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Abstract 

Each of us as learners had different language experiences, yet 
we have converged on broadly the same language system. From 
diverse, noisy samples, we end up with similar competence. 
How so? Some views hold that there are constraints in the 
learner’s estimation of how language works, as expectations of 
linguistic universals pre-programmed in some innate language 
acquisition device. Others hold that the constraints are in the 
dynamics of language itself – that language form, language 
meaning, and language usage come together to promote robust 
induction by means of statistical learning over limited samples. 
The research described here explores this question with regard 
English verbs, their grammatical form, semantics, and patterns 
of usage. Analyses of a 100-million-word corpus show how 
Zipfian scale-free distributions of usage ensure robust learning 
of linguistic constructions as categories: constructions are (1) 
Zipfian in their type-token distributions in usage, (2) selective in 
their verb form occupancy, and (3) coherent in their semantics. 
Parallel psycholinguistic experiments demonstrate the 
psychological reality of these constructions in language users. 

Keywords: Language as a Complex Adaptive System, Zipf’s 
law, Verb Argument Constructions; Syntax-semantics interface; 
Usage-based models.  

Verb Argument Constructions in Usage, 
Acquisition, and Mind 

As a child, you engaged your parents and friends talking 
about things of shared interest using words and phrases 
that came to mind, and all the while you learned language. 
We were privy to none of this. Yet somehow we have 
converged upon a similar-enough ‘English’ to be able to 
communicate here. Our experience allows us similar 
interpretations of novel utterances like “the ball mandoolz 
across the ground” or “the teacher spugged the boy the 
book.” You know that mandool is a verb of motion and 
have some idea of how mandooling works – its action 
semantics. You know that spugging involves transfer, that 
the teacher is the donor, the boy the recipient, and that the 
book is the transferred object. How is this possible, given 
that you have never heard these verbs before? Each word 
of the construction contributes individual meaning, and 
the verb meanings in these Verb-Argument Constructions 
(VACs) is usually at the core. But the larger configuration 
of words carries meaning as a whole too. The VAC as a 
category has inherited its schematic meaning from all of 

the examples you have heard. Mandool inherits its 
interpretation from the echoes of the verbs that occupy 
this VAC – words like come, walk, move, ..., scud, skitter 
and flit - in just the same way that you can conjure up an 
idea of my dog Phoebe, who you have never met either, 
from the conspiracy of your memories of dogs.  

Knowledge of language is based on these types of 
inference, and verbs are the cornerstone of the syntax-
semantics interface. To appreciate your idea of Phoebe, 
we would need a record of your relevant evidence (all of 
the dogs you have experienced, in their various forms and 
frequencies) and an understanding of the cognitive 
mechanisms that underpin categorization and abstraction. 
In the same way, if we want a scientific understanding of 
language knowledge, we need to know the evidence upon 
which such psycholinguistic inferences are based, and the 
relevant psychology of learning. These are the goals of 
our research. To describe the evidence, we take here a 
sample of VACs based upon English form, function, and 
usage distribution. The relevant psychology of learning, 
as we will explain, suggests that learnability will be 
optimized for constructions that are (1) Zipfian in their 
type-token distributions in usage (the most frequent word 
occurring approximately twice as often as the second 
most frequent word, which occurs twice as often as the 
fourth most frequent word, etc.), (2) selective in their verb 
form occupancy, and (3) coherent in their semantics. We 
assess whether these factors hold for our sample of VACs 
in a large corpus of usage. Parallel psycholinguistic 
experiments demonstrate the psychological reality of 
these constructions in language users. 

Construction grammar and Usage 
Constructions are form-meaning mappings, 
conventionalized in the speech community, and 
entrenched as language knowledge in the learner’s mind. 
They are the symbolic units of language relating the 
defining properties of their morphological, lexical, and 
syntactic form with particular semantic, pragmatic, and 
discourse functions (Goldberg, 2006). Verbs are central in 
this: their semantic behavior is strongly intertwined with 
the syntagmatic constraints. Construction Grammar 
argues that all grammatical phenomena can be understood 
as learned pairings of form (from morphemes, words, 
idioms, to partially lexically filled and fully general 



phrasal patterns) and their associated semantic or 
discourse functions. Such beliefs, increasingly influential 
in the study of child language acquisition, emphasize 
data-driven, emergent accounts of linguistic 
systematicities (e.g., Tomasello, 2003). 

Frequency, learning, and language come together in 
usage-based approaches which hold that we learn 
linguistic constructions while engaging in communication 
(Bybee, 2010). Fifty years of psycholinguistic research 
substantiates usage-based acquisition through its 
demonstrations of language processing being exquisitely 
sensitive to usage frequency at all levels, from phonology, 
through lexis and syntax, to sentence processing (Ellis, 
2002). Frequency is a key determinant of acquisition 
because ‘rules’ of language emerge as categories from the 
conspiracy of concrete exemplars of usage following 
statistical learning mechanisms relating input and learner 
cognition.  

Psychological analyses of the learning of constructions 
as form-meaning pairs is informed by the literature on the 
associative learning of cue-outcome contingencies where 
the usual determinants include: (1) input frequency (type-
token frequency, Zipfian distribution), (2) form (salience 
and perception), (3) function (prototypicality of meaning), 
and (4) interactions between these (contingency of form-
function mapping) (Ellis & Cadierno, 2009). 

Determinants of construction learning 
In natural language, Zipf’s law (Zipf, 1935) describes 
how the highest frequency words account for the most 
linguistic tokens. Zipf’s law states that the frequency of 
words decreases as a power function of their rank in the 
frequency table. If pf is the proportion of words whose 
frequency in a given language sample is f, then pf ~ f -b, 
with b ! 1. Zipf  showed this scaling relation holds across 
a wide variety of language samples. Subsequent research 
generalises this law as a linguistic universal: it holds 
acrioss many language events (e.g., frequencies of 
phoneme and letter strings, of words, of grammatical 
constructs, of formulaic phrases, etc.) across scales of 
analysis (Solé, Murtra, Valverde, & Steels, 2005). 

Goldberg, Casenhiser & Sethuraman (2004) 
demonstrated that in samples of child language 
acquisition, for a variety of verb-argument constructions 
(VACs), there is a strong tendency for one single verb to 
occur with very high frequency in comparison to other 
verbs used, a profile which closely mirrors that of the 
mothers’ speech to these children. They argue that this 
promotes acquisition since the pathbreaking verb which 
accounts for the lion’s share of instances of each 
argument frame is the one with the prototypical meaning 
from which the construction is derived. In the early stages 
of learning categories from exemplars, acquisition is 
optimized by the introduction of an initial, low-variance 
sample centered upon prototypical exemplars. This low 
variance sample allows learners to get a fix on what will 
account for most of the category members. The bounds of 

the category are defined later by experience of the full 
breadth of exemplar types. 

Ellis and Ferreira-Junior (2009) investigate effects upon 
naturalistic second language acquisition of type/token 
distributions in the islands comprising the linguistic form 
of three English verb-argument constructions (VL verb 
locative, VOL verb object locative, VOO ditransitive). 
They show that VAC verb type/token distribution in the 
input is Zipfian and that learners first acquire the most 
frequent, prototypical and generic exemplar (e.g. put in 
VOL, give in VOO, etc.). Their work further illustrates 
how acquisition is affected by the frequency and 
frequency distribution of exemplars within each island of 
the construction (e.g. [Subj V Obj Oblpath/loc]), by their 
prototypicality, and, using a variety of psychological and 
corpus linguistic association metrics, by their contingency 
of form-function mapping. The fundamental claim that 
Zipfian distributional properties of language usage helps 
to make language learnable has thus been explored for 
these three VACs, at least. It remains important to explore 
its generality across a wider range of the constructicon. 
We do this here for a sample of 23 constructions. 

Corpus analyses of 23 VACs in 100-million 
words of usage 

Because our research aims to empirically determine the 
semantic associations of particular linguistic forms, it is 
important that such forms are initially defined by bottom-
up means that are semantics-free. Therefore we use the 
definition of VACs presented in the Verb Grammar 
Patterns that arose out of the Cobuild project (Hunston & 
Francis, 1996). There are over 700 patterns of varying 
complexity in this volume. In subsequent work we hope 
to analyze them all in the same ways. Here we take a 
convenience sample of 23 VACs, most of which follow 
the verb – preposition – noun phrase structure, such as V 
into n, V after n, V as n (Goldberg, 2006), but we also 
include other classic examples such as the V n n 
ditransitive, and the way construction.  

Method 

Step 1 Construction inventory: Cobuild Verb 
Patterns The VACs described in Verb Grammar Patterns 
take the form of word class and lexis combinations, such 
as V across n: 

The verb is followed by a prepositional phrase which 
consists of across and a noun group.  
This pattern has one structure: 
* Verb with Adjunct. 
 I cut across the field. 
 

Step 2 Corpus: BNC XML Parsed Corpora 
To get a representative sample of usage, the verb type-
token distribution of these VACs was determined in the 
100 million word British National Corpus (BNC, 2007) 
parsed using the XML version of the BNC using the 



RASP parser. For each VAC, we translated the formal 
specifications from the Cobuild patterns into queries to 
retrieve instances of the pattern from the parsed corpus.  
 
Step 3  Searching construction patterns 
Using a combination of part-of-speech, lemma and 
dependency constraints we constructed queries for each of 
the construction patterns. For example, the V across n 
pattern was identified by looking for sentences that have a 
verb form within 3 words of an instance of across as a 
preposition, where there is an indirect object relation 
holding between across and the verb and the verb does 
not have any other object or complement relations to 
following words in the sentence.  
 
Step 4 A frequency ranked type-token VAC profile 
The sentences extracted using this procedure outlined for 
each of the 23 construction patterns produced verb type 
distributions like the following one for the V across n 
VAC pattern: 

come 483     
walk 203     
cut 199 ...    
run 175 veer 4   
...  slice 4 ...  
  ...  navigate 1 
    scythe 1 
    scroll 1 

These distributions appear to be Zipfian, exhibiting the 
characteristic long-tailed in a plot of rank against 
frequency. We generated logarithmic plots and linear 
regression to examine the extent of this trend using 
logarithmic binning of frequency against log cumulative 
frequency. Figure 1 shows such a plot for verb type 
frequency of the V across n construction, Figure 2 shows 
such the same type of plot for verb type frequency of the 
ditransitive V of n construction. Both distributions 
produce a good fit of Zipfian type-token frequency. 
Inspection of the construction verb types, from most 
frequent down, also demonstrates that the lead member is 
prototypical of the construction and generic in its action 
semantics. 

Since Zipf’s law applies across language, the  Zipfian 
nature of these distribitions is potentially trivial. But they 
are more interesting if the company of verb forms 
occupying a construction is selective, i.e. if the 
frequencies of the particular VAC verb members cannot 
be predicted from their frequencies in language as a 
whole. We measure the degree to which VACs are 
selective like this using a chi-square goodness-of-fit test 
and the statistic ‘1-tau’ where Kendall’s tau measures the 
correlation between the rank verb frequencies in the 
construction and in language as a whole. Higher scores on 
both of these metrics indicate greater VAC selectivity. 
Another useful measure is Shannon entropy for the 
distribution. The lower the entropy the more coherent the 
VAC verb family.  

 

Figure 2 Type-token distribution for V of n 

Figure 1 Type-token distribution for V across n 



Step 5 Determining the contingency between verbs 
and VACs 
Some verbs are closely tied to a particular construction 
(for example, give is highly indicative of the ditransitive 
construction, whereas leave, although it can form a 
ditransitive, is more often associated with other 
constructions such as the simple transitive or intransitive). 
The more reliable the contingency between a cue and an 
outcome, the more readily an association between them 
can be learned (Shanks, 1995), so constructions with more 
faithful verb members should be more readily acquired. 
The measures of contingency adopted here are (1) 
faithfulness – the proportion of tokens of total verb usage 
that appear this particular construction (e.g., the 
faithfulness of give to the ditransitive is approximately 
0.40; that of leave is 0.01, (2) directional one-way 
associations, contingency ("P Construction # Word: give 
0.314, leave 0.003) and ("P Word # Construction: give 
0.025, leave 0.001), and (3) directional mutual 
information (MI Word # Construction: give 16.26, leave 
11.73 and MI Construction # Word: give 12.61 leave 
9.11), an information science statistic that has been shown 
to predict language processing fluency. 
 
Step 6  Identifying the meaning of verb types 
occupying the constructions 
Our semantic analyses use WordNet (Miller, 2009). 
WordNet places words into a hierarchical network. At the 
top level, the hierarchy of verbs is organized into 559 
distinct root synonym sets (‘synsets’ such as move1 
expressing translational movement, move2 movement 
without displacement, etc.) which then split into over 
13,700 verb synsets. Verbs are linked in the hierarchy 
according to relations such as hypernym and hyponym. 
Various algorithms to determine the semantic similarity 
between WordNet synsets have been developed which 
consider the distance between the conceptual categories 
of words, as well as considering the hierarchical structure 
of the WordNet (Pedersen, Patwardhan, & Michelizzi, 
2004). Polysemy is a significant issue when analyzing 
verb semantics. For example, in WordNet the lemma 
forms move, run and give are found in 16, 41 and 44 
different synsets respectively. To address this we applied 
word sense disambiguation tools specifically designed to 
work with WordNet (Pedersen & Kolhatkar, 2009) to the 
sentences retrieved at Step 3.  
Step 7 Generating distributionally-matched, control 
ersatz constructions (CECs) 
Because so much of language distribution is Zipfian, for 
each of the 23 VACs we analyze, we generate a 
distributionally-yoked control which is matched for type-
token distribution but otherwise randomly selected to be 
grammatically and semantically uninformed. We refer to 
these distributions as ‘control ersatz constructions’ 
(CECs). We then assess, using paired-sample tests, the 
degree to which VACs are more coherent than expected 
by chance in terms of the association of their grammatical 

form and semantics. We show such comparisons for the  
VACs and their yoked CECs later in Table 1. 
 
Step 8 Evaluating semantic cohesion in the VAC 
distributions 
The VAC type-token lists shows that the tokens list 
captures the most general and prototypical senses (come, 
walk, move etc. for V across n and give, make, tell, offer 
for V n n), while the list ordered by faithfulness highlights 
some quite construction specific (and low frequency) 
items, such as scud, flit and flicker for V across n. Using 
the structure of WordNet, where each synset can be traced 
back to a root or top-level synset, we compared the 
semantic cohesion of the top 20 verbs, using their 
disambiguated WordNet senses, from a given VAC to its 
matching CEC. For example, in V across n, the top level 
hypernym synset travel.v.01 accounts for 15% of tokens, 
whereas the most frequent root synset for the matching 
CEC, pronounce.v.1, accounts for just 4% of the tokens. 
The VAC has a more compact semantic distribution in 
that 5 top level synsets account for a third of the tokens 
compared to the 21 required to account for the same 
proportion for the CEC. 
We use various methods of evaluating the differences 
between the semantic sense distributions for each VAC-
CEC pair. First, we measure the amount of variation in 
the distribution using Shannon entropy according to (1) 
number of sense types per root (V across n VAC: 2.75 
CEC: 3.37) and (2) the token frequency per root (V 
across n VAC: 2.08 CEC: 3.08), the lower the entropy the 
more coherent the VAC verb semantics. Second, we 
assess the coverage of the top three root synsets in the 
VAC and its corresponding CEC. Third, we quantify the 
semantic coherence of the disambiguated senses of the top 
20 verb forms in the VAC and CEC distributions using 
measures of semantic similarity using Pedersen et al’s 
(2004) six measures in their Perl WordNet::Similarity 
package, three (path, lch and wup) based on the path 
length between concepts in WordNet Synsets and three 
(res, jcn and lin) that incorporate a measure called 
‘information content’ related to concept specificity. For 
instance, using the res similarity measure the top 20 verbs 
in V across n VAC distribution have a mean similarity 
score of 0.353 compared to 0.174 for the matching CEC. 

Results 
 Our core research questions concern the degree to which 
VAC form, function, and usage promote robust learning. 
As we explained in the theoretical background, the 
psychology of learning as it relates to these 
psycholinguistic matters suggests, in essence, that 
learnability will be optimized for constructions that are 
(1) Zipfian in their type-token distributions in usage, (2) 
selective in their verb form occupancy, (3) coherent in 
their semantics. Their mean values on the metrics we have 
described so far are contrasted for the 23 VACs and their 
yoked CECs in Table 1.  



 

These results demonstrate: 
 (1) Type-token usage distributions  All of the VACs 
are Zipfian in their type-token distributions in usage 
(VACs: M $ = -1.00, M R2 = 0.98). So too are their 
matched CECs (M $ = -1.12, M R2 = 0.96). Inspection of 
the graphs for each of the 23 VACs shows that the highest 
frequency items take the lion’s share of the distribution 
and, as in prior research, the lead member is prototypical 
of the construction and generic in its action semantics. 
(2) Family membership and Type occupancy VACs are 
selective in their verb form family occupancy. There is 
much less entropy in the VACs than the CECs, with fewer 
forms of a less evenly-distributed nature. The distribution 
deviation (%2) from verb frequency in the language as a 
whole is much greater in the VACs than the CECs. The 
lack of overall correlation (1-&) between VAC verb 
frequency and overall verb frequency in the language is 
much greater in the VACs. Individual verbs select 
particular constructions (M MIw-c) and particular 
constructions select particular words (M "Pc-w). Overall 
then, there is greater contingency between verb types and 
constructions. 
(3) Semantic coherence VACS are coherent in their 
semantics with lower type and token sense entropy. The 
proportion of the total tokens covered by their three most 
frequent WordNet roots is much higher in the VACs. 
Finally, the VAC distributions are higher on the Pedersen 
semantic similarity measures (lch and res). 

Discussion 
 We have shown for these 23 constructions: 
• The frequency distribution for the types occupying the 

verb island of each VAC are Zipfian. 

• The most frequent verb for each VAC is much more 
frequent than the other members, taking the lion’s 
share of the distribution. 

• The most frequent verb in each VAC is prototypical of 
that construction’s functional interpretation, albeit 
generic in its action semantics. 

• VACs are selective in their verb form family 
occupancy: 
o Individual verbs select particular constructions. 
o Particular constructions select particular verbs. 
o There is greater contingency between verb types and 

constructions. 
• VACs are coherent in their semantics. 

Psychology theory relating to the statistical learning of 
categories suggests that these are the factors which make 
concepts robustly learnable. We suggest, therefore, that 
these are the mechanisms which make linguistic 
constructions robustly learnable too, and that they are 
learned by similar means.  

Assessing Psychological Validity of these 
VAC structures 

We have shown these structural properties of VACs in 
usage. But are these also the structural properties of VAC 
representations in the minds of language users? Are these 
structural properties psychologically valid? We used free 
association tasks to have people think of the first word 
that comes to mind to fill the V slot in a particular VAC 
frame. The range of the verbs that they generate, and their 
speed of access, inform us about the representation of 
these VACs in the human mind. 

Method 
A convenience sample of 274 native English speakers 
volunteered for a free-association task over the internet. 
They were asked to type the first verb that came to mind 
to fill frames for 20 VACS given as pronoun_v-
slot_determiner frames such as he __ across the... , it __ 
across the... , he __ of the... , it __ of the..., etc. Their 
responses were collated across VACs and the 
distributions assessed for the degree to which they 
accorded the usage statistics detemined in the previous 
corpus analyses. 

Results 
There were strong correspondences between people’s free 
associations to particular VAC frames and the frequencies 
of verb exemplars in natural usage.  We illustrate this in 
Figures 3 and 4 with the data for the V across n and V of 
n VACs. The fact that frames even as apparently abstract 
as v of n generate clusters of appropriate mentation verbs 
such as think, know, perception verbs such as speak, hear, 
tell, and perception verbs such as smell, reek make it clear 
that there are strong psychological associations between 
particular verbs semantics and particular VAC 
syntagmatics, i.e., that VACs are psychologically real. 

Table 1: A comparison of 23 VACs and CECs for 
distribution, contingency, and semantic cohesion 

 
Pattern Mean  

VACs 
Mean  
CECs 

p value for 
paired t-test 

(d.f. 22) 
R2 0.98 0.96 1.6 e-06 *** 
$ -1.00 -1.12 4.4 e-06 *** 

Entropy 4.97 5.54 4.9 e-04 *** 
%2 69412 698 5.5 e-18 *** 
1-& 0.76 0.21 1.9 e-03 *** 

Mean MIw-c 14.16 12.8 1.1 e-02 *** 
Mean "Pc-w 0.006 0.004 5.1 e-05 *** 

Type entropy per 
root synset 

3.1 3.51 1.7 e-08 *** 

Token entropy 
per root synset 

2.41 3.08 1.2 e-10 *** 

Proportion of 
tokens covered 
by top 3 synsets 

0.26 0.11 3.2 e-08 *** 

lch 0.134 0.094 2.0 e-04 *** 
res 0.237 0.22 1.6 e-06 *** 



 

  

Conclusions – Robustness in Language and 
Other Complex Adaptive Systems 

We have shown that Zipfian scale-free type-token 
distributions in language focus-forge together 
characteristic semantic functions and characteristic 
syntactic frames, both in language usage and in language 
cognition. Complex systems are characterised by their 
robustness to different kinds of perturbations, by their 
scale-free properties, and by their structures emerging 
from the interactions of agents and components at many 
levels (Page, 2009). We believe that the robustness of 
language emerges as a consequence of its dynamics as a 
complex adaptive system (Beckner et al., 2009). 
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