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Abstract 

Recently the concept of black swans has gained increased attention in the fields of risk assessment 

and risk management. Different types of black swans have been suggested, distinguishing between 

unknown unknowns (nothing in the past can convincingly point to its occurrence), unknown knowns 

(known to some, but not to relevant analysts) or known knowns where the probability of occurrence 

is judged as negligible. Traditional risk assessments have been questioned, as their standard 

probabilistic methods may not be capable of predicting or even identifying these rare and extreme 

events, thus creating a source of possible black swans.  

In this paper we show how a simulation model can be used to identify previously unknown 

potentially extreme events that if not identified and treated could occur as black swans. We show 

that by manipulating a verified and validated model used to predict the impacts of hazards on a 

system of interest, we can identify hazard conditions not previously experienced that could lead to 

impacts much larger than any previous level of impact. This makes these potential black swan events 

known and allows risk managers to more fully consider them. We demonstrate this method using a 

model developed to evaluate the effect of hurricanes on energy systems in the US; we identify 

hurricanes with potentially extreme impacts, storms well beyond what the historic record suggests is 

possible in terms of impacts.  

 

Key Words: Risk assessment, simulation model, “black swans”, hurricanes.  

 

1 Introduction 

Surprising events with potential extreme consequences represent a challenge in a risk assessment 

setting. There is no doubt that they contribute to the risk a system faces, but if we cannot identify 

them, how can we then manage the risk that these surprising events introduce? Several authors  

have looked into the issue of surprising events with potentially extreme impacts, and our paper can 

be seen as a contribution to this discussion.(1-5) The aim is to illustrate how simulations can be used 

to identify events with potential extreme impacts (the so-called black swans), and hence reduce the 

potential of being surprised by these events or their severity. In the present paper risk is defined as 

the consequences of the activity and associated uncertainties, which corresponds to definition (d) 

from the Society of Risk Analysis(0).  

 

As an example, we use the impact of hurricanes on the US power system in terms of power outages 

from a single storm. The maximum peak number of customers without power in any hurricane in the 
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US was approximately 8-9 million during Hurricane Sandy, which impacted the mid-Atlantic coast in 

October, 2012 (0,0). The impacts of Sandy were severe, and events such as this lead to a number of 

questions. How high could the total number of power outages reasonably be with physically 

plausible storms? Are there events that might lead to far greater outage numbers that would 

challenge emergency response? We show how simulations with a verified and validated hurricane 

performance prediction model can be used to identify extreme events, with impacts much larger 

than any previous level of impact. The simulation model considered has been trained and validated 

with the use of historical data (9-0). In the present paper a hurricane scenario refers to a particular 

combination of a hurricane track and the peak wind speed of that hurricane. The hurricane track 

includes the location where the hurricane makes landfall and its trajectory across the US. By the 

term simulations, we mean the process of altering different inputs and combinations of inputs to 

estimate some output measure of interest. We are searching for inputs that might result in 

surprising outputs, and, in general, using models in a creative manner to increase our understanding 

of the modeled phenomena. In this paper simulations are only considered useful as long as the 

models used are verified and validated, meaning that they have been shown to provide good out of 

sample predictive accuracy. 

 

The next subsection includes a short review of the concepts of surprising events, black swans and 

perfect storms (which is another term often used to describe similar events). Section 2.1 presents 

existing methods, while Section 2.2 explains how our approach can be used as part of some of the 

existing methods, including why a simulation model might be useful to identify scenarios with 

potential extreme impacts. The subsequent section, Section 3, introduces the theory behind the use 

of models to identify extreme events. Section 4 presents the model that we will utilize in this paper 

and the results of the case study. Before we conclude in Section 6, we present a discussion of our 

main findings in Section 5. 

 

1.1 Classifying surprising extreme events with extreme impact 
Surprising events with extreme consequences are often referred to as either black swans or perfect 

storms. The distinction is not always clear, and might depend on how the different terms are 

defined. It is therefore important, in our opinion, to clarify the meaning of these terms, making sure 

that we know how they are related to our example and the use of a simulation model. The term 

“black swan” was popularized by Nasim Taleb in 2007(0), when he published a book drawing an 

analogy between the story of the first discovery of a black swan and a surprising event. In the 

prologue he defines a “black swan” as an event with the three following attributes (0, p. xxii): 
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“First it is an outlier as it lies outside the realm of regular expectation, because nothing in the past 

can convincingly point to its possibility. Second, it carries an extreme impact (unlike the bird). Third, 

in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the 

fact, making it explainable and predictable.” 

 

Taleb’s definition is not the only one of a “black swan”. Aven(0) provides a discussion of a set of 

different definitions, where he concludes that “a black swan has to be seen as a surprising extreme 

event relative to present knowledge/beliefs” (0, p. 49). This definition is elaborated in Aven & Krohn(0, p. 

9), and they divide black swans into three types: 

a) “Events that were completely unknown to the scientific environment (unknown unknowns) 

b) Events that were not on the list of known events from the perspective of those who carried 

out a risk analysis (or another stakeholder) (unknown knowns) 

c) Events on the list of known events in the risk analysis but judged to have negligible 

probability of occurrence, and thus not believed to occur.”  

 

We have chosen to use the definition by Aven (0) and the further sub categorizations of Aven & 

Krohn(0), as we acknowledge that a surprise is relative to someone’s knowledge and beliefs, and that 

black swans are more than unknown unknowns. A black swan is, as mentioned above, not the only 

analogy commonly used to describe a surprise. Some might also refer to a surprising event with 

extreme impacts as a “perfect storm”. Patè-Cornell(0), distinguishes between black swans and perfect 

storms by referring to the different nature of the uncertainties related to these events. According to 

Patè-Cornell(0), perfect storms can be seen as a conjunction of rare but known events, involving 

mostly aleatory uncertainty (randomness), while “black swans” are related to lack of knowledge, i.e., 

epistemic uncertainty.  

2 Existing methods used to identify extreme events with large 

impacts 

According to Taleb(0), almost all significant historical events, at the time of their occurrence, held the 

characteristics of a black swan. He uses the development of the internet, the market crash of 1987, 

and the rise of Hitler and the subsequent war, as events that were difficult to predict, but which 

have had a large impact. It is not difficult to find more examples, and the importance of these events 

is clear. It is therefore not surprising that there exist a number of methods that can be used as tools 

when trying to identify and predict such events. The approach used in the present paper has 

similarities to stress testing, reverse stress testing, sensitivity analysis, and vulnerability analysis, but 
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carries some distinctions. In the following we offer a short explanation of these methods and of their 

relationship with our approach.  

 

Stress testing is an approach commonly used in, for example, the nuclear and financial industries 
(0)(0)(0)(0). In the nuclear industry, stress testing has been implemented by the European Commission 

to carry out “comprehensive risk and safety assessments ("stress tests") of nuclear power plants in 

the European Union and related activities” (0, p.1). In the financial industry, stress tests are used to test 

how banks perform if exposed to adverse economic developments. This is done to understand how 

resilient the banks are, and whether or not they can deal with unexpected extreme events (0). In a 

stress test, the focus is on the system (e.g. the bank) and its ability to withstand both known and 

unknown hazards/“stresses” or scenarios. As pointed out by one of the reviewers of this article, a 

stress test is essentially performed by using a real-life system or a model and varying the inputs far 

beyond what is normal or expected. In our approach the inputs are also varied, but they do not have 

to go beyond what is normal or expected, as we are looking for previously unseen combinations of 

inputs, which carries a surprising extreme impact. 

 

In reverse stress testing, the focus is on identifying ways in which failure of the system will result in a 

pre-specified (typically negative, possibly extreme) outcome. Compared to stress testing, as the 

name implies, reverse stress testing works backwards. The first step is to specify a significant 

negative outcome, and the second step is to identify different events or combinations of events that 

can lead to this outcome 
(0)

. The main similarity between reverse stress testing and our approach is the 

focus on severe, unwanted and maybe also previously unexperienced combinations of events that 

together results in an extreme outcome. The difference is that our approach searches for severe 

outcomes; i.e. a severe outcome is the result of the analysis, not the starting point. 

 

Sensitivity analysis is commonly used in risk assessment. According to Saltelli(0, p. 579), sensitivity 

analysis can be understood as “the study of how the uncertainty in the output of a model (numerical 

or otherwise) can be apportioned to different sources of uncertainty in the model input”. This method 

differs from our approach, because the focus area is different. We are not trying to identify the most 

sensitive input parameter. We use the knowledge of the potential variation in input parameters to 

see how this might affect the model output. The aim is to create an understanding of combinations 

of model inputs (input parameters) that can create scenarios that we have not previously 

experienced and do not currently expect.  
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A vulnerability analysis, which in general “aims at estimating the magnitude of the negative 

consequences that arise given that a strain is imposed on the system” (0, p.29) can be used to identify 

failures with severe outcomes, see also Murray et al. (0). According to Haimes (0 p.293), “vulnerability is 

the manifestation of the inherent states of the system that can be exploited to adversely affect that 

system”, a definition similar to that of Johansson et al. (0). In these definitions of vulnerability, the 

focus is on the inherent components of the system and, as noted by Johansson et al. (0, p. 28), not “the 

environment in which the system is situated”. In the present paper, the system considered is the US 

power system, and the hurricane scenarios are a combination of hurricane tracks combined with 

different hurricane peak wind speeds. The hurricane scenarios cannot be seen as an inherent part of 

the (power) system, but as an external hazard which potentially has an extreme impact on the 

(power) system, and is therefore somewhat different from a vulnerability analysis which focuses on 

the components within the system. The following section will explain how the use of a simulation 

model can be used as a tool when searching for severe outcomes. 

 

3 How can a simulation model be used to identify events with 

potential extreme impacts? 

In the present paper, we consider the use of models only in situations where the model has been 

verified and validated, as in Guikema et al. (0) and Staid et al. (0) where repeated random holdout 

testing was used to assess out of sample predictive accuracy. The approach can formally be 

described as follows; the simulations will be performed using a verified and validated model   with 

parameter   used to predict the outcome of a quantity of interest  .We establish distributions   
  

on the vector   (          ) of model parameters. We then perform a large number   of 

(Monte Carlo) samplings from these distributions, resulting in realizations    (             ) 

         , which are then plugged into the model to obtain predictions   
  =  (  ) of  , we keep 

the realizations that give us the worst predictions of  . The sampled    then represent a potential 

future scenario that might lead to an outcome of   (predicted by  (  )). In these situations the 

simulation model can be used to create increased understanding related to interactions between 

different phenomena and systems, hence reducing the potential for surprises and black swans.  

 

Because black swans can be divided into three types, as mentioned in Section 0, different 

approaches have to be used in order to deal with them (0-0). If simulations (done by the use of a 

simulation model) are used to reduce the domain of black swans, they have to address the three 

types of black swans differently, as simulations might be useful in different ways for different 

settings. Let us here consider the use of simulation as a tool to reduce the domain of black swans 

types a) through c), in addition to perfect storms.  
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First, how can a simulation model be used to address or reduce the potential for surprises caused by 

unknown unknowns? Intuitively this seems challenging, as simulations require a model, and a model 

is a representation of a known phenomenon. If the phenomenon is known, how can a potential 

surprising event be seen as an unknown unknown? It seems obvious that simulation models cannot 

be used to identify new phenomena. However, they can still be useful - if a simulation model or/and 

the simulations that are carried out manage to raise questions, identifying a need for more research, 

where the following research reveals a new phenomenon. For example, today, data mining or data 

analytics is used to create models and gather information from large amounts of data. Some of these 

models reveal relationships between input variables or/and the output that cannot be explained by 

today’s phenomenological understandings. Occasionally, research on these relationships identifies a 

new phenomenon that has not previously been known. When this happens, more knowledge is 

gained and the domain of potential black swans events of type a) caused by this phenomena can be 

seen as reduced. Black swans type a) has then, indirectly, been reduced by a simulation model.  

 

For black swans of type b), the unknown knowns, simulation models might be even more useful. 

Verified and validated models contain a lot of knowledge. This knowledge can be of importance 

when assessing risk, but if the model is treated like a “black box” this knowledge might be ignored. 

The knowledge is available (in the model), but is not known to the risk analyst. If a surprising 

extreme event takes place, it might be surprising because the relevant analyst did not properly 

understand the model. To avoid this, simulations can be used to create an understanding of the 

relationship between the input quantities and the predicted output. An example is the use of 

simulations based on a (verified and validated) model which is used to explain the movements of an 

oil spill on the sea surface. When running simulations with such a model, it is possible to create a 

picture of how a coastline can be affected by an oil spill. If the focus is on extreme impacts (which is 

a requirement to be classified as a black swan), we might use simulations to create a picture of 

where (and under which weather conditions) an oil spill has to occur in order to reach shore at a 

location where the impact can be considered as particularly severe.   

 

Black swans of type c), refers to an event that takes place even though the probability of its 

occurrence was judged as negligible. This probability is to be understood as subjective and the 

assessor might have assigned the probability based on weak background knowledge. For simulation 

models to be useful in this setting, they need to provide the analyst with information that will 

change (increase) the original probability of occurrence of this event. For example, if the assigned 

probability is based on weak knowledge, simulations can be used to increase this knowledge 

creating a better understanding of conditions that might lead to that particular event. In this setting, 

simulations provide information that might increase the degree of belief related to the occurrence of 
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that specific event. If the probability of an event is judged as extremely low or negligible it means 

that the assessor has an extremely low or negligible degree of belief related to the occurrence of this 

event. For simulations to be useful to reduce the domain of black swans type c), they have to create 

understanding and generate knowledge that can strengthen the background knowledge of the risk 

analyst (team) that assess the (subjective) probability.  

 

Simulation models can also be used to identify potential perfect storms. Potential perfect storms can 

be identified by altering the input quantities, picking extreme rare values of the input variables to 

see how these influence the output, like a sensitivity analysis. The challenge here is to pick the 

combination of unlikely (rare) input variables that will give an extreme impact/outcome. We also 

need to make sure that the combinations of input values actually are rare or unlikely, meaning that 

the estimation of an input value as unlikely/rare needs to be based on strong background 

knowledge. This means that the epistemic uncertainty related to the frequentist probability of a 

specific extreme input quantity has to be negligible. We need to know how much and with what 

frequency the input variable can vary. A simulation model can then be very useful for understanding 

how combinations might lead to extreme outputs. At the same time, it is unlikely that anything will 

be done to reduce the domain of these events, as the probability (relative frequency) of them 

occurring is extremely low (according to definition of perfect storm), and the estimation of that 

probability (relative frequency) is built on strong knowledge.   

 

The present paper will use an example from the US power system to show how a simulation model 

can be used to uncover scenarios that were unknown before the simulations were carried out. The 

example that we will use utilizes a verified and validated simulation model for predicting power 

outages caused by hurricanes in the US; see Beck et al.(0), Han et al. (0), Han et al. (0), Nateghi et al.(0) 

Guikema et al.(0), and Quiring et al. (0). A power outage is defined as an event where one or more 

costumers loose power (0)(0). The model is built on data from 12 previous hurricanes and uses factors 

such as gust wind speed, the duration of winds above 20 m/s, and population density in a validated 

statistical model to predict power outages. We will use simulations to identify potential 

combinations of hurricane tracks and wind speeds that have not been experienced before yet have 

potentially extreme (surprising) consequences in terms of power outages.  

4 Example – Modeling the number of power outages caused by a 

Hurricane in the US 

In order to get a good understanding of how a simulation model might be useful, we performed a 

case study. We wanted to see if a simulation model can provide information or create scenarios that, 

if they occur, would be considered a surprise. This does not mean that we are trying to create the 
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worst hurricane scenario, with an extreme number of power outages. Our focus is on surprises, e.g., 

finding scenarios where a relatively low wind speed results in a surprisingly large number of power 

outages as well as scenarios with extreme numbers of power outages.   

 

4.1 How does the model work? 
The power outage forecasting model used in this paper is that of Guikema et al.(0). This model is the 

result of working with a large electric power utility for a number of years to develop a power outage 

forecasting model for their service area (0-0)) and then generalizing this model to be used in other 

locations(0). The model is a Random Forest, a form of an ensemble statistical learning theory model, 

trained and validated with past outage data. The model in the form of Guikema et al.(0) takes as 

input 3-second gust wind speed and the length of time for which wind speeds were above 20 m/s 

estimated from a hurricane wind field model as well as population density, with all inputs being at 

the census tract level. The wind field model takes as input a forecast track and the central pressure 

over time for a hurricane. The model predicts the number of people that will not have power, again 

at the census tract level, for the entire potentially impacted area. A key aspect of the model 

development is the validation testing of the model. In developing the model, the authors used 

repeated random holdout testing to examine many different types of models and to choose the 

model that gave the best out-of-sample predictive accuracy. This model predicts outages for a single 

hurricane given a forecast track and intensity.  

4.2 Simulation methodology 
The simulation model generates virtual tropical cyclones and estimates the power outages from 

each one. Because of the built-in randomness in the storm generation process, we run the 

simulation a large number of times in order to identify the high-impact storm scenarios (hurricane 

peak wind speed and trajectory). We run the simulation for a set of initial wind speeds (defined as 

the maximum 1-minute sustained wind of the storm) to evaluate the impact of storms of different 

strengths. We evaluate the impacts for storms with maximum intensity of 170, 150, 125, 100, 75, 50, 

and 34 knots, corresponding to 88, 77, 64, 51, 39, 26, and 17 meters per second (m/s), respectively. 

The maximum peak wind speed of 170 knots was chosen as this is close to the peak wind speed 

experienced during the Typhoon Haiyan in the Philippines in 2013, arguably the strongest tropical 

cyclone on record. The lowest peak wind speed of 34 knots was used as we were interested in 

potential surprising events, and a large number of power outages given a peak wind speed of 34 

knots would definitely be seen as a surprise. To compare, the peak wind speed (1-minute sustained) 

for hurricane Katrina was approximately 150 knots, while Sandy had a peak wind speed of 

approximately 100 knots.  

 

The simulation structure is the same for each initial wind speed. For each iteration of the simulation, 

we generate a virtual storm using the following steps. First, we sample a starting location for the 
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storm. This can either be a landfall location along the US coastline or a point offshore but still within 

impact-range of the US coastline. We generate the movement of the storm using a Random Forest 

statistical model. This model is trained on data from historical storm tracks in the same region of the 

coastline at which the storm is located. This allows us to generate storms that behave similarly to, 

but are not identical to, past tropical cyclones. In this way we create storm tracks that have not 

previously occurred, but that still can be seen as realistic and within the realm of possibility. As we 

generate each new track point for the storm movement, we simultaneously keep track of the 1-

minute sustained wind speeds at each point along the storm’s path. If the storm is over land, we 

decay the wind speeds with each time step according to the decay model of Kaplan and DeMaria (0). 

We continue to generate storm movement until the wind speeds fall below the threshold for a 

tropical depression.  

The storm track and intensity (central pressure over time) are then used as inputs to a wind field 

model. This calculates the wind field along the storm’s path for the entire area of impact. We 

evaluate it at the census-tract level, and the wind field estimates the 3-second gust wind speed and 

the duration of wind speeds above 20 m/s for each census tract within reach of the storm. These 

two wind parameters, along with the population of each census tract, are then used as inputs for the 

power-outage prediction model. For each storm, we predict the fraction of the population expected 

to lose power in each census tract.  

 

In order to evaluate the results, the coastline was divided into four impact zones. Storms behave 

differently in the Gulf of Mexico and the North Atlantic, for example, and the impacts have the 

potential to be very different because of the locations of major cities, areas of high population 

density, and storm movement. Thus, we looked at each zone separately when assessing the impact. 

The first zone stretches along the Gulf of Mexico from the Texas-Mexico border to the edge of the 

Florida peninsula. The second zone covers the western side of the Florida peninsula. The third zone 

covers the eastern side of Florida up to the Florida-Georgia border. The fourth zone stretches from 

Georgia to Maine, covering the rest of the US Atlantic coast. Table I gives an overview of the average 

annual number of historical hurricanes in each of the different zones. The hurricanes simulated in 

zones three and four were initiated both onshore and offshore, but still within impact-range of the 

US coastline. The hurricanes in zones one and two were initiated at landfall (onshore) because in 

these zones hurricanes are unlikely to move parallel to the coast, staying offshore, and causing 

damage.  

 

For each wind speed evaluated, we simulated a total of approximately 5,000 virtual storms for 

hurricanes with onshore landfall locations and a total of 20,000 virtual storms for the offshore 

locations, see step 1 in Figure 1. The difference is because we found it more challenging to achieve 

convergence for offshore tracks. This resulted in a different number of hurricane scenarios in the 
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different zones, as shown in Table II. In addition, the tracks identified as the “top 10” tracks in each 

zone were rerun for all peak wind speeds, see steps 2 and 3 in Figure 1. The “top 10” tracks are the 

10 hurricanes with the highest related number of power outages identified in step 1 in Figure 1. This 

resulted in 60 additional storms for each peak wind speed, when including the original “top 10” 

storms for each peak wind speed, we refer to these as the ¨top 70¨ tracks (10 tracks for each of the 7 

peak wind speeds).    

 

4.3 Simulation results 
The methodology described in Section 0 resulted in an evaluation of 1960 different hurricane 

scenarios. These 1960 hurricane scenarios include 70 tracks for each of the 7 peak wind speed, in 

each of the 4 zones (           ). Figure 2 illustrates a subset of tracks from these 1960 

hurricane scenarios. The subset includes the tracks with the highest predicted number of power 

outages (from step 1) for a peak wind speed of 34 and 125 knots (17 and 64 m/s), with the different 

colours illustrating the different zones where the hurricanes make landfall.  

 

The maximum number of power outages was, based on step 1, found for a hurricane in Zone 4 with 

a peak wind speed of 150 knots (77 m/s), and not 170 knots (88 m/s) which would have been 

expected. Consequently we decided to run steps 2 and 3. The purpose was to see how an altered 

peak wind speed would influence the predicted number of power outages, given that the hurricane 

track was kept constant. When we, in step 3, increased the peak wind speed from 150 to 170 knots, 

keeping the hurricane track constant, the predicted number of power outages increased from 51 to 

54 million power outages. This shows that while stronger storms are estimated to have more 

outages, as expected, at these high wind speeds there is significant sensitivity to the storm track.  

 

Steps 2 and 3 resulted in additional hurricane scenarios, created based on the ¨top 70¨ tracks. 

However, the difference between the maximum predicted number of power outages found among 

the ¨top 10¨ tracks from step 1, and the new ¨top 70¨ tracks, were small. This is not surprising, as the 

CDF and convergence plots, presented in Figure 3 and Figure 4, suggest that there are sufficient 

replications to reach the tail of the different distributions. The maximum number of power outages 

found for each peak wind speed, from steps 1 – 3, is presented in Figure 5. 

 

For Zone 2 (the west coast of Florida), we can see, based on the CDF functions presented in Figure 

3b), that the maximum number of power outages stabilize for peak wind speeds of 100 – 125 knots 

(51 – 64 m/s). This means that most people in this area are without power when the peak wind 

speed reaches approximately 100 – 125 knots. The same stabilizing trend can be seen for Zone 4, 
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this is also supported by the CDF and convergence plots presented in Figure 3d) and Figure 4d). For 

the hurricanes making landfall in Zone 1 (the Gulf of Mexico) and in Zone 3 (the east coast of 

Florida), the peak wind speed and the number of power outages appear to have a more linear 

relationship. For Zone 1, however, there seems to be some stabilization after the peak wind speed 

reaches 150 knots (77 m/s). Figure 6 shows two hurricanes from Zone 1 with the same track but with 

different peak wind speeds. The hurricane presented in Figure 6a) has a peak wind speed of 170 

knots (88m/s) and an estimated number of power outages of 10.9 million. Figure 6b) shows the 

same hurricane track, but with a peak wind speed of 150 knots (77 m/s). The related number of 

power outages is 10.5 million, which is not very different from the predicted number of outages 

related to the same track but with an increased wind speed (170 knots). The hurricane tracks related 

to the highest number of power outages in Zone 3 (generated by step 1) can be seen in Appendix A.  

 

The highest numbers of power outages are, not surprisingly, related to the strongest peak wind 

speeds, and occur in the highest populated areas (Zone 4). Figure 7a) shows the hurricane scenario 

with the largest number of power outages, 54 million. This hurricane scenario has a peak wind speed 

of 170 knots (88 m/s) and occurs in Zone 4 (the East Coast of the US north of Florida). When the 

peak wind speed of the hurricane presented in Figure 7b), is reduced to 150 knots (77 m/s), the 

related number of power outages is 3 million less than that of the hurricane presented in Figure 7a). 

The gradient range from red to light yellow, indicates the gradual decrease from a high to low 

fraction of power outages. Red illustrates that approximately 100 % of the population has lost 

power.  

 

Figure 8 illustrates the probability related to the different predicted number of power outages given 

a hurricane scenario with a specific peak wind speed, making landfall in a specific zone. Figure 8 

shows the tail of the cumulative distribution for the number of power outages given four different 

scenarios. These four scenarios are scenarios considered as surprising, either because the total 

number of power outages is extremely large, or because the total number of power outages is 

surprisingly large given a relatively weak hurricane. We can see that the tail of these cumulative 

distribution functions are heavier than what is typically seen in F-N curves, meaning that there is not 

a very rapid decrease in probability when the number of power outages increases. Qualitatively, this 

suggests that it would be easy to understate the probability of the very bad outcomes without a 

model to estimate their conditional likelihood.  

 

4.4 Interpretation and discussion of results  
The highest number of power outages predicted for any of the hurricane scenarios generated was 54 

million, see Figure 7a). This is more than five times the highest number of power outages ever 
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recorded in the US during Hurricane Sandy. Hurricane Sandy had a severe impact, but even though 

the peak wind speed of 100 knots (51 m/s) was high, it is not extreme. Some might therefore have 

been surprised by the impact caused by this hurricane. According to our results, a hurricane with the 

same peak wind speed as hurricane Sandy, making landfall in zones 3 or 4, could potentially lead to 

an even higher number of power outages. Our simulations identify a scenario with approximately 35 

million power outages in Zone 4 for a storm with a 100 knots (51 m/s) wind speed. The red line in 

Figure 5 indicates the number of power outages from hurricane Sandy.  

 

With the red line in Figure 5 as a reference, our simulations show that 10 million power outages are 

possible for all wind speeds in Zone 4, except 34 knots (17 m/s). That a peak wind speed of 50 knots 

(26 m/s) potentially results in approximately 10 million power outages is a surprising result. This 

wind speed is substantially weaker than for hurricane Sandy. According to the Saffir-Simpson 

Hurricane Wind Scale this is not even a hurricane category 1 (NOAA)(0). The National Weather Service 

Weather Forecast Office(0) writes that a category 1 hurricane has:  

“Winds 74-95 mph (64-82 kt or 119-153 km/hr). Storm surge generally 4-5 ft above normal. 

No real damage to building structures. Damage primarily to unanchored mobile homes, 

shrubbery, and trees. Some damage to poorly constructed signs. Also, some coastal road 

flooding and minor pier damage.”  

That a hurricane scenario with a maximum wind speed less than a hurricane category 1 potentially 

can result in 10 million power outages is arguably even more surprising than the 54 million power 

outages related to the scenarios where the maximum wind speed is 170 knots (88 m/s). As 

mentioned in the section above, for each peak wind speed we kept the 10 scenarios with the highest 

number of related power outages. For the scenarios with a peak wind speed of 50 knots (26 m/s), 

the related number of power outages, from step 1, ranged from 8.2 to 10.6 million in Zone 4. This 

illustrates the deviation between the different tracks that a hurricane might have, all with a severe 

impact. The aim of our simulations has been to provide an overview of potential future hurricane 

scenarios that could be considered surprising. These hurricane scenarios clearly demonstrate that it 

is not only extreme and unlikely wind speeds that potentially results in large number of power 

outages. Furthermore, this knowledge might be relevant when considering the need for upgrades of 

the power system.   

 

For the highest peak wind speeds, we can see that it is how the hurricane moves, where it makes 

landfall, and its trajectory that has the largest influence on the predicted number of power outages, 

not the peak wind speed. This is especially relevant in Zone 2 and Zone 4 (and to some degree Zone 

1), where we can see that the maximum number of power outages seem to stabilize when the peak 

wind speed is around 125-150 knots (64 - 77 m/s), see Figure 3 and Figure 4. For Zone 4 we can see 
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that the CDF functions for peak wind speeds above 125 knots (64 m/s) are very similar, which will be 

further addressed in Section 5.3. For Zone 3 we can see a more linear relationship between an 

increase in peak wind speed and the related number of power outages. A possible explanation is the 

trajectory of the hurricanes in Zone 3. As the wind speed in this zone increases, the hurricane 

reaches further inland, increasing the impacted area of these hurricanes. In Zone 4, on the other 

hand, most damage is caused if the hurricane follows the east coast, and an increase in wind speed 

will not lead the hurricane further inland or cover (much) more of the coast. If the hurricane should 

change direction and move further inland, it will not necessarily increase the number of power 

outages, as the highest population density is close to the coast.  

 

Prior to our simulations, most people would likely have expected that the largest number of 

power outages would be related to a hurricane moving along the east coast of the US because 

this is the highest population density area. That a strong hurricane hitting the east coast of the 

US potentially leads to large numbers of power outages has been highlighted also in other 

studies. The National Infrastructure Simulation and Analysis Center (NISAC)
 (0)

 have 

performed a study looking at the impact of a category 3 hurricane in the New England area. 

They have used a maximum wind speed of 49 m/s (110 mph), and predicted that 21.5 million 

people could lose power if the simulated hurricane should occur 
(0)

.  

 

This is close to the present simulations run with a peak wind speed of 100 knots (51 m/s). 

Figure 9 presents the fraction of people without power for two different hurricane scenarios 

that are quantitatively similar to the NISAC scenario, with a peak wind speed of 100 knots. 

As we can see, our hurricane scenarios include a larger impacted area, and the related number 

of power outages is 36 million (Figure 9a) or 30 million (Figure 9b). Both of these scenarios 

provide a higher prediction than NISAC, which makes sense as the impact area considered is 

larger. However, both studies produce results where the potential number of outages is higher 
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than previously experienced. The study performed by NISAC can also be seen as an 

argument of why extreme numbers of power outages might not be a surprise at least for the 

scientific community, after they have seen the results of simulated storms  

  

The results from the present simulations show a substantial gap between the number of power 

outages experienced in the US and the identified potential. We argue that this is an important 

finding, as this information can be used to evaluate the need for measures to potentially reduce the 

number of power outages caused by strong winds as well as measures to respond to much larger 

loss of power events than previously experienced. These measures can be implemented in the days 

before a hurricane hits. These simulation results can also provide guidance to support longer-term 

system hardening planning. 

 

Evaluating risk reducing measures are, however, challenging, without addressing the likelihood of 

the different hurricane scenarios. Table I provides an overview of the number and strength of 

historical hurricanes registered between 1948 and 2012. We can see that most hurricanes make 

landfall in Zone 1. For Zone 4, where our simulations lead to the highest number of power outages, 

the number of storms is approximately half of what is seen in Zone 1. During the 64 years from 1948 

to 2012 there was an average of 0.77 storms each year in Zone 4. If we assume that the occurrence 

and strength of the historical hurricanes is representative for the future hurricanes in the US, we can 

say that it is likely that we will experience a hurricane in this area during the next couple of years. 

However, the relevance of these historical data is debated (Staid et al.)(0). This discussion is 

influenced by the potential impact climate warming might have on future hurricane scenarios, both 

with regards to location, intensity and the number of expected hurricanes per year (frequency). 

According to (Staid et al.)(0)
, researchers seem to agree that the hurricanes will intensify, while 

changes in both the location and frequency is seen as more uncertain. Predicting these parameters is 

therefore challenging, especially when considering potential hurricane scenarios 20 years from now. 

When making predictions related to next year’s hurricane scenarios, it is easier to consider historical 

data as relevant and the uncertainty related to the intensity, fraction and location of next year’s 

hurricanes can be considered as low. However, in order to perform long term planning and 

evaluating different measures that can improve the US power system, long term predictions are 

necessary. The lack of knowledge related to the future hurricane scenarios (epistemic uncertainty, 

due to potential future consequences of climate change), reduces the relevance of the historic 

hurricane fraction, location and intensity. This uncertainty is important to keep in mind when 

discussing potential future hurricane scenarios and evaluating the need for risk reducing measures.   
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5 Discussion of simulation results in a risk analysis context  

The simulations presented in Section 0 were carried out to get a better understanding of if and how 

a simulation model can be used to reduce the domain of surprising extreme events. For the 

hurricane example used in this paper, the phenomenon is to a large degree known. There is strong 

knowledge related to how hurricanes affect the power system. The uncertainties related to the 

number of power outages given a specific hurricane scenario is mostly caused by random variation 

(randomness). That is, if the detailed hurricane scenario (hurricane track and peak wind speed) is 

known, the related number of power outages can be considered as subject to random variation. 

However, our outage model is fully deterministic given the full set of model inputs. The randomness 

in outages is randomness in what is realized in practice for a given hurricane. There is strong 

knowledge related to the number of power outages given a specific hurricane scenario (a 

relationship modelled by the power outages model). However, there is lack of knowledge related to 

the future hurricane scenarios, especially their future tracks and intensity. We do not know the 

details of how hurricane frequency, intensity, and landfall location will change in response to climate 

change (Staid et al.)(0). This uncertainty is epistemic. In addition, the model is built on historical data 

and there is epistemic uncertainty related to whether or not the model will be representative for the 

future. For example, one source of epistemic uncertainty is related to the population: Will large 

groups of the population move, so that there are more (less) people living in other areas than 

assumed in the model. Also, if major revisions and updates are done on the power system, this can 

influence the prediction accuracy of the model used, and is not accounted for in the simulations 

performed in the present paper. Uncertainties related to future hurricane scenarios therefore 

include both aleatory and epistemic uncertainty. This is in accordance with Patè-Cornell’s (0) 

observation; in real life situations, most surprises occur when we have a combination of both 

aleatory and epistemic uncertainty. Making a clear distinction between “perfect storms” and “black 

swans” in real life is therefore, in our opinion, difficult. By elimination we can conclude that, as 

future hurricane scenarios are influenced by more than aleatory uncertainty, they cannot be 

addressed as perfect storms. We are therefore considering black swans as the most appropriate 

term in this paper.  

 

5.1 Reducing the domain of black swans and perfect storms 
Section 0 presented a set of arguments related to what a simulation model and its simulations would 

have to provide in order to reduce the domain of different types of black swans. Based on our 

simulations we see that the simulation model is useful in different ways in order to reduce the 

domain of black swans. However, in some situations they are more useful than others. In the 

following, we will use the hurricane example to see how these simulations have provided 
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information that can be used to reduce the domain of the different types of black swans. Our 

thinking follow the same lines as Kaplan and Garrick (0, p. 12), namely that “If we know there is a hole in 

the road around the corner, it poses less risk to us than if we zip around not knowing about it.” Their 

argument being that, awareness on its own, can be enough to reduce risk. However, we believe that 

the information (knowledge) has to be used in order to reduce risk. In our situation that means that 

the information has to be used either to reduce the probability of a hurricane occurring (not 

generally possible), or the impact should a hurricane occur. We argue that our simulations provide 

information that can be used to emphasize the importance of investing in measures that can be used 

to reduce the impact of a hurricane.  

 

The main advantages of the simulations are, in our opinion, related to black swans of type b) and c). 

Distinguishing between b) and c) is challenging as it depends on the original belief of the different 

stakeholders (utility companies, politicians, laypeople etc.). Let us consider two groups of relevant 

stakeholders that are asked to assign a probability to the event, “a hurricane result in more than 30 

million power outages”. Some do not even consider  the event that an hurricane might result in 

more than 30 million power outages, let us call them group 1. The other group thinks that it can 

happen, but that the probability of its occurrence is so low that it can be ignored, group 2. If a 

hurricane resulting in more than 30 million power outages occurs, it will, for both groups 1 and 2 be 

seen as a surprise with extreme consequences – a black swan. For group 1 it was a black swan type 

b), while for group 2 it was a black swan type c). The aim of our simulations has been to provide 

information that can change the original belief of these groups, by illustrating the possibility for 

extreme number of power outages.  

 

One of the reviewers of an earlier version of the present paper wanted to know if our results could 

actually be seen as surprising should they occur. To respond to this question we sent an informal 

email to a set of relevant stakeholders to create an understanding of their perceptions related to 

potential hurricane scenarios. These individuals included both leading experts on hurricane-induced 

power outages and members of the general public. None of them had seen the result of this paper. 

The question raised was: “What would a particularly bad hurricane look like in the US in terms of 

number of outages?” We got a range of different answers, but the similarity between them was that 

they were far from the scenarios that we have identified. The highest number suggested was 30 

million, and that was suggested as a “worst case scenario”.   

 

Our results indicate that there is a potential for hurricanes with almost two times as many power 

outages as predicted by the experts, and more than five times the number of power outages 

experienced during hurricane Sandy. Even for relatively low peak wind speeds (50 knots (26 m/s)) a 
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hurricane moving along the East Coast (north of Florida) can result in more power outages than 

hurricane Sandy. This is information that will influence the original beliefs in group 1 and 2 (and also 

those replying to our informal survey). For group 1, this knowledge means that a larger number of 

power outages needs to be considered, and included in the risk assessment. Group 2 can use this 

insight to reevaluate the probability of experiencing more power outages than seen so far, 

potentially concluding that the event can no longer be ignored due to negligible probability. That 

way, the risk analysts (and relevant stakeholders) in groups 1 and 2 will not be that surprised if a 

hurricane results in more than 30 million power outages. This insight should be used to evaluate the 

need for risk reducing measures (0), and potentially reduce the domain of black swans type b) or/and 

c).  

 

For black swans of type a) it is more challenging to see how our simulations can be useful. However, 

they are not completely irrelevant for black swans type a), and in our example we can see that the 

simulations identify a question; “why does the number of power outages stabilize when the peak 

wind speed reaches 125 knots (64 m/s) in zones 2 and 4 and not in Zone 3?” Investigating questions 

like this can reveal new information (or potential areas for model improvements). For our example 

this is relatively unlikely, but in a general, simulations can raise interesting and important questions 

that can be used to direct and prioritise research. In this way, research can generate new knowledge 

and identify new phenomenon, potentially reducing the domain of black swans type a).  

 

5.2 Benefits and challenges when using simulation models to identify 

potentially surprising scenarios 
Simulations can provide useful insight when evaluating the costs related to the implementation of 

risk reducing measures. For the situation considered in this paper, the simulations provide insight 

that should be used when considering the future costs of power outages in the USA. These costs are 

relevant inputs when evaluating the need for upgraded power systems. A report from the Economic 

Development Research Group (0) argues that the best way to estimate the magnitude of future costs 

(caused by power outages) is to consider the scale of historical costs. When only considering 

historical costs a tacit assumption is made; namely that the historical cost related to power outages 

is representative for the future. This assumption ignores important uncertainties related to future 

costs as our simulations show that there is a potential for (significantly) higher numbers of power 

outages than seen so far. In addition, some researchers argue that climate change will influence 

future hurricanes. However, the effect of climate change on future hurricanes is not that clear (0). 

Updates to the power system can be considered as a risk reducing measure, where the aim is to 

reduce the number or/and duration of power outages. In addition, simulation models are useful 

when performing emergency planning and preparation. How can and should we prepare for extreme 

hurricane scenarios? What can be done in order to reduce the consequences as much as possible? 
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These questions are important, and very difficult to answer without insight about potential future 

hurricane scenarios and their severity. Insights about potential future scenarios are also valuable 

during design. In this phase, simulations can create inputs useful when evaluating the need for 

robust or/and resilient solutions.     

 

Another benefit of using simulations is related to early warning signals. Simulations do not directly 

create early warning signals, but simulations can identify extreme impact scenarios. Knowing what 

these scenarios look like can be used to recognize relevant information, signals and interactions 

quicker than if these scenarios were unknown (Van der Merwe) (0). Van der Merwe (0, p. xxi) illustrates 

how scenario thinking can create awareness by referring to last time you purchased a car; “What did 

you notice when you drove your [new] car onto the streets? You probably noticed how many people 

were driving the same car!” This makes it seem like there were many more of these cars than before 

your purchase. This is a good example of how background knowledge influences the details or 

signals to which attention is given. Before buying a new car, that car did not have any special 

meaning; there was no reason to look for a car of that particular type. By the use of simulations we 

can create awareness related to potential future scenarios, making it easier to know what to look for 

and recognize the early warning signals.     

 

The challenges related to the use of simulations are to a large degree dependent on the verification 

and validation of the simulation model used and relevance of the data that the model is based on. 

Simulations based on a model that cannot be justified can create scenarios that are not only 

imprecise, but also misleading. The importance of using a verified and validated model cannot be 

underestimated. In addition, simulations might in some situations be very resource demanding.     

 

6 Conclusions 

In the present paper we have seen how simulations, through increased insight, can reduce the 

domain of black swans. Here we concluded that the use of simulations was most useful when 

reducing the domain of black swans of type b) and c), the unknown knowns and the known events 

where the probability is judged as negligible. For black swans type a), the unknown unknowns, we 

concluded that it was difficult to see how simulations directly could be used to identify new 

phenomenon, which would have been necessary to reduce the domain of black swans caused by an 

unknown phenomena. However, we argue that, in some situations, simulations can be used to 

identify areas where more research potentially lead to understanding and identification of a new 
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phenomenon, creating new knowledge which indirectly might reduce the domain of the unknown 

unknowns.  

 

By using a simulation model to predict the potential future number of power outages we have 

increased the understanding of the potential impact a hurricane might have on the US power 

system. We have seen that the number of power outages experienced so far (in the US) is low 

compared to the potential, and that relatively low peak wind speeds can result in large number of 

power outages. The most surprising simulation result is related to a relatively weak hurricane with a 

track along the east coast of the US (north of Florida). The 1-minute maximum wind speed is 26 m/s 

and the predicted number of power outages is above 10 million, larger than previously experienced 

anywhere in the US. The largest predicted number of power outages is also related to a hurricane 

with a track along the east coast of the US, with a maximum wind speed of 77 m/s. The predicted 

number of 54 million power outages is five times higher than the highest experienced number of 

power outages in the US. This is important information that should be included when evaluating the 

need for risk reducing measures.  
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Figure 1 Summarization of simulation methodology. 
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Figure 2a) Top 10 tracks in each zone with maximum peak 
wind speed of 34 knots (17 m/s).  

 
Figure 2b) Top 10 tracks in each zone with maximum peak 
wind speed of 125 knots (64 m/s). 
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Figure 3a) CDF for all peak wind speeds in Zone 1. 

 
Figure 3b) CDF for all peak wind speeds in Zone2. 

 
Figure 3c) CDF for all peak wind speeds in Zone3. 

 
Figure 3d) CDF for all peak wind speeds in Zone 4. 
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Figure 4a) Convergence plot for Zone 1. 

 
Figure 4b) Convergence plot for Zone 2.  

 
Figure 4c) Convergence plot for Zone 3. 

 
Figure 4d) Convergence plot for Zone 4. 
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Figure 5 Maximum number of power outages for each peak wind speed, compared with hurricane 

Sandy 
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Figure 6a) Fraction of people without power in Zone 1 for the 
worst storm found for 170 knots (88 m/s) wind speed. The 
predicted number of power outages in 10.9 million.   

 Figure 6b) Fraction of people without power in Zone 1 
for the worst storm found for 150 knots (77 m/s) wind 
speed. The predicted number of power outages in 10.5 
million. 
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Figure 7a) Fraction of people without power in Zone 4 for the 
worst storm found for 170 knots (88 m/s) wind speed. The 
predicted number of power outages is 54.7 million. 

 Figure 7b) Fraction of people without power in Zone 4 
for the worst storm found for 150 knots (77 m/s) wind 
speed. The predicted number of power outages is 52.7 
million.  
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Figure 8 Tail of cumulative distribution function for number of power outages, X, for four different scenarios. 
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Figure 9a) Fraction without power, given a hurricane 
with a peak wind speed of 100 knots (51 m/s). 
Predicted number of power outages is approximately 
36 million.  

 
Figure 9b) Fraction without power, given a hurricane with a 
peak wind speed of 100 knots (51 m/s). Predicted number of 
power outages is approximately 30 million. 
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Table I Historical hurricanes in period from 1948 to 2012, divided by zone. 

Location Number of hurricanes 
from 1948 to 2012 

Average number of 
hurricanes per 
year 

Maximum wind speed 
on record 

Zone 1 103 1.6 165 knots (85 m/s) 
(Camille) 

Zone 2 43 1.7 111 knots (57 m/s) 
(Isabell, 1964) 

Zone 3 57 0.9 128 knots (66 m/s) 
(Andrew, 1992) 

Zone 4 49 0.8 113 knots (58 m/s) 
(Helene 1958) 
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Table II Number of simulations for peak wind 170 and 150 knot. 

Peak 

wind 

speed 

Zone Replications 

170 knot / 

88 m/s 

1 3506 

2 1016 

3 4930 

4 15070 

150 knot / 

77 m/s 

1 3529 

2 1004 

3 4848 

4 15152 

 


