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A Regularized, Model-Based Approach to Phase-Based
Conductivity Mapping Using MRI

Kathleen M. Ropella* and Douglas C. Noll

Purpose: To develop a novel regularized, model-based
approach to phase-based conductivity mapping that uses

structural information to improve the accuracy of conductivity
maps.
Theory and Methods: The inverse of the three-dimensional

Laplacian operator is used to model the relationship between
measured phase maps and the object conductivity in a penal-

ized weighted least-squares optimization problem. Spatial
masks based on structural information are incorporated into the
problem to preserve data near boundaries. The proposed

Inverse Laplacian method was compared against a restricted
Gaussian filter in simulation, phantom, and human experiments.
Results: The Inverse Laplacian method resulted in lower

reconstruction bias and error due to noise in simulations than
the Gaussian filter. The Inverse Laplacian method also pro-

duced conductivity maps closer to the measured values in a
phantom and with reduced noise in the human brain, as com-
pared to the Gaussian filter.

Conclusion: The Inverse Laplacian method calculates conduc-
tivity maps with less noise and more accurate values near

boundaries. Improving the accuracy of conductivity maps is
integral for advancing the applications of conductivity mapping.
Magn Reson Med 78:2011–2021, 2017. VC 2016 International
Society for Magnetic Resonance in Medicine.
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INTRODUCTION

Mapping of electrical properties using MRI has been dem-
onstrated in vivo in both normal subjects and patients
(1–4). The electrical properties of a material can be defined
as the complex permittivity k :¼ E� i s

v

� �
where E is per-

mittivity, r is conductivity, and x is the resonant angular
frequency. Conductivity describes a material’s ability to
conduct electric current whereas permittivity describes a
material’s resistance to establish an electric field.

The primary applications for mapping electrical proper-
ties are specific absorption rate calculations, treatment
planning, and diagnostics. Predicting and monitoring spe-
cific absorption rate is a key safety factor in parallel trans-
mit and high field MRI applications. Doing so on a subject-

specific basis requires accurate, subject-specific conductiv-

ity maps. Conductivity maps may be useful or even neces-

sary for planning therapies such as transcranial magnetic

stimulation (5,6) or transcranial direct current stimulation

(7,8), where tissue conductivity affects current density.

Furthermore, recent studies have shown that conductivity

increases in tumors. In vivo studies have primarily been

conducted in the brain (9,10) and the breast (3,11–13).
First proposed by Haacke et al. (14) and further

described by Katscher et al. (15), MR electrical properties

tomography involves measuring magnetic fields with

MRI to calculate electrical properties. Wen (16) noted

that conductivity primarily affects the phase of the radio-

frequency field, leading to the simplified phase-based

conductivity mapping. This method is described in

detail by Voigt et al. (9).
The primary issues in MR electrical properties tomog-

raphy are boundary errors and low signal-to-noise ratio

(SNR). The boundary errors arise from the assumption

that the electrical properties are locally constant, an

assumption that is violated when electrical properties

vary with space. This is most prominent at material

boundaries, but can also be problematic in inhomoge-

neous materials. Seo et al. (17) provided a mathematical

analysis of this error and Duan et al. (18) investigated

the error magnitude at various tissue interfaces. Low

SNR results from calculations that rely on the Laplacian

operator. Electrical properties are proportional to the

Laplacian of the measured magnetic fields, so their cal-

culation amplifies any noise incurred during the MRI

scan. Several methods have been proposed to minimize

one or both of these issues, such as gradient-based

approaches (19–22), magnitude image-based filter kernels

(12,23), and inverse approaches.
There have been a few proposed MR electrical proper-

ties tomography methods focused on solving the inverse

problem as opposed to the forward problem. Balidemaj

et al. developed the Contrast Source Inversion approach

(24), which is based on global integral representations

for the electromagnetic field quantities. The Contrast

Source Inversion approach includes a Total Variation

factor to reduce noise and does not rely on the assump-

tion that conductivity is constant. Resultant conductivity

maps for numerical phantoms show excellent recovery of

small details and tissue boundaries. However, Contrast

Source Inversion requires knowledge of the background

field and, to the best of our knowledge, this method has

not been extended to be three-dimensional (3D) and also

has only been used in numerical experiments. Borsic

et al. proposed an Inverse Problems approach (25) more

similar to the method we present in this paper. Their

Inverse Problems approach also updates the conductivity
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maps based on the difference between the forward prob-
lem formulation and the measured data. They have test-
ed both quadratic and Total Variation regularization
schemes. The Total Variation formulation results in
excellent recovery of boundaries in numeric and experi-
mental phantoms, but the method has not been tested in
vivo. Furthermore, this method presents a computational
burden, which the authors have mitigated by subdivid-
ing the problem, but there exist some discontinuities at
the boundary between subdivisions.

As an alternative to MR electrical properties tomogra-

phy, Local Maxwell Tomography (26,27) and Global Max-

well Tomography (GMT) (28) have been proposed in recent

years, and GMT is also formulated as an inverse problem.

Local Maxwell Tomography does not require assumptions

about radiofrequency phase or the coil structure and was

generalized to solve for tensors and rapidly varying electri-

cal properties. However, the approach requires multichan-

nel transceivers. GMT is based on volume integral

equations and, as such, requires appropriate solvers. GMT

uses only the magnitude of the radiofrequency field, so it

does not rely on phase assumptions. To the best of our

knowledge, Local Maxwell Tomography and GMT have

only been demonstrated in numerical phantoms.
We use magnitude information from the MRI images

as a priori information in our proposed reconstruction

process, specifically to identify a region of support and

identify tissue boundaries. Magnitude information has

previously been used to adapt the filter kernel shape and

size to the anatomy in both Gaussian filtered Laplacian

(23) and parabolic fitting (12) approaches. Both methods

have reduced the size of boundary artifacts.
In this work, we propose a novel method for phase-

based conductivity mapping that includes a model-based

approach with regularization. The aim of this approach is

to produce conductivity maps with higher accuracy by

reducing noise amplification and boundary artifacts. This

is a 3D method that uses magnitude information as a priori

information to improve the phase-based conductivity

reconstruction. We demonstrate this method in numerical

simulations, a saline phantom, and human subjects.

THEORY

Phase-Based Conductivity Mapping

We can relate the complex permittivity of an object to

the magnetic flux density, B, with the Helmholtz

equation:

�r2B ¼ rk

k
� ½r � B� þ v2m0kB [1]

where x is the resonant frequency and l0 is the perme-

ability of free space.
Under the assumption that the complex permittivity is

locally constant, the term rk
k
� ½r � B� ¼ 0, and we arrive

at the homogeneous Helmholtz equation:

�r2B ¼ v2m0kB: [2]

When using MRI to measure conductivity and permittivi-

ty the transmit radiofrequency field, Bþ1 , is used due to

the ease of measurement. According to Wen (16), the

conductivity of an object primarily affects the phase of

the Bþ1 field, fþ, while the permittivity of an object pri-

marily affects the magnitude of this field. Therefore, con-

ductivity can be approximated as

s � r
2fþ

vm0

: [3]

This is referred to as phase-based conductivity mapping.

Mapping conductivity based on phase alone is more

time efficient, as the magnitude of the field is not

required. Additionally, the transmit phase from any coil

can be approximated as half the transceive phase, which

can be acquired using a spin echo (SE) or balanced

steady state free precession scan. Phase-based conductiv-

ity mapping is valid so long as the curvature of the mag-

nitude of the Bþ1 field is small (16). As the static

magnetic field strength increases, so does the curvature

of the Bþ1 magnitude, and phase-based conductivity map-

ping is more biased (4).

Model-Based Approach with Regularization

We propose an estimator for penalized weighted least-

squares reconstruction of a conductivity map as

r̂ ¼ arg min s

1

2
jj fþ

vm0

� Lrjj2W1
þ bW2RðrÞ; [4]

where r̂ is the optimal conductivity solution, fþ is the

measured transmit phase data, L is a system model relat-

ing the two, R is a regularization function, and b is the

regularization parameter. The matrices W1 and W2 are

weighting matrices that incorporate a priori information

into the problem. The first term on the right-hand side of

the Eq. [4] is the data fit term, which enforces the rela-

tionship between tissue conductivity and fþ described

in Eq. [3]. The second term is a penalty, or regulariza-

tion, term which incorporates some previous knowledge

of the object to improve the fidelity of the

reconstruction.
In this problem, the system model L can be described

as a filter representing an approximate inverse of the dis-

crete Laplacian operator, r2, where:

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
[5a]

@2

@x2
f ðx; y ; zÞ ¼ f ðx � 1; y ; zÞ � 2f ðx; y ; zÞ þ f ðx þ 1; y ; zÞ

h2
x

[5b]
@2

@y2
f ðx; y ; zÞ ¼ f ðx; y � 1; zÞ � 2f ðx; y ; zÞ þ f ðx; y þ 1; zÞ

h2
y

[5c]
@2

@z2
f ðx; y; zÞ ¼ f ðx; y ; z � 1Þ � 2f ðx; y ; zÞ þ f ðx; y ; z þ 1Þ

h2
z

[5d]

where hx ;hy ;hz are the voxel dimensions. For isotropic

unit voxels, this equates to the 3� 3� 3 matrix r2,

where at the center point r2 is �6 and at the six
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adjacent neighbors to the center r2 is 1. In other words,

r2ð0; 0; 0Þ ¼ �6 and r2ð61;0;0Þ ¼ r2ð0;61;0Þ ¼ r2ð0;0;
61Þ ¼ 1: For anisotropic voxels, Eqs. [5b-d] are scaled by

the appropriate voxel dimensions, and the ones in r2

will vary with the voxel size.
The inverse of this operator is calculated by zero-padding

this kernel to the size of the data, taking the 3D fast Fourier

transform (FFT), and inverting the FFT coefficients. Since

the FFT of the Laplacian operator is zero-valued at DC,
inverting that coefficient is ill-conditioned. To mitigate this

problem, we added a small offset, d, to the DC coefficient of

the Laplacian. Taking the inverse FFT of the inverted coeffi-
cients results in the Inverse Laplacian (IL) filter L.

Similar to calculating the Laplacian of phase data, the

IL calculation requires the convolution of r with the IL
filter. To keep consistent with least-squares notation, we

represent the IL filter as a matrix, but in actuality this fil-

ter is an operator, where

Lr :¼ F�1fFfrg � FfLgg:

The F operator is the FFT.
The regularizer for this problem, RðrÞ, uses a rough-

ness penalty, which can be written as:

RðrÞ ¼ cð½Cr�Þ: [6]

This regularization term encourages a smooth conductiv-

ity map because the matrix C is the first order finite dif-

ference operator. When multiplied by W2, this
regularizer calculates a weighted sum of the differences

between the voxel of interest and its nearest adjacent

neighbor in all three dimensions. In this formulation, r

is a vectorized version of the conductivity map such that

½Cr� is a vector of length K, where K is N voxels times j
neighbors (j¼ 3 here).

The function cðtÞ is a potential function that operates on
each element of ½Cr�. In this work, we use a hyperbola

potential function (29,30). This allows us to penalize any
roughness in r in a nonlinear fashion, with larger penalties

associated with larger values of ½Cr�. The values of the

hyperbola form of cðtÞ grow in a quadratic fashion for small
values of t and in a linear fashion for large values of t, which

gives the hyperbola potential function edge-preserving

qualities. This is favorable for conductivity mapping
because we have already neglected object edges in the sys-

tem matrix by using the homogeneous Helmholtz equation.
The matrices W1 and W2 are used to mask out certain

parts of the image based on a priori information. While
this work focuses on phase-based conductivity mapping,

the scan protocol used to acquire the phase image also

provides a magnitude image at no extra cost. In addition,
we acquire an angiogram because vessels can cause spu-

rious phase information. The mask W1 dictates the

region of support for the problem, which excludes any
vessels from the angiogram as well as regions of the mag-

nitude image with very low signal. The mask W2 deter-
mines the regions on which regularization should be

applied. The finite differences matrix C is applied to the

magnitude image and the result is thresholded to deter-
mine the important edges in the object. These large edges

are excluded from regularization under the assumption

that edges in the conductivity maps will coincide with
edges in the anatomical images, and we do not wish to
regularize across these boundaries. Because we want to
regularize in each of the three dimensions, W2 is a row
vector of length N voxels times j neighbors so that we
can weight the regularization directions independently.
Masks W1 and W2 are valued 0 for voxels to be excluded
from the calculation and 1 elsewhere. When a voxel in a
given mask is zero-valued, that voxel becomes a “don’t
care” voxel for the data fit term, regularization term, or
both. We solve this optimization problem using the con-
jugate gradient method, implemented using tools from
Fessler’s Image Reconstruction Toolbox (31).

The regularization parameter b determines the balance
between accurate modeling of the data and smoothing
the results with regularization. While methods exist to
optimally select the regularization parameter b, we select-
ed the parameter value to approximately match the spa-
tial resolution of the traditional filtering methods. In this
work, we chose a restricted Gaussian filter for compari-
son. When employing Gaussian smoothing in the conduc-
tivity calculations, the two main reconstruction steps are
to (1) calculate the Laplacian and (2) apply the filter. In
the IL approach the data fit term includes the Laplacian
operator and the regularization term enforces some level
of smoothness. Since the data fit term is derived from the
Laplacian operator, we can show that, in the absence of
noise, the IL method with no regularization will produce
highly accurate conductivity maps, as will the Laplacian
operator. Therefore, we directly compare the spatial reso-
lution properties of the Gaussian filter with those of the
regularization term. Some electrical properties tomogra-
phy literature (17,23,32) uses filter widths of 5 voxels, so
we compare the Point Spread Function full-width-at-half-
maximum values for 5 � 5 Gaussian filters with a range
of different standard deviation values to those of the
finite differences regularizer with a hyperbola potential
function for a range of b values. We did not include the
edge mask W2 in the regularization term, as this would
certainly exclude the point object from regularization and
thus prevent the calculation of the Point Spread Func-
tion. Results from this experiment are shown in Support-
ing Figure S1. We selected a filter standard deviation of 1
voxel to match the filters used in (17,23,32), and a corre-
sponding b value of 1. It is worth noting that this match-
ing procedure equates the spatial resolution properties
for these two methods for a given impulse amplitude.
Due to the nonlinear nature of the regularizer, its smooth-
ing properties will vary depending on the amplitude of
the differences. We selected a point object amplitude of
0.3 to represent the approximate conductivity difference
between white and gray matter. We are less concerned
about larger amplitude point objects because of the edge-
preserving nature of the regularizer and possible assis-
tance from the edge mask.

A flowchart describing the workflow is given in Figure 1.

METHODS

Electrical Properties Tomography Reconstruction

Phase data was unwrapped prior to reconstruction using
the method in (33). The conductivity map reconstructions
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were first performed using the proposed IL method with
b¼ 1. To determine the appropriate DC offset value, d, for
the IL filter, the value of d was varied between 10�2 and
10�7. No noise was added to the simulation data for the d
experiments.

The proposed IL method also relies on circulant opera-
tions in calculating the inverse of the Laplacian and the
regularization term. The images have plenty of zero-
padding in the x- and y-directions, but a slice of zeros
was added to both the top and bottom of the volume.

The proposed method was compared against a restrict-
ed Gaussian filter. This method also requires both the
magnitude and the phase of the SE image. First the con-
ductivity was calculated according to Eq. [3] using the
discrete Laplacian kernel r2. Zero-padding in the z-
direction was also used in the Gaussian filter method
because circulant end conditions were used to calculate
the Laplacian. The Gaussian filter was a 5� 5� 5 kernel
with a standard deviation of 1 voxel, applied to the raw
conductivity images. The filter was restricted to include
voxels within the kernel that had a magnitude intensity
within 20% of the center voxel, as described in (12).

For both methods, to reflect the fact that conductivity
must be non-negative, any resultant negative conductivi-
ty values were set to zero.

Numerical Simulations

Numerical simulations were performed using SEMCAD

X (SPEAG, Switzerland). The model consisted of a bird-

cage coil and a cylindrical, two compartment phantom.

The outer compartment was assigned the material prop-

erties of gray matter (rGM¼ 0.59 S/m) and the inner com-

partment was assigned the material properties of

cerebrospinal fluid (CSF) (rCSF¼ 2.14 S/m). Simulations

were performed at 128 MHz with 0:4� 0:4� 0:4 mm3

voxels. Since Bþ1 is a direct product of the simulation, it

was used in the reconstruction.
Zero-mean additive white Gaussian noise (AWGN) was

added independently to the real and imaginary parts of

the data. The standard deviation of the noise was varied

from 10�3:8 to 10�2:5 to achieve a range of SNR values of

50–76 dB. Conductivity maps were reconstructed using

the proposed IL method and the restricted Gaussian filter

method. Furthermore, no angiogram information was

included. At each noise standard deviation level, both

reconstruction methods were repeated for 100 noise real-

izations. In both Gaussian filtering and the IL method,

there exists a trade-off between accuracy of the conduc-

tivity maps (e.g., bias) and noise. Bias will be evident in

the conductivity maps regardless of the SNR of the input

FIG. 1. Workflow for the data acquisition and processing associated with the proposed Inverse Laplacian algorithm. The data required
are the intensity projections from a phase-contrast angiogram and the complex image data from a spin echo sequence. The inputs to
the Inverse Laplacian algorithm are the support mask, W1, an edge mask, W2, and the transmit phase, calculated from spin echo data

using the transceive phase assumption.
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data and, in our experience, dominates the root-mean-
square error calculation. Therefore, to measure the

amount of bias we averaged the conductivity maps over
all realizations for each noise level. To give a more repre-
sentative measure of the effective conductivity map SNR,
we subtracted this mean error at the respective noise lev-

el from each realization before calculating the standard
deviation of the conductivity values across all 100
realizations.

Conductivity values were calculated using the IL

method and the restricted Gaussian filter method after
AWGN with a standard deviation of 5� 10�4 was added
to the simulation data. The experimental mean and stan-
dard deviation values were calculated under two condi-

tions. First, using all voxels for a given material and,
second, after eroding each material region using a 9 � 9
square element. The erosion was performed to calculate
the error without the edge artifacts, a means of separat-

ing bias from noise. The eroded regions are shown in
Supporting Figure S2.

The IL method was also used to calculate conductivity
values with and without the edge mask, W2, after AWGN

with a standard deviation of 10�4 was added to the sim-
ulation data.

Dielectric Phantom

An aqueous phantom was constructed using two cylin-

drical plastic containers to provide conductivity contrast.
The outer container contained a solution of 7.5 g/L NaCl,
to increase the conductivity, and 1 g/L copper sulfate, to

reduce the relaxation constants. The inner container,
allowed to move freely within the larger vessel, was
filled with only deionized water. We measured the con-
ductivity of the outer container to be 1.38 S/m using a

dielectric probe. We used 0 S/m as the true conductivity
value of the inner container. Conductivity maps were
reconstructed using the proposed IL method and the
restricted Gaussian filter method. Angiogram information

was not used for the dielectric phantom. The same
region erosion procedure used for the simulation data
was used for the phantom data.

In Vivo Experiment

Four healthy volunteers were scanned under approval by
the Institutional Review Board at the University of Mich-
igan. Conductivity maps were reconstructed using the

proposed IL method and the restricted Gaussian filter
method.

Scan Protocols

All experiments were performed on a GE Discovery
MR750 3.0T MRI scanner (GE Healthcare, Waukesha,
WI) using a birdcage head coil. Data were acquired using
a two-dimensional SE sequence with TE/TR¼ 16/1200

ms, FOV¼24� 24� 2:1 cm, with 1:25� 1:25� 3 mm3

voxels. Data were acquired twice using the SE sequence
with opposite slice select gradient polarity and averaged
to mitigate the effect of eddy currents. The transmit

phase, fþ, was calculated by dividing the unwrapped
transceive phase of the SE image by two.

A phase contrast angiogram was acquired for each
human subject with the same slice prescription as the SE
scan. The peak encoded velocity was set to 15 cm/s.

For the human subjects, a T1-weighted image was
acquired using a two-dimensional spoiled gradient echo
sequence with the same slice prescription as the SE
sequence. This image was used for segmentation with
SPM8 (34). Each voxel was classified as either gray mat-
ter, white matter, or CSF with probability greater than
95%. Voxels not meeting this criteria for any tissue type
were left unassigned. The segmented images were used
to calculate mean and standard deviation of the conduc-
tivity values for each tissue type. Mean tissue values
across all subjects were calculated as the mean of indi-
vidual subject means, weighted by the number of voxels
in the tissue segment. The standard deviations across all
subjects were calculated as the square root of the mean
of the subject variances, also weighted by segment size.

All conductivity calculations were performed in 3D,
but results are displayed for representative slices from
the reconstructed volumes. Mean and standard deviation
values reported in tables were calculated over the vol-
ume, excluding the top and bottom slices to exclude arti-
facts in the Gaussian filter reconstruction due to
applying the Laplacian kernel at the edge of the volume.

RESULTS

Simulation Data

Figure 2 shows the conductivity maps for noise standard
deviation¼5� 10�4, reconstructed using the Gaussian fil-
ter and IL methods. Mean and standard deviations for each
region and reconstruction method are reported in Table 1.

Figure 3 shows the resultant conductivity maps for
varying values of d. For values of d ¼ ½10�2;10�3; 10�4�
the conductivity maps are nearly identical. Some cross-
hatching is visible, but we believe this is simulation arti-
fact. Conductivity maps calculated with values of d clos-
er to zero result in more ringing and a loss of the sharp
transition between compartments. For all experiments,
we used d ¼ 10�3 to minimize the bias due to the DC
offset.

The effects of the masks used in the IL approach are
shown in Figure 4. The method does not yield accurate
conductivity maps when no region of support is speci-
fied. This is primarily due to the lack of data in the back-
ground region. Without the support mask, W1, the model
attempts to fit the sharp edge in the phase at the object
border resulting in spurious conductivity values. The
edge mask, W2, helps to retain information close to mate-
rial boundaries where large jumps in conductivity occur.
It is clear from Figure 4 that the edge artifact at the
boundary between the two materials is reduced in width
by using the edge mask. Excluding the edge pixels from
regularization also allows for more accurate conductivity
calculations adjacent to these pixels because the transi-
tion between compartments is not regularized and there-
fore not encouraged to be smooth.

We assess the accuracy of each reconstruction method
based on the root-mean-square error of the conductivity
maps. Figure 5a shows the effect of noise in the Bþ1 data
on the standard deviation of the reconstructed
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Table 1
Nominal and Measured Conductivity Values for Simulation and Phantom Experiments

Simulationa Phantom
Compartment Inner (S/m) Outer (S/m) Inner (S/m) Outer (S/m)

Nominal value 2.14 0.59 0.00 1.38
No erosion Filter 1.68 6 0.88 0.47 6 0.50 0.34 6 0.78 1.20 6 0.83

IL 1.93 6 0.83 0.65 6 0.36 0.08 6 0.27 1.21 6 0.84
With mask erosion Filter 2.03 6 0.56 0.62 6 0.49 0.10 6 0.25 1.65 6 0.21

IL 2.22 6 0.33 0.74 6 0.29 0.01 6 0.07 1.31 6 0.30

aReconstructed with added noise standard deviation¼5� 10�4.

FIG. 3. Conductivity maps recon-
structed with the Inverse Laplacian

method for the simulation data with
varying values for the offset added

to the DC coefficient. No noise was
added to the simulation data. The
DC offset was varied between 10�2

and 10�7.

FIG. 2. Conductivity maps for the
simulation experiments. AWGN was

added to the complex data with
standard deviation¼5� 10�4. a:
True conductivity. b: Restricted

Gaussian filter reconstruction. c:
Inverse Laplacian reconstruction. d:
Profiles through y¼0.
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conductivity map. These standard deviation values were
calculated after subtracting out the mean error for the
given noise level, so they provide a more accurate
description of the effective conductivity map noise,
removing bias due to spatially varying conductivity. The
IL method produces lower conductivity standard devia-
tions than the restricted Gaussian filter across all input
noise levels. Figure 5b–e allow visualization of the bias
associated with each reconstruction method at the lowest
and highest noise levels. These are the mean error values
for their respective input noise levels. The restricted

Gaussian filter yields conductivity maps with larger error

near the outer edge of the object and less uniformity at

higher noise levels. Figure 5d,e suggest that the IL meth-

od introduces a slight ringing across the object. Minimal

cross-hatching is visible, particularly in Figure 5b,d, due

to simulation artifacts.

Phantom Data

Figure 6 shows the calculated conductivity maps for the

phantom. Mean and standard deviations for each region are

FIG. 4. Conductivity maps recon-
structed with the Inverse Lapla-

cian method for the simulation
experiments. AWGN was added

to the complex data with stan-
dard deviation¼10�4. Masks W1

and W2 are shown, where W2

provides weightings for regulari-
zation in three dimensions inde-
pendently. a: Only support mask,

W1, used in the reconstruction.
b: Both masks, W1 and W2,

used in the reconstruction. c:
Profiles through y¼0.

FIG. 5. Measures of error due to
noise and bias in both recon-

struction methods. a: Standard
deviation of conductivity map

error as a function of the stan-
dard deviation of the AWGN
added to the complex simulated

Bþ1 fields. b–e: Mean conductivity
map error over all realizations for

two noise standard deviation lev-
els to show the bias of the
Gaussian filter, (b) and (c), and

Inverse Laplacian method, (d)
and (e). Mean values are calcu-

lated for the lowest, (b) and (d),
and highest, (c) and (e), noise
levels as denoted by blue

dashed lines in (a).
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reported in Table 1. As in the simulations, the IL method

produces conductivity maps with less variation in the con-

stant regions. Additionally, the IL method had lower con-

ductivity standard deviations. For the phantom data, the

inner compartment values are largely impacted by setting

negative values to zero, driving the mean and standard devi-

ation values closer to zero. For the outer compartment, the

IL method calculated conductivity values much closer to

the measured value, especially after mask erosion.

In Vivo Data

Figure 7 shows the conductivity maps for a representa-

tive healthy volunteer subject. Mean and standard devia-

tions for each tissue type in all four subjects, as well as

across all subjects, are reported in Table 2. The ven-

tricles are well-defined as is gray matter surrounding the

sulci. The IL method resulted in lower values of the

standard deviation within a tissue type for most subjects,

particularly the white matter values. The IL method pro-

duced higher standard deviations for the gray matter and

CSF in two of the four subjects, which may be a result of

poor definition between gray matter and CSF in the con-

ductivity maps whereas the tissue segmentation is well-

defined.

DISCUSSION

Conductivity mapping suffers from poor SNR because

conductivity is proportional to the noise-amplifying Lap-

lacian of the phase. In addition, phase-based conductivi-

ty mapping generally assumes that the conductivity is

locally constant, an assumption that is not valid at or

near tissue boundaries or in other regions of spatially

varying conductivity. In a complex structure such as the

brain, these boundary errors can greatly impact the accu-

racy of the results. For a simple filtering method, there

exists a trade-off between SNR and edge artifacts and

one must select a filter size that adequately balances the

two. In our proposed Inverse Laplacian method, we have

selected a regularization parameter that matches the spa-

tial resolution properties of our method to those of a

Gaussian filter for comparison. However, we have

reduced the standard deviation of the conductivity val-

ues while retaining conductivity information very close

to boundaries. The use of a priori structural information

plays an important role in this reconstruction method.
Our method differs from previously proposed inverse

approaches in that it is a fully 3D formulation that can

be solved as a single problem. The Contrast Source

Inversion approach (24) has only been demonstrated in

two dimensions and the inverse approach published by

Borsic et al. (25) was formulated in 3D, but computation-

al load required subdivision of the problem. Our calcula-

tion of the IL filter provides a manageable problem size

for the inverse approach, even for 3D volumes. An

important parameter in the IL filter calculation is select-

ing a small DC offset, d, so that the discrete Laplacian

operator is invertible. As shown in Figure 3, we have

selected a value from a wide range of possibilities that

will minimize error due to this DC offset.
Based on Figure 4, the edge mask, W2, improves the

accuracy of conductivity maps near material boundaries.

Without this mask, we observe a roll-off near compart-

ment boundaries where the conductivity is not locally

constant, yet the regularizer enforces a smooth transition.

This effect is more pronounced in regions where conduc-

tivity variation with space is large, such as the compart-

ment boundary in the simulations or at the boundary of

CSF in the brain. These regions also provide good con-

trast in the MRI magnitude images, making it easy to

detect the edges. Other regions of spatially varying con-

ductivity may be more difficult to identify, but they

FIG. 6. Conductivity maps for the
experimental phantom. a: True

conductivity. b: Restricted
Gaussian filter reconstruction. c:
Inverse Laplacian reconstruction.

d: Profiles through y¼0.
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cause smaller errors so it is not as important to capture
those areas in the edge mask.

Boundary errors can have a large impact in comparing
reconstruction methods. The conductivity values reported
in Table 1 for the simulation data show that the IL method

mean values changed less with the mask erosion, support-
ing the idea that the IL method can better recover conduc-
tivity information near boundaries. The boundary errors
in the Gaussian filter reconstruction are primarily due to
applying the Laplacian operator across boundaries and are

Table 2
Nominal and Measured Conductivity Values for Four Volunteer Subjects

Nominal value Measured value—Gaussian Measured value—IL

Tissue (S/m) Mean 6 S.D. (S/m) Mean 6 S.D. (S/m)

Subject 1 Gray Matter 0.59 2.47 6 4.25 2.29 6 2.30

White Matter 0.34 0.78 6 0.75 0.78 6 0.69
CSF 2.14 13.56 6 45.76 3.08 6 2.47

Subject 2 Gray Matter 0.59 1.40 6 1.58 0.96 6 1.82

White Matter 0.34 0.81 6 0.64 0.24 6 0.37
CSF 2.14 1.52 6 2.61 2.28 6 4.60

Subject 3 Gray Matter 0.59 1.42 6 1.52 1.09 6 1.33
White Matter 0.34 0.64 6 0.58 0.26 6 0.37
CSF 2.14 1.32 6 2.10 1.13 6 1.85

Subject 4 Gray Matter 0.59 1.22 6 1.18 1.31 6 1.26
White Matter 0.34 0.58 6 0.54 0.33 6 0.46

CSF 2.14 1.39 6 2.40 1.66 6 2.47
All subjects Gray Matter 0.59 1.62 6 2.41 1.38 6 1.70

White Matter 0.34 0.71 6 0.66 0.45 6 0.52

CSF 2.14 1.97 6 10.22 1.65 6 2.87

Nominal values from (35).

FIG. 7. Spin Echo magnitude
image (Row 1); tissue segmenta-

tion (Row 2) showing CSF [red],
white matter [yellow], and gray
matter [blue]; and conductivity

maps reconstructed using the
restricted Gaussian filter (Row 3)

and the Inverse Laplacian meth-
od (Row 4) for a representative
healthy volunteer subject. Each

column corresponds to a differ-
ent slice in the acquired volume.
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propagated by filtering. One might consider excluding

these regions from the Laplacian calculation, but this

would still result in inaccurate conductivity values at

those spatial locations.
The phantom results show that the regularization

parameters translated well from simulation to phantom

data, which is an encouraging result for a method that

could potentially be highly dependent on parameter tun-

ing. The phantom benefits from having a physical layer

of separation between the two compartments, aiding in

the detection of edges for mask W2. There is a conductiv-

ity spike near the compartment boundaries present in

both methods, shown in Figure 6. The inner compart-

ment is deionized water, so the SNR for the Bþ1 data is

lower than in the outer compartment. Coupled with the

lower conductivity, this makes it more challenging to

tease out the underlying curvature from the noisy data.

While much of the inner compartment was set to zero in

postprocessing, the IL algorithm produced fewer high

conductivity values in the inner compartment.
For the human brain experiments, we present repre-

sentative conductivity maps in Figure 7. The ventricles

are well-defined along with many of the sulci. Similar

to previous results, the Gaussian filter produced higher

variation in conductivity values as compared to the IL

method. A combination of filters on the phase data as

well as the conductivity maps would be necessary to

achieve better results, but when cascading filters one

also risks loss of spatial resolution. The mean and stan-

dard deviation of each tissue type for all four subjects

are presented in Table 2. Mean tissue conductivity var-

ied between subjects, but were generally close to

reported values. Marked differences between mean tis-

sue values for the Gaussian filter versus the IL method

might be explained by large positive values near edges.

Definition between tissue types might be improved

with high resolution Bþ1 maps. Since our proposed

method provides reduced noise amplification while

maintaining spatial resolution properties, we can

expect the IL method would be able to reconstruct

accurate conductivity maps from high resolution, lower

SNR Bþ1 data.

CONCLUSIONS

We have developed a novel 3D regularized, model-based

algorithm for phase-based conductivity mapping that

uses a priori structural information to increase the accu-

racy of the maps. The Inverse Laplacian method exhibits

less noise amplification and better edge responses than

filtering methods and has proven successful in simula-

tion, phantom, and the human brain. Accurate conduc-

tivity maps are essential for subject-specific conductivity

calculations to be valuable in clinical or safety applica-

tions. To improve the accuracy of our method, we plan

to investigate the incorporation of nonconstant electrical

properties into the system model. This would be equiva-

lent to deriving a system model from the Helmholtz

equation as opposed to the homogeneous version. We

believe this would result in more accurate values in

regions with spatially varying electrical properties,

specifically at the locations we have excluded from regu-
larization in the current methodology.

ACKNOWLEDGMENT

The authors would like to acknowledge academic license
support for SEMCADX by SPEAG, www.speag.com.

REFERENCES

1. Zhang X, Zhu S, He B. Imaging electric properties of biological tis-

sues by RF field mapping in MRI. IEEE Trans Med Imaging 2010;29:

474–481.

2. Voigt T, Vaterlein O, Stehning C, Katscher U, Fiehler J. Electrical

conductivity imaging of brain tumors. In Proceedings of the 19th

Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 127.

3. Shin J, Kim MJ, Lee J, Nam Y, Oh Kim M, Choi N, Kim S, Kim DH.

Initial study on in vivo conductivity mapping of breast cancer using

MRI. J Magn Reson Imaging 2014;42:371–378.

4. van Lier ALHMW, Raaijmakers A, Voigt T, Lagendijk JJW, Luijten PR,

Katscher U, van den Berg CAT. Electrical properties tomography in

the human brain at 1.5, 3, and 7T: a comparison study. Magn Reson

Med 2014;71:354–363.

5. Miranda PC, Hallett M, Basser PJ. The electric field induced in the

brain by magnetic stimulation: a 3-D finite-element analysis of the

effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng

2003;50:1074–1085.

6. Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A. Three-dimen-

sional head model simulation of transcranial magnetic stimulation.

IEEE Trans Biomed Eng 2004;51:1586–1598.

7. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-

Leone A. Transcranial direct current stimulation: a computer-based

human model study. NeuroImage 2007;35:1113–1124.

8. Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B. Transcranial

direct current stimulation (tDCS) in a realistic head model. Neuro-

Image 2010;51:1310–1318.

9. Voigt T, Katscher U, Doessel O. Quantitative conductivity and per-

mittivity imaging of the human brain using electric properties tomog-

raphy. Magn Reson Med 2011;66:456–466.

10. van Lier AL, Hoogduin JM, Polders DL, Boer VO, Hendrikse J, Robe

PA, Woerdeman PA, Lagendijk JJ, Luijten PR, van den Berg CA. Elec-

trical conductivity imaging of brain tumors. In Proceedings of the

19th Annual Meeting of ISMRM, Montreal, Canada, 2011. p. 4464.

11. Bulumulla S, Hancu I. Breast permittivity imaging. In Proceedings of

the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012. p.

4175.

12. Katscher U, Djamshidi K, Voigt T, Ivancevic M, Abe H, Newstead G,

Keupp J. Estimation of breast tumor conductivity using parabolic

phase fitting. In Proceedings of the 20th Annual Meeting of ISMRM,

Melbourne, Australia, 2012. p. 2335.

13. Katscher U, Abe H, Ivancevic MK, Keupp J. Investigating breast

tumor malignancy with electric conductivity measurement. In Pro-

ceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada,

2015. p. 3306.

14. Haacke EM, Petropoulos LS, Nilges EW, Wu DH. Extraction of con-

ductivity and permittivity using magnetic resonance imaging. Phys

Med Biol 1991;36:723–734.

15. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O.

Determination of electric conductivity and local SAR via B1 map-

ping. IEEE Trans Med Imag 2009;28:1365–1374.

16. Wen H. Non-invasive quantitative mapping of conductivity and

dielectric distributions using the RF wave propagation effects in high

field MRI. In Proceedings of SPIE 5030, Medical Imaging 2003: Phys-

ics of Medical Imaging, San Diego, California, USA, 2003. pp. 471–

477.

17. Seo JK, Kim MO, Lee J, Choi N, Woo EJ, Kim HJ, Kwon OI, Kim DH.

Error analysis of nonconstant admittivity for MR-based electric prop-

erty imaging. IEEE Trans Med Imaging 2012;31:430–437.

18. Duan S, Xu C, Deng G, Wang J, Liu F, Xin SX. Quantitative analysis

of the reconstruction errors of the currently popular algorithm of

magnetic resonance electrical property tomography at the interfaces

of adjacent tissues. NMR Biomed 2016;29:744–750.

19. Gurler N, Ider YZ. Gradient-based electrical conductivity imaging

using MR phase. Magn Reson Med 2017;77:137–150.

2020 Ropella and Noll

http://www.speag.com


20. Hafalir FS, Oran OF, Gurler N, Ider YZ. Convection-reaction equation

based magnetic resonance electrical properties tomography(cr-

MREPT). IEEE Trans Med Imaging 2014;33:777–793.

21. Liu L, Zhang X, Schmitter S, de Moortele PFV, He B. Gradient-based

electrical properties tomography (gEPT): a robust method for map-

ping electrical properties of biological tissues in vivo using magnetic

resonance imaging. Magn Reson Med 2015;74:634–646.

22. Liu J, Zhang X, Wang Y, de Moortele PFV, He B. Local electrical

properties tomography with global regularization by gradient. In Pro-

ceedings of the 23rd Annual Meeting of ISMRM, Toronto, Canada,

2015. p. 3297.

23. Huang L, Schweser F, Herrmann KH, Kramer M, Deistung A,

Reichenbach JR. A Monte Carlo method for overcoming the edge arti-

facts in MRI-based electrical conductivity mapping. In Proceedings of

the 22nd Annual Meeting of ISMRM, Milan, Italy, 2014. p. 3190.

24. Balidemaj E, van den Berg CA, Trinks J, van Lier AL, Nederveen AJ,

Stalpers LJA, Crezee H, Remis RF. CSI-EPT: A contrast source inver-

sion approach for improved MRI-based electric properties tomogra-

phy. IEEE Trans Med Imaging 2015;34:1788–1796.

25. Borsic A, Perreard I, Mahara A, Halter RJ. An inverse problems

approach to MR-EPT image reconstruction. IEEE Trans Med Imaging

2016;35:244–256.

26. Sodickson DK, Alon L, Deniz CM, et al. Local maxwell tomography

using transmit-receive coil arrays for contact-free mapping of tissue

electrical properties and determination of absolute RF phase. In Pro-

ceedings of the 20th Annual Meeting of ISMRM, Melbourne, Austra-

lia, 2012. p. 387.

27. Sodickson DK, Alon L, Deniz CM, Ben-Eliezer N, Cloos M, Sodickson

LA, Collins CM, Wiggins GC, Novikov DS. Generalized local maxwell

tomography for mapping of electrical property gradients and tensors.

In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne,

Australia, 2012. p. 2532.

28. Serralles JE, Polimeridis A, Vaidya MV, Haemer G, White JK,

Sodickson DK, Daniel L, Lattanzi R. Global maxwell tomography: a

novel technique for electrical properties mapping without symmetry

assumptions or edge artifacts. In Proceedings of the 24th Annual

Meeting of ISMRM, Singapore, 2016. p. 2993.

29. Charbonnier P, Blanc-Feraud L, Aubert G, Barlaud M. Two determin-

istic half-quadratic regularization algorithms for computed imaging.

In Proceedings of IEEE International Conference on Image Processing,

1994, volume 2. pp. 168–171.

30. Panin VY, Zeng GL, Gullberg GT. Total variation regulated EM algo-

rithm. IEEE Trans Nucl Sci 1999;46:2202–2210.

31. Fessler JA. Image reconstruction toolbox. Available at: http://web.

eecs.umich.edu/�fessler/code/index.html. Accessed February 1,

2013.

32. Kim DH, Choi N, Gho SM, Shin J, Liu C. Simultaneous imaging of in-vivo

conductivity and susceptibility. Magn Reson Med 2014;71:1144–1150.

33. Xu W, Cumming I. A region-growing algorithm for InSAR phase

unwrapping. IEEE Trans Geosci Remote Sens 1999;37:124–134.

34. Wellcome Trust Centre for Neuroimaging. Statistical parametric map-

ping. Available at: http://www.fil.ion.ucl.ac.uk/spm/. Accessed April

1, 2016.

35. Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC,

Payne D, Klingenb€ock A, Kuster N. IT’IS database for thermal and

electromagnetic parameters of biological tissues. Version 2.4 2013.

doi: 10.13099/VIP21000-03-0.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Fig. S1. Comparison of spatial resolution for each reconstruction method.
For a given PSF width we are able to select corresponding regularization
parameter and filter standard deviation. Selected parameters are denoted
by the dotted line.
Fig. S2. Fraction of conductivity images used to calculate mean values
after eroding the compartment masks with a 9 3 9 pixel square. Simulation
reconstructed with (a) restricted Gaussian filter and (b) Inverse Laplacian
method. Phantom reconstructed with (c) restricted Gaussian filter and (d)
Inverse Laplacian method.

Regularized, Model-Based Conductivity Mapping 2021

http://web.eecs.umich.edu/~fessler/code/index.html
http://web.eecs.umich.edu/~fessler/code/index.html
http://web.eecs.umich.edu/~fessler/code/index.html
http://www.fil.ion.ucl.ac.uk/spm/
info:doi/10.13099/VIP21000-03-0

	l
	l

