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This review concentrates on US research activities in the area of cometary plasma physics during the four 
year period from 1987 to 1990. This quadrennium immediately followed the historic "traffic jam" on the 
dusty roads of Giacobini-Zinner and Halley; during this period there has been a substantial increase of 
activity in the area of cometary science. During these years the "comet rush" resulted in a better 
understanding of the major physical and chemical processes controlling cometary environments. The 
quantitative and qualitative leap of available information paved the road to a new generation. of 
comprehensive models synthesizing our knowledge about the ionosphere. magnetosphere. and solar wmd 
interaction. In spite of these major advances cometary plasma physics is still a rapidly changing - and 
sometimes controversial - subject, and one can can expect significant progress during the next quadrennium. 

INTRODUCTION 

The first results of the spectacular and highly successful 
missions to Comets Giacobini-Zinner and Halley were 
published shortly before the previous IUGG meeting in several 
special publications (Science. vol.232, pp 353-385. 1986; 
Nature, vol. 321, pp 259-366. 1986; Exploration of Halley's 
Comet, eds. B. Battrick, E.]. Rolfe, R. Reinhard, ESA-SP-250. 
1986), but most of the detailed data analysis. interpretation and 
model development has been carried out during the present 
quadrennium. These four years were also characterized by the 
development of a new generation of comprehensive cometary 
plasma environment models synthesizing extensive ground 
based and in situ observations. 

It was recognized about a quarter century ago [Biermann et 
al., 1967] that the expanding cometary exosphere represents 
an extensive, "soft" obstacle for the supersonic and super
Alfvenic solar wind flow. The resulting interaction is very 
different from that with other solar system bodies with 
gravitationally bound dense atmospheres and/or significant 
intrinsic magnetic fields. Neutral atoms and molecules of 
cometary origin become ionized (because of photoionization, 
charge transfer or electron impact ionization) with 
characteristic ionization scale lengths of 105 - 107 km. The 
ionization process introduces a new. practically stationary 
particle into the high speed magnetized flow of the solar wind. 
Spacecraft instrumentation at comets Giacobini-Zinner and 
Halley detected large amplitude low frequency magnetic field 
fluctuations. These fluctuations grow from the relatively low 
solar wind turbulence level (at large cometocentric distances) to 
very large amplitudes in the vicinity of the bow shock. The 
enhanced fluctuation level is due to instabilities associated 
with the solar wind interaction with ionized cometary material. 

In their pioneering work Biermann et al. [1967] assumed that 
the plasma flow rapidly accommodates the new ions. i.e. the 
entire plasma popUlation can be characterized by a single 
temperature and flow velocity. Biermann et al. [1967] had also 
predicted that the deceleration of the solar wind flow by mass 
loading leads to the formation of a weak shock and the flow is 
impulsively decelerated to subsonic velocities. Later Galeev et 
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al. [1985] recognized that implanted cometary ions carry most 
of the hydrodynamic pressure and that charge exchange cooling 
of the implanted plasma population can play a very important 
role in the dynamics of the contaminated solar wind flow. 
Their model predicted a weak and highly structured shock with a 
viscous subshock, a continuously decelerated and cooled 
plasma flow behind the shock and fmally a stagnation region. 
The in situ measurements later confirmed the gross features 
predicted by this model. 

Downstream of the bow shock the plasma population is a 
varying mixture of shocked plasma (solar wind contaminated 
with upstream pick-up particles) and cometary plasma ionized 
in the subsonic region. This region is called the 
cometosheath. The cometosheath is characterized by a rapidly 
increasing rate of ion pickup (as the plasma moves towards the 
comet), 'resulting in continuous deceleration (and eventual 
stagnation) of the plasma flow, accompanied by increasing 
plasma density and magnetic field magnitude. The inner. 
nearly stagnating region of the cometosheath is primarily 
photochemically controlled and the plasma density varies as 
r- l . 

Our understanding of the main physical processes 
controlling the "ionopause" (the surface separating the 
magnetized cometosheath plasma from the magnetic field-free 
inner cometary ionosphere) was significantly modified by 
Giotto's encounter with comet Halley. The diamagnetic cavity 
boundary is formed at a location where the inward-pointing 
(towards the comet) total magnetic force (the sum of the 
magnetic pressure gradient and magnetic curvature forces) is 
balanced by the outward pointing ion-neutral drag force. 
Before the cometary encounters. an inner shock was predicted 
inside the "ionopause" to decelerate the supersonic outflow of 
the cometary ions and divert them toward the tail [Wallis and 
Dryer. 1976]. In !eality, the drag by the rapidly expanding 
neutral gas forces the plasma to maintain supersonic velocity 
up to the immediate vicinity of the diamagnetic cavity 
boundary, where it undergoes a shock transition [Cravens, 
1989b]. The shocked ionospheric plasma piles up, and is 
rapidly removed by recombination. 

This review focuses on recent (1987-1990) US contributions 
to cometary plasma physics. Special attention will be given to 

models and observations that modified our pre-encounter 
understanding of cometary plasma environments. 
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MAss loADING AND ITS CONSEQUENCES 

INTIIE UPSTREAM REGION 

Our present, post-encounter understanding of cometary 
nuclei is based on Whipple's [1950] "dirty iceball" idea, which 
visualizes them as chunks of ice, rock, and dust with negligible 
surface gravity. As comets approach the sun, water vapor and 
other volatile gases sublimate from the surface layers 
generating a rapidly expanding dusty atmosphere. The 
sublimated gas molecules (often called parent molecules) 
undergo collisions and various fast photochemical processes 
in the near nucleus region, thus producing a whole chain of 
daughter atoms and molecules. There is growing evidence that 
dust grain photochemistry, as well as gas - dust chemical 
reactions also contribute to the generation of the observed 
atmospheric composition. 

A well developed cometary atmosphere extends to distances 
some six orders of magnitude larger than the size of the 
nucleus. The dominant neutral molecules in this extended 
exosphere are H20, CO2, CO and their daughter products. Most 
of these neutral particles move with velocities of about 1 km/s 
with respect to the cometary nucleus and with a velocity of 
about -0 (0 =solar wind velocity) with respect to the plasma 
flow. Pickup of cometary particles, ionized by 
photoionization. charge exchange or electron impact, is the 
main physical process whereby comets interact with the solar 
wind. 

Freshly born ions are accelerated by the motional electric 
field of the high-speed solar wind flow. The ion trajectory is 
:yc!?idal, resulting from the superposition of gyration and 
txB drift. The resulting velocity-space distribution is a ring
beam distribution, where the gyration speed of the ring is v.L =U 

sina, (where u is the bulk plasma speed and a is the angle 
between the solar wind velocity and magnetic field vectors) and 
the beam velocity (along the magnetic field line) is vlI=u cosa. 
The ring beam distribution has large velocity space gradients 
and it is unstable to the generation of low frequency transverse 
waves. 

In the quasi-parallel regime (a:S;600) the initial cometary ion 
velocity component parallel to the magnetic field exceeds the 
perpendicular velocity component. This situation typically 
results in the growth of electromagnetic ion/ion instabilities 
[Gary and Madland, 1988], especially the ion/ion right hand 
resonant instability, which has positive helicity and 
propagates parallel to the beam direction in the solar wind 
frame. These low frequency waves (which are sometimes called 
Alfven waves in the literature, even though strictly speaking 
they are not) are non-compressive, propagate near the Alfven 
speed (V A=B/().I.op)l!2, P being the plasma mass density) and are 
in cyclotron resonance with the pickup ions themselves. 

In the quasi-perpendicular regime (60o:s;a:S;900) the parallel 
velocity is smaller than the perpendicular one and the left-hand 
polarized electromagnetic ion-cyclotron instability becomes 
the dominant wave mode. There are two ion-cyclotron 
anisotropy instabilities: a positive helicity mode (which 
propagates antiparallel to the beam) and a negative helicity 
mode (which propagates parallel to the beam [Gary and 
Schriver, 1987]). In the limit of a=90o, these two instabilities 
grow at the same rate. The pickup-process-generated 
instabilities and their growth rates were discussed in a series of 
papers (cf. [Brinca and Tsurutani, 1987a; Brinca and Tsurutani, 
1987b; Brinca and Tsurutani, 1988a; Brinca and Tsurutani, 
1988b; Brinca and Tsurutani, 1989a; Brinca and Tsurutani, 
1989b; Brinca et aI., 1989; Gaffey et al., 1988; Gary et aI., 

1989; Gary and Madland, 1988; Gary et aI., 1988; Gary and 
Omidi, 1987; Gary and Sinha, 1989; Goldstein et al., 1987b; 
Goldstein and Wong, 1987; Goidstein et aI., 1990; Lee, 1989; 
Lee and [p, 1987; Sagdeev et aI., 1986; Thorne and Tsurutani, 
1988; Winske et aI., 1985; Wu and Davidson, 1972]). 

Upstream of the shock, where the condition V A/u«l is 
satisfied, the combination of ambient and self-generated 
magnetic field turbulence pitch-angle scatters each group of 
newborn ions from the pickup ring onto a spherical velocity
space shell of radius u, centered at the average wave phase 
velocity. The average wave velocity primarily depends on the 
angle a. For quasiparallel configurations (a<600) the self 
generated waves primarily propagate in the direction of the 
ring-beam and only a few percent of the cometary turbulence 
propagates backward (toward the comet) [Milier et ai., 1990a; 
Miller et ai., 1990b]. In this case the ambient solar wind 
turbulence is an important contributor to the backward 
propagating waves and the average wave speed is somewhere 
between 0 and V A (see Figure 1). The wave field is 
quantitatively different in the quasiperpendicular case. When 
a>60o, an approximately equal number of the pickup generated 
waves moves along the ring-beam and toward the comet [Miller 
et ai., 1990a; Miller et ai., 1990b]. In this situation the 
average wave speed is approximately zero. 

In the case of perpendicular pickup, particles pitch-angle 
scatter toward isotropy in the average wave frame, which 
practically coincides with the solar wind frame. In this 
situation the pickup particles are scattered on the spherical 
velocity space shell B (see Figure 1). In a first approximation 
the pickup particles interact with the low frequency waves 
without significantly changing their energy in the average 
wave frame. As a result of this process the pitch angles of the 
pickup-ring particles are scattered on the spherical velocity 
space shell of radius u (see Figure 1) around the local solar wind 
velocity. Observations indicate that this process does not lead 
to pitch-angle isotropy until very close to the cometary shock 
[Coates et aI., 1990a; Coates et ai., 1989a; Coates et ai., 
1989b; Neugebauer et ai., 1990a; Neugebauer et ai., 1987a; 
Neugebauer et ai., 1989b]. The reason is that in the upstream 
region the ion production rate increases exponentially and 
therefore the pickup ion population is dominated by the 
locally implanted particles, which did not have enough time to 
pitch-angle scatter toward isotropy. As one approaches the 
shock region the pitch-angle scattering time decreases, while 

Fig. 1. Potential pitch-angle scauering path of implanted ions in the 
plasma frame. Here a is the angle between the solar wind velocity and 
magnetic field vectors, while v -t and VI represent velocity components 
perpendicular and parallel to the magnetic field. S marks the injection 
velocity of the freshly born particles and the line (SS') is the 
projection of the initial ring distribution to the (v -t, VII) plane. 
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the ion production rate increases only as r2. The consequence 
of these changes is that in this region the bulk of the 
implanted ion population did have enough time to undergo 
considerable pitch-angle scattering, thus their distribution 
approaches isotropy. 

The situation is quite different for quasiparallel geometries 
(a<600). In this case the pickup generated MHD turbulence 
propagates predominantly in the direction of the ring-beam. 
Pickup ring particles, which pitch-angle scatter on these 
fluctuations conserve their energy in the frame of the 
scattering turbulence; therefore, they populate a spherical shell 
centered around (v.L =0, vll= V A, where v.L and VII represent 
velocity components perpendicular and parallel to the 
magnetic field, respectively) and going through the injection 
point, S. This shell is represented by the arcs C and C' in 
Figure 1. At the same time there is ambient solar wind 
turbulence (and a small fraction of the pickup generated MHD 
waves), which propagates at the local Alfven speed along the 
magnetic field lines, and travels predominantly away from the 
sun. In the coordinate system of Figure 1 this turbulence is 
represented by the v.L =0, v 11= -V A point. Pickup ring particles 
scattered on these waves populate a spherical shell centered 
around v .L =0, vll=-V A and going through the injection point, S. 
This shell is marked in Figure 1 by the arcs A and A'. It was 
first suggested by Galeev and Sagdeev [1988] that in the case 
when the energy densities of parallel and antiparallel 
propagating Alfven waves are more or less identical, the two 
lower energy branches (in the plasma frame of reference) are 
most likely to be populated, since a large fraction of the wave 
energy comes from the ions, which therefore lose energy. This 
model predicts a bispherical distribution, with particles 
distributed along the branches A' (centered on -VA) and C 
(centered on V A). The bulk speed of the bispherical 
distribution is moved from the solar wind velocity to a 
velocity parallel to the injection ring beam. 

Implanted ions were detected at comets Giacobini-Zinner and 
Halley [Hynds et al., 1986; Ipavich et al., 1986; Kecskemety 
et al., 1989; McKenna-Lawlor et al., 1989; McKenna-Lawlor et 
al., 1986; Somogyi et al., 1986] as large fluxes of energetic 
particles. A significant part of the detected energetic ion 
population was observed at energies considerably larger than 
the pickup energy, indicating the presence of some kind of 
acceleration process acting on implanted ions. Velocity 
diffusion of lower energy implanted ions (near the pickUp 
energy) has also been observed by several instruments 
upstream of the Comet Halley bow shock [Coates et al., 
1989b; Neugebauer et al., 1989b]. The acceleration of the 
implanted ions in the cometary upstream region has also 
generated considerable theoretical interest. This problem was 
first examined just before the Giacobini-Zinner encounter 
[Amara and Formisano, 1985]. In a subsequent paper written 
shortly before the Halley encounters, Ip and Axford [1986] 
considered five potential mechanisms that can act to accelerate 
implanted ions. They concluded that in cometary 
environments the second-order Fermi acceleration (slow 
velocity diffusion due to the interaction with propagating 
Alfven waves) was likely to play a dominant role in 
accelerating ions of cometary origin far upstream from the 
comets. Later Isenberg [1987a] published an elegant analytic 
solution for a specific scenario, which took into account 
convection, adiabatic acceleration and velocity diffusion . It 
was assumed that the implanted cometary particles were 
scattered between self-generated waves (propagating towards 
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Fig. 2. A schematic representation of the formation of multiple 
shocklets [Omidi and WillSke, 1990a]. 

the sun) and pre-existing waves in the solar wind 
(predominantly propagating away from the sun). In order to be 
able to obtain an analytic solution Isenberg had to make a 
number of simplifying assumptions; nevertheless this 
solution represents a major step towards self-consistent 
modeling of the upstream-region acceleration of implanted 
cometary ions. 

Shortly after Isenberg's analytic solution Gombosi, [1988al 
developed a self-consistent, three-fluid model of plasma 
transport and implanted ion acceleration in the unshocked 
solar wind. In this model the solar wind plasma (assumed to 
contain only protons and electrons) was depleted by charge 
exchange with the expanding cometary exosphere, while 
implanted protons and heavy ions (mainly 0+) were produced 
by photoionization and charge transfer and lost by charge 
exchange. A generalized transport equation describing 
convection, adiabatic and diffusive velocity change, and the 
appropriate production terms, was used to describe the 
evolution of the two cometary ion components, while the 
moments of the Boltzmann equation were used to calculate the 
solar wind density and pressure. This model has recently been 
extended to include the effects of first-order Fermi acceleration 
[Gombosi et al., 1989]. In this new model a modified scenario 
was suggested in which a second-order Fermi mechanism 
accelerates ions to moderate energies in the cometary upstream 
region and then in the foreshock region (where the solar wind 
slows down from its ambient speed to about 0.8 times its 
upstream value [Coates et al., 1987]) the superthermal 
implanted ions are further energized by a diffusive-compressive 
shock acceleration process (first-order Fermi acceleration) 
[Gombosi et al., 1989]. 

THE COMETARY SHOCK 
A newly born cometary ion is initially almost at rest, but is 

subsequently accelerated by the motional electric field of the 
streaming solar wind. Photo ionization and electron impact 
ionization result in the addition of plasma to the contaminated 
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solar wind, while charge exchange replaces a fast ion with an 
almost stationary one. It should be noted that at large 
cometocentric distances the two dominant cometary neutral 
species are H and 0 atoms, which both have large, resonant 
charge exchange cross sections with protons, which represent 
the vast majority of solar wind particles. The H+ +O~ H +0+ 
reaction also adds mass (but not charge) to the plasma. 
Conservation of momentum requires that the solar wind be 
decelerated as newly born charged particles are "picked up" by 
the plasma flow. This effect was fust modeled by Biermann et 
al., [1967], who assumed that the plasma flow rapidly 
accommodates the newly born cometary ions, i.e. the entire 
plasma popUlation can be characterized by a single temperature 
and flow velocity. This assumption made it possible to apply a 
single-fluid hydrodynamic treatment to the continuously mass 
loaded plasma flow and to use the conservation equations to 
describe the deceleration of the contaminated solar wind flow. 
Biermann et al. [1967] had also shown that continuous 
deceleration of the solar wind flow by mass loading is possible 
only up to a certain point at which the mean molecular weight 
of the plasma particles reaches a critical value. At this point a 
weak shock forms and impUlsively decelerates the flow to 
subsonic velocities. 

Wallis and Ong [1975] were the first to recognize that 
implanted cometary ions do not accommodate to the solar wind 
flow; therefore the application of a single-fluid hydrodynamic 
treatment was unjustified. By assuming that the flow velocity 
was perpendicular to the magnetic field direction and that the 
first adiabatic invariant of cometary ions was conserved, they 
were able to determine the implanted particle distribution 
function and combine it with the magnetohydrodynamic 
equations to obtain the contaminated solar wind flow 
parameters. In a subsequent calculation, Galeev et aI. [1985] 
recognized that implanted cometary ions carry most of the 
hydrodynamic pressure and that charge exchange cooling of the 
implanted plasma population can play a very important role in 
the dynamics of the contaminated solar wind flow. In this 
calculation, generalized transport equations were applied to 
describe the continuously contaminated plasma flow along the 
subsolar line. The model predicted a weak and highly structured 
shock with a viscous subshock, a continuously decelerated and 
cooled plasma flow behind the shock and finally a stagnation 
region. 

Bow shock crossings were identified in the data from each of 
the Halley flyby spacecraft at approximately the expected 
locations. The shock jumps were clearly defmed in many of the 
observations from the plasma probes and magnetometers on 
Giotto, VEGA and Suisei. For Giacobini-Zinner it is generally 
recognized that the pickup ions generated so much mass 
loading and turbulence that the shock crossing was extremely 
thick and difficult to identify. The detailed physical reason for 
the differences is still the subject of debate. The cometary 
"shock wave" is quite different than the "classical" planetary 
and interplanetary shocks, because the deceleration and 
dissipation is due to mass loading and wave-particle interaction 
and they take place over a very large region with the "shock" 
being only the downstream boundary of an extended distributed 
process. Omidi and Winske suggest that the concept of a 
single bow shock should be replaced by a series of relatively 
weak shocklets that evolve from steepened magneto sonic 
waves [Omidi and Winske, 1988; Omidi and Winske, 1990a; 
Omidi and Winske, 1990b]. These authors carried out a two
step plasma simulation: first a large system was used to 

generate a series of kinetic magneto sonic waves via the 
resonant electromagnetic ion-beam instability, while in the 
second step one of these was isolated and its non-linear 
evolution was investigated in a smaller periodic box. These 
simulations clearly show the development of steepened 
magnetosonic waves, which are localized shock waves, termed 
shocklets, [Omidi and Winske, 1988; Omidi and Winske, 
1990a; Omidi and Winske, 1990b]. The shocklets move with a 
velocity of 2-3 V A towards the sun (in the plasma frame of 
reference), but in the cometary frame they are transported 
downstream, consequently, they can not form a standing 
"planetary" shock upstream of the comet. Omidi and Winske 
concluded that the solar wind is not shocked by a single 
standing shock, but by a series of localized, downstream
transported shocklets [Omidi and Winske, 1988; Omidi and 
Winske, 1990a; Omidi and Winske, 1990b]. It was pointed out 
by Neugebauer [1990] that the magnetic profiles of Omidi and 
Winske's shocklets are strikingly similar to the steepened 
magnetosonic waves observed at Giacobini-Zinner [Tsurutani 
et aI., 1987b]. 

FROM THE SHOCK TO THE DIAMAGNETIC CAVITY: 

THE COMETOSHEA TH 

The cometosheath is located between the cometary shock 
and the magnetic field free region in the innermost coma. The 
plasma population in the cometosheath is a changing mixture 
of ambient solar wind and particles picked up upstream and 
downstream of the shock. The distinction between cometary 
particles picked up outside and inside the shock is important 
because of the large difference in their random energy. The 
random energy of ions in a pickup shell is typically 20 ke V for 
0+ ions picked up upstream of the shock. Cometary ions born 
behind the shock are picked up at smaller values of u, and 
consequently, the random energy of their pickUp shell is 
significantly smaller than that of ions born upstream of the 
shock. Overall ions retain (in their energy) a memory of where 
they were born, and the plasma frame energy of pickup ions 
decreases with decreasing cometocentric distance. The 
observed distribution functions are complicated, but behind the 
shock they become quite isotropic [Coates et aI., 1990a; 
Coates et al., 1989b; Neugebauer, 1990; Neugebauer et al., 
1989b]. 

The cometosheath is one of the most interesting and 
controversial regions of the cometary plasma environment. 
This fact is not surprising because several independent 
measurements were carried out in this region, but the temporal 
and spatial extent of the observations were limited enough to 
leave plenty of room for different interpretations. 

One of the debated issues is whether or not energetic 
electrons are a permanent feature of the cometosheath' The 
electron spectrometer on Giotto observed large fluxes of 
energetic (0.8-3.6 keV) electrons in the so called "mystery 
region" between about 8.5xl05 and 5.5x105 km [Reme, 1990]. 
At a cometocentric distance of about 5.5xl05 km these fluxes 
abruptly disappeared, simultaneously with a sudden decrease of 
the total ion density and velocity and an increase of the ion 
temperature. At the same time the magnetic field changed 
direction and became much smoother. Reme interpreted this 
change as a permanent feature of the cometosheath and found 
similar events in the Vega and Suisei data sets [Reme, 1990]. 
A different view was presented by Gringauz and Verigin [1990], 
who did not see evidence of the presence of energetic electrons 
in the cometosheath and interpret the Giotto energetic electron 
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event as a transient feature generated by a passing 
interplanetary disturbance. 

Another subject where different opinIOns exist is the 
collisionopause. Near the shock the plasma is practically 
collisionless, but collisions become more and more important 
as one approaches the inner regions of the cometosheath, 
because both the neutral gas and plasma densities increase and 
the plasma flow velocity decreases. One definition of the 
collisionopause was given by Mendis et ai., [1986], who 
defmed it as the boundary where the mean free path of the ion
neutral momentum transfer collisions equals to the 
cometocentric distance. On the other hand there are many 
kinds of different collisions, such as charge exchange, elastic 
electron-ion and ion-neutral, electron impact ionization, ion
neutral chemistry; and the collisionopause for every single 
process will be located at different cometocentric distances 
[Cravens, 1989a; Cravens, 1990a]. Cravens defines the 
collisionopause for a given collisional process as the 
boundary where the characteristic transport time ('tT) of the 
plasma is equal to the characteristic collision time ('tc) for the 
given process [Cravens, 1989a]. Cravens estimates that the 
ion-neutral charge transfer collisionopause is located at about 
1.5x105 km, while the collisionopause of H20+ (due to ion
neutral chemistry) is located at about 4x104 km [Cravens, 
1989a]. 

Another very interesting feature in the cometosheath is the 
cometopause, discovered by the Vega plasma instrument 
[Gringauz et ai., 1986a; Gringauz et al., 1986bJ. At around 
1.65xl05 km the PLASMAG instrument observed a sharp 
transition from a primarily solar wind proton dominated 
plasma population to a mainly cometary water group ion 
plasma. This transition was also accompanied by a moderate 
increase in the low frequency plasma wave intensity, while 
there were no obvious changes in the magnetic field [Gaieev et 
al., 1988]. The plasma instrument on Giotto also observed a 
plasma boundary at about 1.35x 1 05 km cometocentric 
distance. However, there were important differences between 
the Vega and Giotto observations. As summarized by 
Neugebauer, [1990], the Giotto magnetometer observed an 
increase of the magnetic field magnitude by about a factor of 4 
[Neubauer et ai., 1986], accompanied by a decrease of electron 
density and a change in the angular distribution of electrons 
from nearly isotropic to strongly anisotropic [d'Uston et ai., 
1989]. The ion composition changed from solar wind protons 
to primarily cometary water group ions, but the transition was 
much broader than either the magnetic discontinuity observed 
by Giotto or the cometopause observed by Vega [Neugebauer, 
1990]. The unexpected feature of the cometopause was not its 
existence (a gradual transition from solar wind dominated 
plasma flow to a heavily contaminated, pick-up ion dominated 
plasma was predicted by several theoretical models [Galeev et 
al., 1985; Mendis et al., 1985]), but its sharpness. It should 
be mentioned that some scientists question the existance of the 
cometopause: they argue that this structure is probably the 
result of passing interplanetary discontinuities [Reme, 1990]. 

Several theoretical models were suggested to explain the 
physics of the cometopause. The models can be divided into 
two broad categories: collective and collisional. Collective 
models explain the transition by some kind of resonant 
interaction. Galeev et al., [1988] suggested that at the 
cometopause the flIehose instability is excited by the velocity 
difference between the fast solar wind protons and slower 
cometary ions. This instability can result in a collisionless 

deceleration of the protons and a simultaneous isotropization 
of the proton distribution function. Outside of the 
cometopause cometary implanted ions gyrate around the 
magnetic field carried by the solar wind protons, while inside 
the cometopause the field is carried by cometary ions and the 
solar wind protons gyrate around the field. This means that the 
plasma detector pointing to the ram direction will see an abrupt 
increase in the number of detected cometary ions and a 
simultaneous decrease in the number of detected protons 
[Gaieev et aI., 1988]. Another plasmaphysical model is a 1D 
multi fluid MHD description, allowing for different solar wind 
proton and implanted ion flow velocities. In this model the 
flow decelerates near lOS km, where the flow speed and the 
proton Alfven speed are equal, indicating the presence of some 
kind of resonant interaction [Sauer et ai., 1990]. 

One of the collisional models considers the cometopause to 
be a boundary where enhanced momentum transfer with the 
outflowing neutrals decelerate the inflowing contaminated 
solar wind [Flammer, 1990; Mendis et al., 1989]. In this 
model the cometocentric distance of the cometopause (along 
the sun-comet line) is obtained by simply equating the 
momentum transfer mean free path with the radial distance from 
the nucleus. Another collisional model, which is capable of 
explaining the sharp transition at the cometopause, was put 
forward by Gombosi [1987], who suggested that an 
"avalanche" of charge exchange collisions in the decelerating 
plasma flow can rapidly deplete the solar wind proton 
population and replace it with slower water group ions. In 
order to illustrate this process, Gombosi [1987] published a 
one-dimensional analytic solution to the multispecies 
transport equations (valid along the sun-comet line). Later /p 
[1989] extended Gombosi's [1987] model to two dimensions 
using the flow field generated by a 3D MHD model [Fedder et 
al., 1986]. Figure 3 shows a comparison of Ip's calculations 
with the Giotto observations. Inspection of Figure 3 shows a 
good general agreement for water group ions, but shows solar 
wind protons penetrate further into the coma than expected. 
This discrepancy might be due to somewhat incorrect 
aeronomic parameters (the charge exchange cross sections are 
not well known) or to the neglect of magnetic field effects 
(after all, observations also show the presence of a magnetic 
discontinuity). It should be noted that magnetic field effects 
were included in the 3D MHD model of Wegmann et al., 
[1987], which also incorporated detailed chemistry. However, 
the Wegmann et al. [1987] calculation had only a limited 
spatial resolution in the vicinity of the cometopause. 

Inside the cometopause ion-neutral chemistry and 
recombination starts to become more and more important. 
Inside the collisionopause of the dominant process controlling 
a particular species, photochemistry dominates. For instance, 
the collisionopauses of the H20+ and H30+ ions are located at 
about 4x104 km and 2x104 km, respectively [Cravens, 1989a; 
Cravens, 1990a]. Inside these boundaries the net production 
rates of the H20+ and H30+ ions are nearly zero (i.e., 
production equals loss everywhere). For instance, H30+ is 
produced by the H:P+ + H20 ~ H30+ + OH reaction and is lost 
by dissociative recombination, H30+ + e ~ H20 + H. Inside 
the H30+ collisionopause the major ion is H30+, consequently 
the electron density can be obtained by equating the production 
and loss rates. The resulting electron density is inversely 
proportional to the cometocentric distance and proportional to 
Tl~4 (cf. [Cravens, 1989a; Cravens, 1990a; /p et ai., 1987]). 
This result was experimentally verified by the Giotto ion mass 
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(Taken from [p, [1989). 

spectrometer [Balsiger et al., 1987; Balsiger et al., 1986]. It 
should also be pointed out that uncertainties of many of the 
important cross sections and reaction rates make realistic 
modeling of most collisional processes quite difficult. 

In the collision dominated inner region the energetics of 
ions and electrons is controlled by local processes, such as 
photochemical and collisional heating. Due to the very strong 
ion-neutral coupling the ion temperature in this region is 
mainly determined by the neutral temperature with corrections 
due to photechemical heating (resulting in about a lOOK 
increase) and ion-neutral frictional heating [Cravens, 1987; 
Haerendel, 1987]. 

Electrons outside the stagnation region are basically of solar 
wind origin, while in the dense inner coma the electron 
distribution is greatly modified by collisions and with the 
addition of a photoelectron popUlation. Several theoretical 
models were published to describe this changing electron 
distribution [Gan and Cravens, 1990; Korosmezey et al., 
1987]. These models consider two electron populations: a cold 
and dense component (Ile-l03-104 cm-3, Tc<1 eY), and an 
energetic photoelectron population. The photoelectrons heat 
the colder thermal population via Coulomb collisions. 

THE DiAMAGNETIC CAVITY BOUNDARY 

AND THE INNER SHOCK 

Before the Giotto encounter there was a vigorous debate in 
the literature about the existence and nature of the "ionopause" 
or "contact surface", separating the mixed, solar wind 

controlled magnetized plasma from the magnetic field free, 
cometary ionosphere (for an excellent pre-encounter review see 
[Mendis et al., 1985]). At a cometocentric distance of about 
4600 km the Giotto magnetometer detected a very sharp drop of 
the magnetic field magnitude from about 60 nT to practically 
zero [Neubauer et al., 1986]. Behind this boundary the 
spacecraft entered into a magnetic field free region, the 
diamagnetic cavity. The inner edge of the diamagnetic cavity 
boundary was very thin: the field decresed from 20 nT to zero 
within about 25 km [Neubauer, 1988]. 

There is a debate going on in the cometary plasma physics 
community about the terminology to be used for this boundary. 
Some people prefer the term "ionopause", indicating that this 
boundary separates the solar wind controlled outer region from 
the inner one, entirely controlled by cometary dynamics. On 
the other hand the cometary "ionosphere", the 
photochemically controlled region, extends to the H30 + 

collisionopause, located beyond 1 Q4 km from the nucleus. The 
correct (but not widely used) terminology should be 
"diamagnetic cavity boundary" (DCB), as suggested by Cravens 
[1989b]. 

The observations have led to a series of new theoretical 
studies of the DCB discontinuity [Cravens, 1986; Cravens, 
1989b; Eviatar and Goldstein, 1988; Flammer et al., 1990b; 
Haerendel, 1987; /p et al., 1987]. It has been recognized 
shortly after the Giotto encounter that the dominant factor 
leading to the formation of DCB is the balance between the 
outward ion-neutral frictional force and the inward pointing 
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IxB force (which is a combination of the magnetic pressure 
gradient and the curvature forces) [Cravens, 1986; /p et aI., 
1987]. 

Deep inside the diamagnetic cavity the cometary plasma and 
the neutral gas are very strongly coupled by ion-neutral 
collisions, and they move radially outward with the same 
expansion velocity. Outside the cavity the plasma is nearly 
stagnated (it slowly flows around the DeB). Some ten years 
before the comet encounters Wallis and Dryer [1976] 
considered the interaction of the solar wind with a point-like 
supersonic plasma source, representing the comet. and 
predicted the formation of an inner shock well inside the 
contact surface. This inner shock was assumed to decelerate the 
supersonic cometary ion outflow to subsonic velocities and 
divert the flow towards the plasma tail. On the other hand, 
plasma instruments on Giotto did not see any signs of a shock 
inside the diamagnetic cavity, but detected supersonic outward 
flow of cometary ions right up to the diamagnetic cavity 
boundary (cf. [Neugebauer, 1990]). The observations clearly 
disagree with the prediction of the Wallis and Dryer [1976] 
model and one has to ask the question: what happens to the 
outflowing cometary ions at the DeB? 

This question has recently been addressed using a one 
dimensional MHD calculation [Cravens, 1989b], who 
considered the physical processes in the thin layer (-50 km 
wide) between the stagnated plasma on the outside and 
outflowing plasma on the inside. In the inner part of the 
transition layer the outflow velocity drops to practically zero 
from its supersonic value, while the thermal pressure and the 
particle density increase in order to keep the total pressure 
constant. In the outer part of the layer the density (and the 
pressure) decreases because the large number of low speed 
electrons and ions easily recombine. On the other hand the 
total pressure remains constant throughout the entire transition 
layer; therefore, an increase in the magnetic pressure 
compensates for the decreased thermal pressure in the outer part 
of the layer. Eventually all plasma entering the transition 
layer from the diamagnetic cavity is consumed by 
recombination inside the boundary layer, which truly separates 
the cometary plasma flow from the stagnated solar wind 
controlled outside flow [Cravens, 1989b]. This means that the 
inner shock is very close (-50km) to the DeB. and there is a 

thin density spike between the shock and the diamagnetic 
cavity boundary. Recently, a very high resolution analysis of 
the Giotto ion mass spectrometer data confirmed the existence 
of the density enhancement [Goldstein et aI., 1989). 

THE PLASMA TAIL 

One of the very interesting and so far underexplored 
cometary regions is the plasma tail. The long. narrow plasma 
tail is one of the most visible cometary phenomena, and tails 
have been observed from earth orbit for a very long time. 
However, remote observations have only a very limited ability 
to provide information about such fundamental plasma features 
as magnetic field configuration, collective phenomena or 
reconnection. 

In September 1985 the International Cometary Explorer 
(ICE) flew through the inner tail of comet Giacobini-Zinner. 
The general magnetic field configuration in the tail was quite 
similar to the draped field model put forward by Alfven [Aifven, 
1957]. The ICE spacecraft observed two tail lobes with 
magnetic field magnitudes around 60 nT [Slavin et al., 1986]; 
these lobes were separated by a very thin layer of cold and 
dense plasma [Meyer-Vernet et aI., 1986). 

An extensively studied plasma tail phenomenon has been the 
occasional disconnection of cometary plasma tails. N iedner 
and Brandt, [1978] suggested that interplanetary sector 
boundary crossings are responsible for the disconnection of 
cometary plasma tails. Competing models assume that high 
speed corotating interaction regions (and not necessarily 
sector boundaries) trigger the tail disconnection, or that the 
phenomenon can be explained in terms of complicated 
cometary plasma processes [lockers, 1985; Russell et al., 
1986]. Based on simultaneous ground-based observations and 
information from the Vega magnetometer Niedner and 
Schwingenschuh published evidence for an interplanetary 
sector boundary triggered disconnection event [Niedner and 
Schwingenschuh, 1987]. It is obvious that more information 
is needed to resolve this issue. 

Acknowledgments. This work was supponed by NASA grants 
NAGW-1366 and NAGW-2162. TIlurninating discussions with Drs. 
T.E. Cravens, S.P. Gary, M.A. Lee and M. Neugebauer are also 
acknowledged. 

AlCven. H .• On !be Ibeo!y oC ...... Wh. r.II .... 9. 92. 1957. 
AmalA. E., IDd V. Formi.ano, EncfJization of positive ions in the 

cometary forelhock repon, P14,..,. Spau Sci .. JJ, 1243. 1985. 

Brinea, A.L., On the cleclroma&netic .tability of isotropic 
populations. J. a •• p.,.. R .... 95. 221. 199Ob. 

Coate •• A.I., A.D. John.tone, M.F. Thomsen, V. Fonnjuno, E. 
Amata. 8. Wilken, ~ locken, J.D. WinninJharn. H. Borg, and D.A. 
Bryanl, Solar wind flow through the comel P/Haliey bow .hoc.lc., 
Art,.o,.. At,,.OpIaY3., 1&7, 55, 1987. ADderaon, K.A., C.W. Carboo. D.W. Curti., R.P. lin. H. Rcme. I.A. 

Sauyaud. C. cfU.lon, A. Kolth, A.K. Richter, and D.A. Mendia. The 
DpnR:am repent foresbock and bow .hock waye at comet P/Halley 
from plalma e1e:cuoa meuutcmenU. A.l'ITCHI. Ntropllp., J87. 290, 
1981. 

BalsiXer. H., K.. Ah .. !:". F. Buhler, S.A. FUlelier. J. Geiu, a.E. 
Gcldslcin. R. Goldmin. W.T. H.n ...... W.·H.lp. AJ. !.&zaN •• A. 
Meier, M. Ncuccbauer, U. Reuenmund. H. R.oscnbauer, R. Schwenn, 
E.G. Shelley, E. Un&llrup, and D.T. Youna. The composition and 
dynamic. of cometuy ions in the QUlCr coma of amec P/Halley, 
Af,,..,,.. MITOpIaYI., 187, 163, 1981. 

B.biaCf, H., K. AhweU, F. BUhler, 1. Geiss, A.G. Ghicbncui. B.E. 
Gcldslcin. R. Goldstein. W.T. Hun ...... W.·H. Ip. AJ. !.&zaN'. A. 
Meier, M. Neuaebauer, U. Reuellllumd, H. Roscnbluer, R. Schwerm., 
R.n. Sharp, E.G. Sbelley, E. Un,.uup, and O.T. Youn" loa 
COOIposition mel dynImiClI1 comer. Halley, N41wr" 321, 330, 1986. 

Barboll, D.n., SLocbaltic acc:c1r:ration of CCIIDClary pickup ion': The 
c1a.sicloaky box model. NIT.pIt,.. J .• 341.493. 1989. 

Biemwut. 1... B. BrotOWsIti, one! H.U. Sdunid •• The inrcnaion oC the 
soIu wind with a ........ 5""" P.,. .. I. 254.1967. 

B .. dan. T J .• M.A. Lee. ond P. Schneider. Coupled wa .. dampina and 
IIOdwlic: ac:celerati.on of pickup ions in the lOlar wind, I. G,oplrp. 
R'8., 1990. 

Bait<. D.C .• W.F. Huebner. MJ. Sablik. aad L K .... o. Di.tribuu.l 
CQIQ.a IOUl'CCS IIld lhe CH .. /CO ratio in comer. Halley, G,,,pIt;p. Ru. 
UII .• 17. 1813. 1990. 

Brooch, I.e.. ond M.B. Niodncr. PIa ..... """"' ... in ..... " P/llaOey 
and Oiacobini·ZinDer, NI,.OIl. NITOplfY'·. 187, 281, 1987. 

Btandt. J.C., and M.B. Niednc:r, Pluma tail evolution in comet 
P/Halley 1935·1936. Adv. Sp4c< Ru .• 9. 369. 1989. 

Brina, A.L., Cometary line., in"abilitier: From contluioa 10 
penpective, in C .... ,' ill 1M POII-HdJI,y E,Q. edited by R.L 
Newbum. M. Neu,ebouu and I. Rohe. pp. D. Reidel. ~ The 
Netberlaad. I990L 

Brinca, A.L. and B.T. Tsurutani, On the polarization, compression and 
DOIIOicillatory behavior of hydroma,netic "Ive. a.sociated with 
pickup ion, Geoplap. Ru. Lell., 14, 49~, 1987L 

Brinea, A.L., and B.T. T.unnani, Unusual characlerinici of 
dcclrOmalJJetic .. aves excited by cometary newborn ion. with Wac 
perpendicular ene1'lie., ).siron. Atlroplr.y~ .• 187,311, 1987b. 

Brina, A.L.. and B. T. Tsurutani. SUn'c), of lo .... ·frequency 
dCl;tromapetic wIve. stimulated by twO coexisting newbom ion 
specie., J. GcopltJ8. Ru., 93,48, 1988 •. 

Bnnea, A.L., and B.T. T.uNtarU, Tempemurc ef(ects on che pickup 
proce$s of water-afOUp and hydrogen ion.: Extension of" A theory 
for low-frequency waves observed at comet Giaeobini·2'.inner" by 
MI.. GoId.tein and H.K. Wong. J. a •• ph,.. Res .• 93, 243. 1988b. 

Brinca. A.L.. and B.T. Tsurutani.lnfluence of multiple. ioo species on 
low frequency eiectroma,netic wave instabilities. J. Gcopltys. Ru., 
94. 13565. I 989a. 

Brinca. A.L, and 8. T. T.urutani, The oblique behavior of 10 .... -
frequency elec:tromaanetic: waves excited by newborn cometary ions, 
J. G.op.,.. Ru .. 94. 3. 1989b. 

BMea. A.L, and B.T. T.uNuni. On the excitation of cyclotron 
hannonic waves by newborn heavy ions, J. a,opltp. RII .• 94. 
5467. 1989c. 

Brinca. A.L, B.T. T.urutani. and F.L Scarf. Local ac:nc:ration of 
dectro,tatic: bunts at comet Giacobini -Zinner: Modulation by 
.teepened magnClosonic: waves, J. a.oplt:p. Ru .. JU, 60, 1989. 

Brosiu., I.W., 0.0. Holman, M.B. Niedner. lC. Brandl, I.A. 51.vin. 
EJ. Smith, R.D. Zwick.l, and SJ. Bame, The c.aUIC of two plqm •• 
rail disconned.ioo cYc:nts in comet PIHallc:y durinl I.hc: ICE·Hallc:y 
radial perind. NITOII. Nlr.ph,. .• 187.261. 1987. 

Caraill. P.I .• K. Hizanicli •• and K. PapadcpulOi. I. !be com"''Y "bow 
shock" really a Jboct1, in COlIVtlJry 4Ild. 5011:,. PWIftQ Plysic3. 
ediu.l by B. Bud. pp. World Scientific. New York. 1988. 

Coatel, A.J., A.D. Johnstone, R.L. Kellel, D.E. Huddle'loa, 8. 
Wilken, Ie. locken, and F.M. Neubauer, Plasma parunc&en near die 
....... Halley Bow sboc:Ir.. J. a •• p.,.. R .... 95. 20. 1990. 

Coale., AJ., A.D. lohnstone. B. Wilken. K. loc:kers, and K.·H. 
Glaumeier, ~c:tion to ·Velocity space diIfusioo of pickup ion. 
from the water ,roup at cornea HaUey". J. G~opla"p. Ru., 95, 4343. 
1990. 

Coate., AJ .• A.D. Johnnone. B. Wilken, K. Jockt:n, and K.H. 
GI ... meier, VelocitY-lpace dif{Ulion of pickup ion. from water 
IrouP at Comet Halley,l. G,opJiys. R~3., 94. 9983,1989b. 

Coate., A.J., A.D. John.tone, B. Wilken, K. locken, and K.H. 
Glusmeier, Velocity·.pace diffusion of pickup iOfls from water 
aroup at Comet HaUey, J. G~"plr .. p. R~s .. 94,9983. 1989c. 

Coates, AJ., B. Wilken. A.D. lohnstone, K. lockers, H.-H. 
Glusmeier, and D.E. HuddlcstoG. Bulk propertie. and velocity 
dittribution. of waler IrouP 10lU a' cornet Halley: Giouo 
mctsurements, J. G~Dpltp. Ru .• 95, 1990. 

Craven, 1.0., and LA. Frank. Atomic: hydroaen production raw for 
comet Pfllalley from observation. with Dynamic. E.J.plorer 1, 
NITDJI. AslTDpltp .• 1&7. 35). 1987. 

Cr.lven •• T.E .• Ion di.tribution function. in the vicinity of comet 
Giacobini-Zinner, G,opltp. R~.t. Uti .. 13, 27S, 1986a. 

CravCIUI, T.E., The physica of the ccxnctary contact .urface, in: p,.«. of 
20,11 ESLAB SYmpDliWJII on lM Ezp[o,.olio,. of Ho.JJ,y's CtHMl, 
edited by B. Ilanrick. EJ. Rolf. one! R. Rcinhud. V.I. I. pp. 241. 
ESA SP·2S0. Heidelberg. Federal Republic of Clennany. 1986b. 

Cravens, T.E., Ion cneraetit. in the inner coma of comet Halley. 
a.op"y" R ... UII .. 14. 983. 1987L 

Craven., T.E., Theory .net obscrvaUOIIII of (XlIIft!Ury ionospheres, A.dv. 
5"... R .... 7. 141. 1987b. 

C,.ven., T.E., Comewy plasma bOUlUiariCi. Nh. SpGC' Ru., 9, 293. 
1989a. 

CraveD', T.E., A maandOhydrodyn.amicaI modd of the inner coma of came. Halley. J. a •• ph,.. R .... 94. 15025. 1989b. 
Cravenl, T.E .• The sow wind interl.ction with non--ml,netic: bodies 

and the role of .mall scale ItNctUtes. Ln Solar SYlt~". PltutfIIJ 



PApia, ediwl by 1.H. Waite. J.L. Burch and T.E. Moore. pp. 353, 
AGU, WuhinglOn, D.C., 1989c. 

CravClu. T.E., Test panicle calculations of pick~p ions in the viciruty 
of comC\ Giacobini-Zinncr. PI4M'. Spdc~ Sci .. 37,1169, 1989d. 

Cravens, T.E., Collisional proccses in cometary plumas, in C<HfUl4ry 
Pwnw Procesus, ed.il.ed by A.D. Johnstone and A.J. Co.tcs. pp. 
AGU, Wuhington. D.C., 1990&. 

Cravens, T.E., Pluma processes in ther inner coma, in Come13 U. 1M 
P08,-Halley Era. edited by R.L. Newburn. M. Neugebauer and 1. 
Rabe. pp. Kluwcr, New York. 199Ob. 

Cravens, T.E., J.U. Kozyr.., A.F. Nagy, TJ. Gombosi, and M. Kurtz, 
FJectroll impac:t ionization in the vicinity of comeu, J. Gtoph;ft. 
Res., 92, 7341, 1987. 

CUrlls, C.C., C. Y. Fan. K.C. Hsich, D.M. Hunten, W.-H. Ip. E. 
K.ppler, A.K. Richl." G. UmiaDfl, V.V. Afonin, A.V. Dyachl<ov, 1. 
Era, and A.J. Somogyi, Comel P/Ha11cy neutral gu densily profile 
aJon,lhe Veaa-! trajectory measured by the Neuual Gas Experimmt, 
Ar'TOI'I. luiTOp""jI., 187, 360, 1987. 

d'UuCll, C., R. H., A. Sauvaud, C.W. Carbon. K..A. Anderson, D.W. 
Cunis. R.P. Lin, A. Konh. and D.A. Mendis, PropenieJ. of pluma 
dec:trons in the magnetic pile·up region of comet Haley, AXil. 

Geop""j~., 7,91. 1989. 
Ershkovich. A.i., W.I. Axford. W.-H. !P. and K.R. Rammer. Stability 

of the cometary ionopause, Ad .... SpGCt Ru., 9. 305. 1989. 
Eviaur. A., .nd B.E. Goldstein, A unidimensional model of comet 

ionopaUIC UNcwre, J. G~op"'P. Ru .. 93, 1759, J988. 
Evialar, A., R. Goldstein. D.T. Young, H. Bmiler, H. Rosenbauer. and 

S.A. Fuselier, Eneraetic ion fluxes in the inner coma of comet 
PIII,ney, Altrophy •. J., ))9, S4S, 1989. 

Fedder, lA., lG. Lyon, .nd l1.. Giuliani, Numerical simulations of 
comcu: Pn:dictiOlll for comet Giacobini-Zinner, £Os TTIUU. AGU, 
67, 17, 1986. 

Flanuner, K.R.. The Slobal interaction of comeu with the solar wind. 
in COfM13 Ua 1M Poz,·Halle"j Er4. edited by R.1.. Newburn, M. 
Neugebauer and l Rabe, pp. Kluwer, New York. 1990. 

Flammer, K.R., D.A. Mendis, T.G. Nonhrop, and E.C. Whipple, A self
con,iJt.enl model for the particles and fields in the environment of • 
weakly DUtgassinS comet, J. Geop"p. Ru .. 1990 •. 

Flammer, K.R .• N. Omidi, and K.B. Quell. The struCW~ of a tangential. 
discontinuity: Application to the cometary ionopause, Geoplly~. 
Res. uri .. 1990b. 

F ..... d, H.P., and C.s. W., Slabilil)' of a spherical shell dillribution of 
pickup ion., J. Geop"'P. R6s., 93, 14277, 1988. 

Fuselier. S.A., K.A. Andenon, H. Balsiler, K.H. Gla .. meier. B.E. 
GoldstCn. M, Neugebauer, H. ROJenbauer, and E.G. Shellcy, The 
foreshoc:k ~Iion upstream from the comet HaUey bow shock. in: 
'TOC. of SY"'P08iwm 0" ,116 Di~ersity uti Simila,ity of COWU13, 
ed,led by E.J. Rolfe and B. Ballrick, Vol. pp. 77, ESA SP-278, 
Brussels, Be1lium, 1987. 

Fuselier, S.A., E.G. Shelley, H. BalsiSer, J. Geiss, B.E. Goldstcln, R. 
Goldstein, and W.-H. !p, Cometary Ht and solar wind He~ dynanucs 
across the Halley comClOpause, GtOplt"js. Ru. uu., 15, 549, 1988. 

Gaffey. J., J.D., D. Winske, and C.S. Wu, Time scales for formation 
Ibd spreadinl of Velocity shells of pickup ions in the solar wind, J. 
G •• phys. Ru .. 9), S470, 1988. 

Gaffey, J.D., and C.S. Wu, Distribution function of continuously 
created newborn and pickup ionl in outer cometary aosphere&. J. 
G •• ploys. Res., 94, 868S, 1989. 

Galeev, A.A., T.E. Cravens, and T.t Gombosi, Solar wind stagnllion 
..., comcu, Alfrophys. J., 289, 807, 1985. 

Galeev, A.A., K.1. 6rinaauz, S.I. Klimov, A.P. Remimv, R.Z. 
Sq,deev, S.P. Savin, A.Y. Sokolov, M.I. Veriain, K. SZCl6, M. 
Titrallyay, R. Grard, E.G. Eroshcnko. M. Mogilevslrii, W. Riedler, 
IDd K. Schwinaenschuh, PhYlical processes in the vitinity of the 
cometOlMuae interpreted on the basis of plasma, magnetic field, ..,d 
pl .. m. wvae data meuun:d on t>t;,.rd the Vega 2 lpacecraft. J. 
G'.phy •. Ru., 9J, 7S27, 1988. 

Galeev, A.A., and RL S.,decv, Alfven waves in. space plum. and its 
role in lhe solar wind interaaion with comets, Astropisys. Sptlce 
Sci., 144,427, 1988. 

Gan. L .• nd T.E. Cnvens, Elccuon enerletiCi in the inner coma of 
can .. Halley, J. G.ophys. Ru .. 9$, 628S, 1990. 

Gary, P.5., .nd D. Schriver, The elea.rom.,netic ion cyclotron beam 
anisotropy instability, Pl4Ml. SpGCt Sci., 35, SI, 1987. 

Gary, S.P., Electromagnetic ion/ion instabilities and their 
consequences in space plumas: A review. Spact Sci. Rt ..... 1990. 

Gary. S.P., K. Akimoto, and D. Winlke. Computer simul.tionl of 
corneury-ionfton instabilities .nd wave IfOYr'th. J. Gtopll'P. ku., 
94, 3S13, 1989. 

Gary. S.P., and C.D. Madland, Elec:tromagnetic ion instabilities in a 
cometary environment. J. G~ophys. Ru .. 93,235. 1988. 

Gary, S.P., C.D, Madland. N. Omidi, and D. Winske. Computer 
simul.tions of two-pick up-ion instabilities in a cometary 
environment. J. G~ophys. Ru .• 93. 9584, 1988. 

Gary. S.P., and N. Omidi. The ion·ion .coustic instability. J. PI4fmD 
Phys., )7, 4S, 1987. 

O.ry, S.P .• and R. Sinh., Electrom.gnetic waves and instabilities from 
cometary ion velocity shell distributions. J. G~ophys. Ru., 94, 
9131, 1989. 

Glusmeier, K.H., AJ. Co.tes. M.H. Acuna. M.L Goldstein. A.D. 
Johnstone, F.M. Neubauer, and H, Rcme, Spcctnl characterilUCI of 
low-frequency plasma lurbWence upstream. of comet PlHalley. J. 
G •• phys. Ru .. 94,37,1989. 

Glaumeier, K.H., F.M. Neubauer, M.H. Acuna, and E Mariani. Low
frequency m.lnetic field fluctu.tions in comet P!HaUey's 
masnetosheath: Giotto observations. AstTO". AsITOpltyS., 187.65. 
1987a. 

Glusmeier, K.H., F.M. Neubauer. M.H. Acuna. and F. Mariani, SlronS 
hydrom.Snetlc nuc:tu.tions in the comet P!Halley magnetosphere, 
Mlro". As'TOpll"js .• 187. 65, I 987b. 

Goldstein, B.E., K. Altwcgg. H. 8alsiaer. S.A. Fuselier. W.-H. Ip. A. 
Meier. M. Neulebauer, H. Rosenb.uer, and R. S<:hwenn, 
Obtervations of a abock and a recombination layer at the contact 
IUdace of comet Halley, J. G.ophys. Ru., 94, 17:!S1, 1989. 

Goldstein, B.E., M. Neu.ebaucr, H. Balsiaer, J. Drake, S.A. Fuseber. 
R. Goldstein, W.-H. !p, U. Reue:nmund, H. Rosc:nbauer. R. Schwenn. 
and E.G. Shelley, Giotto-IMS observations of ion-flow velOC:ities 
and lempcnlufU ouuide the malnetic cavity of cornet P!HaUey. 
AttTO". Nlropll"js., 181. 174, 1987a. 

Goldstein, M.L., D.A. Roberts, and W.H. M.uh.eus. Numerical 
simul.tion of the lenen.tion of turbulence from cometary ion 
pickup. GtOpltys. Re~. uti., 14. 860, 1987b. 

Goldstein, M.L.. and H.K. Wong, A theory for low-frequency wIVes 
observed at comet Giacobini-Zinner, J. G~ophys. Rts .. 92. "695, 
1987. 

GoldsWlt, M.L, H K. Wonl. and K.H. Glassmcier, Genention of 10w
frequency w.ves at comet Halley, J. Geoph"js. Res .. 95.947. 1990. 

GOMBOS!: THE PLASMA ENVIRONMENT OF COMETS 983 

Goldstein, R., D.T. Younl. H. Balsiler, F. Buehler. B_E. Goldstein, M. 
Ncugebauer, H. ROient-uer, R. SchwCM, and E.G. Shelley, H~ ionl 
<:!bserved by the GioUo ion mass apcct.rometer at the comC\ P/Halley 
contact rurf.ce. NtrOli. AJtrophp., 187,220. 1987. 

Gombosi, T.I., Cbarae exchanle avaian<:he .t the cometopaUle, 
Gtopllys. Rts. uti .. 14. 1174, 1987. 

Gombosi. T.L, Prcsbock n:aion .cceleration of implanted comewy H+ 
and 0°,/. G.opIry •. Ru., 9), 3S, 1988&. 

Gombosi, T.I., Second order Fenni accc1cartion of implanted cametary 
ions, in COIMt"'1 tu&d SOIDT PllufftD Pltys~s, ediLed by B. Bw, lIP
World Scientific, New York. 1988b. 

Gombasi. T.I., K. Lorenc%, and J.R. Jokipii. Combined fint and 
second order Fermi acccIeration at comeu, Adv. SptJc, Ru .• 1988. 

Gombosi, T .1., K. Lorencz. and J .R. lokipii, Combined fint and 
second order Fenni .c:celen.tion in cometary CIIvironmenu, J. 
G.ophys. R ... , 94, IS011, 1989. 

Oombosi, T.I.. M. Neu,ebauer. A.D. Jobs&one, AJ. CoalCI. and D.E. 
Huddleston, Comparison of observed and calculated implanted ion 
distributions ouuide comet Hallcy's bollll Ihock, J. Geoplrp. Ru .• 
1990. 

GnonI, R.o F. Scarf, J.G. Trotignoot, and M. MogilcYIky, A compariJa1 
between w.ve observ.tions pcrfonned in the environments of 
comCU Halley and Giacobini-Zinne.r, in: P,oc. of SYMpOIiWft 0fI 1M 
DiYCT$i/y 4Ild SimikuUy of CO""''', cd.i.1.ed by EJ. Rolfe and B. 
Baurick, Vol. pp. 97, ESA SP-278, Bru .. eh, Belgi ... , 1987. 

Gribov, B.E., K. Kecskcm~ty, R-Z. Sasdeev, V.D. Shapiro, V.I. 
Sbevchenko, AJ. Somolyi, K. SUl6, G. Erd&. E.G. Erosbenko, 
K.I. Gring.uz., E. Keppler, R.G. Marsden, A.P. Remiz.ov, A.K. 
Richter, W. Riedler, K. Schwin,enschuh, and K.·P. Wenzel, 
Sloc:hastic Fenni .ccelention of ions in lhe pte-shoc:k reJion of 
comet P/Halley, As'TO". AstTOph"js., 187,293, 1987. 

GrinS.uz, K.I., T.L Gombosi, A.P. Remizov, I. Apalhy, L S:r.eme~, 
M.1. Verilin, L.I. Denchikova, A.V. Dy.chkov, E. Keppler, I.N. 
Klimenko, A.K. Richter, A.J. Somogyi, K. SUI6. S. SzcndrO, M. 
Tilrallyay. A. Varga. and G.A. Vladimirov., First ill sa .. plasma and 
neutral ,as measun:menu at comet H.lley. Nillwr, 311, 282. 1986a. 

Grinsauz. K.I .• T.I. Gombosi, M. Tatrallyay. M.I. Verilin, A.P. 
Remizov. A.K. Richter. I. Ap6thy. [. Szemercy. A.V. Dy.chkoy. 
O.V. Balakin., .nd A.F. Nagy. VEGA ob.ervatiOQIJ of the 
cometopaule and cometary plasma telion, G~op"p. Ru. LlII., 13. 
613, 1986b. 

Gringauz., K.I., and M.I. Verigin, Nonstationary phenomena in the 
head of comet P/Halley, in Cowwtary Pl4tJ'NJ Proussu. edUcd by 
AJ.C. A.D. Johnstone, pp. AGU, Washington, D.C., 1990. 

Gursiolo. C., and J.D. Winningham. Ion acceleration .t lhe contact 
sunace of comel. pmalley. J. Geoph'13. R8S., 95, 17051, 1990. 

Haerendel. G .• Pl.sma tnnsJX)n near the magnetic caviEy sunoundinc 
comel Halley. Gtophys. Ru. ult., 14.673, 1987. 

Hizanidis, K.. P J. Cargill. and K. Papadopoulos. Lower hybrid w.ves 
upstream of comets and their implications for the cornel Halley "bow 
wave", J. Gtophys. Ru., 93,9577, 1988. 

Hsieh. K.C., C.C. Curtis, C. Y. Fan. D.M. Hunlen. W.-H. Ip, E. 
Keppler. A.K. Richter. G. Umlluft, V.V. Afonin. 1. Ero, and AJ. 
Somogyi, Anisotropy of the neutral gas distribution of comet 
pmalley deduced from NGENel. 1 measurementl, AsITO". 
AllTophys., 187, 37S, 1987. 

Huebner, W.F., D.C. Boice, H.U. Schmidt, M. Schmidt-Voilt, R. 
Wegmann, F.M. Neul:.uer. Ibd I.A. SlaYin, Time-dependcnt study of 
malnetic fields in c:omeu Giacobini-Zinncr and Halley, Ad .... SptIC' 
R ... , 9, 38S, 1989. 

Hynds, R.I., S.W.H. eow1ey, T.R. Sanderson, K.-P. W ..... ~ and JJ. 
Van Rooijcn, Observ.tions of t:ner'Jctic ions from oomC\ Giacobini· 
Zinner, SculICe, 232, 361, 1986. 

Ip. W.-H .• On ch.rae exch.nle effect in the vicinity of the 
COftlClopause of comet Haney, .utroplt"js. J .• J43. 946, 1989. 

lp. W.-H., Energetic neutral .lOmS in cometary comas. N'TOp"p. J., 
)$),290, 1990. 

Ip. W.-H., R. Schwt:M, H. Rosenbauer. H. Balsiaer. M. Neu,cbaaer, 
and E.G. Shelley. An inlCrpmation of the ton pile-up rccion outside 
the ionospheric contact lurf.ce. NI10'" Astrophys .. 187. 132, 
1987. 

lp, W.H.. and W 1. Axford, The accclcration of panicles in the vicinity 
eX cornelS, Pbuy,. SpGce Sci .• 34, 1061, 1986. 

lpavich, F.M .• A.B. G.lvin, G. Gloeck:1er, D. Hovesudt, B. Klecker, 
and M. Scholer, Comel Gi.cobini·Zinner: In situ observations of 
energetic heavy ions, SCit"CI, 232, 366. 1986. 

Iscnbera, P.A, Eneray diffusion of pickup ions upatn:am of c:cmcu. J. 
Gtophy~. Ru., 92, 8795. 1987 .. 

Isenberg. P.A., Evolution of intentcllar pickup ious in the solar wind, 
J. G •• p}ry •. R ... , 92, 1067, 1987b. 

henber" P.A., Comment on "Stochaltic .cceleration of cometary 
pickup iOlls: The classic leaky box model" by D.D. Barbosa. 
ArITOpitys. J .• 1990. 

Joc:ken, K., The ion tail of cornet Kohoutek 1973XI1 during 17 clays of 
solar wind lUSts, N,rOll. As'TOphys. Suppl .• 62,791, 191:5. 

Kay .. N., H. Matsumoto, and B.T. TluNtani, Test pa.rticle limulation 
of whistler .... ve packelS oblCrvcd ncar comet Glacobinj-Zirmer, 
G,ophy •. Ru. 1..11 .. 16, :!S, 1989. 

Kecslteml:ty, K., T.E. Cravens, V.V. Afonin. G. Erd6., E.G. 
Erosbenko, L. Gao, T.L G ... bosi, K~ Grin, ... , E. KowIer, LN. 
Kllmenko, R. Manden, A.F. NalY, AP. R...uoy, A.K. Rich.." W. 
Ricdler, K. Sc;:hwinaCDSchuh. AJ. Somo,yi, M. TltraIlyay, A. 
VUla, M.L Veriain. and K.P. Wenzel, Pidr:up iOllI in &he u:oahodr.ed 
IOlar wind.t comet Halley, J. Gt<Jpllys. Ru., 94, 18'. 1989. 

Keller, C.N., .nd T.E. Cravens. P1uma density enhancancnt II. \be 
c:omet Halley diam.gnetic cavity boundary, J. G~<Jpltys., Ru .• 95, 
187SS, 1990. 

Kellogg, P.J., Influence of inslIIbilities on pluma flow .round • 
comet, J. Geopll'P. Ru .• 94, IS, 1989. 

Kimmel, C.D .• J.G. Luhm.nn. lL Phillips, and J.A. Fedder. 
naracteristics of cometary picked-up ions in • c10bal model of 
Gi.cobini-Zinner. J. GtOP"YS. Ru .. 92, 8536. 1987. 

Kojima, H., H. Mauwnoto, Y. Omura. and B.T. Tsututani. Nonlinear 
evolution of bilh fn:quency R-mode w.ves excited by w.ter croup 
ions near cameu: Comp.1ter experiments, GtOplt'13. Res. uu .. 16, 
9, 1989. 

K6r6smeuy, A., T.E. Cravens, T.I. Gombosi, A.F. N.sy, D.A. 
Mendis, K. SUlo, B.E. Gribov, R2. Saadcev, V.D. Shapiro, and 
V.I. Shevchenko. A new model of cometary ionospheres, J. 
G •• phys. Ru .. 92, 7331, 1987. 

Korth, A., A.K.. Richter, D.A. Mendis, K.A. Anderson. C.W. Carlson, 
D.W. C.ni>, R.P. Lin, D.L. Milche1l. H. Reme, l.A. Sa.va.d, and C. 
d'Ulton, The cmnposition and radial dependence of comewy lons in 
the coma of cornel. pmaney. Asuon Azttopltys., 187, 149, 1917. 

Le, G., C.T. RUliell, S.P. G.ry. EJ. Smith, W. Riedler9 and K. 
SchwinlCtlschuh. ULF waves at comeu H.Uey eel Giacobini
Zinner: Comparison with simulations. J. G~opkys. Rt"" 94, 

11989, 1989a. 
Le, G., C.T. Russell. S.P. Gary, EJ. Smith. W. Riedler, and K. 

Schwinaenlchuh. ULF w.ves at comeu Halley .nd Giacobini
Zinner: comparison with theory, Adw SpaC8 Res .• 9, 373, 1989h. 

Le. G., C.T. Russell. and EJ. Smith. Disaete w.ve packeu upstream 
from the Eanh and comets. Adv. SpGce Ru., 9. 363, 1989c. 

Le, G., C.T. RuueU, and E.I. Smith, Discrete wave packell upclream 
from the Eanh and comell. J. GtOplt'13. Res., 94, 3755. 1989d. 

Lee, M.A., ULF waves .t comC\s, in Pl4r~ Wa ... u tutd IMl4biJiliu ill 
COfM'S aNi Ma,fUtospMTts. ed.i&ed by B.T. TsuNtani and H. eya, 
pp. 13. American Geophysical Union. Wasbin&ton. D.C .. 1989. 

Lee. M.A., and S.P. G.ry, Quasilinear evolution of ULF w.ves excited 
by comeaary ion pickUp, J. Geoph'P. Res" 1990. 

Lee, M.A .• and W.·H. lp, Hydromapetic wave exciution by ionized 
intentellar hydrolCR and helium iD the Jotar wind. J. G~oph"jz. 
R ... , 92, 11041, 1987. 

Luhmann, lO., J.A. Fedder, and D. Winlke, A lest panicle model of 
pickup ion •• t cx:mct Halley. J. G~opll"j~. H.~., 93, 7532, 1988. 

Luhmann, J.G., C. T. Russell, U ... Phillips. and A. B.mes, One the role 
of the quasi·parallel shock in ion picic:up: A lesson from Venus?, J. 
G •• phys. Ru., 92, :!S44, 1987. 

Malara, F., G. Binaudi, and A. Manatney, A quasi-one-dimcnsionaI 
model for the Gi.cobini-Zinner p'uma tail, J. G~op't'J-3. Ru., 94, 
11BOS, 1989. 

Marconi. M.L.. On the heatinl of electrons in the tail of Gi.cobini
Zinner, Gtopll'13. Ru. Ull., 14,57. 1987. 

McCom.s. OJ., J.T. Gosling, S.J. Same. J.A. SI.vin. E.J. Smith, and 
J.L. Sleinberl. The Giacobini~Zinner masnetol.il: Tail 
configuration and current sheet, J. G~opll"j$. Ru., 92, 1139. 1987a. 

McCom.s, D.J., J.T. Godina. C.T. Russell, and 1.A. Slavin, 
Malnetotaih .t unmasnetized bodies: Comparison of comet 
Giacobini-Zinner and Venus. J. GtOPJ.p. Ru .• 92, lOlli, 1987b. 

McKenna-Lawlor, S., P. Daly, E. Kirsch., B. Wilken, D. O'SulliVUl, A. 
Thompson, K. Kcclkemchy. A. Somoayi, and A. CoaleS, In situ 
eneraetic particle observ.tions at comet Halley recorded by 
mslnlmentation aboard the Giono and Veg' 1 missions, A"lUd~~ 
GeopltysiClU, 7, 121, 1989. 

McKenna-lawlor, S., E. Kinch, D. O·Sullivan. A. Thompson, and K.
P. Wenul. Ene'letic ionl in the environment of comet Halley, 
N",.,., )21, 347, 1986. 

Mendis, D.A., Interaction of comeu .. ilh the tolar wind aDd solar 
radiation. in Coww'ary tUId SoIM Pl4nrt4 '''"jsiC4. edited by B. Bmi. 
pp. World Scientific, New York, 1918. 

Mendis, D.A., K.R. Flammer. H. Remc, J.A. 5auvaud, C. O·U.ton, F. 
Cotin, A. eros., K.A. An~rson. C.W. Carlson, D.W. Curtil. D.E. 
Lanon, R.P. Lin, F.L. MiO<hcn, A. Korth, and A.K. Rich .... , On lbe 
global nature of the solar wind interaaioo with comel. Ha.lIt:y, Nail. 
GtOP"y~., 7,99, 1989. 

Mendis, D.A., H.L.F. Houpil, and M.L Marconi. The physics of 
comcu, Fwui,. Cosmic Pltys., 10. I, 1985. 

Mendis. D.A., EJ. Smith, B.T. Tlurutani, I.A. Slavin. D.E. Jones, and 
0.1.. Siscoe, ComeHolar wind interaCU,oo: Dynamical length scales 
and models, Geoph'P' Res. Ult., 13.239, 1986. 

Mcyer-Vernct, N., P. Couturier, S. HoanS, C. Perche. J.1.. S&.einberJ;, J. 
F.inbera;. and C. Mcetrc. Plasm. diagnosis from thennal noise and 
limiu on dust flux or mass in comet P/Giacobini-Zi.nner. Scitllct. 
2)2, 370, 1986. 

Miller, R.H., T.I. Gombosi, S.P. G.ry. and D. Win.ke, Di~aionaJ 
dependence of magnetic field fluctuauons in the quasi-parallel and 
quasi-perpendicular regimes generated by cometary ion pick-up, 
Ad~. Sptlc~ Ru .• 1990 •. 

Miller, R.H., T.I. Gornbosi. S.P. Gary. and D. Winske. The directional 
dependence of m.gnetic fluctuations ,enented by cometary ion 
pick-up, J. Gtopll"js. Re:t, 1990b. 

Morrison, P.J .• and D.A. Mendil. On the fine ,tJ1)ClUn: of cometary 
pilim. I.ails, Iu'TOpll'18' J., 226, 350, 1978. 

Nagy, A.F., Photochemistry of pianeLuy jono,phe~s. Ad~. Spacr 
Res., 7, 89, 1987. 

Neubauer. EM .• The ionopause transition and boundary layers at comet 
Halley from Giotto masneUc field observations. J. GtOph'P. Res., 
9),7272, 1988. 

Neubauer. F.M., K.H. G1assmeier, M. Pohi. J. Ra.r, M.H. Acun •• 
1..F. Burlaga, N.F. Ness, G. Musmann. F. Mari&ni, M.K. Wallis. E. 
Ungstrup. and H.U. Schmidt, Fint I'1:.auJu from the Giotto 
magnetometer experiment.1 comet Halley. Nalwt. 321, 352,1986. 

Neulebauer. M .. Spacecraft observations of the interaction of .ctive 
comets with the solar wind. Rt .... G~ophys .• 28, 231, 1990. 

Neugebauer. M .• AJ. Coates, and F.M. Neubauer. Comparilon of 
pickcd~p protons and water group ions upstream of cornel. Halley's 
oow shock, J. Grop"ys. Ru., 95, 1874:5, 1990. 

Neugebauer. M., B.E. Goldstein. H. Balsiger. F.M. Neubauer, R. 
Schwenn, and E.G. Shelley, The density of comet.ry protons 
upstream of comet H.Uey'. bow shock, J. G~opltJ$. Res .• 94, 1261, 
1989. 

Neugebauer, M., R. Goldstein. B.E. Goldstein, S.A. Fuselier. H. 
Balsiger, and W.-H. !p, Densities and abundanCCJ of hot cometary 
ions in the com. of comet Haley. Arlropllys. J., 1990. 

Neulebauer. M., A.J. L.u.anu, K. AbweU. H. Bwiaer. B.E. GoJdSlCin. 
R. Goldstein, F.M. Neubauer, H. Rosenbauer, R. Schwenn, E.G. 
Shelley, and E. Unlnrup, The pickup of cometary protons by the 
tolar wind, AstrOll. Asl,Op"'jS., 187,21. 1987. 

Neulebauer, M .• A.J. Laurus, H. Balsiaer, S.A. Fuselier. EM. 
Neubauer. and H. Rosenbaucr. The velocily distribution of c:anctary 

prolons picked up by the solar wind, J. Geophy!. Ru., ~, .5227, 
1989. 

Neulebauer. M., F.M. Neubauer, H. B.lsiler. S, Fuselier, B.E. 
Goldstein, R. Goldstein, F. M.ri.ni, H. Rosenbauer, R. Schwenn, 
and E.G. Shelley, The variation of ptOlOnS. alpha panicles, and the 
magnetic field .cross the bow shock of comC\ Halley. GtOP/tys. Ru. 
1..11., 14, 99S, 1987. 

Niedner, M.B., and J.C. Brandt, P1uma tail disconnection events in 
comets: Evidence for ma,Detic field line teconnection at 
interplanetary seaor boundaries?, Azlropll'P. J., 223, 6S.5, 1978. 

Niedner, M.B., and K. Schwinlenscbub, Plasma-tail. .ctivity at the 
time of the Vela enCOUDten. A.J'TOII. AstToplt"j~., 187, 103. 1987. 

Ocino, T., RJ. Walker. and M. Ashour-Abd&lla. A three-dimensional 
MHO simulation of the interaction of the solar wind with comel 
HaUey, J. G •• p/rp. Ru., 9), 9S68, 1988. 

Omidi, N., and O. Winske, A kinetic ltudy of solar wind mass loadin, 
and comewy bow shockl, J. G~ophys. Ru., 92, 13409, 1987. 

<>midi, N.,and D. Winske, Subcritical di.penive Ihock w.ves upstrum 
of planCLUy bow sbocks and II: comet Giac:obini-7lnner, Geophy". 
R ... 1..11., 1S, 1303, 1988. 

Omidi, N., and D. Winake. Stc:epe:nin, of kinetic mapcwlOOit .... YCIi 

into sbockleu: Simulations and consc..que:nces for pJanewy .hoc:k, 
"'" c ... CU, J. G4oploys. Ru., 9S, 2281, 199Oa. 

Omidi, N., and D. WiDake, Theory and simuiatiOll of cometary 1boc:tJ, 



984 

m COINlQry PUu,"" p,.oc~uu. edited by A.D. Johnslone uad Al. 
eo. .... pp. AGU. WashinllOO. D.C .• I99Ob. 

Omidi. N., D. Winskc. and K.B. Quell, The effect of ionJaan.nl 
collisionl on lhc structure of e1ec:tro .... tic shock.: AppliC&licm lO 
comcury inlier shock,. E ... 70.384. 1989. 

Omidi. N., D. Winske, and C.S. Wu. The effect of heavy ions on me 
fonn.tion and luuc:ture of cometary bow shocks, ICJU/U, 66, 165, 
1986. 

Pcrez«-Tcj.da. H., .Viscous flow interpretation of comet Halley's 
mynery transition, J. G,opliys. Ru., 94, 10131, 1989. 

Price. C.P., Mirror wavel driven by newborn ion distributions. I. 
G'.ph,.. R .... P4. 15001. 1989. 

Price. C.P., J.D. Gaffey, and J.Q. Dona. Excitation of low-frequency 
hydrom.gnetic w.ve. by freshly created iool in the IOl.r wind, J 
G'.ph,.. Ru .• 93.837. 1988. 

Price, C.P., and L.C. Lee, Ccmel-lOlar wind interaction throop ton
proton beam instability. Aslrophys. J. t 324, 606, 1988. 

Price, C.P., and C.S. Wu, The influence of Itrong hydrom'anetic 
turbulence on newborn cometary ions. Geophys. Res. uu .• 14, 
856. 1987. 

Raeder, J' t F.M. Neubauer, N.F. NelS, and L.F. Burlaga, Macroscopic 
perturbations of die IMF by Pllianey as seen by the Giouo 
ma,nelometer, AJ'trms, A.,rtropIlYI., J87, 61, 1987. 

Remc:, H., Pl .. ma observationl between the .hock and the contact 
tudac:e, in COfM14ry PIaIIM Procu,es, edited by A.D. Johnnonc 
and AJ. Coate., pp. AGU, WuhinglOn, D.C., 1990. 

Remc, H., I,A, Sauvaud, C. D'Uston, A. Cros, K.A. Anderson, C,W. 
C.dson, O.W. Curti., R.P, Un, A. KOM, A.K. Ridner, and O,A. 
Mendii, General feature. of cornel pmalley: Solar wind interaction 
Crom plum. mea.urements, ArlrOIl. AftrophYI., 187,33, 1987, 

Richardson, I.G., S.W.H. Cowley, K.-P. Wenzel, F.L. Scarf, E.J. 
Smith, B.T. TSunltani, T.R. Sanderson, and RJ. Hynds, Plalma 
Wave, magnetic field and energetic ion. observations in the ion pick
up region of comet Gi.acobini-Zinner, Adv. Space Ru., 9, 3T1. 
19890. 

Richardson. lG., K.-P. Wenzel, S.W.H. Cowlcy, F.L. Scarf, E.1. 
Smilh. B.T. TsurulOni, T.R. Sandenao. and R.S. Hynd •• eon.taud 
plamta ..... ve. magnetic field, and eftCfJctic ion observations in the 
ion pickup relion of comet Giac:obini-Zinncr, J. Geoph;P. Ru., Pol, 
49. 1989b. 

RUJlcU. C.T., The interaction of the tolar wind with comet Halley: 
Upwind and downwind, Q. J. R. Altrms. Soc., 29, IS7, 1988. 

Russell, C.T., L. Guan, 1.G. Luhmann. and I.A. Fedder, The risual 
appearance of comets undcr varying lolar wind condttions. Adv. 
Sptl.ce Ru., 9, 393. 1989. 

Russell, C.T., 1.0. Luhmann, and D.N. Baker, An examination of 
poIsible solar wind sources for a ,udden brightening of comet IRAS
ARAKI-ALCOCK. G •• phys. Ru. Ull .. 14.991. 19870. 

Russell. C.T., W. Riedler, K. Schwingenschuh, and Y. Yeroshcnko, 
Mirror inn.billt)' in the magnetosphere of comet Halley, Geophy~, 
Rn, Ull., l4, 644, 1917b. 

Russell, C,T., M.A. Saunden, lL. Phillips. and J.A. Fedder, Near tail 
reconnection u the cause of eomellry lIil disconnection, 1. 
Geoph-p. Res., 9J, 1417, 1986. 

s.adeev. R.Z.. V.D. Shapiro. V.L Shevch .... o. and K. SzeIO. MHD 
DlrbWalc:e ill Ihe ,olar wind ~ eomet iDtetaeUOb region, GeophY$. 
R ... Ull .• 13. 85. 1986. 

Sauer. K., U. Motsdunana, Itld T. Roaudt, Pluma boundaries at ClOIDCI. 

Halley, A.M. Geophyl., 8. 243, 1990. 
Scarf. F., Pluma physic. phenomena detected at comet Giacobi.n.i-

7mner, in Ct'JtfV1IJry 4IId Soku PIAmI4 Ph;pic$, eddcd by B. Bub. 
pp. World Scientiflc, New York, 1988. 

Scarf, F., Pluma wave obIer .... tions at eomell Giacobini-Zinncr IDd 
Halley. in PliUmIJ WIIIVe3 111M IIU14bililies 1111 COffUl$ tIIId 
JI_,,.e,03pheru, e:diled by B.T. Tsul'1lLani and H. Oya. pp. 31, 
American Geophysical Union, W.shington, D.C., 1989. 

Scalf. F_I... F.V. COnH>iu. C.F. lCon.d. W.-H. Ip. D.A. G.m .... and 
E..1. Smith, ObIervations of cometary plum.a wave phenomena, 
A..strCHS. lutToph,3., 187, 109, 1987. 

Schwean, R., W.-H. Ip, H. ROienbauer, H. Balsigcr, F. Buhler, R. 
Goldmin. A. Meier, Uld E.G. SheUcy, Ion It:mpcrature ad now 
profiles ia comet pmalley's close environment, A.."o •. 
N"op~,. .• 187. 160. 1987. 

Scb9tinlenKhuh, K., W. Riedler, H.LM. tichleneuer, 1-L Pb.ill.ipt, 

GOMBOSl: THE PLASMA ENvIRONMENT OF COMIITS 

J.G. Luhmann, C.T. Russell, I.A, Fedder, A, Sotnoayi, ad Y. 
Yeroshenko, Variability of cornel Halley's coma: Veg.-I aDd Vela-
2 maanetic field obscrvations, in: Proc. of SY"'P03UUft Oft lh~ 
Diwrlily IUId Similillrity of COIMI~, edited by E.I. Rolfe and B. 
Battrick, Vol. pp. 63, ESA SP-27&, Bruslels, Belgium, 1987a. 

Sehwingetuchuh. K., W. Riedler, Y. Yeroshe:nko, I.L Phillips, C.T. 
Ruuell, I.G. Luhmann, and I.A. Fedder, Maenetic field draping in 
the comet Halley coma: Comparilon of Veea observations with 
computer simulations, Geoph-p. Re~. Ull., 14,640, J987b. 

Sharma. A.S., P.I. Car,ill. and K. Papadopoulos, Resonance 
abIorption of Altvcn waves at comet-solar wind interaction repon., 
G •• pkys. Ru. uu .. IS. 740. 1988. 

Shelley, E.G., S.A. Fuselier, H. Bllsiaer, J.F. Drake. 1. Geiss, B.E. 
Goldstein. R. GoldllCin, W.-H.lp, AJ. I..u.aNS, and M. Ncugebauer, 
Olarae exchange of solar wind ions in the coma of cornet PlHalley, 
A..rtrOll. AltTOpIlYI., J87, 304, 1987. 

Slavin, I.A., EJ. Smith, B.T. TsuNtani, G.L Siscoe. D.E. Jones, and 
D.A. Mendis, Giacobini-Zinner magnetotail: Ice magnetic field 
obIervations, Geophys. Res. Ult .• H. 283, 1986. 

SunOl)'i, AJ., K.I. Gringauz. K. Sugo. L Szab6, G. Kozma, AP. 
Remizov. 1. En; Jr., I.N. Klimenko. 1.T. Szucs. M.I. VeriJin, 1. 
Windberg. T.E. Cravens, A. Dyachkov, G. Enl3s. M. Farago, T.L 
Gorntxni. K. Keeskemety, E. Keppler, T. Kov'et Jr., A, Kondor. 
Y.I. logachev, 1- Lohonyai, R Marsden. R. Redl. A.K. Richter, 
V.G. Stolpov.kii, I. Sub6, I. Szcntpelery, A. Szepesdry, M. 
Titrally.y, A. Varga, G.A. Vladimirova, K.·P. Wenzcl, and A. 
briody. Fint observations of eneractit panicles near come' Halley, 
N",,,,... 321.285.1986. 

S&c:wan, A.I.F., Pioneer Venu. measurements cl H, 0, and C production 
in comet pmalley near perihelion, A..rtrms. lut,opltys., J&7, 369, 
1987. 

Sydor., R.D., and 1. Raeder, A particle MHO simulation approach with 
application to a alohal comet~lolar wind interaction model, in 
COINtillry ud SoI4, Pliuma Ph;pi.c~, edited by B. Buti, pp. World 
Scientific. N.w y..t. 1988. 

Tan. I..C .• G.M. Mucn. G. Gloedder. F.M. !pavich. ond A.B. Galvin. 
Energetie heavy ions observed near comet Giacobini-Zinner. i. 
G •• ph,.. Ru .. 95. 20. 1m. 

Thiemann, H., R. W. Schunk, and R, Zwiekl, Dynamic PIC-simulations 
of cha,.ina phenomena related to the ice-spacecraft in both 
cometary and solar wind environments, Adv. SptJCI; Ru., 9, 389, 
1989. 

Thornlen, M.F .• W. Feldman, B. Wilkta, K. locken, W. Stude:mun, 
A.D. Johnstone, A.1. Coates, V. Formisano, E. Amata, I.D. 
Winnin,nam. H. Bor" D. Bryanl, and M.K. Walli., In-litu 
observations of a bimodal ion distribution in the outer coma of 
comet pnu.uey, AltrOli. A..rt,.ophys., J87, 141. 1987. 

Thome, R.M., and B.T. TlutULani. Resonant intcnctions between 
cometary ions and low frequency electromagnetic waves, P1Q,.~t, 
SptJce Sci., 35, ISOl, 1988. 

Tsul'Utmi, B.T., Cometary pluma waves and inlUbiliJ.ies, ill COIMU 
U. 1M PDlI·HIIIlJIY UIII, edited by R.L Newburn, M. Neugebauer and 
J. Rabe, pp, K.luwer Publishing CompuIy, New York, 199Oa.. 

Tsurullni, B.T., Comets: A laboratory for pluma wave. and 
inllabilitie., ill CtJllWllllry PliUma Procel$e~, edited by A.D. 
Johnstone and AJ. eo... •. pp. AGU. WO.hinllOO. D.C.. 199Ob. 

Tsunllani, B.T .• A.1.. BriDca. B. Boo. EJ. Smilh. R.M. Thom •• and H. 
MatsumOf.O, MalDetie pullCS with durations near lhe local protOn 
cyclotJOn period: Comet Giacobini-Zinner, J. GeophJ$. Ru., ~, 
29. 1989. 

TSUNtani. B.T .• A.1.. BriD .... EJ. Smilh. R.M. Thom •• F.1.. Scarf. l.T. 
Goslina. and F.M. lpavich. MHD woves detected by ICE at dislOn= 
~ 28 106 Ion fran """,ot PJllalley: Cernotary or solar wind oriptl. 
Ar'ro .... ArUoplfyl., J87, 97, 1987. 

rAlNtani. B.T .• D.E. p .... EJ. Smilh. B.E. Goldslein. A.1.. Bn.... 
R.M. Thome. H. MauumOlO. LG. Richardson. and T.R. Sandenoa. 

~~=U{~i.s~~ :~e;= b':!~i.~e~~:'~ 
.....,.uc fi.ld Cl dependences. J. G •• ph,.. Ru .• P4. 18. 1989. 

TIUNLIIli, B.T., EJ. Smilh. B. BUb. H. Matsumoto, aad A. Briac:a, 
Disercte phase ehanacs within nonlinear sucpened mapCKOlOIlic 
wavc,: comct Giaeobini~Zinner, Geoph.'jl. Ru. 1..411" 17, 1117, 
19900. 

Tsunllani. B.T., E.l. Smith, H. MatmrnOlO, A.L. Brinea. and N, Omidi, 

Riahly nonlinelt magnetic pulses at come1 Giacobini-Zinner, 
Geoplry3. Ru. ult" 17,757. 199Ob. 

Tsul'1ltani, B.T., R.M. Thome, EJ. Smilh. A.L, Brinc., and H. 
Matsumoto, Properties of wrustler mode wave packets at the le.din, 
edle of s&eepened magnetosonic wavel: Comel Giacobini-Zinner, 
Plmt.el. Spacc Sci., 37, 167, 1989. 

Tsul'ULani, B.T., R.M. Thome. EJ. Smith, I.T. Gosling, and H. 
Mwumoto, Steepened magnetosonic waves at cornet Giacobinl
Zinner, J. Geoph-p. Ru" 91, 11074, 1987, 

Wallil, M.K., and M. Dryer, Sun and comets as sources in an external 
flow. Nlrophys. J .. 20S. 895. 1976. 

Wallis, M.K., and R.S.B. Ona, Strongly cooled ionizing plasma flows 
with applications to Venus, PlaMl. Space Sci., 23. 713, 1975. 

Wegmann, R., H.U. Schmidt. W.F. Hl.l.ebncr, and D.C. Boice. Cometary 
MHD and chemistry, AllTon. ILslrophYJ., 187,339. 1987. 

Whipple, F.L, The acceleration of comel Ende. Nlrophys. i., 111, 
375. 1950. 

Winske, D .• C.S. Wu, Y.Y. Li, Z."L Moo, and S.Y. Guo, Coupling of 
newborn ions to the IOlar wind by electromagnetic inltabilities and 
their inter.aion with the bow shock.. 1. GtHpJtYJ. Res .. 90, 2713. 
1985. 

Wu, C.S., and R.C. Oavidson. Electromagnetic instabilities produced 
by neutral particle ionization in interplaneury 'pace, J. Geophy3. 
Ru., 77. 5399. 1972. 

Wu, C.S" X.T. He, and C.P, Prite, Excitation of wbistlel'l and waves 
with mixed polariution of newborn cometary ions, i. Geophy3. 
R .... 93. 3949. 19880. 

Wu, C.S., D. Krauss-Vaman, and T.S. Huo, A mirror innability 
utoci.atcd with newly cruted ionl in a moving plasma, i. Geophys. 
Res .• 93. 11527. I 988b. 

Wu, C.S., and P.H. Yoon, Kinetic hydromagnetic in.tabilities due to a 
spherical shell distribution of pickup ions, i. Geophy3. Rn., 95, 
10273. 1990. 

Ye, G., and T.E. Craven., Combined energy and pitch-angle diffusion 
01 pick-up ions at. ecma Halley, J. Gtophys. R~s., 1990. 

Yoon, P.H., Kinetic instability ulociOlled with a spherical shell 
distribution of c:ometary pickup ionl, Geophys. Res. uu., J7, 
1033. 1990. 

Yoon, P.H., M.E. Mandt, and C.S. Wu, Evolution of an unstable shell 
di.tribution of pickup cometary ionl. Geophys. Ru. Ull., 16. 
1473. 1989. 

Yoon, P.H., and C.S. Wu, Ion pickup by the tolar wind via wave
panicle inter.ctions, in Come13 Ut IIv PosI-Haluy ErG, edited by 
J.R.L Newburn. M. Ncu,ebauer and J. Rabe, pp. Dordredn, Tht: 
Netherlands. 1990. 

Yoon, P.H., and LF, Ziebell, Development of pitch-angle ani.otropy 
and velocity diffusion of pickup ion .hell distributions by lolar 
wind turbulence. 1. Geophys. R~~., 95. 17085. 1990. 

Yoon, P.H., L.F. Ziebell, and C.S. Wu. Sclf-comistent pitch-Ulale 
diffu.ion of newborn ions, J. GeoplrJ-r. Ru" 95, 1990. 

Ziebell, LF., and P.H. Yoon, Pitch anIle and velocity diffu.ion of 
newborn iou by wrbulence in the solar wind, 1. Geoph-p. Ru., 95, 
21. 1990L 

Ziebell, L.F., and P.H. Yoon, Pitch-angle and velocity diffulion of 
newbom iOl'll by turbulence in the solar wind. J. Geoph;p. Ru., 95, 
1990b. 

Ziebell. LF., P.H. Yoon, C.S. Wu. and D. Winske, Pitch-angle 
diffusion of newborn ions by intrinsic turbulence in the solar wind, 
J. G •• phys. Res .• 95. 17075. 1m. 

T. L Gomboti, Department of Atmospheric, Oceanic and Space 
Sciences, Splice Physies Research Laboratory. University of Mic:higUl, 
2455 Hoywanl. Ann Arbor. MI 48109-2143. 

(Received September 24, H100; 
revised January 22, 1991; 

accepted January 22,1991.) 




