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Abstract 

To date, there have been no efficient semiconductor light emitters operating in 

the green and amber wavelengths. We report on the synthesis of InGaN nanowire 

photonic crystals, including dot-in-nanowires, nano-triangles and nano-rectangles 
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with precisely controlled size, spacing, and morphology, and further demonstrate 

that bottom-up InGaN photonic crystals can exhibit highly efficient and stable 

emission. The formation of stable and scalable band edge modes in defect-free 

InGaN nanowire photonic crystals is directly measured by cathodoluminescence 

studies. The luminescence emission, in terms of both the peak position ( ~505 

nm) and spectral linewidths (full-width-half-maximum ~12 nm), remain virtually 

invariant in the temperature range of 5 K to 300 K and under excitation densities 

of 29 W/cm2 to 17.5 kW/cm2. To the best of our knowledge, this is the first 

demonstration of the absence of Varshni and quantum-confined-Stark-effects in 

wurtzite InGaN light emitters, factors that contribute significantly to the efficiency 

droop and device instability under high-power operation. Such distinct emission 

properties of InGaN photonic crystals stem directly from the strong Purcell effect, 

due to the efficient coupling of the spontaneous emission to the highly stable 

and scalable band edge modes of InGaN photonic crystals, and are ideally suited 

for uncooled, high-efficiency LED operation. 
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1. Introduction 

Highly stable and efficient light emitting devices are essentially required for a 

broad range of applications including lighting, display, communication, sensing, 

imaging, and medical diagnostics.[1-3] While GaN-based light emitting diodes 

(LEDs) exhibit efficient operation in the blue wavelength range, their efficiency 

and stability degrades considerably with increasing wavelengths, leading to the 

“green gap” in LED and laser technology.[4-9] The quantum efficiency (η) of a 

semiconductor light emitter is ultimately determined by, 

  
  
  

        
  

                                                                                 

where τr and τnr represent the radiative and nonradiative lifetime in the device 

active region, respectively. In conventional InGaN/GaN green and amber LEDs, 

the presence of large densities of defects and dislocations, due to the large 

lattice mismatch (~11%) between InN and GaN, and Auger recombination leads 
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to a small τnr and therefore low quantum efficiency.[10-12] Moreover, the 

performance of conventional InGaN light emitters suffers severely from strain-

induced polarization fields and the resulting quantum-confined Stark effect, which 

often results in a considerable blueshift in emission wavelengths (up to 30 nm) 

under high power operation.[13, 14] To date, a clear path to achieve efficient and 

stable semiconductor light emitters operating in the green, yellow, and amber 

wavelengths has remained elusive.[15, 16]  

Emission properties of a semiconductor light emitter are determined not only 

by the properties of the device active medium but also by the optical density of 

states surrounding the active region. For example, by exploiting the Purcell effect 

in an optical microcavity, the radiative lifetime (τr) can be significantly reduced, 

thereby leading to enhanced internal quantum efficiency (η).[17] To date, however, 

there have been few demonstrations on the use of Purcell effect to bridge the 

“green gap” in semiconductor LEDs and lasers.[18-22] The Purcell factor, Fp, is 
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determined by,  

   
  

 
                                                                                        

where Q is the quality factor, V is the mode volume of the optical cavity, and g is 

the mode degeneracy.[17] To enhance the Purcell factor, conventional design 

considerations are focused on small optical cavity size (on the order of micron 

meter),[23-26] whereas practical LED devices require extended optical mode spread 

over millimeter scale, i.e. three to six orders of magnitude larger than 

conventional designs. In addition, previously reported GaN optical cavities, 

including photonic crystals, are generally fabricated from epilayers using the top-

down etching method, which inherently have large densities of defects and 

dislocations, with emission wavelengths limited to the blue and near-ultraviolet 

spectral range.[27-31] 

In this work we show that such critical challenges can be addressed by using 

InGaN nanowire photonic crystals synthesized via the bottom-up method, 
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wherein the formation of defects and dislocations are minimized due to the 

efficient surface strain relaxation. With the use of selective area epitaxy, we 

demonstrate that the size, spacing and morphology of InGaN photonic crystals, 

including dot-in-nanowires, nano-triangles and nano-rectangles can be precisely 

controlled, and, as such, spatially extended band edge modes can develop over a 

large area of such defect-free photonic crystals. It is further observed that InGaN 

photonic crystals exhibit remarkably stable emission, compared to conventional 

InGaN light emitters. The luminescence emission, in terms of both the peak 

position ( ~505 nm) and spectral linewidths (full-width-half-maximum – FWHM 

~12 nm), remained virtually invariant in the temperature range of 5 K to 300 K 

and under excitation densities of 29 W/cm2 to 17.5 kW/cm2. To the best of our 

knowledge, this is the first demonstration of the absence of Varshni and 

quantum-confined Stark effects in wurtzite InGaN light emitters, factors that 

contribute significantly to the efficiency droop and device instability under high 

power operation. Such distinct emission properties of InGaN photonic crystals 
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stem directly from the highly stable and scalable band edge modes, due to the 

precisely controlled size, position, and morphology of InGaN nanowire photonic 

crystals, and are ideally suited for uncooled, high efficiency LED and laser 

operation.  

2. Results and Discussion 

Photonic crystal nanostructures synthesized by the bottom-up method often 

exhibit non-negligible surface recombination as well as significant variations in 

size and morphology.[32-34] In this work, we show that these issues can be 

collectively addressed by selective area epitaxy of GaN photonic crystals on nano-

patterned substrate using plasma-assisted molecular beam epitaxy (MBE), wherein 

InGaN/AlGaN quantum dots are incorporated as the active medium to suppress 

surface recombination. Schematically shown in Figure 1a, a thin Ti layer was used 

as a growth mask on a GaN/sapphire substrate, and various nanoscale patterns 

were created on the Ti mask by e-beam lithography technique.[35-44] Each GaN 
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photonic crystal, schematically shown Figure 1b, consists of 400 nm n-GaN, ten 

vertically aligned InGaN/AlGaN quantum dots, and 80 nm p-GaN layer. Under 

selective area epitaxy conditions, Ga adatoms are only nucleated in the opening 

apertures, and no epitaxy takes place on the Ti mask. As such, the size and 

morphology of GaN photonic crystals are precisely determined by the opening 

apertures in the Ti mask. The incorporation of AlGaN barriers in active region, 

instead of GaN barriers, leads to the formation of an AlGaN shell surrounding the 

InGaN quantum dot active region, due to the smaller Al adatom migration length 

compared to Ga and In adatoms. The resulting core-shell like nanostructures, 

schematically shown in Figure 1b, can effectively suppress nonradiative surface 

recombination.[45, 46]  

The photoluminescence emission was measured using a 405 nm laser at room 

temperature. Shown in Figure 1b, it is seen that the photoluminescence intensity 

is enhanced by nearly a factor of eight, compared to InGaN/GaN nanostructures 
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without the formation of AlGaN shell. Detailed structural characterization of the 

InGaN/AlGaN core-shell dot-in-nanowire structures were described elsewhere.[45-47] 

Shown in Figures 1c and d are the SEM images of InGaN/AlGaN hexagonal dot-

in-nanowire, dot-in-nano-triangle, and dot-in-nano-rectangle arrays, which exhibit 

straight sidewalls and uniform size distribution.[19] The photonic crystals can be 

arranged in various lattice structures, including rhombic and triangular lattices, 

with different orientations, illustrated in Figure 1c. Take the dot-in-nanowire array 

shown in Figure 1d as an example, the nanowire photonic crystals are arranged 

in a triangular lattice with a lattice constant of 250 nm. The nanowires have 

lateral sizes of 215 nm and length of 560 nm. The air gap between neighboring 

nanowires is 35 nm. The uniformity of InGaN nanowire photonic crystals across a 

large area is further shown in Figure S1 in the Supporting Information. 

Significantly, InGaN/AlGaN dot-in-nanowire photonic crystals exhibit distinctly 

different emission characteristics, compared to conventional InGaN emitters. 
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Shown in Figure 2a, strong emission was observed at 505 nm with a relatively 

narrow spectral linewidth of 12 nm for the photonic crystals illustrated in Figure 

1d. The emission is highly uniform across a large nanowire photonic crystal 

structure (see Figure S2 in the Supporting Information). For comparison, 

conventional InGaN nanowire arrays or epilayers exhibit broad spectral linewidths 

(35~50 nm),[7, 48-50] which is limited by the large inhomogeneous broadening 

associated with indium compositional variation and the presence of defects and 

strain field.[46, 51] Variations of the light intensity vs. excitation power are further 

shown in Figure 2b. The integrated luminescence intensity is nearly three times 

higher than InGaN/AlGaN dot-in-nanowire arrays grown under identical 

conditions but without the control of the nanowire spacing. The unique 

dependence of the luminescence emission on the nanowire spacing and height, 

as well as the impact of optical confinement of photonic crystals on the 

temperature and power-dependent emission characteristics of InGaN is described 

next.  
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First, to understand the effect of optical confinement on the emission 

characteristics of InGaN, the photonic band structure of InGaN hexagonal 

nanowire arrays was calculated using the plane wave expansion method. Shown 

in Figures 3a and b, InGaN nanowires are arranged in a hexagonal lattice with a 

lattice constant a and lateral dimension d = 0.85a, which is also shown in the 

structural characterization in Figure 1d. The refractive index of InGaN nanowires 

is 2.37. The normalized frequency of the band-edge mode is ~0.49, which 

corresponds to λ = 505 nm for a = 250 nm. By adjusting the flat bands of leaky 

modes, e.g., frequencies around 0.49 to match the emission wavelengths of the 

active region, the luminescence efficiency can be significantly enhanced, due to 

the Purcell effect. The group velocity is determined by the slope of the dispersion 

curve in the photonic band structure. At the band edge, a low group velocity is 

achieved, i.e. dw/dk  0 for frequencies around 0.49 near the  point, thereby 

leading to the formation of a stable and large cavity mode.[52] The low group 

velocity and the resulting long interaction time between radiation field and active 
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material leads to a considerably enhanced spontaneous emission rate. Moreover, 

due to Bragg scattering, the light extraction efficiency will also be enhanced. 

Shown in Figure 3c is the electric field profile of the band edge mode calculated 

by the finite-element method for areal sizes of 5 m × 5 m. The calculated 

mode is TM polarized with electric field in parallel with the c-axis. Perfectly 

matched layer was used for the boundary condition, which can minimize any 

reflection at the simulation boundary. 

The formation of stable and scalable optical modes in such bottom-up 

photonic crystals is further revealed by cathodoluminescence studies. Illustrated 

in Figure 3d is the cathodoluminescence image taken at 505 nm at room-

temperature. The areal size being excited by the e-beam is 5 m × 5 m. It is 

seen that the band edge mode spreads across the entire photonic crystal 

structure, which is in excellent agreement with the calculation shown in Figure 3c. 

Strong light confinement occurs near the center region of nanowire arrays by the 



 

 

 

This article is protected by copyright. All rights reserved. 

14 

 

scattering of the band edge mode. Moreover, it is interesting to observe that 

strong photon confinement can also be achieved for photonic crystals with areal 

sizes as small as 2 m × 2 m and 1 m × 1 m, shown in Figures 3e and f, 

respectively, confirming the scalability of the band edge modes.[52] Detailed 

cathodoluminescence measurements were also performed for InGaN photonic 

crystals with different design parameters and at different emission wavelengths, 

shown in Figure S3 in the Supporting Information. These studies provided 

unambiguous evidence for the formation of strongly confined, highly uniform, 

and scalable band edge modes of InGaN photonic crystals, thereby offering a 

viable approach for realizing both small and large scale efficient light emitters.  

We have further performed extensive studies of InGaN photonic crystals with 

different design parameters. Shown in Figure 3g are variations of the 

luminescence intensity and spectral linewidth with nanowire spacing while 

keeping a constant. Epitaxy conditions were optimized to have similar 
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spontaneous emission from the quantum dot active regions when the nanowire 

spacing is varied. It is seen that the emission characteristics, in terms of both the 

spectral linewidth and integrated intensity, depend critically on the nanowire 

spacing. The highest luminescence intensity and narrowest spectral linewidth 

occurs for a nanowire spacing of 35 nm. A decrease, or increase in nanowire 

spacing lead to a reduction in the luminescence intensity, accompanied by a 

significant increase in the spectral linewidth, which suggests a reduced, or 

minimal level of coupling between the quantum dot spontaneous emission and 

the band edge mode. Since the light extraction efficiency of leaky modes does 

not change significantly for such small variations of nanowire spacing,[17, 53] the 

measured variations of luminescence emission may be primarily attributed to the 

change of the Purcell effect. Based on the measured internal quantum efficiency 

of 20-30% at room-temperature for the InGaN photonic crystals and assuming a 

constant light extraction efficiency, the magnitude of Purcell enhancement factor 

(Fp) is estimated to be in the range of 3 for the spatially extended band edge 
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mode, which is comparable to that for the very small mode in a nanocavity.[19] 

The relatively large Purcell factor is partly related to the large mode degeneracy 

factor g shown in Eqn. (2) associated with the large modal volume.[17] The 

extreme sensitivity of the Purcell effect on the nanowire spacing (radius), 

compared to the conventional slab photonic crystals,[17, 53] is partly related to the 

quasi three-dimensional nature of InGaN nanowire photonic crystals, due to the 

presence of planar GaN substrate as well as the finite length of InGaN nanowires. 

This observation is further supported by the critical dependence of the emission 

characteristics of InGaN nanowire photonic crystals on the height of nanowires 

(see in Figure S4 of the Supporting Information).  

Due to the presence of quantum-confined Stark effect, conventional InGaN 

light emitters generally exhibit significant blueshift with increasing pumping 

power.[54-56] Moreover, the emission characteristics also vary considerably with 

temperature, due to the Varshni’s effect. In contrast, we have measured 
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remarkably stable emission characteristics for InGaN nanowire photonic crystals. 

Shown in Figure 4a are the normalized photoluminescence emission spectra of 

InGaN photonic crystals measured at excitation power from 29 W/cm2 to 17.5 

kW/cm2 at room-temperature. It is seen that the emission spectra remain nearly 

identical. Shown in Figure 4b, the peak emission wavelengths (~505 nm) and 

spectral linewidths (FWHM ~12 nm) are virtually invariant vs. pumping power. 

Luminescence emission spectra of InGaN dot-in-nanowire photonic crystals 

measured in the temperature range of 5 K to 300 K are further shown in Figure 

4c, which was measured under 8.7 kW/cm2 continuous wave pumping condition. 

Figure 4d shows variations of the emission peak and spectral linewidth vs. 

temperature. It is seen that both the emission wavelengths (~505 nm) and 

spectral linewidths (~12 nm) remained nearly constant in the temperature range 

of 5 K to 300 K. For comparison, conventional InGaN nanowire arrays without 

photonic crystal effect exhibit significant variations in the photoluminescence 

emission properties with increasing temperature and pumping power, shown in 
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the insets of Figure 4b and Figure 4d. The remarkably stable emission 

characteristics of InGaN photonic crystals stems directly from the efficient 

coupling of InGaN quantum dot emission to the robust band edge modes of 

InGaN photonic crystals, which is virtually independent of device operating 

conditions and largely determines the emission characteristics.  

3. Conclusions 

In summary, we have demonstrated the bottom-up synthesis of InGaN 

nanowire photonic crystals with precisely controlled size, spacing, and 

morphology, which can serve as the fundamental building blocks of a new 

generation of photonic crystal devices and systems. By coupling the light 

emission into the band edge mode of InGaN photonic crystals, significantly 

enhanced emission efficiency and reduced spectral broadening was measured. 

Moreover, the luminescence emission exhibits remarkable stability: there are 

virtual no variations in the emission characteristics, in terms of both the emission 



 

 

 

This article is protected by copyright. All rights reserved. 

19 

 

peak and spectral linewidth in the temperature range of 5 to 300 K and for 

pumping power variations from 29 W/cm2 to 17.5 kW/cm2. To our knowledge, 

this is the first demonstration of the absence of quantum-confined Stark effect 

and Varshni’s effect in InGaN light emitters. These unique characteristics, together 

with the scalable band edge optical mode, [57] high light extraction efficiency,[58] 

on-demand beam characteristics, [59, 60] and full-color emission, [36, 39, 61] render 

bottom-up GaN nanowire photonic crystals well suited for ultrahigh efficiency, 

large area LED and laser devices as well as integrated nanophotonic circuits in 

the ultraviolet and visible spectral range. 

4. Experimental Section 

Ti Mask Patterned Substrate: A 10 nm Ti layer was used as the mask layer for 

selective area growth, which was deposited on GaN (4 µm)/Al2O3 (0001) substrate 

by e-beam evaporator system. Subsequently, a Poly(methyl methacrylate) (PMMA) 

layer was selectively exposed by e-beam lithography. Thereafter, the exposed Ti 
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thin film area was etched using reactive dry-etching technique. The nano-hole 

patterned substrate was cleaned by Hydrogen Chloride prior to loading into the 

MBE growth chamber. 

Molecular Beam Epitaxial Growth: The bottom-up InGaN/AlGaN nanowire 

heterostructures were fabricated using radio frequency plasma-assisted MBE. The 

growth process included a surface nitridation of the Ti mask layer for 10 min at 

400 ℃. The growth conditions for Si-doped GaN nanowires included a growth 

temperature of 800 ℃, with a nitrogen flow rate of 0.6 standard cubic centimeter 

per minute (sccm), a forward plasma power of 350 W, and Ga beam equivalent 

pressure (BEP) of 3.5×10-7 Torr. In order to introduce the formation of the AlGaN 

shell structure in the active region, the InGaN dot with a thickness of ~3 nm is 

first grown at the center region of GaN nanowire. Due to the strain induced self-

organization, the size of the InGaN dot becomes smaller than the GaN nanowire 

diameter. The incorporation of AlGaN barriers, instead of GaN barriers, leads to 
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the formation of an AlGaN shell surrounding the InGaN quantum dot active 

region, due to the smaller Al adatom migration length compared to Ga and In 

adatoms.[45, 47] As a consequence, the entire growth front including the top and 

sidewalls of the InGaN core region can be covered by AlGaN layer, thereby 

leading to the spontaneous formation of Al-rich large band-gap shell 

structures.[62] Growth conditions for the InGaN/AlGaN quantum dot active region 

included a substrate temperature of ~ 600 °C, Ga BEP of 9×10− 9 Torr, In BEP of 

7.5×10− 8 Torr and Al BEP of 4.5×10− 9 Torr. By repeating this process, vertically 

aligned InGaN/AlGaN multi-quantum dot layers can be formed with highly 

uniform AlGaN shell structure surrounding the active region. Growth conditions 

for the Mg-doped GaN layer included a Ga BEP of 3.5×10− 7 Torr and Mg BEP of 

2×10− 9 Torr with substrate temperature of 750 °C. 

Photoluminescence (PL) Measurement: A 405 nm laser was used as the 

excitation source for the PL measurement of the InGaN/AlGaN nanowire 
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heterostructures. A visible neutral density filter was used to adjust the laser 

excitation powers in range of 29 W/cm2 to 17.5 kW/cm2. The emitted light was 

spectrally resolved by a high-resolution spectrometer, and was detected by a 

high sensitivity and low noise liquid nitrogen cooled CCD in the visible range. 

Temperature-dependent PL measurements were carried out using a helium 

closed-loop cryostat. 

Cathodoluminescence (CL) Measurement: CL measurement was performed 

using a Zeiss Supra 55 VP field emission gun SEM equipped with a cryogenic 

stage coupled to a Gatan MonoCL 2 setup. A gold thin film layer was deposited 

on the substrate in order to suppress charging effect induced by the electron 

beam. The accelerating voltage used in the CL characterization is 10 KeV. The 

emission was collected by a parabolic mirror and detected using a dry-ice cooled 

photomultiplier tube. 
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Figure and Caption 

 

Figure 1. a) Schematic illustration of hole patterned Ti thin film mask for the 

selective area epitaxy of InGaN photonic crystals. SEM image of various nanoscale 

patterns formed on the Ti mask is shown in the right panel. b) Illustration of 

bottom-up InGaN/AlGaN core-shell dot-in-nanowire array grown on pattered 
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substrate. Photoluminescence spectrum of InGaN/AlGaN core-shell dot-in-

nanowires measured at room-temperature (red curve) is shown in the right panel. 

Also shown for comparison is the photoluminescence emission of InGaN/GaN 

dot-in-nanowires without AlGaN shell (blue curve). c) Top-view SEM images of 

InGaN/AlGaN hexagonal dot-in-nanowire, nano-triangle, and nano-rectangle 

arrays. d) 45° tilted-view SEM image of the nanowire photonic crystals arranged 

in a triangular lattice with a lattice constant of 250 nm. The top view SEM image 

is shown in the inset.  
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Figure 2. a) Photoluminescence spectrum of InGaN/AlGaN dot-in-nanowire 

photonic crystals measured at room-temperature (red curve). Also shown for 

comparison is the photoluminescence emission of conventional InGaN/AlGaN 

nanowires (blue curve) without controlled spacing. b) Variations of the light 

intensity vs. excitation power density measured at room-temperature.  
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Figure 3. a) Schematic diagram of the simulated photonic crystals, including the 

lattice constant a, nanowire lateral size d, and the reciprocal lattice vectors. b) 

Calculated photonic band structure of the two-dimensional hexagonal array of 

nanowires (the corresponding SEM is shown in Figure 1d). c) The electric field 

profile of the band edge mode calculated by the three-dimensional finite-

difference time-domain method for a band edge mode (λ = 505 nm). d) 
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Cathodoluminescence mapping image of an areal size of 5×5 µm2 measured at a 

wavelength of 505 nm. Cathodoluminescence mapping images over e) a 2 m×2 

m and f) 1 m×1 m region, respectively. g) Variations of the integrated 

luminescence intensity and FWHM of InGaN photonic crystals vs. nanowire 

spacing. 
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Figure 4. a) Photoluminescence emission spectra of InGaN photonic crystals 

measured at excitation power from 29 W/cm2 to 17.5 kW/cm2 at room-

temperature. b) Variations of the emission peak and spectral linewidth vs. 

excitation power in the InGaN photonic crystal. Inset: variations of the emission 
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peak and spectral linewidth in conventional InGaN nanowire arrays without the 

photonic crystal (PhC) effect. c) Photoluminescence emission spectra of InGaN 

photonic crystals measured in the temperature range of 5 K to 300 K under 8.7 

kW/cm2 continuous wave pumping conditions. d) Variations of the emission peak 

and spectral linewidth vs. temperature in the InGaN photonic crystal. Inset: 

variations of the emission peak and spectral linewidth in the conventional InGaN 

nanowire arrays without photonic crystal effect. 

Table of Content 

The formation of stable and scalable band edge modes in defect-free InGaN 

photonic crystals has been directly measured, for the first time. This is also the 

first demonstration of the absence of quantum-confined Stark effect and Varshni 

effect in InGaN light emitters, factors that contribute significantly to the efficiency 

droop and device instability under high power operation. 
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Figure S1.  

Illustration of the uniformity of InGaN photonic crystal molecules across a 

large area 
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Figure S1. 45° tilted-view SEM image of the InGaN nanowire photonic crystal 

molecules arranged in a 25 m x 25 m area, showing extremely high uniformity 

across a large area. 
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Figure S2.  

The emission stability of InGaN nanowire photonic crystal structures across a 

large area. 

We have investigated the emission characteristics, including the uniformity and 

yield of InGaN nanowire photonic crystal structures fabricated in a large area. As 

illustrated in Figure S2a, six different points were measured in an areal size of 100 

m × 100 m using a 405 nm laser as the excitation source at room temperature. 

The emission wavelengths remain nearly invariant at 505 nm with a narrow 

spectral linewidth of 12 nm for various regions of the nanowire photonic crystal 

structure, shown in Figure S2b. The extremely high yield and uniformity is 

attributed to the well-controlled nanowire size and position of the unique 

selective area epitaxy. 
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Figure S2. a) Schematic of the InGaN nanowire photonic crystal structure 

fabricated in an areal size of 100 m × 100 m and six different positions for the 

photoluminescence measurement. b) Variations of the emission peak and spectral 

linewidth vs. measurement point. 

 

 

Figure S3.  
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Cathodoluminescence (CL) mapping measurement spectrally resolved at 

different emission wavelengths and with different design parameters.  

 

Figure S3. a) Spectrally resolved CL mapping images collected at various 

wavelengths of 370, 450, 505 and 520 nm, respectively, showing the presence of 

band edge mode and strong optical confinement effect only at an emission 

wavelength of 505 nm. b) CL mapping image at a wavelength of 505 nm for 

InGaN nanowire arrays with a relatively large spacing compared to the optimum 

design shown in a), showing the absence of the band edge mode. Due to the 

weaker emission for the image shown in b), the measurement was performed 

with a relatively long integration time to clearly show the light distribution.   
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To further confirm the formation of stable band edge modes in InGaN photonic 

crystals, we have performed more detailed spectrally resolved CL mapping 

measurements at different wavelengths. Figure S3a shows the CL mapping images 

collected at wavelengths of 370, 450, 505 and 520 nm, respectively. The CL image 

at 370 nm exhibits highly uniform contrast in the entire region. It was also 

noticed the spacing between nanowires shows brighter emission, which is due to 

the light emission from the underlying GaN template. No emission was observed 

at 450 nm wavelength since there is no light emission from the nanowires in this 

wavelength. At 505 nm, strong optical confinement effect at the center region of 

nanowire arrays was clearly observed. Significantly weaker emission was also 

measured at 520 nm. These studies provide unambiguous evidence for the direct 

measurement of the band edge mode in defect-free nanowire photonic crystals. 

We have further performed CL wavelength mapping measurement of InGaN 
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nanowire arrays with a relatively larger spacing compared to the optimum design.  

The image taken at a wavelength of 505 nm is shown in Figure 3d, and no optical 

confinement effect was observed.  

 

Figure S4.  

Emission characteristics of InGaN nanowire photonic crystals vs. nanowire 

height.  

We have also studied the dependence of the emission characteristics of InGaN 

nanowire photonic crystals on the height of nanowires. Five InGaN/AlGaN dot-in-

nanowire photonic crystals, schematically shown in Figure S4a were investigated, 

which have identical designs except the height of the n-GaN segments were 

varied from ~380 nm to 460 nm. Each nanowire, schematically shown Figure S4a, 

consists of the n-GaN segment, ten vertically aligned InGaN/AlGaN quantum dots, 

and 30 nm p-GaN layer. PL emission of the InGaN nanowires was measured at 
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room temperature with a 405 nm laser as the excitation source. Strong emission 

was observed at a wavelength of ~ 510 nm with a relatively narrow spectral 

linewidth of ~ 6 nm for nanowire arrays with heights varying from ~ 550 to 590 

nm, shown Figure S4b. However, the light intensity showed a significant decrease 

when the nanowire height was reduced below 550 nm, accompanied by a 

significantly broadened linewidth. These studies show that the band edge mode 

and the Purcell effect depends critically on the nanowire height, in addition to 

the nanowire diameter and spacing.  
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Figure S4. a) Illustration of bottom-up InGaN/AlGaN core-shell dot-in-nanowire 

structure. The n-GaN segment length was varied from 380 to 460 nm. b) PL 

emission spectra of InGaN nanowire structures measured at room-temperature 

for nanowire heights of ~ 510, ~ 530, ~ 550, ~ 570 and ~ 590 nm, respectively. 

 

 


