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ABSTRACT

Search-Based Software Engineering (SBSE) is a software development practice which fo-

cuses on couching software engineering problems as optimization problems using meta-

heuristic techniques to automate the search for near optimal solutions to those problems.

While SBSE has been successfully applied to a wide variety of software engineering prob-

lems, our understanding of the extent and nature of how software engineering problems can

be formulated as automated or semi-automated search is still lacking. The majority of soft-

ware engineering solutions are very subjective and present difficulties to formally define

fitness functions to evaluate them. Current studies focus on guiding the search of optimal

solutions rather than performing it. It is unclear yet the degree of interaction required with

software engineers during the optimization process and how to reduce it. In this work, we

focus on search-based software maintenance and evolution problems including software

refactoring and software remodularization to improve the quality of systems. We propose

to address the following challenges:

• A major challenge in adapting a search-based technique for a software engineering

problem is the definition of the fitness function. In most cases, fitness functions are

ill-defined or subjective.

• Most existing refactoring studies do not include the developer in the loop to analyze

suggested refactoring solutions, and give their feedback during the optimization pro-

cess. In addition, some quality metrics are cost-expensive leading to cost-expensive

fitness functions. Moreover, while quality metrics evaluate the structural improve-

ments of the refactored system, it is impossible to evaluate the semantic coherence

of the design without user interactions.

xii



• Finally, several metrics can be dependent and correlated, thus it may be possible to

reduce the number of objectives/dimensions when addressing refactoring problems.

To address the above challenges, this work provides new techniques and tools to for-

mulate software refactoring as scalable and learning-based search problem. We proposed

novel interactive learning-based techniques using machine learning to incorporate develop-

ers knowledge and preferences in the search, resulting in more efficient and cost-effective

search-based refactoring recommendation systems. We designed and implemented novel

objective reduction SBSE methodologies to support scalable number of objectives. The

proposed solutions were empirically evaluated in academic (open-source systems) and in-

dustrial settings.

KEYWORDS

Search-based Software Engineering, Software Refactoring, Interactive Optimization, Ob-

jective Reduction, Software Maintenance and Evolution, Machine Learning.
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CHAPTER 1

Introduction

1.1 Context

Over the last century, the majority of machines used in industry and at home were trans-

formed from mechanical hardware into fully integrated devices with complex software.

With this transformation, competitions in all major industries has become very intense,

and successful companies must constantly innovate by introducing new types of software

or extending existing software with new features. Consequently, maintaining high prod-

uct quality in such dynamic environment has become very challenging, leading software

organizations to create standard processes to guide development teams towards successful

design and implementation of software products. However, very often, these processes in-

troduce conflicts between the various software stakeholders. On the one hand, sponsors

and managers emphasize on meeting release deadlines and functional quality. On the other

hand, software developers and programmers place great value on the structural or non-

functional aspects of the software since it has long term impact on their performance and

workflows. Thus, these conflict leads to timing and cost pressure on developers, causing

them to release software with enormous amount of technical debt [4, 5, 6, 7], a metaphor

for design defects introduced in software due to creating quick solutions to meet deadlines.

On a long term, these debts leads to high maintenance cost estimated at up to 90% of the

total software cost over the product lifecycle [8].

Historically, software maintenance activities were performed using manual operations.

1



The accuracy of this approach is relative to the expertise of the software engineer assigned

to the task. Consequently, a very proficient software engineer results in better maintenance

performance and quality while an inexperience engineer would worsen the overall qual-

ity of the system. Thus, manual maintenance is subject to the expertise of the engineer.

Another problem in manual maintenance, even when performed by experienced software

engineers, is the gradual degradation in accuracy for large system due to fatigue and stren-

uous effort required of the engineers. Moreover, this approach has inherent weaknesses

including being excessively time consuming, unreasonable resource usage, lack of scala-

bility, etc.

Within the last two decades, several researches have been conducted to solve software

engineering problem (SE) from an automation point of view, and various solutions have

been proposed. These solutions are driven by heuristic search algorithms, and are referred

to as search-based software engineering (SBSE) methodologies [9]. By contrast with man-

ual techniques, SBSE methodologies evolve a population of solutions to search for the op-

timal trade-off or Pareto-optimal front. They are able to generate diverse sets of solutions

in a single execution of the underlying heuristic algorithms. SBSE methodologies cover

the entire software development life-cycle, from requirement development to testing and

maintenance. In the field of software maintenance, SBSE techniques have been success-

fully applied to software restructuring, and shown promising results in terms of accuracy,

robustness, and scalability [10].

Refactoring has been established as the primary maintenance techniques for restructur-

ing object-oriented (OO) software systems after they have been deployed. It is defined as

the process of improving the internal structure of the software without changing its exter-

nal behavior [11]. As a methodology that focuses on the improvement of the structure of

systems, the main benefits of software refactoring are an increase of the understandability

(i.e, maintenability), reusability and extensibility [12]. However, in some cases, refactoring

operations aimed at removing code duplication can lead to reduction of maintenance cost

2



such as those related to bug removal.

In general software refactoring is preceded by the detection of design or structural de-

fects. Design defects can be found at both architectural and code source levels. In the

literature, they are alternatively referred to as code smells [13], anomalies [14], antipat-

terns [15] or bad design practices [16]. They are design instances that violate good design

practices such as designed patterns [17]. The proliferation of code smell within a software

system can make difficult for new team members to understand a software systems. Thus,

the presence of code smells has negative impact on the maintenance or evolution of the

system. In some cases, codes smells can be responsible of bugs in the systems, and their

presence is considered as a trigger for software refactoring. The detection of code smells

is out of the scope of this dissertation. In the remainder of the thesis, it is assume that

code smells have been identified using one of the existing design defect detection tools

[18, 19, 20, 21, 22, 23].

1.2 Problem Statement

Various techniques have been proposed by researchers to address software refactoring prob-

lems. The majority of existing techniques can be classified, based on their level of automa-

tion, into three categories: (1) manual, (2) semi-automated, and (3) fully-automated.

In manual refactoring, code smells are detected, and corresponding refactoring oper-

ations are applied manually by the software engineer. This type of refactoring depends

heavily on the expertise of the software engineer in charge of the maintenance activity.

However, not only real-life software systems are very large in size, but the software de-

velopment environment is increasingly dynamic - often spread across multiple countries

and teams. In addition, software systems are continually evolving, and/or new features are

frequently added to address new requirements. Such complexity in size, environment, and

deadlines requires methodologies that are scalable and flexible.
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Applications and advances in search-based optimization (SBO) have sparked new di-

rections in software engineering. As results, researchers have proposed several approaches

to solving the refactoring problem as search-based optimization problem using heuristic

algorithms. This class of refactoring techniques is referred to as search-based software

refactoring, and constitutes the bulk of semi- and fully-automated refactoring solutions.

Fully automated refactoring methodologies build on search-based optimizations algo-

rithms, and do not include the domain expert (e.g., software engineer) in the process.

The majority of existing automated refactoring techniques were formulated using single-

objective optimization. The objective (e.g., quality metrics, number of a particular code

smell) drives the quality of the final refactoring solutions. However, the quality of a

software is defined by a variety of metrics, both internal and external. Thus, software

refactoring problems are naturally multi-objective. Several techniques have been proposed

to tailor multi-/many-objective fully-automated refactoring techniques. These refactoring

techniques can generate a set of solutions or Pareto front from which the software engi-

neer must choose based on his or her expertise and preferences. However, a large number

of objective renders the decision making process very difficult. Furthermore, since fully-

automated refactoring techniques work as black box solutions, most software engineers

are reluctant to utilize them due to fear of introducing bugs and lack of control over the

refactoring process. Today, it remains unclear whether such solutions are used by software

organizations.

Semi-automated refactoring techniques seek to combine the expertise of the software

engineer and the search capability of SBOs. These methodologies stand between manual

and the extreme of fully-automated refactoring techniques, and allow for the integration of

the user in the refactoring process. In certain form of semi-automated software refactoring,

the user is in charge of manually identifying refactoring opportunities that is to find design

with structural problems such as code smells. Then, once the bad code is found, an adap-

tion of the SBO algorithm performs the refactoring. Finally, the user decides if the solution
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proposed by the SBO must be applied to the system. Another subclass of semi-automated

refactoring is often referred to as interactive software refactoring. Interactive methodolo-

gies integrate the user in the loop for specific tasks where he can affect the optimization

process. These techniques are particularly important for increasing the confidence of the

software engineer regarding the task of the SBO algorithm. However, most existing interac-

tive software refactoring techniques are inefficient, due to requiring the software engineer

at every iteration of the SBO algorithm. In addition, due to the strenuous effort placed

on the software engineer at each iteration, these interactive techniques carries some of the

weakness of the manual methods such as non-scalability to large systems and degradation

of the performance of the software engineer with time.

In this context, the primarily goal of this thesis is to propose a set of methods to effi-

ciently address the integration of the user preferences in both semi- and fully-automated

search-based refactoring techniques. Secondarily, it addresses the question of decision

making in high-dimensional search-based software refactoring. The techniques covered in

this thesis can be classified under the broad umbrella of search-based software engineering.

In particular, they address search-based software refactoring problems related to (1) Cod-

ing context, (2) Evaluation of refactoring activity, and (3) Objective Selection in automated

refactoring.

1.2.1 Coding Context

Characterizing high-quality source code requires a large number of quality metric, each one

defining a specific dimension of software quality. Researches in software refactoring have

provided several techniques to improve the quality of software using these quality metrics.

Quality metrics can quantify either system-level quality or or component level quality (e.g.,

class level quality).

Research Problem 1: A large portion of existing refactoring tools suggests refac-

torings to improve the overall quality of systems without a concrete prioritization plan
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[24, 25]. As a result, the number of refactorings to apply can be large, and developers may

spend a long time to select relevant refactorings. Consequently, most developers become

reluctant to adopt the proposed refactoring tools.

Research Problem 2: When a large number of refactorings are recommended, manual

refactoring becomes error-prone and time-consuming. Murphy-Hill et al., [24] showed

that most developers do not use fully automated refactoring techniques because they want

to mix refactorings with semantic changes, something that is not permitted by existing

methods.

1.2.2 Evaluation of refactorings

The ultimate goal of software refactoring is to improve the quality of the system under

maintenance. To this end, most exiting search-based software refactoring solutions are

evaluated using software quality metrics. Consequently, at each stage of the execution of

the SBO algorithm that drives the search, solutions are selected based on their individual

score for every metric included as objective function. Thus, during the decision making

process, the domain expert must choose the solution that best matches his preferences based

on the values of these quality metrics.

Research Problem 3: Quality metrics are widely used to evaluate software quality

by either using them directly as objectives, or using them in rules that characterize design

defects. However, there is no general consensus on the definition of these design defects

or code-smells, due to various programming behavior and contexts. For example, the def-

inition of a large class can change from one software organization to another. Thus, it

is difficult to formalize the definitions of design violations in terms of quality metrics to

evaluate the quality of software refactoring solution.

Research Problem 4: The majority of existing refactoring studies do not include the

developer - that is the final decision maker (DM) - in the loop to analyze the suggested

refactoring solutions and give his or her feedback during the optimization process. In
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[26], he authors used an interactive genetic algorithm to estimate the quality of refactoring

solutions. However, the DM is required to evaluate every refactoring solution throughout

the entire execution of the algorithm, making it fastidious and sometimes impractical.

1.2.3 Objective Selection in Automated Refactoring

The aim of SBSE research is to move software engineering problems from human-based

search to machine-based search, using a variety of techniques from the fields of metaheuris-

tic search, operations research and evolutionary computation paradigms. Thus, multi-

objective evolutionary algorithms (MOEAs) have been widely applied to address several

problems such as the generation of test cases, next release problems, software refactoring,

model-driven engineering, etc [9]. In search-based software refactoring, the goal is to find

a trade-off between different quality preferences of the developers(e.g., quality metrics).

For better performance of MOEAs methodologies, it is desired that the objective functions

be conflicting.

Research Problem 5: The different fitness functions are defined and selected by the

developers among large number of quality metrics or their combinations. Thus, it is chal-

lenging to decide up-front of the execution of the search if these functions are conflicting

or not. In most cases, developers use their intuition and expertise to define the fitness

functions. Without a rigorous check of the possible correlation between the defined fitness

functions, a diverse set of solutions cannot be generated. This is also true if some conflict-

ing measures are aggregated into one fitness function. In other scenario, a large number of

non-dominated solutions is generated, if non-conflicting measures are treated as separate

fitness functions.

Research Problem 6: Several recent studies consider as many objective as possible

using many-objective algorithms [2]. however the visualization of the solutions in the

generated Pareto front is a challenge for the developers due to the large number of Pareto

front solutions when high number of objectives are considered.
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Research Problem 7: The consideration of large number of objectives that are not

necessarily conflicting make the execution time of the algorithm long and the search slow.

This results from the fact that the multi-objective algorithms behave similar to random

search when the number of objectives increases.

1.3 Proposed Research Contributions

The main goal of this thesis is to bridge the gap between fully-automated search-based soft-

ware refactoring and manual approaches by proposing efficient methodologies that enable

the integration of the software domain expert in the search process. By including the do-

main expert in the search loop, it becomes possible to take advantage of his or her expertise

early in the process, thus guiding the search algorithm towards refactoring solutions that

take his or her preferences into account.

The proposed methodologies explore various techniques used in computational search,

machine learning and statistical tool used in high dimensional data processing. These

methodologies were evaluated using empirical studies based on several opensource projects

as well as industrial project from research partners. Each proposed techniques can be used

separately or in combination with others.

1.3.1 Contribution 1: Context-Based Software Refactoring

To solve research problem 1 and 2, we propose a search-based refactoring approach to find

the best solution satisfying two objectives: maximizing the number of refactorings applied

to buggy or recently modified classes, and minimizing the number of antipatterns using a

set of antipatterns detection rules. We implemented our proposed approach and evaluated

it on a set of two industrial systems provided by our industrial partner from the automotive

industry. We did the evaluation only on these two systems since it is critical to evalu-

ate the relevance of recommended refactorings by the original developers of the systems.
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Statistical analysis of our experiments showed that our proposal performed significantly

better than existing search-based refactoring approaches and an existing refactoring tool

not based on heuristic search. In our qualitative analysis, we conducted a survey with the

software developers who participated in our experiments to evaluate the relevance of the

fixed quality violations in their daily development activities

1.3.2 Contribution 2: Interactive Software Refactoring

To solve problem 3 and 4, we model the domain expert preferences using machine learn-

ing. A predictive model based on artificial neural network is used to capture the expertise

of the software engineer during the learning step. First, we propose a general study on

search-based software refactoring. Then, an application of web service remodularization is

deduced.

1.3.2.1 Interactive Software Refactoring: General Case

we propose a Genetic Algorithm (GA) based interactive learning algorithm for software

refactoring based on Artificial Neural Networks (ANN). We model the decision maker’s

preferences as a predictive model using ANN to approximate the fitness function for the

evaluation of refactoring solutions. The developer is asked to manually evaluate refactoring

solutions suggested by a Genetic Algorithm (GA) for a few iterations. Then, these evalu-

ated solutions are used as training set for the ANN, and finally the ANN model is used to

evaluate subsequent refactoring solutions in the next iterations. We evaluate our approach

on open-source systems using existing benchmark. We report the results on the efficiency

and effectiveness of our approach, and compare it to existing refactoring methodologies.

1.3.2.2 Interactive Software Refactoring: Web Service Remodularization

We propose, in this chapter, a Genetic Algorithm (GA)-based interactive learning algorithm

for Web services interface modularization based on Artificial Neural Networks (ANN). The
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proposed approach is based on the important feedback of the user to guide the search for

relevant Web services modularization solutions using predictive models. To the best of

our knowledge, the use of predictive models has not been used to improve the quality of

Web services design. In the proposed approach, we model the user’s design preferences

using ANN as a predictive model to approximate the fitness function for the evaluation of

the Web services modularization solutions. The user is asked to manually evaluate Web

services interface modularization solutions suggested by a Genetic Algorithm (GA) for

few iterations then these examples are used as a training set for the ANNs to evaluate

the solutions of the GA in the next iterations. We evaluated our approach on a set of

82 real-world Web services, extracted from an existing benchmark. Statistical analysis of

our experiments shows that our interactive approach performed significantly better than

the state-of-the-art modularization techniques in terms of design improvements and fixing

design defects in web services.

1.3.3 Contribution 3: Dimensionality Reduction in Many-Objective

Search-Based Software Refactoring

We address problem 5-7 using the Principal Component Analysis (PCA) algorithm in con-

junction with the well-known multi-objective algorithm NSGA-II [27], adapted to address

the software refactoring problem [14, 28, 29]. We start from the hypothesis that there may

be correlations among any two or more objectives (e.g. quality metrics) that are used to

evaluate refactoring solutions. Our approach, based on the PCA-NSGA-II methodology

[30], aims at finding the best and reduced set of objective that represents the quality met-

rics of interest to the domain expert. A regular NSGA-II algorithm with several objectives

is executed for a number of iterations. Then a PCA component analyzes the correlation

between the different objectives using the execution traces. The number of objectives may

be reduced during the next iterations based on the PCA results. The process is repeated

several times until a maximum number of iterations is reached.
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We implemented our proposed approach and evaluated it on a set of seven open source

systems. Statistical analysis of our experiments showed that dimensionality reduction re-

duced significantly the number of objectives on several case studies by a minimum of 4

objectives and a maximum of 8 objectives. It also generates a smaller number of non-

dominated solutions and lower execution time comparing to existing many-objective refac-

toring techniques. The results show that the approach outperforms several of existing multi-

objective refactoring techniques, where the objectives are not analyzed for possible corre-

lations, based on several evaluation measures such as number of fixed anti-patterns and

manual correctness.
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CHAPTER 2

Related Work

2.1 Introduction

2.2 Search-Based Software Engineering

2.2.1 Introduction

Search-Based Software Engineering (SBSE) is the field of adapting computational search,

mainly from the evolutionary algorithm literature, to solve Software Engineering (SE)

problems [31]. Unlike traditional deterministic techniques, meta-heuristic search algo-

rithms are used in SBSE methodologies to find a set of near-optimal or ”good” solutions.

Applications of meta-heuristic search to software engineering problems appear as early as

1976 with the work of Miller and Spooner on floating point test data generation [32]. How-

ever, the term SBSE was first coined by Harman and Jones in a 2001 paper that proposed

search-based optimization (SBO) as a general approach to software engineering [31]. It

represents a landmark in the development of search-based software engineering that led to

the explosion of the application of SBO to software engineering problems within the fol-

lowing decade. In a 2012 survey on SBSE, Harman et al., found that SBSE has covered

all the activities of the software lifecycle, including project planning, testing, maintenance,

etc. It was also reported in the same paper that the majority of SBSE studies focus on

software testing, with a coverage of up to 54% of the overall publications.
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The majority of existing works in SBSE treats software engineering problems as a

single- or bi-objective optimization problem [9], where one or two objective functions

are to be optimized. These objective functions are often formulated as a set of metrics

[33, 21, 34]. Harman et al., argue that a combination of multiple metrics into a single

scalar fitness function, using weighted sum, is not necessarily suitable for most software

engineering problems [9]. In addition, with increasingly large software systems, most soft-

ware engineering problems are becoming naturally complex in both size and structure.

Consequently, real-life software engineering problems require to find a compromise be-

tween many evaluation criteria, and are naturally multi-objective.

2.2.2 Multi-/Many-Objective Search-Based Software Engineering

Solutions to SBSE problems, formulated as optimization problems with more than one

objective, use Pareto optimality as an alternative to combining several objectives into one

fitness function [2]. Based on the Pareto optimality, a solution x dominates another solution

y, if x is not worse than y in all objectives and is strictly better than y in at least one

objective. Thus, under Pareto optimality, SBSE techniques find a set of non-dominated

solutions. Within a set of solutions that are non-dominated, no solution is either worse or

better than another solution. It is the responsibility of the software engineer to select the

solution that best matches his or her preferences.

In general, SBSE techniques that use Pareto optimality to search solutions are referred

to as multi-objective SBSE techniques. In analytical form, they can be formulated as fol-

lows:
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min
x

f(x) = [f1(x), f2(x), . . ., fM(x)]T ,M > 3

gj(x) ≥ 0, j = 1, . . . , P

hk(x) = 0, k = 1, . . . , Q

xLi ≤ xi ≤ xUi , i = 1, . . . , n

(2.1)

where f(x) is the M -dimensional objective vector with M > 1, fi(x) is the i−th objective

to minimize, x is the decision variable, P is the number of inequality constraints, Q is

the number of equality constraints, and xLi and xUi are the lower and upper bound of the

decision variable xi, respectively. A decision variable satisfying the (P + Q) constraints

is said to be feasible, and the set of all feasible solutions defines the feasible search space

denoted Ω.

A well-known weakness of multi-objective Pareto-based methodologies used in SBSE

is the performance degradation due to large number of objectives [1]. Specifically, when the

number of objectives is very large, most existing algorithms fail to distinguish solutions in

the Pareto front. As results, the proportion of best non-dominated solutions become almost

equal to 1 - that is the multi-objective algorithm tend to include all the population members

into the Pareto front. Figure 2.1 illustrates this degradation and loss of performance. As a

direct consequence of the performance degradation, the majority of existing multi-objective

SBSE techniques are limited to up to 3 objectives. A recent literature survey, including 51

papers around the use of Pareto optimizers in SBSE, showed that more than 50% of the

proposed methodologies address SE problems from only a bi-objective point of view [2]. In

the same survey, it was reported that another 30% of the proposed methodologies considers

only 3 objectives. Thus, at most 20% of existing multi-objective SBSE methodologies

consider more than 4 objectives.

Recently, a number of SBSE techniques that can handle more than 3 objectives have

been proposed. These techniques that can handle large number of objectives are referred
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to as many-objectives SBSE [35, 36]. In the field of SBSE, the work of Mkaouer et al.,

represents one of the few real-applications of many-objectives search-based optimization

techniques. This is due to the difficulty of decision making that arises with very large

number of objectives as well as novelty of such methodologies. Concerning the decision

making aspect, the work described in this thesis include a technique aimed at reducing the

number of objectives after the Pareto front as been identified in order to retain objectives

that truly contribute to the distinction of one solution from another.

Figure 2.1: Proportion of non-dominated solutions vs. number of objectives, data derived
from Deb et al., 2003 [1]

2.2.3 Multi/Many-objective Evolutionary Algorithms in SBSE

In SBSE literarture, multi/many-objective evolutionary algorithms (MOEAs) are the most

widely used search-based optimization (SBO) algorithms [9, 2] . Sayyad et al., [2] survey a

total of 52 papers on the used of Pareto-based optimization in SBSE, and showed that each

15



surveyed paper uses at least one MOEA.

MOEAs take advantage of the use of various types of heuristic optimizers inspired by

the natural process of evolution. Thus, the solutions space of a MOEA algorithms is re-

ferred to as population, which is itself a set of individuals (i.e., solutions to the problem).

During the optimization or search process, individuals in the populations undergo a process

of change and competition between themselves, resulting in a new population with a better

quality. Common change operators encountered in the SBSE literature are the crossover

and mutation operators. Figure 2.2 illustrates the crossover operation on two parent indi-

viduals as well as the mutation of a single individual.

Figure 2.2: Example of crossover and mutation operators on sequence of strings

Among the MOEAs used in SBSE, the genetic algorithm and its variants occupy the

first place in usage ranking. In [2], Sayyad et al., showed that the 4 most used multi-

objective evolutionary algorithms are NSGA-II [27], MOGA [37], SPEA2 [38], and PAES

[39]. This results is also confirmed in the survey by Harman et al., [9]. Table 2.1 shows

the usage frequency of these methodologies methodologies. Table 2.1 also shows the very

large utilization of the multi-objective genetic agloirthm (MOGA) and its variant NSGA-

II in search-based software engineering with a total usage frequencies of 50.7% in the

category of multi-algorithms papers and 64.2% in the category of single algorithm paper.

To our knowledge, there is no performance data that justifies the popularity of MOGA
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Table 2.1: Usage Frequency of MOEAs in 51 SBSE research papers, Data derived from
Sayyad et al., 2013 [2]. 15 paers used more than 1 algorithm and 36 papers used a single
algorithm.

MOEAS MULTI-ALGORITHMS PAPERS (%) SINGLE-ALGORITHM PAPERS (%)
NSGA-II 45.4 53.0
SPEA2 12.0 8.3
MOCell 9.3 0.0
PAES 5.3 0.0

MOGA 5.3 11.2
Others 28.0 22.2

and NSGA-II in SBSE. However, this popularity maybe justified by their availability in

state of the art tool such as Matlab®. In this thesis, we use the basic genetic Algorithm

(GA), the NSGA-II [27], and the multi-objective simulated annealing (MOSA) [40, 41].

2.2.3.1 The NSGA-II Algorithm

The non-dominated sorting genetic algorithm also known as NSGA-II [27], is a widely

used multi-objective evolutionary algorithm in practice [42]. Its performance for solving

software engineering problem is well-established comparing to several other algorithms

[9]. Algorithm 3 gives a high-level view of the NSGA-II algorithm.

NSGA-II starts with a randomly generated initial parent population P0 of individuals.

Then, the crossover and mutation genetic operators are applied to this initial population

to create offspring individuals Q0. Both parent and offsprings are merged into an initial

population Rt (t = 0 at the first iteration). The resulting population Rt is used by the

fast-non-dominated-sort of NSGA-II to classify individual solutions into different domi-

nance level. To determine the dominance level of an individual solution x, this solution is

compared to every other solution in R0 until it is found dominated, or not. Based on the

Pareto optimality, a solution x dominates another solution y, if x is no worse than y in all

objectives and is strictly better than y in at least one objective. In mathematical notation,

given a set of objectives functions fi, i ∈ 1..n to minimize, x dominates y can be written as

follows:
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∀i, fi(y) ≤ fi(x) and ∃j|fj(y) < fj(x) (2.2)

Upon sorting using the above dominance principle, the individuals in R0 are assigned

to groups of different level of dominance referred to as Pareto fronts. Solutions in the first

Pareto front F0 are assigned dominance level 0, those in the second Pareto front F1 are

assigned dominance level 1, and so on. Part of the good solutions are used in subsequent

iterations based on the dominance levels. The next parent population Pt+1 is formed by

adding individuals from successive fronts, starting with front F0, until the size of Pt+1 is

equal to N . If filling Pt+1 require to select a subset of individual in the last available front

FL, such selection is based on the crowding distance of each individual solution within

the same front FL [27]. The crowding distance of a non-dominated solution measures the

density of solutions surrounding it, and is used to promote diversity within the population.

It is estimated by the size of the largest cuboid enclosing a solution in the Pareto front that

does not contain any other solution. The front FL to undergo partial selection is sorted into

descending order with respect to the crowding distance, and the first N − |Pt+1| elements

are chosen. Then, a new offspring population Qt+1 is generated from Pt+1 using, again, the

crossover and mutation operators. This process is repeated until a stopping criteria is met.

2.2.3.2 Multi-Objective Simulated Annealing: MOSA

Simulated annealing (SA) is a single-objective optimization technique inspired from the

natural process of annealing solids, and was proposed by Kirkpatrick et al., [43]. The

physical process of annealing consists in, first, raising the temperature of the metal, then

cooling it down to a low-energy, crystalline state. At high temperature, the metal become

soft due to movement of particle within it. This high energy state caused the structure or

shape of the metal to be changed. After the new shape of the metal has been given it, the
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ALGORITHM 1: NSGA-II: high-level view
Input: Population size N
P0 =Create-initial-population(N );
Q0 =Generate-offsprings(P0);
t = 0;
repeat

Rt = Pt ∪Qt;
F = fast-non-dominated-sort(Rt);
Pt+1 = ∅;
i = 0;
repeat

Apply crowding-distance-assignment(Fi);
Pt+1 = Pt+1 ∪ Fi;
i = i+ 1;

until (|Pt+1|+ |Fi| ≤ N);
Crowding-Distance-Sort(Fi);
Pt+1 = Pt+1 ∪ Fi [N − |Pt+1|];
Qt+1 =Generate-offsprings(Pt+1);

until (stopping criteria is reached);

temperature is lowered causing the particles to be restrain in movement. Thus, the metal

crystallize in its new state (i.e., shape). Simulated annealing is inspired by this physical

process as a computational model of the real-world system. The basic single-objective

simulated annealing algorithm maintains a state and a computational temperature. At ini-

tialization, the algorithm start with a high temperature. This initial temperature is then

reduced toward zero during the execution of the algorithm, or until a stopping criteria is

reached.

At each iteration of the algorithm a solution is perturbed to produce a new solution. A

solution is characterized by the energy of the state, as in the physical process. The quality

of the initial solution and the perturbed solution are evaluated, using the objective function,

and a new state is selected from the two solutions. When the new solution is no worse

than the previous solution, the new solution is selected as the state. If the new solution has

lower quality than the existing solution, it may be accepted with a probability dependent

upon both the current computational temperature and the magnitude of the difference in
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quality. Algorithm 2 give a high-level view of the single-objective SA.

ALGORITHM 2: Single-objective simulated annealing
Input: maximum number of iteration N
s0 ←generateRandomSolution();
t0 ←getRandomTemperature();
CS ← selectCoolingSchedule();
repeat

i← 0;
repeat

s← generateRandomSolutionFromNeighborhoodStructure();
δ ← f(s)− f(s0) //objectivefunction;
if δ < 0 then

s0 ← s;
else

x← getRandomValueFromUniformDistribution(0, 1);
if x < exp(−δ

t
) then

s0 ← s
end

end
until i = N ;
t0 ← CS(t);

until (stopping criteria is reached);

The multi-objective simulated annealing (MOSA) [40] is based on the principle of the

single-objective SA. A solution is a vector s, and the objective function is an n−dimensional

vector f(s). The details of this algorithm can be found in [40]. We use the MOSA algorithm

in chapter 3.

2.2.4 Challenges In Search-based software Engineering

Though there exists diverse classes of SBO algorithms, various survey have demonstrated

that Multi-Objective Evolutionary algorithms (MOEAs) are the most used in SBO algo-

rithms in SBSE [9, 2]. Sayyad and Ammar [2] showed in their study that 5 MOEAs are

widely used in SBSE, namely NSGA-II, SPEA2, MOCell, PAES, and MOGA. Among

these algorithms, NSGA-II represents almost 44%. It is well-known that NSGA-II per-

forms well for number of objectives up to 3. It is also reported in the same survey that
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many-objective formulations of SE problems represent only 23%. Among 79 formulations

of SE problems as MOEAs, only 14 considered number of objectives higher than 3. This

limitation of the majority of SBSE techniques to fewer objectives is a well-known issue

inherited from MOEAs. It is referred to as the curse of dimensionality, and consists of 3

majors shortcomings:

• Deterioration of the performance of the MOEA algorithm in searching towards the

Pareto-optimal front. This problem becomes severe as an increase in number of

objectives causes a large proportion of the population to become equivalent.

• High computational cost for MOEAs with large number of objectives. Realisti-

cally, the number of solutions required to accurately compute the Pareto optimal

front grows exponentially with the number of objectives. For example, the number

of solutions necessary for a good approximation of the Pareto front for a 4-objective

problem is about 62, 500 [44]. The computation cost can be distributed over diversity

measure estimation, recombination operations, etc.

• Difficulty of the visualization of the Pareto-optimal front. This impairs one of the

major steps of MOEAs - decision making. Note that MOEAs do not propose a single

solution, but a set of good solutions. Therefore, the decision making process is a

vital step, where the expert must select one solution from a set of competitive ones.

The visualization of the Pareto front becomes a challenge when the number of non-

dominated solutions increase dramatically.

Therefore, Researchers have proposed several approaches to alleviate the limitations of

MOEAs in number of objective functions:

• Incorporation of decision maker’s preference is a method whereby the search-based

algorithm is guided by the decision maker towards the region of the Pareto front

that is of interest (ROI) to him or her [45, 46, 47],. This keeps the MOEA from

performing unnecessary computation outside of the decision maker’s ROI.
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• Another techniques for handling large dimensional Pareto front is the new preference

ordering relations method [48, 49, 50]. The idea in preference relations is to improve

the deterioration of the Pareto dominance by adding additional information such as

solution ranking with respect to the different objectives. However, these ranks may

not be the best for the decision maker.

• In addition to these two methods, other methods such as Decomposition [51, 52],

and the use of predefined multiple targeted search [53, 54, 55], have been proposed

to overcome the adverse effects of high dimensionality in the Pareto front. Decompo-

sition breaks the high-dimensional many-objective problem into sub-problems, and

solves these sub-problems using parallelism in the search algorithm. The use of pre-

defined targets - reference points, reference directions - in the objective space allows

to guide the search during the optimization process. These techniques have con-

siderably improved the search abilities of MOEAs. However, issues such as high

computational cost and the difficulty of visualization still exists.

In chapter 6, we address the issue of objective selection and decision making in high-

dimensional search-based software engineering with the particular case of software refac-

toring.

2.3 Software Refactoring

2.3.1 Introduction

Real-world software systems undergo multiple stages during their lifecyle. First, software

are developed and a first version is released to the potential users. Then, ultimately, new

requirements are added to the systems that need to be implemented, and/or existing func-

tionalities go through a process of improvement. this process is referred to as software

evolution, and it is an activity on which most software organizations allocate a large por-
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tion of the total software cost. In addition, this process of evolution causes the software to

increase in size and complexity, and often, leads to deviation of the system from its original

coding best practices. When these deviations arise, software maintenance activities such

as restructuring are triggered by developers to bring the quality of the system to its desired

standard value.

In object-oriented design, the process of restructuring software is referred to as soft-

ware refactoring [56]. It is defined as the process of improving the software code after

it has been written by changing its internal structure without changing its external behav-

ior.Thus, refactoring consists in reorganizing variables, classes and methods. The goal

of this reorganization is to improve various aspects of software quality such extensibility,

reusability, understandability, etc. These features are elements that improve the maintain-

ability of software systems.

The refactoring process can either be manually performed by a software engineer, a

combination of manual and automated operations, or fully-automated. These different ap-

proaches constitute the three types of existing software refactoring methodologies.

2.3.2 Manual Software Refactoring

In Fowler’s book [15] a non-exhaustive list of design problems in source code has been

defined. For each type of code smell, a list of possible refactorings (template) is suggested

that can be applied by the developers. In another study, Du Bois et al., [57] focus on the

detection of refactoring opportunities that may improve cohesion and coupling metrics, and

they used them to perform an optimal distribution of features over classes. They analyze

how refactorings manipulate coupling and cohesion metrics, and how to identify refactor-

ing opportunities that improve these metrics. However, this approach is limited to only

certain refactoring types and a small number of quality metrics. Murphy-Hill et al., [24]

proposed several techniques and empirical studies to support and understand refactoring

activities. In [58, 59] , the authors proposed new tools to assist software developers in ap-
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plying refactoring such as selection assistant, box view, and refactoring annotation based

on structural information and program analysis techniques.

Recently, Ge et al., [60] have proposed a new refactoring tool called GhostFactor that

allows the developer to transform code manually, and checks the correctness of the transfor-

mation automatically. BeneFactor [61] and WitchDoctor [62] can detect manual refactor-

ings and then complete them automatically. Tahvildari et al., [63] also propose a framework

of object-oriented metrics used to suggest to the software developer refactoring opportu-

nities to improve the quality of an object-oriented legacy system. Dig [64] proposes a

refactoring technique to improve the parallelism of software systems.

Other contributions are based on rules that can be expressed as assertions (invariants,

pre- and post-conditions). The use of invariants has been proposed to detect parts of the

program that require refactoring [65]. In addition, Opdyke [56] has proposed the defini-

tion and use of pre- and post-conditions with invariants to preserve the behavior of the

software when applying refactorings. Hence, behavior preservation is based on the verifi-

cation/satisfaction of a set of pre- and post-condition. All these conditions are expressed as

first-order logic constraints expressed over the elements of the program.

To summarize, manual refactoring is a tedious task for developers that involves explor-

ing the software system to find the best refactoring solution that improves the quality of the

software and fix design defects.

2.3.3 Fully-automated Refactoring

To automate refactoring activities, new approaches have been proposed. JDeodorant [66]

is an automated refactoring tool implemented as an Eclipse plug-in that identifies certain

types of design defect using quality metrics and then proposes a list of refactoring strate-

gies to fix them. Search-based techniques [31] are widely studied to automate software

refactoring and consider it as an optimization problem, where the goal is to improve the

design quality of a system based mainly on a set of software metrics. The majority of ex-
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isting work combines several metrics in a single fitness function to find the best sequence

of refactorings. Seng et al., [67] have proposed a single-objective optimization approach

using a genetic algorithm to suggest a list of refactorings to improve software quality. The

work of O’Keeffe et al., [68] uses various local search-based techniques such as hill climb-

ing and simulated annealing to provide an automated refactoring support. They use the

QMOOD metrics suite [3] to evaluate the improvement in quality.

Kessentini et al., [16] have proposed single-objective combinatorial optimization us-

ing a genetic algorithm to find the best sequence of refactoring operations that improve

the quality of the code by minimizing as much as possible the number of design defects

detected in the source code. Kilic et al., [69] explore the use of a variety of population-

based approaches to search-based parallel refactoring, finding that local beam search could

find the best solutions. Harman et al., [10] have proposed a search-based approach using

Pareto optimality that combines two quality metrics, CBO (coupling between objects) and

SDMPC (standard deviation of methods per class), in two separate fitness functions. Ouni

et al., [70, 71] proposed also a multi-objective refactoring formulation that generates so-

lutions to fix code smells. Ó Cinnéide et al., [72] have proposed a multi-objective search-

based refactoring to conduct an empirical investigation to assess some structural metrics

and to explore relationships between them. They have used a variety of search techniques

(Pareto-optimal search, semi-random search) guided by a set of cohesion metrics. Mkaouer

et al., [73, 36, 74] recently proposed to formulated refactoring as a many-objective problem

where a high number of objectives are considered during the search process. However, the

number of non-dominated refactoring solutions is high and it is challenging to the develop-

ers to select the solution based on their preferences. In addition, some of the quality metrics

could be correlated and this may reduce the number of objectives for faster convergence.
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2.3.4 Semi-automated Refactoring

Interactive techniques have been generally introduced in the literature of Search-Based

Software Engineering and especially in the area of software modularization. Hall et al.,

[75] treated software modularization as a constraint satisfaction problem. The idea of this

work is to provide a baseline distribution of software elements using good design princi-

ples (e.g. minimal coupling and maximal cohesion) that will be refined by a set of correc-

tions introduced interactively by the designer. The approach, called SUMO (Supervised

Re-modularization), consists of iteratively feeding domain knowledge into the remodular-

ization process. The process is performed by the designer in terms of constraints that can be

introduced to refine the current modularizations. Then, using a clustering technique called

Bunch, an initial set of clusters is generated that serves as an input to SUMO. The SUMO

algorithm provides a hypothesized modularization to the user, who will agree with some

relations, and disagree with others.

Bavota et al., [76] presented the adoption of single objective interactive genetic algo-

rithms in software re-modularization process. The main idea is to incorporate the user in the

evaluation of the generated remodularizations. Interactive Genetic Algorithms (IGAs) ex-

tend the classic Genetic Algorithms (GAs) by partially or entirely involving the user in the

determination of the solutions fitness function. The basic idea of the Interactive GA (IGA)

is to periodically add a constraint to the GA such that some specific components shall be

put in a given cluster among those created so far. Initially, the IGA evolves similarly to the

non-interactive GA.

Overall, the above existing studies of interactive remodularization are limited to few

types of refactoring such as moving classes between packages and splitting packages. Fur-

thermore, the interaction mechanism is based on the manual evaluation of proposed remod-

ularization solutions which could be a time-consuming process.
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CHAPTER 3

Context-Based Refactoring Recommendation

Approach: Two Industrial Case Studies

3.1 Introduction

Refactoring is a highly valuable solution to reduce and manage the continuously increasing

complexity of software systems. In real-world scenario, programmers are “opportunistic”

when undertaking a refactoring activity - That is most programmers are interested in im-

proving the quality of the code fragments that they frequently update and/or those related

to the planned activities for the next release (fixing bugs, adding new functionalities, etc.).

However, a large portion of existing refactoring tools suggests refactorings to improve the

overall quality of systems without a concrete prioritization plan [24][25] . This system-

wide treatment of refactoring recommendation rise two major issues: (1) A large number

of refactoring operations need to be applied, and (2) the scope of suggested refactorings

can be outside of the software component under the control of the programmer.

When a large number of refactorings are recommended, manual refactoring becomes

error-prone and time-consuming. Murphy-Hill et al., [24] show that most developers do

not use fully automated refactoring techniques because they want to mix refactorings with

semantic changes, something that is not permitted by existing methods. In addition, when

automated refactoring operations affect multiple components of the software, some of the

components may be unknown to the specific software engineers who are performing the
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maintenance activity. The unfamiliarity of these engineers with those components reduces

their confidence in applying these system-wide refactorings. As results, most developers

are reluctant to use fully-automated refactoring recommendation tools due to fear of intro-

ducing bugs or undesired changes.

In the current literature, Search-based refactoring techniques obtained promising re-

sults based on the use of mono-objective and multi-objective algorithms to optimize quality

metrics [16][68][77][67][10][28][23]. However, most of these techniques explore a large

search space of possible solutions and recommend large system-wide sequence of refactor-

ings operations. Thus, these search-based refactoring techniques fail to meet the need of

developers, who are more interested in refactoring recently modified entities related to their

current tasks (e.g. features update, fixing bugs, etc.) [24]. In addition, Ouni et al., [70, 28]

used the history of code changes to deduce refactoring operations from past refactoring

activities applied to fragments of codes under maintenance. Their findings shows that the

history of code change is an important source of information that can be used to improve

the quality of software refactoring on a given system. Furthermore, it is well-established

by recent empirical studies that code fragments that trigger refactoring activities are often

classes that are directly correlated with discovered bugs.

In this chapter, we propose a profile-based approach for refactoring recommendations to

satisfy the following requirements: 1) programmers prefer to improve, mainly, the quality

of recently modified code before a new release due to limited resources and time, 2) sev-

eral empirical studies [66][78][79][80] identified correlation between bugs and refactoring

opportunities, and 3) recently introduced refactorings may give an indication of quality is-

sues that should be fixed and show an interest from programmers to refactor these code

fragments.

In this chapter, to overcome some of the above-mentioned limitations of existing refac-

toring methodologies, we propose a profile-based search-based refactoring approach that

account for the context of the software programmer. The approach uses the multi-objective
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simulated annealing (MOSA) [40] to find the best refactoring solution that satisfies two

objectives: maximizing the number refactorings applied to buggy or recently modified

classes, and minimizing the number of antipatterns [14] using a set of antipatterns detec-

tion rules [16]. We implemented our proposed approach and evaluated it on a set of two

industrial systems provided by our industrial partner from the automotive industry. We did

the evaluation only on these two systems since it is critical to evaluate the relevance of

recommended refactorings by the original developers of the systems. Statistical analysis

of our experiments showed that our proposal performed significantly better than existing

search-based refactoring approaches [68][77] and an existing refactoring tool not based on

heuristic search, JDeodorant [66] regarding the relevance and importance of recommended

refactorings. In our qualitative analysis, we conducted a survey with the software devel-

opers who participated in our experiments to evaluate the relevance of the fixed quality

violations in their daily development activities.

The primary contributions of our profile-based approach can be summarized as follows:

1. Meet programmers’ requirement to improve the quality of recently modified code

before a new release. This includes the optimization of the refactoring cost in time.

2. Recommend refactorings solutions correlated with bug reports,

3. Take into account refactoring operations that were recently applied to the system.

3.2 Approach

The main goal of this approach is to integrate the preference of the developer into the soft-

ware refactoring. There are two main methods that can be used to integrate the preference

of an expert into a process: (1) the active or interactive methods, and (2) The passive or

non-interactive methods based on data mining. In the active method, the software engi-

neers, who have the expertise are integrated in the search-loop. Then, using their expertise
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of the domain, they can accept the solutions that meet their preferences. In addition, the

engineers can interact with the search process to bias solution generation towards their

preferences. In the second method, the passive techniques, using a repository of previous

activities, an automated algorithm can extract the user preferences with respect to software

refactoring. Then, using such behavior, new refactorings can be deduced from previous

ones.

Our approach uses the passive non-interactive method of user preference integration. It

finds the most relevant refactorings for software developers to refactor their systems based

on their recent updates of the system. The general structure of our approach is sketched in

Figure 3.1.

Figure 3.1: Context-based software refactoring approach overview

Our technique comprises two main components. The first component is the preprocess-

ing component, which rank the list of possible classes to refactor. During the preprocessing

phase, three different parsers are executed. The first parser extracts, from the system to

refactor, classes that have been recently modified or refactored. Classes mentioned in re-

cent commits reflect the current coding context of the software engineer, and also indicates

that they may be important to refactor since they have a high probability of including bugs.
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Developers, for example, may introduce bugs because of the complexity of the system and

its poor design. In addition, these classes may be candidate for future updated in com-

parison with stable classes that were not modified for many releases. The second parser

extracts a list of classes that were sources of previously reported bugs. Several empiri-

cal studies show that correlation exists between buggy classes and poor quality symptoms.

Thus, relevant refactorings for the developers context could be identified in these classes

based on this pre-processing phase. Finally, the last parser identifies refactoring operations

that were applied to previous release of the system. Classes that are refactored recently by

the developers but still contain quality issues can be recommended for further refactoring

since programmers have already expressed an interest in fixing them. The list of applied

refactorings in previous releases are detected using the technique proposed in [23]. The

outcome of this first phase is a list of classes that could be refactored based on the three

main criteria detailed above.

The outcome of the first phase is used to reduce the search space to find the best refac-

toring sequence to recommend for developers. A multi-objective search algorithm is used

to focus mainly on refactoring, if needed, the classes of the first phase while fixing some

other quality issues as well. To this end, a multi-objective simulated annealing algorithm

is executed for a number of iterations to find the solutions balancing the two objectives of

1) improving the relevance of recommended refactorings, which corresponds to maximize

the number of refactoring recommendation in recently modified or buggy classes and 2)

minimizing the number of antipatterns using a set of detection rules defined in the litera-

ture [16]. The first objective of the refactorings relevance is based on an average of three

different measures of recently modified classes, recent classes mentioned in bug reports

and recently refactored classes including incomplete refactoring activities or may need to

be further refactored. The formalization of these measures will be described in the next

section.

A multi-objective simulated annealing algorithm [40] is selected due to the small search
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space to explore after the pre-processing phase. A set of semantic constraints is used to

check the correctness and feasibility of recommended refactorings based on textual simi-

larities, call graphs and pre/post-conditions. These constraints are described in more details

in [77]. The next section will discuss the formalization of our approach and the adaptation

of the multi-objective simulated annealing algorithm to our problem.

3.3 Problem Formulation and Solution Approach

Simulated annealing is a local search heuristic inspired by the concept of annealing in

metallurgy where metal is heated, raising its energy and relieving it of defects due to its

ability to move around more easily [40]. As its temperature drops, the metal’s energy

drops and eventually it settles in a more stable state and becomes rigid. The local search

algorithm of the Simulated Annealing is very suitable for exploring small search spaces.

More details about Multi-Objective Simulated Annealing can be found in chapter 2 and

related references.

3.3.1 Solution Representation

A solution of our problem is defined as a sequence of refactoring operations involving one

or multiple source code fragments of the software to refactor. As described in Table 3.1,

the vector-based representation is used to define refactoring sequences. Each dimension of

the vector is a refactoring operation, and its index in the vector indicates the order in which

it is applied. For every refactoring, pre- and post-conditions are specified to guarantee the

correctness of the operation.

The initial population is created by randomly selecting a sequence of operations to a

randomly chosen set of code elements, or actors identified in the first phase of search space

reduction. The type of actor usually depends on the type of the refactoring it is assigned to

and also depends on its role in the refactoring operation. In our experiments, we used the
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Table 3.1: Example of refactoring solution: A sequence consisting of first randomly gen-
erated operations

REF REFACTORING OPERATIONS

RO1
MoveMethod(org.apache.xerces.xinclude.XIncludeTextReader,
org.apache.xerces.xinclude.XIncludeTextReader, close())

RO2 MergePackage(org.apache.xerces.xpointer, org.apache.xerces.xs)

RO3
PullUpMethod(org.apache.html.dom.HTMLTableCaptionElementImpl,
org.apache.html.dom.HTMLElementImpl, addEventListener())

RO4
ExtractInterface(org.apache.xml.serialize.SerializerFactory,
apache.xml.serialize.SerializerFactoryInterface)

following list of refactorings: Extract class (EC), Extract interface (EI), Inline class (IC),

Move field (MF), Move method (MM), Push down field (PDF), Push down method (PDM),

Pull up field (PUF), Pull up method (PUM), Move class (MC), and Extract method (EM).

3.3.2 Fitness Functions

The generated solutions are evaluated using two fitness functions. The first fitness function

is the number of antipatterns or code smells. This fitness function is to be minimized, and

is calculated using equation 3.1.

min f1(s) =
# code smells after refactoring

# code smells before refactoring
(3.1)

This function represents the proportion between the number of corrected defects (de-

tected using bad smells detection rules) and the total number of possible defects that can be

detected. The detection of defects is based on some metrics-based rules according to which

a code fragment can be classified as a design defect or not (without a probability/risk score),

i.e., 0 or 1, as defined in the detection rules in [16].

The second fitness function is the refactoring relevance. This fitness is maximized, and

its goal to evaluate the refactoring solutions based on their relevance to the developers.

Formally, this function is defined as follows:
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max f2(s) =
n∑
i=1

commitf(ci)+bugreportsf(ci)
2

n
(3.2)

where n is the number of classes to be refactored by the solution S, c is the class that

contain at least one code smell and commitf(c) and bugreportsf(c) are respectively the

functions to estimate the relevance of the class for refactoring based on previous changes

in recent commits and previous bug reports.

The first function commitf(c) checks if a class was recently changed. In fact, a class

that was modified recently has a high probability to be refactored comparing to stable

classes. Thus, the function compares between the date of the last commit and the last

date where the class was modified in the previous commit. If a suggested class was mod-

ified in the last commit, then the value of this function is 1. We define this normalized

function, normalized in the range of [0, 1] as following:

commitf(c) =
1

commit.date(c)− lastcommit.date+ 1
(3.3)

The second function bugreportsf(c) counts the number of times a class was fixed to

eliminate bugs based on the history of bug reports divided by the maximum number of

times that a class in the system was fixed in previous bug reports. In fact, a class that

was fixed several times has a high probability of being a buggy class and thus need to be

refactored. Formally, this function, normalized between [0,1] is defined as:

bugreportsf(c) =

1
lastbugreport.date(c)−lastbugreport.date+1

+ NbFixedBugs(reports,c)
MaxNbFixedBugs(reports)

2
(3.4)

3.3.3 Change Operators

MOSA is using a mutation operator to generate new solutions. For mutation, we use the bit-

string mutation operator that selects one or more refactoring operations (or their controlling
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parameters) from the solution and replaces them by other ones from the list of possible

operations to apply. For an illustration of the mutation operator, refer to figure 2.2.

When applying the change operators, the different pre- and post-conditions are checked

to ensure the applicability of the newly generated solutions. We also apply a repair operator

to randomly select new refactorings to replace those creating conflicts.

3.4 Evaluation

3.4.1 Research Questions and Evaluation Metrics

To evaluate and compare the performance and relevance of the recommended refactoring by

our context-based multi-objective simulated annealing algorithm, we defined the following

three research questions:

RQ1: To what extent can our approach recommends relevant refactorings to develop-

ers?

RQ2: To what extent can our approach reduces the number of refactorings and the exe-

cution time while improving the quality and recommending relevant refactorings compared

to existing refactoring techniques?

RQ3: Can our approach be relevant for programmers in practice?

To answer the first research question RQ1, we used both qualitative and quantitative

evaluations of refactoring solutions recommended by our approach and existing studies.

For the quantitative validation, we asked a group of developers from our industrial partner

to manually suggest a list of possible refactorings to apply based on the latest release source

code of the system to refactor. Then, we used the precision (PR) and recall (RC) measures

to evaluate the similarity between the recommended refactorings by our approach and those

manually found by the original programmers of the industrial projects. Precision and recall

are calculated as follows:
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RC =
|set(recommended refactorings) ∩ set(expected refactorings)|

|set(expected refactorings)|
(3.5)

PR =
|set(recommended refactorings) ∩ set(expected refactorings)|

|set(recommended refactorings)|
(3.6)

Another metric that we considered for the quantitative evaluation is the percentage of

fixed antipatterns (NF) by the refactoring solution. The code smells are detected on the

new source code after refactoring based on the detection rules provided by [81]. Formally,

NF is defined as defined as follows:

NF =
# fixed code smells

# code smells
∈ [0, 1] (3.7)

The detection of antipatterns is very subjective and some developers prefer not to fix

some smells because the code is stable or some of them are not important to fix. To this

end, we considered another metrics the total gain in quality G for each of the considered

QMOOD [3] quality attributes qi before and after refactoring can be easily estimated as:

Gqi = q′i − qi (3.8)

where q′i and qi represents the value of the quality attribute i after and before refactoring.

Since several good solutions can be relevant, it is important to check the relevance and

correctness of recommended refactorings not only by comparing them with one expected

solution (quantitative validation). Thus, we performed a qualitative evaluation where we

asked the original programmers of the industrial projects to review, manually, if the recom-

mended refactorings are relevant and correct or not from their perspectives. We define the

metric Refactoring Relevance (RR) to mean the number of relevant refactorings divided by

the total number of suggested refactorings. RR is given by the following equation:
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RR =
# relevant refactorings
# proposed refactorings

(3.9)

To answer RQ2, we compared our approach to random search (RS), mono-objective

simulated annealing (SA) aggregating both objectives, another multi-objective evolutionary

algorithm (NSGA-II) and an existing work based on search algorithms to fully-automate

the refactoring recommendation process: OKeeffe and Cinnide [29] and Ouni et al., [82].

OKeeffe and Cinnide proposed a mono-objective formulation to automate the refac-

toring process by optimizing a set of quality metrics. Ouni et al., [77] proposed a multi-

objective refactoring formulation that generates solutions to fix code smells. Both tech-

niques are fully-automated and did not consider the personalization of refactoring recom-

mendations. We have also compared our results with an existing tool, called JDeodorant,

not based on heuristic search to fix quality issues by recommending refactorings. JDeodor-

ant implements a set of templates to fix different design violations by providing a generic

list of refactorings to apply. Since JDeodorant just recommends a few types of refactoring

with respect to the ones considered by our tool. We restricted, in this case, the comparison

to the same refactoring types supported by JDeodorant.

We used the metrics PR, RC, NF, RC and G to perform the comparisons and two new

metrics related to the computational time (CT) and the number of refactorings (NR).

To answer RQ3, we asked the programmers to answer to a post-study questionnaire to

get their opinions and feedback about our personalized refactoring recommendations.

3.4.2 Experimental Setup

To get feedback from the original developers of a system, we considered in our experiments

two large industrial projects provided by our industrial partner, from the automotive indus-

try. The first project is a marketing return on investment tool, called MROI, used by the

marketing department to predict the sales of cars based on the demand, dealers information,

37



advertisements, etc. The tool can collect, analyze and synthesize a variety of data types and

sources related to customers and dealers. It was implemented over a period of more than

eight years and frequently changed to include and remove new/redundant features.

The second project is a Java-based software system, JDI, which helps the Company

to create the best schedule of orders from the dealers based on many business constraints.

This system is also used by the company to find the best configurations of cars based on

the requirements of dealers and customers. Software developers have developed several

releases of this system at the company over the past 10 years. Due to the high number of

changes introduced to this system over the years and its importance, it is critical to ensure

that they remain of high quality and minimize the effort required by developers to fix bugs

and extend the system in the future. Table 3.2 described the statistics related to the two

studied systems.

Our study involved 19 software developers from the company. Participants include 9

original developers of the MROI system and 10 original developers of the JDI one. All the

developers who participated in the experiments are expert in Java, quality assurance and

testing. The experience of these participants on these areas ranged from 7 to 18 years.

The questionnaire includes five main questions to be answered by the participants.

Some of the questions are related to the background of the participants to evaluate their

experience and ability to evaluate the results of our technique. Furthermore, we organized

a lecture for all the participants about different concepts and examples related to software

refactoring then they took six tests about evaluating the relevance of recommended refac-

torings on code fragments extracted from open source systems.

We formed two groups. Each of the two groups (A and B) is composed of the original

developers of each system. We selected the participants of each group based on the col-

lected background information to make sure that both groups have, in average, the same

level of expertise with software refactoring and quality assurance. We provided to all the

participants the questionnaire, the guidelines about the different steps to perform the ex-
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periments, the different used tools and source code of the systems to evaluate. After the

first step of the quantitative evaluation, we provided to the participants the list of recom-

mended refactorings by the different tools and asked them to evaluate their relevance and

correctness. The participants are not aware of the tools used to get the different results. We

counted the votes of the programmers for every of the recommended refactorings then we

considered the highest number of votes to evaluate the correctness/relevance of the evalu-

ated operations.

In the first scenario, we asked every participant to manually apply refactorings after

reviewing the code of their systems. As an outcome of the first scenario, we estimated

the similarity between the suggested refactorings and the expected ones as defined by the

programmers.

In the second scenario, we asked the developers to manually evaluate the relevance of

every recommended refactoring by our approach. In the third scenario, we collected the

opinions of the developers about our tool based on a post-study questionnaire that will be

detailed later. The programmers commented on the different evaluated refactorings and

these comments/justifications were discussed later with the organizers of the study.

We used different population sizes of the used algorithms to evaluate their performance

ranging from 100, 200, 300 and 500 individuals per population.

The maximum number of iterations is 100, 000 evaluations for all the studied systems.

We used the Wilcoxon test to compare between the different algorithms considered in our

experiments. For each algorithm and project, we use the trial and error strategy to find the

good parameters setting. For all the systems and algorithms, the obtained results in our

experiments are statistically significant on 30 independent executions using the Wilcoxon

rank sum test with a confidence level of 95% (α < 5%).
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Table 3.2: Statistical data of the two evaluated industrial projects

Systems Releases
Avg. #
classes

Avg. KLOC
Avg. #
code smells

# manual
refactorings

JDI
V1.0 - V5.8
(26 releases)

694 252 88 94

MROI
V1.0 - V6.4
(31 releases)

827 269 116 119

3.4.3 Results and Discussions

Results for RQ1. Figure 3.2 summarized the results of our approach of the qualitative

evaluation when programmers manually evaluated the relevance and correctness of the rec-

ommended refactorings. Most of the solutions recommended by our personalized approach

are relevant and correct from the perceptive of the programmers.

Figure 3.2: Median refactoring relevance (RR) value for 30 executions on the two systems
with a 95% confidence level (α < 5%)

On average, for the two studied projects, around 88% of the proposed refactoring oper-

ations are found to be useful by the software developers of our experiments. The highest

MC score is 89% for the JDI project and the RR score is 87% for the second system MROI.

Thus, it is clear the obtained results are not dependent on the size of the systems and the
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number of recommended refactorings. Most of the refactorings that were not manually

approved by the developers were found to be either fixing non-relevant quality issues or

introducing design incoherence.

We also compared the proposed refactoring solutions with the ones that are provided

manually by the programmers of these industrial systems. Figures 3-4 show that the major-

ity of the proposed refactorings, with an average of 84% in terms of precision and 87% of

recall, are equivalent to those manually found by the programmers when trying to refactor

the system. The higher score of the recall comparing to the precision can be explained by

the fact that our approach proposes a complete list of refactorings comparing to the man-

ually recommended operations by the programmers due to the time-consuming process of

code refactoring. Also, we found that the slight deviation with the expected refactorings is

not related to incorrect operations but to the fact that the developers were interested mainly

in fixing the severest quality issues or those related more to find better ways to extend the

current design.

Figure 3.3: Median precision (PR) value for 30 executions on all the two systems with a
95% confidence level (α < 5%)

Figure 3.5 shows that the refactorings recommended by the approach and applied by
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developers improved the quality metrics value (G) of the two systems. The average quality

gain for the two industrial systems was the highest among the systems with more than 0.2.

The improvements in the quality gain confirm that the recommended refactorings helped

to optimize different quality metrics by fixing the most severe quality issues. Although the

average quality gain is lower comparing to one of the existing techniques, it dominates 5

existing techniques. In addition, it is comparable to the best existing method, and is lower

due to the much lower number of refactorings recommended by our technique.

Result for RQ2. Figures 3.3−3.8 confirm the average superior performance of our

personalized refactoring approach compared to existing refactoring approaches. Figure 3.3

describes that our approach provides better precision results (PR) than existing approaches

having PR scores as high as 79% on average, on the two different systems. The same result

is observed for the recall (RC) and quality gain (G) as described in Figure 3.4 and 3.5.

However, the quality gain is slightly lower than some of the existing techniques as showed

in Figure 3.5. This can be explained by the reason that the main goal of developers is not

to fix the maximum number the quality issues detected in the system (which was the goal

of most of the existing studies). Also, our approach is based on a multi-objective algorithm

to find a trade-off between improving the quality and reducing the number of refactorings.

Figure 3.6 clearly shows that our personalized refactoring approach converges much faster

to acceptable refactoring solutions comparing to most of the existing studies. For example,

the work of Ouni et al., required at least 20 minutes to converge to a good quality of solu-

tions however our approach was able to recommend good refactoring opportunities within

2 minutes. One reason of the low execution time of our approach is the number of rec-

ommended refactorings as described in Figure 3.7. To conclude, our interactive approach

provides better results, on average, than existing fully-automated refactoring techniques

(answer to RQ2).

Results for RQ3. In the first component of the post-study questionnaire, the partici-

pants were asked to rate their agreement on a Likert scale from 1 (complete disagreement)

42



Figure 3.4: Median recall (RC) value for 30 executions on all the two systems with a 95%
confidence level (α < 5%)

Figure 3.5: Median quality gain (G) value for 30 executions on all the two systems with a
95% confidence level (α < 5%)

to 5 (complete agreement) with the following statements: 1. The proposed personalized

refactoring technique is a desirable feature in integrated development environments. 2.
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The reduced number of recommended relevant refactorings may help developers perform-

ing every-day design, implementation and maintenance activities.

In the second component of the questionnaire, the subjects were asked to specify the

possible usefulness of the suggested refactorings to perform some activities such as quality

assurance/assessment, regression testing, effort prediction, code inspection, and features

extension. In the third part, we asked the programmers about possible improvements of our

personalized refactoring tool.

As described in Figure 7, the agreement of the participants was 4.6 and 4.3 for the

first and second statements respectively. This confirms the usefulness of our approach for

the software developers. Regarding the possible usefulness to perform some activities, the

developers agreed that quality assurance/assessment and features extension are the three

main activities where the personalized refactorings could be very helpful with an agreement

of more than 4.3.

The three other activities of effort prediction, regression testing and code inspection

are considered less relevant for our tool with an agreement of around 3.8. The majority of

the programmers we interviewed found that the personalized refactorings give interesting

quick advice about possible refactoring opportunities to improve the quality and mainly

facilitate extending the design of the system to update recently introduced features.

The remaining questions of the post-study questionnaire were about the benefits and

also limitations (possible improvements) of our approach. They found that the personal-

ized refactoring technique is much more efficient than the traditional manual and fully-

automated techniques. The programmers considered the use of most of existing manual

refactoring techniques as a time-consuming process, and it is more relevant to apply refac-

torings related to their recent development activities. Most of the participants mention that

our personalized approach to refactor the code is much faster than analyzing the long list of

recommended refactorings by current techniques. The programmers also highlighted that

our personalized approach recommended relevant refactorings to continue improving the
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quality of some code fragments that they started refactoring them in the past.

The participants also suggested some possible improvements to our personalized refac-

toring approach. Several participants found that it will be very interesting and helpful to

integrate to the tool a new functionality to visualize the design before and after refactor-

ing. The developers also proposed to explore the area of impact changes analysis as a

complementary step of our technique after applying the recommended refactorings.

Figure 3.6: Median execution time (CT) value for 30 executions on all the two systems
with a 95% confidence level (α < 5%)

3.5 Conclusion

In this chapter, we proposed a personalized search-based refactoring technique that inte-

grate programmer-specific coding preferences based on the history of changes of the sys-

tem. In dynamic coding environment this refactoring approach allows for recommending

refactorings that are relevant to the coding context of the programmer in charge of the

maintenance activity. This means, recommended refactoring will affect only the part of the

system related to the history of activity provided as input, an thus, avoiding system-wide
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Figure 3.7: Median number of refactorings (NR) for 30 executions on all the two systems
with a 95% confidence level (α < 5%)

Figure 3.8: Post-study questionnaire results

operations that may jeopardize the quality of the entire system. In addition, this approach

is suitable to increase the confidence of the developer since refactoring suggestions based

on recent activities will hit his expectation.
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The evaluation of the proposed technique shows that it help programmers take advan-

tage of search-based refactoring tools with a reasonable execution time, and recommends

a short list of refactorings. This results is a direct consequence of the reduction of the

search space to explore, which is made possible by analyzing previous commits and bug

reports. In addition, an evaluation of the proposed context-based multi-objective approach

was performed on two industrial systems. The results of this evaluation show that the pro-

posed technique outperforms several existing search-based refactoring approaches as well

as JDeodorant, an refactoring tool not based on heuristic search. This outperformance was

highlighted for comparison measures such as the relevance and correctness of the recom-

mended refactorings.

In order to increase the confidence of programmers in using the proposed methodology,

future work may involve the validation of this technique with additional refactoring tools

and software systems. In addition, it is possible to extend the type of data used in the history

of software change such as the type of code smells frequently corrected in the system.
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CHAPTER 4

Interactive Search-based Software Refactoring

Using Machine Learning

4.1 Introduction

Large scale software systems exhibit high complexity, and become challenging to main-

tain over time. In dynamic software engineering environment, where new functionalities

are regularly added and new software engineer must adjust to the ongoing development

process, both software evolution and maintenance become indispensable.

In general, the success of timely software maintenance and evolution activities is a func-

tion of the quality of the existing software design, both the architecture and the source code.

Most specifically, the majority of difficulties encountered during maintenance operations

can be significantly reduced for software systems built around well-known design patterns

[17], and possessing easy-to-understand design structures. To achieve these software qual-

ity, search-Based Software Engineering (SBSE) techniques have been successfully applied

to reformulate software refactoring as a search problem using metaheuristics [9, 10, 70, 67].

In the majority of exiting search-based software engineering methodologies, refactor-

ing solutions are evaluated using software quality metrics as objective functions to guide

the search process. Consequently, at each stage of the execution of the SBO algorithm that

drives the search, solutions are selected based on their individual score for every metric in-

cluded as objective function. Thus, during the decision making process, the domain expert
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must choose the solution that best matches his preferences based on the values of these

quality metrics. However, when using these quality metrics to evaluate a software, several

issues arise. First, there is no general consensus on the definition of design defects or code-

smells, due to various programming behavior and contexts. For example, the definition of

a large class can change from one software organization to another. Thus, it is difficult

to formalize the definitions of design violations in terms of quality metrics to evaluate the

quality of software refactoring solution. Second, the majority of existing refactoring stud-

ies do not include the developer - that is the final decision maker - in the loop to analyze

the suggested refactoring solutions and give his or her feedback during the optimization

process.

Various multi-objective optimization algorithms have been proposed that incorporate

some user preferences to steer the search algorithm towards a Pareto front that meets pre-

defined criteria [83, 84, 46, 50]. However, these methodologies assume that the decision

maker has prior knowledge of possible region of convergence. However, in practice, not

only it is difficult to predict the location of the Pareto front, but also can a bad guess lead

to poor convergence towards the actual Pareto front. In fact, incorporating bad preference

point could lead to locking the search algorithm in a region of the search space that is far

from the actual Pareto front.

In [26], the authors used an interactive genetic algorithm to estimate the quality of

refactoring solutions. However, the DM is required to evaluate every refactoring solution

throughout the entire execution of the algorithm, making it fastidious and sometimes im-

practical. Third, the calculation of some quality metrics is expensive. Thus, the correspond-

ing fitness function defined to evaluate refactoring solutions can be expensive. Finally,

quality metrics can only evaluate the structural improvements of the design after applying

the suggested refactoring solutions, but it is difficult to evaluate the semantic coherence of

the design without the input of a developer .

In this chapter, we tackle a problem that is faced by the majority of search-based soft-
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ware engineering research: How do we define fitness when the computation and interpre-

tation of fitness is an inherently subjective and aesthetic judgment that can only really be

adequately made by human?

To answer this question, we propose a Genetic Algorithm (GA) based interactive learn-

ing algorithm for software refactoring based on Artificial Neural Networks (ANN) [85]

[86]. We model the DM’s preferences as a predictive model using ANN to approximate

the fitness function for the evaluation of refactoring solutions. The developer is asked to

evaluate manually refactoring solutions suggested by a Genetic Algorithm (GA) for a few

iterations. Then, these evaluated solutions are used as training set for the ANN, and finally

the ANN model is used to evaluate subsequent refactoring solutions in the next iterations.

We evaluate our approach on open-source systems using existing benchmark [74, 20, 87].

We report the results on the efficiency and effectiveness of our approach, and compare it to

existing refactoring methodologies [26, 16, 10, 66].

4.2 Refactoring as an Interactive Search-based Learning

Problem

4.2.1 Approach Overview

We combine two methodologies to include the decision maker (DM) in the search loop: (1)

A genetic Algorithm (GA)-based software refactoring, and (2) A learning system based on

the well-known Artificial Neural Network (ANN). The proposed techniques takes as input

the software system to refactor, the list of available refactoring operations, the maximum

number of iteration (N ) and the number of DM interactions (NDM ) with the search pro-

cess. Upon reaching the stop criteria, or exhausting the maximum number of iterations,

the system generates the best sequence of refactoring operations that improves the quality

of the input software system. We divide the overall approach into two main components,
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namely, the Interactive Component (IGA) and the leaning module (LGA). Figure 4.1 shows

a high-level view of the approach.

The IGA is the point of entry of our interactive software refactoring method. It includes

the genetic algorithm (GA), which handle the search process as well as generates the refac-

toring sequences, and the decision maker (DM). After generating potential refactoring so-

lutions, the IGA proposes them to the DM for evaluation. This evaluation is manually done

by the DM for every refactoring solution before the training of the ANN, and takes into

account its feasibility, efficiency and quality. After repeating this process of generation and

evaluation for NDM iterations, all the refactoring solutions evaluated by the DM are used

as training set for the LGA.

The LGA components uses the previously formed training set to learn a ANN predictive

model. Then, the predictive model is used in the remaining iterations of the GA to approx-

imate the evaluation of the refactoring solutions. Thus, this approach does not require an

explicit definition of a fitness function. In addition, since the techniques uses a data set

evaluated by the DM to learn the ANN predictive model, it captures the DM preferences of

good and bad refactoring in the model with a preset effort.

4.2.2 The Interactive Genetic Algorithm (IGA)

4.2.2.1 Solution Representation and Evaluation

The first part of the interactive software refactoring technique combines the search capabil-

ity GAs and the expertise of the decision maker to find and accurately evaluate candidate

refactoring solutions. When creating a sequence of refactorings (individuals), a number

of pre- and post-conditions that guarantee the feasibility and applicability must be met.

Opdyke was the first to introduce a way of formalizing the preconditions that must be im-

posed before a refactoring can be applied in order to preserve the external behavior of the

system [56]. He defined functions which can be used to formalize constraints, similar to the

Analysis functions proposed later by Ó Cinnéide[68], and Roberts [88]. Similar to [88], our
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Figure 4.1: High-level view of the Learning-based interactive refactoring technique

method simulates refactorings using pre- and post-conditions that are expressed in terms of

conditions on a code model. Our system suggests refactoring recommendations, and does

not apply these refactorings automatically, but verifies the applicability of the suggested

refactoring operations.

Each refactoring solution in itself is a sequence of refactoring operations such as Move

Method (MM), Extract Class (EC), etc. Thus, we adopt a vector representation where

each dimension of the vector is a refactoring operation. A typical solution consisting of m

refactoring operations will be denoted as [ro1, ro2, . . . , rom], where m > 0 and roi is the i-

th refactoring operation. As such, the position of each refactoring operation corresponds to

the order of applying it to the system to refactor. In addition, for each refactoring operation,

a set of controlling parameters stored in the vector such as actors and roles are randomly

picked from the program to be refactored. Actors are expressed in terms of their properties

such as number of methods.

After a solution is generated, it is presented to the DM for evaluation. Then, all evalu-

ated solution are used to select the fittest solution to generate offspring solution for another
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round of evaluation. This process continue until the number of DM interactions (NDM )

is reached. Then, the system switches to the learning module for the evaluation of the

remaining iterations of the GA.

4.2.2.2 Change Operators

Change operators are used to better explore the solution search space. We use the crossover

and mutation operators to recombine the fittest solutions in each generation in order to

create new solutions.

For the crossover, we use a single random cut-point crossover. It starts by randomly

selecting and splitting two parent solutions to create two offsprings. The first child solution

is formed by combining the first part of the first parent with the second part of the second

parent. The second child solution is obtained by combining first part of the second parent

with the second part of the first parent. This operator enforces the constraints on the solu-

tion length by randomly eliminating some refactoring operations. In every generation, each

solution will be used as parent in at most one crossover operation.

The mutation operator randomly picks one or more refactoring operations from a se-

quence, and replaces them with randomly selected refactoring operation from the initial list

of possible refactoring operations.

After applying genetic operators, crossover and mutation, we verify the feasibility of the

generated sequence of refactoring by checking the pre- and post-conditions. Each refactor-

ing operation that is not feasible due to unsatisfactory preconditions will be removed from

the generated refactoring sequence.
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4.2.3 The Learning-based Genetic Algorithm (LGA)

4.2.3.1 Overview of Artificial Neural Networks (ANNs)

Research on neural networks began as early as 1943 with the works of McCulloch and Pitts

[89]. In their study, they give a mathematical model of the biological neural network in

which neural events and the relations among them can be treated by means of propositional

logic. Their work led to studies oriented toward the application of neural network to the

field of artificial intelligence. Since their work was publish in 1943, many researchers have

further the application of the concept to complex computing machine that seek to emulate

the working mechanism of biological neurons.

The concept of learning was introduced by Hebb [90, 91], and In 1958, Rosenblatt pro-

posed the first ANN model - the perceptron [92]. It is a simple model of the biological

neuron, which takes input signals in a real vector format to produce an output through an

associated vector of weights that represents the synaptic connections. Though the percep-

tron developed earlier is the building block for more complex ANN models, the explosion

of researches and applications in the field of artificial neural networks was sparked by the

works of Werbos who created the initial version of the backpropagation algorithm [93]. The

backpropagation algorithm is a learning method used to train ANNs, and utilizes an opti-

mization algorithm to calculate the weights of each neuron (node) in the network such that

the error on the output is minimized. The name derives from the behavior of the network

with respect to each input vector. While the input vector propagates forward (feed-forward)

through the network from the input layer to the next until it reaches the output, the error

incurred propagate backward - thus the backpropagation (of error).

Various models of ANNs have been studied, and more complex than the simple per-

ceptron model have been established. Well-known complex ANN models are feed-forward

models [94], recurrent models [95, 96], Radial Basis Functions [97], the self-organizing

Maps [98], and the recursive neural networks [99, 100]. In this chapter, we choose the
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feed-forward ANN predictive model, namely, the multilayer perceptron. We do not give

theoretical details of the model since it is out of the scope of this chapter. Rather, the

predictive model is used as a black box after externally controllable parameters have been

specified. Concerning the capability of feed-forward neural networks in approximating fit-

ness functions, Hornick et al. proves that multilayered feed-forward networks are universal

approximators [101]. Consequently, multilayer perceptons have been shown to be good

approximators of fitness functions including those used in evolutionary computing [102].

The multilayer perceptron is a feed-forward ANN where all the neurons are fully con-

nected. Our implementations uses three layers: The first layer consists of p input neurons,

each being assigned a value xkt, t ∈ [1, . . . , p]. The second layer is the hidden layer, and is

composed of a number of hidden neurons. Then we have the output layer, which has only

one neurons that gives the values of the approximated fitness function. We calibrate the

network to use the backpropagation (BP) algorithm as its learning method [103]. The BP is

an algorithm that iteratively evaluates the output of the ANN against a desired output until

the error is small enough to satisfy the performance constraints set by the user. We use a

fast version of the BP where the performance is controlled by two parameters: (1) the mo-

mentum parameter used to avoid local minima by stabilizing weights, and (2) the learning

rate of the underlying gradient optimization method, which allows for fast convergence.

In the following section, we give the details of the setting of the ANN, and the the

structure of the training data.

4.2.3.2 Training set and Data Normalization

After the execution of the IGA, the refactoring solutions evaluated by the DM are orga-

nized to form the training data set used for the learning module (LGA). To this end, let

Xk denote the k-th refactoring solution evaluated during the execution of the interactive

component, where 1 ≤ k ≤ N and N is the number of DM interactions. Xk being a

sequence of refactoring operation, it is coded as a vector, and each entry corresponds to a
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refactoring operation or a controlling parameter. Thus, Xk = [xk1, xk2, . . . , xkt, . . . , xkp],

where t ∈ [1, . . . , p] and p is the maximum length of the coded refactoring sequence. For

each refactoring sequence, the DM assigns a score yk in the range [0 . . . 1] where 0 is the

worst score and 1 is assigned to the best refactoring sequence.

Let’s denote by O the matrix of refactoring solutions and by y the vector of score

values associated with the refactoring solutions. Then, O is an N × p matrix, and y is an

p-dimensional vector. The training set is noted as T = {O,y}, where O = [X1, . . . , XN ]T

is the input data and y = [y1, . . . , yN ]T is the desired output,
(
T
)

being the matrix transpose

operator.

O =



x11 x12 . . . x1p

x21 x22 . . . x2p
...

... . . . ...

xN1 xN2 . . . xNp


y =



y1

y2
...

yN


(4.1)

4.3 Validation

4.3.1 Research Questions

In our study, we assess the performance of our refactoring approach by finding out whether

it could generate meaningful sequences of refactorings that fix design defects while re-

ducing the number of code changes, preserving the semantic coherence of the design, and

reusing as much as possible a base of recorded refactoring operations applied in the past in

similar contexts. Our study aims at addressing the research questions outlined below.

Research question RQ1: To what extent can the proposed approach improve the design

quality and propose efficient refactoring solutions?

Research question RQ2: How does the proposed approach perform compared to other

existing search-based refactoring approaches and other search algorithms?

Research question RQ3: How does the proposed approach perform comparing to ex-
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isting approaches not based on heuristic search?

To answer RQ1, we use two different validation methods: manual validation and au-

tomatic validation to evaluate the efficiency of the proposed refactorings. For the manual

validation, we asked groups of potential users of our refactoring tool to evaluate, manually,

whether the suggested refactorings are feasible and efficient. We define the metric refactor-

ing efficiency (RE) which corresponds to the number of meaningful refactoring operations

over the total number of suggested refactoring operations. For the automatic validation we

compare the proposed refactorings with the expected ones using an existing benchmark

[74][20][87]. In terms of recall and precision. The expected refactorings are those applied

by the software development team to the next software release. To collect these expected

refactorings, we use Ref-Finder [104], an Eclipse plug-in designed to detect refactorings

between two program versions. Ref-Finder allows us to detect the list of refactorings ap-

plied to the current version we use in our experiments to suggest refactorings to obtain the

next software version.

To answer RQ2, we compare our approach to two other existing search-based refactor-

ing approaches: Kessentini et al. [16] and Harman et al. [10] that consider the refactoring

suggestion task using fitness function as a combination of quality metrics (single objec-

tive). We also assessed the performance of our proposal with the IGA technique proposed

by Ghannem et al. [26] where the developer evaluates all the solutions manually.

To answer RQ3, we compared our refactoring results with a popular design defects

detection and correction tool JDeodorant [66] that do not use heuristic search techniques

in terms precision, recall and RE. The current version of JDeodorant is implemented as an

Eclipse plug-in that identifies some types of design defects using quality metrics and then

proposes a list of refactoring strategies to fix them.
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Table 4.1: Studied systems
Systems Releases # classes KLOC
Xerces-J v2.7.0 991 240

JFreeChart v1.0.9 521 170

GanttProject v1.10.2 245 41

AntApache v1.8.2 1191 255

JHotDraw v6.1 585 21

Rhino v1.7R1 305 42

4.3.2 Experimental Settings

The goal of the study is to evaluate the usefulness and the effectiveness of our refactoring

tool in practice. We conducted a non-subjective evaluation with potential developers who

can use our refactoring tool. Our study involved a total number of 16 subjects. All the sub-

jects are volunteers and familiar with Java development. The experience of these subjects

on Java programming ranged from 2 to 15 years including two undergraduate students, four

master students, six PhD students, one faculty member, and three junior software develop-

ers. Subjects were very familiar with the practice of refactoring.

We used a set of well-known and well-commented open-source Java projects. We ap-

plied our approach to six open-source Java projects: Xerces-J, JFreeChart, GanttProject,

AntApache, JHotDraw, and Rhino. Xerces-J is a family of software packages for parsing

XML. JFreeChart is a powerful and flexible Java library for generating charts. GanttPro-

ject is a cross-platform tool for project scheduling. AntApache is a build tool and library

specifically conceived for Java applications. JHotDraw is a GUI framework for drawing

editors. Finally, Rhino is a JavaScript interpreter and compiler written in Java and devel-

oped for the Mozilla/Firefox browser. We selected these systems for our validation because

they range from medium to large-sized open-source projects, which have been actively de-

veloped over the past 10 years, and their design has not been responsible for a slowdown of

their developments. Table 4.1 provides some descriptive statistics about these six programs.

To collect the expected refactorings applied to next version of studied systems, we use

Ref-Finder [104]. Ref-Finder, implemented as an Eclipse plug-in, can identify refactoring
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Table 4.2: Expected refactoring in next release of studied systems collected using Ref-
Finder.

Systems Next Releases Expected # Refactorings
Xerces-J v2.8.1 31

JFreeChart v1.0.11 31

GanttProject v1.11.2 46

AntApache v1.8.4 78

JHotDraw v6.2 27

Rhino v1.7R4 46

Table 4.3: Parameter setting.
Parameter Our approach Ghannem Harman et al. Kessentini et al.

Population size 50 50 50 50

Termination criterion 10000 10000 10000 10000

Crossover probability 0.8 0.8 0.8 0.8

Mutation probability 0.2 0.2 0.2 0.2

Individual size 150 150 150 150

Number of interactions 35 90 N/A N/A
Interaction sample size 4 4 N/A N/A

operations applied between two releases of a software system. Table 4.2 shows the analyzed

versions and the number of refactoring operations, identified by Ref-Finder, between each

subsequent couple of analyzed versions, after the manual validation.

In our experiments, we use and compare different refactoring techniques. For each

algorithm, to generate an initial population, we start by defining the maximum vector length

(maximum number of operations per solution). The vector length is proportional to the

number of refactorings that are considered and the size of the program to be refactored.

During the creation, the solutions have random sizes inside the allowed range. For all

algorithms, we fixed the maximum vector length to 150 refactorings,. We consider a list

of 11 possible refactorings to restructure the design of the original program. Table 4.3

presents the parameter setting used in our experiments.

Our approach, like the others search-based approaches (Harman et al., Ghannem et al.

and Kessentini et al.), is stochastic by nature, i.e., two different executions of the same

algorithm with the same parameters on the same systems generally leads to different sets
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Table 4.4: Parameter setting.

of suggested refactorings. To confirm the validity of the results, we executed each of the

three algorithm 31 times and tested statistically the differences in terms of precision, recall,

and RE. To compare two algorithms based on these metrics, we record the obtained met-

rics values for both algorithms over 51 runs. After that, we compute the metrics median

value for each algorithm. Besides, we execute the Wilcoxon test with a 99% confidence

level (α = 0.01) on the recorded metrics values using the Wilcoxon MATLAB routine. If

the returned p-value is less than 0.01 than, we reject H0 and we can state that one algo-

rithm outperforms the other, otherwise we cannot say anything in terms of performance

difference between the two algorithms. In table 4.4, we have performed multiple pairwise

comparisons using the Wilcoxon test. Thus, we have to adjust the p-values. To achieve this

task, we used Holm method which is reported to be more accurate than the Bonferroni one

[105].

As interesting observation from the results that will be detailed in the next section is

that the medians are close, the results are statistically different but the effect size which

quantifies the difference is small for most of the systems and techniques considered in our
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experiments.

4.3.3 Results and Discussions

Results for RQ1: To answer RQ1, we need to assess the correctness/meaningfulness of

the suggested refactorings from developers stand point. We reported the results of our

empirical evaluation in Figure 4.2. We found that the majority of the suggested refactorings,

with an average of more than 85% of RE, are considered by potential users as feasible,

efficient in terms of improving the quality of the design and make sense.

In addition to the empirical evaluation performed manually by developers to evaluate

the suggested refactorings, we automatically evaluate our approach without using the feed-

back of potential users to give more quantitative evaluation to answer RQ1. Thus, we

compare the proposed refactorings with the expected ones. The expected refactorings are

those applied by the software development team to the next software release as described in

Table4.2. We use Ref-Finder to identify refactoring operations that are applied between the

program version under analysis and the next version. Figures 4.3 and 4.4 summarizes our

results. We found that a considerable number of proposed refactorings (an average of more

than 80% for all studied systems in terms of recall) are already applied to the next version

by software development team which is considered as a good recommendation score, es-

pecially that not all refactorings applied to next version are related to quality improvement,

but also to add new functionalities, increase security, fix bugs, etc.

To conclude, we found that our approach produces good refactoring based on potential

users of our refactoring tool and expected refactorings applied to the next program version.

Results for RQ2: To answer RQ2, we evaluate the efficiency of our approach compar-

ing to three existing search-based refactoring contributions Harman et al. [10] Kessentini

et al. [16] and Ghannem et al. [26]. In [10], Harman et al. proposed a multi-objective

approach that uses two quality metrics to improve (coupling between objects CBO, and

standard deviation of methods per class SDMPC) after applying the refactorings sequence.
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Figure 4.2: RE median values of ILGA, Kessentini et al., Harman et al., Ghannem et
al. and JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum test
with a 99% confidence level (α < 1%).

In [16], a single-objective genetic algorithm is used to correct defects by finding the best

refactoring sequence that reduces the number of defects. In [26], Ghannem et al. proposed

an interactive Genetic Algorithm (IGA) for software refactoring where the user manually

evaluates the suggested solutions by the GA. The comparison is performed through three

metrics of Precision, Recall and RE. Figures 4.2−4.4 summarize our findings and report

the median values of each of our evaluation metrics obtained for 31 simulation runs of all

projects.

We found that a considerable number of proposed refactorings (an average of 80%

for all studied systems in terms of precision and recall) are already applied to the next

version by software development team comparing to other existing approaches having only

65% and 74% for respectively Harman et al. and Kessentini et al. The precision and

recall scores of the interactive approach proposed by Ghannem et al. are very similar to

our approach (ILGA). However, our proposal requires much less effort and interactions

with the designer to evaluate the solutions since the ANN replace the DM after a number

of iterations/interactions. The same observations are also valid for RE where developers

evaluated manually the best refactoring suggestions on all systems as described in Figure

4.2.

Results for RQ3: JDeodorant uses only structural information/improvements to sug-
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Figure 4.3: Precision median values of ILGA, Kessentini et al., Harman et al., Ghannem
et al. and JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum
test with a 99% confidence level (α < 1%).

gest refactorings. Figures 4.2−4.4 summarize our finding. It is clear that our proposal out-

performs JDeodorant, in average, on all the systems in terms of RE, precision and recall.

This is can be explained by the fact that JDeodorant use only structural metrics to evaluate

the impact of suggested and do consider the designer preferences and the programming

context.

Figure 4.4: Recall median values of ILGA, Kessentini et al., Harman et al., Ghannem et
al. and JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum test
with a 99% confidence level (α < 1%).

The number of interactions with the designer is a critical parameter of our ILGA ap-
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proach to estimate the number of training examples required by the ANNs to generate a

good predictive model of the fitness function. Figure 4.5 shows that an increase of the

number of interactions improve the quality of the results on Xerces however after around

35 interactions (iterations) the precision and recall scores become stable. At each iteration,

the designer evaluates 4 refactoring solutions. Thus, we defined the number of interactions

empirically in our experiments based on this observation.

Usually in the optimization research field, the most time consuming operation is the

evaluation step. Thus, we show how our ILGA algorithm is more efficient than existing

search-based approaches from a CPU time (Computational Time) viewpoint. In fact, all the

algorithms under comparison were executed on machines with Intel Xeon 3 GHz processors

and 8 GB RAM. Figure 4.6 illustrates the obtained average CPU times of all algorithms on

the systems. We note that the results presented in this figure were analyzed by using the

same previously described statistical analysis methodology. In fact, based on the obtained

p-values regarding CPU times, the ILGA is demonstrated to be faster than the remaining

techniques as highlighted through Figure 4.6. The ILGA spends approximately the half

amount of time required for IGA proposed by Ghannem et al. This observation could be

explained by the fact that IGA requires a high number of interactions with the designer

to evaluate the solutions which is a time consuming task. We can see that the use of an

ANN to generate a surrogate fitness function seems to be an interesting approach to tackle

software engineering problems where the individual evaluations are expensive like the case

of software refactoring.

4.4 Conclusion

This chapter presented a novel interactive search-based learning refactoring approach that

does not require the definition of a fitness function. while search-based software refactoring

is a powerful tool to improve the design of existing software, most existing methodologies

64



Figure 4.5: Number of interactions versus Precision/Recall on Xerces.

Figure 4.6: Execution time.

are, yet, to gain acceptance from the industrial software engineering world. The current

setback in their adoption is due to the fact that automated refactorings recommendations

do not take into account the preference of the software engineers. Thus, the main goal of

the interactive search-based refactoring approach presented in this chapter is to allow the

software engineer to be the decision maker during the search process. The developer is

asked to evaluate manually refactoring solutions suggested by a Genetic Algorithm (GA)

for few iterations then these examples are used as a training set for the ANNs to evaluate

the solutions of the GA in the next iterations.

Another aspect of the proposed approach that was highlighted is the efficiency of inte-
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gration of the developer in the loop. This is made possible by using a predictive model that

capture the preference of the software engineer during a training step, then use it as fitness

function for the remaining iteration of the search algorithm.

We evaluated our approach on open-source systems. Our evaluation results provide

strong evidence that our technique successfully reduced the initial set of large number of

objectives. The results also show that our approach outperforms several of existing multi-

objective refactoring techniques based on several evaluation measures such as execution

time, number of

xed antipatterns and manual correctness. Also, when existing refactoring techniques

are better than our approach, we found that the results were comparable in magnitude.

In future work, we are planning to investigate an empirical study to consider additional

systems and larger set of refactoring operations in our experiments. We are also planning

to extend our approach to include the detection of refactoring opportunities using our inter-

active search-based learning approach.
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CHAPTER 5

Improving Web Services Design Quality Using

Heuristic Search and Machine Learning

5.1 Introduction

One of the important factors for deploying successful and popular services is to provide

a well-designed interface to the users that can help them to easily find relevant operations

[106]. In fact, the Web services interface. Web services interface could be provided by

different service providers such as FedEx, Google, PayPal and Google, and represents the

only visible part for the users to select the operations that they want to adopt in their imple-

mentation of services-based systems. Thus, the design quality of Web services interface is

a critical and an important problem.

The evolution of Web services may have a negative impact on the design quality of the

interface by concatenating many non-cohesive operations that are semantically unrelated.

The Web services interface design becomes unnecessarily complex for users to find rel-

evant operations to be used in their services-based systems. An example of well-known

interface design defect is the God object Web service (GOWS) [19][107]. GOWS imple-

ments many operations related to different business and technical abstractions in a single

service interface leading to low cohesion of its operations and high unavailability to end

users because it is overloaded. Indeed, the modularization process of how operations should

be exposed through a service interface can have an impact on the performance, popularity
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and reusability of the service and it is not a trivial task.

Recently, several studies provided solutions to improve the design of Web service in-

terfaces for the users/subscribers [108][106][19][109][110][80]. However, most of these

studies addressed the problem of the detection of design defects of Web services interface

based on declarative rule specification and not the correction step to fix these design de-

fects. In these existing techniques, Web services modularization solutions are evaluated

based on the use of quality metrics. However, the evaluation of the design quality is sub-

jective and difficult to formalize using quality metrics with the appropriate threshold values

due to several reasons.

Several challenges could be discussed around the modularization of Web services in-

terface. First, there is no consensus about the definition of Web services design defects

[107][111][9][112], also called antipatterns, due to the various user behaviors and con-

texts. Thus, it is difficult to formalize the definitions of these design violations in terms of

quality metrics then use them to evaluate the quality of a Web service modularization solu-

tion. Second, existing studies do not include the user in the loop to analyze the suggested

modularization solutions and give their feed-back during the design improvement process.

Third, the computational complexity of some Web services quality metrics is expensive

thus the defined fitness function to evaluate proposed Web services design changes can be

expensive. Fourth, deciding on how to decompose/modularize an interface is subjective and

difficult to automate since it is required to integrate the feedback of users during the modu-

larization process Finally, quality metrics can just evaluate the structural improvements of

the design after applying the suggested interface changes but it is difficult to evaluate the

semantic coherence of the design without an interactive user interpretation.

We propose, in this chapter, a Genetic Algorithm (GA)-based interactive learning algo-

rithm [113] for Web services interface modularization based on Artificial Neural Networks

(ANN) [114]. The proposed approach is based on the important feedback of the user to

guide the search for relevant Web services modularization solutions using predictive mod-
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els. To the best of our knowledge, the use of predictive models has not been used to improve

the quality of Web services design. In the proposed approach, we are modeling the users

design preferences using ANN as a predictive model to approximate the fitness function for

the evaluation of the Web services modularization solutions. The user is asked to evaluate

manually Web services interface modularization solutions suggested by a Genetic Algo-

rithm (GA) for few iterations then these examples are used as a training set for the ANNs

to evaluate the solutions of the GA in the next iterations.

We evaluated our approach on a set of 82 real-world Web services, extracted from

an existing benchmark [19][109]. Statistical analysis of our experiments shows that our

interactive approach performed significantly better than the state-of-the-art modularization

techniques [109][110] in terms of design improvements and fixing design defects. The

primary contributions of this chapter can be summarized as follows:

1. The paper introduces a novel way to modularize and improve the design quality of

Web services using interactive predictive modeling optimization. The proposed tech-

nique supports the adaptation of interface design solutions based on the user without

the need to use specific design quality metrics. To the best of our knowledge, we pro-

pose the first approach to interactively generate a modularized Web services interface

using predictive modeling techniques.

2. The paper reports the results of an empirical study on an implementation of our ap-

proach. The obtained results provide evidence to support the claim that our proposal

is more efficient, on average, than existing Web services modularization techniques

based on 82 real-world services.

5.2 Web Service Remodulation

The interface of a Web service is described as a WSDL (Web service Description Lan-

guage) document that contains structured information about the offered operations and their
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input/output parameters [115][116]. A port Type is a set of abstract operations. Each opera-

tion refers to an input message and output messages. The users select the desired operation

on their services-based system implementation via the interface by specifying the name of

the operations and the required parameters (inputs) and they receive the required outputs

without accessing to the source code of these used operations.

Most of existing real-world Web services interface regroup together a high number op-

erations implementing different abstractions such as the Amazon EC2 that contains more

than 100 operations in some releases. There are few WSDL design improvement tools

[115][116][117] that have emerged to provide basic refactorings on WSDL files however

applying these design changes is fully manual and time consuming as discussed in the next

section. These interface design changes correspond mainly to Interface Decomposition, In-

terface Merging (to merge multiple interfaces) and Move Operation (to move an operation

between different interfaces).

Web service interface defects are defined as bad design choices that can have a negative

impact on the interface quality such as maintainability, changeability and comprehensibility

which may impacts the usability and popularity of services [107]. To this end, recent stud-

ies defined different types of Web services design defects [19][15]. In our experiments, we

focus on the seven following Web service defect types: God object Web service (GOWS):

implements a high number of operations related to different business and technical ab-

stractions in a single service. Fine grained Web service (FGWS): is a too fine-grained

service whose overhead (communications, maintenance, and so on) outweighs its utility.

Chatty Web service (CWS): represents an antipattern where a high number of operations

are required to complete one abstraction. Data Web service (DWS): contains typically ac-

cessor operations, i.e., getters and setters. In a distributed environment, some Web services

may only perform some simple information retrieval or data access operations. Ambigu-

ous Web service (AWS): is an antipattern where developers use ambiguous or meaningless

names for denoting the main elements of interface elements (e.g., port types, operations,
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messages). Redundant PortTypes (RPT): is an antipattern where multiple port Types are

duplicated with the similar set of operations. CRUDy Interface (CI): is an antipattern where

the design encourages services the RPC-like behavior by declaring create, read, update, and

delete (CRUD) operations, e.g., createX(), readY(), etc. We choose these defect types in

our interactive interface design tool because they are the most frequent and hard to detect

[80], cover different interface design issues, due to the availability of defect examples and

could be detected using a tool proposed in the literature [19][80][118][119].

Detecting and specifying antipatterns in SOA and Web services is a relatively new

area. The first book in the literature was written by Dudney et al. [107] and provides

informal definitions of a set of Web service antipatterns. More recently, Rotem-Gal-Oz

described the symptoms of a range of SOA antipatterns [106]. Furthermore, Rodriguez

et al. [117]provided a set of guidelines for service providers to avoid bad practices while

writing WSDLs. Based on some heuristics, the authors detected eight bad practices in the

writing of WSDL for Web services.

In [15], the authors presented a repository of 45 general antipatterns in SOA. The goal

of this work is a comprehensive review of these antipatterns that will help developers to

work with clear understanding of patterns in phases of software development and so avoid

many potential problems. Mateos et al. [115][116] have proposed an interesting approach

towards generating WSDL documents with less antipatterns using text mining techniques.

In our previous work [19], we proposed a search-based approach based on standard

GP to find regularities, from examples of Web service antipatterns, to be translated into

detection rules. However, the proposed approach can deal only with Web service interface

metrics and cannot consider all Web service antipattern symptoms.

Recently, few studies are proposed to restructure the design of the Web services inter-

face [106][109][110]. We can distinguish two main categories: manual and fully-automated

techniques. The manual approaches propose a set of interface design changes that the user

can select and execute to split an interface, extract an interface and merge two interfaces
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[108]. However, manual refactoring of the interfaces design is a tedious task for develop-

ers that involve exploring the whole operations in the interface to find the best refactoring

solution that improves the modularity of an interface. In the fully-automated approach,

developers should accept the entire design changes solution and existing tools do not pro-

vide the flexibility to adapt the suggested solution interactively. In addition, most of these

manual and fully-automated techniques focus on fixing design defects rather than the mod-

ularity of the interface [19][80].

In the following, we introduce some issues and challenges related to restructuring the

design quality of the Web service interfaces. Figure 1 illustrates a fine-grained service that

can lead to a system with a poor performance due to an excessive number of calls to one

interface regrouping all the operations. Thus, it is critical to fix this issue by creating new

port Types that group together the most cohesive operations to decompose the Amazon

Simple Notification Service interface.

Overall, there is no consensus on how to decide if a design violates a quality heuristic.

In fact, there is a difference between detecting symptoms and asserting that the detected

situation is an actual design defect. Another issue is related to the definition of thresholds

when dealing with quantitative information. For example, the GOWS defect detection

involves information such as the interface size as illustrated in Figure 5.1. Although we

can measure the size of an interface, an appropriate threshold value is not trivial to define.

An interface considered large by a community of service users could be considered average

by others. Thus, it is important to consider the user in the loop when identifying such design

violations.

Several possible levels of interaction are not considered by existing Web services in-

terface refactoring techniques. Overall, most of refactoring studies are based on the use

of quality metrics as a fitness function to evaluate the quality of the design after applying

design changes. However, these metrics can only evaluate the structural improvements.

Furthermore, the efficient evaluation of the suggested refactoring from a semantic perspec-
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Figure 5.1: Restructuring the design of a Web service Interface example (Amazon Simple
Notification Service

tive requires an interaction with the designer. In addition, the symptoms of design defects

are difficult to formalize using quality metrics due to the very subjective process to identify

them that depends on the programming context and the preferences of developers. Finally,

the definition of a fitness function based on quality metrics can be expensive.

To address these challenges, we describe in the next section our approach based on ma-

chine learning and heuristic-based techniques to evaluate the Web services modularization

solutions without the need to explicitly define a fitness function. This work represents one

of the first studies in this area.

5.3 Approach

5.3.1 Approach Overview

As described in Figure 5.2, our approach takes as input the Web services interface to mod-

ularize, list of possible operators (decompose a port Type or merge port Types or move
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operations) and the number of users interactions during the search process. It generates

as output the best sequence of design changes/operators that improves the quality of the

Web service interface. Our approach is composed of two main components: the interactive

component (IGA) and the learning module (LGA).

The algorithm starts first by executing the IGA component where the designer evalu-

ates the modularization solutions manually generated by a genetic algorithm (GA) [113]

for a number of iterations. The user evaluates the feasibility and the efficiency/quality of

the suggested suggestions one by one since each modularization solution is a sequence of

change operator (decompose or merge or move). Thus, the user classifies all the suggested

design changes (modules) as good or not one by one based on his preferences and gives the

different port Types values between 0 and 1.

After executing the IGA component for a number of iterations, all the evaluated so-

lutions by the user are considered as training set for the second component LGA of the

algorithm. The LGA component executes an Artificial Neural Network (ANN)[120] to

generate a predictive model to approximate the evaluation of the interface modularization

solutions in the next iteration of the GA. Thus, our approach does not require the definition

of a fitness function. Alternatively, the LGA incorporates many components to approxi-

mate the unknown target function . Those components are the training set, the learning

algorithm and the predictive model. For each new sequence of refactoring , the goal of

learning is to maximize the accuracy of the evaluation . We applied the ANN as being

among the most reliable predictive models, especially, in the case of noisy and incomplete

data. Its architecture is chosen to be a multilayered architecture in which all neurons are

fully connected; weights of connections have been, randomly, set at the beginning of the

training. Regarding the activation function, the sigmoid function is applied [114] as being

adequate in the case of continuous data. The network is composed of three layers: the first

layer is composed of p input neurons. Each neuron is assigned the value . The hidden layer

is composed of a set of hidden neurons. The learning algorithm is an iterative algorithm
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that allows the training of the network. Its performance is controlled by two parameters.

The first parameter is the momentum factor that tries to avoid local minima by stabilizing

weights. The second factor is the learning rate which is responsible of the rapidity of the

adjustment of weights.

Figure 5.2: Approach overview

5.3.2 Algorithm Adaptation

5.3.2.1 Solution Coding

A solution consists of a sequence of n interface change operations assigned to a set of

port types. A port type could contain one or many operations but an operation could be

assigned to only one port type. A vector-based representation is used to cluster the different

operations of the original interface, taken as input from the WSDL file description, into

appropriate interfaces, i.e., port types. Figure 5.3 describes an example of 5 operations

assigned to two port types.

The initial population is generated by randomly assigning a sequence of operations to

a randomly chosen set of port Types. The size of a solution, i.e. the vectors length corre-

sponds to the number of operations of the Web service however the number of port Types is

randomly chosen between upper and lower bound values. The determination of these two
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Figure 5.3: Example of a solution representation

bounds is similar to the problem of bloat control in genetic programming [113] where the

goal is to identify the tree size limits. The number of required port types depends on the

size of the target interface design. Thus, we performed, for each target design, several trial

and error experiments using the HyperVolume (HP) [113] performance indicator to deter-

mine the upper bound after which, the indicator remains invariant. For the lower bound, it

is arbitrarily chosen.

5.3.2.2 Training Set and Data Normalization

Before the learning process, the data used in the training set should be normalized. In our

case, we choose to apply the Min-max technique since it is among the most accurate tech-

niques according to [121]. We used the following data representation to the GA-based

learning problem using ANN for software refactoring. Let us denote by T the train-

ing set of the ANN. It is composed of a set of couples that represent the refactoring se-

quence and its evaluation. Let Xk denote the k-th refactoring solution evaluated during

the execution of the interactive component, where 1 ≤ k ≤ N and N is the number of

DM interactions. Xk being a sequence of refactoring operation, it is coded as a vector,

and each entry corresponds to a refactoring operation or a controlling parameter. Thus,

Xk = [xk1, xk2, . . . , xkt, . . . , xkp], where t ∈ [1, . . . , p] and p is the maximum length of

the coded refactoring sequence. For each refactoring sequence, the DM assigns a score yk

in the range [0 . . . 1] where 0 is the worst score and 1 is assigned to the best refactoring

sequence.

Let’s denote by O the matrix of refactoring solutions and by y the vector of score
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values associated with the refactoring solutions. Then, O is an N × p matrix, and y is an

p-dimensional vector. The training set is noted as T = {O,y}, where O = [X1, . . . , XN ]T

is the input data and y = [y1, . . . , yN ]T is the desired output,
(
T
)

being the matrix transpose

operator.

O =



x11 x12 . . . x1p

x21 x22 . . . x2p
...

... . . . ...

xN1 xN2 . . . xNp


y =



y1

y2
...

yN


(5.1)

5.3.2.3 Change Operators

In each search algorithm, the variation operators play the key role of moving within the

search space with the aim of driving the search towards optimal solutions. For the crossover,

we use the one-point crossover operator. It starts by selecting and splitting at random two

parent solutions. Then, this operator creates two child solutions by putting, for the first

child, the first part of the first parent with the second part of the second parent, and vice-

versa for the second child. It is important to note that in multi-objective optimization, it

is better to create children that are close to their parents to have a more efficient search

process. For mutation, we use the bit-string mutation operator that picks probabilistically

one or more modularization operations from its or their associated sequence and replaces

them by other ones from the initial list of possible refactorings.

When applying the change operators, different pre- and post-conditions are checked

to ensure the applicability of the newly generated solutions such as removing redundant

operations or conflicts between operations such as assigning the same operation to two

different port types.
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5.4 Validation

To evaluate the ability of our Web services modularization framework to generate a good

design quality, we conducted a set of experiments based on 82 real-world web services as

described in Table 5.1. the obtained results are subsequently statistically analyzed with

the aim of comparing our proposal with a variety of existing fully-automated approaches.

In this section, we first present our research questions and then describe and discuss the

obtained results.

5.4.1 Research Questions

We defined three research questions that address the applicability, performance in compar-

ison to existing fully-automated Web services modularization approaches [109][110], and

the usefulness of our approach. The three research questions are as follows:

RQ1: To what extent can our approach recommend relevant Web services design im-

provements?

RQ2: How does our interactive formulation perform compared to fully-automated Web

services restructuring techniques?

RQ3: Can our approach be useful for the users of Web services (the developers of

service-based systems)?

To answer these research questions, we considered the best interface design restructur-

ing solutions recommended by our approach. To answer RQ1, it is important to validate the

proposed modularization solutions on the different Web services highlighted in Table 5.1.

We asked a group of developers, as detailed in the next section, to manually modularize

the design of the different interfaces considered in our experiments. Then, we calculated

precision (PR) and recall (RC) scores to compare between the generated design and the

expected one.

When calculating the precision and recall, we consider a two port types are similar if
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they contain the same operations. We divided the participants in groups to make sure that

they do not use our tool on the Web services that they are asked to manually modularize.

PR =
|suggested portTypes ∩ expected portTypes|

|suggested portTypes|
∈ [0, 1] (5.2)

RC =
|suggested portTypes ∩ expected portTypes|

|expected portTypes|
∈ [0, 1] (5.3)

Another metric that we considered for the quantitative evaluation is the percentage of

fixed design antipatterns (NF) by the proposed modularization solution. The detection of

design antipatterns after applying a modularization solution is performed using the detec-

tion rules of our previous work [19]. Formally, NF is defined as

NF =
# fixed design antipatterns

# design antipatterns
∈ [0, 1] (5.4)

For the qualitative validation, we asked groups of potential users of our Web services

modularization tool to evaluate, manually, whether the suggested interface design modular-

izations are feasible and efficient at improving the quality of Web services interface design.

We define the metric Manual Correctness (MC) to mean the number of meaningful Web

services interface refactorings divided by the total number of recommended refactorings by

our tool. MC is given by the following equation:

NF =
# correct modularization operations

# proposed modularization operations
∈ [0, 1] (5.5)

To answer RQ2, we compared our approach to two other existing fully-automated Web

services decomposition techniques [109][110]. Ouni et al. [110] proposed an approach to

decompose Web services using graph partitioning to improve cohesion. Similarly, Athana-

sopoulos et al. [109] used a greedy algorithm to decompose the interface based on co-

hesion as well. All these existing techniques are fully-automated and do not provide any
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Table 5.1: Web service statistics
Web Service Provider #services #operations (min, max)

FedEx 19 (13, 36)
Amazon 16 (16, 93)
Yahoo 18 (11, 41)
Ebay 12 (13, 37)

Microsoft 17 (11, 59)

interaction with the developers to update their solutions towards a desired design. We also

compared the running time T of the proposed algorithm comparing to fully automated tech-

niques. Thus, we used the metrics PR, RC, T and NF to perform the comparisons.

To answer RQ3, we used a post-study questionnaire that collects the opinions of Web

service developers on our tool as described in the next section. Thus, we asked these

participants to use both our tool and the automated framework proposed by Ouni et al.

[19] on different sets of Web services. The participants were asked to make changes, when

appropriate, to the final solution of the automated approach of Ouni et al. [19]. Thus, we

can check whether the interactive component of the proposed interactive approach makes a

real contribution, or whether the same effect can be attained by just fixing the output of the

automated remodularization approaches. We measured the time spent by the developers on

using our interactive approach and the automated techniques. Then, we compared between

the outcomes of the survey questions for both interactive and fully automate techniques.

5.4.2 Experimental Setting

We extracted a set of 82 well-known Web services from an existing benchmark [19][109]

as detailed in Table 5.1 . All studied services are widely used in different contexts and pro-

vided by Amazon, FedEx, Ebay, Microsoft and Yahoo, five major Web service providers.

We selected these Web services for our validation because they range from medium to

large-sized interfaces, which have been actively developed and changed over several years.

Our study involved 36 participants from the University of Michigan to use and evaluate our

tool. Participants include 27 master students in Software Engineering and 9 Ph.D. students
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Table 5.2: Survey organization
Groups Web Services
Group 1 FedEx
Group 2 Amazon
Group 3 Yahoo
Group 4 Ebay
Group 5 Microsoft, Ebay
Group 6 FedEx, Yahoo

in Software Engineering. All the participants are volunteers and familiar with Web services

and refactoring in general. The experience of these participants on programming ranged

from 3 to 17 years. 19 out of the 36 participants are currently active programmers as well

in software industry with a minimum experience of 3 years. Participants were first asked

to fill out a pre-study questionnaire containing nine questions. The questionnaire helped to

collect background information such as their role within the company, their programming

experience, their familiarity with Web services. As part of the Software Quality Assur-

ance graduate course, all the participants attended two lectures about Web services design

quality, modularization and passed five tests to evaluate their performance to evaluate and

suggest interface design modularization solutions.

As described in Table 5.2, we formed 6 groups. Each of the 6 groups is composed

by 6 participants. Table 5.2 summarizes the survey organization including the list of Web

services and the algorithms evaluated by each of the groups. The groups were formed based

on the pre-study questionnaire and the tests result to make sure that all the groups have

almost the same average skills. Consequently, each group of participants who accepted

to participate in the study received a questionnaire, a manuscript guide to help them to

fill the questionnaire, the tools and results to evaluate the Web services design. Since the

application of remodularization solutions is a subjective process, it is normal that not all

the developers have the same opinion. In our case, we considered the majority of votes to

determine if suggested solutions are correct or not.

We executed three different scenarios. In the first scenario, we asked every participant
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to manually modularize a set of Web services. As an outcome of the first scenario, we

calculated the differences between the recommended modularizations and the expected

ones (manually suggested by the users/developers). To evaluate the fixed Web services

design antipatterns, we focus on the ones defined in Section 5.2. In the second scenario,

we asked the users to manually evaluate the recommended solution by our algorithm. We

performed a cross-validation between the groups to avoid the computation of the MC metric

being biased by the developers feedback. In the third scenario, we collected their opinions

of the participants based on a post-study questionnaire that will be detailed before in this

section. The participants were asked to justify their evaluation of the solutions and these

justifications are reviewed by the organizers of the study.

Parameter setting influences significantly the performance of a search algorithm. For

this reason, for each algorithm and for each Web service, we perform a set of experiments

using several population sizes: 20, 30 and 50. We limited the interaction with the user in

our approach to a maximum of 30. The stopping criterion was set to 1000 evaluations for

all algorithms to ensure fairness of comparison. The other parameters values were fixed

by trial and error and are as follows: (1) crossover probability = 0.5; mutation probability

= 0.2 where the probability of gene modification is 0.1. Each algorithm is executed 30

times with each configuration and then the comparison between the configurations is done

using the Wilcoxon test. To achieve significant results, for each couple (algorithm, Web

service), we use the trial and error method to obtain a good parameter configuration. Since

metaheuristic algorithms are stochastic optimizers, they can provide different results for

the same problem instance from one run to another. For this reason, our experimental study

is based on 30 independent simulation runs for each problem instance of the automated

approaches and the obtained results are statistically analyzed by using the Wilcoxon rank

sum test with a 95% confidence level (α = 5%). The latter tests the null hypothesis, H0,

that the obtained results of two algorithms are samples from continuous distributions with

equal medians, against the alternative that they are not, H1. The p-value of the Wilcoxon
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test corresponds to the probability of rejecting the null hypothesis H0 while it is true (type

I error). A p-value that is less than or equal to α (≤ 0.05) means that we accept H1 and we

reject H0. However, a p-value that is strictly greater than α (> 0.05) means the opposite.

In fact, for each problem instance, we compute the p-value obtained by comparing existing

studies [109][110] results with our approach ones. In this way, we determine whether the

performance difference between our technique and one of the other approaches is statisti-

cally significant or just a random result. The results presented were found to be statistically

significant on 30 independent runs of the fully-automated approaches using the Wilcoxon

rank sum test with a 95% confidence level (α = 5%) as detailed in the next section.

5.4.3 Results and Discussions

Results for RQ1. As described in Figures 5.4 and 5.5, we found that a considerable number

of proposed port types, with an average of more than 81% in terms of precision and recall

on all the 82 Web services, were already suggested manually (expected refactorings) by

the users (software development team). The achieved recall scores are slightly higher, in

average, than the precision ones since we found that some of the port types suggested

manually by developers do not exactly match the solutions provided by our approach. In

addition, we found that the slight deviation with the expected port types is not related

to incorrect ones but to the fact that different possible modularization solutions could be

optimal.

We evaluated the ability of our approach to fix several types of interface design an-

tipatterns and to improve the quality. Figure 5.6 depicts the percentage of fixed code smells

(NF). It is higher than 82% on all the Web services, which is an acceptable score since users

may not be interested to fix all the antipatterns in the interface. We reported the results of

our empirical qualitative evaluation in terms of manual correctness (MC) in Figure 5.7. As

reported in Figure 5.7, most of the Web services modularization solutions recommended

by our interactive approach were correct and approved by developers. On average, for the
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different Web services, 88% of the created port types and applied changes to the initial

design are considered as correct, improve the quality, and are found to be useful by the

software developers of our experiments. Thus, we found that the slight deviation with the

expected design is not related to incorrect changes but to the fact that the developers have

different scenarios/contexts in using the different operations.

To summarize and answer RQ1, the experimentation results con-firm that our inter-

active approach helps the participants to re-structure their Web service interface design

efficiently by finding the relevant portTypes and improve the quality of all the 22 Web

services.

Results for RQ2. Figures 5.4−5.7 confirm the average superior performance of our in-

teractive learning GA approach compared to the two existing fully automated Web service

modularization techniques [109][110]. Figure 5.7showsthatourapproachprovidessignificantlyhighermanualcorrectnessresults(MC)thanallotherapproacheshavingMCscoresrespectivelybetween41%and62%, onaverageasMCscoresonthedifferentWebservices.ThesameobservationisvalidfortheprecisionandrecallasdescribedinF igures5.4

and 5.5.Theoutperformanceofourtechniqueintermsofpercentageoffixeddefects, asdescribedinF igure5.6,

can be explained by the fact that the main goal of existing studies is not to mainly fix these

defects (not considered in the fitness function by the work of Ouni et al. [110]).

In conclusion, our interactive approach provides better results, on average, than all

existing fully-automated Web services modularization techniques.

Results for RQ3. To further analyze the obtained results, we have also asked the partic-

ipants to take a post-study questionnaire after completing the different validation and tasks

using our interactive approach and the two techniques considered in our experiments. The

post-study questionnaires collected the opinions of the participants about their experience

in using our approach compared to fully-automated tools. The post-study questionnaire

asked participants to rate their agreement on a Likert scale from 1 (complete disagreement)

to 5 (complete agreement) with the following statements: (1) The interactive interface

modularization recommendations using our predictive modeling approach are a desirable

feature to improve the quality of Web services interface. (2) The interactive manner of rec-

ommending modularization solutions by our GA learning approach is a useful and flexible
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way to consider the user perspective compared to fully-automated tools.

Figure 5.4: Median precision (PR) value over 30 runs on all Web services using the
different modularization techniques with a 95% confidence level (α = 5%).

Figure 5.5: Median recall (RC) value over 30 runs on all Web services using the different
modularization techniques with a 95% confidence level (α = 5%).

The agreement of the participants was 4.6 and 4.2 for the first and second statements

respectively. This confirms the usefulness of our approach for the users of our experiments.

The remaining questions of the post-study questionnaire were about the benefits and the

limitations (possible improvements) of our interactive approach.

We summarize in the following the feedback of the users. Most of the participants

mention that our interactive approach is much faster and easy to use compared to the manual
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Figure 5.6: Median number of fixed Web service defects (NF) value over 30 runs on all
Web services using the different modularization techniques with a 95% confidence level
(α = 5%).

Figure 5.7: Median manual correctness (MC) value over 30 runs on all Web services using
the different modularization techniques with a 95% confidence level (α = 5%).

restructuring of the interface since they spent a long time with manual changes to create

port types and move operations. Thus, the developers liked the functionality of our tool

that helps them to modify a port type based on the recommendations. The participants

also suggested some possible improvements to our interactive approach. Some participants

believe that it will be very helpful to extend the tool by adding a new feature to decompose

multiple services into interfaces based on the dependency between them. Another possibly

suggested improvement is to consider the users invocation data to restructure the interface.

In our evaluation, we considered measuring the time spent by the different developers to
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Figure 5.8: Median execution time (T), including user interaction, of the different tools
over 30 runs on all Web services with a95% confidence level (α = 5%).

use our interactive tool and automated Web services modularization techniques [109][110].

We allowed the user to fix the solutions proposed by the automated tools to reach an ac-

ceptable design. Figure 5.8 shows the average results of the execution time of the different

tools per Web service including the interaction time. The developers found that automated

techniques generate solutions that require a lot of effort to inspect and manually adjust the

proposed design. All developers expressed a high interest in the idea of the interactive

tool that can incorporate their preferences by evaluating manually very few solutions. Fur-

thermore, the execution time results confirm that few number of interactions are required

with the user and that the generate solutions do not require a lot of changes to meet the

developers preferences.

5.5 Conclusion

In this chapter, we presented a novel interactive search-based learning Web services mod-

ularization approach that does not require the definition of a fitness function. The user

is asked to evaluate manually few modularization solutions suggested by a Genetic Algo-

rithm (GA) for few iterations then these examples are used as a training set for the ANNs
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to evaluate the solutions of the GA in the next iterations. We evaluated our approach on

a benchmark of Web services. We report the results on the efficiency and effectiveness of

our approach, compared to existing approaches [109][110].

In future work, we are planning to investigate an empirical study to consider additional

Web services and larger set of refactorings in our experiments. We are also planning to

extend our approach to include the detection of refactoring opportunities in Web services

using our interactive heuristic-based learning approach.
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CHAPTER 6

Dimensionality Reduction for Multi-Objective

Search-Based Software Refactoring

6.1 Introduction

Software engineering is by nature a search problem, where the goal is to find an opti-

mal or near-optimal solution [31]. This search is often complex with several competing

constraints, and conflicting functional and non-functional objectives. The situation can be

worse since nowadays successful software are more complex, more critical and more dy-

namic leading to an increasing need to automate or semi-automate the search process of

acceptable solutions for software engineers. As a result, an emerging software engineering

area, called Search-Based Software Engineering (SBSE) [9], is rapidly growing.

SBSE is a software development practice that focuses on formulating software engi-

neering problems as optimization problems and utilizing meta-heuristic techniques to dis-

cover and automate the search for near optimal solutions to those problems. The aim of

SBSE research is to move software engineering problems from human-based search to

machine-based search, using a variety of techniques from the fields of metaheuristic search,

operations research and evolutionary computation paradigms. SBSE has proved to be a

widely applicable and successful approach, with many applications right across the full

spectrum of activities in software engineering, from initial requirements, project planning,

and cost estimation to regression testing and onward evolution. There is also an increas-
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ing interest in search based optimization from the industrial sector, as illustrated by works

on testing involving Daimler [122] and Microsoft [123], works on requirements analysis

and optimization involving Motorola [124], Ericsson [125] and NASA [126], and works on

refactoring involving Ford [29]. The increasing maturity of the field has led to a number of

tools for SBSE applications.

Due to the subjective nature of software engineering problems, several conflicting pref-

erences should be considered during the search for near optimal solutions. Thus, multi-

objective evolutionary algorithms were widely applied to address several problems such

as the generation of test cases, next release problems, software refactoring, model-driven

engineering, etc [9]. The goal is to find a trade-off between different preferences of the

developers such as coverage measures for testing, quality metrics for refactoring, imple-

mentation time and scheduled requirements for the next release problem, etc. The output

is a set of diverse non-dominated solutions, called the Pareto front, that cover the possible

preferences of the software engineers who select the final solution.

While the use of multi-objective evolutionary computation in software engineering

show very promising results [9], several challenges could be discussed. First, the dif-

ferent fitness functions are defined and selected by the developers. Thus, it is challenging

to decide up-front of the execution of the search if these functions are conflicting or not.

In most cases, developers use their intuition and expertise to define the fitness functions.

Without a rigorous check of the possible correlation between the defined fitness functions,

a diverse set of solutions cannot be generated, if some conflicting measures are aggregated

into one fitness function, or a large number of non-dominated solutions is generated, if non-

conflicting measures are treated as separate fitness functions. Second, several recent studies

considered as many objective as possible using many-objective algorithms [2]. however the

visualization of the solutions in the generated Pareto front is a challenge for the develop-

ers due to the large number of Pareto front solutions when high number of objectives are

considered. Third, the consideration of high number of objectives that are not necessarily
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conflicting make the execution time of the algorithm long and the search slow. Finally, the

multi-objective algorithms behave similar to random search when the number of objectives

increase thus reducing the number of objectives by studying their correlations may insure

a better convergence of the algorithm.

In this chapter, we propose to address the above challenges by using the Principal Com-

ponent Analysis (PCA) algorithm [127, 128] during the execution of a well-known multi-

objective algorithm NSGA-II [27], adapted to address the software refactoring problem

[11]. Refactoring is a critical task to improve the design structure of a system while pre-

serving its behavior. To automate refactoring activities, new approaches have emerged

where search-based techniques have been used [9]. These approaches cast the refactoring

problem as an optimization problem, where the goal is to improve the design quality of a

system based mainly on a set of software metrics. The majority of existing work combines

several conflicting quality metrics in a single fitness function to find the best sequence of

refactorings [9]. Harman et al. [10] propose a search-based approach using Pareto opti-

mality that combines two quality metrics, CBO (coupling between objects) and SDMPC

(standard deviation of methods per class), in two separate fitness functions. Later, several

work treated refactoring as a many-objective problem using between eight and fifteen ob-

jectives [73, 36, 74] where every objective corresponds to either a quality metric or quality

attribute. The majority of these refactoring studies suffer from the challenges discussed

above.

In this work, we start from the hypothesis that there may be correlations among any two

or more objectives (e.g. quality metrics) that are used to evaluate refactoring solutions. Our

approach, based on the PCA-NSGA-II methodology [129, 130], aims at finding the best and

reduced set of objective that represents the quality metrics of interest to the domain expert.

A regular NSGA-II algorithm with several objectives, including the quality metrics and

attributes of the QMOOD model [3], is executed for a number of iterations then a PCA

component analyzes the correlation between the different objectives using the execution
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traces. The number of objectives maybe reduced during the next iterations based on the

PCA results. The process is repeated several times until a maximum number of iterations

is reached.

We implemented our proposed approach and evaluated it on a set of seven open source

systems. Statistical analysis of our experiments showed that our dimensionality reduction

reduced significantly the number of objectives on several case studies by a minimum of

4 objectives and a maximum of 8 objectives. It also generates a smaller number of non-

dominated solutions and lower execution time comparing to existing many-objective refac-

toring techniques [73, 36, 74]. The results show that the approach outperforms several of

existing multi-objective refactoring techniques [..], where the objectives are not analyzed

for possible correlations, based on several evaluation measures such as number of fixed

anti-patterns and manual correctness.

The primary contributions of this chapter can be summarized as follows:

• The paper introduces a novel dimensionality reduction technique to find the best

minimum set of objectives needed to evaluate search based software engineering so-

lutions. The developers needs to just specify several evaluation measures (proprieties

of the desired solution) and our technique can automatically identify possible corre-

lations and conflicts between them to find the best set of fitness functions.

• We propose a case study related to software refactoring. The goal is to find the best

minimum set of quality metrics and attributes that maybe needed to converge towards

good refactoring recommendations.

• The paper reports the results of an empirical study on an implementation of our ap-

proach and a comparison with the state of the art refactoring techniques [11]. The

obtained results provide evidence to support the claim that our approach significantly

reduce the number of needed objectives while generating a diverse set of good refac-

toring solutions.
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6.2 A Dimensionality Reduction Approach for Search-Based

Software Refactoring

In this section, we formulate the software refactoring problem as an optimization problem

using the PCA-NSGA-II algorithm as described in [130]. Consequently, the section include

a review of the NSGA-II algorithm, refactoring solution representation, and a review of the

objective selection scheme for the PCA step.

6.2.1 Overview

The general structure of the proposed approach is described in Figure 6.1. The approach

takes as inputs a set of quality metrics and attributes, several code refactoring types, and a

software system to refactor. The first component consists of a regular execution of NSGA-

II during a number of iterations. During this phase, NSGA-II will try to find the non-

dominated solutions balancing the initial set containing all the objectives such as improv-

ing the quality attributes or metrics of the system, maximizing/preserving the semantic

coherence of the design, minimizing the number of refactorings in the proposed solutions,

etc.

After a number of iterations, the second component of the algorithm is executed to an-

alyze the execution traces of the first component (solutions and their evaluations), using

PCA [127, 128], to check the correlation between the different objectives. When a corre-

lation between two or more objectives is detected, only one of them is selected for future

iterations of the first component. Then, the first component is executed again with the new

objective set.

The whole process of these two components continue until a maximum number of

iterations is reached. A set of non-dominated refacotoring solutions are proposed to the

developers with the reduced objectives set to select the best refactorings sequence based on

his or her preferences.
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Figure 6.1: Approach overview.

In the next sections, we describe in details the used algorithms and their adaptation.

6.2.2 Multi-Objective Dimensionality Reduction Algorithm

In this section, the two components of our approach are described. First, we describe the

first component based on NSGA-II [27]. Then, we discuss how PCA is combined with

NSGA-II in our methodology.

6.2.2.1 NSGA-II Overview

The non-dominated sorting genetic algorithm also known as NSGA-II [27], is a widely

used multi-objective evolutionary algorithm in practice [42]. Its performance for solving

software engineering problem is well-established comparing to several other algorithms

[9]. Algorithm 3 gives a high-level view of the NSGA-II algorithm.

NSGA-II starts with a randomly generated initial parent population P0 of individuals.

Then, the crossover and mutation genetic operators are applied to this initial population

to create offspring individuals Q0. Both parent and offspring are merged into an initial

population Rt (t = 0 at the first iteration). The resulting population Rt is used by the

fast-non-dominated-sort of NSGA-II to classify individual solutions into different domi-

nance level. To determine the dominance level of an individual solution x, this solution is

compared to every other solution in R0 until it is found dominated, or not. Based on the
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Pareto optimality, a solution x dominates another solution y, if x is no worse than y in all

objectives and is strictly better than y in at least one objective. In mathematical notation,

given a set of objectives functions fi, i ∈ 1..n to minimize, x dominates y can be written as

follows:

∀i, fi(y) ≤ fi(x) and ∃j|fj(y) < fj(x) (6.1)

Upon sorting using the above dominance principle, the individuals in R0 are assigned

to groups of different level of dominance referred to as Pareto fronts. Solutions in the first

Pareto front F0 are assigned dominance level 0, those in the second Pareto front F1 are

assigned dominance level 1, and so on. Part of the good solutions are used in subsequent

iterations based on the dominance levels. The next parent population Pt+1 is formed by

adding individuals from successive fronts, starting with front F0, until the size of Pt+1 is

equal to N . If filling Pt+1 require to select a subset of individual in the last available front

FL, such selection is based on the crowding distance of each individual solution within

the same front FL [27]. The crowding distance of a non-dominated solution measures the

density of solutions surrounding it, and is used to promote diversity within the population.

It is estimated by the size of the largest cuboid enclosing a solution in the Pareto front that

does not contain any other solution. The front FL to undergo partial selection is sorted into

descending order with respect to the crowding distance, and the first N − |Pt+1| elements

are chosen. Then, a new offspring population Qt+1 is generated from Pt+1 using, again, the

crossover and mutation operators. This process is repeated until a stopping criteria is met.

6.2.3 NSGAII-PCA Combination

Large-dimensional data analysis encounters various challenges as well as some opportu-

nities. With such dataset, in many cases, not all the measured parameters or variable are
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ALGORITHM 3: NSGA-II: high-level view
Input: Population size N
P0 =Create-initial-population(N );
Q0 =Generate-offsprings(P0);
t = 0;
repeat

Rt = Pt ∪Qt;
F = fast-non-dominated-sort(Rt);
Pt+1 = ∅;
i = 0;
repeat

Apply crowding-distance-assignment(Fi);
Pt+1 = Pt+1 ∪ Fi;
i = i+ 1;

until (|Pt+1|+ |Fi| ≤ N);
Crowding-Distance-Sort(Fi);
Pt+1 = Pt+1 ∪ Fi [N − |Pt+1|];
Qt+1 =Generate-offsprings(Pt+1);

until (stopping criteria is reached);

essential for describing the process of interest. In the case of many-objectives optimiza-

tion problem, the increase in the dimensionality of the Pareto-optimal front create different

problems as describe above. While many-objective optimization algorithms exist [53, 54]

to address the increase in number of objectives, it is important to reduce the dimensions

of the original data prior to any modeling or decision making. One such situation is when

hidden redundancies exist naturally among the decision parameters. In this section, we are

focusing on addressing dimensionality reduction in the objectives space.

Objective space dimensionality reduction approaches assume that given a multi-objective

problem with M objectives, there is a subset of the objectives that are correlated. To the

best of our knowledge, very few methodologies have been developed for multi-objective

evolutionary algorithms towards the reduction of the number of objectives [131, 129, 44,

132, 133].

In [131], Brockhoff and Zitzler proposed a dimensonality reduction method around the

Minimum Objective Subset problem (MOSS). The goal is to find the smallest subset of
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objectives included in the original feasible region X, such that the weak Pareto dominance

structure is left unchanged. In [134], they proposed two variants of the MOSS methodology

referred to as δ−MOSS and k−MOSS. Both of the two variant introduce a consideration

for error. The the original methodology focused on the definition of the problem, while

δ− MOSS and k− MOSS address practical questions. In particular, they offered two al-

gorithms to implement the MOSS problem: (1) an exact computation of the subset, and

an approximate algorithm. While the proposed solution was shown to perform well for

very large number of objective against the original PCA methodologies, it is an off-line

technique used for decision making after the MOEA have been executed.

Saxena et al. proposed two dimensionality reduction methodologies based on Princi-

pal Component Analysis (PCA). Their methodology considers both linear and nonlinear

solutions [129, 30]. Procedures were proposed to identify from the whole population the

significant principal components and then to reduce the number of objectives. The authors

demonstrated that the methodology have some vulnerabilities in finding Pareto-optimal

front in a 10-objective problem. In [130], a more robust objectives selection approach

was proposed to improve the performance of both non-linear and linear dimensionality

reduction. Not only these methodologies can be utilized before and after execution of the

MOEA, but the computation of the PCA is straightforward for the multi-objective optimiza-

tion problem. In this chapter, we apply the linear PCA dimensionality reduction technique

to the multi/many-objective software refactoring problem using NSGA-II. In the remainder

of this chapter, PCA refers to linear PCA unless specified otherwise.

Principal component Analysis (PCA) is established as the best linear dimensionality

reduction techniques, in the mean-square error sense [127]. In various field, it is referred

to as the Singular Value Decomposition (SVD) and the Hotelling transform [128]. PCA

is a statistical analysis technique used in multi-variate analysis, and seeks to reduce the

dimensionality of a given dataset when there is a large number of statistically correlated

variables. In essence, PCA finds a few ordered orthogonal linear combinations referred to
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as the principal components (PCs), which retain the largest variance in the data. The first

PC is the linear combination with the largest variance, and so on.

Given equation 2.1, PCA is posed as an eigenvalue-eigenvector problem. The data is

recorded over a population of individuals of size N generated and used in the NSGA-II al-

gorithm. This data consists of measurement of all the objective function used in the NSGA-

II, and represented as a matrix F = (f1, f2, . . . , fM)T . A column fi = [fi1, fi2, . . . , fiN ]T is

the vector representing values for the i−th objective over the N individuals, and each entry

fij of fi is the value of the i-th objective for the j-th individual in the population. In this

notation, (T ) is the matrix transpose operator, and M is the number of objectives.

PCA is performed using the correlation or covariance matrix of the standardized dataset

X = (x1,x2, . . . ,xM)T . This means each entry xij = (fij − µi)/σi, where µi and σi are

the sample mean and standard deviation of fi, respectively. Consequently, every row of X

centered at zero, and has unit standard deviation.

In the PCA-NSGA-II procedure, the original dataset is not projected onto the prin-

cipal component. Rather, after the eigenvalue-eigenvector decomposition of the M ×

Mcorrelation matrix, the essential objective are selected through the analysis of eigen-

values, eigenvectors, and the correlation among objectives. The choice of the correlation

matrix is suitable for dataset were the different variable do not have the same scales. The

correlation matrix is given by equation 6.2, and algorithm 4 gives an high-level view of the

objective reduction procedure.

R =
1

M
XXT (6.2)

First, the eigenvectors V = (V1,V2, . . . ,VM) and eigenvalues Λ = [λ1, λ2, . . . , λM ]

such that λ1 ≤ λ2 ≤ . . . ≤ λM . Then, the contribution of each eigenvalue to the overall

variance, ei = λi/
∑M

j=1 λj , and the contribution of the i-th objective fi to all the eigenvec-

tors, cMi =
∑M

j=1 ejf
2
ij , are computed. After the contributions of eigenvalues are calculated,

the essential (conflicting) objectives are selected as follows:
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1. Find the number Nv of significant eigenvectors. It is the number of eigenvectors

such that the sum of eigenvalue contribution is within a threshold cut Tc - that is∑Nv

j=1 ej ≥ Tc. Note that the ejs are chosen in descending order of their values,

starting with the eigenvalue with the largest contribution.

2. Find the conflicting objectives for each significant eigenvector. Given a significant

eigenvector Vj = [fj1, fj2, . . . , fjM ]T , fjm represents the contribution of the m-

th objective fm. Then the objective set of is partitioned into positive set F+ =

{fm|fjm ≥ 0} and negative set F− = {fm|fjm < 0}. finally, fp and fn being the

objectives with the highest magnitudes in F+ and F−, respectively, the selection of

conflicting objective is as follows:

• if |fp| ≥ |fn|, select fp and all the objectives in F−.

• if |fp| < |fn|, select fn and all the objectives in F+.

• if F+ = ∅ or F− = ∅, then the two objectives with the highest magnitude are

selected.

After eigenanalysis, the set of objectives retained is denoted Fe, the initial set of objective

being Fo. The next step is the reduce correlation analysis, which is the analysis of corre-

lation between objectives in Fe. This is intended to eliminate objectives that are strongly

correlated among each other. The reduce correlation matrix (RCM) is the same as R, ex-

cept the rows and columns corresponding to objectives in Fo \ Fe are removed. For each

objective fi in Fe, an objective fj in Fe is identically correlated with it if it satisfies Equa-

tion 6.3.

sign(Rik) = sign(Rjk), k = 1, 2, . . . ,M and Rij ≥ Tcorr (6.3)

where Tcorr is the threshold cut that determines significant correlation between two ob-

jectives. For each objective in Fe, the identically correlated subset is calculated as Si =
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{fj ∈ Fe|fj satisfies Equation 6.3}. Within an identically correlated subset Si, a selection

score is assigned to each objective as ci =
∑Nv

j=1 ej|fij|, and the objective with the highest

score is selected. After the RCM analysis, a smaller subset of objective is retained. The set

of such objective is denoted Fs.

ALGORITHM 4: Objective Reduction High-level view
Input: V,Λ, Nv

Output: Fs
F+ = ∅,F− = ∅,Fe = ∅;
foreach Vi, 1 ≤ i ≤ Nv do

partition-objectives(F+,F−);
set-selected-objectives(Fe,F+,F−);

end
Fs = ∅;
foreach fi ∈ Fe do
Si = compute-identically-correlated-subset(fi);
set-selected-objectives(Fs,Si);

end

6.2.4 Solution Approach

The previous subsections described a generic operation of the NSGA-II and the PCA pro-

cedures used in the PCA-NSGA-II algorithm. In order to use the algorithm on the specific

case of software refactoring, it is necessary to defined the following entities upon which

the algorithm will operate:

1. Solution representation

2. Fitness functions

3. Genetic operators and solution generation

6.2.4.1 Refactoring Solution Representation

During execution of the NSGA-II, a population consists of a set of N individuals (or refac-

toring solutions). Each refactoring solution is a sequence of refactoring operations (ROs).
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A refactoring operation consists of the actual operation to apply to the system under main-

tenance, and a set of controlling parameters randomly selected (e.g., actors, roles, etc.), as

illustrated in table. We use a vector representation, such that a solution x can be written as

(RO0, RO1, . . . , ROL−1), where L is the maximum number of refactoring operations in a

solution, and ROl is the l-th refactoring operation. The order in which the ROs appear in

the vector is the same as the order in which they are applied to the software system under

refactoring - that is RO1 is applied first, then RO2, and so on. The initial population is

generated by randomly choosing refactoring operations for each individual in the solution.

In addition to the refactoring solution, a set of pre- and post-conditions is specified to en-

sure the feasibility of the operation. This is in agreement with the work of [15], which

defined methods for formalizing preconditions that must be met before a refactoring opera-

tion can be applied in order to preserve the behavior of the system. Finally, each refactoring

operation involves actors - that is the code elements that are involved or impacted by the

operation (e.g., Class, package, method, etc.). In our experiments, we considered the fol-

lowing types of refactorings: Extract class, Extract interface, Inline class, Move field, Move

method, Push down field, Push down method, Pull up field, Pull up method, Move class

and Extract method.

6.2.4.2 Change Operators

In this work, we use the single-point crossover. It consists in selecting and splitting two

parent solutions at a random locations in their respective vector of the refactoring solution.

Then, two child solutions are produced from the two parent. For the first child, the first part

of the first parent is replaced by the second part of the second parent, and vice versa. Once

each child is produced, the constraint on the maximum number of refactoring operation is

enforced by randomly removing some refactoring operations.

For the mutation operator, we use the bit-string method. It consists in randomly picking

one or more refactoring operators from the individual under mutation, and replacing them
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with new refactoring operators from the initial list of operation. The process of selection is

driven by a probability.

6.2.4.3 Objective functions and solution evaluation

Solution evaluation constitutes a major step in every multi-objective optimization process.

Consequently, in our proposed methods, every application of a refactoring sequence is

followed by the evaluation of the resulting software system. In this work, we used three

categories of objectives:

Quality objectives:

In a first scenario of our experiments, we used the 6 quality attributes that are defined by

the QMOOD quality model [3]. QMOOD quality measures are defined using a weighted

sum of high-level software metrics detailed in Table ??. The 6 external quality attributes

used are given in Table ??, and constitutes six objective functions for the NSGA-II step.

In a second scenario of our experiments, we used the 11 quality metrics that compose

the 6 quality attributes as separate objectives. The list of these metrics are described in

Table ??.

For both scenarios, we used the following two additional objectives as well:

Number of recommended refactorings objective

This objective, to minimize, corresponds basically to the size of the solution.

Design coherence objective

It aims at approximating the design preservation after applying the suggested refactor-

ings. We used the function that we defined in our previous work [29] to ensure that the

refactoring operation preserves design coherence. The vocabulary could be used as an in-

dicator of the semantic/textual similarity between different actors that are involved when

performing a refactoring operation. We start from the assumption that the vocabulary of

an actor is borrowed from the domain terminology and therefore can be used to determine

which part of the domain semantics an actor encodes. Thus, two actors are likely to be
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Table 6.1: QMOOD metrics description [3]

Design Metrics
Design
Property

Description

Design Size
in Class (DSC)

Design Size Total number of classes in the design

Number Of
Hierarchies (NOH)

Hierarchies
Total number of root classes in the
design
(count(MaxInheritenceTree(class) = 0))

Average Number
of Ancestors (ANA)

Abstraction
Average number of classes in the
inheritance tree for each class.

Direct Access
Metric (DAM)

Encapsulation
Ratio of the number of private and
protected attributes to the total
number of attributes in a class.

Direct Class
Coupling (DCC)

Coupling
Number of other classes a class relates to,
either through a shared attribute or a
parameter in a method.

Cohesion Among
Methods of class
(CAMC)

Cohesion

Measure of how related methods are in a
class in terms of used parameters.
It can also be computed by:
1− LackOfCohesionOfMethods()

Measure Of
Aggregation (MOA)

Composition
Count of number of attributes whose
type is user defined class(es).

Measure of
Functional
Abstraction (MFA)

Inheritance
Ratio of the number of inherited methods
per the total number of methods
within a class.

Number of
Polymorphic
Methods (NOP)

Polymorphism

Any method that can be used by a class
and its descendants. Counts of the number
of methods in a class excluding private,
static and final ones.

Class Interface
Size (CIS)

Messaging Number of public methods in class

Number of
Methods (NOM)

Complexity Number of methods declared in a class.

semantically similar if they use similar vocabularies.

The vocabulary can be extracted from the names of methods, fields, variables, param-

eters, types, etc. Tokenisation is performed using the Camel Case Splitter [135], which is

one of the most used techniques in Software Maintenance tools for the preprocessing of

identifiers. A more pertinent vocabulary can also be extracted from comments, commit in-

formation, and documentation. We calculate the textual similarity between actors using an

information retrieval-based technique, namely cosine similarity, as shown in Equation 6.4.
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Table 6.2: QMOOD quality attributes [3]

Quality Attribute
Definition
Computation Equation

Reusability

A design with low coupling and high cohesion is easily
reused by other designs.
−0.25 ∗ Coupling + 0.25 ∗ Cohesion+ 0.5 ∗Messaging+
0.5 ∗DesignSize

Flexibility
The degree of allowance of changes in the design.
0.25 ∗ Encapsulation− 0.25 ∗ Coupling+
0.5 ∗ Composition+ 0.5 ∗ Polymorphism

Understandability

The degree of understanding and the easiness
of learning the design implementation details.
0.33 ∗Abstraction+ 0.33 ∗ Encapsulation−
0.33 ∗ Coupling + 0.33 ∗ Cohesion−
0.33 ∗ Polymorphism− 0.33 ∗ Complexity−
0.33 ∗DesignSize

Functionality

Classes with given functions that are publicly stated in
interfaces to be used by others.
0.12 ∗ Cohesion+ 0.22 ∗ Polymorphism+
0.22 ∗Messaging + 0.22 ∗DesignSize+ 0.22 ∗Hierarchies

Extendability

Measurement of design?s allowance to incorporate
new functional requirements.
0.5 ∗Abstraction− 0.5 ∗ Coupling + 0.5 ∗ Inheritance+
0.5 ∗ Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.
0.2 ∗Abstraction+ 0.2 ∗ Encapsulation+ 0.2 ∗ Composition+
0.2 ∗ Inheritance+ 0.2 ∗ Polymorphism

Each actor is represented as an n-dimensional vector, where each dimension corresponds

to a vocabulary term. The cosine of the angle between two vectors is considered as an in-

dicator of similarity. Using cosine similarity, the conceptual similarity between two actors

c1 and c2 is determined as follows:

Sim(c1, c2) = Cos(~c1, ~c2) =
~c1 · ~c2

‖~c1‖ × ‖~c2‖
=

∑n
i=1wi,1 × wi,2√∑n

i=1w
2
i,1 ×

√∑n
i=1w

2
i,2

(6.4)

where ~c1 = (w1,1, ..., wn,1) is the term vector corresponding to actor c1 and ~c2 = (w1,2, ..., wn,2)

is the term vector corresponding to c2. The weights wi, j can be computed using informa-

tion retrieval based techniques such as the Term Frequency – Inverse Term Frequency (TF-
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IDF) method. We used a method similar to that described in [?] to determine the vocabulary

and represent the actors as term vectors.

The next section describes the evaluation of our approach based on several open source

systems.

6.3 Validation

To evaluate the ability of our dimensionality reduction refactoring framework to generate

good solutions and find the minimum set of required objectives, we validated the proposed

approach based on six open source systems and one industrial project provided by a partner

from health-care industry based on a funded project. The obtained results were statistically

analyzed, based on 30 runs for every system, when compared with existing refactoring

approaches. In this section, we first present our research questions and then describe and

discuss the obtained results.

6.3.1 Research questions

In our study, we assess the performance of our refactoring approach by determining whether

it can generate meaningful sequences of refactorings that fix design defects while minimiz-

ing the number of code changes, preserving the semantics of the design, and reusing, as

much as possible a base of recorded refactoring operations applied in the past in similar

contexts. Our study aims at addressing the research questions outlined below.

The first four research questions evaluate the ability of our proposal to find a compro-

mise between the four considered objectives that can lead to good refactoring recommen-

dation solutions.

• RQ1.: To what extent can the proposed dimensionality reduction approach recom-

mends useful refactorings?
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• RQ2.: To what extent does the proposed dimensionality reduction approach reduce

the number of objectives, execution time and number of non-dominated solutions

while recommending useful refactorings?

• RQ3.: How does the proposed dimensionality reduction approach perform compared

to other existing search-based refactoring approaches, including mono-, multi- and

many-objective studies and an existing technique not based on computational search?

To answer RQ1., we considered both automatic and manual validations to evaluate the

usefulness of the proposed refactorings. For the automatic validation we compared the

proposed refactorings with the expected ones. The expected refactorings are suggested by

developers to fix existing design defects as detailed later.

RErecall =
| suggested refactorings ∩ expected refactorings |

| expected refactorings |
∈ [0, 1] (6.5)

REprecision =
| suggested refactorings ∩ expected refactorings |

| suggested refactorings |
∈ [0, 1] (6.6)

For the manual validation, we asked groups of potential users of our tool to manually

evaluate whether the suggested refactorings are feasible and efficient at improving the soft-

ware quality and achieving their maintainability objectives. We define the metric Manual

Correctness (MC) that corresponds to the number of meaningful refactorings divided by

the total number of suggested refactorings. MC is given by the following equation:

MCmanualcorrectness =
| relevant refactorings |
| suggested refactorings |

∈ [0, 1] (6.7)

To answer RQ2, we compared the number of objectives (NOB) after the execution of

the NSGAII-PCA algorithm. We have also compared the execution time (T)and the num-

ber of non-dominated solutions (NS) to existing mono/multi/many-objective refactoring
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approaches [...].

To answer RQ3, we compared our approach to other existing search-based refactoring

approaches: (i) Kessentini et al. [16], O’Keeffe et al. [68], Mkaouer et al. [73] and (ii)

Harman et al. [10]. O’Keeffe and Ó Cinnéide [68] formulate software refactoring as a

mono-objective search problem where the main goal is to optimize the different QMOOD

attributes aggregated into one fitness function using Simulated Annealing [40]. Kessentini

et al. [16] also formulated refactoring suggestion as a single objective problem to reduce

as much as possible the number design defects, while Harman et al. formulated refactoring

recommendation as multi-objective to find a trade-off between two quality metrics, CBO

(coupling between objects) and SDMPC (standard deviation of methods per class). More-

over, we compared the performance of our approach to an existing refactoring work of Ouni

et al.[29], a multi-objective approach based on the NSGA-II algorithm, that finds trade-offs

between quality improvements, design semantics and effort. In addition, we compared

our approach with a many-objective refactoring technique based on NSGA-III proposed

by Mkaouer et al. [73] with 8 objectives of quality attributes. Finally, we compared our

refactoring results with a popular design defects detection and correction tool JDeodorant

[66] that does not use heuristic search techniques in terms of precision, recall and manual

correctness. The current version of JDeodorant is implemented as an Eclipse plug-in that

identifies some types of design defects using quality metrics and then proposes a list of

refactoring strategies to fix them.

6.3.2 Experimental setup

6.3.2.1 Subjects

Our study involved 12 participants from the University of Michigan and 5 software de-

velopers from our industrial partner. The graduate students include 6 master students in

Software Engineering and 6 PhD. students in Software Engineering. All the participants

are volunteers and familiar with Java development and refactoring. The experience of these
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participants on Java programming ranged from 3 to 17 years. We carefully selected the

participants to make sure that they already applied refactorings during their previous expe-

riences in development. All the graduate students have already taken at least one position

as software engineer in industry for at least three years as software developer and most of

them (10 out of 12 students) participated in similar experiments in the past, either as part

of a research project or during graduate courses on Software Quality Assurance or Soft-

ware Evolution offered at the University of Michigan. Furthermore, 6 out the 12 students

(the selected master students) are working as full-time or part-time developers in software

industry.

6.3.2.2 Studied projects

We applied our approach to a set of six well-known and well-commented industrial open

source Java projects: Xerces-J1, JFreeChart2, GanttProject3, Apache Ant4, JHotDraw5, and

Rhino6. Xerces-J is a family of software packages for parsing XML. JFreeChart is a pow-

erful and flexible Java library for generating charts. GanttProject is a cross-platform tool

for project scheduling. Apache Ant is a build tool and library specifically conceived for

Java applications. JHotDraw is a GUI framework for drawing editors. Finally, Rhino is a

JavaScript interpreter and compiler written in Java and developed for the Mozilla/Firefox

browser. We selected these systems for our validation because they range from medium

to large-sized open-source projects, which have been actively developed over the past 10

years, and their design has not been responsible for a slowdown of their developments.

Our industrial partner from the health-care industry has a legacy project developed over

11 years. The system is written in JAVA and its main feature is image reconstruction. Based

on a funded project, we collaborated with our partner to provide them efficient refactoring

1http://xerces.apache.org/xerces-j/
2http://www.jfree.org/jfreechart/
3www.ganttproject.biz
4http://ant.apache.org/
5http://www.jhotdraw.org/
6http://www.mozilla.org/rhino/
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Table 6.3: Statistical data of the two evaluated programs

Systems Release # classes # design defects KLOC # refactorings
Xerces-J v2.7.0 991 91 240 80
JFreeChart v1.0.9 521 72 170 96
GanttProject v1.10.2 245 49 41 63
Apache Ant v1.8.2 1191 112 255 74
JHotDraw v6.1 585 25 21 36
Rhino v1.7R1 305 69 42 50
Industrial P v6.1 958 146 271 103

recommendations to fix most of their maintainability issues, improve the extendability of

their software and provide useful assistance to their developers when updating the code.

Five developers from our partner participated in the experiments of the proposed technique

in this chapter.

Table 6.3 provides some descriptive statistics about these seven programs.

6.3.2.3 Scenarios

Participants were first asked to fill out a pre-study questionnaire containing five questions.

The questionnaire helped to collect background information such as their role within the

company (if any), their programming experience, and their familiarity with software refac-

toring. In addition, all the participants attended one lecture about software refactoring,

and passed ten tests to evaluate their performance in evaluating and suggesting refactoring

solutions.

We formed 3 groups. Each of the first two groups is composed of three masters students

and three PhD. students. The third group is composed of five software developers from our

industrial partner, since they agreed to participate only in the evaluation of their software

system. The two first groups were formed based on the pre-study questionnaire and the

test results to ensure that all the groups have almost the same average skill level. We

divided the participants into groups according to the studied systems, the techniques to be

tested and developers’ experience. Consequently, each group of participants who agreed to
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participate in the study received a questionnaire, a manuscript guide to help them to fill the

questionnaire, the tools and results to evaluate and the source code of the studied systems.

Since the application of refactoring solutions is a subjective process, it is normal that not

all the developers have the same opinion. In our case, we considered the majority of votes

to determine if suggested solutions are correct or not. Each participant evaluates different

refactoring solutions for the different techniques and systems.

In the first scenario, we selected a total of 70 classes from all the systems that include

design defects (10 classes to fix per system). Then we asked every participant to manually

apply refactorings to improve the quality of the systems by fixing an average of two of these

defects. As an outcome of the first scenario, we calculated the differences between the

recommended refactorings and the expected ones (manually suggested by the developers).

In the second scenario, we asked the developers to manually evaluate the recommended

solutions by our algorithm and existing techniques. Our experiments were not limited to

only comparisons with expected refactorings. The main motivation for the manual correct-

ness metric is actually to address the concern that the deviation with the expected refactor-

ings could be just because of the preferences of the developers. The manual correctness

metric is evaluated manually on each refactoring one-by-one to check their validity. Thus,

we evaluated the results produced by the different tools and we were not limited to the

comparison with the expected results. We did the comparison with the expected results to

provide an automated way to evaluate the results and avoid the developers being biased by

the results of our tool (developers did not know anything about the refactorings suggested

by the different tools when they provided their recommendations). All the recommended

refactorings are executed using the Eclipse platform.

6.3.2.4 Parameters setting

In our experiments, we use and compare different mono, multi- and many-objective al-

gorithms. For each algorithm, to generate an initial population, we start by defining the
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maximum vector length (maximum number of operations per solution). The vector length

is proportional to the number of refactorings that are considered, the size of the program to

be refactored, and the number of detected design defects. This parameter can be specified

by the user or derived randomly from the sizes of the program. For all search algorithms,

we fixed the maximum vector length to 200 refactorings, and the population size to 100

individuals (refactoring solutions), and the maximum number of iterations to 10,000 itera-

tions.

Another element that should be considered when comparing the results of the four

algorithms is that multi/many-objective algorithms do not produce a single solution like a

mono-objective technique, but a set of optimal solutions (non-dominated solutions). The

maintenance engineer can choose a solution from them depending on their preferences in

terms of compromise. However, at least for our evaluation, we need to select only one

solution. Thereafter, and in order to fully automate our approach, we proposed to extract

and suggest only one best solution from the returned set of solutions. In our case, we

selected the closest solution to the knee-point in terms of Euclidean distance [..].

6.3.2.5 Inferential Statistical Test Methods Used

Our approach is stochastic by nature, i.e., two different executions of the same algorithm

with the same parameters on the same systems generally leads to different sets of suggested

refactorings. For this reason, our experimental study is performed based on 30 indepen-

dent simulation runs for each problem instance, and the obtained results are statistically

analyzed by using the Wilcoxon rank sum test with a 95% confidence level (α = 0.05).

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when

comparing two related samples to verify whether their population mean-ranks differ or not.

In this way, we could decide whether the difference in performance between our approach

and the other detection algorithms is statistically significant or just a random result.
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6.3.3 Empirical study results and discussions

Results for RQ1: As described in the approach adaptation section, Two different adapta-

tions of the dimensionality reduction approach were considered. The first adaptation used

as initial fitness functions the different QMOOD attributes along with the number of refac-

torings and design semantic objectives. The second adaptation is based on the use of the

different quality metrics (not the 6 attributes) of QMOOD as fitness functions in addition to

the two other objectives of effort and semantics. Figures 2, 3 and 4 summarize the results

for the first research question using the manual correctness (MC), precision (PR) and recall

metrics (RE). Figure 2 shows that both of the dimensionality reduction approaches generate

good refactoring solutions that are relevant to programmers. On average, for all of our ten

studied projects, 84% of the proposed refactoring operations are considered as semantically

feasible, improve the quality and are found to be useful by the software developers of our

experiments. The highest MC score is 88% for the Rhino project and the lowest score is

79% for Apache-Ant. Thus, the results are clearly independent of the size of the systems

and the number of recommended refactorings. Most of the refactorings that were not man-

ually approved by the developers were found to be either violating some post-conditions or

introducing design incoherence. The first dimensionality reduction formulation based on

QMOOD attributes outperformed the second one based on the quality metrics for almost all

the systems. One of the main reasons could be that the first formulation based on QMOOD

already aggregate some of the correlated quality metrics (fitness functions) into attributes.

Since the MC metric is limited to the evaluation of the correctness and not the rele-

vance of the recommended refactorings, we also compared the proposed operations with

some expected ones defined manually by the different groups for several code fragments

extracted from the different systems. Most of these classes represent some severe code

smells detected using the detection rules defined in our previous work [...]. Figures 3 and 4

summarize the obtained results of precision and recall.

We found that a considerable number of proposed refactorings, with an average of
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Figure 6.2: Median manual correctness (MC) value over 30 runs on all the systems using
the different refactoring techniques with a 95% confidence level (α < 5%).

Figure 6.3: Median precision (PR) value over 30 runs on all the systems using the different
refactoring techniques with a 95% confidence level (α < 5%).

more than 79% in terms of precision and recall, were already applied by the software

development team and suggested manually (expected refactorings). The recall scores are

higher than precision ones since we found that the refactorings suggested manually by

developers are incomplete compared to the solutions provided by our approach and this
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Figure 6.4: Median recall (RC) value over 30 runs on all the systems using the different
refactoring techniques with a 95% confidence level (α < 5%).

was confirmed by the qualitative evaluation (MC). In addition, we found that the slight

deviation with the expected refactorings is not related to incorrect operations but to the fact

that the developers were interested mainly in fixing the severest code smells or improving

the quality of the code fragments that they frequently modify. Similar to the observations

of the manual correctness results, the QMOOD dimensionality reduction formulation has

the best results. It is clear that higher number of objectives may require higher number of

iterations to converge towards good refactoring solutions. In addition, some non-relevant

fitness functions may introduce noise to the search process.

To summarize and answer RQ1, the experimentation results confirm that our dimen-

sionality reduction approach successfully identified relevant refactorings.

Results for RQ2: Figure 5 shows that our approach significantly reduced the number of

objectives for both formulations when executed on all the systems. For the first QMOOD

adaptation, the number of objectives were reduced to only four that corresponds to the

number of changes, semantics preservation, reusability and understandability. The reduced

objectives may show the importance of coupling and cohesion when identifying refac-

toring recommendations since both reusability and understandability are based on these
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Figure 6.5: Median number of objectives (NOB) value over 30 runs on all the systems.

Figure 6.6: Median number of non-dominated solutions (NS) over 30 runs on all the
systems using the different refactoring techniques with a 95% confidence level (α < 5%).

metrics. This outcome is also confirmed by the second formulation that selected these met-

rics among the ones that represented the last set of objectives. Along with the number of

changes and design semantic fitness functions, four metrics were selected that number of

methods, coupling, cohesion and the direct access metric.

Figure 6 shows that the number of objectives is correlated with the number of non-

dominated solutions. In fact, the existing work of Harman et al. has the lowest number of
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Figure 6.7: Median execution time (T) over 30 runs on all the systems using the different
refactoring techniques with a 95% confidence level (α < 5%).

objectives (limited to two) and generated the lowest number of non-dominated solutions on

the different systems. The many-objective algorithm of Mkaouer et al. based on NSGA-III

has the highest number of non-dominated solutions due to the high number of objectives

considered in the search process (8 objectives). It is clear that reducing the number of

objectives based on both NSGAII-PCA formulations significantly reduced the number of

non-dominated refactoring solutions.

Figure 7 reports the execution time for each of the search algorithms considered in our

experiments. As shown in the figure, the execution time of the mono-objective approach,

kessentini et al., has the lowest execution time and the highest one is the NSGA-III algo-

rithm. The execution time of the NSGAII-PCA algorithm is slightly higher than the regular

NSGA-II and other multi-objective approaches. It is expected that the execution time of the

remaining mono-objective approach is almost half the multi-objective ones due to the fol-

lowing reasons: (1) they just considered one objective function and (2) the dimensionality

reduction mechanism requires additional time processing, filtering and comparing the iden-

tifiers within classes. Since our refactoring problem is not a real time one, the execution

time of NSGAII-PCA is considered acceptable by all the programmers of our experiments.
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To conclude, the proposed NSGAII-PCA formulation successfully reduced the number

of objectives, execution time and the number of non-dominated solutions while generating

useful refactoring recommendations.

Results for RQ3: To answer RQ3, we compared our approach to other existing search-

based refactoring approaches: (i) Kessentini et al. [16], O’Keeffe et al. [68], Mkaouer et

al. [73] and (ii) Harman et al. [10]. Furthermore, the proposed dimensionality reduction

approach is compared to JDeodorant which is a tool not based on heuristic search.

Figure 2, 3 and 4 summarizes the obtained results in terms of precision, recall and man-

ual correctness. It is clear that the mono-objective algorithms (Harman et al., OKeeffe et

al. and Kessentini et al.) has lower performance comparing to existing multi-objective and

many-objective approaches based on the different evaluation metrics. The two dimension-

ality reduction adaptations have better manual correctness and precision comparing to all

existing approaches. Fig. 2 shows that our approach provides significantly higher manual

correctness results (MC) than all other approaches having MC scores respectively between

55% and 84%, on average as MC scores on the different systems. The same observa-

tion is valid for the precision and recall as described in Fig. 3 and 4. The recall of the

many-objective refactoring technique is better or similar to the dimensionality reduction

approaches. This can be explained by the fact that a large number of objectives, such as

quality metrics, may generate high number of refactoring recommendations to optimize

these objectives.

It is clear that our proposal outperforms also JDeodorant, on average, for all the systems

in terms of manual correctness, precision and recall. The comparison is performed based

on the types of refactoring supported by JDeodorant. The superiority of our approach

over JDeodorant can be explained by the fact that JDeodorant uses only structural metrics

to evaluate the impact of suggested refactorings on the detected code smells. However,

one of the advantages of JDeodorant is that the suggested refactorings are easier to apply

than those proposed by our technique as it provides an Eclipse plugin to suggest and then
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automatically apply a total of 4 types of refactorings, while the current version of our tool

requires to apply refactorings by the developers using the Eclipse IDE with more complex

types of refactorings.

To summarize, the proposed PCA-NSGAII formulation outperforms, in average, sev-

eral of existing refactoring techniques in terms of generating useful refactoring recommen-

dations.

6.4 Conclusion

In this chapter, we proposed a dimensionality reduction approach for multi-objective soft-

ware refactoring that adjusts the number of considered objectives during the search for

near optimal solutions. In most existing automated refactoring techniques, objectives are

selected in advance by the software maintenance engineer without knowledge of the out-

come of the refactoring. This process is, in general a trial and error approach, and may

cause multiple execution of the refactoring tool before reaching the right combination of

objectives. In this chapter, the proposed approach allows the user to select as many ob-

jectives as possible, and rely on the power of principal component analysis to reduce the

number of objectives. Thus, at the last stage, the software engineer is left with objectives

that contribute the most to the differentiation of solution, while other correlated objec-

tives are removed during the intermediate optimization steps. To our knowledge, this is the

first application of dimensionality reduction to the problem of multi-objective search-based

software refactoring.

To evaluate the effectiveness of our tool, we conducted a human study on a set of soft-

ware developers who evaluated the tool and compared it with the state-of-the-art refactoring

techniques. Our evaluation results provide strong evidence that our technique successfully

reduced the initial set of large number of objectives. The results also show that our ap-

proach outperforms several of existing multi-objective refactoring techniques, where the
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objectives are not analyzed for possible correlations, based on several evaluation measures

such as execution time, number of fixed antipatterns and manual correctness.

An interesting direction to further this approach in the future is to consider alternative

dimensionality reduction approach. In the current approach, we used linear PCA to per-

form the analysis of correlation between the objective. Linear PCA consider the second

order statistics, and does not include third order and above. Using non-linear PCA such

as maximum variant unfolding, and/or spectral decomposition can improve the reduction

of the number of objectives by include more statistical information. In addition, we are

planning to validate our technique with additional objectives in order to conclude about the

general applicability of our methodology. Furthermore, we are planning to adapt our di-

mensionality reduction approach to others software engineering problems such as test cases

generation, next release problem, etc. Another future research direction related to our work

is to integrate the developers in the loop when reducing the number of objectives to either

select which one to eliminate or revise the fitness function formulation (aggregating the

objectives).
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

Challenges in software refactoring are still fueling researches in the field in order to pro-

vide software organizations with realistic refactoring frameworks. Such frameworks are

required to take into account the specificity of each organizations in terms of software engi-

neering standards. In addition, successful refactoring tools are still required to go below the

wide organization level in order to consider the reality of individual programmers. This last

requirement is especially important due to the difficulty of applying system-wide refactor-

ing and the need to increase the confidence of programmers in using proposed refactoring

tools. Thus, the main goal of this thesis was to develop techniques to allow the integration

of user preferences in search-based software refactoring. In doing so, we aimed at finding

refactoring solutions that agree with the preferences of the software engineers in charge of

structural maintenance, and ultimately increase their confidence in using the results of the

refactoring recommendation tools.

To this end, a set of preference-driven software refactoring techniques has been pro-

posed, and their validity analyzed using various quality measures. The proposed techniques

rely on tools borrowed from diverse research fields including computational search, statis-

tical data processing and machine learning. We proposed four (4) major contributions, each

of them taking into account a particular aspect of the preference of the software engineer.
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These contribution are as follows:

1. A novel, context-based software refactoring technique. This is a profile-based

search-based refactoring approach that account for the context of the software pro-

grammer. The approach draws on the power of computational search using the multi-

objective simulated annealing (MOSA) [40] to find the best refactoring solution that

takes into account the recent activity of the software engineer.The primary contribu-

tions of our profile-based approach can be summarized as follows:

• Meet programmers’ requirement to improve the quality of recently modified

code before a new release. This includes the optimization of the refactoring

cost in time.

• Recommend refactorings solutions correlated with bug reports,

• Take into account refactoring operations that were recently applied to the sys-

tem.

Thus, instead of recommending system-wide refactorings, which may be error-prone

and time-consuming for large systems, the profile-based techniques constraints the

suggested refactoring operation within the domain of code that are affected by the

activity of the programmer.

2. A novel, learning-based interactive search-based software refactoring technique.

This methodology uses a machine learning technique, the artificial neural network

(ANN), to overcome the shortcomings of existing interactive search-based software

engineering techniques that place a burden on the programmer due to requiring his

or her presence for the full duration of the process. By using the ANN predictive

model, our approach efficiently capture the coding preference of the programmer via

the evaluation of the proposed refactorings. This evaluation by the programmer has

the effect of biasing the resulting refactoring recommendations towards his or her
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preferences. The main contributions in this techniques the modeling of the prefer-

ence of the programmer in a machine learned fitness function, which eliminates the

need for subjective metric-based fitness functions.

3. A learning-based interactive web service modularization technique. This tech-

nique is an adaption of our second contribution to the particular problem of web

service refactoring. It take into account design consideration that are intrinsic to web

service, but build on the same combination of ANN and heuristic search to integrate

the user preference into the modularization process. Thus, it can be seen as a partic-

ular adaption of the same goal to a different domain.

4. A novel, many-objective search-based refactoring technique using dimensional-

ity reduction on the Pareto front. This is a general search-based software engi-

neering techniques that can be applied to any of the field of software engineering,

whenever there is a large number of objectives. The main goal of this technique

was to alleviate the decision making on the Pareto front by eliminating unnecessary

objectives through PCA. This approach is particularly relevant to software refactor-

ing due to the majority of existing techniques being driven by metric-based fitness

functions that have been shown to be correlated. The primary contributions are as

follows:

• Help the programmer finds the best minimum set of objectives needed to eval-

uate search based software engineering solutions. The developers needs to just

specify several evaluation measures (proprieties of the desired solution) and our

technique can automatically identify possible correlations and conflicts between

them to find the best set of fitness functions.

• Eliminate multiple run of automated refactoring methods due to prior knowl-

edge of important objectives that leads to objective selection by trial and error.

• We propose a case study related to software refactoring. The goal is to find
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the best minimum set of quality metrics and attributes that maybe needed to

converge towards good refactoring recommendations.

7.2 Threats to Validity

There are four types of threats that can affect the validity of our experiments as described

in this section.

Conclusion validity is concerned with the statistical relationship between the treatment

and the outcome. We addressed conclusion threats to validity by performing on average

30 independent simulation runs for each problem instance and statistically analyzing the

obtained results using the Wilcoxon rank sum test with a 99% confidence level (α = 1%).

However, the parameter tuning of the different optimization algorithms used in our exper-

iments creates another internal threat that we need to evaluate in our future work. The pa-

rameters’ values used in our experiments are found by trial-and-error, which is commonly

used in the SBSE community. However, it would be an interesting perspective to design

an adaptive parameter tuning strategy for our approaches so that parameters are updated

during the execution in order to provide the best possible performance.

Internal validity is concerned with the causal relationship between the treatment and

the outcome. We dealt with internal threats to validity by performing 30 independent sim-

ulation runs for each problem instance. This process that involves randomization makes it

highly unlikely that the observed results were caused by anything other than the applied

respective search-algorithm, machine learning and dimensionality reduction approaches.

The second internal threat is related to the variation of the manual evaluation between the

different groups when using our approach and other tools such as JDeodorant. To counter-

act this, we have taken precautions to ensure that our participants represent a diverse set of

software developers with experience in refactoring, and also that the groups formed had, in

some sense, a similar average skill set in the refactoring area.
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Construct validity is concerned with the relationship between theory and what is ob-

served. To evaluate the results of our approach, we selected solutions at the knee point

when we compared our approach with fully-automated refactoring approaches, but the de-

velopers may select a different solution based on their preferences to give different weights

to the objectives when selecting the best refactoring solution. The different developers

involved in our experiments may have divergent opinions about the recommended refactor-

ings in terms of correctness. We considered in our experiments the majority of votes from

the developers. For the selection threat, the participant diversity in terms of experience

could affect the results of our study. We addressed the selection threat by giving a lecture

and examples of refactorings already evaluated with arguments and justification. For the

fatigue threat, we did not limit the time to fill the questionnaire and we also sent the ques-

tionnaires to the participants by email and gave them the required time to complete each of

the required tasks.

External validity refers to the generalizability of our findings. In this study, we per-

formed our experiments on seven different widely used open-source systems belonging to

different domains and having different sizes. However, we cannot assert that our results

can be generalized to other applications, and to other practitioners. Future replications of

this study are necessary to confirm our findings. The first threat is the limited number

of participants and evaluated systems, which externally threatens the generalizability of

our results. In addition, our study was limited to the use of specific refactoring types and

metrics. Future replications of this study are necessary to confirm our findings.

7.3 Future Work

Though programmers are reluctant to adopt refactoring solutions from existing tools, au-

tomated and semi-automated refactoring techniques have a well-defined place in the in-

creasingly growing software-dominated industry. Thus, researches that will help remove
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the barrier between refactoring and software engineers are needed.

A major shortcoming that we identified during our work is the lack of real-life testing

of the recommended refactorings. While researchers are aware of the need for testing of

the resulting software after refactoring, no real effort has been spent to actually consolidate

the two fields, refactoring and testing, in a real-world scenario. To tackle this issue, as a

future research, we will investigate the testing of the results of software refactoring as a

combined study. While the topic appears challenging, many methods already exists that

can be adapted in combination with software refactoring to validate the conservation of the

functionality of resulting systems. For example, it is possible to extract models from result-

ing software systems obtained after refactoring using model extraction methods [136][137]

[138][139][140][41]. Then, once the model has been extracted from the refactored soft-

ware, it can be tested using existing model verification techniques.

Another issue that is inherent to the area of software engineering is the tendency of

developers to making bad coding choices. As highlighted in this thesis, these choices are

often induced by external pressure due to software release milestone. In order to reduce

the impact of external pressure on coding habit as well as support for non-experienced

programmer, we will investigate in future research the possibility of communicating the

available refactoring without intruding on the users of an existing IDE. This will allow for

guiding the programmer towards best coding practices without breaking his or her work-

flow.

Finally, an important lesson learned during our research relates to knowledge transfer

across heterogeneous projects. To this end, we would conduct research to answer two major

questions:

• To what extent could refactoring be generalized across projects and not only within

multiple releases of the same project?

• How to make refactoring independent from specific domains with the aim to reduce

the effort required to adjust and adapt existing refactoring tools to new domains?

125



As an example investigation of these questions, we have successfully applied refactoring

solutions used in general software development environment to Web service modulariza-

tion. The results were discussed in chapter 4 and 5. investigating the answer to the above

question will allow us to generalize the concept of cross-domain refactoring in a systematic

framework.
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