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ABSTRACT

Purpose: To evaluate théeasibility of using an objective computer aided systerassess

bladder cancer stage CT Urography (CTU).

M aterialsand,Methods: A data set consisting of 84 bladder cancer lesions from 76 CTU cases
was used taevelopthe computerized system for bladder cancer staging based on machine
learningapproaches. The cases wgreupednto two classes based on patigital stage-T2

or below T2, which is the decision threshold for neoadjuvant chemotherapy treatmeatlyli

There were 43 cancers below stage T2 and 41 cancers at stage T2 or above. All 84 lesions were
automatically segmented using our previously developediatiized cascaded level sets (Al
CALS) method..Morphological and texture features were extracted. The features were divided
into subspaces.of morphological features only, texture features only, and a combined $et of bot
morpholegical-and teurefeatures The dataet was split into Set 1 and Set 2 for il cross
validation. $epwise feature selection was used to sd¢lemmost effective feature# linear
discriminant analysis (LDA) neuralnetwork(NN), a support vector machin&yM), and a
randomibrest(RAF) classifierwere used to combine the feature® @ single scoreThe
classification accuracgf the four classifiersvascompared using the area under ribeeiver

operating characteristiRQOC) curve (A).

Results: Based ontte texture features onlthe LDA classifier achieved a test Af 0.91 on Set

1 and a test Aof 0.88 on Set 2. The test Af the NN classifier for Set 1 and Set 2 were 0.89
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and 0.92respectively. The SVM classifier achieved tegtofA0.91 on Set 1 and test Af 0.89

on Set 2. The testfof the RAF classifier for Set 1 and Set 2 was 0.89 and Sfectively.

The morphological featuredone the texture features alone, and the combined feature set
achieved comparable classificen performance

Conclusion: The predictive model developed in this study shows proasseclassification tool

for stratifying bladder cancer into two staging categories: greater than or equal to stage T2 and

below stage T2:

Keywords: Radiomics, Computer-Aided Diagnosis, CT Urography, Bladder Cancer Staging,

SegmentatioppFeature Extraction, Classification, Machine Learning.

1. INTRODUCTION
Bladder cancer.is one of the most common cancers affecting both men and .wibrcam cause
substantial'merbidity and mortality among the patients with the disease. In 28J&timated
that there will'be 79,030 new cases and 16,870 deaths from bladdet.caneen 42
Americans:will be diagnosed with bladder cancer in their lifetime and 9 out of 10 patients with
this cancerare over the age of53 he average age of diagnosis i& Approximately half of
all bladder cancer cases are first found while the cancer is still confined to the inner wall of the
bladder and has not invaded into deeper layers or distant parts of theBdadgier cancer has a
recurrencerrate,of 580 percent and requires constant surveillances ffiakes it the most
expensive eancer to treat, requiring a total of $4.1 billion yearly, on a per patisrinkihe
United States Bladder cancer can be divided into three categories that include noninvasive,
superficial, and.invasive. The initial treatment for bladder cancer is transurethral resection of the
bladder tumor (T URBT), which removes the tumor from the bladder and also helps provide
information.regarding the stage of the cahtdladder cancer is staged in order to determine
treatment.options and estimate a prognosis for the patient. Accurate stagidgptbei
physician with,information about the extent of the cancer. The tumor stages T refedapth
of the penetration of the tumor into the layers of the bladder. TO indicates no primary Tdm
indicates that the tumor has invaded the connective tissue under the @pitfidiindicates that

the tumor has invaded the bladder muscle, T3 indicates that the tumor has invaddg the fa
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tissue around the bladder, and T4 indicates that the tumor has spread beyond thsuatiytti

other areas such as the pelvic wall, uterus, prostate or abdomirigFigalll). An example of
bladder cancer stage T2 is peated in Fig. 2.

The accurate staging of bladder cancer is crucial to providing proper treabntiempatient.
Superficial diseases (under stage T2) can be managed with less aggressive treatment than
invasive diseases (stage T2 and abvé&here are two types of staging for bladder cancer -
clinical and“pathological. The clinical stage is the physicians’ best estimate éxtéime of the

cancer based'on physical exams and imaging. The pathological stage is determined by analysis
of the tissue collected from the cancer after biopsy, tumor resection or bladder cystectomy. The
accuracy of the staging depends on the completetr@s®f the tumor. Incomplete resection of

the tumor mayreduce the reliability of the staging at the beginning of the tuenaigement

process Bladder cystectomy ensures that the entire lelatidnor is present for pathological

review; therefore, the pathological staging is based on the histological revies@fstectomy
specimeh Adjuvant chemotherapy is used in patients with locally advanced bladder rancer
order to reduce’the chances of cancer recurfefiogving radical cystectonfy Neoadjuvant
chemotherapysis used prior to radical cystectomy in order to reduce the tumuwefeize

surgical removal; for exampla,cisplatinbased regimen has been shown to decrease the
probability-of finding extravesical disease and improve survival when comparetidal ra
cystectomy alorfe®.

This article is protected by copyright. All rights reserved



110
111
112
113
114
115
116
117
118
119
120

No primary tumor in the
Stage TO > P blgdder

l Tumor in the connective
Stage Tl p—-=>pp tissue but does not
involve bladder wall

muscle

Tumor has spread to thl
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Tumor has spread to
Stage T4 == other nearby organs

Figure 1. Bladder cancer stage grading sadddinition.

Correct staging of bladder cancer is crucial for the decision of neoadjuvant bbespgt
treatment@nd minimizing the risk ohder-treatment or ovéreatment. Patients with stage T2 to
T4 carcinomas of the bladder are recommended for treatment with neoadjuvant chegmother
Studies found that up to 50% of the patients who are estimated to have a T1 dick@isalat
staging & understaged and later upstaged after radical cystectdinyhis inaccuracy in

staging can partly be attributed to the subjectivity and variability of clmsdia utilizing various
diagnostiesiinformation. The purpose of this study is to develop an objective desipiport
system that can potentially reduce the risk of uitidsatment or over-treatment by merging

radiomic information in a predictive model using statistmaticomes and machine learning.
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Bladder cancer

Figure2. Urinary Bladder CT. The bladder cancer is marked and clearlyleisihe cancer

stage,is T2

2. MATERIALSAND METHODS
2.1 Data Set
The data _cellection protocol was approved by our institutional review board and i&HIPA
compliant."Patient informed consent was waived for this retrospective study. Osetdata
consisted of 84 bladder cancer lesions from 76 bladder cancer CTU cases ciotecieatient
files without additional imaginépr research purposéfhe CTU scans in this data set were

acquired at an image slice interval of 0.625 to 1.25 mm using 120 kVp and 120-280 mA. The
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data set consisted o2 2on-contrast case@?2 lesion}, 22 earlyphasecontrastenhanced cases
(22 lesions), and 32 delayed-phasatrastenhanced cas€40 lesios). Per imaging protocol,
theearly phase contraghhancedmagesare obtained 60 seconds following the initiation of a
contrast injection The delayegphase contrastnhancedmages are obtained 12 min after the
initiation of centrast injectionThetype of scan a patient receives is determined by the protocol
of the hospital performing the scan. Our data set includes patients referred topatat fays
treatment’'so'that some scans were performed at outside hospitals and followed different scanning
protocols,resulting in scans with inconsistent corieasiancement phase. A patient may also
get a nongontrast scan due to risk factors, such as allergy to the contrast media, asthma, renal
insufficieney ssignificant cardiac disease, or anxfety

Forall cases, clinical and pathological staging were performed during the patient’s
clinical care. Cystectomy was performed after completing the coliremadjuvant
chemotherapy. The primary chemotherapy regimen used fpatiemtsn our data setvere
MVAC, which is a combination of four medications: Methotrexate, Vinblastine, Doxonybi
and Cisplatin=Stage T2 is identified to be clinically important as a decisiahthdeor
neoadjuvant chemotherapy treatment. The stage at the beginning of the tumor management
process, based on the clinical staging and pathological staging was used as a reference standard
of the tumeor'stage for our study.

In addition, for all bladder cancer lesions a radiologist measured the longestatiam
the pre-treatment scans by using an electronic caliper provided by an in-house developed
graphical userinterface

The:84 bladder cancer lesions were separated into two classes. The first class consisted

of 41 cancers that were stage T2 or above and the patients were treated with neoadjuvant
chemotherapy. The second class consisted of 43 cancers that were below stage T2 and patients
were not referred to neoadjuvant chemotherapy treatment. The data set wakttradsmly
by case into,two sets with 42 cancers each while keeping the proportion of cancers between the
two classesssimilar. The first set (Set 1) consisted of 22 cancers below stage T2 and 20 cancers
stage T2 orabove. The second set (Set 2) consisted of 21 cancers below stage T2 and21 cancer

stage T2 or above.
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Figure 3. ' Distribution oftumorsizes(thelongestdiametes) for Set 1 and Set 2. (a) SetThe average
tumor sizes of stage < T2 arelT2 were26.4:17.3 mmand45.6+£19.1 mnrespectively. If) Set 2:The

averagdumor sizes of stage < T2 ard’2 were27.3t10.8 mm and 40.6+x17.3 mm respectively

In Setl, two patients had two lesions and one patient had three lesions. In Set 2, tergg pati
had two lesiondn Set 1, the average tumor sizes (the longest diameters) of stage <J2and
were 26.4+17.3 and 45.6+£19.1 mm, respectively (Fig. 3a). In Set 2verage tumor sizes (the
longest diameters) of stage <T2 arik were 27.3£10.8 mm and 40.6+£17.3 mm, respectively
(Fig. 3b).

2.2 Segmentation of Bladder Lesionson CT Urography

Our previously developed method for bladder lesion segmentation usintpaniaali zed
cascaded levelss@Al-CALS) was used. Briefly, the system consists of three stagesiti@dtide
preprocessing, initial segmentation, and 3D level set segmentgigpmrt). The segmentation of
bladder lesions is often difficult as some lesions are located in theambrast enhanced region
of the bladder such that contrast between the lesiotherglrrounding backgrouneas low

Additionally, lesions often have irregular boundaries and can be very small and sutftle. Ea
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lesion in the data set was marked by a bounding box as an input volume of interest (VOI). The
lateral dimensions of the box were determine@bydjustable rectangle within the image slice
that contains the best view of the lesion. The top and bottom slices are markegletelgm
enclose the lesion. Thd -CALS segmentation is then automatically performed inv@a. In

the pre-processinstage, image processing techniquesuding smoothing, anisotropic

diffusion, gradient filters, and a rank transform of the gradient magnitude artougsterate

sets of smothed images, gradient magnitude images, and gradient vector imEggsitial
segmentationsurfads obtained by combining information from these imagésee

dimensional (3D) flood fill algorithm, morphological dilation filter, and morpholegizsion

filter are applied taheinitial segmentation surfade connect nearby components, which is then
used to initialize the level set segmentatidhe initialcontour is propagated toward tlesion
boundary usingia bank of cascaded level sets. The level setefiredithe initial contour.The

details of the AICALS method can be found in our previous p&per
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Figure 4. Block'diagram of the autimitialized cascaded level se#l-CALS) method

188

189

190

191 3. CLASSIFICATION

192 3.1 FeatureExtraction

193 Following automated computer segmentation, texture features and morphological

194  featureswere extractetb characterize the lesiohhe mass size was measured as its 3D volume.

195  Five morphological featuresereextracted based on the normalized radial length (NRL). NRL is
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defined as the radial length normalized relative to the maximum radgthl for the segmented
object’. The NRL features extracted include zero crossing count, area ratio rdtdadiation,
mean and entropy. In additiognen contrast featuremd a number deaturesncluding
circularity, rectangularity, perimetéo-area ratio, Fourier descriptaray levelaverage,
standard deviation of gray level, mean density, eccentricity, moment ratio, amdtexigere
extracted as shape descriptors

Thetexture othe tumor margircan provide importanhformation about its
characteristicSWe calculated texture featurgem the rubber band straightening transform
(RBST) image¥’ of the tumor margin including those from the tangth statistics matrices,
filtered Dasamthy exstwestdirectionand filtered Daawethy horizontaldirectiort®®. The texture
feature setalso included the gray level radial gradient direction features.

In total, 91 features were extracted to form the feature space, inclRéingprphological

features and 65 texture fages.

3.2 Featur e'Selection/Classification

A block-diagram of the machine learning based bladder cataging system is shown
in Fig. 5.Stepwise feature selectioras usedo select the best subset of features to create an
effective_ elassifiet. A number of differenclassification experiments weperformed to
determine the best collection of input featuii@se classification performance was compared in
three feature spaced) morphological featuresnly, (2) texture featuresnly, and(3)
morphologicaland texture features combined. A two-fold cross validation was cahbucte
partitioningithe data set infetl and Set.2n the first fold, Set 1 was used for feature selection
andclassifier training. The trained classifier was thestel@ on Set 2. In the second fold, feature
selection and classifier training were performed on Set 2 and then testetilon S

When.training on a given fold (for examp&xet 1)aleaveonecaseout resampling
scheme with stepwise feature selection waslus reduce the dimensionality of the feature
spaceln stepwise feature selection, one feature is entered or removed in alternate steps while
their effectiis analyzed using the Wilks’ lambda crite¥iohe significance of the changetive
Wilks’ lambda when a featuiis included or removedas estimated by F statistids,, Fou, and
tolerance are the parameters of the stepwise feature selection defirehthe thresholds for

inclusion or exclusion of a given feature. A range ief Fout, andtolerancevalues isevaluated
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by using an automated simplex optimization metfduek set of i, Fou, andtolerancevalues
that lead to the highest classification result with the lowest number of features based on the
training set are selected.stnallernumber of featureare preferred in order toeduce the chance
of overfitting Once the set dfi,, Fou, andtolerance is selectethe stepwise feature selection
with the selected parameter sehpplied tothe entire trainingold to select a single set of
features and train a single classifier. After the classifigxasl it is applied to the test folddr
exampleSet2)for performance evaluation.

Four'different classifiers were evaluated in this study. The same partitioh8et 1 and
Set 2 was used for all classifiers. We compared the four classifiers for this classification task.
The first classifier was linear discriminant analysis (LB&)The LDA with the stepwise
feature selection was used to determine the most effective features using the training set in each
fold, as described above. The second classifier was appaplgation neural network (NIX)
with a single hidden layer and a single output nddhe selected features from LDA were used
for this classifier and they determined the number of input nodes to the NN. The pasdoret
the NN wereradjusted using the training set, and the best performing network was agpked t
test set. The thirdlassifier was a support vector machine (S¥®jvith a radial basis kernel.
Using training data, a SVM deterneismia decision hyperplane to separate the two classes by
maximizing'the distance, or the margin, between the training samples afidsgbsand the
hyperplaneThe width of the SVM radial basis kernels y was varied between 0.02 to 0.14 for the
experimentsThe best parameters for the SVM kernels for a specific experiment were selected
using the training set, which were then applied to the testset DA selected features were
also used as:the input to the SVM. The fourth one is the Random ForestoRgsHjef’. We
used the WEKA implementation and selected 50 to 100 trees and 5 to 7 features per tree for
our classification task using the training set in each fiddé. parameters for the random forest
classifier were determined experimentally using the training Ak31 features were used as an
input to the RAF.
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Figure 5. Block“diagram ofbur machine learning basetlagingsystem We comparedhelinear
discriminant analysidLOA), backpropagatiomeural networkIN), Support vector machine

(SVM), and Random forest classifidiRAF) in the classification stage for this study

3.3 Evaluation:-M ethods

Lesion segmentation performance was evaluated using radiologists’ 3Bd@meénted
contours ageference standards. The hand outlines of all 84 lesions were obtained from an
experienced abdominal radiologist (RAD1). Hand outlines for a subset of 12 lesioms wer
obtained froma second experienced abdominal radiologist (RAD2). The averageedsstdnc
the Jaccard indé&were calculated between the computer outlines and the hand oufliees.
average distanc&VDIST, is defined as the average of the distances between the closest points

of the two contours:
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(1)

AVDIST(G,U) = %(era min{d(x, y):y € U} N Yyey min{d(x, y): x € G}>'

Neg Ny
whereG andU are two contours being comparét; and N, denote the number of voxels @
and U, respectively. The functiod is the Euclidean distance. For a given voxel along the
contourG, the_ minimum distance to a point along the contdus determined. The minimum
distances'obtained for all points aloBgare averaged. This process is repeated by switching the
roles ofG=andJ. AVDIST is then calculated as the average of the two geerainimum
distances:

The Jaccard index is defined as the ratio of the intersection between the reference
volume and the segmented volume to the union of the reference volume and the segmented

volume:

JACCARD? = Ye 0 Vu
V. uv,

(2)
A value of 1 indicates thaty completely overlaps witNg, whereas a value of 0 impli&g,
andVg are disjoint.

To'evaluate the classifier performance, the training and test scores output from the
classifierwereranalyzed using the receiver operatingacteistic (ROC) methodology The
classification.accuracy was evaluated using the area under the ROC gurideAstatistical
significance of the differensdetween the different classifiers and feature spaces were estimated

by the CLABROC program using ROCfseare by Metz et af-*

4. RESULTS
The lesion'segmentation performance of theCALS compared to the radiologist hand outlines
for the 84'lesions are shown in Table 1. Table 2 shows the computer segmentation performance
compared to two different radiologists’ hand outlines for a subset of 12 lesions.
Table 1. Segmentation performance of the 84
lesions compared to hawaitlines performed
by radiologist 1 (RAD1).

This article is protected by copyright. All rights reserved
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Al-CALSvsRAD1

Average distance
49+2.7mm
AVDIST

Jaccard index
435 +14.0%

JACCARD®
284
Table 2. Segmentation performance for a subset of 12 lesions compared to hand-outlines
performedby two different radiologists (RAD1, RAD2)
Al-CALSvsRAD1 Al-CALSvs RAD2 RAD1vs RAD2
Average distance
5.2+25mm 41+1.5mm 29+1.1mm
AVDIST
Jaccard index
43.2 £ 13.2% 50.1 £ 14.7% 58.7+11.1%
JACCARD®
285
286 Theperformance of the classidpased on different machine learning technignes,

287 LDA, NN, SVM, andRAF, is summarizedh Table3. Different feature spasecontaininghe
288  morphological featureshetexture features, arttie combined set of both morphological and
289 texture featurewere used for classificatioifhe features selectedth LDA were usedin the
290 SVM and NNelassifiers. The LDA classifianith morphological features achieved a training A
291 0of 0.91 on Set &nd a test Aof 0.81 on &t2. For training on & 2 it achieved a Aof 0.97 and
292 atest A of 0.90,0n Set IThe selected features the training setmcludedvolume,a contrast
293 feature,andgray. levelfeature Thetest A, of theNN for Set 1 and Set 2 was 0.88 and 0.91
294  respectivelyThe SVM achieved testAof 0.88 on Set 1 and test Af 0.90 on Set ZThe test
295 A, of the RAFfor Set 1 and Set 2 was 0.83 and 0.88 respectively. The distribution of the
296 discriminant'scoreBom the four classifierfor testing on Set 1 and Set 2 in two fold cross-
297  validationin the morphological featurgaceare presented in Fig 6. It can be obsethad most

298 of the classifiers were able poovidea relatively good separation between the two classes.
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299 By usingthe texture features the LDA classifier achieved a testf®.91 on Set 1 and a
300 test A, of 0.88 on Set 2. When trained 8at lor Set 2thestepwise feature selection procedure
301 selected subsets tife filteredDasarathy eastwestdirectionfeaturesthefiltered Dasarathy

302 horizontaldirectionfeaturesandthegray level radial gradient directideatures The test A of
303 the NN classifier for Set 1 and Set 2 wa9(a8d 0.92respectively. The SVM classifier

304 achieved test Aof 0.91 on Set 1 and test Af 0.89 on Set 2. The test Af the RAF classifier
305 for Set T and"Set 2 was 0.89 and Or@gpectively.

306 When'the morphological and the texture features were comhimeetdDA classifier

307 achieved a testAof 0.89 on Set 1 and a test 8f 0.90 on Set 2. When trained on Set Set 2
308 thestepwise feature selection procedure seleatamhtrast feature, subsets of fiieered

309 Dasarathy horizontaldirection featuregsand subsets of tlgray level radial gradient direction
310 featuresThe test A of the NN classifier for Set 1 and Set 2 we&l@nd 0.%, respectively. The
311 SVM classifier achieved test,Af 0.92 on Set 1 and test Af 0.89 on Set 2. The test Af the
312 RAF classifier for Set 1 and Set 2 was@aBd 0.9, respectivelyThetestROC curves foall of
313 the classifiersvhentesedon Set 1 and Set 2 thetwo fold crossvalidationin thedifferent

314 feature spacesre shown in Fig. 7.

315 The:differences the A, values betweepairs ofclassifiers did not achieve statistical
316 significanee. The classifiers achieved slightly higherv&lues in the texturand combined

317 feature spacdban in the morphologicééature spee; however, the differences did mathieve
318 statistical significancafter Bonferroni correction for the multiple comparisonsdpue <

319 0.05/18=0400280 be considered significant)

320
321
322 Table3. Summary results for LDA, NN, SVM and RAF classifiergniorphologicaltexture,
323 and.combinedeature spaces. The column “Number of Features” did not apply to the
324 RAE.classifier. All features were used for the RAF classifier. The differences in the A
325 values between pawise comparison of the different classifiers did not achieve
326 statistical sigrficance after performing Bonferroni correction for the 18 comparisons
327 (p>0.0028.
328

L DA NN SVM RAF
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Number
Feature Type of Training | Testing | Training | Testing | Training | Testing | Training | Testing
Features
Morphological
Features
Training (Set 1)
) 4 0.91 0.81 0.96 0.91 0.95 0.90 1 0.88
Testing (Set 2)
Training (Set 2)
) 4 0.97 0.90 0.98 0.88 0.97 0.88 1 0.83
Testing (Set 1)
Texture
Features
Training (Set 1)
) 2 0.91 0.88 0.95 0.92 0.92 0.89 1 0.97
Testing (Set 2)
Training (Set 2)
) 7 1 0.91 1 0.89 1 0.91 1 0.89
Testing(Set 1)
Combined
Features
Training (Set 1)
) 3 0.92 0.90 0.97 0.95 0.92 0.89 1 0.96
Testing (Set 2)
Training (Set2)
7 1 0.89 1 0.91 1 0.92 1 0.86

Testing (Set 1)

329
330
331
332
333
334
335
336
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Figure 6. Distribution of theclassifers discriminant scores for testing on Set 1 and Set 2 infodb
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crossvalidationusing the morphological featurds) LDA (Set ) A, = 0.9, (b) LDA (Set 9 A, =0.81,
(c) SVM (Set 1)A, = 088, (d) SVM (Set 2)A, = 0.9Q (e)NN (Set 1) A = 0.88 (f) NN (Set 2) A =

0.91, (g) RAF (Set 1) A= 0.83, () RAF (Set 2) A =0.88
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Figure 7. ROC curves for testing on Set 1 and Set &infold crossvalidationfor LDA, SVM, NN,
and RAF classifierd_eft column: testing on Set 1, right column: testing on Set 2. (a) and (b)

morphological features; (c) and (d) texture features; (e) and (f) combinedefeatur

340

341

342 5. DISCUSSION

343 Theagreement between tié¢-CALS lesion segmentaticand the radiologists’ manual

344  segmentation waslightly lowerthan the agreement between tw@diologists’ hand outlines,

345 indicating thathe computer segmentatianll need tobe further improvedBoth the

346  morphological andhetexture features were important for classifying the bladder catege

347  When only morphological features were used in the classifier, volume and cteatastsvere
348 always selected. Volume was the primary feature used to describe lesioWheze the

349 classifierusedonly the texture featurefhie features from the 3 main groups, the filtered

350 Dasarathy.eastwestdirection features, the filterddhsarathy horizontal direction features, and
351 the gray levelradial gradient direction featuneseconsistentlyselectedThere wasssentially
352 no change in classification accuracy whiea morphological features were added to the texture

353 featuredn the combined set.
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The LDA, SVM, and NN classifiers all led to relatively consistent restiltere waso
statistically significant difference in the performanbesweerpairs of the classifiers. The best
overall results for the twéold cross validation were obtained when a combined feativeas
usedwith anNN classifier.Using Set 1 for training, the training.Avas 0.97 and the test, Avas
0.95.UsingSet 2for training the training A was 100and the tesf, was 0.91.

TheRAF classifier showedreaterimbalance between Set 1 and S#téh theother
classifiers:"When training was done on Set 2 and testing on Set 1, Weresubstantially
lower than'the"A values when training was done on Set 1 and testing on Set&xdrople the
test A decreasedrom 0.88 to 0.83 for morphological feaggrfrom 0.97 to 0.8%or texture
features onlyyand from 0.96 to 0.86 for the combined features. This imbalance between the tw
sets could'be due to the fact tR&F utilized all the features in the subspace whereas the other
three classifiersiinvolved feature selection.

Examples of bladder cancers with stagd® or < T2 and the corresponding classifier
scores arghownin Fig. 8. The reported scores are test scimethe LDA, SVM, NN, and RAF
classifiersdoased on the morphological featuresig. 8a, b and Fig. 8c, d are shoWwhstage
cances of different siza thatwerecorrectlyclassified with low scorely all classifiersNote
that the output score ranga® different for different classifiers so that the score values should
not be compared across classifiers. T3 stage and T2 stage ¢hateesecorrectlyclassified
with high scores from all classifieese presented in Fig. 8e, f and Fig 8g, h, respectivelyase
that was clinically identified as Tstagepre-surgery bufaterwas identified as a T2 stage cancer
postsurgeryis'shown in Fig. 8k, IThe classifiers classified the cancep@g with high scores.

Fig. 8m, n'shew &2 stage cancdhat was incorrectly identified by the LDA, SVM, and NN

classifiers with low score$ut correctly identified by the RAF with a high score.
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(@) (b) ©) (d)
LDA= -1.85; SVM=-0.95; NN= 0.04; RAF=0.28 | LDA= -2.44; SVM=-1.50; NN= 0.05; RAF=0.20

(€) (f) (9) (h)
LDA= 7.46, SVM= 2.13 NN=1.00 RAF=0.86 | LDA=1.62 SVM=1.73 NN=0.91 RAF=0.54

(k) v (m) (n)
LDA= 3.42;"SVM= 1.50; NN=1.00; RAF=0.82| LDA=-0.97; SVM=-0.55; NN=0.33; RAF=0.69

Figure 8. Examples of bladder cancers with stag@sor < T2. The blue outlines represent the Al -CALS
segmentation. The reported scores are test stmrése LDA, SVM, NN, and RAF classifiers based on the
morphological featuresNote that the output scorenges are different for different classifiers so that the score
values should not be compared across classifiers. The two casgé)rand (c)(d) both containedasa T1
stage cancer'that was properly classified VWt scores from all classifiers(e)f) wasa T3 stage case that was
properly classified with high scores from all classifi€gg(h)wasa T2 stage case that was properly classified
with high scores.frem all classifier&)(l) wasa case that was clinically identified as T1-puegery buwas
identified as a_I2/stage cancer psstgery. The classifisrclassified the cancer>82 with high scores.
(m)(n) was T2 _stage cancer that was incorrectly identified by the LDA, SVM, andcldbkifies with low
scores and correctly identified by tHRAF with a high score

377

378 We also have extracted features from the manually segmented bladder lesions and

379 applied the 4 different types of classifiers with the different feature sets to the cancer stage
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380 prediction. The classifiers using features extraftam the manually segmented lesions

381 performed similarly to the classifiers using features extracted from #@&A\AE segmented

382 lesions. The test Avalues ranged from 0.77 to 0.95. For 6 out of the 24 experiments the

383 classifiers_using features extracteoni the manually segmented lesions performed better than
384 classifiers using features extracted from theCALS segmentations. However, the differences
385 did not reach statistical significance. Therefore, although the perforroatiue AI-CALS lesion

386 segmerdtion'was slightly lower than the radiologists’ hand outlines the final classification

387  results were similar.

388 The main limitation of the study is the small data set. Another limitation is that we have
389 not applied:itheydeep learning convolution neural ndkWiDELCNN) to this bladder cancer

390 staging task. DLCNN has been shown to be superior to conventional classifireasy

391 classification tasks, especially the classification of natural scene images with millions of training
392 samples. It also shows promisenmmber of medical imaging applicatiéiincluding bladder

393 segmentatiofiand bladder cancer treatment response monitéringowever, our experience

394  with DLCNNralso indicates that it isot always the best, perhaps limited by the relatively small
395 annotatedtraining set in medical imaging, even with transfer learning. As foenzerces of

396 the four cenventional classifiers used in this study were quite high, it would not be a fai

397 comparisenfor DLCNN if we do not have adequate training for the latter. Weontinue to

398 collect additional cases and compare the conventional classifiers with DLCNN for bladder

399 cancer staging in a future study.

400
401 6. CONCLUSION
402 In this preliminary studyve proposednachine learningnethods for prediction of

403 bladder cancer stagkt was found that the morphological features and texture features were
404  usefulfor assessing the stage of bladder lesions. The LDA, SVM, and NN classifiers all led to
405 relativelyconsistent results. There was a trend thaS8VM andNN classifierslightly

406  outperformedthe LDA classifief.he best overall results for the tfad cross validation were

407  obtained when a combined feature subspace was used with the NN cldasifte studies are

408 under way to improve the staging of bladder cancer and test the classifier on a largey data set
409 and to investigate the potential of improving the predictive model by combining imaging

410  biomarkers with non-imaging biomarkers.

This article is protected by copyright. All rights reserved



411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

24

Acknowledgments

This work is supported by National Institutes of Health grant number U01CA179106.

References

1American'Cancer Society. Cancer Facts & Figures 2017. , (American Cancer Society, Inc.,
Atlanta, 2017).

2"Bladder Canecer Advocacy Network, www.bcan.org/f&€47, "Bladder Cancer Facts" "
(2017).

3S. S. Chang, S. A. Boorjian, R. Chou, P. E. Clark, S. Daneshmand, B. R. Konety, R. Pruthi, D.
Z. Quale, €7R¢Ritch, J. D. Seigne, et al., "Diagnosis and Treatment d¥iNscie Invasive
Bladder Cancer: AUA/SUO Guideline," Journal of Urology 196, 1021-1029 (2016).

+J. A. Witjes, E. Comperat, N. C. Cowan, M. De Santis, G. Gakis, N. James, T. Lebrettifh. She
A. G. Van der Kijden, and M. J. Ribal, "Guidelines on Musaigasive and Metastatic Bladder
Cancer," European Association of Urology (2016).

sM. Babjuk;"A#Bohle, M. Burger, E. Comperat, E. Kaasinen, J. Palou, M. Roupret, B. W. G.
Van Rhijn, S. Shariat, R. Sylvester, et al., "Guidelines on idaseleinvasive Bladder Cancer

(Ta, T1 and CIS)," European Association of Urology (2016).

sAJCC Caneer-Staging Handbook, 8th ed. (American Joint Committee on Cancer, Chicago, IL,
2016).

’H. W. Herr and S. M. Donat, "Quality ctwal in transurethral resection of bladder tumours,"
Bju International 102, 1242-1246 (2008).

This article is protected by copyright. All rights reserved


http://www.bcan.org/facts�

25

442 8. J. Meeks, J. Bellmunt, B. H. Bochner, N. W. Clarke, S. Daneshmand, M. D. Galsky, N. M.
443  Hahn, S. P. Lerner, M. Mason, T. Powles, et al., "A Systematic Review of Neoadjuvant and
444  Adjuvant Chemotherapy for Muscle-invasive Bladder Cancer," European Urology 62, 523-533
445  (2012).

446

447  °S. L. Fagg, P..Dawsonedwards, M. A. Hughes, T. N. Latief, E. B. Rolfe, and J. W. L. Fielding,
448  "CIS-Diamminedichloroplatinum (DDP) asitial treatment of invasive bladder cancer,"” British
449  Journal of'Urology 56, 296-300 (1984).

450

451 1D, RaghavamyB. Pearson, G. Coorey, W. Woods, D. Arnold, J. Smith, J. Donovan, and P.
452  Langdon, "Intravenous Ciglatinum for invasive bladder cancesafety ad feasibility of a

453  new approach,” Medical Journal of Australia 140, 276-278 (1984).

454

455  1J. Huguet; M. Crego, S. Sabate, J. Salvador, J. Palou, and H. Villavicencio, "Cystectomy in
456  patients withrhigh risk superficial bladder tumors who fail intravesical B@@Gpy: Pre-

457  cystectomy prestate involvement as a prognostic factor,” European Urology 48, 53-59 (2005).
458

459  1zH. M. Fritsche, M. Burger, R. S. Svatek, C. Jeldres, P. |. Karakiewicz, G. Novara, E. Skinner
460 S. Denzinger, Y. Fradet, H. Isbarn, et al., "Chanastics and Outcomes of Patients with Clinical
461 T1 Grade 3 Urothelial Carcinoma Treated with Radical Cystectomy: Results from an

462 International Cehort," European Urology 57, 300-309 (2010).

463

464  13P. Turker, P. J. Bostrom, M. L. Wroclawski, B. van Rhijn, H. Kortekangas, C. Kuk, T. Mirtti,
465 N. E. Fleshner, M. A. Jewett, A. Finelli, et al., "Upstaging of urothelial cancer aihtbef

466 radical cysteetomy: factors associated with upstaging and its effect on outcome," Bju

467 International:110, 804-811 (2012).

468

469 uS. F.ShariatpG. S. Palapattu, P. I. Karakiewicz, C. G. Rogers, A. Vazina, P. J. Bastin, M
470  Schoenberg, S. P. Lerner, A. |. Sagalowsky, and Y. Lotan, "Discrepancy between dlidical a
471  pathologic stage: Impact on prognosis after radical cystectomy,” European Urology 51, 137-151
472  (2007).

This article is protected by copyright. All rights reserved



26

473

474  1sACR Manual on Contrast Media, (ACR Committee on Drugs and Contrast Media, 2016).

475

476  1sL. M. Hadijiiski, H.-P. Chan, E. M. Caaoili, R. H. Cohan, J. Wei, and C. Zhou, "kuitalized

477  Cascaded Level Set (ATALS) Segmentation of Bladder Lesions on Mietector Row CT

478  Urography;' Aeademic Radiology 20, 148-155 (2013).

479

480 L. M. Hadjiiski, B. Sahiner, H.-P. Chan, N. Petrick, M. A. Helvie, and M. N. Gurcan, "Analysis
481 of Temporal Change of Mammographic Features: Compitkrd Clasdication of Malignant

482  and Benign Breast Masses," Medical Physics 28,2319 (2001).

483

484  18B. Sahiner, H.zP. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, "Computerized

485 characterization of masses on mammograms: The rubber band straightenfogntrans

486  texture analysis," Medical Physics 25, 516-526 (1998).

487

488 1B. R. Dasarathy and E. B. Holder, "Image characterizations based on joint grayxtelezigth

489  distributions;” Pattern Recog. Letters 12, 497-502 (1991).

490

491 20T, W. Way, L. M. Hadijiiski, B. Sahiner, H.-P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot,
492 and C. Zhou, "Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and
493 classification using 3D active contours,” Medical Physics 33, 2323-2337 (2006).

494

495 21H.-P. Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt, and N. Petrick,
496  "Computeraided classification of mammographic masses and normal tissue: Linear discriminant
497  analysis instexture feature space,” Physics in Medicine and Biology 40, 857-876 (1995).

498

499  22P. A.LaehenbruchDiscriminant Analysis, (Hafner Press, New York, 1975).

500

501 23M. M. TatsuokaMultivariate Analysis, Techniques for Educational and Psychological

502  Research, 2nd ed. (Macmillan, New York, 1988).

503

This article is protected by copyright. All rights reserved



504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

27

24D. E. Rumelhart, G. E. Hinton, and R. J. Williarhsarning Internal Representation by Error
Propagation, Parallel Distributed Processing (MIT Press, Cambridge, MA, 1986).

23/, N. Vapnik,Satistical Learning Theory, (Wiley, New York, 1998).

26C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognitidia,” Da
Mining and"Knowledge Discovery 2, 121-167 (1998).

27T. K. Ho,."The random subspace method for constructing decision forests," leee Toassact
on Pattern/Apalysis and Machingélligence 20, 832-844 (1998).

28], H. Witten, E. Frank, M. A. Hall, and C. J. Pahe WEKA Workbench. Online Appendix for

"Data Mining: Practical machine learning tools and techniques’, (Morgan Kaufmann, 2016).

2P, Jaccard; "The distribution of the flora in the alpine zone," New phytologist 11, 37-50.(1912)

30C. E. Metz,'"ROC methodology in radiologic imaging," Investigative Radiology 21, 720-733
(1986).

31C. E. Metz, B..A. Herman, and J. H. Shen, "Maximiikelihood estimation of receiver
operatirg characteristic (ROC) curves from continuoegistributed data,” Statistics in Medicine
17,1033-1053(1998).

32"Metz ROC Saftware. University of Chicago Medical Center Department obRagi,
seehttp://metzroc.uchicago.edu/MetzROC/softwdre,

33G. LitjensyT. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der
Laak, B. van'Ginneken, and C. |. SAnchez, "A Survey on Deep Learning in Medical Image
Analysis," arXiv:102.05747 (2017).

This article is protected by copyright. All rights reserved


http://metz-roc.uchicago.edu/MetzROC/software,�

534
535
536
537
538
539
540
541
542
543
544
545

28

3#H. Greenspan, B. van Ginneken, and R. M. Summers, "Deep Learning in Medical Imaging:
Overview and Future Promise of an Exciting New Technique,” leee Transactions a@alMedi
Imaging 35, 1153-1159 (2016).

35K, H. Chagls Hadjiiski, R. K. Samala, H. P. Chan, E. M. Caoili, and R. H. Cohan, "Urinary
bladder segmentation in CT urography using deep-learning convolutional neural network and
level sets™Medical Physics 43, 188296 (2016).

36K, H. Cha, L. M. Hadjiiski, H.-P. Chan, R. K. Samala, R. H. Cohan, E. M. Caoili, C.

Paramagul; AmAlva, and A. Z. Weizer, "Bladder cancer treatment response assessment using
deep learning in CT with transfer learning,” Proc SPIE 10134, 101341-6 (2017).

This article is protected by copyright. All rights reserved



No primary tumor in the
bladder

Tumor in the connective
tissue but does not
involve hladder wall
muscle

Tumeoer has spread to the
muscle ot the bladder
wall

Tumor has spread to
fatty tissuc surrounding
the bladder

Stage TO |—P»
:

Stage T1 p—P»

Stage T2 p——-d_p»

Stage T3 >

Stage T4 p—-_

Tumor has spread to
other nearhy organs

mp_12510_f1.tif

This article is protected by copyright. All rights reserved




Bladder cancer

mp_12510_f2.tif

This article is protected by copyright. All rights reserved



Number of Lesions

Set1

Set 2

8 8
. T2 .
7 — =T2 E’?
6 o 61
5 35
-l
4 = s 4
@
3 _23-
2 52'
1 11
0 Q-

0 10 20 30 40 50 60 70 80
Lesion Size {mm)}

(a)

mp_12510_f3.tif

This article is protected by copyright. All rights reserved

(b)

. <T2
— -T2

0 10 20 30 40 50 &0 70 80
Lesion Size {mm)




Yolume of Interest

and-BDirection Images Growing

\ Auto-Initialization I/

y

Cascaded Level Set I

v

3D.Gradient Magnitude ‘ 3D Smoothing, Region

Automatic Segmentation

mp_12510_f4.tif

This article is protected by copyright. All rights reserved



ROI

:

Segmentation

Morphological
Feature Extraction

Texture Feature
Extraction

Classification

|

Discriminant Score

mp_12510_f5.tif

This article is protected by copyright. All rights reserved




Number of Lesions Number of Lesions Number of Lesions

Number of Lesions

Test Set 1 LDA

18
16 1 o <T2
q4 { L 2T2
12 -
10 -
3 4
G 4
4
2 4
0 A
-6 -4 -2 0 2 [
Discriminant Scores
Test Set 1 SVM
18
16 _— T2
1] (22
12
10
8
6
4
2
0 E
-2 -1 0 1 2
Digcriminant Scores
Test Set 1 NN
18
16 — T2
4] =212
12
10
8
s
4
2
D E |-
0.0 0.2 0.4 0.6 0.8 1.0
Discriminant Scores
Test Set 1 RAF
18
16 1 e <T2
14 { W T2
129
10
8 -
s 1
4
2 ]
0 E
0.0 0.2 0.4 0.6 0.8 1.0

Discriminant Scores

Test Set 2 LDA

12
w 10 - T2
g 1 »T2
w8
a4
|
T 6
by
2
€ 4]
=
z ,)| H
Q- !
£ -4 -2 0 2 4 6
(a} Discriminant Scores (b)
Test Set 2 SVM
12
— T2
w 101 =12
@ -
(=)
G 81
a
-l
T 6
LY
2
E 4]
=
z L,
0 P
-2 -1 0 1 2
((-) Discriminant Scores (d}
Test Set 2 NN
12
- T2
@ 197 — »>T2
b 2
(=]
2 gl
€
|
T 6
n
£
=
= 2 4
0 P
0.0 0.2 0.4 0.6 0.8 1.0
(e) Digcriminant Scores ([’)
Test Set 2 RAF
12
- T2
w 10 = »T2
=
(=)
w8
L)
]
S &
)
2
£ 4
=
z 5|
U A
0.0 0.2 0.4 0.6 0.8 1.0
(g) Discriminant Scores (h)

mp_12510_f6.tif

This article is protected by copyright. All rights reserved



True Positive Fraction True Positive Fraction

True Positive Fraction

1.0 -
c
0.8 - o
=]
©
i
0.6 - - L
@
2
=
. i &
0.4 3
—= LDA {Az = 0.90 * 0.05} o
—— SVM (Az = 0.88 £ 0.05) @
0.2 4y === NN (Az = 0.88  0.05) X s
— — RAF (Az = 0.83 * 0.06) =
0.0 ¥ L) T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Fraction
(a)
1.0 : ———————
-
-
j o
0.8 - o
°
T
0.6 - L
@
=
=
0.4 4 s g
— LDA {Az = 0.91 + 0.05) a
=== SVM (Az = 0.91 £ 0.04) o
0.2 NN {Az = 0.89 + 0.05) i S
) — — RAF (Az = 0.89  0.05) -
0.0 1 T T T T
0.0 0.2 04 06 0.8 1.0
False Positive Fraction
(c)
1.0 e = ———-
=
0.8 - - o
e }
1T}
&
0.6 i R
@
2
=
0.4 s 8
—— LDA (Az=10.89 1 0.05) o
—— SVM (Az = 0.92 1 0.05) P
NN {Az = 0.91 % 0.05) 1
0.2 — — RAF {Az = 0.86 % 0.06) i =
0.0 - T

Tigi® arti6l2 is pedtectd@déby cOByright0All righ

False Positive Fraction
(c)

—— LDA (Az = 0.81 £ 0.07)
—— SVM (Az = 0.90 £ 0.05)

0.2 NN (Az = 0.91 £ 0.04)
— — RAF (Az = 0.88 + 0.05)
0-0 L) T T T T
0.0 0.2 0.4 06 0.8 1.0
False Positive Fraction
(b)
1.0
0.8
0.6
0.4 - -
—— LDA (Az = 0.88 * 0.05)
— SVM (Az = 0.89 * 0.05)
0.2 - NN (Az = 0.92 + 0.04) -
— — RAF (Az = 0.97 # 0.02)
0.0 4 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Fraction
()
1.0 -
0.8 - -
0.6 -
0.4 -
—— LDA (Az = 0.90 * 0.05)
——— SVM (Az = 0.89  0.05)
0.2 1 NN (Az = (.95 % 0.03) -
| — = RAF (Az = 0.96 * 0.03)
0.0 4 . . .
ts réderved.2 04 0.6 0.8 1.0
False Positive Fraction
{f)



(a) {b)
I.DA=-1.85;"S¥M==0.95. NN=0.04; RAF=0.28

(c) " (%)
LDA=7.46; S¥M= 213, NN=1.00; RAF=0.86

(k) (1
1.DA=3.42; M= [30; W= 1,00; RAT={,82

{c) (d)
I.DA=-2.44; SVM=-130; NN=0.05; RAI=0.20

(g) (h)
LDA=1.62; SWM=1.73; NN=0.91; RAF=0.34

{m) (n}
LDA=-0.97, SVM=-0.55; NN=033; RAT=069

mp_12510_f8.tif

This article is protected by copyright. All rights reserved



