Improving power for rare variant tests by integrating external controls
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Abstract

Due to M sequencing cost, the number of sequenced genomes is increasing rapidly.

To impro rare variant tests, these sequenced samples could be used as external

control sagaplesgda addition to control samples from the study itself. However, when using
external ch)ossible batch effects due to the use of different sequencing platforms or

genotype Qalling pipelines can dramatically increase type I error rates. To address this, we

SC

propose n mary statistics based single and gene- or region-based rare-variant tests
that allow the integration of external controls while controlling for type I error. Our approach
is based o id8icht that batch effects on a given variant can be assessed by comparing

odds ratiof€stimates using internal controls only vs. using combined control samples of

f

internal an al controls. From simulation experiments and the analysis of data from age

c

related ma@ul generation and type 2 diabetes studies, we demonstrate that our method can

substan rove power while controlling for type I error rate.

Key w variant test; External controls; Next generation sequencing
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Introduction

Identiﬁowetic variants that predispose to complex diseases is an essential step toward

understandj e etiology, which can lead to breakthroughs in diagnosis, prevention, and

treatment. The advance of sequencing technologies (Shendure & Ji, 2008) enables studying the full
I I
spectrum o&enetic variants, including rare variants (minor allele frequency (MAF) < 1%), in large
studies. Al@cent sequencing studies have started to identify disease-associated rare variants
etdl.

(Cruchaga , 2014; Steinthorsdottir et al., 2014), the number of discoveries is much smaller than

initially eruk et al., 2014). To facilitate further discoveries, more efficient and powerful

statistical s@amd methods are needed.

Gi asing sequencing costs, the number of sequenced whole exomes and even whole

genomes a increasing. These sequenced samples provide a great opportunity to increase the

power of r@t test. For a single study, if sequenced samples from other studies are used as

control ernal control samples), the power of rare variant tests can be substantially
improved witho y additional sequencing cost. For example, using 1,529 external control samples
from N ome Sequencing Project (ESP) data in addition to their own 789 internal control

samples, ZRan et al. (2013) identified a rare coding variant (MAF=0.4%, p-value=2.7x10"*) in the C3

gene assoclated with age-related macular degeneration. When they exclusively used internal controls,

stantially less significant.

Algough the use of external control samples can greatly improve power, systematic

differenMn studies can have a negative impact on type I error control and power.
Study hete@y can arise from differences in study populations, i.e. population
stratification, ordgchnical batch effects due to the use of different sequencing platforms or
genot g pipelines (Quail et al., 2012). Recently, substantial progress has been made

in identifying external control samples with similar genetic background (Bodea et al., 2016;

4
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Wang et al., 2014); however, only limited success has been made in adjusting for technical
batch effects. Derkach et al. (2014) developed a robust score test that uses genotype
likelihoods. method can control type I error rates when locations of variants are correctly
known; h ated type I error rates are noted when variant locations should be

. N — .

inferred frg genotype calls (Hu, Liao, Johnston, Allen, & Satten, 2016). More recently, Hu
et al. (201 Qoped a likelihood-based burden test that uses sequence reads, which can

provide mo urate type I error rate controls. However, given that raw high depth

sequence W can be > 1000 times larger than processed genotype data, downloading,
storing, and anal§zing external control sequence read data can be a huge computational
burden. In addition, the aforementioned methods need individual-level genotype and
phenotyp tion, which is often difficult to obtain.

Tothese challenges, we propose simple and robust rare variant association
tests th, ire allele counts from external studies. Our approach, integrating External
Controls into ciation Test (1IECAT), is based on the insight that the existence of batch
effects on a given variant can be assessed by comparing two different odds ratio estimates:

odds ratio@stimate using internal controls only vs. odds ratio estimate using combined

i

control sa@ internal and external controls. If a variant is subject to batch effects, these

two should stantially different; even when ancestry-matched external controls were

used (Ma&';n & Robertson, 2015). In such a case, only internal control samples should be

used toH positives. Otherwise, external control samples can be added to increase

the sample size. ;) approach this problem data-adaptively, we propose using an empirical

Bayesian-t hod. We first construct a single variant test based on the shrinkage method
and exten everal gene- or region-based tests, such as burden tests (Li & Leal, 2008;
5

This article is protected by copyright. All rights reserved.



Madsen & Browning, 2009; A. P. Morris & Zeggini, 2010), variance-component tests (Wu et
al., 2011), and combinations of these two (e.g. SKAT-O (Lee, Wu, & Lin, 2012)).

Giv t only allele counts from external studies are needed for the proposed
method, t an be used with summary information publicly available in variant

H . .
Servers, snsh as the ESP data on the Exome Variant Server (ESP). Through extensive
simulatiog and analysis of AMD and type 2 diabetes sequencing data, we demonstrate

that the pro method can improve power while controlling for type I error rates.

S

Materia ethods

U

Single var ciation test

3

For a singleavasiaatitest, we consider the following shrinkage estimation-based allelic test with an

a

assumptiontha ardy-Weinberg equilibrium (HWE) holds. Let Y=1 (¥Y=0)

denote affec ffected) status, G=1 (G=0) denote the minor allele (major allele) in the variant.

'

Letn' nd n",) denote the number of controls and cases of an internal study (external

study), respectively. The data are represented by a 3 x 2 table in Table 1.

[

C g the internal study only, let ply denote the unknown true minor allele frequency

O

(i.e., ply = =y] for y=0, 1), and rly denote the corresponding observed number of minor

alleles. Thgfobserved counts can be viewed as a random sample from two independent binomial

I

distributions, r'p ~ inomial(2nlo, plo) and ', ~ Binomial(2n]1, pll). Note that the number of trials is two

{

—

u

times n' ( imce each sample consists of two copies of chromosomes. Suppose the parameter of

interest is s ratio of the genetic effect, given by

Bo=log[p' (1- p'o)/ {p'o (1-p')}].

A

6
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Our goal is to test whether Hy: fy =0 or not. By using the internal study only, £, can be consistently

estimated by B, = log[r'; (2n'y- ¥o) / { ¥y 20", - ¥ )} 1.

No, se n") external control samples are available, and assume the observed number of
minor allel s a binomial distribution with p"y, the proportion of the minor allele in the

- E E E
external coSrols, i.e., r o~ Binomial(2n"y p~). Combining control samples from internal and external

studies, the@ of By is
co

m = loglr'; (2n'y +2n", — ¥y — 7)) 1 {(F o150 )2n' =V )11,

When p', —jatmg that no batch effect exists, fcom converges to f, in probability. When p',#

p"o, howev converges to a biased quantity, Sy.com = log[p" (1- poe<™) { po<™ (1- p';)}], where

7 0) p L n 0/( 'yt n 0) p o- Thus, the bias can be quantified as 6 = £y, com - fo=

log[p'o(1- p C"m (1- p'o)}]. Taking it for granted that the bias would exist, we propose a bias-
S

adjusted e Lo as follows.

timate the bias 0 by using an empirical Bayesian approach. It begins with an
Bine that asymptotically follows a normal distribution N(6, 05), where o7 is the
variance of 6. To account for the uncertainty in the bias, we assume that € is a random variable

following dlstrlbutlon N(0, v), where the unknown hyperparameter, v, reflects the magnitude

of uncertal e batch effects. Note that the consistent estimator of v from the marginal
distributio * = max(0,8? — 632), where 67 is an estimate of 62 (C. N. Morris, 1983).
Recentlg and Chatterjee (2008) have proposed to use V* = 82, a more conservative
estimator of v. The main advantage of using ¥* instead of 77 is that 7* provides a closed-form of

variance esti

EJ

f the subsequent @ estimator. They also showed that there is essentially no loss of

efficiency v*. Therefore, we propose to use v*, and the resulting estimate of the posterior

mean of 4 is 6. Finally, the proposed estimator of /3, is

7
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A . - . . 82
B =Bcom—0=A—=0)fcom +TPme; T= 224152 (1
7]

When Mfference between Bcom and B1,;) is large, 7 is close to one, and hence 8 becomes
Bine. In cor is close to zero due to a small 8, § is close to fcom. Regardless of the size of
the trueiiass@m@aissan asymptotically unbiased estimator of 8, (Web Appendix A). The exact

expressionhymptotic variance of  can be found in the Web Appendix A. When 7 is large and

hence clos@ can have a larger variance than [5},,;. In this case, we propose to use [5;,; to

achieve bemr.

If prior information on when 6 could be zero under the null hypothesis (i.e p';= p"),
using T = nease power without inflating type I error rates. Suppose that observed MAFs of
external co!trols (i.e. 1%/ 2n%)) is in between observed MAFs of cases and internal controls (i.e. rly/
2nIy), and 8a%., is closer to zero than B, (i.e. |Bcom| < |Bmel). Under the null hypothesis with

the batch e .P1=po#p o), since observed MAFs converge to true MAFs, the probability to

observe enomenon will converge to zero. This indicates that using T = 0 in this situation will
not incr e [ error rates. In contrast, using T = 0 in this situation will increase power especially

. . . . . . 1
when the external controls include case samples, since the case contamination will cause either p; <

P <plo ou > p'y under the alternative hypothesis. And hence when this phenomenon

occurs, we 0 as a default value in simulation studies and real data analysis.
Gene- £sed test

For gene- em=based tests, we extend the proposed single-variant test in the previous section to

burden, S KAT-O type tests. The key idea is first to construct a single-variant score-type

statistic variant using 8 and then to aggregate them using their weighted linear or quadratic

sums. To aggre association signals in each variant, the burden test uses a weighted linear sum of
8
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score statistics, whereas SKAT uses a weighted quadratic sum of score statistics. The combined test,

SKAT-O, uses a linear combination of the burden and SKAT test statistics.

T

Su t a region being tested has p variant loci. For variant j, let [?j be the log odds ratio
estimate in*(¥),"6; andard error estimate, and g; the MAF estimate from the internal samples. In
I I

Web AppeSiX B, we show that a single variant score statistic is approximately proportional to the

product of ratio estimate, sample size and the genotype variance. Using this fact, we

G

construct a sCOTfC-type statistic for a single variantj as §; = n.¢rq;(1 — q;) B]-, where n;is the

effective s , and propose the following test statistics:

p 2

P
Qiecar(p) = (1 — P)Z(stj)z +p Z w;Si |
=

j=1

nu&

where w; is a weight for variant j, and p is a parameter between 0 and 1. Clearly, p=0 corresponds to

ill

the SKAT-type test, and p=1 corresponds to the burden-type tests. Note that Q;zc4r(p) has a similar

form to the variance component test with the compound symmetric kernel structure proposed by Lee

etal. (2 etails on the test and p-value calculation are given in Web Appendix C.

Burden type tests (i.e. p=1) are powerful when large percentage of variants are causal and

[

effects are in the same direction. SKAT type tests (i.e. p=0) are powerful when heterogeneity is noted

regarding effect sizes and the direction of the effects (Basu & Pan, 2011; Lee, Abecasis, Boehnke, &

Lin, 2014). SKAT-O type tests combine burden and SKAT tests using the minimum p-values from a

grid of p. We propose the following SKAT-O type combined test as

1

Qiecar-o = min P —value(p),

L

where P-value(p) is the p-value Q;zcar(p) with a given p. We used a grid of eight p values (0, 0.1°,
0.2°, 0.3, 0" ’ 0.5, 1) in simulation studies and real data analysis. This approach has been used

in previous studies and shown to provide good performances in type I error control and power (Lee,
9
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Teslovich, Boehnke, & Lin, 2013). P-values of Q,zc4r- o can be obtained using numerical integration,

as described in Lee et al. (Lee et al., 2012).

T

Type 1 err&r simulations

I I
We perfonsd extensive simulation studies to evaluate the performance of the proposed iECAT

method. T n sequence information, we simulated 40,000 European-like and 40,000 African-
America-like otypes for 200 kbps using the coalescent simulator COSI with the calibrated
demograp dgll (Schaffner et al., 2005). The binary phenotypes were generated from the

following logistic regression model:

—7

logit P(Y =1) = ag + Géausalﬂcausalr ()

-

where Geausa 1S @ genotype matrix containing causal variants, and f..... 1S a vector of the genetic effect

i\

coefficients. The intercept ay was chosen for the disease prevalence of 0.05.

~
E&zd that 3% of the variants had different MAFs between internal and external

control to batch effects, mimicking the level of the batch effects observed in the real data

analysis (see Results section for details). For these variants, MAFs in external control samples were

randomly h from Uniform (0.1%q, 4xq), where q is the MAFs in internal study samples. To

mimic realrios of population stratification between internal and external control samples,
we generatedgoaio population stratification), 5% and 10% of external control samples from the
Africanﬁke haplotypes. All other internal and remaining external control samples were
simulate uropean-like haplotypes.

W:ed the following methods for a region-based test: 1) the proposed iECAT-O; 2)

e internal control only; 3) iECAT-O without adjusting for batch effects GECAT-

Bcom Was always used regardless of the existence of the batch effects; 4) iECAT-

10
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O assuming that batch effect variants were known prior to the test iIECAT-Ogyown) — that is, 8 = Bins
was used (i.e., T is fixed with 1) in the presence of true batch effects. Otherwise, f = Bcom Was used
(le,t ismm. Since iIECAT-Ok,own Was constructed given that variants subject to batch
effects we own, iIECAT-Ogyown could reach the theoretical maximum power under the
iIECAT Raf@WeremObviously, this batch effect information could not be known in real data.
Therefore, known Will be used only for power comparison to quantify the efficiency loss in
iIECAT-O due to th€ uncertainty in 7. For a single variant test, we used aforementioned approaches
(1IECAT-O Onoadgj and IECAT-Okpown) and the Wald test (internal controls only) with testing

one variant at a time.

Fo -based tests, we randomly selected a 3 kbp region and tested for an association
between Vi ants in the region and the phenotypes. For very rare variants, the proposed methods
cannot be used because 8 estimates can be unstable. We thus only used variants observed in both
internal aan studies with internal study MAC > 3. For single variant tests, we randomly

selecte nt and tested for an association between the variant and the phenotypes.

or simulations, phenotypes were generated from (2) with S.4,54:=0. For each
simulation,!!o evaluate type I error rates at genome-wide significance levels, we generated 10
datasets for region-based tests and 5x107 datasets for single variant tests. Given that generating these

large datas omputationally intensive, we considered only two internal study sample sizes,

moderate a Ninterna=4000 and 10,000). In each sample size, two different ratios of case-

control (@& @) were considered. The external control sample size (Nexerma) Was set to be the

same as th!’nternal study sample size.

Fo:imulations for gene-based tests, 5%, 10%, or 30% of rare variants (MAF < 1%)
were as%causal. In each setting, either all causal variants were risk-increasing or 80% of
causal variants risk-increasing (the remaining 20% were risk-decreasing). Given that it is

11

This article is protected by copyright. All rights reserved.



possible that rarer variants have larger effect sizes, we modeled log OR as a decreasing function of
MAF. Specifically, f=c|log;o(MAF)|. When 30% of variants were causal, we used c= log(2)/2, which

led to OR! !or a causal variant with MAF=1%. When 5% or 10% of rare variants were causal, we

5

used c= log @ fl c=1og(3)/2 to compensate the decreased numbers of causal variants. For single

variant testsmwesemaluated power for testing a variant with MAF=(0.01, 0.005) and OR=2.

To gxgal the power when external control samples contain samples with the disease of
interest (i.e* ontamination), we generated external control samples of which 0%, 5% and 10%
were the dmmples. Because 5% disease prevalence was noted, 5% contamination was

equivalent he general population as external controls. In all power simulation scenarios, the
external co ple size was the same as the internal study sample size (Nexterna™Ninterna1)- FOr €ach

power sim@lation setting, we generated 5000 data sets.

Real data m

We applied ouEmd to two sequence datasets while using 4300 ESP European samples as external
controls? quencing data from the age-related macular degeneration (AMD) study (Zhan et
al., 2013) and deep whole exome sequence data from the Genetics of Type-2 Diabetes (GoT2D) study
(Fuchsber;%a., 2016). The AMD study sequenced 10 target loci spanning 56 genes (2.7 Mb in
total). We ¢ w led 3350 mapped SRA files from dbGaP (Tryka et al., 2014) (phs000684.v1.p1),
applied x:\g and QC procedures as described in Zhan et al. (2013), and retained 2317 cases

and 791 "PFhe GoT2D study whole exome sequenced 1,326 European T2D cases and 1,331

European gD controls at high depth. For both datasets, we applied LASER software with the HGDP

)

reference (Wang et al., 2014) to identify population structure. Given that Finish samples were
——
separately clustered from other European samples (Web Figure 8), and ESP has only a small number

of samples clustered together with Finish samples (Web Figure 8), we exclusively used the non-Finish
|

12
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cohorts (British, German and Sweden) in the GoT2D data analysis, leading to a total of 650 cases and

646 controls.

e

Forﬁl controls, allele counts of ESP samples were downloaded from the ESP Exome
Variant Sever. Variants observed in both internal and external studies were included in the analysis,
I
after excluding variants that did not pass each study’s own QC criteria. We further excluded variants
with internal studaMAC < 3. For gene-based tests, we used genes with at least 3 rare variants. To
investigate whether ancestry matching can improve type I error control and power for whole exome
- A
scale data analysis, we obtained individual-level genotype data of ESP for the GoT2D data analysis.
g J

We used LASER software with the HGDP reference for 1:2 matching between internal and external

samples and identified 2,568 ancestry-matched external control samples (Web Figure 8).

Results m

Type 1 imulation results

The empi type | error rates estimated for iECAT-O and the other methods are presented in Table
2 for = 10" and 2.5x10°, corresponding to candidate gene studies of 500 genes and exome-wide
studies of hnes. All internal and external samples were simulated using European-like

haplotypes @ e simulation scenarios we considered, iECAT-O had well controlled or slightly

0

inflated type I error rates. As expected, when we used the combined control samples but ignored batch

h

effects (§ -O...qi), type I error rates were significantly inflated. For example, empirical type I

error rat eased more than 10000—fold compared to the nominal « level on average when o

[

=2.5x10"°. When We exclusively used the internal control samples (SKAT-O), type I error rates were

well controlled.

A

summary-level information for external control samples is available, samples

with different genetic background cannot be excluded. We carried out additional type I error
13
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simulations with 5% and 10% of external control samples from the African-American-like haplotypes,
and the results have shown that iIECAT-O had robust type I error control even in the presence of

population l!ra!l!lcation (Details See Web Appendix D).

| |
Power s1 ation results

1

Next, we cgffiparc@ power of the proposed and existing methods to identify genetic associations at o =

C

2.5x10°. Fig presents power simulation results when all causal variants were deleterious

variants. i -Qphad substantially improved power compared to the approach using internal study

S

samples on ample, when the internal study case-control ratio was 1:1 and the internal study

U

sample siz ,000, iIECAT-O was on average 38% to 60% more powerful. When the internal

study case-€ontrol ratio was 2:1, iECAT-O exhibited increased power. On average, when the internal

[

study sam as 10,000, the strategy to sequence more cases (2:1 case-control ratio compared to

d

1:1) resultedlin to 17% increased power for iECAT-O compared to sequencing the same number

of cases trols (Figure 1, bottom panel). As expected, the power of iIECAT-Ogyown, Where the

optimal of shrinkage weight T was used, was higher than that of iECAT-O, but the difference

[V

was not substantial. This implies that estimating 7 in iIECAT-O method did not reduce the efficiency

so much.

I

1IECAT-Onoaqj greatly increased type I error rates, we did not include it in this

plot. The rg @ rformance of the methods in the presence of both risk-increasing and risk-

decreasing variants was quantitatively similar (Web Figure 2).

N

xternal studies were not performed for the target disease of interest in the internal

{

study, it is possible that external control samples included cases (i.e., the diseased samples), and this

U

case-contaminatiomycan reduce the power. Figure 2 presents power evaluation results with 0%, 5%
and 10% of ernal control samples being cases. Given that 5% disease prevalence was assumed,

5% contam is equivalent to using the general population as external controls. When

A

14
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Ninterna=10,000, the power was decreased on average by 2 to 4% for 5% contamination and 3 to 8%

for 10% contamination. When the sample size was small, the power reduction was slightly larger.

Ne

internal an ples in which 5% and 10% of the external control samples were generated

rformed power simulations in the presence of population stratification between
from Afrlcs American-like haplotypes and all other samples were generated from European-like

haplotypes. &givemthat population stratification can inflate type I error rates, we used empirical o
levels obtaifiggyi

e type I error simulation studies for fair comparisons. Web Figure 3 indicates that
the power w -O slightly decreased in the presence of population stratification. These results
suggest th er of iIECAT-O can be improved if the ancestry-based matching method is used to

exclude ex trol samples with different genetic backgrounds.

As@], the power simulation results with for iECAT with p=0 (SKAT type test) and p=1
(burden t ) were quantitatively similar (Web Figure 4-5). We obtained power with

empirical o I€v stead of nominal o levels for Niyema =4000 and 10,000, and the results were also

quantitativ wnilar (Web Figure 6). We then performed power simulations for single variant tests
Fs (1% and 0.5%) (Web Figure 7). The power curves revealed that iECAT had

greatly improved power compared with the method exclusively using internal controls (e.g., 43% vs.

for two

12% when 5%, Ninermai=10,000 and case:control=1:1). Interestingly, the strategy of
sequencing @ ses (case:control=2:1) did not always improve the power compared with the one
case per one strategy. For example, when MAF=0.5% and Njeema =15,000, case:control=2:1
design ﬁver, while case:control=1:1 design had 75% power. This occurred in part because
having meer of internal controls increased the variability of the bias estimate, which had a

negative impact orfipower. We note that this increased variability had a smaller effect on gene-based

U

tests given that ene-based approach combines multiple single variant odds ratios.

Ove simulation studies demonstrate that iECAT can substantially improve power

compared with the existing approaches that exclusively use internal control samples, while controlling
15
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for type I error in a wide range of scenarios. In contrast, if the external control samples are used

without adjusting for batch effects, it can result in significantly increased type I error rates.

T

Real data Q

I
We applie(Sur proposed methods to the analysis of AMD targeted sequencing and GoT2D whole

exome seq@atasets. For both datasets, we used allele count statistics of 4300 ESP European
samples dow ed from Exome Variant Server as external controls. In addition, for the GoT2D data

analysis w ingd the ancestry-matched external control samples using individual-level genotype

S

data of ES tigate whether matching can improve type I error control and power in whole

exome scal Sis.

Nu

plied iECAT to 56 candidate genes in the AMD targeted sequencing dataset. After
quality control, We retained 2317 cases and 791 controls. Table 3 presents the top 5 genes by iECAT-

O. For this a we focused on rare variants (MAF < 1%). By combining the internal and external

control

V]

evealed that two well-known AMD-related genes, C3 and CFH, had the smallest

p-values (p-value=5.75x10" and p-value=7.44x107°, respectively), and the p-values were still

[

significant Bonferroni correction (corrected o= 0.05/56=8.9x107*). In contrast, when SKAT-

O was perf th the AMD dataset alone, the p-values were greater than 0.01, indicating that the

proposed tesigsi cantly improved power. We also performed single variant tests for a total of 538

n

rare varg able 3). We found that SNV rs147859257 in C3 (p-value = 1.23x10”) and

{

rs12191 'H (p-value=1.24x10") were the top two variants by iECAT. However, when the

AMD dataset was @ised alone, these two SNV resulted in p-values > 10™. The single variant test

L]

results were | consistent with Zhan et al. (2013), in which 1529 ancestry-matched external

controls ed

A
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GoT2D Study: We performed single variant and gene-based tests with GoT2D deep exome
sequencing data. Given that the ESP dataset contains few Finish samples (see Method), we focused on
non-F inMcohoﬁs in this analysis, which included 650 cases and 646 controls. The gene-
based rareesults are summarized through QQ plots in Figure 3 (top panel); the iECAT-O
QQ plotmw assfammiymyv 1l calibrated. In contrast, iIECAT-Onoag; resulted in a significantly inflated QQ-
plot. Even hexternal control samples were ancestry matched (a total of 2568 external control

samples; Web Figufie 8), the QQ-plot by iIECAT-Oneag; remained significantly inflated, which suggests

¢

that technicad b effects were a major source of the type I error inflation (Figure 3, bottom panel).
In contrast, -O had a well-calibrated QQ plot. Figure S9 compares p-values calculated with all
4300 ESP extemaliontrol samples and 2568 ancestry-matched external control samples. These two p-
values wer consistent, indicating that iIECAT-O analyses with and without ancestry-based

matching ly similar in this dataset.

with M

Wmformed single variant tests (Web Figure 10) for low frequency and rare variants
"A%S expected, QQ plots of iIECAT were well calibrated, whereas QQ plots of

1IECATy, catly inflated. When we compared allele frequencies between the internal control
samples and the matched external control samples, approximately 13% and 23% variants had p-values
<10% andso%, respectively. These 3% inflation may indicate that approximately 3% of variants
were subje ical batch effects. To investigate whether the batch effects vary by minor allele

counts (MA obtained a distribution of the shrinkage weight T by MAC (Web Figure 11). The

box plots Sre similar across all four MAC bins, indicating that there was no clear pattern in batch

effects bx IAC. '

Web Tabl;l presents the top 5 genes by iIECAT-0. Although GoT2D analysis did not
identify statisti significant T2D-associated genes, this analysis provided a suggestive association
and de d that the proposed approach can control for type I errors.
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Discussion

In this Mposed rare variant tests that increase power by integrating external control

samples. B bias using an Empirical Bayesian approach, the proposed iECAT method

provides an effective way to adjust for possible batch effects. The type I error simulation and GoT2D
I I

data analyst§ revealed that iECAT can control for type I errors in the presence of technical batch

effects. Th@imulation and AMD data analysis revealed that iIECAT can improve power
1 e

compared w exclusive use of internal controls. The method is implemented in the iECAT R

package (aWn the author's website).

One of theimportant features of iECAT is that it only needs allele counts from external

studies. By gilligimg allele count information readily available in variant servers, such as Exome
Variant Se ) and ExAC browser (Lek et al., 2016), our method can greatly facilitate the use
of external€o amples. This is a desirable property considering the difficulties in obtaining
individyal- otype data. One possible issue of using allele count information in a variant server
is that we cann er out samples with different genetic background. In such case, iECAT could
yield sl d type I error rates. We believe that it will become less problematic in the future

as variant sgers are starting to provide allele counts for fine-scale ancestry.

Th@veral limitations in the present proposal. First, the proposed method cannot adjust
t

for covaria as age, gender and principal components. In Web Appendix E, we present a simple

approach tSt can adjust for covariates by estimating covariate-adjusted minor allele counts. The
approacWo the principal component adjustment method used in EigenStrat (Price et al.,
2006), and cale simulation study shows that the method can adjust for population

stratificati the population index was used as a covariate. The presented approach, however,

al-level genotype and phenotype data from external controls. Second, the proposed

method mainly aSSimed that one external study is used for external controls. If multiple study data are

18
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used as external controls, it is possible that there exist multiple batch effects. One possible way to

addressing it is to apply the covariate adjustment in Web Appendix E to adjust for batch effects in the

{

external coltrol genotypes and to use adjusted minor allele count for the association tests. Third, the

)

method assumes that HWE holds (Guedj, Nuel, & Prum, 2008). Since it is uncommon to observe rare

allele homozygotes, the violation of HWE condition would have limited effects on the proposed tests.

Fourth, we do not recommend using the method for singletons or doubletons because log odds ratio

estimates be umstable for these variants. In future work, we will extend the method to incorporate

C

singletons letons.

S

With the advances in sequencing technologies, the number of sequenced genomes is

increasing rapidly. Our method provides a robust and effective way to utilize these sequenced

genomes in rare variant tests and will contribute to the understanding of the genetic architecture of

[

complex diseases.

Supplemental Data

\

Supplemental Data are comprised of web appendices, four tables and eleven figures.
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Figure Legend

Figure ]Mmparisons when all causal variants were risk increasing variants

Each line rpirical power at o = 2.5x10°, From left to right, the plots consider that 5%,

10%, arid 309Mf@riants were causal variants, respectively. From top to bottom the plots consider
that intem*ase:control ratio was 1:1 and 2:1, respectively. The external control sample sizes

were the sane as tlie internal study sample sizes. For causal variants, we assumed that f =

c|log10(MAmMethod section).

Figure 2. 131 power of iIECAT-O in the presence of case-contamination in external

C

controls

Each line rc empirical power at o= 2.5x10°°. From left to right, the plots consider that 5%,

10%, and wmmts were causal variants, respectively. From top to bottom the plots consider

that internal study case:control ratio was 1:1 and 2:1, respectively. All causal variants were risk-

increasing va The external control sample sizes were the same as the internal study sample size.

For caul we assumed that S = c|log;o(MAF)| (See Method section).

Figure 3. &alxsis of the GoT2D exome data with ESP as external control samples

QQ-plots —Values of gene-based tests for rare variants (MAF < 1%). A total of 11283 genes
with at least re variants were tested for associations with T2D status. The dashed line
represe Yameanfidence band. Top panel: all 4300 European ESP samples were used as external

controlswnel: 2568 ancestry matched ESP samples were used as external controls.

AU
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Table 1. Data setup for internal case-control and external control samples for a single variant
association test.

{

empirical type I erfor rate estimated from 107 simulated datasets. The external control sample sizes
were the s

G=1 G=0 Total
Internal = ", on' -, 2n';
H I
h 7"10 21’110 - 7"10 2}1[0
External W=0 ~, 2n,- 5, 2n*,
Table 2. Eﬂype I error rates for iIECAT-O, SKAT-O and iECAT-Oyeag. Each cell has an

e internal sample sizes. All internal and external controls samples were simulated
haplotypes.

from Euro

N

Internal al

;

Sample] e:Control  Level a iIECAT-O SKAT-O 1IECAT-Onoag
4000 E 1:1 10* 7.40E-05 1.10E-04 7.00E-02
1:1 2.5x10°  1.40E-06 2.10E-06 5.50E-02
L 2:1 10" 8.00E-05 1.20E-04 8.40E-02
O 2:1 2.5x10°  2.60E-06 2.10E-06 7.00E-02
1 OOE 1:1 10 8.60E-05 1.10E-04 1.10E-01
g 1:1 2.5x10°  3.50E-06 2.90E-06 9.30E-02
: 2:1 10" 8.70E-05 1.10E-04 1.20E-01
2:1 2.5x10°  2.40E-06 3.10E-06 1.10E-01
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Table 3. Top five genes by iECAT-O p-values from the AMD data analysis. The 4300 European ESP
samples were used as external controls. Rare variants (MAF < 1%) were exclusively used for this
analysis.

pt

iIECAT-O SKAT-O

NG Grem— Chr # of variant™® P-values P-values
ch 1 14 5.75E-06 6.70E-02
<;3 > 19 27 7.44E-06 1.04E-02
DONm 6 7 1.16E-04 1.69E-03
CFH 1 6 8.03E-04 6.66E-02
SLC44A4 s 6 16 1.39E-03 4.47E-02

* Variants wi

IECAT-Onoag; IECAT-O Internal only (SKAT-O)
7
g <+ /’_ . ry e b
. L i g
T g T -
2 @ ~
2 i
i'g‘ g N o
=} -
g o s _ _
o _— e —====== o _
T T T T T T T T T T
0 2 3 4 0 1 2 3 4 0 1 2 3 4
External Control: Ancestry Matched
IECAT-Onoag) IECAT-O Internal only (SKAT-0)

30

-log10(observed)
20

al study MAC < 3 were excluded from the analysis.

External Control: All Europeans

0 5 10
1 1
l
[}

b
[
]
I
n
"
I
0
1

-log10(expected) -log10(expected) -log10(expected)
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Case:Control=1:1
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