standards	compliance	to	consideration	of	site-specific	health	and	

inequality	concerns	is,	in	part,	motivated	by	environmental	justice	and	cumulative	impact	

concerns.	U.S.	EPA	is	becoming	increasingly	concerned	with	the	“fair	treatment”	of	all	social	

groups	when	implementing	environmental	policies,	and	this	extends	to	the	distribution	of	

health	benefits	as	a	result	of	policy	actions	(US	EPA,	2016b).	The	agency	has	expressed	a	

preference	for	quantitative	EJ	analyses	that	complement	other	analyses	in	the	rule	making	

process	(US	EPA,	2016c).	Several	state	and	local	regulators	are	also	formalizing	EJ	activities,	

including	permitting,	compliance,	enforcement,	and	monitoring	(MPCA,	2015).	These	goals	can	

be	supported	using	the	CI	and	other	metrics.	Our	use	of	the	SO2-attributable	burden	in	

inequality	assessments	helps	identify	whether	the	benefits	of	emission	control	strategies	are	

fairly	distributed,	and	it	highlight	how	some	population	groups	(Hispanic	and	Latino	

populations)	received	fewer	benefits	under	some	of	the	strategies.	Potentially,	HIA	tools	and	

inequality	metrics	can	show	the	rate	of	progress	towards	eliminating	inequality,	a	potentially	

important	EJ	metric.	

	

Quantitative	HIA	methods	can	enhance	cumulative	impact	analyses,	few	of	which	have	

quantified	health	risks	or	impacts	attributable	to	individual	environmental	hazards	(Cushing	et	

al.	2015).	Most	of	these	analyses	have	focused	on	assessing	exposures	to	environmental	
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hazards	and	identifying	where	minority	or	low	income	populations	are	affected,	(e.g.,	Sadd	et	

al.	2011;	Su	et	al.	2009,	2012).	As	shown	here	and	elsewhere,	health	burdens	depend	on	many	

factors,	e.g.,	exposures	from	an	industrial	facility	are	spatially	varying,	depending	on	distance,	

emissions,	meteorology,	population	size	and	vulnerability.	Variation	at	the	intra-urban	scale	can	

be	large,	e.g.,	risks	in	a	small	fenceline	community	near	an	industrial	complex	in	Texas	were	

lower	than	in	the	rest	of	the	city	due	to	prevailing	winds	(Prochaska	et	al.	2014).	Thus,	hazard	

scores	considering	only	the	presence	or	proximity	of	hazards	may	inadequately	represent	the	

exposure	potential	and	likely	impacts.		

	

Health	and	inequality	metrics	could	strengthen	accountability	research,	which	examines	the	

outcomes	of	regulatory	and	other	policy	decisions	(Bell	et	al.	2011).	For	example,	changes	in	

community	air	pollutant	levels	have	improved	lung	function	among	children	living	in	Los	

Angeles,	California	(Gilliland	et	al.	2017);	health	and	inequality	metrics	could	show	whether	

these	benefits	are	equitably	and	effectively	distributed.	

	

Considerations	for	quantitative	HIAs		

Burden	of	disease	and	inequality	results	can	be	affected	by	the	location	of	air	pollution	sources,	

dispersion	characteristics,	the	location	of	vulnerable	and	susceptible	populations,	

administrative	boundaries,	and	the	spatial	resolution	of	the	analysis.	As	examples,	estimating	

the	base	case	health	impacts	for	SO2	emissions	estimated	at	the	ZIP	code	level	in	Detroit	

tremendously	smooths	gradients	in	exposure	and	lowers	AI	values;	including	areas	with	a	high	

degree	of	social	advantage	(e.g.,	non-Hispanic	white	populations)	or	excluding	potentially	
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vulnerable	populations	can	change	CI	values	and	possibly	the	groups	identified	as	

disproportionately	harmed	(Table	A4.1).	Sensitivity	analyses	that	vary	the	spatial	scale	and	

study	boundaries	can	help	evaluate	the	robustness	of	HIA	findings.	

	

Importantly,	no	standards	or	thresholds	have	been	established	for	inequality	assessments,	and	

small	changes	in	inequality	metrics	may	not	be	meaningful.	In	general,	alternatives	that	

decrease	inequality	relative	to	the	base	case	will	be	favored	provided	the	decrease	in	inequality	

does	not	result	from	making	better-off	groups	worse	off.	In	the	present	application,	changes	in	

inequality	resulted	from	decreases	in	health	burdens	since	emissions	were	not	allowed	to	

increase.	In	other	applications,	health	burdens	may	increase,	and	thus	improvements	in	

inequality	must	be	coupled	with	an	analysis	showing	how	benefits	are	generated	to	ensure	that	

no	population	subgroup	is	adversely	impacted.	

	

The	inequality	assessment,	and	in	particular	CI	metric,	is	sensitive	to	the	study	boundaries.	The	

study	boundary	used	in	this	analysis	includes	the	SO2	non-attainment	area	and	nearby	cities	

which	may	have	higher	exposures	and	health	burdens	relative	to	other	areas	in	southeast	

Michigan.	Areas	with	potentially	lower	burdens	are	excluded,	e.g.,	Oakland	and	Macomb	

counties,	which	are	just	north	of	the	study	area	and	have	lower	proportions	of	persons	of	color	

(26	and	18%,	respectively)	and	persons	living	below	the	poverty	line	(10	and	13%,	respectively)	

compared	to	the	study	area	(68%	persons	of	color	and	31%	persons	in	poverty)	(US	Census	

Bureau,	2014).	Had	these	more	affluent	counties	been	included	in	the	study	area,	the	inequality	

metrics	likely	would	have	demonstrated	disproportionate	impacts	among	more	disadvantaged	
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groups,	e.g.,	non-Hispanic	Black	residents	in	the	study	area,	as	seen	elsewhere	for	social	and	

environmental	risks,	e.g.,	living	near	hazardous	land	uses	(Schulz	et	al.	2016).	Rather	than	serve	

as	a	comparison	between	advantaged	and	disadvantaged	communities,	the	results	of	this	

inequality	analysis	only	allow	decision	makers	to	identify	which	population	subgroups	within	

the	study	area	experience	the	highest	burdens.	This	information	can	be	useful	in	encouraging	

decision	makers	to	act,	e.g.,	to	address	an	apparent	environmental	inequality,	but	should	not	

be	used	as	evidence	of	a	lack	of	environmental	justice	issues	for	the	broader	Detroit	region.	

	

We	did	not	consider	costs	or	practicalities	of	pollution	abatement.	Costs	will	vary	by	source	

type,	size,	and	many	other	facility-specific	factors.	Typically,	smaller	facilities	incur	greater	costs	

per	ton	removed	due	to	unavoidable	fixed	costs,	e.g.,	capital	and	operational	costs	(Becker,	

2005),	and	marginal	costs	usually	increase	at	higher	removal	rates	(Hartman	et	al.	1997).	Based	

on	abatement	costs	expressed	as	dollars	per	ton	of	pollutant	removed,	controls	at	large	

facilities	may	appear	as	more	cost-effective,	while	reductions	at	smaller	facilities	may	seem	less	

economical.	However,	this	accounting	is	incomplete:	the	lower	per	ton	control	costs	at	large	

facilities	might	yield	lower	health	benefits,	while	the	higher	per	ton	costs	at	smaller	facilities	

might	be	offset	by	greater	health	benefits.	Many	practical	issues	affect	such	assessments,	e.g.,	

the	availability	and	ease	of	installing	SO2	controls.	As	noted	in	the	SIP,	installing	end-of-pipe	

controls	at	some	sources	could	require	substantial	retrofitting	because	these	facilities	predate	

the	requirement	for	SO2	removal	technologies	(MDEQ,	2016).	
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Limitations	

The	HIA	applications	have	important	limitations.	First,	incidence	rates	in	Detroit	were	available	

at	county	to	ZIP	code	scales,	which	limits	the	ability	to	capture	spatial	variability.	Second,	

information	on	individual-level	exposures	was	not	used,	which	can	bias	health	impact	estimates	

when	people	live	in	one	area	and	work	or	attend	school	in	other	areas	(Baccini	et	al.	2015;	

Tchepel	and	Dias,	2011).	Third,	health	impacts	from	secondary	pollutants	(e.g.,	sulfate	particles	

formed	from	SO2)	were	not	considered.	Such	impacts	(especially	mortality)	due	to	secondary	

PM2.5	can	far	exceed	those	of	SO2	(US	EPA,	2010a).	However,	secondary	pollutant	formation	at	

the	urban	scale,	which	typically	occurs	at	a	regional	scale	and	results	in	relatively	homogeneous	

PM2.5	concentrations	at	the	intra-urban	scale	(Turner	and	Allen,	2008),	may	be	modest.	Fourth,	

sensitivity	and	uncertainty	analyses	were	limited.	Potentially	important	uncertainties	include	

baseline	incidence	rates,	dispersion	modeling	results,	and	the	CRs	(Mesa-Frias	et	al.	2013;	

O’Connell	and	Hurley,	2009).	Uncertainty	in	the	CR	will	likely	have	the	largest	influence	on	

health	impact	estimates	(Chart-asa	and	Gibson,	2015).		

	

The	inequality	assessment	is	limited	by	the	ability	to	identify	all	vulnerable	populations	in	the	

area.	The	American	Community	Survey	(ACS)	data	allows	some	analyses	by	race	or	

Hispanic/Latino	ethnicity.	In	Detroit,	90%	of	the	population	identifies	as	Hispanic/Latino	or	non-

Hispanic	Black	(US	Census	Bureau,	2015).	However,	our	study	area	also	included	the	city	of	

Dearborn,	which	is	approximately	30%	Arab	or	Arab-American	(de	la	Cruz	and	Brittingham,	

2003),	ethnicity	data	not	yet	routinely	collected	by	the	US	Census	Bureau.	Many	Arab	and	Arab	

American	residents	experience	high	exposures	to	social	stressors,	e.g.,	discrimination	(Padela	
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and	Heisler,	2010;	Samari,	2016)	and	therefore	would	be	an	important	subpopulation	to	include	

in	EJ	and	CI	analyses.		

	

Conclusions	

Air	quality	management	(AQM)	and	control	strategies	can	be	improved	by	incorporating	health	

and	inequality	metrics.	The	combination	of	spatially	variable	exposures	and	known	inequalities	

in	health	status	and	vulnerable	subpopulations	motivates	the	use	of	spatially-resolved	HIAs	to	

assess	health	inequality	as	well	as	the	health	burden.	In	the	study	area,	which	includes	Detroit,	

MI	and	contains	a	designated	SO2	non-attainment	area,	SO2	continues	to	have	a	substantial	

impact	on	the	health	of	the	population,	particularly	among	children	and	Hispanic	or	Latino	

populations.	AQM	strategies	that	focus	on	emission	sources	with	the	highest	health	impacts	per	

ton	of	pollutant	emitted	provid	the	greatest	health	benefit	per	ton	of	pollutant	reduced;	these	

strategies	also	reduce	the	inequality	of	health	risks.	In	contrast,	strategies	targeting	the	larger	

emitters	increase	inequalities	and	sometimes	provid	minimal	health	benefits.	Assessments	that	

incorporate	HIA	techniques	and	inequality	metrics	are	feasible	and	allow	AQM	to	move	beyond	

compliance	with	ambient	standards	towards	strategies	that	promote	health	and	equity.		
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Table	4.1.	Descriptions	of	the	SO2	reduction	strategies.	
ID	 Name	 Emphasis	 Description	
S0	 Base	case	 	 Base	case	of	actual	emissions	based	on	averaged	emissions	

reported	in	MAERS,	2010	to	2014	
S1	 Uniform	

percentage	
Emissions	 Applies	uniform	reductions	across	all	major	source	facilities	to	

meet	tonnage	reduction	goals	
S2	 Largest	emissions	

first	
Emissions	 First	ranks	facilities	by	total	tons	emitted	and	then	applies	

controls	to	largest	facilities	first	
S3	 Health	impact	

ranking	
Health	 Applies	controls	to	facilities	that	have	the	largest	health	impacts	

per	ton	of	SO2	emitted	first	
S4	 Receptor	

concentration	
optimization	

Concentrations	 Optimizes	emissions	at	each	facility	to	minimize	receptor	
concentrations	across	the	study	domain	

S5	 Health	impact	
optimization	

Health	 Optimizes	emissions	at	each	facility	to	minimize	total	health	
impacts	across	the	study	area	

S6	 SIP	“maximum	
allowable”	case	

	 Base	case	of	maximum	allowable	emissions	used	to	develop	the	
SIP	control	strategy.	Used	as	comparison	case	for	S7-S9.	

S7	 SIP	control	
strategy	

Emissions	 Emissions	reductions	specified	by	the	MDEQ	SIP	for	SO2	non-
attainment.	Includes	the	elevated	stack	at	Carmeuse	Lime.	

S8	 SIP	receptor	
concentration	
optimization	

Concentrations	 Optimizes	maximum	allowable	emissions	at	each	facility	to	
minimize	receptor	concentrations	across	the	study	domain	

S9	 SIP	health	impact	
optimization	

Health	 Optimizes	maximum	allowable	emissions	at	each	facility	to	
minimize	total	health	impacts	across	the	study	area	
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Table	4.2.	Statistics	of	hourly	SO2	concentrations	(ppb)	at	non-fenceline	receptors,	daily	mean	
SO2	concentrations	(ppb)	across	all	census	blocks	(used	in	health	impact	functions),	and	daily	1-
hour	maximum	concentrations	recorded	at	the	Southwest	High	School	monitor	(2011-2015),	
which	was	shown	to	be	out	of	attainment	for	the	SO2	NAAQS.	Concentrations	at	receptors	and	
blocks	consider	emissions	from	all	point	sources	in	the	base	case.	
Metric	 Min	 25th	 50th	 Mean	 75th	 95th	 99th	 Max	
Hourly	at	receptors	 0	 0.1	 0.2	 1.6	 0.9	 8.8	 19.8	 229.8	
Daily	mean	across	blocks	 0	 0.1	 0.5	 1.2	 1.7	 4.2	 6.5	 20.9	
Daily	1-hr	max	at	SWHS	 0	 1.7	 4.6	 12.4	 16.0	 52	 71.8	 111.6	
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Table	4.3.	Annual	health	impacts	(95%	confidence	interval)1	for	residents	of	Detroit	and	
downriver	cities	attributable	to	baseline	emissions	of	SO2.	

Outcome		 Age	Group	 Attributable	impacts	per	year	
Asthma	hospitalization	(cases)	 0-	64	years	 7	(0	–	22)	
COPD	hospitalization	(cases)	 	≥	65	years	 60	(0	–	120)	
Asthma	ED	visit	(cases)	 0	–	17	years	 95	(50	–	140)	
Asthma	ED	visit,	Detroit	CR	(cases)2	 0	–	17	years	 110	(50	–	170)	
Asthma	exacerbation	(cases)3	 6	–	14	years	 6,100	(0	–	12,000)	
Asthma	exacerbation,	Detroit	CR	(cases)2,3	 6	–	14	Years	 26,000	(6,000	–	46,000)	
Total	DALYs4	(years)	 	 7	(0	–	14)	
Total	monetized	impact4	(1,000’s	2010$)	 	 2,700	(0	–	5,500)	

1	Number	of	attributable	cases	to	two	significant	figures.	Confidence	intervals	(CI)	estimated	using	the	95%	CI	of	
the	CR	coefficient.	The	lower	bound	of	the	95%	CI	is	truncated	at	zero.	
2	These	estimates	use	a	CR	coefficient	drawn	from	a	study	set	in	Detroit,	MI.	
3	An	asthma	exacerbation	is	defined	as	a	day	with	cough,	wheeze,	and/or	shortness	of	breath.	
4	Total	DALYs	and	monetized	impact	metrics	exclude	outcomes	for	which	a	Detroit-specific	CR	is	used.	
Abbreviations:	COPD:	Chronic	obstructive	pulmonary	disease;	CR:	concentration-response	coefficient;	DALYs:	
disability-adjusted	life	years	
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Table	4.4.	Base	case	(S0)	average	SO2	emissions	(2010	to	2014),	attributable	health	impacts	per	
year1	among	the	total	population,	and	attributable	health	impacts	per	100	tons	of	SO2	emitted	
per	year	for	9	major	sources	and	125	(aggregated)	minor	sources	in	the	Detroit	area.		

	 Average	Emissions	 Attributable	DALYs	
Health	impacts	per	100	
tons	SO2	emitted	per	year	

Facility	
(tons	year-1)	(%	

of	total)	 Rank	
(DALYs	year-1)	
(%	of	total)	 Rank	

(DALYs	tons-1	
year-1)	 Rank	

Carmeuse	Lime	 640	(0.7)	 8	 0.40	(5.7)	 7	 0.062	 1	
Dearborn	Industrial	Generation	 768	(0.8)	 6	 0.43	(6.2)	 6	 0.056	 2	
Severstal/AK	Steel	 733	(0.8)	 7	 0.38	(5.5)	 8	 0.052	 3	
Marathon	Petroleum	 268	(0.3)	 9	 0.13	(1.8)	 9	 0.047	 4	
US	Steel	Great	Lakes	Works	 2,885	(3.1)	 4	 1.32	(18.9)	 2	 0.046	 5	
EES	Coke	 2,049	(2.2)	 5	 0.55	(7.9)	 5	 0.027	 6	
DTE	River	Rouge	 10,442	(11.1)	 3	 0.80	(11.5)	 4	 0.008	 7	
DTE	Trenton	Channel	 20,824	(22.2)	 2	 0.89	(12.7)	 3	 0.004	 8	
DTE	Monroe	 47,409	(50.6)	 1	 1.33	(19.1)	 1	 0.003	 9	
Minor	point	sources	(n=125)	 7713	(8.2)	 NR	 0.75	(10.7)	 NR	 0.010	 NR	
All	point	sources	 93,731	(100)	 NR	 6.95	(100)	 NR	 0.007	 NR	

1	Total	health	impact	is	estimated	as	DALYs.	When	several	concentration	response	(CR)	coefficients	are	available	
for	an	outcome,	the	more	nationally-representative	CR	is	used.	
Abbreviations:	DALYs:	disability-adjusted	life	years;	NR:	not	ranked	
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Table	4.5.	Fourth	highest	1-hour	daily	maximum	SO2	concentration	(ppb)	at	non-fenceline	
receptors	for	each	emissions	control	strategy	and	tonnage	reduction	goal.	

Aggregate	
Reduction	(%)		

Uniform	
Percentage	

(S1)	

Largest	
emissions	first	

(S2)	

Health	impact	
ranking	
(S3)	

Receptor	
concentration	
optimization	

(S4)	

Health	impact	
optimization	

(S5)	
0%	 79.5	 79.5	 79.5	 79.5	 79.5	
15%	 70.2	 77.6	 69.5	 68.7	 69.5	
30%	 60.7	 75.7	 69.4	 62.3	 69.4	
45%	 56.4	 73.8	 66.9	 56.4	 66.5	
60%	 56.3	 61.9	 56.3	 56.3	 56.3	
75%	 56.2	 61.6	 56.2	 56.2	 56.2	
90%	 56.2	 56.2	 56.2	 56.2	 56.2	
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Table	4.6.	Total	health	burden	(DALYs),	Atkinson	index	and	concentration	index	values	(×	100)	for	annual	health	impact	risk	
(measured	as	risk	of	a	DALY	per	year)	due	to	point	source	SO2	emissions	for	each	reduction	strategy.	Percent	difference	between	the	
strategy	and	the	base	case	in	parentheses.	Negative	percent	differences	indicate	an	increase	relative	to	base	case.		
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S0	 0	 7.0	(*)	 0.136	(*)	 7.8	(*)	 -11.2	(*)	 -8.9	(*)	 -1.7	(*)	 -4.8	(*)	 6.1	(*)	 -11.7	(*)	
S1	 15	 6.2	(10.5)	 0.134	(1.3)	 7.7	(0.9)	 -10.9	(2.3)	 -8.6	(3.5)	 -1.5	(9.6)	 -4.6	(3.6)	 6.1	(0.4)	 -11.4	(1.9)	
S1	 30	 5.5	(21.0)	 0.132	(2.9)	 7.6	(2.1)	 -10.6	(5.3)	 -8.2	(8.0)	 -1.3	(21.8)	 -4.4	(8.0)	 6.0	(0.8)	 -11.2	(4.3)	
S1	 45	 4.8	(31.5)	 0.129	(4.8)	 7.5	(3.6)	 -10.2	(9.2)	 -7.7	(13.8)	 -1.0	(37.7)	 -4.1	(13.9)	 6.0	(1.4)	 -10.8	(7.4)	
S1	 60	 4.0	(42.0)	 0.126	(7.2)	 7.4	(5.7)	 -9.6	(14.6)	 -6.9	(21.7)	 -0.7	(59.3)	 -3.7	(21.9)	 5.9	(2.3)	 -10.3	(11.6)	
S1	 75	 3.3	(52.5)	 0.122	(10.3)	 7.1	(8.8)	 -8.7	(22.3)	 -5.9	(33.1)	 -0.2	(90.6)	 -3.2	(33.3)	 5.9	(3.6)	 -9.6	(17.7)	
S1	 90	 2.6	(63.1)	 0.117	(14)	 6.7	(13.6)	 -7.3	(34.4)	 -4.3	(51.1)	 0.7	(139.6)	 -2.3	(51.3)	 5.7	(5.6)	 -8.5	(27.4)	
S2	 15	 6.7	(3.5)	 0.136	(-0.7)	 7.6	(2.6)	 -11.3	(-0.8)	 -9.3	(-4.3)	 -2.0	(-19.6)	 -5.1	(-7.2)	 5.8	(3.9)	 -11.7	(-0.5)	
S2	 30	 6.5	(7.1)	 0.138	(-1.5)	 7.4	(5.3)	 -11.4	(-1.7)	 -9.7	(-8.9)	 -2.3	(-40.7)	 -5.5	(-15.0)	 5.6	(8.0)	 -11.8	(-1.0)	
S2	 45	 6.2	(10.6)	 0.139	(-2.5)	 7.2	(8.3)	 -11.5	(-2.6)	 -10.1	(-14)	 -2.7	(-63.5)	 -5.9	(-23.4)	 5.3	(12.5)	 -11.8	(-1.6)	
S2	 60	 5.8	(16.3)	 0.140	(-3.6)	 7.3	(6.4)	 -11.7	(-4.6)	 -10.3	(-15.8)	 -2.7	(-64.4)	 -5.9	(-23.6)	 5.4	(10.7)	 -12.0	(-3.2)	
S2	 75	 5.4	(22.7)	 0.142	(-4.9)	 7.6	(2.4)	 -12.0	(-7.3)	 -10.4	(-16.7)	 -2.6	(-57.3)	 -5.7	(-20.7)	 5.7	(6.2)	 -12.3	(-5.2)	
S3	 15	 4.3	(38.2)	 0.119	(12.0)	 7.5	(4.4)	 -8.2	(27.0)	 -4.6	(48.4)	 0.8	(145.8)	 -2.2	(53.5)	 6.4	(-4.7)	 -9.2	(21.2)	
S3	 30	 3.7	(46.8)	 0.118	(12.6)	 7.9	(-0.6)	 -7.7	(31.1)	 -3.5	(60.3)	 1.6	(198.3)	 -1.3	(72.9)	 6.9	(-13)	 -8.9	(24.0)	
S3	 45	 3.3	(52.5)	 0.119	(12.3)	 8.2	(-5.1)	 -7.7	(31.6)	 -3.0	(66.1)	 2.1	(228.3)	 -0.8	(84.2)	 7.2	(-19.3)	 -8.8	(24.4)	
S3	 60	 3.1	(56.0)	 0.118	(12.8)	 7.8	(0.1)	 -7.6	(32.4)	 -3.4	(61.9)	 1.7	(203.5)	 -1.2	(75.0)	 6.8	(-12.4)	 -8.7	(25.2)	
S3	 75	 2.8	(59.5)	 0.117	(13.4)	 7.3	(6.3)	 -7.5	(33.3)	 -3.8	(57.0)	 1.2	(174.4)	 -1.7	(64.2)	 6.3	(-4.2)	 -8.6	(26.2)	
S4	 15	 5.4	(22.1)	 0.128	(5.7)	 7.7	(1.7)	 -9.8	(12.5)	 -7.2	(18.3)	 -0.7	(58.9)	 -3.8	(20.7)	 6.2	(-2.0)	 -10.7	(8.0)	
S4	 30	 5.1	(27.0)	 0.128	(5.2)	 7.7	(1.3)	 -10.0	(10.8)	 -7.4	(16.7)	 -0.8	(54.2)	 -3.8	(19.5)	 6.2	(-2.1)	 -10.8	(7.3)	
S4	 45	 4.5	(35.6)	 0.127	(6.6)	 7.5	(4.0)	 -9.5	(14.7)	 -7.1	(20.0)	 -0.7	(60.1)	 -3.7	(21.2)	 6.0	(0.4)	 -10.5	(9.8)	
S4	 60	 3.9	(44.0)	 0.124	(8.6)	 7.2	(7.4)	 -9.0	(19.8)	 -6.6	(25.5)	 -0.5	(70.7)	 -3.6	(24.9)	 5.9	(3.1)	 -10.1	(13.5)	
S4	 75	 3.4	(51.6)	 0.122	(9.9)	 7.1	(9.6)	 -8.5	(23.7)	 -6.2	(30.4)	 -0.3	(83.1)	 -3.4	(29.5)	 5.8	(4.7)	 -9.7	(16.5)	
S5	 15	 4.2	(39.7)	 0.118	(12.7)	 7.4	(5.4)	 -7.8	(29.9)	 -4.3	(51.9)	 0.9	(156.2)	 -2.0	(57.1)	 6.3	(-4.4)	 -8.9	(23.2)	
S5	 30	 3.7	(47.0)	 0.118	(12.7)	 7.8	(-0.5)	 -7.7	(31.5)	 -3.5	(60.8)	 1.6	(199.7)	 -1.3	(73.4)	 6.9	(-12.9)	 -8.8	(24.2)	
S5	 45	 3.3	(52.5)	 0.119	(12.3)	 8.2	(-5.0)	 -7.6	(31.7)	 -3.0	(66.0)	 2.1	(227.9)	 -0.8	(84.0)	 7.2	(-19.2)	 -8.8	(24.4)	
S5	 60	 3.1	(56.1)	 0.118	(12.9)	 7.8	(0.3)	 -7.6	(32.5)	 -3.4	(61.7)	 1.7	(202.6)	 -1.2	(74.7)	 6.8	(-12.1)	 -8.7	(25.3)	
S5	 75	 2.6	(62.8)	 0.116	(14.7)	 7.3	(6.2)	 -6.7	(40.5)	 -2.6	(70.7)	 2.0	(219.4)	 -0.9	(80.7)	 6.5	(-7.0)	 -8.0	(31.7)	
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Table	4.7.	Summary	statistics	of	block	level	daily	mean	and	“peak”	(4
th
	highest	1-hour	daily	

maximum)	concentrations	(ppb)	at	non-fenceline	receptors	for	the	SIP	maximum	allowable	case	

(S6),	the	SIP	control	strategy	(S7),	and	the	two	optimized	alternatives.		

	 Block-level	daily	mean	concentrations	at	indicated	percentile	 	

Strategy	 Min	 25
th
	 50

th
	 Mean	 75

th
	 95

th
	 99

th
	 Max	 Peak	

SIP	max.	allowable	(S6)	 0	 0.2	 0.8	 2.2	 3.1	 8.4	 13.2	 40.8	 173.2	

SIP	control	strategy	(S7)	 0	 0.3	 0.8	 1.6	 2.3	 5.5	 8.3	 23.3	 111.4	

Concentration	opt	(S8)	 0	 0.2	 0.7	 1.6	 2.5	 6.1	 9.1	 24.5	 106.7	

Health	opt	(S9)	 0	 0.1	 0.5	 1.3	 1.9	 4.7	 7.1	 20.5	 115.3	
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Table	4.8.	Total	health	burden,	Atkinson	index	(epsilon	=	0.75),	and	concentration	index	values	(×	100)	for	health	impact	risk	
(measured	as	risk	of	a	DALY	per	year)	for	the	SIP	strategies.	Percent	difference	between	the	strategy	and	the	maximum	allowable	
case	(S6)	in	parentheses.	Negative	percent	differences	indicate	an	increase	relative	to	base	case.		
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S6	 12.9	(*)	 0.143	(*)	 7.9	(*)	 -12.0	(*)	 -10.3	(*)	 -2.5	(*)	 -5.6	(*)	 6.0	(*)	 -12.5	(*)	
S7	 9.7	(24.5)	 0.142	(1.0)	 8.3	(-4.2)	 -11.4	(4.9)	 -10.0	(2.5)	 -2.0	(19.9)	 -5.2	(7.5)	 6.4	(-5.9)	 -12.6	(-0.6)	
S8	 9.8	(23.8)	 0.142	(0.9)	 8.1	(-2.5)	 -11.7	(2.3)	 -10.0	(2.5)	 -2.1	(12.9)	 -5.3	(5.4)	 6.2	(-3.9)	 -12.5	(-0.0)	
S9	 7.6	(40.6)	 0.133	(7.3)	 8.2	(-2.9)	 -10.0	(17)	 -8.0	(22.2)	 -0.8	(66.5)	 -4.0	(28.3)	 6.6	(-9.7)	 -11.6	(7.8)	

*	Percent	difference	relative	to	the	base	case	S6.	
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Figure	4.1.	Study	area	boundaries	(blue	outline),	the	SO2	non-attainment	area,	and	locations	of	
major	point	sources	of	SO2.		
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Figure	4.2.	Annual	average	(A)	and	4th	highest	1-hour	daily	maximum	(B)	SO2	concentrations	
(ppb)	for	the	base	case	(S0).	Based	on	5-year	average	emissions	of	SO2,	2012	meteorology,	and	
all	point	sources.	The	blue	line	shows	the	HIA	study	area;	the	green	dashed	line	shows	the	SO2	
non-attainment	area.	
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Figure	4.3.	Attributable	health	burden	(DALYs	per	year)	versus	Atkinson	inequality	index	for	
each	emission	control	alternative.	Lines	connect	alternatives	with	the	same	SO2	emissions	
reduction	target	(15	to	90%).	AI	inequality	aversion	parameter	set	to	0.75.	
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Figure	4.4.	Attributable	health	burden	(DALYs	per	year)	versus	Atkinson	inequality	Index	
(inequality	aversion	parameter	=	0.75)	for	the	SIP	maximum	allowable	(S6),	the	SIP	control	(S7),	
and	two	optimized	(S8	and	S9)	strategies.		
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Appendix	A4	

SUPPLEMENTAL	MATERIALS	FOR	CHAPTER	4	

	
Supplemental	Tables	

Table	A4.1.	Sensitivity	analysis	results	for	total	health	burden	(DALYs),	Atkinson	index	and	
concentration	index	values	(×	100)	for	annual	health	impact	risk	(measured	as	risk	of	a	DALY	per	
year)	due	to	point	source	SO2	emissions	in	Detroit,	MI	and	nearby	downriver	cities.	Results	are	
presented	for	the	entire	study	area	at	the	block	level,	the	entire	study	area	at	the	ZIP	code	
level,	and	the	subset	of	the	census	blocks	that	are	within	the	non-attainment	area	(see	Figure	
4.1).	Percent	difference	between	the	sensitivity	analysis	and	the	blocks-level	analysis	in	
parentheses.		
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Supplemental	Figures	

Figure	A4.1.	Empirical	cumulative	distributions	of	the	measured	daily	mean	SO2	concentrations	
at	the	Southwest	High	School	monitor	and	predicted	daily	mean	SO2	at	the	four	FRESH-EST	
receptors	(R1,	R2,	R3,	and	R4)	closest	to	the	monitor	(distance	<	160	m.)	K-S	tests	showed	no	
statistically	significant	difference	between	the	distributions	of	measured	and	predicted	daily	
means	(p	>	0.05).	
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Figure	A4.2A-G.	Attributable	health	burden	(DALYs	per	year)	versus	concentration	index	(CI)	for	
each	emission	control	alternative	based	on	actual	emissions	and	population	subgroup.	Lines	
connect	alternatives	with	the	same	SO2	emissions	reduction	target	(15	to	90%).	A	CI	equal	to	
zero	indicates	perfect	equality	across	census	blocks.	Negative	CI	values	indicates	the	lower-
ranked	census	block	carries	a	disproportionate	impact.	Thus,	alternatives	that	result	in	CI	values	
closer	to	0	are	preferred.		
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Figure	A4.2A-G	(continued).	Attributable	health	burden	(DALYs	per	year)	versus	concentration	
index	(CI)	for	each	emission	control	alternative	based	on	actual	emissions	and	population	
subgroup.	Lines	connect	alternatives	with	the	same	SO2	emissions	reduction	target	(15	to	90%).	
A	CI	equal	to	zero	indicates	perfect	equality	across	census	blocks.	Negative	CI	values	indicates	
the	lower-ranked	census	block	carries	a	disproportionate	impact.	Thus,	alternatives	that	result	
in	CI	values	closer	to	0	are	preferred.		
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Figure	A4.3A-G.	Attributable	health	burden	(DALYs	per	year)	versus	concentration	index	(CI)	for	
each	emission	control	alternative	based	on	maximum	allowable	emissions	and	population	
subgroup.	A	CI	equal	to	zero	indicates	perfect	equality	across	census	blocks.	Negative	CI	values	
indicates	the	lower-ranked	census	block	carries	a	disproportionate	impact.	Thus,	alternatives	
that	result	in	CI	values	closer	to	0	are	preferred.		
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Figure	A4.3A-G	(Continued).	Attributable	health	burden	(DALYs	per	year)	versus	concentration	
index	(CI)	for	each	emission	control	alternative	based	on	maximum	allowable	emissions	and	
population	subgroup.	A	CI	equal	to	zero	indicates	perfect	equality	across	census	blocks.	
Negative	CI	values	indicates	the	lower-ranked	census	block	carries	a	disproportionate	impact.	
Thus,	alternatives	that	result	in	CI	values	closer	to	0	are	preferred.		
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Chapter	5	

ASTHMA-RELATED	HEALTH	BENEFITS	OF	EFFICIENT	FILTERS	IN	SCHOOLS	AND	HOMES	

	

Abstract	

Filters	can	reduce	indoor	concentrations	of	particulate	matter	(PM2.5)	in	homes,	schools,	and	

other	buildings,	but	their	health	benefits	have	not	been	well	characterized.	This	study	examines	

the	health	burden	of	asthma	on	school-age	children	associated	with	exposure	to	PM2.5,	and	

quantifies	the	benefits	and	costs	of	reducing	exposures	using	filters	at	schools	and	residences.	

We	examine	schools	and	residences	in	and	near	Detroit,	Michigan,	estimate	indoor	PM2.5	levels	

using	indoor	air	quality	models	and	ambient	data,	and	evaluate	the	use	of	filters	in	forced	air	

systems	as	well	as	free-standing	filters.	Health	impact	assessment	(HIA)	methods	are	used	to	

quantify	the	impact	attributable	to	PM2.5	exposure	and	the	benefit	(as	avoided	impacts)	of	

filters.	The	variability	and	uncertainty	of	model	inputs	are	addressed	using	Monte	Carlo	

analyses.	Filters	lower	PM2.5	concentrations	from	outdoor	sources	by	46	to	83%	in	schools,	34	

to	56%	in	homes	with	forced	air	systems,	and	by	up	to	89%	in	rooms	with	free-standing	HEPA	

filters.	Replacing	inefficient	filters	(MERV	5)	with	slightly	better	(MERV	8)	filters	in	study	area	

schools	would	avoid	over	16,000	asthma	symptom-days	and	25	emergency	department	(ED)	

visits	per	school	year,	representing	an	8%	reduction	in	annual	PM2.5	attributable	impacts	(17%	
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reduction	during	the	school	year);	MERV	12	and	14	filters	increase	annual	reductions	to	13	to	

14%,	respectively	during	the	school	year	(28	and	30%,	respectively	during	the	school	year).	

Widespread	use	of	filters	in	schools	confers	monetized	benefits	of	$1.0	to	$1.8	million	per	year	

or	$91	to	$164	per	child	with	asthma	per	year,	compared	to	marginal	costs	$40	to	$63	per	

classroom	per	year	or	$20	to	$32	per	child	with	asthma	per	year.	In	homes,	using	MERV	8	filters	

(and	HEPA	filters	in	homes	without	furnaces)	results	in	23,000	fewer	asthma	symptom-days	and	

33	fewer	ED	visits	each	year,	an	11%	reduction;	MERV	12	and	14	filters	increase	reductions	to	

16%.	The	marginal	cost	in	a	home	with	a	forced	air	system	is	$151	–	175	per	house	per	year,	

mostly	due	to	additional	electricity	to	increase	the	duty	cycle,	and	$494	per	house	per	year	for	

stand-alone	filters.	The	cost	of	filters	in	homes	is	similar	to	asthma-related	benefits	($118	to	

$182	per	child	with	asthma	per	year).	Filters	can	confer	substantial	health	benefits	with	modest	

costs,	providing	a	positive	public	health	impact	for	school-age	children.		

	

Introduction	

Children	are	susceptible	to	the	adverse	effects	of	ambient	air	pollution	due	to	higher	breathing	

rates,	more	time	spent	outdoors,	and	the	sensitivity	of	their	developing	respiratory	system	

(Gauderman	et	al.	2004;	Goldizen	et	al.	2016;	Rice	et	al.	2016;	Wright	and	Brunst,	2013).	

Children	with	asthma	are	especially	vulnerable,	and	exposure	to	air	pollutants	has	been	linked	

to	reduced	lung	function,	symptoms	including	cough,	wheeze,	and	shortness	of	breath,	and	

emergency	department	(ED)	visits	and	hospitalizations	(Li	et	al.	2011;	Liu	et	al.	2009;	Mar	et	al.	

2010;	Ostro	et	al.	2001;	Samoli	et	al.	2011;	Schildcrout	et	al.	2006).	Air	pollutant	exposure	may	

also	contribute	to	new	cases	of	asthma,	especially	among	children	living	or	attending	school	
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near	busy	roads	(Gehring	et	al.	2010;	McConnell,	2007;	McConnell	et	al.	2010;	Nishimura	et	al.	

2013).	Children	with	asthma	may	be	more	likely	to	miss	school	(Mizan	et	al.	2011;	Moonie	et	al.	

2010;	Rodriguez	et	al.	2013),	which	may	lead	to	lower	academic	achievement	(Baxter	et	al.	

2011;	Moonie	et	al.	2008).	The	vulnerability	of	children	suggests	that	interventions	that	reduce	

pollutant	exposures	during	childhood	could	yield	large	benefits.	

	

Enhanced	filtration	in	homes	and	schools	can	reduce	fine	particulate	matter	(with	an	

aerodynamic	diameter	less	than	2.5	µm;	PM2.5)	exposures	that	originate	from	both	indoor	and	

outdoor	emission	sources	(Du	et	al.	2011;	Fisk,	2013;	McCarthy	et	al.	2013;	Polidori	et	al.	2013).	

Children	spend	most	of	their	time	indoors	at	home	(US	EPA,	2011),	and	indoor	PM	

concentrations	can	greatly	exceed	outdoor	levels	due	to	smoking,	cooking,	and	PM	

resuspension	from	vacuuming	and	other	activities	(Chen	and	Zhao,	2011;	Ferro	et	al.	2004).	

After	homes,	children	spend	most	of	their	time	in	schools.	PM2.5	levels	in	schools	are	influenced	

by	indoor	and	outdoor	sources,	including	traffic	(Amato	et	al.	2014;	John	et	al.	2007).	In	both	

homes	and	schools,	the	building’s	envelope,	heating,	ventilation	and	air	conditioning	(HVAC)	

system,	filters,	and	other	factors	affect	indoor	concentrations	(Stephens,	2015).	

	

Objective	and	motivation	

This	study	estimates	the	exposure,	health,	and	cost	impacts	of	using	high	efficiency	filters	in	

homes	and	schools.	We	focus	on	the	asthma-related	health	burden	among	school-aged	children	

attributable	to	PM2.5	exposure.	Prior	studies	of	filters	have	examined	health	impacts	on	adults,	

e.g.,	hospitalizations	and	premature	mortality;	benefits	to	children,	a	susceptible	population,	
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have	not	been	well	characterized	(Fisk,	2013;	Fisk	and	Chan,	2017;	Logue	et	al.	2012;	MacIntosh	

et	al.	2010).	

	

The	setting	for	this	study	is	Detroit,	MI	and	nearby	cities	(Hamtramck,	Highland	Park,	River	

Rouge,	Ecorse,	Melvindale,	Lincoln	Park,	Dearborn,	and	Allen	Park)	located	in	Wayne	County,	

Michigan.	Many	children	in	the	study	area	are	potentially	vulnerable	given	their	low	

socioeconomic	status	and	high	rates	of	poverty	(e.g.,	74%	of	students	attending	public	schools	

in	the	study	area	are	economically	disadvantaged;	MDE,	2016),	high	prevalence	of	asthma	

(11.3%	in	Detroit),	high	rates	of	asthma	hospitalizations	(nearly	three	times	higher	that	of	the	

state;	MDHHS	2014),	and	the	reliance	on	EDs	for	primary	care	(DeGuire	et	al.	2016).	

Furthermore,	children	in	the	area	may	experience	major	educational	disparities,	e.g.,	for	public	

school	students	in	the	study	area,	daily	attendance	is	only	89%	(versus	93.4%	in	Michigan)	and	

7.4%	score	as	“proficient”	on	state	standardized	tests	(versus	18%	of	students	statewide;	MDE,	

2016).	The	southeast	Michigan	region	has	many	local	PM2.5	sources	including	industry,	on-road	

mobile	sources,	non-road,	and	area	sources	that	account	for	one-third	to	one-half	of	ambient	

PM2.5	concentrations;	the	remainder	arises	from	regional	sources	(Gildemeister	et	al.	2007;	

Milando	et	al.	2016).	Wayne	County	contains	38	industrial	facilities	emitting	over	1	ton	per	year	

of	(primary)	PM2.5	(MDEQ,	2001),	23,000	miles	of	major	roads,	4,000	miles	of	truck	routes,	five	

commercial	marine	ports,	and	seven	rail	and	truck	terminals	(SEMCOG,	2013).	Many	highways	

cut	through	residential	areas,	and	sections	of	several	highways	have	over	10,000	trucks	per	day	

(MDOT,	2013).		

	



	

227	

Methods	

Indoor	PM2.5	concentrations	in	classrooms	and	homes	are	estimated	using	indoor	air	quality	

models,	a	variety	of	filter	types,	and	historical	ambient	PM2.5	levels.	Then,	health	impact	

functions	are	used	to	estimate	health	benefits	as	avoided	morbidity.	We	focus	on	PM2.5	from	

outdoor	sources	because	the	health	impact	functions	were	developed	for	ambient	PM2.5;	in	

addition,	indoor	PM2.5	sources	vary	greatly	among	buildings	(and	rooms	within	a	building).		

	

Study	population		

The	study	population	is	the	nearly	136,000	children	ages	6	to	18	years	old	attending	the	290	

schools	in	the	study	area	(MDE,	2016).	Enrollment	in	grades	K	through	8	is	used	to	estimate	the	

6-14	year	old	population,	and	the	total	enrollment	at	the	school	is	used	to	estimate	the	

population	under	age	18.	Of	this	population,	11,000	children	are	estimated	to	have	asthma,	

based	on	the	asthma	prevalence	for	Detroit	(11.3%;	DeGuire	et	al.	2016).	We	assume	children	

live	and	go	to	school	in	the	same	ZIP	code.		

	

Estimating	PM2.5	exposures	at	schools	and	homes		

Indoor	PM2.5	levels	arising	from	outdoor	sources	are	estimated	using	steady-state	models,	

which	are	amenable	to	uncertainty	analyses,	and	local	building	characteristics	(when	available).	

Details	are	described	below.	
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PM2.5	concentrations	in	schools		

PM2.5	concentrations	are	estimated	for	a	“typical”	classroom	using	a	unit	ventilator	(UV)	that	

can	accommodate	a	drop-in	filter	(Fisk	et	al.	2002).	At	steady-state,	the	indoor	PM2.5	

concentration	(Cs)	due	to	outdoor	sources	is:	

	

!" =
$%	[(%,*	 +,-* 	.	(/01*]

(3	-*.	(%,*	.	(/0	.	4567,*
		 	 	 	 	 	 	 	 			(5.1)	

	

where	Co	=	outdoor	PM2.5	concentration	(µg	m-3),	Qo,s	and	Qr	=	volume-normalized	outside	air	

and	recirculation	air	flow	rates,	respectively,	through	the	filter	(h-1),	Qin	=	volume-normalized	

infiltration	air	flow	rate	(h-1),	Ps	=	penetration	factor	for	particles	entering	the	classroom	via	air	

infiltration	(dimensionless),	kdep,s	=	particle	loss	rate	due	to	deposition	in	classrooms	(h-1),	and	εs	

=	particle	removal	efficiency	of	the	filter	(dimensionless).		

	

Typical	values	of	parameters	in	eq.	(5.1)	are	shown	in	Table	5.1.	The	classroom	air	change	rate	

(ACR)	comes	from	a	recent	study	of	Midwestern	schools	that	derived	ACRs	using	CO2	

measurements	and	a	transient	mass	balance	simulation	method	(Batterman	et	al.	2017).	This	

study	also	reports	ACRs	when	the	HVAC	system	is	off,	which	are	used	for	the	infiltration	rate	

Qin.	Qo,s	(h-1)	is	determined	from	the	ACR	and	Qin	(Qo,s	=	ACR	–	Qin).	The	recirculation	flow	rate	

Qr	comes	from	a	U.S.-wide	study	on	the	benefits	of	ventilation	and	filtration	in	public	buildings	

(Chan	et	al.	2016);	we	assume	uncertainty	of	±	1	h-1.	Ps	is	based	on	the	predicted	sulfate	particle	

penetration	for	an	office	building	with	a	low-efficiency	(i.e.,	6-8%	removal)	filter	(Riley	et	al.	
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2002).	Particle	loss	rate	kdep,s	is	set	to	0.10	h-1	(±	0.01	h-1),	the	average	found	for	urban	particle	

size	distributions	(Riley	et	al.	2002).		

	

We	assume	that	the	UV	runs	continuously	during	the	school	day.	Most	schools	start	ventilation	

systems	early	in	the	morning	before	students	and	staff	arrive,	and	shut	them	at	the	end	of	the	

instructional	period	(Batterman	et	al.	2017).	Indoor	concentrations	are	assumed	to	reach	

steady-state	before	occupancy.		

	

PM2.5	concentrations	in	homes	with	forced-air	systems	

Approximately	85%	of	homes	in	the	study	area	have	forced-air	systems	(i.e.,	whole-house	

furnaces)	that	can	be	fitted	with	a	“drop-in”	style	filter	(Du	et	al.	2012).	In	these	homes,	air	

tends	to	be	well-mixed	when	the	HVAC	system	is	operating,	i.e.,	in	heating,	cooling,	or	“fan”	

mode	(Nazaroff,	2004).	As	for	schools,	indoor	concentrations	in	homes	with	forced	air	systems	

are	estimated	using	a	fully-mixed	one	compartment	model	(Fisk	et	al.	2002)	(Figure	5.1A).	At	

steady	state,	the	indoor	PM2.5	concentration	(Ch)	due	to	outdoor	sources	is:	

	

		 !8 =
(%,9$%19

(9,:	-:.(9,%.4567,9
	 	 	 	 	 	 	 	 				(5.2)		

	

where	Qo,h,	Qh,f	and	Qh,o	=	volume-normalized	flows	from	the	outside	into	the	house,	from	the	

house	into	the	forced-air	system,	and	from	the	house	to	the	outside	(h-1),	respectively,	Co	=	

outdoor	concentration	(µg	m-3),	Ph	=	penetration	factor	(dimensionless)	for	homes,	kdep,h	=	

deposition	loss	rate	(h-1),	and	εf	=	filter	removal	efficiency	(dimensionless).		



	

230	

	

We	again	assumed	typical	values	for	parameters	in	eq.	(5.2)	(Table	5.1).	The	average	whole	

house	volume	(302	±	104	m3)	and	ACR	are	based	on	a	walk-through	survey	of	Detroit	houses	

(Du	et	al.	2012).	We	assume	an	average	heating	capacity	of	60,000	BTU	(63,303	kJ)	system,	130	

CFM	(221	m3	h-1)	of	air	per	10,000	BTU	(10,550	kJ),	a	typical	penetration	factor	Ph	and	particle	

loss	rate	kdep,h	for	urban	PM2.5	size	distributions	and	house	ventilation	rates	(Riley	et	al.	2002),	

and	a	duty	cycle	of	0.33	(e.g.,	fan	and	filter	operate	20	min	h-1,	thus	we	lower	the	filter	flow	rate	

by	67%).		

	

Most	houses	in	the	study	area	are	over	50	years	old	(median	year	built	=	1966)	and	infiltration	

rates	are	relatively	high	(average	of	0.73	h-1)	due	to	less	tight	building	envelopes	and	opened	

windows	for	natural	ventilation	(Du	et	al.	2012;	US	Census	Bureau,	2013).	As	a	comparison	

case,	a	newer	(post-1990)	and	“tight”	house	with	closed	windows	and	continuous	air	

conditioning	is	modeled	where	the	ACR	averages	0.26	(IQR:	0.15	–	0.43)	h-1	(Persily	et	al.	2010),	

Ph	=	0.44	±	0.11,	and	kdep,h	=	0.09	±	0.01	(Riley	et	al.	2002).	

	

Filter	efficiencies	εf	for	filters	with	MERV	ratings	of	5,	8,	12,	and	14	are	derived	for	

representative	filters	exposed	to	196	different	outdoor	particle	size	distributions	measured	in	

Europe	and	North	America;	PM2.5	efficiencies	were	not	overly	sensitive	to	particle	density	or	

size	distribution	assumptions.	(Azimi	et	al.	2014).	We	also	use	values	for	high	efficiency	particle	

arrestance	(HEPA)	filters	and	include	a	“no	filter”	case;	final	values	are	listed	in	Table	5.1.		
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PM2.5	concentrations	in	homes	without	forced-air	systems	

Stand-alone	filters	can	be	used	in	homes	with	radiators	or	baseboard	heating	(Du	et	al.	2012).	

These	filters,	rated	by	their	“clean	air	delivery	rate,”	typically	service	air	in	one	or	several	

rooms,	but	not	the	entire	building,	thus	a	multi-zone	model	is	required.	We	model	stand-alone	

units	equipped	with	a	HEPA	filter	using	a	three-compartment	steady-state	model	representing	

a	bedroom,	living	room,	and	the	remainder	of	the	house	(Figure	5.1B).	Filters	are	placed	where	

children	spend	most	of	their	time,	namely,	the	bedroom	and	living	room.	Initially,	we	assume	

that	each	house	has	two	filter	units	running	simultaneously	in	these	rooms.	Indoor	

concentrations	of	PM2.5	in	the	bedroom	(Ci),	living	room	(Ck),	and	remainder	of	the	house	(Cj)	

from	outdoor	sources	are:	

	

	 !; = 	
$%19(%,/.$<(/,<.$=(/,=

(/,%.(/,<.(/,=.4567,9.(/,:>->
	 	 	 	 	 	 	 				(5.3)	

	

	 !? = 	
$%19(<,%.$/(/,<.$=(=,<
(<,%.(<,/.(<,=.4567,9

	 	 	 	 	 	 	 	 				(5.4)	

	

	 !4 = 	
$%19(%,=.$/(/,=.$<(<,=

(=,%.(=,/.(=,<.4567,9.(=,:@-@
	 	 	 	 	 	 	 				(5.5)	

	

where	ε1	and	ε2	=	removal	efficiencies	of	filters	in	the	bedroom	and	living	room	(dimensionless),	

respectively,	Qi,f1	and	Qk,f1	=	volume-normalized	flows	through	bedroom	and	living	room	filters	

(h-1),	respectively,	Qo,i,	Qo,j,	Qo,k,	Qi,j,	Qj,k,	Qj,I,	Qj,k,	Qk,i,	Qk,j,	Qi,o,	Qj,o,	and	Qk,o	=	volume-

normalized	flows	(h-1)	between	compartments,	subscripts	i,	j,	k,	and	o	=	bedroom,	other	spaces,	
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living	room,	and	outside,	respectively,	and	other	parameters	are	as	in	eq.	(5.2).	Eqs.	(5.3-5.5)	

are	coupled.	Subscripts	on	the	flows	indicate	transfers	among	compartments.	Indoor	exposures	

in	houses	with	stand-alone	filters	(Cfil)	is	the	time-weighted	average	of	exposures	in	bedrooms,	

living	rooms,	and	other	parts	of	the	house.	Values	for	the	parameters	in	eqs.	(5.3-5.5)	are	

shown	in	Table	5.1.		

	

Parameters	in	eqs.	(5.3-5.5)	follow	those	presented	earlier	with	several	exceptions.	Volumes	of	

homes	without	forced-air	systems	are	larger	(average	of	418	±	101	m3),	although	children’s	

bedrooms	are	smaller	(27	±	7	m3)	(Du	et	al.	2012).	We	assume	the	living	room	(room	k)	makes	

up	25%	of	the	remaining	volume	(42	m3).	ACRs,	which	vary	by	season,	represent	the	sum	of	all	

air	entering	a	space,	e.g.,	ACRi	=	(Qo,i	+	Qj,i	+	Qk,i)/Vi	(Du	et	al.	2012).	Bedrooms	are	assigned	the	

bedroom	ACR	(1.66	h-1	±	1.50	h-1)	and	living	rooms	the	house	ACR	(0.73	h-1	±	0.76	h-1);	the	

remainder	(bedrooms,	kitchen,	etc.)	uses	the	average	of	bedroom	and	house	ACRs	(1.20	h-1).	

Du	et	al.	(2012)	reported	inter-zonal	flow	ratios	by	season	(e.g.,	ah,b	=	Qh,b	/	[Qh,b	+	Qo,b])	in	a	

two	compartment	model	derived	from	tracer	gas	analyses;	average	ratios	are	given	as	αb,h	=	

0.26	±	0.20	and	αh,b	=	0.55	±	0.18,	where	subscripts	b	and	h	indicate	the	bedroom	and	the	

whole	house,	respectively	(Du	et	al.	2012).	The	three	compartment	model	requires	inter-zonal	

flows	between	bedrooms	and	the	two	other	compartments;	we	assume	that	flows	are	

proportional	to	the	volume	of	the	receiving	spaces,	i.e.,	that	25%	of	flows	leaving	the	bedroom	

go	to	the	living	room	and	75%	to	other	spaces,	and	that	flow	ratios	between	the	living	room	

and	the	remainder	of	the	house	(αk,j	and	αk,j)	are	0.25.	Inter-zonal	flows	are	determined	using	

the	ACR	and	inter-zonal	flow	ratio,	e.g.,	Qi,k	=	ACRi	×	αi,k.	For	each	compartment,	flow	balance	is	
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maintained.	Average	flows	between	the	three	compartments	are	summarized	in	Table	5.2.	

Seasonal	inter-zonal	flows	are	shown	in	Appendix	A5	(Table	A5.1).		

	

Parameters	of	the	stand-alone	filter	are	taken	from	two	commercially	available	HEPA	filters.	

The	bedroom	filter	(HPA100,	Honeywell	International	Inc.)	is	rated	for	rooms	up	to	155	ft2	(14	

m2)	with	a	CADR	of	106	CFM	(180	m3	h-1)	for	dust.	The	living	room	filter	(HPA300,	Honeywell	

International	Inc.)	is	rated	for	rooms	of	465	ft2	(43	m2)	with	a	CADR	of	320	CMF	(544	m3	h-1).	

These	ratings	use	the	unit’s	maximum	fan	speed	(CADR	=	maximum	speed	×	ε;	Zhang	et	al.	

2011).	Given	an	efficiency	of	99.97%	(HEPA	filter),	the	volume-normalized	flows	are	6.6	and	5.6	

h-1,	respectively,	for	the	bedroom	(Qi,f1	=	CADRf1	/	Vi)	and	living	room	(Qk,f2	=	CADRf2	/	Vk)	units.	

We	assume	that	both	filter	units	operate	continuously	at	maximum	speed	while	the	child	is	at	

home,	which	was	shown	to	be	the	most	frequent	fan	speed	used	in	a	prior	field	study	

(Batterman	et	al.	2013)	and,	again,	that	the	time	needed	to	reach	steady-state	conditions	is	

negligible.	

	

Ambient	PM2.5	concentrations	

Outdoor	PM2.5	concentrations	are	based	on	every	3rd	day	24-hour	measurements	at	12	area	

monitoring	sites	from	2011-2015	(US	EPA,	2014a).	A	5-year	record	is	used	to	account	for	the	

variability	of	the	measurements.	Only	days	with	measurements	from	six	or	more	sites	are	used.	

PM2.5	concentrations	are	apportioned	into	the	“background”	(or	regional)	component,	defined	

as	the	second	lowest	daily	measurement	across	the	monitoring	sites,	and	the	“local	increment,”	

defined	as	the	highest	daily	measurement	(at	any	monitor)	minus	the	daily	background.	To	
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account	for	elevated	PM2.5	levels	near	major	roads	(from	exhaust	emissions,	entrained	dust,	tire	

and	brake	wear),	the	75	schools	within	200	m	of	a	limited	access	freeway	or	state	highway	are	

assigned	the	full	local	increment;	other	schools	and	all	homes	are	assigned	half	of	the	

increment.	This	approach	is	supported	by	emissions	inventory	data	that	show	mobile	sources	

account	for	approximately	50%	of	the	PM2.5	emissions	in	Wayne	County	(US	EPA,	2016),	and	

receptor	modeling	apportionments	that	show	approximately	50%	of	PM2.5	in	the	area	is	due	to	

regional	sources	and	15	to	30%	from	diesel	exhaust	and	other	mobile	sources	(Milando	et	al.	

2016).		

	

Parameter	variability	concentrations	and	filter	use	patterns	

The	variability	of	input	parameters,	e.g.,	flows,	penetration	factors	and	deposition	rates,	is	

evaluated	using	Monte	Carlo	(MC)	analysis,	10,000	simulations,	and	the	@Risk	software	

(Palisade	Corporation).	MC	analyses	are	performed	for	each	filter	rating	and	each	of	the	three	

applications	(schools,	homes	with	forced-air	systems,	and	homes	without	forced	air	systems).	

Distributional	assumptions	for	input	parameters	are	shown	in	Table	5.1.	If	a	supporting	study	

did	not	specify	a	distribution,	a	triangular	distribution	was	assumed.	In	all	cases,	airflow	balance	

was	maintained,	i.e.,	the	sum	of	flows	into	a	compartment	is	equal	to	the	sum	of	flows	out	of	

the	compartment.		

	

For	schools,	outdoor	concentrations	are	drawn	from	the	set	of	ambient	PM2.5	concentrations	

on	school	days	(i.e.,	weekdays	from	September	1	to	June	15).	Positive	correlations	between	Qr,	
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Qin	and	Qo	are	assumed	(Spearman	R	=	0.3)	since	infiltration	rates	in	schools	tend	to	be	higher	

when	HVAC	systems	are	operating	(Ng	et	al.	2013).	

	

For	homes,	daily	outdoor	concentrations	are	drawn	from	the	set	of	ambient	PM2.5	

concentrations	in	each	season.	The	ACR	bounds	are	set	at	0.1	and	6	h-1.	For	the	multi-zone	

house	model	(eqs.	3-5),	bedroom	and	whole	house	ACRs	are	positively	correlated	(R	=	0.2),	

ratios	of	flows	between	the	bedroom	and	the	rest	of	the	house	(αb,h	and	αh,b)	are	positively	

correlated	(R	=	0.2),	and	ACRs	and	ratios	of	flows	between	rooms	are	negatively	correlated	(R	=	

-0.3)	(Du	et	al.	2012)	

	

The	MC	analysis	does	not	address	variability	in	the	operating	schedule	for	the	UVs,	forced-air	

systems,	and	stand-alone	filters.	However,	sensitivity	analyses	are	used	to	evaluate	filter	use	

rates	from	0	to	100%.		

	

Health	impact	assessment	

The	frequency	of	three	asthma	related	outcomes	among	children,	namely,	hospitalizations	

(ages	6	to	18),	emergency	department	(ED)	visits	(ages	6-18),	and	respiratory	symptom	days,	

defined	as	a	day	with	cough,	wheeze,	or	shortness	of	breath	(ages	6-14),	are	estimated	using	

quantitative	health	impact	assessment	(HIA)	methods	(Martenies	et	al.	2015).	The	

concentration-response	(CR)	functions	are	taken	from	epidemiological	studies	(Mar	et	al.	2010,	

2004;	Ostro	et	al.	2001;	Sheppard,	2003)	with	no	effect	threshold,	consistent	with	current	US	

EPA	conclusions	regarding	the	lack	of	evidence	of	a	population-level	exposure	threshold	(US	
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EPA,	2009).	Baseline	hospitalization	rates	are	calculated	at	the	ZIP	code	level	using	data	from	

the	Michigan	Inpatient	Database	and	the	2013	American	Community	Survey	(US	Census	

Bureau,	2015).	Baseline	ED	visit	rates	are	estimated	from	Medicaid	data	at	the	ZIP	code	level	for	

schools	in	Detroit	and	the	county	level	for	other	schools	(DeGuire	et	al.	2016;	MDHHS,	2014).	

We	assume	ED	visit	rates	for	children	on	Medicaid	apply	to	the	entire	study	population.	More	

than	90%	of	children	in	Detroit	(who	account	for	68%	of	children	in	the	study	area)	and	more	

than	55%	of	children	in	Wayne	County	are	covered	by	Medicaid	insurance	(Annie	E.	Casey	

Foundation,	2017).	

	

The	number	of	attributable	cases	is	converted	to	disability-adjusted	life	years	(DALYs)	and	

monetized	impacts	in	2010$	(CDC,	2012;	de	Hollander	et	al.	1999;	Murray,	1994;	US	EPA,	

2012a).	A	95%	confidence	interval	(CI)	around	the	mean	impact	is	estimated	using	the	95%	CI	of	

the	CR	coefficient,	which	accounts	for	most	of	the	uncertainty	in	health	impact	estimates	

(Chart-asa	and	Gibson,	2015).	

	

Calculating	health	benefits	of	filters	

Health	benefits	are	estimated	for	three	sets	of	scenarios	installing:	efficient	filters	in	all	schools;	

in	only	“near	road”	schools	(located	within	200	m	of	a	major	road);	and	in	all	homes.	Each	

scenario	compares	MERV	8,	12,	and	14	filters	to	a	baseline	case:	schools	use	a	UV	with	an	

inefficient	(MERV	5)	filter;	homes	with	forced	air	systems	used	the	same	filter;	and	no	filtration	

is	used	in	homes	without	forced-air	systems	(Qi,f1	=	Qk,f2	=	0).	Because	US	EPA	recommends	a	

minimum	MERV	8-rated	filter	in	classrooms	(US	EPA,	2012b),	we	also	estimate	the	benefits	of	
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filter	using	MERV	8	as	the	baseline	filter	in	UVs	(see	Appendix	A5).	Health	benefits	are	reported	

as	the	number	of	avoided	cases	of	asthma	morbidity,	avoided	DALYs,	and	avoided	monetized	

impacts.	Percent	reductions	are	reported	for	the	full	year,	i.e.,	we	scale	percent	reductions	in	

impacts	at	schools	by	0.48	to	reflect	that	students	are	only	in	school	177	days	each	year.	

	

There	are	several	challenges	in	using	CRs	from	air	pollution	epidemiological	studies	in	filter	

studies.	First,	filters	affect	only	a	portion	of	total	exposure.	On	average,	people	spend	87%	of	

their	time	indoors	(Klepeis	et	al.	2001),	thus,	outdoor	concentrations	represent	a	proxy	of	the	

total	(indoor	and	outdoor)	exposures	in	epidemiological	studies.	Second,	the	portion	of	indoor	

exposures	affected	by	filters	in	epidemiological	and	filter	studies	can	vary.	Third,	the	CR	

functions	are	functions	of	outdoor	concentrations,	not	indoor	concentration.	For	these	reasons,	

we	calculate	an	“equivalent	concentration,”	which	accounts	for	indoor	and	outdoor	exposures	

and	is	comparable	with	available	CR	functions.	Using	a	time-weighted	average	of	

concentrations	over	the	day,	the	equivalent	concentration,	Ceq,	is	calculated	as:	

	

!AB = !CDE
( G/0,H$/0,I,H)H 	.	G%KL$%KL
( G/0,H$/0,M,H)H .	G%KL$%KL

	=	!CDE
( G/0,H	NI,H	$%KL)H 	.	G%KL	$%KL
( G/0,HNM,H	$%KL)H .	G%KL	$%KL

			 				(5.6)	

	

where	Fin	and	Fout	=	fraction	of	time	spent	indoors	and	outdoors;	Cin,F	and	Cin,B	=	indoor	

concentrations	with	enhanced	filters	and	baseline	filters,	respectively;	subscript	m	refers	to	the	

indoor	space,	e.g.,	homes	or	schools;	Cout	=	outdoor	concentration;	and	RF,m	and	RB,m	=	

indoor/outdoor	concentration	ratios	for	space	m	with	enhanced	and	baseline	filters,	
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respectively.	This	formulation	does	not	account	for	possible	differences	in	breathing	rates	

between	compartments,	but	these	are	unlikely	to	substantially	affect	results.		

	

In	eq.	(5.6),	Ceq	is	equal	to	Cout	if	indoor	and	outdoor	concentrations	are	the	same	(Cin	=	Cout)	or	

if	the	individual	spends	all	of	their	time	outdoors.	If	indoor	concentrations	without	a	filter	are	

the	same	as	outdoor	concentrations	(RB	=	1)	and	the	filter	removes	half	of	the	PM2.5	(RF	=	0.5),	

then	with	the	time	allocations	discussed	above	(Fin	=	0.87),		Ceq	=	0.57	´	Cout.	Given	the	same	

situation	but	assuming	an	individual	spends	all	of	their	time	indoors	(Fin	=	1),	then,	Ceq	=	0.5	´	

Cout.	This	result	is	similar	to	setting	Ceq	=	Cin	´	Fin,	as	used	in	previous	filter	studies	(Logue	et	al.	

2012).	These	simplified	cases	demonstrate	how	eq.	(5.6)	accounts	for	the	attenuation	of	indoor	

PM2.5	levels	and	time-activity	patterns.	This	approach	does	not	assume	or	require	linearity	in	

the	CR	and	is	consistent	with	methods	used	for	ambient	pollutants.		

	

Ceq	is	estimated	separately	for	schools	and	homes	with	the	assumption	that	filters	are	used	only	

in	schools	or	homes,	but	not	both.	Time	allocations	use	nationally	representative	values:	7.0,	

1.9,	14.4,	and	0.7	h	day-1	in	schools,	outdoors,	home	and	elsewhere,	respectively,	during	school	

days,	and	0,	1.9,	14.4,	and	7.7	h	day-1,	respectively,	on	non-school	days	(NCQT,	2015;	US	EPA,	

2011).	For	the	multi-zone	model,	the	time	spent	in	bedrooms,	living	rooms	and	other	spaces	in	

10.5,	2.6,	and	1.3	h	day-1,	respectively	(US	EPA,	2011;	Table	16-15).	For	homes	and	schools	

without	improved	filters,	the	average	I/O	ratios	calculated	using	eq.	(5.2	and	5.1)	are	0.58	and	

0.64,	respectively.	Indoor	concentrations	in	the	“other	spaces”	are	unknown.	For	simplicity,	we	

assume	these	exposures	are	the	same	as	those	at	unfiltered	homes	during	the	school	year;	for	
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estimates	of	Ceq	during	the	full	year,	these	unknown	exposures	are	similar	to	those	at	unfiltered	

schools.	These	assumptions	are	based	on	seasonal	time-activity	data	that	indicate	time	spent	by	

children	under	12	at	home	is	fairly	consistent	across	seasons	and	that	time	spent	in	school	

during	the	fall,	winter,	and	spring	is	replaced	by	time	spent	in	other	homes	and	other	spaces,	

e.g.	stores,	during	the	summer	(US	EPA	2011;	Table	16-12)	

	

The	MC	analysis	generates	10,000	iterations	of	outdoor	and	indoor	concentrations	in	school	

and	homes.	We	estimate	Ceq	for	each	iteration,	and	then	fit	a	distribution	to	the	results.	From	

this	distribution,	concentrations	are	drawn	randomly	to	create	representative	years	(177	days	

for	school	exposures;	365	days	for	home	exposures).	

	

Because	the	health	benefits	of	filters	depend	on	the	amount	of	time	children	spend	in	filtered	

indoor	environments,	the	sensitivity	of	health	benefits	is	demonstrated	using	two	limiting	

scenarios:	no	time	outdoors	and	6	h	day-1	outdoors.		

	

Cost	analysis	

Costs	of	more	efficient	filters	for	schools	and	homes	with	forced	air	systems	are	referenced	to	

low	efficiency	MERV	5	filters.	Filter	costs,	which	differ	by	MERV	rating	and	size,	are	based	on	

quotes	from	local	suppliers.	Stand-alone	filters	include	a	one-time	cost	for	the	purchase	of	the	

unit.	For	the	stand-alone	filters,	annualized	costs	are	estimated	assuming	a	lifetime	of	8	years	

and	discount	rate	of	7%	per	year.	Increased	electricity	consumption	from	running	UVs,	whole-

house	furnace	fans,	or	stand-alone	units	assumes,	at	baseline,	duty	cycles	of	0.07,	0.1	and	0,	



	

240	

respectively,	for	classroom	UVs,	forced-air	systems	and	stand-alone	filters	(Table	5.3);	the	

marginal	consumption	is	estimated	for	a	range	of	increased	duty	cycles.	Maintenance,	retrofits	

and	any	additional	heating	and	cooling	costs	are	excluded.	The	cost-relevant	factors	are	

summarized	in	Table	5.3.		

	

Results	

Outdoor	PM2.5	concentrations	and	Indoor/outdoor	ratios	

Daily	mean	ambient	PM2.5	concentrations	during	the	study	period	(2011-2015)	average	9.8	µg	

m-3	and	range	from	0.7	to	34.2	µg	m-3	(Table	A5.2).	Calendar	year	and	school	year	distributions	

are	similar,	though	school-day	concentrations	tend	to	be	lower	than	all-year	concentrations.	

The	mean	“local	increment”	concentration	is	approximately	50%	of	the	mean	“background”	

concentration.	PM2.5	levels	vary	by	season,	e.g.,	near-road	PM2.5	concentrations	(background	

plus	the	local	increment)	during	the	spring,	summer,	fall	and	winter	averaged	11.3,	13.4,	11.6,	

and	14.1	µg	m-3,	respectively	(Kruskal-Wallis	K=18.03,	p	<	0.001);	the	non-near	road	PM2.5	

concentrations	(background	plus	half	the	local	increment)	average	9.3,	11.4,	9.6,	and	12.0	µg	m-

3,	respectively	(K	=	23.7,	p	<	0.001).	

	

As	expected,	I/O	ratios	decrease	with	increasing	filter	efficiency	(Table	5.4,	Figure	5.2).	All	I/O	

ratios	are	below	one	because	indoor	sources	are	excluded.	Little	seasonal	variability	is	shown	

for	building	and	filter	type,	in	part	due	to	the	overlap	between	seasonal	ACRs	(Table	5.1).	In	

schools,	I/O	ratios	for	MERV	5	filters	are	similar	to	those	estimated	without	filters	(Figure	5.2).	

I/O	ratios	are	lowered	from	MERV	5	levels	by	46,	80,	and	83%	using	MERV	8,	12,	and	14	filters,	
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respectively.	Homes	show	comparable	trends:	MERV	5	filters	had	little	impact,	and	I/O	ratio	

reductions	were	34,	54,	and	56%	using	MERV	8,	12,	and	14	filters,	respectively.	Greater	

reductions	in	schools	result	from	their	lower	ACR,	in	part	due	to	their	tighter	building	envelopes	

(Table	5.1),	and	higher	initial	I/O	ratios	at	baseline	relative	to	homes	(Figure	5.3).		

	

The	two	HEPA	filters	in	homes	without	forced-air	systems	reduce	I/O	ratios	by	84	and	88	in	

bedrooms	and	living	rooms,	respectively,	relative	to	the	baseline	case	(no	filter;	Table	5.4).	The	

flows	between	the	three-compartments	obtain	modest	reductions	(32%)	in	other	parts	of	the	

home.		

	

I/O	ratios	decrease	as	the	filter	duty	cycle	increases	with	the	exception	of	classrooms	equipped	

with	MERV	5	filters	(Figure	5.3A).	In	mechanically-ventilated	classrooms,	increasing	the	UV	duty	

cycle	time	brings	in	more	outside	air,	which	increases	PM2.5	levels	using	inefficient	filters.	In	

contrast,	in	naturally-ventilated	homes,	increasing	the	fan	duty	cycle	does	not	alter	outside	air	

flows,	thus,	increased	filter	use	reduces	the	I/O	ratio.		

	

I/O	ratios	displayed	in	Figure	5.3B	represent	a	typical	home	in	Detroit,	which	is	relatively	

“leaky.”	Without	filters,	the	Detroit	homes	show	considerably	higher	I/O	ratios	(0.59)	than	the	

“tight”	homes	(0.35;	Figure	A5.1),	which	have	low	ACRs	and	low	PM2.5	penetration	factors.	As	

the	filter	duty	cycle	increases,	differences	between	these	home	types	diminish,	e.g.,	I/O	ratios	

using	a	MERV	12	filter	with	a	90%	duty	cycle	average	0.14	and	0.05	for	“Detroit”	and	“tight”	
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homes,	respectively	(Figure	5.3B,	Figure	A5.1).	Thus,	even	leaky	homes	can	attain	low	I/O	ratios	

using	efficient	filters	and	high	duty	cycles.	

	

Sources	of	variability	shown	by	tornado	plots	for	schools	and	homes	with	MERV	8	filters	and	for	

homes	using	stand-alone	HEPA	filters	indicate	that	most	variability	in	indoor	PM2.5	levels	arises	

from	the	temporal	variability	of	outdoor	concentrations	(Figure	5.4).	(Plots	for	other	MERV	

ratings	are	in	the	SI).	Additional	variability	arises	from	ACRs,	penetration	factors,	particle	

deposition	rates,	and	filter	efficiencies.		

	

Health	impacts	

Health	impacts	from	PM2.5	exposure	during	the	school	year	and	calendar	year,	along	with	the	

estimated	incidence	of	asthma-related	impacts	for	the	study	population,	are	shown	in	Table	

5.5.	PM2.5	exposures	during	the	school	year,	for	example,	cause	83,000	asthma	symptom-days	

defined	as	having	cough	and	PM2.5	exposures	over	the	full	year	cause	170,000	days	with	cough;	

this	can	be	compared	to	1,400,00	days	with	cough	due	to	all	causes.	In	total,	PM2.5	exposures	

are	responsible	for	an	estimated	220	DALYs	and	$12.2	million	in	monetized	impacts	per	year	

among	school-aged	children	in	the	study	area	(Table	5.5).	The	annual	results	are	similar	to	

estimates	presented	previously	based	on	ambient	concentrations	(270	DALYs	per	year;	Chapter	

3	Table	3.2).	These	baseline	estimates	of	health	impacts	are	not	sensitive	to	the	time	children	

spend	outdoors,	e.g.,	attributable	DALYs	per	year	vary	by	less	than	1%	for	outdoor	durations	

from	0	to	6	h/day	(Table	A5.3,	Table	A5.4).		
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Benefits	of	filters	

More	efficient	filters	in	classrooms	and	homes	reduce	the	asthma-related	health	burden,	

mostly	due	to	avoided	asthma	symptom	days,	i.e.,	days	with	cough,	wheeze,	or	shortness	of	

breath	(Table	5.6).	Replacing	MERV	5	filters	with	MERV	8,	12,	or	14	filters	in	schools	reduces	the	

annual	PM2.5-related	asthma	burden	by	8,	13,	and	14%,	respectively	(17,	28,	and	30%,	

respectively,	during	the	school	year)	which	represents	between	$1.0	and	$1.8	million	per	year	

in	avoided	health	impacts.	The	marginal	benefit	of	MERV	14	compared	to	MERV	12	filters	is	low	

(31	vs.	33	DALYs	avoided	per	year,	respectively).	Benefits	increase	at	near-road	schools	where	

annual	DALYs	are	reduced	by	10	–	17%	(20	-	35%	during	the	school	year)	compared	to	all	

schools	(8	to	14%	reduction),	a	result	of	the	greater	exposure	(18%	higher)	at	near-road	

schools.	Benefits	of	filters	in	schools	are	somewhat	sensitive	to	the	time	spent	outdoors.	If	

children	spend	no	time	outdoors	(and	are	home	an	additional	1.9	h	day-1),	benefits	increase	6	

to	7%	(Table	A5.5).	If	children	spend	6	h	day-1	outdoors	(and	6	h	day-1	less	at	home),	benefits	

decrease	by	10	to	12%	(Table	A5.6).	Percent	reductions	in	annual	health	burdens	using	MERV	

12	and	MERV	14	filters	are	lower	when	using	MERV	8	filters	at	baseline	(6	and	7%,	respectively;	

Table	A5.8)	due	to	lower	initial	indoor	concentrations	under	the	MERV	8	baseline	(Table	5.4).	

	

At	homes,	filters	avoid	24	to	36	DALYs	per	year,	with	monetized	benefits	from	1.3	to	2.0	million	

dollars	per	year,	which	exceed	benefits	at	schools	because	children	spend	more	time	at	home	

(Table	5.6).	Replacing	MERV	5	filters	with	MERV	8,	12,	or	14	filters	in	homes	reduces	annual	the	

PM2.5-related	asthma	burden	by	11,	16,	and	16%,	respectively	(Table	5.6).	As	at	schools,	MERV	

14	filters	have	only	small	benefits	over	MERV	12	filters.	Again,	results	are	somewhat	sensitive	
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to	the	time	children	spend	outdoors.	If	children	spend	no	time	outdoors	(and	are	home	an	

additional	1.9	h	day-1),	benefits	increase	by	6	to	8%	(Table	A5.5).	If	children	spend	6	h	day-1	

outdoors	(and	6	h	day-1	less	at	home),	benefits	decrease	by	8	to	9%	(Table	A5.6).		

	

Filter-related	costs	and	cost-effectiveness	

Marginal	costs	depend	on	the	filter	rating	and	duty	cycle	(Table	5.7).	In	schools,	replacing	MERV	

5	filters	using	a	duty	cycle	of	0.07	with	more	efficient	filters	using	a	0.20	duty	cycle	(177	days	

per	year	in	each	case)	imposes	marginal	costs	of	$40	to	$63	per	classroom	per	year,	depending	

on	filter	rating.	With	20	students	in	a	classroom	(and	2	students	with	asthma	per	classroom),	

the	marginal	cost	is	$2	to	$3	per	student	per	year	or	$20	to	$32	per	student	with	asthma	per	

year.	This	is	well	below	the	benefits	of	avoided	asthma	exacerbations	($1.0	to	$1.7	million	per	

year	or	$91	to	$155	per	child	with	asthma	per	year).	

	

In	a	home	with	a	forced	air	system,	replacing	MERV	5	filters	using	a	duty	cycle	of	0.1	with	more	

efficient	filters	and	using	a	duty	cycle	of	0.3	costs	about	$151	to	175	per	year,	including	

increased	energy	costs	of	$142	per	year.	A	home	requiring	two	stand-alone	filters	using	a	0.6	

duty	cycle	incurs	costs	of	$877	for	the	first	year	and	subsequently	$417	per	year,	or	annualized	

costs	of	$494	per	year.	Because	duty	cycles	over	50%	provide	only	incremental	benefits	(Figure	

5.3C),	a	lower	duty	cycle	can	obtain	similar	benefits	with	lower	costs.	For	example,	running	

stand-alone	units	7.2	hours	per	day	(0.3	duty	cycle)	has	annualized	costs	of	$432	per	year.	The	

total	cost	of	more	efficient	filters	in	homes	of	children	with	asthma	(assuming	only	one	child	

with	asthma	in	each	home)	is	$2.2	-	$2.4	million	per	year	($1.4	-	1.6	million	per	year	for	the	
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approximately	9,350	homes	with	forced	air	systems	and	$800,000	per	year	for	the	1,650	homes	

using	stand-alone	filters).	Overall,	filter	costs	in	homes	are	similar	to	the	monetized	benefits	

estimated	for	avoided	asthma	impacts	($1.3	-2.0	million	per	year	or	$118	-	182	per	child	with	

asthma	per	year).		

	

Discussion	

The	use	of	more	efficient	filters	in	schools	and	homes	to	reduce	exposure	of	ambient	PM2.5	has	

significant	benefits.	Filters	installed	in	schools	can	reduce	the	annual	PM2.5-related	asthma	

burdens	by	8	to	14%,	depending	on	filter	rating.	Prioritizing	schools	near	major	roads	and	other	

sources	of	PM2.5	emissions	can	help	address	environmental	inequalities.	The	marginal	costs	of	

filters	in	schools	is	low,	e.g.,	20-32	per	student	with	asthma	per	year,	while	benefits	from	

avoided	asthma	exacerbations	range	from	$91-163	per	child	with	asthma	per	year.	

	

More	efficient	filters	installed	in	homes	can	lower	the	annual	PM2.5-related	asthma	burdens	by	

11	to	16%,	however,	this	requires	a	filter	in	each	home	of	a	child	with	asthma.	Marginal	costs	

range	from	$151	to	$175	per	year	for	homes	with	forced	air	systems,	and	$494	per	year	for	

homes	using	two	stand-alone	filters.	Benefits	from	avoided	asthma	impacts	range	from	$1.3	to	

$2	million	per	year	or	$118	to	$182	per	child	with	asthma	per	year.	These	costs	are	similar	to	

the	monetized	asthma-related	health	benefits.	However,	the	true	benefits	of	filters	are	likely	

higher	given	that	filters	also	remove	other	asthma	triggers,	e.g.,	pet	dander	(Brown	et	al.	

2014)(Brown	et	al.	2014),	and	adults	are	also	susceptible	to	adverse	health	effects	from	PM2.5	

exposures.	
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Estimating	the	benefits	of	using	filters	in	schools	and	homes	simultaneously	is	beyond	the	

present	scope.	This	would	be	somewhat	less	than	the	sum	of	benefits	of	filters	in	both	spaces	

(Table	5.6)	due	to	the	non-linear	concentration-response	coefficients,	the	variability	in	baseline	

exposures	for	different	filter	scenarios,	and	potentially	other	factors.	

	

Indoor/outdoor	ratios	for	schools	and	homes	with	filters	

Several	field	studies	have	measured	I/O	ratios	of	PM2.5	in	schools	that	help	to	confirm	our	

results	(McCarthy	et	al.	2013;	Polidori	et	al.	2013;	Scheepers	et	al.	2012;	van	der	Zee	et	al.	

2016).	For	example,	I/O	ratios	for	black	carbon	(BC),	which	has	few	if	any	indoor	sources	in	

schools,	ranged	from	0.24-0.59	for	classrooms	using	MERV	6	filters	(McCarthy	et	al.	2013).	We	

estimated	comparable	I/O	ratios	for	PM2.5,	e.g.,	0.86	and	0.46	for	MERV	5	and	8	filters,	

respectively.	I/O	ratios	of	0.03	-	0.26	have	been	estimated	for	MERV	15	filters	(McCarthy	et	al.	

2013),	similar	to	our	estimate	of	0.15	for	MERV	14	filters.	Higher	I/O	ratios	(0.48	-	0.51)	for	BC	

have	been	measured	in	a	classroom	with	a	MERV	14	filter;	high	infiltration	rates	may	have	

affected	these	results	(van	der	Zee	et	al.	2016).	Differences	between	the	literature	and	our	

results	can	result	from	differences	in	building	characteristics,	UV	duty	cycles,	particle	size	

distributions	(Riley	et	al.	2002;	Sarnat	et	al.	2006),	and	other	factors.	

	

We	demonstrate	the	sensitivity	of	I/O	ratios	to	the	filter	duty	cycle,	and	show	that	without	

proper	filtration,	increasing	the	duty	cycle	of	a	classroom	UV	can	increase	I/O	ratios	due	to	

increased	amounts	of	poorly	filtered	outside	air	(Figure	5.3).	Many	classrooms	need	additional	
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ventilation	to	lower	levels	of	indoor	contaminants	and	improve	student	and	teacher	health	

(e.g.,	Batterman	et	al.	2017;	Chan	et	al.	2016;	Kinshella	et	al.	2001;	Mendell	et	al.	2013;	

Muscatiello	et	al.	2015).	However,	additional	outside	air	should	be	provided	using	efficient	

filters	that	can	avoid	potential	increases	in	concentrations	of	outdoor	contaminants.		

	

Our	results	apply	to	schools	using	UVs,	a	simple	and	low-cost	HVAC	system	used	in	many	

schools.	Schools	use	many	other	types	of	mechanical	ventilation	systems,	e.g.,	central	air	

handling	units	with	variable	air	volume	systems,	but	most	systems	blend	outside	air	with	

recirculated	air.	These	systems	also	use	a	variety	of	filters.	While	assessment	of	filter	cost	and	

performance	for	these	systems	is	beyond	the	present	scope,	the	use	of	more	efficient	filters	

likely	has	relatively	low	marginal	costs,	potentially	similar	to	those	estimated	for	UVs.		

	

Our	estimates	of	I/O	ratios	in	homes	with	forced-air	systems	(Table	5.4,	Figure	5.3)	show	

reasonable	agreement	with	prior	field	and	modeling	studies.	Using	a	mass	balance	model,	Azimi	

et	al.	(2016)	estimated	I/O	ratios	for	older	homes	of	0.40,	0.32,	0.25,	and	0.25	MERV	5,	MERV	8,	

MERV	12,	and	MERV	14	filters,	respectively,	which	are	similar	to	our	estimates	of	I/O	ratios	in	

homes	with	forced	air	systems	(0.56,	0.37,	0.25,	and	0.24	for	MERV	5,	MERV	8,	MERV	12,	and	

MERV	14,	respectively;	Table	5.4).	Measured	I/O	ratios	of	PM2.5	in	homes	vary	geographically,	

e.g.,	0.68	to	0.81	for	homes	in	Detroit	(Logue	et	al.	2015);	0.55	for	homes	in	North	Carolina	

(Wallace	and	Williams,	2005);	and	0.47	to	0.82	(average	=	0.62)	for	homes	across	the	US	(Allen	

et	al.	2012).	Again,	differences	across	studies	are	likely	due	to	building	characteristics,	
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meteorological	factors	such	as	wind	speed	and	indoor-outdoor	temperature	differences,	use	of	

air	conditioning,	and	opening	windows	to	ventilate	homes	(Stephens,	2015).	

	

Stand-alone	HEPA	filters	placed	in	bedrooms	in	Detroit	homes	achieved	50	to	77%	reductions	in	

indoor	PM	levels,	with	higher	reductions	for	fine	PM	(aerodynamic	diameter	0.3	–	1	µm;	

Batterman	et	al.	2012).	Other	studies	using	stand-alone	filters	have	measured	PM2.5	reductions	

between	37	and	43%	(Cheng	et	al.	2016;	Kajbafzadeh	et	al.	2015;	Park	et	al.	2017).	Using	the	

three-compartment	model,	we	estimate	that	two	stand-alone	filters	would	remove	84%	of	

outdoor	PM2.5	in	bedrooms	on	average	when	run	continuously	and	77%	when	run	60%	of	the	

time	(Figure	5.3).	The	higher	reductions	in	the	present	analysis	likely	result	from	four	factors:	

we	assume	filters	are	used	100%	of	the	time	children	are	home	compared	to	63%	to	83%	in	the	

field	studies;	we	assume	filters	were	running	at	their	maximum	speed;	we	assume	each	home	

had	an	additional	filter	(placed	in	the	living	room)	that	would	boost	removals;	and	the	field	

study	measurements	included	PM	from	both	indoor	and	outdoor	sources,	which	would	

diminish	the	apparent	reductions.	When	the	filter	in	the	living	room	is	removed	and	filter	in	

bedrooms	is	run	at	half	speed	for	60%	of	the	time	(a	scenario	similar	to	reported	use	patterns;	

Batterman	et	al.	2013),	I/O	ratios	are	reduced	by	55%	on	average	in	bedrooms.	Thus,	our	

estimates	of	PM	reductions	and	health	benefits	for	the	15%	of	homes	without	forced-air	

systems	may	be	overestimated.	
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Health	benefits	of	filters	

Only	a	few	studies	have	examined	the	health	benefits	of	increased	filter	use	in	any	building	

type,	including	schools	and	homes	(Fisk,	2013).	Upgrading	from	MERV	7	to	MERV	15	filters	in	

schools	across	the	US	has	been	estimated	to	reduce	attributable	cases	of	mortality,	chronic	

bronchitis	and	stroke	risks	by	33%	(Chan	et	al.	2016).	We	report	a	similar	percentage	decrease	

for	asthma-related	outcomes	using	MERV	12/MERV	14	filters	in	Detroit-area	schools,	e.g.,	a	28-

30%	reduction	for	children	relative	to	MERV	5	filters	during	the	school	year	(13-14%	during	the	

year).	US	EPA’s	Tools	for	Schools,	a	guide	for	improving	indoor	air	quality	in	K-12	schools,	

recommends	filters	with	MERV	ratings	between	8	and	13	(US	EPA,	2012b).	However,	less	than	

half	of	school	districts	in	the	US	have	an	indoor	air	quality	policy	in	place	(CDC,	2015).	Our	

findings	suggest	using	filters	in	schools	could	potentially	confer	health	benefits	to	school	

occupants,	including	students,	teachers,	and	staff,	particularly	when	schools	do	not	have	

existing	filter	programs		

	

We	also	estimate	between	11	and	16%	reductions	in	annual	PM2.5-related	asthma	burden	if	

every	home	with	a	child	with	asthma	in	the	study	area	used	more	efficient	filters	(Table	6).	A	

prior	study	including	asthma	outcomes	for	children	estimated	using	high-efficiency	electrostatic	

cleaners	in	home	forced-air	systems	would	reduce	asthma	exacerbation	risk	by	7.4%	

(MacIntosh	et	al.	2010).	Our	higher	estimates	may	be	attributable	to	the	high	baseline	risk	of	

asthma	outcomes	among	study	area	children	(DeGuire	et	al.	2016).	Other	studies	of	health	

benefits	of	filters	have	focused	on	outcomes	relevant	to	adults,	e.g.,	hospitalizations	and	

premature	mortality	(Fisk,	2013;	Fisk	and	Chan,	2017;	Logue	et	al.	2012;	MacIntosh	et	al.	2010).		
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Cost	and	cost-effectiveness		

Overall	filtration	costs	include	the	filter	media	itself,	labor	for	filter	change-out,	and	electricity	

for	fan	operation.	Costs	tend	to	increase	with	filter	efficiency	and	use	(Table	5.7).	Because	the	

highest	rated	filters	(MERV	14,	16)	achieved	only	slightly	higher	performance	than	lower	rated	

filters	(e.g.,	MERV	12;	Azimi	et	al.	2016),	less	expensive	intermediate-rated	filters	could	still	gain	

substantial	health	benefits.	Filter	costs	fall	on	school	districts,	homeowners,	landlords,	and	

tenants,	many	of	whom	may	be	sensitive	to	costs.	We	also	recognize	that	filter	change-out	may	

be	less	frequent	than	recommended,	that	high	efficiency	filters	require	regular	replacement,	

that	some	HVAC	systems	operate	without	any	filters,	and	that	costs	will	vary	depending	on	

HVAC	configurations.		

	

Filtration	costs	will	vary	by	geographical	area	due	to	differences	in	the	price	of	electricity,	the	

baseline	duty	cycle	of	the	HVAC	systems,	and	building	configurations	and	parameters	(e.g.,	

ACR).	For	example,	Detroit-area	homes	at	baseline	(no	filter)	have	a	duty	cycle	of	0.1	(air	

conditioning	is	atypical);	increasing	the	duty	cycle	to	0.2	imposes	a	marginal	cost	of	$71	-	103	

per	year	(Table	5.7).	In	comparison,	in	Texas	homes,	the	baseline	duty	cycle	is	higher	(0.2)	due	

to	heavy	air	conditioning	use	(Cetin	and	Novoselac,	2015)	and	the	electricity	cost	is	lower	($0.11	

per	kWh;	UEIA,	2017b),	thus	the	marginal	cost	of	filters	(for	the	same	duty	cycle	as	in	the	study	

area)	is	only	$9	-32	per	year,	essentially	the	cost	increment	of	higher	efficiency	filter	alone.	

Marginal	costs	can	be	higher	in	states	like	California,	where	baseline	duty	cycles	are	likely	low	

(fewer	heating	and	cooling	days;	EIA,	2017a)	and	electricity	cost	is	higher	($0.19	per	kWh),	and	
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moving	from	a	0.05	duty	cycle	to	0.20	incurs	marginal	costs	of	$132	–	165	per	year.	Still,	in	

homes	with	children	with	asthma,	filtration	costs	are	modest	relative	to	asthma-related	costs,	

e.g.,	emergency	department	visits,	lost	wages	from	missing	work	to	care	for	a	sick	child,	and	

even	inhaler	and	medicine	costs	(Barnett	and	Nurmagambetov,	2011).		

	

We	exclude	the	potential	energy	penalty	caused	by	increased	pressure	drop	across	the	filters.	

Generally,	high	efficiency	filters	require	only	small	increases	in	fan	power	(5	to	13%)	depending	

on	the	system	and	climate	(Stephens	et	al.	2010;	Zaatari	et	al.	2014).	In	California,	the	energy	

penalty	of	moving	from	MERV	5	to	MERV	10-13	filters	has	been	shown	to	be	below	5%,	and	

penalties	are	most	sensitive	to	cooling	cycles	(Walker	et	al.	2013).	Cooling	cycles	have	less	

relevance	to	study	area	homes	since	few	have	central	air	conditioning	(Du	et	al.	2011;	US	

Census	Bureau,	2013).	Thus,	only	small	energy	penalties	are	expected	for	homes	in	the	study	

area.	

	

Cost-effectiveness	determinations	depend	on	the	benefits	included.	We	modeled	only	

reductions	in	PM2.5	from	ambient	sources	and	evaluated	only	confirmed	PM2.5-associated	

health	impacts	on	children.	Another	significant	impact	of	asthma	is	increased	school	

absenteeism,	which	causes	learning	and	cost	impacts	beyond	those	estimated	here.	School	

absences	will	result	from	a	fraction	of	asthma	symptom-days.	Unfortunately,	this	fraction	

cannot	be	estimated	from	the	literature.	Filter	upgrades	in	Detroit	schools	are	estimated	to	

reduce	asthma	symptom	days	by	17,000	to	30,000	days	per	year	at	a	total	cost	of	$40	to	$63	

per	classroom	per	year.	With	20	students	in	a	classroom,	filter	upgrades	would	cost	a	total	of	
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$270,000	to	$430,000	per	year,	costs	which	are	matched	by	the	monetized	value	of	2,800	to	

4,400	asthma-related	absences	a	year	(2-4	absences	per	10	students	with	asthma	per	year),	

based	on	a	value	of	$98	per	school	absence	(US	EPA,	2014b).	This	analysis	suggests	that	filters	

would	be	cost-effective	if	roughly	one	in	six	asthma	symptom	days	led	to	a	school	absence.		

	

Filters	also	reduce	PM	generated	from	indoor	sources,	e.g.,	resuspended	dust,	cooking,	

fireplaces,	cigarettes,	bacteria,	viruses,	pet	dander,	and	allergens,	several	of	which	are	

important	environmental	triggers	of	asthma	(Brown	et	al.	2014).	Increased	ventilation	rates	in	

schools,	which	would	accompany	increased	filtration,	can	reduce	illness-related	absences	

among	school	children	in	California	(Mendell	et	al.	2013)	and	improve	student	academic	

performance	(Haverinen-Shaughnessy	et	al.	2011;	Shaughnessy	et	al.	2006;	Twardella	et	al.	

2012).	Adults	are	susceptible	to	a	number	of	severe	health	outcomes	associated	with	PM2.5	

exposures,	e.g.,	hospitalizations	and	premature	mortality,	that	also	have	large	monetized	

values	(US	EPA,	2009;	Chapter	3	Table	3.2),	and	filtration	has	been	shown	to	be	cost-effective	in	

office	buildings,	driven	largely	by	reductions	in	PM-related	mortality	among	adults	(Bekö	et	al.	

2008;	Montgomery	et	al.	2015).	Similar	findings	are	likely	for	homes	(Fisk	et	al.	2002).	Thus,	the	

true	health	benefits	of	filtration	may	far	exceed	estimates	presented	here.		

	

Limitations	

Indoor	concentrations	predicted	using	steady-state	“box”	models	require	a	number	of	

assumptions.	The	analysis	simplifies	the	spatial	and	temporal	variability	found	in	buildings,	

HVAC	operating	parameters,	time	and	weather	dependence	of	infiltration	and	ACRs,	and	
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particle	composition	and	size	(Breen	et	al.	2014;	Hodas	et	al.	2012;	Isaacs	et	al.	2013;	Stephens,	

2015).	Not	all	sources	of	variability	in	environmental	and	building	conditions	could	be	

accounted	for	in	the	Monte	Carlo	analysis,	e.g.,	seasonal	data	for	schools	are	not	available.	

Baseline	scenarios	assume	MERV	5	filters;	many	homes	and	schools	may	have	more	efficient	

filters,	though	few	appear	to	use	high	performance	filters.	In	homes,	we	assume	forced	air	

systems	and	stand-alone	filters	are	used	20	min	per	day	and	continuously,	respectively.	In	

reality,	few	forced	air	systems	allow	cycling	or	reduced	fan	speed	when	operated	in	“fan”	

mode.	As	discussed	earlier,	stand-alone	filter	use	patterns	can	vary	substantially	from	our	

assumption	for	comfort,	cost,	noise,	or	other	reasons	(Batterman	et	al.	2013).	

	

Health	benefits	are	estimated	using	HIA	approaches	developed	for	ambient	air	quality.	Our	

exposure	metric,	Ceq,	which	uses	average	time-activity	data	to	account	for	indoor	and	outdoor	

exposures	(US	EPA,	2011),	reflects	that	outdoor	concentrations	used	in	exposures	in	

epidemiological	studies	are	proxies	for	time-weighted	exposures	to	indoor	and	outdoor	

concentrations.	Other	benefits	studies	have	addressed	the	challenge	of	estimating	health	

impacts	attributable	to	indoor	exposures	using	CR	relationships	derived	from	studies	of	outdoor	

concentrations,	and	three	approaches	have	been	used	(reviewed	in	Zhao	et	al.	2015).	First,	if	CR	

relationships	are	linear	for	the	expected	range	of	PM2.5	reductions,	then	concentration	

reductions	from	filters	are	assumed	to	lead	to	proportional	changes	in	risk	(Bekö	et	al.	2008).	

This	approach	could	lead	to	biased	results	since	the	CR	relationships	for	air	pollutants	are	

typically	non-linear	(though	they	are	likely	near-linear	in	the	range	of	exposures	considered;	

Fann	et	al.	2012).	A	second	approach	adjusts	the	CR	coefficient	by	an	I/O	ratio	such	that	CRindoor	
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=	CR	/	Rm	to	account	for	smaller	changes	in	indoor	concentrations	as	a	result	of	changes	to	

outdoor	concentrations	(MacIntosh	et	al.	2010;	Zhao	et	al.	2015).	A	third	and	likely	most	

appropriate	approach	is	to	estimate	the	total	intake	of	PM2.5	from	exposures	indoors	and	

outdoors	and	use	a	dose-response	(DR)	coefficient	derived	from	the	CR	relationship	(Fisk	and	

Chan,	2017).	Estimating	the	intake	of	PM2.5	under	different	filter	scenarios	would	be	similar	to	

the	Ceq	method	used	in	this	study	but	would	require	additional	information	in	breathing	rates	in	

different	microenvironments,	e.g.,	homes,	schools,	and	outdoors.		

	

There	are	other	sources	of	uncertainty	that	should	be	considered	when	interpreting	the	results	

of	this	study.	Indoor	exposures	are	based	on	outdoor	concentrations	averaged	across	monitors,	

with	some	adjustment	for	“near-road”	schools	to	account	for	increased	exposures	to	mobile	

source	emissions	of	PM2.5.	There	may	be	considerable	spatial	variability	in	PM2.5	exposures	that	

is	not	captured	using	this	method.	For	example,	we	are	unable	to	account	for	the	increased	

exposures	associated	with	buses	idling	near	schools	(Kinsey	et	al.	2007;	Ryan	et	al.	2013).	

Additionally,	the	quantitative	health	impact	assessment	methods	require	additional	

assumptions,	e.g.,	that	the	CR	coefficients	drawn	from	studies	elsewhere	are	applicable	to	our	

study	population;	that	there	is	no	threshold	below	which	PM2.5	exposures	do	not	cause	adverse	

health	impacts;	and,	that	baseline	health	rates	at	coarse	spatial	resolutions	(e.g.,	ZIP	codes,	

county	level)	are	applicable	to	individual	homes	and	schools.	Even	with	these	uncertainties,	the	

quantitative	HIA	methods	presented	here	offer	an	estimate	of	how	beneficial	filters	in	schools	

and	homes	might	be.	Our	results	suggest	any	increase	in	filter	use	is	likely	to	result	in	health	

benefits	to	children	living	and	attending	school	in	and	near	Detroit.	
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Conclusions	

Here	we	have	combined	ambient	monitoring	data,	indoor	air	quality	modeling,	and	quantitative	

HIA	techniques	to	estimate	the	asthma-related	benefits	for	schoolchildren	from	installing	

efficient	filters	in	schools	and	homes.	Reductions	in	indoor	concentrations	due	to	filter	use	

depend	on	building	characteristics,	filter	efficiency,	and	HVAC	or	stand-alone	filter	unit	run	

time.	The	results	suggest	using	more	efficient	filters	can	be	an	effective	strategy	for	improving	

asthma-related	health	outcomes	for	Detroit-area	children,	particularly	when	used	in	schools.	

Although	the	HIA	methods	used	here	rely	on	area-specific	data,	findings	appear	generalizable	to	

schools	without	existing	filter	programs	or	with	filter	programs	that	meet	only	the	minimum	

recommendations	for	filtration.	The	costs	of	using	enhanced	filters	in	schools	are	low	(less	than	

$5	per	student	per	year).	Although	the	total	benefits	of	filters	in	homes	exceed	those	in	schools,	

the	increased	cost	of	filters	in	some	homes,	particularly	those	without	forced-air	systems,	may	

be	prohibitive.	Strategies	to	reduce	the	asthma-related	burden	of	ambient	air	pollution	should	

target	schools	to	reduce	exposures	for	a	large	number	of	children	and	include	outreach	efforts	

to	encourage	parents	and	other	guardians	to	consider	filters	to	reduced	exposures	as	homes.		
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Table	5.1.	Parameters	used	in	school	and	home	models.	
Parameter	 Notation	 Unit	 Mean	 SD1	 Min2	 Max2	 Dist.	 Source	

Classroom	recirculation	rate	 Qr	 h-1	 3.00	 	 2.00	 4.00	 T	 Batterman	et	al.	2017	

Classroom	ACR	 	 h-1	 1.95	 	 0.10	 4.33	 T	 Batterman	et	al.	2017	

Classroom	infiltration	rate	 Qin	 h-1	 0.21	 	 0.01	 0.54	 T	 Batterman	et	al.	2017	

Classroom	deposition	rate	 kdep,s	 h-1	 0.10	 	 0.04	 0.15	 T	 Riley	et	al.	2002	

Classroom	penetration	 Ps	 --	 0.72	 	 0.39	 0.72	 T	 Riley	et	al.	2002	

Whole	house	ACR	(Sp)	 	 h-1	 0.57	 0.55	
0.1	
	 6.00	 L	 Du	et	al.	2011	

Whole	house	ACR	(Su)	 	 h-1	 0.78	 1.03	
0.1	 6.00	

L	 Du	et	al.	2011	

Whole	house	ACR	(Fa)	 	 h-1	 0.78	 0.63	
0.1	 6.00	

L	 Du	et	al.	2011	

Whole	house	ACR	(Wi)	 	 h-1	 0.88	 0.63	
0.1	 6.00	

L	 Du	et	al.	2011	

Whole	house	ACR	(Avg)	 	 h-1	 0.73	 0.76	
0.1	 6.00	

L	 Du	et	al.	2011	

Bedroom	ACR	(Sp)	 	 h-1	 1.25	 0.87	
0.1	 6.00	

L	 Du	et	al.	2011	

Bedroom	ACR	(Su)	 	 h-1	 2.12	 2.03	
0.1	 6.00	

L	 Du	et	al.	2011	

Bedroom	ACR	(Fa)	 	 h-1	 1.60	 1.39	
0.1	 6.00	

L	 Du	et	al.	2011	

Bedroom	ACR	(Wi)	 	 h-1	 1.65	 1.22	
0.1	 6.00	

L	 Du	et	al.	2011	

Bedroom	ACR	(Avg)	 	 h-1	 1.66	 1.50	
0.1	 6.00	

L	 Du	et	al.	2011	

House	deposition	rate	 kdep,h	 h-1	 0.11	 	 0.05	 0.17	 T	 Riley	et	al.	2002	

House	penetration	 Ph	 --	 0.80	 	 0.25	 1.00	 T	 Riley	et	al.	2002	

Ratio	of	flows,	h	to	b	(Sp)	 αh,b	 --	 0.54	 0.17	
0.00	 1.00	

L	 Du	et	al.	2011	

Ratio	of	flows,	h	to	b	(Su)	
αh,b	 --	 0.53	 0.20	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	h	to	b	(Fa)	
αh,b	 --	 0.58	 0.20	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	h	to	b	(Wi)	
αh,b	 --	 0.54	 0.18	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	h	to	b	(Avg)	
αh,b	 --	 0.55	 0.18	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	b	to	h	(Sp)	 αb,h	 --	 0.25	 0.17	
0.00	 1.00	

L	 Du	et	al.	2011	

Ratio	of	flows,	b	to	h	(Su)	
αb,h	 --	 0.31	 0.26	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	b	to	h	(Fa)	
αb,h	 --	 0.24	 0.18	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	b	to	h	(Wi)	
αb,h	 --	 0.24	 0.15	

0.00	 1.00	
L	 Du	et	al.	2011	

Ratio	of	flows,	b	to	h	(Avg)	
αb,h	 --	 0.26	 0.20	

0.00	 1.00	
L	 Du	et	al.	2011	

MERV	5	filter	efficiency	 ε	 --	 0.014	 	 0.010	 0.192	 T	 Azimi	et	al.	2014	

MERV	8filter	efficiency	 ε	 --	 0.271	 	 0.186	 0.384	 T	 Azimi	et	al.	2014	

MERV	12	filter	efficiency	 ε	 --	 0.664	 	 0.611	 0.732	 T	 Azimi	et	al.	2014	

MERV	14	filter	efficiency	 ε	 --	 0.714	 	 0.614	 0.831	 T	 Azimi	et	al.	2014	

HEPA	filter	efficiency	 ε	 --	 0.997	 	 0.995	 0.999	 T	 Azimi	et	al.	2014	
1	Standard	deviation	for	lognormally-distributed	input	data	
2	For	lognormally-distributed	variables,	minimum	and	maximum	values	represent	truncated	limits.	
Abbreviations:	ACR:	air	change	rate;	Avg:	yearly	average;	b:	bedrooms;	Dist:	distribution	used	in	the	Monte	Carlo	
analysis;	Fa:	Fall;	h:	whole	house;	HEPA:	High	efficiency	particle	arrestance;	L:	lognormal;	MERV:	Minimum	
efficiency	reporting	value;	Sp:	Spring;	Su:	Summer;	T:	triangle;	Wi:	Winter	
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Table	5.2.	Average	volume-normalized	inter-zonal	flows	(h-1)	for	the	three-compartment	model.	
Concentrations	are	volume-normalized	based	on	the	receiving	(“to”)	compartment.	For	each	
compartment,	the	sum	of	flows	in	is	equal	to	the	sum	of	flows	out.	
	 “From”	compartment	
“To”	compartment	 Outside	(o)	 Bedroom	(i)	 Living	room	(k)	 Other	rooms	(j)	
Outside	(o)	 —	 1.33	 0.20	 0.33	
Bedroom	(i)	 0.75	 —	 0.23	 0.68	
Living	room	(k)	 0.45	 0.10	 —	 0.18	
Other	rooms	(j)	 0.66	 0.23	 0.30	 —	
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Table	5.3.	Parameters	used	to	estimate	the	marginal	costs	of	filter	in	homes	and	schools.	
Parameter	 Unit	 Value	 Source/Notes	
Electricity		 $/kWh	 0.1508	 Michigan	Public	Service	Commission,	2017	
MERV	5	filter		 $/filter	 2.50	 Filter	suppliers	
MERV	8	filter		 $/filter	 4.65	 Filter	suppliers	
MERV	12/14	filter		 $/filter	 10.56	 Filter	suppliers	

HEPA	filter	(HPA	100)	
$	per	
year	 115.00	 Honeywell	(1	HEPA	and	4	pre-filters	per	year)	

HEPA	filter	(HPA	300)	
$	per	
year	 160.00	 Honeywell	(3	HEPA	and	4	pre-filters	per	year)	

Honeywell	HPA	1001		 $/unit	 160.00	 Honeywell;	Annualized	cost	=	$26.80	
Honeywell	HPA	3001		 $/unit	 300.00	 Honeywell;	Annualized	cost	=	$50.20	
Classroom	UV	motor	consumption	 W	 180	 Trane	UV	Size	100	(1000	CFM	Nominal)	

Forced-air	blower	motor	consumption	 W	 539	 Century	1/3	HP	Blower	Motor	

Honeywell	HPA	100	consumption	 W	 52	 US	EPA,	2017	
Honeywell	HPA	300	consumption	 W	 127	 US	EPA,	2017	
School	baseline	duty	cycle	 --	 0.07	 Assumes	20	min/h,	10	h/day,	177	d	per	year	

Furnace	baseline	duty	cycle2	 --	 0.1	
Cetin	and	Novoselac,	2015	
Thornburg	et	al.	2004	

SA	baseline	duty	cycle	 --	 0	 Assumes	no	homes	have	stand-alone	filters	
1	Annualized	cost	assumes	an	8	year	lifecycle	and	7%	discount	rate	
2	Studies	estimate	a	median	duty	cycle	of	roughly	20%	for	homes	in	Austin,	Texas	using	central	heating	and	air	
conditioning	(Cetin	and	Novoselac,	2015),	21%	for	homes	in	Tampa,	Florida,	and	6%	for	homes	in	North	Carolina	
(Thornburg	et	al.	2004).	For	homes	in	Detroit,	we	assume	a	baseline	duty	cycle	of	0.1,	half	that	of	Texas	and	Florida	
homes,	since	few	homes	in	Detroit	have	central	air	conditioning	and	therefore	do	not	run	their	systems	during	the	
summer.		
	 	



	

269	

Table	5.4.	Average	(standard	deviation)	I/O	ratios	by	season	and	filter	rating	for	classrooms,	
homes	with	forced-air	systems,	and	bedrooms,	living	rooms,	and	other	rooms	in	the	three-
compartment	model.1		

	 Classrooms	 Homes	with	forced-air	system	 Bedrooms	 Living	Rooms	 Other	rooms	
	 Filter	rating	
	 5	 8	 12	 14	 5	 8	 12	 14	 NA	 HEPA	 NA	 HEPA	 NA	 HEPA	

Sp	 0.86	
(0.09)	

0.47	
(0.1)	

0.17	
(0.04)	

0.15	
(0.04)	

0.54	
(0.16)	

0.33	
(0.15)	

0.22	
(0.12)	

0.21	
(0.12)	

0.55	
(0.16)	

0.08	
(0.05)	

0.51	
(0.16)	

0.05	
(0.04)	

0.55	
(0.15)	

0.38	
(0.12)	

Su	 0.86	
(0.09)	

0.47	
(0.11)	

0.17	
(0.04)	

0.15	
(0.04)	

0.55	
(0.17)	

0.36	
(0.17)	

0.25	
(0.14)	

0.24	
(0.14)	

0.58	
(0.17)	

0.1	
(0.07)	

0.53	
(0.17)	

0.06	
(0.05)	

0.57	
(0.16)	

0.38	
(0.14)	

Fa	 0.86	
(0.09)	

0.46	
(0.1)	

0.17	
(0.04)	

0.15	
(0.04)	

0.58	
(0.16)	

0.39	
(0.15)	

0.27	
(0.13)	

0.26	
(0.13)	

0.57	
(0.16)	

0.09	
(0.06)	

0.55	
(0.16)	

0.06	
(0.05)	

0.57	
(0.16)	

0.39	
(0.13)	

Wi	 0.86	
(0.10)	

0.46	
(0.11)	

0.17	
(0.05)	

0.15	
(0.04)	

0.60	
(0.16)	

0.42	
(0.15)	

0.30	
(0.13)	

0.29	
(0.13)	

0.59	
(0.16)	

0.10	
(0.06)	

0.58	
(0.16)	

0.07	
(0.05)	

0.60	
(0.16)	

0.41	
(0.13)	

Avg	 0.86	
(0.09)	

0.46	
(0.11)	

0.17	
(0.04)	

0.15	
(0.04)	

0.57	
(0.16)	

0.38	
(0.16)	

0.26	
(0.13)	

0.25	
(0.13)	

0.57	
(0.16)	

0.09	
(0.06)	

0.54	
(0.16)	

0.06	
(0.05)	

0.57	
(0.16)	

0.39	
(0.13)	

1	Assumes	UV	runs	continuously	while	children	are	in	classrooms	(7	h	day-1);	forced	air	systems	run	20	min	h-1;	and	
stand-alone-filters	run	continuously	when	children	are	home	(14.4	h	day-1).	
Abbreviations:	Avg:	average;	HEPA:	High	efficiency	particle	arrestance;	Fa:	fall;	NA:	no	filter	used;	Sp:	spring;	Su:	
summer;	Wi:	winter		
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Table	5.5.	Current	(baseline)	asthma-related	impacts	for	school-aged	children	in	the	study	area.	
Includes	total	impacts	and	impacts	attributable	to	PM2.5	exposures	during	the	school	year	
(September	1	to	June	15)	and	calendar	year.	Results	rounded	to	2	significant	figures;	95%	CI	in	
parentheses.1	

	

Estimated	
Incidence	
(per	year)	

Impacts	attributable	to	
PM2.5	exposures

2,3	

(per	school	year)	

Impacts	attributable	to	
PM2.5	exposures

3	
(per	calendar	year)	

Hospitalization	(6-18)	 480	 8	(2–12)	 17	(4–24)	
Emergency	department	visits	(6-18)	 5300	 150	(39–250)	 300	(79–510)	
Exacerbation	(cough,	6-14)	 1,400,000	 83,000	(0–160,000)	 170,000	(0–330,000)	
Exacerbation	(wheeze,	6-14)	 860,000	 6,600	(1,100–120,00)	 14,000	(2,400–24,000)	
Exacerbation	(shortness	of	breath,	6-14)	 820,000	 8,400	(0–17,000)	 17,000	(0–35,000)	
DALYS	(years)	 3,400	 110	(1–210)	 220	(3–430)	
Monetized	Impacts	(2010	$million)	 190	 5.8	(0.1–11.1)	 12.2	(0.2–23.1)	
Attributable	fraction	(%)4	 	 3.1	 6.5	

1	95%	confidence	limits	are	left-truncated	at	0	
2	Considers	only	177	days	during	the	school	year	
3	Assumes	UVs	with	MERV	5	filters	run	continuously	while	children	are	in	classrooms,	homes	with	forced	air	
systems	have	MERV	5	filters	and	run	20	min/hour,	and	homes	without	forced	air	systems	do	not	use	stand-alone-
filters	
4	Percent	of	total	DALYs	due	to	DALYs	attributable	to	indoor	PM2.5	exposures	
	



	

	

Table	5.6.	Asthma-related	health	benefits	per	year	among	children	from	replacing	MERV	5	filters	with	more	efficient	filters	in	schools	
or	homes.	Health	benefits	are	estimated	based	on	the	change	in	“equivalent	exposure	concentration”	metric	(Ceq)	and	presented	as	
the	number	of	avoided	health	outcomes	per	year.	95%	CI	for	health	impact	estimates	in	parentheses.	

	
Avoided	impacts	due	to	
filters	in	all	schools	

Avoided	impacts	due	to	
filters	at	near-road	schools	

Avoided	impacts	due	to	
filters	in	homes1	

	 MERV	Rating		
Outcome	(cases)	 8	 12	 14	 8	 12	 14	 8	 12	 14	

Asthma	hospitalization		 1	
(0–2)	

2	
(1–3)	

3	
(1–4)	

0	
(0–1)	

1	
(0–1)	

1	
(0–1)	

2	
(0–3)	

3	
(1–4)	

3	
(1–4)	

Asthma	ED	visit		 25	
(7–41)	

43	
(11–70)	

45	
(12–75)	

7	
(2–11)	

12	
(3–19)	

12	
(3–20)	

33	
(9–55)	

48	
(13–78)	

49	
(13–81)	

Cough		 14,000	
(0–25,000)	

23,000	
(0–43,000)	

25,000	
(0–45,000)	

2,900	
(0–5,000)	

5,000	
(0–8,900)	

5,200	
(0–9,300)	

19,000	
(0–34,000)	

27,000	
(0–48,000)	

27,000	
(0–49,000)	

Wheeze		 1,200	
(200–2,000)	

1,900	
(330–3,400)	

2,100	
(350–3,600)	

240	
(42–430)	

420	
(73–740)	

440	
(75–770)	

1,600	
(270–2,800)	

2,200	
(380–3,900)	

2,300	
(390–4,000)	

Shortness	of	breath	 1,500	
(0–2,900)	

2,400	
(0–4,900)	

2,600	
(0–5,200)	

310	
(0–600)	

530	
(0–1,100)	

550	
(0–1,100)	

2,000	
(0–3,900)	

2,800	
(0–5,600)	

2,900	
(0–5,800)	

DALYs	(years)	 18	
(0–33)	

31	
(0–56)	

33	
(0–59)	

4	
(0–7)	

7	
(0–12)	

7	
(0–12)	

24	
(0–44)	

35	
(0–64)	

36	
(0–65)	

Monetized	benefit	($)2	 1.0	
(0–1.8)	

1.7	
(0–3)	

1.8	
(0–3.2)	

0.2	
(0–0.4)	

0.4	
(0–0.6)	

0.4	
(0–0.7)	

1.3	
(0–2.4)	

1.9	
(0–3.4)	

2.0	
(0–3.5)	

Reduction	in	DALYs	(%)3	 8	 13	 14	 10	 16	 17	 11	 16	 16	
1	For	homes,	we	assume	that	houses	without	forced-air	systems	use	stand-alone	HEPA	filters	in	children’s	bedrooms	and	living	rooms.	
2	Reported	in	millions	
3	Calculated	as	the	reduction	in	DALYs	compared	to	baseline	impacts.	For	schools,	the	percent	reduction	is	scaled	by	0.48	to	reflect	that	students	are	only	in	
school	177	days	per	year.	
Abbreviations:	DALY:	disability-adjusted	life	year;	ED:	emergency	department;	MERV:	minimum	efficiency	reporting	value	
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Table	5.7.	Marginal	costs	($	per	year	per	building)	of	more	efficient	filters	in	schools	and	homes	
in	the	study	area.	Costs	include	electricity	(from	longer	duty	cycles)	and	filter	replacement	cost.	
For	stand-alone	filters,	marginal	costs	include	the	purchase	of	the	stand-alone	units	in	the	“first	
year”	total	cost.	Estimated	costs	for	scenarios	in	Table	5.6	are	emphasized.	
	 Marginal	cost	($/building-year)	

	 Unit	ventilators	 Forced-air	systems	 Stand-alone	filters	
Duty	
Cycle	 MERV	5	 MERV	8	

MERV	
12/14	 MERV	5	 MERV	8	

MERV	
12/14	 HPA	100	 HPA	300	 Total	

0.1	 7	 16	 39	 0	 9	 32	 149	 227	 376	
0.2	 31	 40	 63	 71	 80	 103	 156	 244	 399	
0.3	 55	 63	 87	 142	 151	 175	 162	 261	 423	
0.4	 78	 87	 111	 214	 222	 246	 169	 277	 447	

0.5	 102	 111	 134	 285	 293	 317	 176	 294	 470	

0.6	 126	 135	 158	 356	 364	 388	 183	 311	 494	
0.7	 150	 158	 182	 427	 436	 459	 190	 328	 518	

0.8	 174	 182	 206	 498	 507	 530	 197	 344	 541	

0.9	 197	 206	 230	 569	 578	 602	 204	 361	 565	
1	 221	 230	 253	 641	 649	 673	 210	 378	 588	
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Figure	5.1.	Depiction	of	mass	balance	models	for	(A)	single	compartment	model	for	houses	with	
forced-air	systems,	and	(B)	three-compartment	model	for	houses	without	forced-air	systems	
using	stand-alone	filter	units	in	child’s	bedroom	and	living	room.	PM2.5	mass	flows	are	depicted	
by	arrows	and	equations.		
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Figure	5.2.	Boxplots	showing	I/O	ratios	for	(A)	classrooms	with	unit	ventilators,	(B)	homes	with	
forced-air	systems,	and	(C)	homes	with	stand-alone	filter	units	in	bedrooms	and	living	rooms.	
Dots	represent	mean	values.	5th,	25th,	50th	(bar),	75th,	and	95th	percentiles	shown.		
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Figure	5.3.	Sensitivity	analysis	of	duty	cycle	on	I/O	ratios	for	PM2.5	in	(A)	classrooms,	(B)	homes	
with	forced-air	systems,	and	(C)	bedrooms,	living	rooms,	and	other	rooms	in	houses	when	using	
stand-alone	HEPA	filters.	Error	bars	show	standard	deviation	of	the	mean	estimates.	
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Figure	5.4.	Tornado	plots	showing	the	change	in	mean	indoor	concentrations	of	PM2.5	by	IAQ	
model	inputs	for	(A)	classrooms	using	MERV	8	filters,	(B)	homes	using	MERV	8	filters,	and	(C)	
homes	using	stand-alone	units	with	HEPA	filters.	

	

	

	
Figure	abbreviations:	ACR:	air	change	rate;	B:	bedroom;	Fa:	Fall;	HEPA:	High	Efficiency	Particle	Arrestance;	H:	whole	house;	LR:	living	room;	
MERV:	minimum	efficiency	reporting	value;	Su:	Summer		
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Appendix	A5	

SUPPLEMENTAL	MATERIALS	FOR	CHAPTER	5	

	

Supplemental	Results	

The	following	describes	the	results	of	the	supplemental	benefits	analysis	assuming	MERV	8	

filters	are	used	in	all	classrooms	in	the	study	area.	

	

Benefits	of	filters	in	school	when	using	a	MERV	8	in	classrooms	at	baseline	

The	primary	analysis	assumes	classroom	UVs	use	an	inefficient	MERV	5	filter	at	baseline.	

However,	US	EPA’s	Tools	for	Schools	program	recommends	classrooms	use	a	MERV	8	filter	at	

minimum	(US	EPA	2012b),	and	many	classrooms	in	the	area	may	follow	this	recommendation.	

Table	A5.7	summarizes	the	school-year	and	annual	health	impacts	attributable	to	indoor	PM2.5	

exposures	to	outdoor	pollutants,	assuming	classroom	UVs	use	MERV	8	filters	at	baseline	(all	

other	assumptions	are	the	same	as	for	the	analysis	presented	in	Table	5.6).	Attributable	

impacts	for	the	school	year	(89	DALYs	and	$4.9	million	per	year)	and	the	full	year	(210	DALYs	

and	$11.2	million	per	year)	are	8%	lower	than	the	impacts	estimated	when	assuming	

classrooms	use	MERV	5	filters	at	baseline	(Table	A5.7;	Table	5.6).	This	modest	decrease	in	

attributable	impacts	reflects	that	MERV	8	filters	are	moderately	efficient	(ε	=	0.27,	Table	5.1)	
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compared	to	MERV	5	filters	(ε	=	0.014,	Table	5.1)	and	that	children	only	spend	a	portion	of	their	

time	in	school	(less	than	8	hours	per	day,	177	days	per	year).	The	benefits	of	using	filters	in	

schools	and	homes	are	lower	when	assuming	classrooms	have	MERV	8	filters	at	baseline.	For	

schools,	increasing	from	a	MERV	8	to	a	MERV	12	or	MERV	14	filters	reduces	annual	health	

impacts	by	6	and	7%,	respectively	(Table	A5.8).	This	is	lower	than	the	estimated	13	and	14%	

reductions	when	assuming	MERV	5	filters	at	baseline	(Table	5.6).	The	marginal	cost	of	updating	

from	a	MERV	8	to	a	MERV	12	filter	in	schools	($55	per	classroom	per	year	or	$27	per	student	

with	asthma	per	year;	Table	A5.9)	is	13%	lower	than	the	marginal	cost	of	increasing	from	a	

MERV	5	to	MERV	12	filter;	electricity	costs	remain	the	same,	but	the	difference	in	cost	is	lower.	

The	monetized	benefits	of	increasing	from	a	MERV	8	to	a	MERV	12	filter	in	schools	($64	per	

student	with	asthma	per	year;	Table	A5.8)	are	more	than	twice	the	marginal	costs	($27	per	

student	with	asthma	per	year).	

	

For	homes,	upgrading	inefficient	filters	(MERV5)	to	MERV	8,	12,	or	14	filters	(assuming	schools	

have	MERV	8	filters)	reduces	annual	health	impacts	by	4,	9,	and	9%,	respectively	(Table	A5.8).	

The	marginal	costs	of	filters	in	homes	remains	unchanged	($142	to	$175	per	year	for	homes	

with	forced	air	systems	and	$494	for	homes	using	stand-alone	filters;	Table	5.7)	but	the	

benefits	per	child	with	asthma	are	lower	($109	to	$164	per	child	with	asthma	per	year.	Benefits	

of	filters	in	homes	are	impacted	by	the	filter	type	used	in	schools	because	the	Ceq	accounts	for	

total	exposures	throughout	the	day	and	baseline	exposures	in	schools,	which	account	for	32%	

of	the	time-weighted	average	exposure	on	school	days,	are	47%	lower	under	the	MERV	8	

scenario	compared	to	the	MERV	5	case	(Table	5.4).
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Supplemental	Tables	

Table	A5.1.	Summary	of	seasonal	inter-zonal	flows	(h-1)	for	the	three-compartment	model.	
Concentrations	are	volume-normalized	based	on	the	receiving	(“to”)	compartment.	For	each	
compartment,	the	sum	of	flows	in	is	equal	to	the	sum	of	flows	out.	
	 “From”	compartment	
“To”	compartment:	 Outside	(o)	 Bedroom	(i)	 Living	room	(k)	 Other	rooms	(j)	
Spring	 	 	 	 	
Outside	(o)	 —	 1.00	 0.17	 0.26	
Bedroom	(i)	 0.58	 —	 0.17	 0.51	
Living	room	(k)	 0.35	 0.08	 —	 0.14	
Other	rooms	(j)	 0.51	 0.17	 0.23	 —	
	 	 	 	 	
Summer	 	 	 	 	
Outside	(o)	 —	 1.68	 0.14	 0.41	
Bedroom	(i)	 1.00	 —	 0.28	 0.84	
Living	room	(k)	 0.48	 0.10	 —	 0.20	
Other	rooms	(j)	 0.75	 0.34	 0.36	 —	
	 	 	 	 	
Fall	 	 	 	 	
Outside	(o)	 —	 1.27	 0.25	 0.30	
Bedroom	(i)	 0.67	 —	 0.23	 0.70	
Living	room	(k)	 0.47	 0.11	 —	 0.20	
Other	rooms	(j)	 0.68	 0.21	 0.30	 —	
	 	 	 	 	
Winter	 	 	 	 	
Outside	(o)	 —	 1.30	 0.32	 0.38	
Bedroom	(i)	 0.76	 —	 0.22	 0.67	
Living	room	(k)	 0.54	 0.12	 —	 0.22	
Other	rooms	(j)	 0.72	 0.23	 0.32	 —	
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Table	A5.2.	Distribution	of	daily	mean	PM2.5	concentrations	across	all	monitors	and	the	daily	
mean	“background”	and	“local	increment”	concentrations	(µg/m3)	based	on	measurements	
recorded	at	12	area	monitors,	2011-2015.		
PM2.5	Metric	 Period	 Mean	 SD	 25th	 50th	 75th	 95th	 99th	 Max	
Daily	average	(µg/m3)	 School	days	 9.4	 5.5	 0.8	 4.1	 5.5	 7.3	 8.7	 9.1	
	 All	year	 9.8	 5.5	 0.8	 5.6	 8.8	 12.6	 20.2	 26.0	
Background	(µg/m3)	 School	days	 8.2	 5.2	 0.6	 3.4	 4.5	 5.9	 7.3	 7.5	
	 All	year	 8.5	 5.1	 0.6	 4.7	 7.4	 11.0	 18.5	 23.3	
Local	increment	(µg/m3)	 School	days	 4.1	 2.7	 0.5	 1.8	 2.5	 3.3	 3.7	 3.8	
	 All	year	 4.1	 3.1	 0.4	 2.3	 3.4	 4.8	 9.1	 15.3	
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Table	A5.3.	Current	(baseline)	asthma-related	impacts	for	school-aged	children	in	the	study	
area.	Includes	total	impacts	and	impacts	attributable	to	PM2.5	exposures	during	the	school	year	
(September	1	to	June	15)	and	calendar	year	assuming	children	spend	no	time	outdoors.	Impact	
estimates	have	been	rounded	to	2	significant	figures.	95%	CI	for	attributable	impact	estimates	
in	parentheses.1	

	

Estimated	
Incidence	
(per	year)	

Impacts	attributable	to	
PM2.5	exposures

3	

(per	school	year2)	

Impacts	attributable	to	
PM2.5	exposures

3	
(per	calendar	year)	

Hospitalization	(6-18)	 480	 8	(2	–	12)	 17	(4–24)	
Emergency	department	visits	(6-18)	 5300	 150	(39	–	250)	 300	(79–510)	
Exacerbation	(cough,	6-14)	 1,400,000	 83,000	(0	–	160,000)	 170,000	(0–330,000)	
Exacerbation	(wheeze,	6-14)	 860,000	 6,600	(1140	–	12,000)	 14,000	(2,400–25,000)	
Exacerbation	(shortness	of	breath,	6-14)	 820,000	 8,400	(0	–	17,000)	 18,000	(0–35,000)	
DALYS	(years)	 3,400	 108	(1	–	210)	 220	(3–430)	
Monetized	Impacts	(2010	$million)	 190	 5.9	(0.1	–	11.1)	 12.2	(0.2–23.1)	
Attributable	fraction	(%)4	 	 3.2	 6.5	

1	95%	confidence	limits	are	left-truncated	at	0	
2	Considers	only	177	days	during	the	school	year	
3	Assumes	UVs	with	MERV	5	filters	run	continuously	while	children	are	in	classrooms,	homes	with	forced	air	
systems	have	MERV	5	filters	and	run	20	min/hour,	and	homes	without	forced	air	systems	do	not	use	stand-alone-
filters	
4	Percent	of	total	DALYs	due	to	DALYs	attributable	to	indoor	PM2.5	exposures	
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Table	A5.4.	Current	(baseline)	asthma-related	impacts	for	school-aged	children	in	the	study	
area.	Includes	total	impacts	and	impacts	attributable	to	PM2.5	exposures	during	the	school	year	
(September	1	to	June	15)	and	calendar	year	assuming	children	spend	6	h	day-1	outdoors.	Impact	
estimates	have	been	rounded	to	2	significant	figures.	95%	CI	for	attributable	impact	estimates	
in	parentheses.1	

	

Estimated	
Incidence	
(per	year)	

Impacts	attributable	to	
PM2.5	exposures

2,3	

(per	school	year)	

Impacts	attributable	to	
PM2.5	exposures

3	
(per	calendar	year)	

Hospitalization	(6-18)	 480	 8	(2	–	12)	 17	(4–24)	
Emergency	department	visits	(6-18)	 5300	 150	(39	–	250)	 300	(79–510)	
Exacerbation	(cough,	6-14)	 1,400,000	 83,000	(0	–	160,000)	 170,000	(0–330,000)	
Exacerbation	(wheeze,	6-14)	 860,000	 6,600	(1,100	–	12,000)	 14,000	(2,400–24,000)	
Exacerbation	(shortness	of	breath,	6-14)	 820,000	 8,400	(0	–	17,000)	 17,000	(0–35,000)	
DALYS	(years)	 3,400	 108	(1	–	210)	 220	(3–430)	
Monetized	Impacts	(2010	$million)	 190	 5.9	(0.1	–	11.1)	 12.2	(0.2–23.1)	
Attributable	fraction	(%)4	 	 3.2	 6.5	

1	95%	confidence	limits	are	left-truncated	at	0	
2	Considers	only	177	days	during	the	school	year	
3	Assumes	UVs	with	MERV	5	filters	run	continuously	while	children	are	in	classrooms,	homes	with	forced	air	
systems	have	MERV	5	filters	and	run	20	min/hour,	and	homes	without	forced	air	systems	do	not	use	stand-alone-
filters	
4	Percent	of	total	DALYs	due	to	DALYs	attributable	to	indoor	PM2.5	exposures	
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Table	A5.5.	Asthma-related	health	benefits	per	year	among	children	from	replacing	MERV	5	filters	with	more	efficient	filters	in	
schools	or	homes	assuming	children	spend	no	time	outdoors	each	day.	See	Table	5.6	for	additional	details.	

	
Avoided	impacts	due	to	
filters	in	all	schools	

Avoided	impacts	due	to	
filters	at	near-road	schools	

Avoided	impacts	due	to	
filters	in	homes1	

	 MERV	Rating		
Outcome	(cases)	 8	 12	 14	 8	 12	 14	 8	 12	 14	

Asthma	hospitalization		 1	
(0–2)	

3	
(1–4)	

3	
(1–4)	

0	
(0–1)	

1	
(0–1)	

1	
(0–1)	

2	
(1–3)	

3	
(1–4)	

3	
(1–4)	

Asthma	ED	visit		 27	
(7–44)	

47	
(12–77)	

48	
(13–80)	

8	
(2–12)	

13	
(4–22)	

14	
(4–23)	

35	
(9–58)	

50	
(13–82)	

51	
(14–84)	

Cough		 15,000	
(0–26,000)	

26,000	
(0–46,000)	

26,000	
(0–48,000)	

3,200	
(0–5,600)	

5,600	
(0–10,000)	

5,800	
(0–10,000)	

20,000	
(0–35,000)	

28,000	
(0–51,000)	

29,000	
(0–52,000)	

Wheeze		 1,200	
(210–2,200)	

2,100	
(370–3,700)	

2,200	
(380–3,900)	

270	
(47–480)	

460	
(80–820)	

480	
(84–860)	

1,600	
(280–2,900)	

2,300	
(400–4,100)	

2,400	
(410–4,200)	

Shortness	of	breath	 1,500	
(0–3,100)	

2,700	
(0–5,400)	

2,800	
(0–5,500)	

340	
(0–700)	

590	
(0–1,200)	

610	
(0–1,200)	

2,100	
(0–4,100)	

3,000	
(0–5,900)	

3,000	
(0–6,000)	

DALYs	(years)	 19	
(0–35)	

33	
(0–61)	

35	
(0–63)	

4	
(0–7)	

7	
(0–13)	

8	
(0–14)	

26	
(0–47)	

37	
(0–67)	

38	
(0–68)	

Monetized	benefit	($)2	 1	
(0–1.9)	

1.8	
(0–3.3)	

1.9	
(0–3.4)	

0.2	
(0–0.4)	

0.4	
(0–0.7)	

0.4	
(0–0.8)	

1.4	
(0–2.5)	

2	
(0–3.6)	

2	
(0–3.7)	

Reduction	in	DALYs	(%)3	 9	 15	 15	 11	 18	 19	 12	 16	 17	
1	For	homes,	we	assume	that	houses	without	forced-air	systems	use	stand-alone	HEPA	filters	in	children’s	bedrooms	and	living	rooms.	
2	Reported	in	millions	
3	Calculated	as	the	reduction	in	DALYs	compared	to	baseline	impacts.	For	schools,	the	percent	reduction	is	scaled	by	0.48	to	reflect	that	students	are	only	in	
school	177	days	per	year.	
Abbreviations:	DALY:	disability-adjusted	life	year;	ED:	emergency	department;	MERV:	minimum	efficiency	reporting	value	
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Table	A5.6.	Asthma-related	health	benefits	per	year	among	children	from	replacing	MERV	5	filters	with	more	efficient	filters	in	
schools	or	homes	assuming	children	spend	6	h	day-1	outdoors.	See	Table	5.6	for	additional	details.	

	
Avoided	impacts	due	to	
filters	in	all	schools	

Avoided	impacts	due	to	
filters	at	near-road	schools	

Avoided	impacts	due	to	
filters	in	homes1	

	 MERV	Rating		
Outcome	(cases)	 8	 12	 14	 8	 12	 14	 8	 12	 14	

Asthma	hospitalization		 1	
(0–2)	

2	
(1–3)	

2	
(1–3)	

0	
(0–0)	

1	
(0–1)	

1	
(0–1)	

2	
(0–2)	

2	
(1–4)	

2	
(1–4)	

Asthma	ED	visit		 22	
(6–36)	

38	
(10–63)	

40	
(11–66)	

6	
(2–9)	

10	
(3–16)	

10	
(3–16)	

30	
(8–50)	

44	
(12–72)	

45	
(12–74)	

Cough		 12,000	
(0–22,000)	

21,000	
(0–38,000)	

22,000	
(0–40,000)	

2,400	
(0–4,100)	

4,100	
(0–7,200)	

4300	
(0–7500)	

17,000	
(0–30,000)	

24,000	
(0–44,000)	

25,000	
(0–45,000)	

Wheeze		 1,000	
(170–1,700)	

1,800	
(300–3,100)	

1,800	
(320–3,300)	

200	
(35–350)	

340	
(59–600)	

360	
(62–630)	

1,400	
(240–2,500)	

2,000	
(350–3,600)	

2,100	
(360–3,700)	

Shortness	of	breath	 1,200	
(0–2,500)	

2,200	
(0–4,500)	

2300	
(0–4,700)	

250	
(0–500)	

430	
(0–900)	

450	
(0–900)	

1,800	
(0–3,500)	

2,600	
(0–5,100)	

2,600	
(0–5,300)	

DALYs	(years)	 16	
(0–28)	

28	
(0–51)	

29	
(0–53)	

3	
(0–5)	

5	
(0–10)	

6	
(0–10)	

22	
(0–40)	

32	
(0–58)	

33	
(0–60)	

Monetized	benefit	($)2	 0.9	
(0–1.5)	

1.5	
(0–2.7)	

1.6	
(0–2.9)	

0.2	
(0–0.3)	

0.3	
(0–0.5)	

0.3	
(0–0.5)	

1.2	
(0–2.2)	

1.7	
(0–3.1)	

1.8	
(0–3.2)	

Reduction	in	DALYs	(%)3	 7	 12	 13	 8	 13	 14	 10	 14	 15	
1	For	homes,	we	assume	that	houses	without	forced-air	systems	use	stand-alone	HEPA	filters	in	children’s	bedrooms	and	living	rooms.	
2	Reported	in	millions	
3	Calculated	as	the	reduction	in	DALYs	compared	to	baseline	impacts.	For	schools,	the	percent	reduction	is	scaled	by	0.48	to	reflect	that	students	are	only	in	
school	177	days	per	year.	
Abbreviations:	DALY:	disability-adjusted	life	year;	ED:	emergency	department;	MERV:	minimum	efficiency	reporting	value	

	
	
	



	

285	

Table	A5.7.	Current	(baseline)	asthma-related	impacts	for	school-aged	children	in	the	study	
area,	including	total	impacts	and	impacts	attributable	to	PM2.5	exposures	during	the	school	year	
(September	1	to	June	15)	and	calendar	year	assuming	a	MERV	8	filter	in	all	schools	at	baseline.	

	

Estimated	
Incidence	
(per	year)	

Impacts	attributable	to	
PM2.5	exposures

3	

(per	school	year2)	

Impacts	attributable	to	
PM2.5	exposures

3	
(per	calendar	year)	

Hospitalization	(6-18)	 480	 7	(2	–	10)	 15	(4	–	23)	
Emergency	department	visits	(6-18)	 5300	 120	(32	–	210)	 280	(73	–	471)	
Exacerbation	(cough,	6-14)	 1,400,000	 69,000	(0	–	130,000)	 160,000	(0	–	300,000)	
Exacerbation	(wheeze,	6-14)	 860,000	 5,500	(940	–	9,700)	 13,000	(2,200	–	23,000)	
Exacerbation	(shortness	of	breath,	6-14)	 820,000	 6,900	(0	–	14,000)	 16,000	(0	–	32,000)	
DALYS	(years)	 3,400	 89	(1	–	170)	 210	(3	–	400)	
Monetized	Impacts	(2010	$million)	 190	 4.9	(0.1	–	9.3)	 11.2	(0.2	–	21.4)	
Attributable	fraction	(%)4	 	 7	(2	–	10)	 15	(4	–	23)	

1	95%	confidence	limits	are	left-truncated	at	0	
2	Considers	only	177	days	during	the	school	year	
3	Assumes	UVs	with	MERV	8	filters	run	continuously	while	children	are	in	classrooms,	homes	with	forced	air	
systems	have	MERV	5	filters	and	run	20	min/hour,	and	homes	without	forced	air	systems	do	not	use	stand-alone-
filters	
4	Percent	of	total	DALYs	due	to	DALYs	attributable	to	indoor	PM2.5	exposures	
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Table	A5.8.	Asthma-related	health	benefits	per	year	among	children	from	replacing	MERV	8	filters	in	schools	and	MERV	5	filters	in	
homes	with	more	efficient	filters.	See	Table	5.6	for	additional	details.	

	
Avoided	impacts	due	to	
filters	in	all	schools	

Avoided	impacts	due	to	
filters	at	near-road	schools	

Avoided	impacts	due	to	
filters	in	homes1	

	 MERV	Rating		
Outcome	(cases)	 8	 12	 14	 8	 12	 14	 8	 12	 14	

Asthma	hospitalization		 —	 1	
(0–1)	

1	
(0–2)	

—	
0	

(0–0)	
0	

(0–0)	
1	

(0–1)	
1	

(0–2)	
1	

(0–2)	

Asthma	ED	visit		
—	

17	
(5–29)	

20	
(5–33)	

—	
5	

(1–8)	
5	

(1–9)	
10	

(3–16)	
24	

(6–40)	
26	

(7–42)	

Cough		
—	

10,000	
(0–18,000)	

11,000	
(0–20,000)	

—	
2,100	

(0–3,900)	
2,300	

(0–4,200)	
6,000	

(0–10,000)	
14,000	

(0–25,000)	
14,000	

(0–26,000)	

Wheeze		
—	

800	
(130–1,400)	

900	
(160–1,600)	

—	
180	

(30–310)	
190	

(33–340)	
500	

(80–800)	
1,100	

(190–2,000)	
1,200	

(210–2,100)	

Shortness	of	breath	
—	

1,000	
(0–2,000)	

1,100	
(0–2,300)	

—	
220	

(0–400)	
240	

(0–500)	
600	

(0–1,200)	
1,400	

(0–2,800)	
1,500	

(0–3,000)	

DALYs	(years)	
—	

13	
(0–23)	

14	
(0–27)	

—	
3	

(0–5)	
3	

(0–6)	
7	

(0–13)	
18	

(0–32)	
19	

(0–34)	

Monetized	benefit	($)2	
—	

0.7	
(0–1.3)	

0.8	
(0–1.4)	

—	
0.2	

(0–0.3)	
0.2	

(0–0.3)	
0.4	

(0–0.7)	
1	

(0–1.8)	
1	

(0–1.8)	
Reduction	in	DALYs	(%)3	 —	 6	 7	 —	 9	 10	 4	 9	 9	

1	For	homes,	we	assume	that	houses	without	forced-air	systems	use	stand-alone	HEPA	filters	in	children’s	bedrooms	and	living	rooms.	
2	Reported	in	millions	
3	Calculated	as	the	reduction	in	DALYs	compared	to	baseline	impacts.	For	schools,	the	percent	reduction	is	scaled	by	0.48	to	reflect	that	students	are	only	in	
school	177	days	per	year.	
Abbreviations:	DALY:	disability-adjusted	life	year;	ED:	emergency	department;	MERV:	minimum	efficiency	reporting	value	
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Table	A5.9.	Marginal	costs	($	per	building	per	year)	of	increased	filter	use	and	more	efficient	
filters	in	schools	assuming	MERV	8	filters	are	used	at	baseline.	Costs	include	electricity	(from	
longer	duty	cycles)	and	filter	replacement	cost.		

	 Marginal	cost	($/building-year)	

Duty	Cycle	 MERV	8	 MERV	12/14	

0.1	 7	 31	

0.2	 31	 55	
0.3	 55	 78	

0.4	 78	 102	

0.5	 102	 126	

0.6	 126	 150	

0.7	 150	 173	

0.8	 174	 197	

0.9	 197	 221	

1	 221	 245	
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Supplemental	Figures		

Figure	A5.	1.	Sensitivity	analysis	of	duty	cycle	on	I/O	ratios	for	PM2.5	in	“tight”	homes	with	lower	
air	change	rates	and	particle	penetration	factors.	Error	bars	show	standard	deviation	of	the	
mean	estimates	from	the	MC	analysis.	
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Figure	A5.	2.	Tornado	plots	for	MERV	5,	MERV	12,	and	MERV	14	filters	in	schools	and	homes	
with	forced	air	systems.	
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Figure	A5.	2	(continued).	Tornado	plots	for	MERV	5,	MERV	12,	and	MERV	14	filters	in	schools	
and	homes	with	forced	air	systems.	

	

	

	
Figure	abbreviations:	ACR:	air	change	rate;	MERV:	minimum	efficiency	reporting	value		
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Chapter	6	

CONCLUSION	
	

This	dissertation	has	explored	the	use	of	quantitative	health	impact	assessment	(HIA)	methods	

at	the	urban	and	intra-urban	scales	to	quantify	the	burden	of	disease	due	to	ambient	air	

pollutants	and	to	estimate	the	potential	health	benefits	of	strategies	that	reduce	emissions	of	

or	exposure	to	these	air	pollutants.	The	analyses	presented	here	considered	the	magnitude	of	

health	impacts	as	well	as	their	distribution	across	the	study	area	(which	includes	Detroit,	MI	

and	several	adjacent	cities)	and	across	demographic	and	socioeconomic	subgroups.	The	specific	

aims	of	this	dissertation	were:	to	identify	quantitative	health	impact	metrics	that	are	

appropriate	for	studies	meant	to	inform	air	quality	management	decisions	(Specific	Aim	1);	to	

assess	the	public	health	burden	and	health	disparities	attributable	to	current	levels	of	ambient	

air	pollutants	in	the	study	area	using	a	quantitative	impact	assessment	framework	(Specific	Aim	

2);	and	to	evaluate	selected	strategies	for	reducing	air	pollutant	concentrations,	exposures	and	

health	impacts	in	the	study	area	using	quantitative	HIA	methods	(Specific	Aim	3).	These	aims	

were	addressed	in	Chapters	2	through	5.	

	

This	chapter,	the	conclusion	of	this	work,	has	five	sections.	The	next	section	summarizes	the	

main	findings	from	each	specific	aim	in	this	dissertation.	The	remaining	sections	discuss	the	
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tradeoffs	of	selected	air	quality	management	(AQM)	strategies	for	the	study	area;	how	

quantitative	HIA	methods	can	be	used	to	guide	local	decision	making;	how	including	HIA	

methods	in	the	environmental	decision-making	process	can	potentially	lead	state	and	national	

environmental	policy	towards	more	equitable	goals;	barriers	and	challenges	for	local	scale	

assessments,	including	communicating	results	to	decision	makers;	and,	directions	for	future	

studies.	The	chapter	ends	with	overall	conclusions	about	the	work.	

	

Summary	of	main	findings	

The	analysis	in	Chapter	2,	which	addressed	Specific	Aim	1,	compared	health	impact	metrics	

relevant	for	evaluating	air	quality	management	(AQM)	strategies.	These	metrics	included,	for	

example,	the	number	of	attributable	cases,	disability-adjusted	life	years	(DALYs),	monetized	

impacts,	and	functional-unit	based	impacts	(i.e.,	impacts	per	ton	of	pollutant	emitted).	These	

metrics	were	evaluated	against	a	set	of	criteria	that	included	their	comprehensiveness	and	

relevance	to	local	scale	assessments.	The	analysis	indicated	the	need	for	metrics	that	are	

comprehensive	with	respect	to	outcomes	and	the	number	of	people	affected,	and	that	clearly	

communicate	direct	and	indirect	impacts	and	uncertainty.	Further,	metrics	should	use	local	

data	(e.g.,	baseline	rates	from	the	study	population),	incorporate	outcomes	of	high	public	

health	importance,	and	represent	the	spatial	and	temporal	dimensions	of	impacts.	Because	no	

single	metric	met	all	the	specified	criteria,	a	suite	of	metrics	was	recommended,	specifically	

attributable	cases,	disability-adjusted	life	years	(DALYs),	and	monetized	impacts.	The	number	of	

attributable	cases	or	mortality	and	morbidity	provides	decision	makers	with	a	sense	of	how	

many	people	are	impacted	by	a	given	AQM	decision,	and	aggregating	attributable	cases	as	
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DALYs	provides	a	useful	summary	metric	that	considers	the	duration	and	severity	of	air-

pollution	related	health	impacts.	Monetizing	health	impacts	or	benefits	is	also	recommended	

because	many	decision	makers	are	familiar	with	monetized	impacts	and	this	metric	can	be	used	

in	other	policy	evaluations,	e.g.,	cost-effectiveness	or	cost-benefit	analyses.	

	

Chapter	3	addressed	Specific	Aim	2	and	presented	a	burden	of	disease	assessment	for	the	study	

area.	The	analysis	reported	health-related	impacts	for	four	criteria	pollutants—PM2.5,	O3,	SO2	

and	NO2—and	diesel	particulate	matter	using	the	metrics	identified	in	Chapter	2	as	particularly	

relevant	for	AQM	studies	at	the	local	scale,	that	is,	attributable	cases,	DALYs,	and	monetized	

impacts.	The	analysis	was	extended	to	include	inequality	metrics	relevant	for	cumulative	impact	

and	environmental	justice	assessments.	The	results	suggested	that	exposure	to	ambient	

pollutants	continues	to	have	a	substantial	health	burden	on	study	area	residents,	and	that	the	

health	burden	is	driven	by	PM2.5	and	O3	exposures	that	arise	primarily	from	regional	sources.	

While	local	point	and	mobile	sources	of	PM2.5,	NO2,	and	SO2	imposed	lower	health	impacts	

compared	to	regional	sources	of	PM2.5	and	O3,	these	sources	contributed	most	to	the	inequality	

of	the	health	burden	experienced	by	socially	disadvantaged	populations	within	the	study	area	

boundaries.	The	inequality	assessment	found	that	point	source	emissions	disproportionately	

impacted	Hispanic/Latino	residents,	and	that	mobile	source	emissions	disproportionately	

impact	low-income	residents.	Further,	the	inequality	results	in	this	chapter	suggest	that	the	

typical	approach	for	including	air	quality	in	cumulative	impact	studies,	i.e.,	using	exposure	

concentrations	as	a	proxy	for	health	burden,	underestimated	the	inequality	at	the	local	scale	
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and	potentially	missed	important	burdens	that	should	be	included	in	a	cumulative	impact	or	

environmental	justice	studies.	

	

Chapter	4,	the	first	of	two	chapters	to	address	Specific	Aim	3,	investigated	alternative	strategies	

to	reduce	emissions	of	SO2	from	point	sources	in	Wayne	County,	Michigan.	Point	source	

emissions	of	SO2	were	identified	in	Chapter	3	as	having	a	disproportionate	impact	on	

disadvantaged	communities	in	the	study	area.	Because	a	portion	of	the	study	area	is	designated	

as	non-attainment	for	the	SO2	National	Ambient	Air	Quality	Standard	(NAAQS),	the	Michigan	

Department	of	Environmental	Quality	(MDEQ)	has	developed	a	State	Implementation	Plan	(SIP)	

to	achieve	compliance	with	the	standard;	this	analysis	is	therefore	timely	and	was	able	to	make	

comparisons	between	MDEQ’s	proposed	strategy	and	alternatives	focused	on	minimizing	

health	impacts.	SO2	continues	to	have	a	substantial	impact	on	the	health	of	the	study	area	

population,	particularly	among	children	and	Hispanic	or	Latino	populations.	Its	impact	is	

especially	important	given	the	high	rates	of	asthma	in	southwest	Detroit	relative	to	the	state	of	

Michigan	(DeGuire	et	al.	2016).	AQM	strategies	that	focus	on	emission	sources	with	the	highest	

health	impacts	per	ton	of	pollutant	emitted	provided	the	greatest	health	benefit	per	ton	of	

pollutant	reduced;	these	strategies	also	reduced	the	inequality	of	attributable	health	risks.	In	

contrast,	strategies	targeting	the	larger	emitters	increased	inequalities	in	attributable	risk	and	

provided	minimal	health	benefits.	This	finding	is	supported	by	national	scale	analyses	of	power	

plants	(Levy	et	al.	2007).	The	results	also	suggested	that	the	strategy	outlined	by	MDEQ’s	SIP	

(MDEQ	2016),	which	targets	several	large	sources,	will	lead	to	only	modest	reductions	in	SO2-

related	health	burdens	and	will	do	little	to	alleviate	disparities	associated	with	SO2	emissions.	
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Chapter	5,	the	second	to	address	Specific	Aim	3,	used	the	quantitative	HIA	framework,	an	

indoor	air	quality	model,	and	a	Monte	Carlo	analysis	to	estimate	the	potential	health	benefits	of	

installing	filters	in	homes	and	schools	to	reduce	exposures	to	PM2.5,	which	was	shown	in	

Chapter	3	to	be	a	primary	driver	of	adverse	health	impacts	in	the	study	area.	The	results	

suggest	installing	more	efficient	filters	in	homes	and	schools	could	improve	asthma-related	

health	outcomes	in	Detroit	children.	Reasonably	efficient	filters	(e.g.,	rated	MERV	8	to	14)	

installed	in	schools	could	reduce	annual	asthma	burdens	8	to	15%	(17	to	30%	during	the	school	

year).	Costs	of	using	these	filters	in	classrooms	are	low	(less	than	$5	per	student	per	school	

year,	or	$16-32	per	student	with	asthma	per	school	year)	compared	to	annual	benefits	($19	to	

$164	per	child	with	asthma	per	school	year).	Filters	installed	in	homes	can	further	reduce	the	

number	of	asthma	symptom-days;	reductions	in	annual	asthma	burdens	during	the	year	are	

estimated	to	range	from	11	to	16%	with	household	costs	from	$151	to	$175	per	house	with	a	

forced	air	system	per	year	and	$494	per	house	per	year	for	stand-alone	filters.	Overall,	the	

average	cost	of	filters	in	homes	($202	to	222	per	child	with	asthma	per	year)	is	similar	to	the	

annual	benefits	($118	to	$182).	Unfortunately,	the	higher	costs	of	filters	in	some	homes,	

particularly	those	without	forced-air	systems,	may	be	prohibitive	for	many	families.	The	analysis	

of	filters	considered	only	asthma-related	health	impacts	on	children	due	to	exposures	to	PM2.5	

from	outdoor	sources.	The	benefits	of	filters	would	be	higher	if	impacts	of	other	pollutants,	

e.g.,	pet	dander	or	pollen,	were	considered,	and	if	impacts	of	PM2.5	on	adult	health	were	

included,	e.g.,	mortality	or	hospitalizations	for	cardiopulmonary	diseases.		
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Tradeoffs	of	selected	control	strategies	for	Detroit	and	surrounding	cities	

The	strategies	to	reduce	health	impacts	from	ambient	air	pollution	examined	in	this	

dissertation,	point	source	controls	and	filters	in	school	and	homes,	have	tradeoffs	that	should	

be	considered	when	deciding	on	an	appropriate	strategy	for	Detroit	and	the	adjacent	cities	

included	in	this	study.	Point	source	controls	reduce	emissions	at	the	source	and	often	control	

several	pollutants	simultaneously,	e.g.,	“wet	scrubbers”	are	a	type	of	flue	gas	desulfurization	

system	that	can	remove	SO2	and	PM2.5	from	waste	streams	(Schnelle	and	Brown	2001).	Lower	

emissions	of	certain	pollutants	can	also	reduce	other	pollutants,	e.g.,	reducing	SO2	emissions	

reduces	secondary	formation	of	PM2.5	(e.g.,	sulfate	particles).	Point	source	controls	may	benefit	

many	people	at	once,	and	controls	do	not	require	individuals	to	modify	their	behaviors,	which	

has	had	limited	success	as	an	AQM	strategy	(NRC	2004).	Importantly,	the	cost	of	point	source	

controls	fall	on	the	polluter,	not	the	exposed	population.	Despite	these	advantages	and	the	

potential	public	health	benefits,	point	source	controls	have	limitations	for	the	study	area.	First,	

the	point	source	controls	examined	in	Chapter	4	do	not	address	the	regional	component	of	

ambient	pollutant	concentrations,	which	was	shown	in	Chapter	3	to	be	responsible	for	much	of	

the	health	burden	in	the	area.	Second,	for	many	facilities,	e.g.,	the	electricity	generating	

stations	owned	by	DTE	Energy,	control	costs	are	likely	to	be	passed	to	consumers	through	rate	

hikes.	Third,	many	facilities	in	the	area	are	“grandfathered,”	are	not	required	to	install	addition	

controls,	and	will	resist	doing	so.	The	SO2	SIP	development	process	demonstrates	the	difficulty	

of	imposing	additional	controls	on	older	facilities,	e.g.,	none	of	the	facilities	that	burn	coal	(the	

major	source	of	SO2)	in	the	area	will	be	required	to	install	SO2	scrubbers	even	when	the	area	is	

in	non-attainment	of	the	standard	(MDEQ	2016).	Existing	facilities	would	require	major	
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modifications	to	add	scrubbers	and	other	controls	(US	EPA	2014a),	but	such	modifications	are	

unlikely	given	the	age	of	many	of	the	facilities.	Fourth,	the	marginal	benefits	of	upgraded	

controls	may	be	limited	as	many	facilities	already	use	control	technologies,	e.g.,	baghouses	to	

control	PM2.5,	or	employ	tall	stacks	to	aid	dispersion.	Finally,	a	regulation-averse	environment	

makes	the	likelihood	of	going	beyond	legal	requirements	rather	limited.		

	

The	second	strategy	examined,	the	use	of	filters	in	schools	and	homes,	also	involves	important	

tradeoffs.	Increasing	filter	use	and	using	more	efficient	filters	have	several	advantages.	Filters	

address	exposures	in	indoor	environments	where	people	spend	most	of	their	time	(Klepeis	et	

al.	2001)	and	can	be	particularly	effective	for	reducing	exposures	in	spaces	where	people	

congregate,	e.g.,	schools	and	workplaces	(Chapter	5).	Filters	address	PM2.5	exposures	regardless	

of	source,	which	is	important	given	the	large	contribution	of	regional	transport	to	local	PM2.5	

concentrations	in	Detroit	(Milando	et	al.	2016).	Similarly,	they	can	remove	multiple	indoor	

pollutants	at	once,	and	thus	may	confer	additional	health	benefits	beyond	those	quantified	in	

this	dissertation,	e.g.,	reduced	respiratory	infections	as	a	result	of	removing	respiratory	viruses	

in	homes	(Brown	et	al.	2014).	However,	there	are	drawbacks	to	depending	on	filters	as	an	

intervention.	First,	their	cost	is,	in	most	cases,	the	responsibility	of	the	building	occupant,	and	

although	filters	may	have	low	marginal	operating	costs,	users	may	perceive	the	cost	to	be	too	

high,	especially	for	stand-alone	filters	(Batterman	et	al.	2013).	Second,	their	effectiveness	

depends	on	their	use	(or	duty	cycle),	which	can	be	low	for	some	users	(Batterman	et	al.	2013),	

and	on	the	“tightness”	of	the	building	envelope	and	ventilation	conditions,	e.g.,	opened	

windows	(e.g.,	to	cool	the	house)	will	reduce	filter	effectiveness	(Du	et	al.	2011).	Third,	filters	
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require	regular	maintenance,	i.e.,	quarterly	replacement.	Overall,	filters	can	be	an	effective	

intervention	for	residents	living	in	the	study	area,	but	successful	implementation	should	include	

educational	information	on	best	practices	for	building	managers	and	residents,	e.g.,	keeping	

windows	closed	and	regularly	changing	out	filters,	as	well	as	an	understanding	that	the	cost	of	

filters	is	low	compared	to	avoided	health	care	costs.	Education	and	outreach	efforts	should	also	

include	information	on	weatherization	programs,	which	can	improve	building	tightness	and	

increase	filter	efficiencies.		

	

Using	HIA	and	inequality	metrics	to	guide	local	decision-making	

A	primary	goal	of	this	dissertation	was	to	demonstrate	how	quantitative	health	impact	and	

inequality	metrics	can	generate	information	relevant	to	decision	makers.	Although	the	

application	focused	primarily	on	Detroit	and	the	adjacent	“downriver”	communities	with	high	

potential	for	health	impacts	and	thus	results	may	be	area-specific,	the	methods	developed	in	

this	dissertation	could	be	applied	in	other	urban	settings	to	generate	important	data	for	

decision-making,	specifically,	helping	to	transition	AQM	strategies	from	being	NAAQS	

compliance-oriented	to	being	both	more	protective	of	public	health	and	more	equitable.		

	

This	dissertation	has	demonstrated	the	value	of	using	finely-resolved,	place-based	HIA	methods	

tailored	to	a	specific	decision-making	context,	including	the	scope	of	the	decision.	Chapters	3	

and	5	restricted	the	scope	of	the	analysis	to	the	municipal	boundaries	of	the	included	cities	in	

order	to	align	the	analysis	with	the	authority	of	local	decision	makers	and	to	help	identify	

priority	areas	for	public	health	action.	Analyses	in	Chapter	3	identified	specific	sections	of	the	
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city,	e.g.,	southwest	Detroit,	and	population	subgroups,	e.g.,	Hispanic/Latino	and	low-income	

residents,	that	are	disproportionately	impacted.	In	contrast,	Chapter	4	expanded	the	scope	of	

the	non-attainment	area	(MDEQ	2016)	to	ensure	that	the	health	impacts	of	SO2	(identified	in	

Chapter	3)	were	captured	in	the	analysis	of	alternatives.	Sensitivity	results	in	these	two	

chapters	emphasize	that	study	boundaries	should	be	chosen	deliberately	and	with	regard	to	the	

decision-making	context;	potential	uncertainties	arising	from	the	selection	of	study	boundaries	

need	to	be	clearly	communicated	to	decision-makers	(Mesa-Frias	et	al.	2013).	

	

The	boundaries	of	the	study	area	affect	the	interpretation	of	the	inequality	assessment,	

especially	for	the	concentration	index	(CI),	which	compares	health	burdens	across	census	blocks	

ranked	by	their	degree	of	social	advantage.	In	this	application,	we	are	comparing	health	

burdens	across	census	blocks	within	the	study	area,	the	boundary	of	which	was	selected	to	

facilitate	a	finely	resolved	analysis	at	the	intra-urban	scale	(Chapter	3).	The	study	area	

(including	Detroit	and	the	surrounding	cities)	is	predominantly	minority	(75.6%	are	persons	of	

color)	and	36.8%	of	residents	live	below	the	poverty	level.	This	differs	from	the	tri-county	

Detroit	Metropolitan	area,	where	50,	26,	and	18%	of	residents	in	Wayne	County	(including	the	

study	area),	Oakland	County,	and	Macomb	County	are	persons	of	color	and	25,	10,	and	13%	of	

residents	live	below	the	poverty	line,	respectively	(US	Census	Bureau,	2014).	In	this	application,	

with	a	narrowly	defined	study	boundary,	the	inequality	metrics	are	useful	for	identifying	the	

most	heavily	impacted	groups	in	the	study	area	and	determining	if	these	heavily	impacted	

populations	are	“environmental	justice”	communities,	but	they	are	not	useful	for	comparing	

socially	advantaged	and	disadvantaged	communities.	Such	an	analysis	would	require	a	much	
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broader	study	area	(e.g.,	Sadd	et	al.	2011;	Schulz	et	al.	2016;	Su	et	al.	2009,	2013)	that	is	

beyond	the	scope	of	the	present	work.	Caution	should	be	used	when	interpreting	the	results	of	

the	inequality	assessments	to	avoid	the	perception	that	some	groups	with	known	health	

disparities	do	not	face	environmental	justice	issues.	

	

Highly	resolved	estimates	of	health	burdens	and	disproportionate	impacts	can	help	to	prioritize	

public	health	actions	aimed	at	reducing	air	pollutant	exposures.	For	example,	the	results	of	

Chapter	3	indicated	mobile	sources	contributed	to	disproportionate	health	burdens,	

particularly	among	the	areas	of	the	city	with	the	highest	degrees	of	poverty.	This	finding	could	

be	used	to	prioritize	low-income	areas	for	programs	to	expand	tree	canopy	cover	and	

vegetative	buffers.	Similarly,	Chapter	5	demonstrated	the	benefits	of	using	filters	to	reduce	

indoor	exposures	to	PM2.5	from	outdoor	sources.	Benefits	are	potentially	large	for	schools,	and	

likely	highest	when	using	filters	in	near-road	schools.	Such	information	would	be	useful	to	

parent	or	school	groups	focused	on	improving	environmental	conditions	within	schools.	

Targeting	highly	impacted	areas	first,	e.g.,	low-income	neighborhoods	or	schools	near	major	

roads,	when	designing	public	health	strategies	increases	the	likelihood	of	positive	outcomes	for	

residents	and	can	generate	key	evidence	to	support	public	health	decision	making	(Brownson	et	

al.	2009).		

	

Decision	makers	may	use	the	health	and	inequality	data	generated	by	HIAs	to	prioritize	AQM	

strategies.	Ideally,	public	health	interventions	would	be	implemented	so	that	the	entire	

population	benefits	and	health	disparities	are	eliminated.	More	realistically,	tradeoffs	between	
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alternatives	will	need	to	be	made	because	of	limitations	in	resources	and	in	the	available	legal	

and	regulatory	instruments.	Decision-makers	may	prioritize	strategies	that	produce	the	largest	

number	of	health	benefits	overall,	i.e.,	focusing	on	efficiency	or	utility,	or	they	could	prioritize	

strategies	that	provide	the	greatest	benefits	to	those	who	are	worst-off,	i.e.,	focusing	on	equity	

or	environmental	justice	(Adger	et	al.	2003).	Other	policy	considerations,	e.g.,	economic	or	

political	constraints,	are	also	important.	Quantitative	methods	that	include	health	and	

inequality	metrics	can	be	used	to	elevate	public	health	concerns	to	receive	the	same	level	of	

attention	as	other	decision-making	criteria.	As	an	example,	Chapter	4	compares	the	MDEQ	SIP	

strategy	to	an	alternative	that	meets	health	benefit	goals.	US	EPA	guidance	requires	that	the	

SIP	strategy	be	designed	to	ensure	concentrations	in	the	non-attainment	area	will	not	exceed	

the	NAAQS	(US	EPA	2005).	This	approach	assumes	that	meeting	the	NAAQS	is	sufficient	to	

protect	public	health.	As	discussed	in	Chapter	1,	meeting	the	NAAQS	may	not	be	sufficient	to	

fully	protect	public	health	for	a	number	of	reasons,	including	the	vulnerability	of	exposed	

populations.	Using	a	concentration	criterion	when	developing	the	SIP	favors	strategies	that	

reduce	emissions	at	the	largest	sources	in	the	area,	which	typically	have	tall	stacks	to	increase	

dispersion	of	emissions	(MDEQ	2016).	The	HIA	methods	used	in	Chapter	4	reveal	that	for	

Detroit,	it	is	the	smaller	sources	with	shorter	stacks	located	closer	to	residential	areas	that	have	

the	greatest	impacts	per	ton	emitted;	reducing	emissions	at	these	smaller	facilities	first	can	

have	greater	health	benefits	while	still	meeting	the	NAAQS	attainment	criterion	used	by	US	

EPA.	Increased	costs	of	emissions	controls	at	smaller	facilities	may	be	offset	by	the	greater	

gains	in	public	health.	Such	comparisons	could	not	be	made	without	the	quantitative	HIA	

methods	used	in	Chapter	4.	While	a	comprehensive	analysis	of	preferred	approaches	for	
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prioritizing	AQM	strategies	using	health	and	inequality	data	is	beyond	the	present	scope,	this	

work	makes	clear	that	the	methods	for	quantifying	health	and	inequality	impacts	allow	decision	

makers	to	consider	tradeoffs	between	health	and	equity	and	other	decision	criteria	when	

evaluating	alternatives.	

	

Using	HIA	and	inequality	metrics	to	improve	AQM	policy	at	the	state	or	national	level	

The	results	of	this	dissertation	(and	similar	analyses	carried	out	in	other	urban	areas)	could	also	

be	used	to	support	policy	changes	at	the	state	and	national	levels	to	advance	environmental	

justice	(EJ)	goals.	In	the	EJ	2020	Action	Plan,	US	EPA	emphasized	its	commitment	to	the	fair	

treatment	for	all	groups	under	environmental	laws,	and	explained	that	fair	treatment	refers	to	

“not	only	consideration	of	how	burdens	are	distributed	across	all	populations,	but	the	

distribution	of	benefits	as	well”	(US	EPA	2016a	p.	55).	US	EPA	recently	released	a	technical	

guidance	document	for	including	EJ	in	regulatory	actions	that	called	for	quantitative	

assessments	to	complement	other	US	EPA	assessments	in	the	regulatory	process	(US	EPA	

2016c).	As	suggested	in	Chapter	4,	the	current	process	for	designing	and	implementing	SIPs	that	

focuses	on	attaining	NAAQS	compliance	in	a	sparse	network	of	air	quality	monitors	may	be	

insufficient	to	meet	US	EPA’s	goal	of	fair	treatment	for	all	groups,	and	that	although	all	groups	

experience	a	decrease	in	attributable	health	burden	under	the	SIP	strategy,	inequalities	in	

health	burdens	remain	(Table	4.8).	Such	inequities	are	only	evident	when	health	and	inequality	

metrics	are	included	in	the	assessment	of	alternatives.		
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Currently,	there	is	no	regulatory	framework	for	including	health	or	inequality	metrics	when	

designing	AQM	strategies	for	NAAQS	attainment;	US	EPA	guidance	only	requires	states	

demonstrate	that	the	strategy	will	reduce	ambient	concentrations	to	meet	the	standard	using	

air	quality	models	(US	EPA	2005).	However,	MDEQ	staff	have	expressed	interest	in	building	

cross-agency	capacity	to	conduct	health	impact	and	inequality	assessments.	Much	of	the	data	

needed	to	conduct	the	analyses	in	Chapter	4	are	already	available	to	state	environmental	

agencies,	e.g.,	air	quality	data,	dispersion	models,	and	quantitative	HIA	tools	such	as	BenMAP.	

Requiring	their	use	as	part	of	the	regulatory	process	would	increase	the	analytical	burden	on	

state	agencies,	but	the	potential	gains	for	public	health	and	EJ	could	be	large.		

	

Another	area	where	HIAs	could	affect	policy	change	is	the	issuance	of	air	permits	and	the	

determination	of	penalties	for	permit	violations.	Rule	203	of	the	Michigan	Air	Pollution	Control	

Rules	requires	that	permit	applicants	demonstrate	their	emissions	will	not	have	an	

“unacceptable	air	quality	impact	in	relation	to	all	federal,	state,	and	local	air	quality	standards,”	

but	does	not	require	consideration	of	health	or	cumulative	impacts	(Michigan	Administrative	

Code	R	336.1201	-	336.1299).	Likewise,	the	rules	for	setting	penalties	for	permit	violations	do	

not	consider	health	impacts.	As	an	example,	in	a	recent	response	to	comments	on	a	consent	

order	issued	in	early	2017	for	violations	at	the	Detroit	incinerator,	MDEQ	acknowledged	the	

cumulative	health	impacts	experienced	by	residents	living	near	the	incinerator,	but	stated	that	

health	impacts	resulting	from	emissions	violations	at	the	incinerator	are	not	expected	because	
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health-protective	NAAQS	are	not	exceeded	(MDEQ	2017).2	However,	the	results	from	Chapter	3	

suggest	health	impacts	for	nearby	residents	can	occur	at	concentrations	below	the	NAAQS,	

especially	among	vulnerable	populations.	US	EPA’s	penalty	guidance,	last	updated	in	1991,	does	

not	take	in	to	account	attributable	health	impacts	when	determining	penalties	for	permit	

violations,	nor	does	it	consider	EJ	concerns	(US	EPA	1991).	Including	such	considerations	

through	new	or	revised	rules	could	lead	to	denied	permits	for	some	industrial	facilities	near	

residential	areas	or	higher	penalties	that	may	serve	as	stronger	deterrents	to	permit	violations,	

but	would	require	evidence	on	how	emissions	from	specific	local	sources	affect	public	health	

and	contribute	to	cumulative	impacts.	Such	data	are	not	currently	available	for	most	urban	

areas.	

	

Although	the	results	of	this	dissertation	demonstrate	the	value	of	quantitative	health	and	

inequality	metrics	when	selecting	strategies	to	meet	standards	or	reduce	exposures,	their	role	

in	rulemaking	remains	unclear.	US	EPA’s	EJ	2020	Action	Agenda	identifies	institutionalizing	EJ	in	

rulemaking	as	an	agency	priority,	and	emphasizes	that	EJ	should	be	“appropriately	analyzed,	

considered	and	addressed	in	EPA	rules	with	potential	environmental	justice	concerns”	(US	EPA	

2016a	p.	13).	The	Technical	Guidance	document	states	a	preference	for	quantitative	metrics	for	

EJ	analyses	(US	EPA	2016c).	The	quantitative	metrics	used	in	this	work,	e.g.,	disability-adjusted	

life	years,	the	Atkinson	Index,	and	the	Concentration	Index,	could	be	used	to	support	US	EPA’s	

																																																								
2	The	comment	that	fostered	this	response	from	MDEQ	cited	an	analysis	included	in	the	CAPHE	Resource	Manual	
that	was	performed	using	the	methods	described	in	Chapters	3	and	4	of	this	dissertation.	Impacts	attributable	to	
PM2.5,	SO2	and	NO2	emissions	from	the	largest	point	sources	in	the	area	were	estimated,	including	the	incinerator	
operated	by	Detroit	Renewable	Power.	The	CAPHE	Public	Health	Action	Plan	Resource	Manual	is	available	online:	
http://caphedetroit.sph.umich.edu/resource-manual-cover-page-with-full-manual/		
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goal.	However,	there	are	some	challenges	to	using	these	metrics	when	setting	standards	at	the	

national	level.	First,	health	impact	metrics,	e.g.,	attributable	cases	and	monetized	impacts,	are	

already	included	in	Risk	and	Exposure	Assessments	(REAs)	done	as	part	of	the	rulemaking	

process.	However,	REAs,	which	are	not	required,	only	quantify	exposures	and	impacts	for	

current	air	quality	and	changes	in	air	quality	require	to	meet	(but	not	exceed)	the	proposed	

standard	(Sacks	et	al.	2015),	do	not	include	cumulative	impacts	from	other	environmental	and	

social	stressors,	and	are	typically	done	at	very	coarse	spatial	resolution,	e.g.,	county	level,	due	

to	data	limitations	and	computational	burdens	(e.g.,	US	EPA	2012,	2014b,	2016b).	Such	

assessments	smooth	gradients	in	vulnerability	that	affect	impact	estimates.	Second,	as	

demonstrated	by	sensitivity	analyses	in	Chapter	3,	the	interpretation	of	inequality	metrics	

depends	on	its	spatial	scale.	National	or	regional	analyses	of	inequality	in	exposures	or	impacts	

may	draw	very	different	conclusions	than	local-scale	analyses.	Third,	as	discussed	in	Chapter	3,	

there	are	no	clear	standards	or	thresholds	for	inequality	metrics,	and	small	differences	between	

groups	or	alternatives	may	not	be	meaningful.	More	work	is	needed	to	understand	how	the	

metrics	used	in	this	dissertation	could	facilitate	EJ	analyses	when	setting	NAAQS	or	other	

national	rules.		

	

Limitations	and	challenges	to	using	HIA	at	the	local	scale	

Although	this	dissertation	has	demonstrated	the	usefulness	of	quantitative	HIA	methods	to	

support	local	decision-making,	there	are	important	barriers	to	implementation	of	such	practices	

that	should	be	addressed.	There	are	important	questions	regarding	who	should	be	in	charge	of	

the	HIA	for	a	specific	environmental	decision.	HIAs	initiated	by	community	groups	can	readily	
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incorporate	local	knowledge	and	experiences	(Corburn	2003),	but	may	lack	the	technical	rigor	

expected	by	decision	makers	(Harris	et	al.	2014).	One	way	to	increase	community	capacity	and	

the	relevance	of	community-led	HIAs	is	to	offer	technical	assistance	to	community	groups	

(Freudenberg	et	al.	2011).	On	the	other	hand,	HIAs	initiated	by	agencies	or	consultants	may	rely	

too	heavily	on	quantitative	analyses,	be	overly	focused	on	single	pollutants	and	negative	health	

impacts,	and	fail	to	properly	engage	stakeholders	in	the	process	(Carmichael	et	al.	2012;	

O’Connell	and	Hurley	2009).	For	HIAs	to	be	successful	in	influencing	decisions	at	the	local	level,	

there	needs	to	be	institutional	support	for	their	use	(Ahmad	et	al.	2008).	Institutions	should	

establish	shared	definitions	of	health	and	health	impacts,	and	should	work	to	include	HIAs	in	

the	early	stages	of	the	decision-making	process	when	changes	to	proposals	are	feasible	

(Carmichael	et	al.	2012;	Harris	et	al.	2014).	Cross-agency	collaborations	and	partnerships	with	

community-based	organizations	will	be	important	for	developing	appropriate	frameworks	for	

using	HIAs	at	the	local	level.	Comprehensive	HIAs	that	use	quantitative	and	qualitative	methods	

are	time	and	resource	intensive,	and	addressing	these	barriers	at	the	local	scale	is	important	to	

making	sure	that	efforts	are	not	wasted.	

	

This	dissertation	has	incorporated	local	data	when	available	into	the	quantitative	HIA	methods,	

but	there	are	still	some	key	data	gaps	that	can	be	addressed.	At	the	local	(i.e.,	intra-urban)	

scale,	quantitative	HIAs	are	often	limited	by	a	lack	of	optimal	datasets	(Hubbell	et	al.	2009).	For	

the	study	area	used	in	this	dissertation,	spatially-resolved	baseline	rates	for	some	health	

outcomes	were	not	available,	e.g.,	asthma	symptom	days	or	school	absences,	because	these	

data	are	not	routinely	collected	as	part	of	public	health	surveillance	programs.	Local	scale	HIAs	
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would	benefit	from	comprehensive	and	spatially-resolved	exposure	data	addressing	multiple	

environmental	hazards,	e.g.,	criteria	pollutants,	air	toxics,	water	contaminants,	noise,	and	social	

stressors,	e.g.,	lack	of	access	to	health	care	or	nutritious	food.	This	dissertation	focused	on	

criteria	pollutants	and	examined	some	dimensions	of	susceptibility	and	vulnerability,	but	other	

environmental	and	social	hazards	can	contribute	to	health	burdens	and	contribute	to	health	

disparities.	Census	data	captures	some	of	the	social	hazards,	e.g.,	vulnerability	due	to	poverty,	

but	other	neighborhood	characteristics	should	be	explored.	Developing	the	types	of	

comprehensive	datasets	necessary	for	local-scale	HIAs	will	require	cooperative	efforts	across	

agencies,	universities,	and	non-governmental	organizations.	As	HIAs	gain	traction	as	local	

decision	support	tools,	mechanisms	for	funding	the	types	of	data	collection	and	collaboration	

needed	should	be	identified.		

	

HIAs	are	often	conducted	with	the	intent	of	informing	decision-makers	about	alternatives	for	

policies	or	programs	(Harris-Roxas	and	Harris	2011).	In	this	capacity,	HIA	results	will	be	

communicated	to	stakeholders	without	technical	expertise	in	environmental	science,	

mathematical	modeling,	or	public	health.	Stakeholders,	and	in	particular	policy	makers,	need	

information	that	is	readily	absorbed,	and	decision-makers	have	little	time	to	devote	to	reading	

long	reports	on	health	impacts	(Sanderson	et	al.	2006).	Thus,	strategies	for	communicating	

results	to	a	wide	range	of	audiences	are	needed.	

	

As	detailed	elsewhere	in	this	dissertation,	HIA	results	are	inherently	uncertain,	and	this	

uncertainty	needs	to	be	communicated	to	decision-makers.	Decision	makers	appreciate	and	
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can	reasonably	interpret	quantitative	expressions	of	uncertainty,	and	including	uncertainty	in	

the	results	respects	the	need	of	decision	makers	to	act	with	a	degree	of	uncertainty	(Fischhoff	

and	Davis	2014).	Additional	sources	of	uncertainty	that	cannot	be	quantified	also	should	be	

communicated	to	decision-makers.	HIA	practitioners	should	communicate	to	decision-makers	

how	assumptions	in	the	methodology	may	affect	results,	e.g.,	using	national	or	state-level	

outcome	rates	for	local-level	HIAs	has	implications	for	interpreting	the	results	that	need	to	be	

addressed	(Hubbell	et	al.	2009).	Practitioners	also	need	to	communicate	the	framing	

assumptions,	e.g.,	which	exposures	were	excluded	or	how	study	boundaries	and	resolution	

were	determined,	and	how	this	limits	interpretation	(Briggs	et	al.	2009).	Successful	strategies	

for	communicating	uncertain	HIA	results	in	a	way	that	elevates	health	to	the	status	of	other	

important	decision	criteria	(e.g.,	cost),	need	to	be	identified,	especially	in	a	contentious	

economic	and	political	climate.	

	

Future	work	

This	dissertation	focused	on	HIA	methods	applied	at	the	intra-urban	scale.	The	results	are	

limited	to	a	single	year	and	include	only	quantitative	estimates	of	impacts	from	four	criteria	

pollutants.	Some	potential	directions	for	future	work	are	discussed	below.	

	

First,	longitudinal	studies	of	the	health	burden	for	the	city	of	Detroit	(and	other	urban	areas)	

are	needed.	Regular	assessments	of	the	burden	of	disease	attributable	to	environmental	and	

other	factors	will	allow	for	the	detection	of	important	trends	over	time	and	assess	whether	any	

efforts	to	reduce	burdens	and	inequality	are	working.	To	this	end,	frequently	updated	HIA	
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databases	are	needed.	Improvements	in	exposure	assessment	and	epidemiological	techniques	

are	starting	to	reveal	health	effects	below	current	standards	(Di	et	al.	2017;	Schwartz	et	al.	

2017;	Shi	et	al.	2016),	and	concentration-response	functions	should	be	reviewed	periodically	to	

ensure	the	most	relevant	values	are	used.	Similarly,	new	health	outcomes	should	be	added	to	

the	assessment	as	evidence	of	causality	is	strengthened	to	fully	capture	the	attributable	

burden.	Other	elements	of	the	analysis	that	should	be	updated	frequently	include	populations,	

baseline	health	rates,	and	indicators	of	vulnerability.	Future	assessments	should	also	address	

some	of	the	limitations	of	this	work,	including	the	lack	of	population	and	baseline	risk	

projections	for	outcomes	with	long	latency	periods,	e.g.,	mortality	due	to	PM2.5	exposures	

(Flachs	et	al.	2013),	and	the	omission	of	time-activity	patterns	that	influence	exposures	and	

health	impacts	(Tchepel	and	Dias	2011).	As	MDEQ	expands	the	monitoring	network	near	

Detroit	to	include	a	monitor	in	the	48217	ZIP	code3	and	three	monitors	near	the	new	Gordie	

Howe	International	Bridge	project,4	new	data	should	be	incorporated	into	the	exposure	

assessment	methods.	In	other	urban	areas	that	have	denser	monitoring	networks	and	perhaps	

greater	homogeneity	of	emissions,	geospatial	techniques	such	as	kriging	might	be	utilized	to	

make	better	use	of	monitoring	data.		

	

Second,	additional	studies	are	necessary	to	confirm	the	benefits	of	point	source	controls	and	

increased	use	of	filters	estimated	in	Chapters	4	and	5.	The	analyses	in	Chapters	4	and	5	use	

models	to	estimate	the	benefits	of	reduced	emissions	or	exposures	to	criteria	pollutants	that	

																																																								
3	DEQ	to	Conduct	Air	Monitoring	in	Detroit	Neighborhood.	Press	Release.	August	15,	2016.	Available:	
http://www.michigan.gov/deq/0,4561,7-135-3308-391433--,00.html	
4	MSHDA	awards	grant	to	MDEQ	for	air	quality	monitoring	in	Detroit	neighborhoods.	Press	Release.	June	7,	2017.		
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involve	many	assumptions.	Future	work	should	examine	the	effectiveness	of	emissions	controls	

or	filters	of	reducing	exposure	and	health	impacts.	Such	work	may	be	more	feasible	for	filters	

than	point	source	controls,	e.g.,	prior	work	in	Detroit	has	focused	on	filters	as	an	intervention	

to	reduce	PM2.5	exposures	in	homes	of	children	with	asthma	(Batterman	et	al.	2012),	but	

studies	of	point	source	controls	could	take	advantage	of	SIP	implementation	or	other	“natural”	

experiments.	Future	studies	of	air	quality	management	strategies	should	focus	on	pre-	and	

post-intervention	data	collection	at	the	finest	spatial	resolution	feasible,	including	ambient	

concentration,	personal	exposures,	and	the	incidence	of	asthma-related	health	outcomes.	

Future	studies	should	also	work	to	identify	co-benefits	of	interventions,	e.g.,	additional	health	

benefits	from	reduced	secondary	PM2.5	resulting	from	lower	SO2	emissions	or	reductions	in	

other	indoor	pollutants	from	increased	use	of	filters.		

	

Third,	more	work	is	needed	on	the	usefulness	of	quantitative	HIA	methods	for	EJ	and	

cumulative	impact	studies.	Chapter	3	demonstrated	that	concentrations	are	a	poor	proxy	for	

health	burdens	at	the	intra-urban	level	and	that	inequality	metrics	were	higher	for	health	

burdens	than	concentrations.	However,	the	analysis	did	not	consider	other	environmental	and	

social	stressors	that	contribute	to	cumulative	impacts,	and	it	remains	unclear	how	using	health	

burdens	in	a	cumulative	impacts	study	would	affect	interpretation	of	the	overall	cumulative	

impact	assessment	results.	Future	work	should	investigate	the	usefulness	of	health	impact	

assessments	in	cumulative	impact	studies	at	various	spatial	scales	(e.g.,	intra-urban,	regional,	or	

state-wide).		
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Fourth,	it	will	be	important	to	assess	if	and	how	results	of	quantitative	impact	assessments	

influence	public	policy	around	air	quality	in	Detroit,	MI.	Within	the	policy	context,	decision	

makers	have	to	decide	how	to	protect	and	promote	public	health	and	reduce	inequalities	using	

the	evidence	available	to	them	(Tannahill	and	Douglas	2014).	Evidence	regarding	the	ability	of	

HIAs	to	influence	decision	makers	is	mixed	(Bourcier	et	al.	2015;	Dannenberg	2016).	Chapter	2	

discusses	how	health	impact	metrics	might	influence	decision	makers,	and	it	will	be	important	

to	determine	if	presenting	these	metrics	encourages	decision	makers	to	consider	health	with	

the	same	weight	as	other	important	policy	drivers,	e.g.,	economic	impacts.	Differences	in	

perceptions	of	“levels”	and	use	of	evidence	may	be	important	in	determining	the	impact	of	HIA	

results	in	for	decision	making	because	policy	makers	tend	to	look	for	evidence	to	support	their	

agendas	(Choi	et	al.	2005).	Future	work	should	determine	whether	HIA	results	can	influence	

decision-makers	who	have	not	been	primarily	concerned	with	health	outcomes.		

	

Finally,	future	work	should	identify	strategies	for	incorporating	qualitative	assessments	of	

health	impacts	in	AQM	HIAs.	Most	AQM	HIAs	focus	on	the	quantitative	impacts	of	pollutant	

exposures,	in	large	part	because	tools	for	automating	quantitative	assessments	are	available	

(Anenberg	et	al.	2015;	reviewed	in	Chapters	2	and	3).	As	discussed	in	Chapter	3,	there	are	

important	health	effects	from	sources	of	air	pollution	that	cannot	be	reliably	quantified,	e.g.,	

mental	health	impacts	of	living	near	industrial	sources	or	exposure	to	noise	from	busy	roadways	

(Basner	et	al.	2014;	Bluhm	et	al.	2007;	Downey	and	Willigen	2005).	This	is	particularly	important	

at	the	local	scale	where	decisions	are	made	about	specific	projects	or	policies,	e.g.,	building	a	

new	bridge	or	expanding	a	highway,	that	directly	impact	communities.	Information	about	
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community	perceptions	of	risk,	health	effects,	and	inequality	is	also	important	for	

environmental	decision	making	(Wright	et	al.	2005).	Future	work	should	focus	on	developing	a	

framework	for	including	both	quantitative	and	qualitative	HIA	results	in	AQM	decision-making	

processes,	as	well	as	increasing	the	capacity	for	communities	to	participate.	All	of	this	will	help	

to	ensure	that	health	data	are	appropriately	considered,	particularly	at	the	local	level	

(Chadderton	et	al.	2013;	Freudenberg	et	al.	2011;	Harris	et	al.	2014)		

	

Overall	conclusions	

This	dissertation	demonstrated	the	value	of	quantitative	health	impact	assessment	methods	for	

AQM	at	the	urban	scale.	Health	and	inequality	metrics,	when	tailored	to	the	local	setting,	can	

provide	useful	information	on	the	health	burden	and	inequalities	associated	with	ambient	air	

pollutant	exposures.	This	information	can	be	translated	into	public	health	policies	and	

interventions	aimed	at	reducing	these	health	burdens	in	a	more	equitable	way.		
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