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SUMMARY 

Electroencephalography (EEG) - the direct recording of the electrical activity 

of populations of neurons - is a tremendously important tool for diagnosing, 

treating, and researching epilepsy.  While standard procedures for recording and 

analyzing human EEG exist and are broadly accepted, no such standards exist for 

research in animal models of seizures and epilepsy – recording montages, 

acquisition systems, and processing algorithms may differ substantially among 

investigators and laboratories.  The lack of standard procedures for acquiring and 

analyzing EEG from animal models of epilepsy hinders the interpretation of 

experimental results and reduces the ability of the scientific community to 

efficiently translate new experimental findings into clinical practice.  Accordingly, 

the intention of this report is twofold: 1) to review current techniques for the 

collection and software-based analysis of neural field recordings in animal models 

of epilepsy, and 2) to offer pertinent standards and reporting guidelines for this 

research.  Specifically, we review current techniques for signal acquisition, signal 

conditioning, signal processing, data storage, and data sharing, and include 

applicable recommendations to standardize collection and reporting.  We close with 

a discussion of challenges and future opportunities, and include a supplemental 

report of currently available acquisition systems and analysis tools.  This work 

represents a collaboration on behalf of the International League Against Epilepsy 

(ILAE)- American Epilepsy Society (AES) Translational Research Task Force 

(TASK1-Workgroup 5), and is part of a larger effort to harmonize video-

electroencephalography interpretation and analysis methods across studies using in 

vivo and in vitro seizure and epilepsy models. 
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KEY WORDS 

• “Signal processing” 

• “Data sharing”  

• “Data storage”  

• “electroencephalography” 

• “electrocorticography” 

KEY POINTS 

1. In collaboration with the International League Against Epilepsy (ILAE) and 

American Epilepsy Society (AES), this work is part of a larger effort to 

harmonize video-electroencephalography interpretation and analysis 

methods across studies using in vivo and in vitro seizure and epilepsy 

models. 

2. This manuscript describes standard data acquisition and data analysis 

techniques for use in the analysis of neural field recordings, specifically, 

electroencephalographic (EEG), electrocorticographic (ECoG), and stereo-

EEG (SEEG) recordings. 

3. For each topic addressed, this report lays out proposals with regard to data 

collection, data analysis, and documentation in an effort to specify analysis 

and reporting standards for high-quality research. 

4. The goal of this workgroup is to develop and optimize depositories of 

annotated video-EEG data and software tools, accessible for all interested 

investigators, for the screening and analysis of epileptic or non-epileptic 

patterns of interest.  

INTRODUCTION 

Direct recording of the electrical activity of the brain has been an 

indispensable tool for the diagnosis, treatment, and research of seizures and 

epilepsy for several decades 1; 2.  Over time, clinicians have developed standard 
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procedures for the recording and analysis of human neurological signals, including 

electrode placement 3, signal interpretation 4; 5, and device design 6

Ongoing advances in experimental techniques and computational power 

have provided increasingly sophisticated analytic tools and algorithms, many of 

which rely on complex mathematical processing of large amounts of data.  Software-

based analysis is thus both a powerful tool for improving the yield of studies 

leveraging neural data and a dangerous weapon that can irreversibly distort the 

signal if used improperly.  Researchers wishing to perform software-based analysis 

of recorded neural data may consult a number of excellent resources in the 

literature and may utilize highly refined software packages available in the online 

community.  Here, our goal is to supplement these resources with a general 

overview of modern concepts in the acquisition and software-based analysis of 

neural data, including analog and digital signal acquisition, processing, storage, and 

analysis techniques used in the study of epilepsy.  This should improve the validity 

of acquired data and enhance effective translation of experimental results into 

clinical practice. A dictionary of the terminologies we will use in this manuscript 

appears in . 

.  By contrast, no 

such standards exist for research in animal models of epilepsy – electrode 

placement, recording montages, acquisition systems, and processing algorithms are 

independently developed by researchers according to their specific interests and 

thus may differ substantially.  

TECHNIQUES 

Data acquisition 

Grounding and referencing 

Meaningful software-based analysis of electrophysiological brain data is 

predicated on the acquisition of high-quality signals.  Likewise, the acquisition of 

high-quality electroencephalography (EEG), electrocorticography (ECoG), 

intracranial EEG (iEEG), and stereoEEG (SEEG) data is critically dependent on 
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proper recording setup.  This section provides a brief overview of some of the 

important considerations for ensuring proper recording setup, including grounding, 

electrical isolation, signal referencing, amplification, and video monitoring in an 

experimental setting. 

Proper subject and equipment grounding is the single most important 

consideration for acquiring high-quality neurophysiological recordings 7; 8

The reason it is important to distinguish between earth ground and animal 

common is because some recording systems (and most electrical stimulators) are 

electrically isolated ( ).  Electrical isolation is the physical and electrical 

separation of the animal circuit from the mains earth (equipment) circuit – this 

hinders current flow across the isolation barrier and reducing the risk of 

inadvertent shock hazards and leakage current 

.  In 

electrophysiology, ground is a somewhat ambiguous term that is used to generally 

refer to the reference point for an electrical circuit.  Since there are two electrical 

circuits to consider in electrophysiology – the animal circuit and the equipment 

circuit – ground may refer to either animal common (for the animal circuit) or earth 

ground (for the equipment circuit).  We define these terms below and will be careful 

to distinguish between the two when relevant.  

9; 10

While all clinical recording systems are required to be electrically isolated for 

patient safety 

.  This also prevents the 

possibility that multiple devices connected to the same recording subject might have 

different ground potentials, again preventing a shock hazard but also preventing 

ground loops (see discussion on ground loops, below).  Because of the isolation 

barrier, earth ground and animal common are actually distinct reference points.  

Earth ground is the ground reference for the equipment circuit and is the same as 

the earth ground in the wall outlet.  Animal common, or animal ground, is actually 

the “floating” potential of the animal and is to be used as the common reference 

point for all electrophysiological signal acquisition (see discussion on referential 

recording, below).   

10; 11, some recording systems for use with animals are not isolated 

because of the added design complexity and reduced likelihood of many systems 

being connected to the same recording subject.  Therefore, in more complicated 
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experimental setups, it is important to consider not only the proper equipment and 

animal grounding setup, but also the need for electrical isolation of various pieces of 

equipment.  If the recording system is not itself electrically isolated, ensure that all 

other connected systems (e.g., stimulators) are electrically isolated.  If electrical 

isolation is not built into a given device, one can use a stand-alone isolation 

transformer to isolate the device. 

 

- - -

 - – 

-

 

 

A reliable, low-impedance electrical connection must be established and 

maintained between the animal and the animal common input of the recording 

system to ensure noise-free recordings 9.  This connection establishes the animal 

common reference for the animal circuit ( ), and is important for ensuring 

the stability and overall quality of the recording 9

 Ensuring proper recording setup becomes much more complicated when 

multiple pieces of equipment – for example, a stimulator and a recording system – 

are connected to the animal simultaneously.   It is imperative to avoid a ground 

loop 

.  Vendors will be able to provide 

guidance on the best method for establishing the animal common connection 

between the animal and a particular recording system.  

7; 12.  A ground loop occurs when there are two or more ground points on a 

circuit that are at different voltage potentials ( ), resulting in a current flow 

between them that will appear on the recorded signal as unwanted noise (almost 

always as 50 or 60 Hz line noise).  Ground loops may occur when multiple animal 

common connections are in place, but more often occur when multiple earth 

grounds are in place.  To avoid a ground loop, ensure that animal common 

connections converge to a single connection at the equipment animal common 

input.  Likewise, ensure that earth ground connections converge to a single earth 
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connection ( ), for example a single power strip or a single wall outlet – this 

is commonly called a star topology. 

 

-

 

 

Amplification 

In order to obtain usable neurophysiological data, the signal must be 

appropriately amplified before digitization.  The first stage of signal processing is 

the preamplifier, also called headstage or jackbox (  ).  The headstage is a 

low-gain amplifier that converts the neural signal from high-impedance to low-

impedance 12.  Practically speaking, the headstage improves signal transmission and 

reduces noise pickup on the recording.  Placing the headstage close to the signal 

source is recommended in order to reduce the length of the high-impedance cable 

run 7

 

.  A high-impedance cable run will function as an antenna, picking up 

movement artifacts and line noise artifacts.  Most commercially available systems 

are carefully calibrated to limit noise pickup and maintain a high signal-to-noise 

ratio while still providing a flexible interface for connection with the recording 

subject.   

-

 

 

 

 

An important technique for removing noise from electrophysiological 

recordings is common-mode rejection 13.  This technique relies on the ability of 

differential amplifiers to reject signals common to both inputs – since noise is 

ambient while the neural signal is localized, noise appears on both inputs to the 
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amplifier but the signal appears on just one (  ).  Therefore subtracting one 

input from the other removes noise but spares the signal.  To do this, 

electrophysiology systems subtract the signal at the reference electrode from the 

signal at the source electrode.  The reference electrode may be another electrode 

located close (several mm) to the source electrode (called differential recording) or 

it may be the animal common connection which is generally located somewhat 

further away (called referential recording).  The particular grouping of source and 

reference electrodes for collecting and reviewing data is called a recording montage.  

While differential recording usually provides a better signal-to-noise ratio and 

generally enhances the ability to quickly interpret the EEG, referential recording 

offers the ability to re-montage signals offline using different signal-reference 

electrode groupings, thus increasing the flexibility of the system 14

 

.  It is important 

to note, however, that re-montaging is only possible if the desired reference signal is 

free of noise and/or amplifier saturation.  

-

-

-   

 

Video monitoring 

Video-EEG, or video monitoring in combination with EEG acquisition, is 

highly recommended in order to characterize the epileptic phenotype in animal 

models.  Video-EEG enables seizure confirmation in the case of focal seizures 

without an obvious motor pattern, and enables the exclusion of various types of 

artifact associated with a given EEG event 15; 16.  The extent of video monitoring is 

dependent on the needs of the study and should be reported in the manuscripts 17.  

That said, with modern technology it is relatively straightforward and cost-effective 

to obtain and store continuous, long-term EEG and video-data.  Therefore we 

recommend capturing simultaneous EEG and video data continuously for the 

duration of the experiment in almost all circumstances.  To obtain a useful video-
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EEG, it is critical to synchronize the video monitoring system with the EEG system.  

This can be accomplished in a variety of ways – the most straightforward being to 

use the same acquisition computer to run both the video and the EEG capture. 

However, even if using the same acquisition computer for video and EEG recording, 

it is advised to test the synchronization routinely by generating a video-EEG artifact 

(e.g., connecting or disconnecting the animal under video-capture). 

 

-

r   -  

  

-

-

 

-  

 . 

 

Signal Conditioning 

Signal digitization 

Signal conditioning, in this context, refers to the preparation of the neural 

signal for storage in a digital format.  After preamplification, the signal will pass 

through an analog-to-digital converter (ADC).  The ADC samples the electrode signal 

at a given sampling frequency and bit resolution (  -C), converting the 

continuous electrode signal into a discrete digitized signal by taking measurements 

of the incoming signal at evenly spaced time steps 18.  Digitized signals afford the 

system several advantages, including ease of signal compression, speed of 

processing and transmission, and immunity to several forms of noise 19; 20.  

Following digitization, the signal may be further amplified, filtered, and otherwise 

processed as needed. 
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The most critical consideration for analog-to-digital conversion is the 

Nyquist or Nyquist-Shannon sampling theorem 21; 22.  This theorem states that a 

signal at a given frequency must be sampled at least twice per period in order to be 

accurately represented 7; 23

It is preferable to collect data using a sampling frequency well above the 

Nyquist rate, not only to prevent aliasing but also to collect higher resolution 

signals.  While higher sampling frequencies come with the tradeoff of requiring 

more storage space and more time to process, continuing advances in 

computational power and technology reduce this concern.  Additionally, data can 

often be downsampled to a lower sampling frequency to improve the speed of 

processing.  Importantly, in order to avoid aliasing, it is imperative to low-pass filter 

the signal prior to downsampling (  ) 

.  By extension, the Nyquist rate is the minimum sampling 

frequency required for a given application and is equal to twice the maximum 

frequency content of the input signal.  If the sampling frequency is set below the 

Nyquist rate, high-frequency signals will appear as lower-frequency signals that are 

not actually present in the signal (  ) – this is called aliasing.  One may 

prevent aliasing by using a sufficiently high sampling rate and by using an anti-

aliasing low-pass filter to remove signal content above the Nyquist frequency prior 

to sampling.  The Nyquist frequency is equal to one half of the sampling rate, and 

typically anti-aliasing filters are set to have a cutoff frequency well below the 

Nyquist frequency to account for the rolloff of the filters.  For most recording 

systems, the anti-aliasing filters are not user-configurable, as they are implemented 

in hardware – likewise, most recording systems will restrict the sampling frequency 

to an appropriate range based on the anti-aliasing filter settings.  Importantly, note 

that optical aliasing may also occur during visual review of the recorded EEG as a 

result of limitations in the resolution of the display. 

7

 

. 

- -

-   
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-> .  

-

- -

 

-  

 

 

Just as the sampling frequency specifies the resolution of the digitization in 

the time domain, the bit resolution specifies the resolution of the digitization in the 

voltage domain (  ) and also determines the dynamic range.  Bit resolution 

refers to the number of steps the ADC will use to digitize the incoming signal, 

calculated as two to the power of the number of bits – for example, a 12 bit system 

will digitize the signal into 212 =  4,096 steps 24.  Dynamic range is defined as the 

ratio between the largest signal a system can process and the noise floor 18

 

 – 

therefore, systems with a larger dynamic range can tolerate a wider variation in the 

amplitude of the input signal.  The digitized signal is stored as a series of integers 

with a constant voltage conversion factor and sampling frequency.  Almost all A/D 

converters currently on the market offer 16-bit resolution, which is sufficient for 

most users.  A/D converters with higher bit resolution are not necessary for most 

applications. 

- -  – 

 .  . 


Filtering 

Filtering is the process of attenuating specific frequency content in a 

recorded signal and is a critical component of signal conditioning and signal 

analysis 18; 25; 26.  It is important to note that filtering by definition distorts the 
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recorded signal (see 27

Filters used for signal conditioning and signal analysis will be digital filters, 

i.e., filters defined in software or firmware and applied to the digitized signal.  We 

will not discuss analog filters in detail, as these are defined in the hardware of the 

system and will be appropriately specified by the manufacturer of the recording and 

digitization equipment.  

, for example) and may actually introduce artifacts into the 

data.  Accordingly, it is imperative to filter data only as needed, using appropriately 

designed filters, and to accurately and thoroughly describe filters and their 

application in published reports.  Importantly, there is no single filter or filter type 

that may be universally applied – each has its own particular advantages and 

disadvantages and requires a reasonable understanding of the constraints involved. 

The most important way to classify filters is based on their response to an 

impulse, or very brief input ( A). Finite impulse response (FIR) filters will 

produce an output of limited duration, while infinite impulse response (IIR) filters 

will produce an output of unlimited duration, although the response will decay 

asymptotically towards zero 18

There are five important design characteristics 

.  Low-pass (sometimes called high-frequency or 

high-cut) filters allow frequencies lower than the filter cutoff frequency to pass. In 

contrast, high-pass (also called low-frequency or low-cut) filters pass frequencies 

above the filter cutoff frequency.  Band-pass filters allow a specific range of 

frequencies to pass ( ), while notch filters remove a specific range of 

frequencies, e.g. 50/60 Hz generated by the mains power supply.  Note that the 

impulse response describes the filter’s response in the time domain, while the low-

pass/high-pass/band-pass descriptors describe the filter’s response in the 

frequency domain  ( A-B).    

25 of filters to consider  

( C): the (1) cutoff frequency, (2) phase, (3) transition width, and (4) peak 

passband/stopband ripple of the frequency response of the filter (ripple refers to 

the variation in the filter’s response in the pass- and stop-bands). The (5) filter 

order measures the complexity of the filter and is either the number of filter 

coefficients (IIR) or length of the filter (FIR) minus one.  Transition width, ripple 

performance, and filter order are interrelated in that improving performance in one 
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of these characteristics decreases the performance in the other two, analogous to 

adjusting the angles in a triangle 28

In practice, FIR filters are preferable to IIR filters 

.  For instance, reducing the transition width of a 

filter requires an increase in the filter order, with the requisite increased complexity 

and (potentially dramatically) increased processing time.  Note that the order of FIR 

and IIR filters cannot be directly compared, since they are implemented differently.   

26, as they may be easily 

designed to provide a linear delay ( ) and are always computationally 

stable. In comparison, IIR filters offer narrower transition bandwidth and improved 

computational performance 18, but with a non-linear phase-delay relationship 25.  

Additionally, IIR filters may be unstable – that is, they may incur underflow or 

overflow errors as a result of accumulated rounding errors. Correcting for the phase 

delay introduced by filtering is much simpler and faster with a linear-phase filter 

( ): simply left-shift the output signal by the group delay (the derivative of 

the phase-frequency response of the filter).  For a non-linear phase filter, the most 

practical approach is to two-pass filter the signal, i.e., filter in both the forward and 

backward directions, using for example the MATLAB command filtfilt.  

Unfortunately, this doubles the amount of computation needed and also changes the 

functional properties of the filter 25

Filter design 

.  Note that all of the FIR design methods 

described in this report will implement linear-phase filters.   

FIR and IIR filters may be designed using a number of different methods, 

each with specific advantages ( ).  Two common methods for designing FIR 

filters are the equiripple (also called Parks-McClellan) and least-squares methods 28.  

Equiripple FIR filters offer a constant ripple in the pass- and stop-bands and can be 

designed using the smallest filter order of all FIR filters.  In comparison, least-

squares FIR filters optimize signal rejection in the stop-band, but provide a slightly 

wider transition band compared to the equiripple. Another common method for 

designing FIR filters utilizes the sinc function to approximate the frequency 

response of an ideal filter 18.  However, the filter must be modified using one of 

various windows to improve passband and stopband performance 25, with the result 
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called a “windowed-sinc” filter.  Common windows are the Hamming (trade-off 

between rolloff, stopband attenuation, passband ripple), the rectangular (sharpest 

rolloff, least stopband attenuation, largest passband ripple), and the Kaiser 

(shallowest rolloff, greatest stopband attenuation, smallest passband ripple). 

Common IIR filters 28

Notch filters may be implemented to remove 50- or 60-Hz line noise.  

Adaptive line noise filters are a more powerful, though more complicated, type of 

notch filter – these types of filters create a template of the line noise artifact and 

remove it from the incoming signal 

 include the Butterworth filter (wide transition band, 

smallest passband/stopband ripple), Chebyshev (shorter transition band, ripple in 

either the passband (Chebyshev I) or the stopband (Chebyshev II)), and elliptic 

(narrowest transition band, ripple in both passband and stopband).  

29

We recommend utilizing FIR filters for offline processing, except for large 

datasets when the improved computational performance of IIR filters is required.  It 

is critical to carefully compare the filtered signal to the raw signal to confirm that 

the appropriate frequency bands are being removed, and that the signal is not being 

distorted in unexpected ways.  Note that the filtering of recorded artifacts (for 

instance, step discontinuities or general increases in activity) may introduce 

physiological-looking activity patterns or increases in the band of interest – 

therefore, it is imperative to identify and remove artifacts from the analysis prior to 

filtering.   It is best to band-pass filter in two stages, i.e. use a low-pass filter and 

then a high-pass filter, as utilizing two filters allows one to design more appropriate 

filters for both stages. 

.  This has the advantage of being able to adjust 

to subtle changes in the line noise shape and frequency while preserving more of the 

incoming signal.  Proper setup (grounding, referencing, and shielding) is always 

preferred to filtering in order to reduce line noise, since filtering distorts the signal 

and eliminates information from the recording.  With proper setup and grounding, 

in fact, a line noise filter may not even be necessary. 
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Signal processing and analysis 

Spectral analysis 

The determination of the frequency content of the recorded signal, more 

specifically called spectral analysis, is a critical component of software-based 

analysis of EEG.  Spectral analysis is accomplished by transforming the signal from 

the time domain into the frequency domain 23; 26.  The transformation between these 

domains may be accomplished using Fourier analysis, and most commonly, using 

the Fast Fourier Transform (FFT).  The FFT is an efficient algorithm for expressing a 

signal as a composition of sine waves of different frequencies (a Fourier series), 

making it straightforward to examine the relative contribution of each frequency to 
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the overall signal by comparing the amplitude of each sine wave.  However, it is 

generally more useful to examine the evolution of a signal’s spectral content over 

time – for this, one of many joint time-frequency analysis (JTFA) techniques may be 

employed 30; 31.  Probably the most common JTFA algorithm is the short-term 

Fourier transform (STFT), in which one repeatedly applies an FFT to short, non-

overlapping clips of the original signal.  The result of a JTFA algorithm is usually 

plotted in a two-dimensional heatmap called a spectrogram (if calculated using 

Fourier analysis) or a scalogram (if calculated using wavelets) 24

Wavelet analysis is conceptually similar to Fourier analysis – however, in 

Fourier analysis one transforms the recorded signal into sine waves, while in 

wavelet analysis one transforms the signal into wavelets 

. 

24; 32.  Like sine waves, 

wavelets are signals of a single specific frequency, but wavelets are finite in duration 

whereas sine waves are infinite in duration.  Therefore, in comparison to Fourier 

analysis, wavelets perform better with non-stationary signals (i.e., signals that 

change over time).  Accordingly, wavelet analysis is particularly useful for signals 

that are relatively brief in duration or that have a sudden onset/offset – for instance, 

identifying artifacts 33 and detecting spikes, sharp waves, and HFOs 34; 35

There are several important tips to bear in mind when performing spectral 

analysis.  First, note that electrophysiological spectra will exhibit what is termed 1/f 

falloff (“one over f”) – i.e., the power of the signal will decrease as frequency 

increases 

.   

18.  Second, while spectral analysis decomposes the recorded signal (most 

often) into sine waves, many rhythmic activities in the raw data will not be 

sinusoidal in nature.  Such non-sinusoidal activities will be represented in the 

frequency domain by a sine wave at the fundamental frequency, with several 

additional sine waves at harmonics (integer multiples) of the fundamental 

frequency.  Third, note that spectral analysis should only be used to identify line 

noise or other “human-made” noise occurring at a particular frequency.  Biological 

noise, such as movement artifact or scratching, is comprised of a broad range of 

frequencies from across the spectrum, making it indistinguishable from biological 

signal in the frequency domain.  Fourth, spectral analysis is only informative if it is 

applied to a data epoch of appropriate duration.  One needs several cycles-worth of 
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data in order to accurately calculate the relative contributions of each frequency 

band – this is especially important to consider when analyzing lower frequencies, 

since lower frequencies have longer periods.  Therefore, we recommend the 

application of spectral analysis to data segments of duration of at least five cycles of 

the lowest frequency of interest, preferably more, if possible.  That said, spectral 

analysis relies on the assumption of signal stationarity, that is, that a signal does not 

fundamentally change over the duration of the data segment.  Therefore, it is also 

important to limit the duration of a data segment to an appropriate amount of time, 

depending on the signal of interest.  In most cases, the most effective (and most 

important) way to determine the appropriate duration of a data segment for 

spectral analysis will be to simply visually inspect the raw recording to identify the 

onset and offset of a particular pattern of interest. 

 

-

–  

 

 

Artifact recognition and rejection 

 Artifact recognition and rejection is a critical component of software-based 

EEG analysis (see also ILAE-AES TASK1-WG1 publication).  Artifacts pertinent to 

software-based analysis of EEG can be roughly divided into two categories: external 

electromagnetic interference and biophysical sources.  A third category, which 

might be loosely termed internal noise, arises from factors inherent to the design 

and specification of the recording equipment itself and will not be discussed here 

(though see 7

Artifacts from external electromagnetic (EM) interference derive from 

electrical or mechanical equipment generating an electromagnetic field in the 

vicinity of the recording equipment.  Prevent electromagnetic interference by 

 for an excellent discussion).  Because biophysical artifacts can be quite 

difficult to differentiate from epileptiform activity, it is extremely useful to have 

time-synchronized video available during the analysis of the EEG.    A
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ensuring proper setup, grounding, and shielding on all equipment.  By far the most 

common type of EM interference is line noise from the mains power supply.   

 Biophysical artifacts derive from the animal, rather than the environment.  

Common examples are movement artifact, respiratory artifact, cardiac artifact, 

scratching artifact, and grooming artifact.  As with EM artifact, the best way to 

prevent biophysical artifact is to ensure proper setup and grounding – including 

making sure that all cables are firmly connected and the headstage is located as 

close as possible to the animal.  Additionally, in order to reduce movement artifact, 

it may help to allow a 20 minute adaptation period in the recording cage for the 

animal, before initiating the EEG data acquisition 36

 Since artifacts cannot be completely prevented during recording, it is also 

required to detect and remove them during analysis.  While manual review of the 

data is probably the most widely accepted technique for artifact rejection, it may be 

infeasible for large data sets (and it is certainly tedious for any size data set).  

Accordingly, researchers have developed a number of algorithms to identify and 

remove artifacts from EEG recordings 

. 

37-39.  Because different datasets may be 

susceptible to different types of artifact, there is probably not a single optimal 

artifact rejection algorithm that may be utilized for all needs.  Rather, it is likely that 

each researcher may need to customize an artifact rejection algorithm for his or her 

needs.  Many techniques for artifact detection and removal in EEG utilize 

independent component analysis (ICA) at some stage in the analysis 40-42.  This 

technique decomposes the EEG into multiple independent sources, with the goal 

being to separate sources of artifact from sources of clean neural signal.  However, it 

is very difficult to control or validate how the ICA performs, and it is dependent 

upon the noise and neural signals being separable.  Another challenge for artifact 

rejection algorithms in general is that the artifact itself may evolve with time, or 

may take several related forms – for instance, many algorithms rely on the 

characterization of high amplitude signals, but perhaps at the expense of identifying 

lower amplitude artifacts from the same source.  Note that regardless of the 

approach used for artifact rejection, it is important to report the success rate for 
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rejection of artifacts (percent false rejections, percent correct rejections), against 

the “gold standard” of visual screening.  

 It is increasingly common for researchers to utilize various types of machine 

learning algorithms for artifact rejection and/or epileptiform event detection.  While 

there are many machine learning algorithms available for use in EEG analysis, all of 

them leverage a set of features to classify segments of data as artifact, epileptiform, 

or neither.  Features are measured properties of the signal, and are often analogous 

to the characteristics that neurologists use when interpreting EEG, such as increase 

in background activity, correlation across channels, and change in spectral 

content 43

  

.  A machine-learning algorithm can only be as effective as the features it 

utilizes – therefore, proper feature selection is a critical consideration for artifact 

rejection using machine learning techniques.  It is also very important to prevent 

overfitting by properly utilizing training and testing data sets, along with techniques 

such as cross-validation. 

-  

 

-

 

-

 .

-

 

-

-

  s. 

-
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Data storage and data sharing 

The choice of data format for storage is a fundamental consideration in 

neurophysiology.  Countless options exist, yet no single data format is optimal for all 

purposes – instead, the research team must choose a format that ensures long-term 

accessibility of the data while also meeting data storage and sharing constraints. 

The simplest data storage strategy stores recorded values as integers, most 

commonly using ASCII or Unicode format.  In this case, the recorded signal may be 

reconstructed by multiplying the integer values by a constant scaling factor, often 

called a voltage calibration constant.  Commonly these types of files are stored as .txt 

or .csv files.  This approach maximizes accessibility of the data – the files are human-

readable, and can be opened using any simple text editor software – but is the least 

efficient for storage and processing.  This strategy is most appropriate for sharing 

short clips of the recorded signal.  A more efficient strategy is to store data in binary 

format, often using an extension such as .bin.  Whereas integer values must be 

encoded using a scheme such as ASCII, binary files store data in 1’s and 0’s – more 

efficient for storage and processing, but not directly readable by humans.  That said, 

binary format is still relatively easy to edit, using a hex-editor or analysis 

environment capable of importing and exporting binary files (such as MATLAB). 

Some data storage schemes utilize compression algorithms to significantly 

reduce the file size of the data, with the drawback of making data interpretation and 

processing somewhat more complicated.  Probably the most common formats for 

storing compressed neurophysiological data are the MEF 44-46

It is crucial to store metadata, or information describing the acquired 

neurophysiological data, in a related file.  Metadata should include information 

relevant for the interpretation of the recorded data, such as acquisition system 

settings, electrode placement, recording montage, and experimental protocol.  

 and HDF5 

(http://www.hdfgroup.org/) formats.  It is also reasonable to archive stored data in 

a format such as .zip, though the compression achieved with this approach is not as 

appreciable as it is for .mef. 
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Commonly this type of information is stored in a header, or block of data placed at 

the beginning of a data file. 

Digital EEG acquisition systems usually store recorded data/metadata in 

their own specific binary data format, thus requiring either a format-specific file 

reader or knowledge of the precise file structure for import.  There are some 

commercially available software products, such as Spike2 and Persyst, which enable 

opening and converting between several file formats.   

While several versatile formats for neurophysiological data exchange and 

storage have been developed 19; 47, our group recommends utilizing the European 

Data Format (EDF/EDF+, http://www.edfplus.info/index.html) for most 

applications.  EDF is probably the most commonly used format in the field of 

epilepsy research, with a well-documented file structure 48; 49

Fortunately, powerful platforms already exist to enable the sharing of neural 

data 

 and many freely 

available tools for importing and exporting EDF files.  However, the EDF format may 

not be suitable for complex, high-bandwidth, high-sampling-rate datasets that are 

becoming increasingly more common in experimental neurophysiology – in such 

cases, the MEF format is likely preferable. 

50

 

.  General-purpose cloud-based storage utilities (Amazon S3, Google Drive, 

Dropbox, Box, Microsoft OneDrive, BlackBlaze) currently enable one to store several 

GB in the cloud for free, with larger storage amounts available with a paid 

subscription.  Additionally, neurophysiology-specific data storage tools exist, such 

as the iEEG Portal (www.ieeg.org), Epilepsiae (www.epilepsiae.eu), Physionet 

(www.physionet.org), and Blackfynn (www.blackfynn.com).  Some of these 

databases are grant-funded platforms for storing, sharing, and annotating 

arbitrarily large neurophysiology datasets.  

-  

 

-   
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Challenges and opportunities 

Many fundamental questions in the field of epilepsy (and neuroscience in 

general) remain unanswered.  Similarly, there are significant technical barriers to 

obtaining high-quality data and performing rigorous analyses necessary to answer 

these questions.  Fortunately, the most challenging obstacles represent the greatest 

opportunities for advancing the field.  Here, we have briefly discussed some of the 

latest trends in the field relevant to data acquisition and software analysis of 

electrophysiological signals in epilepsy, noting challenges that must be addressed 

and opportunities that may be available. 

One of the most fundamental challenges in experimental neurophysiology is 

improving the quality of the hardware used for data acquisition.  Opportunities in 

this realm include the development of recording systems with improved signal 

isolation capabilities, enhanced processing power, and advanced filtering algorithms 

to optimize the extraction of biological signals, even in noisy or suboptimal 

experimental conditions.  For example, new wireless neuro-telemetry systems 51; 52, 

facilitate the acquisition of relatively artifact-free data, and minimize animal 

discomfort for long-term recordings 53.  Similarly, recent advances in the design and 
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fabrication of electrodes has enabled higher resolution, higher density recording, 

and in some cases has permitted the acquisition of multiple modalities (e.g., MRI, 

calcium dye imaging) of information simultaneously 54

Improvements in hardware – faster processors, smaller devices, and new 

implantables – should facilitate the development of more advanced algorithms for 

the analysis of neurophysiological data.  For instance, improved real-time 

automated seizure detection and prediction algorithms would be useful not only for 

the investigation of the mechanisms of seizures and epileptogenesis in animal 

models, but would also be quite valuable for the development of on-demand 

treatment/neuromodulation devices in humans.  A significant challenge in this area 

is the lack of a “gold standard” for what constitutes a seizure – even among experts, 

inter-observer agreement hovers around 85%, so it is difficult to expect a device to 

improve upon this rate.  A major opportunity here is the development of a large, 

annotated data set, hosted on the cloud, and openly accessible by the community 

and usable for the development and testing of new detection and prediction 

algorithms.  Another opportunity is the leveraging of crowdsourcing platforms to 

facilitate the analysis of neural data by experts in other fields.  For example, in a 

recent seizure detection competition hosted on the Kaggle website 

(https://www.kaggle.com/c/seizure-detection), the winning algorithm achieved a 

detection accuracy of 0.96 (area under the curve). 

.  With these advances, 

however, comes the challenge of developing new methods for processing and 

visualizing such high-dimensional data. 

Another area of application for advanced data analysis is “wide-band” EEG – 

that is, EEG signals at the extreme low and high ends of the frequency spectrum.  In 

humans, slow activity transients (<0.5 Hz) have been described in premature 

neonates 55 and infantile spasms 56, while very low frequency activity (<1 Hz) 

coincides with burst periods in post-asphyxia human neonates 57 and lateralize with 

the seizure onset zone in adults with temporal lobe epilepsy 58.  High frequency 

oscillations, including ripples (80-250 Hz) and fast ripples (250-500 Hz), have been 

suggested as a novel epileptogenic biomarker not only in humans but also in 

animals 59.   
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 Finally, significant opportunities are available in the realm of data sharing 

and data storage 50, largely because of new possibilities afforded by the 

development of cloud-based computing.  For instance, it seems likely that in the 

near future, researchers will be able to upload their data to the cloud and process it 

using standardized analysis and detection algorithms, without the need to write 

customized analysis scripts or maintain expensive computing infrastructure.  The 

cloud might also allow the field to circumvent the wide variety of file formats 

currently used for data storage, many of which are proprietary to individual 

vendors.  This is an important challenge to address, since even though several 

attempts have been made over time to develop a “universal” format 44; 46; 48; 49; 60, the 

field is still nowhere close to a consensus.  Also critical for the field to address is to 

develop a universal standard for the storage of meta-data.  Hopefully, ongoing 

efforts towards developing a universal data storage format 47

Conclusion 

 will be successful and 

thus drastically lower the barrier to sharing data and reproducing analyses.  

In stark contrast to clinical practice, widely accepted standards and 

experimental protocols do not exist for epilepsy research utilizing animal models.  

In truth, it is probably not possible to develop universal standards for all animal-

based research on epilepsy, since the scope and intent of studies may vary 

drastically among laboratories.  Instead, researchers will likely need to develop 

experimental procedures and protocols as appropriate for their needs, but must 

focus on appropriately documenting and reporting the specifics of their setup and 

analysis to ensure reproducibility and to facilitate translation to the clinic. 

There are many important questions that researchers must consider when 

designing their recording setup and experimental protocol.  For instance, is it 

preferable to record from many channels for a short period of time, or to record 

from fewer channels for a longer period of time?  Is the intent of the experiment to 

establish that the subject does at some point develop seizures, or is the intent to 

document the number and severity of seizures?  Is it necessary to obtain very high-
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resolution recordings (e.g., high sampling frequency), for example to investigate 

high frequency activity in the model, or would a lower sampling frequency suffice?  

Our hope is that the present paper spurs investigators to consider such questions 

carefully while developing and implementing their experimental setup and analysis. 

 

 

This report was written by experts selected by the International League Against 

Epilepsy (ILAE) and was approved for publication by the ILAE. Opinions expressed 

by the authors, however, do not necessarily represent the policy or position of the 

ILAE. Reference to websites, products or systems that are being used for EEG 

acquisition, storage or analysis was based on the resources known to the co-authors 

of this manuscript and is done only for informational purposes.  The AES/ILAE 

Translational Research Task Force of the ILAE is a non-profit society that does not 

preferentially endorse certain of these resources, but it is the readers’ responsibility 

to determine the appropriateness of these resources for their specific intended 

experimental purposes.  
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Figure Legends 

Proper equipment setup and grounding.  A) Block diagram of sample 

equipment setup for electrophysiology recording.  Electrical signals from recording 

electrodes are referenced and amplified by the pre-amplifier, then filtered, digitized, 
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processed, and stored by the recording system (black dashed box at upper right).  

Note that the animal circuit (gray dashed box at lower left) is referenced to the 

animal common and is electrically isolated from the equipment circuit, which is 

referenced to the earth ground. B) Block diagram illustrating how proper grounding 

technique can prevent a ground loop.  Top, connecting systems I and II to earth 

ground at different points (V1 and V2) may enable unwanted current (IAC

 

) to flow 

between V1 and V2, introducing electromagnetic artifact on both systems and 

severely degrading recording quality.  Bottom, connecting both systems I and II to 

earth ground at a single point prevents a ground loop by eliminating the voltage 

drop between the two system grounds. 

  Analog-to-digital conversion.  A) In differential recording, a reference 

signal (middle) is compared to the acquired signal (top), and information common 

to both inputs is removed (“common mode rejection”).  The resulting signal 

(bottom) is free of noise components appearing on both channels.  B) Top, sampling 

a 20 Hz signal (black dots) at or above the Nyquist rate (sampled at 250 Hz here) 

enables the original signal to be accurately represented in digital form.  Bottom, 

sampling a 20 Hz signal (black dots) below the Nyquist rate causes the signal to alias 

at a lower frequency (red line).  C) Taking a raw signal (top row) and then 

downsampling (middle row) without first low-pass filtering the data may induce 

aliasing in the resulting signal (added peak in frequency domain at ~20 Hz).  Low-

pass filtering prior to downsampling (bottom row) prevents aliasing.  D) Bit 

resolution determines the precision of the signal digitization on the voltage scale. 

Whereas sampling with 4-bit resolution (top) uses 2^4=16 voltage levels to store 

data, sampling with 3-bit resolution (bottom) uses only 2^3=8 voltage levels to 

store data – reducing the resolution of the acquired signal. 

 

  Filter design and use.  A) The response of a sample finite impulse response 

(FIR) filter (red) returns to zero 26 samples after a very brief input (“impulse”), 

while the response of a sample infinite impulse response (IIR) filter  (black) decays 

asymptotically to zero.  B) Low-pass (gray), high-pass (black), and band-pass (red) 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

filters preferentially pass different frequency bands.  C) Cutoff frequency, 

passband/stopband ripple (pink boxes), and transition width (gray box) are 

important characteristics of filters, as illustrated in a magnitude vs. frequency plot.  

D) Linear filters (red) provide the same group delay (slope of phase vs. frequency 

relationship) for all frequencies, whereas nonlinear filters (black) do not.  E) 

Filtering a signal (black trace) with a linear filter (gray trace) introduces a constant 

delay (“group delay”) to all frequency components.  Therefore, correcting for the 

delay introduced by a linear filter is simple: shift the signal forward by the group 

delay (red trace).  
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Grounding and Referencing  

Ground Used in a general sense to refer to the reference point for an 

electrical circuit. 

Electrical isolation The physical and electrical separation of the animal circuit from 

the mains earth (equipment) circuit. 

Earth ground The reference point for the equipment electrical circuit – 

equivalent to the earth ground in the wall outlet. 

Animal common The reference point for the isolated portion of the equipment 

Ground loop An equipment setup in which two or more ground points on a 

circuit are at different voltage potentials. 

Star topology A setup in which equipment connected to an animal converges 

to a single earth connection. 

Amplification 

Preamplifier A low-gain amplifier that converts the neural signal from high-

impedance to low-impedance, also called the headstage or 

jackbox. 

Common-mode 

rejection 

The removal of signals common to both inputs of an amplifier in 

order to reject ambient noise from the recorded signal. 

Differential 

recording 

Recording a neural signal using a reference relatively close to 

the signal of interest. 

Referential 

recording 

Recording a neural signal using a common reference located 

relatively far from the signal of interest. 

Recording 

montage 

The grouping of source and reference electrodes used for 

collecting and reviewing data. 

Video Monitoring 

Video-EEG Video monitoring in combination with EEG acquisition. 

Signal Digitization 

Analog-to-digital An electronic component that samples a continuous input signal 
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converter and converts it to a series of discrete measurements. 

Sampling 

frequency 

The frequency at which the continuous input signal is 

converted to discrete measurements. 

Nyquist rate The minimum sampling frequency required for a given 

application, equal to twice the maximum frequency content of 

the input signal. 

Aliasing Signal distortion occurring when high frequency signal content 

incorrectly appears as lower frequency signal content during 

data acquisition or review. 

Nyquist frequency The maximum input frequency that may be accurately captured 

at a given sampling frequency, equal to one half of the sampling 

frequency. 

Downsampling Reducing the sampling frequency of data. 

Bit resolution Refers to the number of steps the analog-to-digital converter 

will use to digitize the input signal – calculated as two to the 

power of the number of bits. 

Dynamic range The ratio between the largest signal a system can process and 

the noise floor. 

Voltage conversion 

factor 

A constant scaling factor used to reconstruct a digitized signal 

(stored as integers) to a signal represented in volts. 

Filtering 

Finite impulse 

response (FIR) 

filter 

A filter with a time-limited response to a very brief input. 

Infinite impulse 

response (IIR) 

filter 

A filter with a non-time-limited response to a very brief input. 

Low-pass filter A filter that preferentially passes frequency content below a 

specified cutoff frequency, while removing frequency content 

above the cutoff frequency. 
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High-pass filter A filter that preferentially passes frequency content above a 

specified cutoff frequency, while removing frequency content 

below the cutoff frequency. 

Band-pass filter A filter that preferentially passes frequency content between 

two cutoff frequencies, while removing all other frequency 

content. 

Group delay The time delay of different frequency components of a filtered 

signal, equal to the derivative of the phase versus frequency 

response. 

Filter Design 

Sinc function A function commonly used to build digital FIR filters,                     

Notch filter A filter that removes a specific frequency band, usually 50 or 60 

Hz (the frequency of the mains power supply). 

Spectral Analysis 

Fast Fourier 

Transform (FFT) 

An efficient algorithm for decomposing a signal into a series of 

sine waves of different frequencies, often used for spectral 

analysis. 

Joint time-

frequency analysis 

(JTFA) 

A class of techniques that express a signal in both time and 

frequency domains simultaneously, most commonly in order to 

track the evolution of the signal spectral content over time. 

Short-term Fourier 

transform (STFT) 

A JTFA algorithm in which an FFT is repeatedly calculated for 

brief, non-overlapping segments of the recorded signal. 

Spectrogram A two-dimensional heatmap plot of the frequency content of a 

signal versus time, calculated using Fourier analysis. 

Scalogram A two-dimensional heatmap plot of the frequency content of a 

signal versus time, calculated using wavelets. 

Stationarity An assumed property of time-series data which posits that the 

statistical properties of a signal (mean, variance, etc) do not 
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fundamentally change over the duration of recording. 

Artifact Recognition and Rejection 

Features Quantitative measures of a recorded signal. 

Data Storage and Data Sharing 

Metadata Information describing stored data, such as sampling 

frequency, date, method of collection, etc. 

Header A section of a data file, usually placed at the beginning of a file, 

which contains information (metadata) explaining the rest of 

the data in the file. 

  

Table 1.  Definitions of technical terms used throughout the manuscript.  
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Filter 

type Filter Name 

Transition 

Width 

Passband 

ripple 

Stopband 

performance 

Computational 

Efficiency 

Phase 

delay 

FIR 

Equiripple ++ +++ ++ ++ Linear 

Least-squares + ++ +++ + Linear 

Windowed sinc: 

Hamming ++ ++ ++ + Linear 

Windowed sinc: 

rectangular +++ + + + Linear 

Windowed sinc: 

Kaiser + +++ +++ + Linear 

IIR 

Butterworth + ++ ++ +++ Nonlinear 

Chebyshev I ++ + +++ +++ Nonlinear 

Chebyshev II ++ +++ + +++ Nonlinear 

Elliptic +++ + + +++ Nonlinear 

 

Table 2.  Relative advantages and disadvantages of digital filters commonly used in 

neuroscience.  +++ = excellent performance; ++ = moderate performance; + = 

relatively poor performance.   
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