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production declined over the quagga mussel invasion, our results suggest 
that increased nutrient loads would increase lake-wide productivity even in 
the presence of mussels; however, altered spatial and temporal patterns of 
productivity caused by mussel filter feeding would likely persist. 
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Abstract 

We applied a three-dimensional biophysical model to Lake Michigan for the years 2000, 2005, 

and 2010 to consider the mechanisms controlling spatial and temporal patterns of phytoplankton 

abundance (chlorophyll-a) and lake-wide productivity. Model skill was assessed by comparison 

to satellite-derived chlorophyll-a and field-measured water quality variables. We evaluated model 

sensitivity to scenarios of varying mussel filter feeding intensity, tributary phosphorus loads, and 

warm versus cool winter-spring climate scenarios. During the winter-spring phytoplankton 

bloom, spatial patterns of chlorophyll-a were controlled by variables that influenced surface 

mixed layer depth: deep mixing reduced net phytoplankton growth through light limitation and 

by exposing the full water column to mussel filter feeding. Onset of summer and winter 

stratification promoted higher surface chlorophyll-a initially by increasing mean light exposure 

and by separating the euphotic zone from mussels. During the summer stratified period, areas of 

relatively high chlorophyll-a were associated with coastal plumes influenced by tributary-derived 

nutrients and coastal upwelling-downwelling. While mussels influenced spatial and temporal 

distribution of chlorophyll-a, lake-wide, annual mean primary production was more sensitive to 

phosphorus and warm/cool meteorology scenarios than to mussel filter feeding scenarios. 

Although chlorophyll-a and primary production declined over the quagga mussel invasion, our 

results suggest that increased nutrient loads would increase lake-wide productivity even in the 

presence of mussels; however, altered spatial and temporal patterns of productivity caused by 

mussel filter feeding would likely persist. 
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Introduction 

The invasive dreissenid mussels, Dreissena polymorpha (zebra mussel) and D. rostriformis 

bugensis (quagga mussel) continue to spread in North America and Europe, altering ecology and 

biogeochemistry of invaded lakes (Brown and Stepien, 2010; Karatayev et al., 2014), and raising 

questions regarding how lake management strategies should respond. Since 2000, Lake Michigan 

has experienced rapid growth of the quagga mussel population (Nalepa et al., 2009; Rowe et al., 

2015b), declining pelagic primary production (Fahnenstiel et al., 2010), and increased nuisance 

benthic algae production (Auer et al., 2010; Brooks et al., 2014). Declining productivity and prey 

fish abundance (Bunnell et al., 2014) have raised concern over sustainability of economically and 

culturally important fisheries.   

It is not obvious whether declines in chlorophyll-a and primary production after the quagga 

mussel invasion can be attributed to the direct effect of filter feeding on phytoplankton 

abundance, or to declining total phosphorus. Several studies have implicated quagga mussel filter 

feeding on phytoplankton as a direct cause of declining productivity. Fahnenstiel et al. (2010) 

showed that reduced productivity occurred in times of deep mixing when benthic filter feeders 

could remove phytoplankton from the full water column. Vanderploeg et al. (2010) showed that 

quagga mussel clearance rates are sufficient to exceed phytoplankton growth rates under the 

assumption of a well-mixed water column and Rowe et al. (2015a) showed the same result under 

realistic vertical mixing conditions representative of the spring isothermal period. Other studies 

implicated declining phosphorus concentration in addition to the direct effects of filter feeding. 

Pothoven and Fahnenstiel (2013) showed reduced productivity not only during periods of deep 

mixing, but also during the summer stratified period. Other investigations showed statistical 
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association between reduced total phosphorus and reduced productivity (Bunnell et al., 2014; 

Warner and Lesht, 2015). Spring total phosphorus concentration has declined over the time 

period of the quagga mussel invasion, thus statistical analyses have limited ability to discern the 

independent effects of correlated variables: filter feeding versus declining phosphorus. 

Mechanistic models are complementary to statistical analyses, having the ability to test 

mechanistic hypotheses under constraints of mass conservation and realistic rates for biological 

processes and transport.  

Phosphorus loading targets are the primary management variable that could be adjusted to 

influence productivity in Lake Michigan, which is considered to be a phosphorus-limited system 

(Chapra and Sonzogni, 1979). A phosphorus loading target of 5600 metric tons (10
3
 kg) per 

annum (MTA) was set in the 1978 Great Lakes Water Quality Agreement. The target load has not 

been exceeded since 1981 (Chapra and Dolan, 2012). Phosphorus loads and in-lake concentration 

declined from 1980-2008 due to a ban of phosphorus in detergents, and reduced phosphorus in 

treated wastewater (Dolan and Chapra, 2012). Over the more recent period 1994-2008, there was 

no significant trend in total phosphorus load (p = 0.93, H0 of zero slope), and the mean load was 

3500 MTA with 20% relative standard deviation indicating substantial inter-annual variation 

(data: Dolan and Chapra 2012, their Table 8).  

Reduced primary production offshore combined with increased benthic productivity nearshore 

create a management paradox for initiatives to revisit phosphorus loading targets under the 

revised GLWQA of 2012 (Great Lakes Water Quality Protocol, 2012); increased phosphorus 

loads may benefit fisheries production, but may exacerbate nuisance benthic algae production 

nearshore, while further reduction in lake-wide productivity could undermine fisheries 
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production, risking a crash of the economically-valuable salmon fishery. In Lake Huron, biomass 

of alewives, the preferred prey of stocked Pacific salmon, collapsed between 2002 and 2003, 

resulting in declining recreational harvests of salmon. Statistical analysis did not identify a clear 

cause of the crash (Bunnell et al., 2014), while food web and fisheries models suggested a 

combination of top-down and bottom-up causes (He et al., 2014; Kao et al., 2016).  

The spatial distribution of resources is of increasing interest in post-dreissenid Lake Michigan. 

Increased water clarity and reduced productivity offshore have altered food web interactions 

between phytoplankton, zooplankton, and prey fish (Vanderploeg et al., 2015). Nearshore energy 

subsidies provide increased support to fishes and invertebrates (Turschak et al., 2014). Because 

of the differing management requirements of nearshore and offshore productivity, it is 

increasingly necessary to develop an understanding of the factors controlling the spatial 

distribution of phytoplankton, zooplankton, and productivity in dreissenid-invaded lakes, 

including the influence of tributary nutrient loads, meteorology, and in-lake transport (Bootsma et 

al., 2015).  

We applied a three-dimensional biophysical model to Lake Michigan to investigate the 

independent effects of dreissenid mussel filter feeding, tributary nutrient loads, and meteorology 

on spatial and temporal patterns of productivity in Lake Michigan. Calibration and skill 

assessment was conducted for the years of the lake-wide benthic surveys (2000, 2005, and 2010), 

which spanned the quagga mussel invasion. We conducted a series of model sensitivity 

simulations with varied levels of dreissenid mussel filter feeding intensity, nutrient loads, and 

cool versus warm winter-spring meteorological scenarios expected to be representative of 

changing climate conditions. We evaluated the response of several variables related to 
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productivity to the model scenarios, including chlorophyll-a concentration, phosphorus 

concentration, zooplankton abundance, quagga mussel growth, and lake-wide mean primary 

production. 

Methods 

Observational data 

Observational data from several sources were used for model skill assessment. Physical and 

water quality data were obtained from United States Environmental Protection Agency (USEPA) 

and National Oceanic and Atmospheric Administration (NOAA) field studies. NOAA buoys 

45002 and 45007 in north and south Lake Michigan, respectively, provided water surface 

temperature (www.ndbc.noaa.gov/, accessed January 2013). The NOAA Episodic Events – Great 

Lakes Experiment (EEGLE) study (1998-2000) provided ship-based chlorophyll-a, total 

phosphorus (TP), and dissolved phosphorus (DP) measurements 

(www.glerl.noaa.gov/eegle/data/, accessed January 2013). Additional vertically-resolved 

temperature, chlorophyll-a, TP, and DP data were obtained from annual US EPA spring and 

summer surveys, and the Lake Michigan Mass Balance study (1994-95) 

(www.epa.gov/greatlakes/monitoring/data_proj, accessed April 2012). Vertically-resolved 

temperature, chlorophyll-a, TP, DP, and particulate organic carbon (POC) concentrations were 

measured at long-term ecological research stations located in a nearshore-offshore transect from 

Muskegon at 110, 45, and 15-m bathymetric depth, M110, M45, and M15, respectively (Fig. 1), 

detailed methods are reported elsewhere (Fahnenstiel et al., 2010; Pothoven and Fahnenstiel, 

2013). Zooplankton biomass at the Muskegon transect were from Vanderploeg et al. (2012) 

Pothoven et al. (2015) and Pothoven (unpubl.). 
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A Plankton Survey System (PSS; Vanderploeg et al., 2009) was used to map continuous profiles 

of temperature and chlorophyll-a along the Muskegon transect from the 10-m to the 110-m depth 

contour (Fig. 1). The PSS was raised and lowered at ~0.25 m s
-1

 in a sinusoidal path from 1-2 m 

beneath the surface to 2-4 m above the bottom as the R/V Laurentian moved at ~1.8 m s
-1

 

(Vanderploeg et al., 2009). The PSS recorded data every 0.5 second from multiple sensors 

mounted on a V-fin, including a chlorophyll-a fluorometer (Wet Labs ECO Fluorometer, Sea-

Bird Scientific) and a conductivity-temperature-dissolved-oxygen (CTD) sensor (Sea-Bird 19 

plus V2). Plots of PSS variables and model data used linear interpolation (R package 'akima', 

Akima, 1978). Fluorometer output (volts) was converted to derived chlorophyll-a concentration 

by regression of fluorometer output on laboratory chlorophyll-a measurements of field samples 

matched to PSS location and time (r
2
 0.81, n=59).  

Satellite-derived data included temperature, chlorophyll-a, and light penetration. Water surface 

temperature was obtained from NOAA Coast Watch Great Lakes Surface Environmental 

Analysis (GLSEA) (http://coastwatch.glerl.noaa.gov/glsea/glsea.html, accessed January 2013). 

Chlorophyll-a and ����� were obtained from SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) daily L2 data (http://oceancolor.gsfc.nasa.gov, accessed June 2014) using OC4 algorithm 

(Yousef et al., 2014). We estimated ���� from SeaWiFS ����� using the empirical relationship 

of Saulquin et al. (2013), as used by Fahnenstiel et al. (2016). 

Phosphorus in mussel tissue 

Quagga mussels were collected at 45 and 25-m stations offshore of Muskegon on a total of eight 

dates in 2008, 2013, and 2014, and stored frozen. Mussels were analyzed as composite samples 

of 5-20 individuals. After measuring shell length, soft tissue was removed, dried at 65-70°C 
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overnight, weighed, and ground with a pestle in tared weighing pans. Tissue was combusted at 

500 °C for 2 h in glass tubes, then oxidized to orthophosphate with 25 ml of 1N HCl in a hot 

water bath (95-99°C) for 60 minutes (Andersen, 1976). After dilution to 0.019 N HCl, 

phosphorus was analyzed using the ascorbic acid method (Johengen et al., 2013) on a 

QuAAtro®, Continuous Segmented Flow Analyzer System (Seal Analytical, Mequon, WI). 

Hydrodynamic model 

We applied the Finite Volume Community Ocean Model (FVCOM) to Lake Michigan (Rowe et 

al., 2015a). FVCOM (v. 3.1.6) is an unstructured grid, finite-volume, free surface, three-

dimensional primitive equation ocean model that solves the momentum, continuity, temperature, 

salinity (set to zero here), and density equations (Chen et al., 2003). Turbulence closure was 

implemented through the MY-2.5 scheme for vertical mixing (Galperin et al., 1988), and the 

Smagorinsky scheme for horizontal mixing. External and internal time steps were 10 s. The 

unstructured grid consisted of 5795 nodes and 10678 elements, with 20 terrain-following vertical 

(sigma) layers of uniform thickness, with mean element side lengths of 2.6 km near the coast (< 

30-m depth), and 4.0 km elsewhere, with greater resolution (~1 km) in areas of complex coastline 

morphology (e.g., where Green Bay meets the main lake). The lateral boundaries were closed; bi-

directional flow at the Straits of Mackinac and a minor outflow through the Chicago diversion 

were not simulated (Fig. 1). Ice cover was not simulated. Annual maximum ice cover in Lake 

Michigan (25% average) typically occurs in mid February (Wang et al., 2012; Fig. S1).  

Atmospheric forcing data were generated by interpolation of hourly observations from 18 stations 

surrounding Lake Michigan, with empirical adjustment for modification of land-based 

meteorology over the lake using computer codes developed for use in the NOAA Great Lakes 
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Coastal Forecasting System (Schwab and Beletsky, 1998; Beletsky et al., 2003). When available, 

wind speed, direction, and air temperature were used in the interpolation from NOAA buoys 

45002 and 45007 (Fig. 1). Atmospheric forcing variables were eastward and northward 

components of 10-m wind velocity, air temperature, relative humidity, downward shortwave, and 

downward longwave radiation. Upward longwave radiation was calculated in FVCOM using the 

simulated water surface temperature. Surface fluxes of momentum, sensible heat, and latent heat 

were calculated by the NOAA COARE bulk algorithm (v. 2.6) (Fairall et al., 1996). The model 

was initialized on January 1, 2000, 2005, or 2010, using satellite-derived surface temperature (see 

Observational data), and setting salinity and current velocities set to zero.  

Biological model 

The biological model consisted of a conventional four-compartment nutrient-phytoplankton-

zooplankton-detritus (NPZD) model with the addition of a fifth compartment to represent benthic 

filter feeder (dreissenid mussel) biomass. The NPZD model was implemented using the FVCOM 

General Ecosystem Module (GEM), which allows the user to specify biological model 

compartments within a flexible framework, and solves the three-dimensional scalar advection-

diffusion equations on the FVCOM unstructured grid. FVCOM-GEM has been applied 

previously to study spatially-resolved plankton dynamics in coastal marine systems (Tian and 

Chen, 2006; Ji et al., 2008a; Ji et al., 2008b) and in Lake Michigan (Luo et al., 2012) using 

NPZD and NPZ models. We added the dreissenid mussel compartment to the FVCOM-GEM 

code (described below). 

The five compartments of the biological model represented dissolved phosphorus (limiting 

nutrient), detritus (non-living organic particles), phytoplankton, zooplankton, and mussel biomass 
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(Fig. 2). A fixed phosphorus:carbon ratio of 0.016 by mass was assigned to mussel biomass, 

plankton biomass, and detritus, which is within the measured range of Lake Michigan seston, 

(0.007-0.042, Pothoven and Fahnenstiel, 2013), and mussel tissue (see Results and Discussion). 

Nutrient uptake by phytoplankton was represented using Michaelis-Menten kinetics. Zooplankton 

were allowed to graze on phytoplankton, detritus, and zooplankton using the generalized 

Michaelis-Menten functional response with exponent m = 2 (Tian, 2006; Ji et al., 2008a). A 

quadratic predation closure term was applied to zooplankton (Steele and Henderson, 1992). The 

phytoplankton production-irradiance curve was formulated as by Fahnenstiel et al. (1989; 2016), 

as described by Rowe et al. (2015a) with the chlorophyll-a:carbon ratio fixed at 0.036 (0.026-

0.04, Fahnenstiel et al., 1989). Phytoplankton and detritus were assigned settling velocities of 0.2 

m d
-1

 (phytoplankton 0.1-0.35 m d
-1

 (Fahnenstiel and Scavia, 1987), detritus 0.14 – 0.4 m d
-1

 

(Dayton et al., 2014)).  

Photosynthetically-active radiation (PAR) incident at the surface was calculated from hourly 

incident short-wave irradiance values used to force FVCOM: 1 W m
-2

 short-wave irradiance ≈ 

1.678 µE m
-2

 s
-1

 PAR (Fahnenstiel et al., 2016). Sub-surface PAR in GEM is calculated using an 

attenuation coefficient parameterized as a linear function of particulate model state variables, 

����� = 
� + 

���� + 
�� (1) 

where PChl is the phytoplankton chlorophyll-a concentration, D is the detritus concentration, aw,p,d 

are empirical coefficients that were calibrated within literature values to give KdPAR values 

comparable to observations, and to simulate the increase in water clarity that was observed after 

the quagga mussel invasion; aw = 0.07 m
-1

, ap = 0.03 mgChl
-1

 m
2
 (0.02-0.03), ad = 0.2 g-detritus-

C
-1

 m
2
 (0.08 – 0.25, assuming 0.46 gC/gVSS) (Di Toro, 1978; Lohrenz et al., 2004). 
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The biological model was calibrated for 2000, prior to major effects of the quagga mussel 

invasion (Vanderploeg et al., 2010; Rowe et al., 2015b), then simulations were run for 2005 and 

2010 using the same set of parameter values. Key process rates were confirmed to be within the 

range of literature values for Lake Michigan (Scavia et al., 1988; Fahnenstiel et al., 2000), 

including phytoplankton growth and zooplankton grazing (Fig. 3a-b). Threshold and half-

saturation parameters for uptake of DP by phytoplankton (Fig. 3c) were set using measurements 

of photosynthetic rate versus soluble reactive phosphorus (SRP) by Lohrenz et al. (2004). A 

linear regression of DP versus SRP using data from the Lake Michigan Mass Balance study (see 

Observational data) was used to relate SRP measured by Lohrenz et al. (2004) to the model state 

variable (DP), and to establish the nutrient threshold (1.4 µg L
-1

), representing the pool of DP that 

was assumed to be biologically unavailable. 

A benthic filter feeder bioenergetic model was added to GEM (after Schneider, 1992; Cerco and 

Noel, 2010), and parameterized to represent Lake Michigan quagga mussels. The rate of change 

of mussel biomass was calculated as, 

��

��
= ������ − ���� (2) 

where M is mussel biomass, fa is the fraction assimilated, FA is the biomass-specific filtration 

rate, P is the phytoplankton biomass concentration in the bottom model layer, and rb is the base 

respiration rate. High and low estimates of the temperature-dependent filtration rate were taken 

from Vanderploeg et al. (2010), using the linear regressions of FA versus temperature (1-7 ºC) in 

their Fig. 2 for feeding on a desirable food (Cryptomonas) and on Lake Michigan seston, 

respectively. Filtration rates measured over the range 7-25 ºC did not show significant 

temperature dependence (Vanderploeg, unpublished), so FA was limited to ≤ 25 mL mg-ash-free-
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dry-tissue-mass
-1

 h
-1

, the maximum value reported by Vanderploeg et al. (2010). Mussel biomass 

carbon was estimated from ash-free-dry-tissue-mass (AFDM) as 1 g dry-tissue-mass = 0.88 g 

AFDM, 1 g dry-tissue-mass = 0.46 g carbon (Nalepa et al., 1993). It was assumed that 30% of 

filtered food particles were egested as detritus (Schneider, 1992), 30% was the energetic cost of 

feeding (Schneider, 1992) (phosphorus fraction was excreted as DP), and the remainder went to 

increase mussel biomass. The base respiration rate (0.006 d
-1

), respiration temperature 

dependence, and the maximum assimilation rate (4% of mussel biomass per day) were set 

following the assumptions and literature citations of Bocaniov et al. (2014). Mortality and 

predation were neglected.  

Tributary phosphorus loads 

Dolan and Chapra (2011; 2012) estimated annual tributary dissolved and total phosphorus loads 

to Lake Michigan for the period 1994–2008 at 38 tributary locations (Fig. 1). We distributed 

annual loads to a daily mass flux value using the daily fraction of annual discharge (assumption 

of constant concentration) from the nearest stream flow gage (http://waterdata.usgs.gov/, 

accessed Sep. 2014). Loads were added to the model cell adjacent to the tributary location; 

dissolved phosphorus was added to the DP model variable, and particulate phosphorus (TP minus 

DP) was added to the detritus variable, after conversion to carbon equivalent. In addition, an 

atmospheric phosphorus load of 310 metric tons per annum (10
3
 kg yr

-1
, or MTA) (Dolan and 

Chapra, 2012) was applied uniformly in space and time. For the 2010 simulation, annual 

phosphorus loads averaged over the most recent years available after 2005 (2006-2008) were 

used, distributed to daily fluxes using 2010 discharge data. The total phosphorus load to Lake 

Michigan in the 2000, 2005, and 2010 simulations was 3100, 2800, and 3300 MTA.  
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Skill statistics 

Agreement between modeled and observed data was quantified using the Pearson correlation 

coefficient (r), bias deviation (BD) and root mean square deviation (RMSD), 

 (3) 

 (4) 

where si, oi are the simulated and observed values at a given location and time, and n is the 

number of observations.  

Model sensitivity scenarios 

We conducted model simulations to represent actual conditions over the course of the quagga 

mussel invasion for 2000, 2005, and 2010 (“baseline” simulations). Additional sensitivity 

scenarios were conducted to show the influence of quagga mussels, tributary phosphorus loads, 

and meteorological conditions (Table 1). Model simulations were initialized on January 1 of each 

year and run for 12 months without data assimilation. Phytoplankton biomass was initialized to 

produce simulated chlorophyll-a consistent with January-February satellite-derived values in each 

year (1.0, 0.5, and 0.25  µg L
-1

 chlorophyll-a in 2000, 2005, and 2010, respectively). Zooplankton 

biomass was initialized at 5-7  µg C L
-1

 (Vanderploeg et al., 2012, their Fig. 4a). Dissolved 

phosphorus was initialized in the main lake (excluding Green Bay, see Fig. 1) as a spatially-

uniform value based on a volume-weighted mean of the USEPA spring survey field samples for 

the corresponding year. The detritus variable was initialized so that the total phosphorus 

(summed over all NPZD) matched the volume weighted mean value from the USEPA spring 

BD =
1

n
si −oi( )

i=1

n

∑

RMSD =
1

n
si − oi( )2

i=1

n

∑










1/2
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survey. Green Bay dissolved and total phosphorus were initialized using field samples from the 

Lake Michigan Mass Balance study (1994-95); additional effort would be required to accurately 

simulate water quality in eutrophic Green Bay, but this was not the focus of our study. The 

mussel biomass spatial distribution was initialized in simulations for 2000, 2005, and 2010 using 

the mussel distribution maps of Rowe et al. (2015b) obtained from application of a geostatistical 

model to lake-wide surveys of mussel densities by Ponar grab sample (Nalepa et al., 2009). The 

filter feeding intensity, or fraction of the water column cleared per day under vertically well-

mixed conditions, calculated from the initial mussel spatial distributions and clearance rate 

scenarios, is shown in Fig. 4. Finally, a high phosphorus scenario was simulated in which the 

2010 phosphorus load was scaled up by a factor of 1.7 to match the target load of 5600 MTA 

established in the Great Lakes Water Quality Agreement (Dolan and Chapra, 2012). 

 

Results  

Model skill assessment 

The model simulated major spatial and temporal patterns in observed temperature and water 

quality variables. A brief description of model skill assessment is provided here with full detail 

given in Supplemental Information. The model simulated surface temperature with reasonable 

skill (absolute BD < 0.46 ºC, RMSD < 1.41 ºC, Fig. S2, Table S1) in comparison to buoy and 

satellite-derived observations. In addition, the oscillating thermocline position caused by 

upwelling-downwelling dynamics at the Muskegon 45-m station was simulated (BD < 0.8 ºC, 

RMSD < 2.1 ºC, Fig. S3). In 2000, seasonal patterns of monthly mean satellite-derived 

chlorophyll-a (BD = 0.05 µg L
-1

, RMSD = 0.24 µg L
-1

, r = 0.57) and KdPAR (BD = -0.01 m
-1

, 
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RMSD = 0.02 m
-1

, r = 0.48), were simulated showing maxima in spring and fall with a minimum 

in mid-summer (Fig. 5a,d). Reduced chlorophyll-a and light attenuation in 2005 and 2010, 

compared to 2000, were simulated (Fig. 5b,c,e,f). At the Muskegon transect in 2000, the model 

simulated major patterns in chlorophyll-a concentration, including surface maxima in spring and 

fall, a deep chlorophyll-a layer during summer stratification, and higher chlorophyll-a 

concentrations nearshore (15-m station) than offshore (Fig. 6, abs. BD < 0.4 µg L
-1

, RMSD 1.0 

µg L
-1

, r > 0.52). Reduced chlorophyll-a concentration during deep mixing periods was simulated 

in 2005 and 2010, relative to 2000, although Apr-May chlorophyll-a was biased high in the 

model (Fig. 6c,f,i). Simulated particulate organic carbon, dissolved and total phosphorus fell 

generally within the range of observations (relative bias -3 to 15% USEPA, -50 to 18% NOAA), 

although correlation was less than for chlorophyll-a concentrations. Zooplankton biomass in 2000 

was within the range of observations at station M110, although the seasonal maximum in mid-

summer was under-predicted by the model (Fig. S4a). Reduced summer zooplankton biomass 

was simulated in 2010 vs. 2000, consistent with observations (Fig. S4c).  

The model simulated major features of the spatial distribution of chlorophyll-a in Lake Michigan, 

in comparison to satellite-derived and field observations (Fig. S5). A circular pattern of low 

chlorophyll-a in the center of southern Lake Michigan surrounded by higher chlorophyll-a in 

mid-depth regions, which has been referred to as the “doughnut”-shaped phytoplankton bloom 

(Kerfoot et al., 2008), was observed and simulated in March and April prior to the quagga mussel 

invasion, but not in 2005 or 2010 post-invasion. During the summer stratified period in July and 

August, low surface chlorophyll-a concentration was observed and simulated offshore, with 

plumes of higher chlorophyll-a concentration extending from the shore. Animations of model 

surface chlorophyll-a, and model state variables, are included in Supplemental Information to 
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illustrate the dynamics of these nearshore chlorophyll-a plumes, a process that is difficult to 

visualize by field observations or through infrequent cloud-free satellite images. Surface 

chlorophyll-a concentration increased from September to October or November (Fig. 6; Fig. 

S5g,h,i) and became more uniform, consistent with observations. 

Modeled change in mussel biomass 

Simulated mussel growth rates were at a maximum in March-May, and again increased in 

October-November (Fig. 7), times that were characterized by relatively high chlorophyll-a 

concentration and deep mixing. Simulated mussel growth decreased from nearshore to offshore in 

2000, associated with the nearshore-offshore gradient in chlorophyll-a. Net growth over the year 

was greater in 2000 than in 2005 or 2010 (Fig. 7), associated with increase in mussel biomass and 

decrease in chlorophyll-a over the same period. An animation of mussel ration (ratio of food 

intake to biomass) is included in Supplemental Information to illustrate how dynamic changes in 

surface mixed layer depth influenced food availability to mussels on the bottom.  

The lake-wide inventory of phosphorus contained in mussel soft tissue increased from 2000 to 

2010, while particulate phosphorus associated with detritus decreased over the same period. The 

model was initialized using volume-weighted mean USEPA spring survey total phosphorus and 

dissolved phosphorus (mean TP 4.6, 3.4, 3.0; DP , 2.0, 1.9, 1.9 µg L
-1

 for 2000, 2005, and 2010, 

respectively), resulting in relatively little decrease in dissolved, but a stronger decrease in 

particulate phosphorus from 2000 to 2010 (Fig. 8, detritus). Our model did not attempt to 

simulate the loss processes of phosphorus from Lake Michigan, which caused total phosphorus 

inventory to increase by 12-16% at the end of each 12-month simulation due to the watershed 

phosphorus load (Fig. 8, “sum” vs. “sum-loads”); however, this did not influence year-to-year 
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change in phosphorus inventory because each simulation was initialized from observed values. 

Our measurements of phosphorus in quagga mussel tissue gave a mean phosphorus:carbon mass 

ratio in tissue of 0.017 (s.d. 0.001 for 9 composite samples, assuming 0.46 gC/gDW), slightly 

greater than the value of 0.016 that we used in model simulations based on preliminary data. 

Insufficient data were available to investigate seasonal or interannual variation in tissue 

phosphorus.  

 

Sensitivity of chlorophyll-a spatial and seasonal patterns to quagga mussels, nutrient loads, and 

meteorology 

Model scenarios with increased mussel filter feeding had lower surface chlorophyll-a in periods 

of deep mixing. In April 2010, the bands of low chlorophyll-a concentration in mid-depth regions 

(~30-70 m) were not simulated in the “No mussels” sensitivity scenario, causing a return of the 

southern basin doughnut pattern in April (Fig. 9a vs. b), while the low chlorophyll-a bands were 

enhanced in the “High clearance” scenario (Fig. 9a vs. c). As noted earlier, February-April 

chlorophyll-a was biased high in the 2010 simulation using the low estimate of clearance rate. 

The “High clearance” scenario reduced Feb-Apr 2010 chlorophyll-a relative to the low clearance 

scenario and improved the skill statistics (BD -0.01 vs. 0.03 µg L
-1

, RMSE 0.36 vs. 0.38 µg L
-1

, r 

0.39 vs. 0.34 for high vs. low clearance, respectively). Quagga mussel filter feeding reduced 

chlorophyll-a concentration along the Muskegon transect at times when the surface mixed layer 

contacted the bottom, and in addition reduced near-bottom chlorophyll-a during the summer 

stratified period (Fig. 10a vs. b;d vs. e;g vs. h). 
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Surface chlorophyll-a concentration was sensitive to winter stratification, which limited the SML 

depth. At the Muskegon 110-m station, there was a simulated and observed vertical gradient in 

chlorophyll-a concentration in March 2010 associated with winter stratification (Fig. 10g). In a 

nearshore-offshore transect from Muskegon on 24 Mar 2010, higher chlorophyll-a occurred in 

areas where the surface cooled below 4 ºC (Fig. 11 a,i), which was also simulated by the model 

(Fig. 11b,j) although isothermal conditions extended further offshore in the model than observed. 

On 14 Apr 2010, isothermal conditions were observed and simulated along the Muskegon 

transect (Fig. 11k,l). High chlorophyll-a was observed nearshore, with a gradient to low 

chlorophyll-a offshore, consistent with the model simulation (Fig. 11c,d). Mussel filter feeding 

reduced chlorophyll-a concentration, relative to the “No mussels” scenario, at mid-depth and 

offshore locations where isothermal conditions extended to the bottom and mussel filter feeding 

intensity was high in both March (Fig. 11b vs. f) and April (Fig. 11d vs. h; Fig. 4).  

Nearshore chlorophyll-a concentration was sensitive to tributary phosphorus loads. The 

“No loads” scenario caused a reduction in nearshore chlorophyll-a with little effect offshore (Fig. 

9a vs. d). Finally, the “High phosphorus” scenario increased chlorophyll-a lake-wide, even in the 

presence of quagga mussel filter feeding (Fig. 9a vs. e): April BD relative to SeaWiFS 

chlorophyll-a increased from 0.22 to 0.76 µg L
-1

 and annually from 0.03 to 0.7 µg L
-1

 for baseline 

and “High P” 2010 scenarios, respectively. As an additional example, the “No loads” scenario 

caused low-biased chlorophyll-a in May to Dec at the relatively nearshore 15 and 45-m stations 

along the Muskegon transect (Fig. 10a vs. c;d vs. f), but minimally affected at the offshore 110-m 

station (Fig. 10g vs. i). 
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In the summer stratified period, surface chlorophyll-a was sensitive to phosphorus scenarios, but 

not sensitive to mussel filter feeding, as illustrated in Fig. 9 by comparing the baseline scenario 

(Fig. 9f vs. k) to sensitivity scenarios. In August and September, “No mussels” and “High 

clearance” scenarios had little effect on surface chlorophyll-a (Fig. 9f,g,h;k,l,m). The “No loads” 

scenario reduced, but did not eliminate, enhanced chlorophyll-a along the western shore 

associated with upwelling (Fig. 9f vs. i;k vs. n). In the “High P” scenario, surface chlorophyll-a 

increased while maintaining similar spatial patterns to the baseline scenario. August and 

September mean chlorophyll-a increased by 0.8 and 1.1 µg L
-1

 relative to the 2010 baseline 

scenario. 

Sensitivity of surface chlorophyll-a to mussel filter feeding returned in November, as the 

deepening SML contacted the bottom. Bands of low- chlorophyll-a were present in mid-depth 

areas associated with mussel scenarios (Fig. 9p,q,r,s). In the “High P” scenario, mean 

chlorophyll-a increased by 0.5 µg L
-1

 relative to the 2010 baseline scenario (Fig. 9t), even in the 

presence of quagga mussels.  

Spatial patterns of chlorophyll-a were sensitive to cool (1997) and warm (1998) winter-spring 

meteorological scenarios, which modified SML depth. In the “No mussels” scenario, chlorophyll-

a was higher where SML depth was limited by winter stratification and lower in areas of deep 

mixing (Fig. 12g,h); in the absence of mussels these patterns were associated with SML depth 

(Fig. 12j,k). Mussel filter feeding reduced chlorophyll-a concentration mainly in areas where the 

SML contacted the bottom (Fig. 12a,b,d,e vs. g,h). In April, winter stratification continued to 

protect phytoplankton from mussel filter feeding over much of the lake in the cool scenario (Fig. 

12b,e vs. h 1997), but in the warm scenario deep mixing resulted in low chlorophyll-a in deep 
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basins even in the absence of mussels (Fig. 12g,h 1998) and reduced chlorophyll-a in mid-depth 

locations with mussels (Fig. 12b,e vs. h 1998). In May, the situation reversed, with deep mixing 

initiating in the cool scenario (1997 meteorology). The onset of summer stratification in the 

warm scenario (1998 meteorology) limited SML depth, which was associated with enhanced 

chlorophyll-a (Fig. 12c,f vs i). 

 

Sensitivity of lake-wide mean primary production to quagga mussels, nutrient loads, and 

meteorology 

Modeled primary production for the 2000, 2005, and 2010 baseline scenarios was 5.8, 5.3, and 

5.2 Tg C yr
-1

, respectively, for the method of Fahnenstiel et al. (2016), compared to 12.9, 12.0, 

and 12.1, respectively for the method of Warner and Lesht (2015). Using satellite-derived inputs, 

Fahnenstiel et al. (2016) reported Lake Michigan primary production of 5.0 - 6.9 Tg C yr
-1

 for the 

years 2010-2013, while Warner and Lest (2015) reported values of 9.5 – 13.6 Tg C yr
-1

 for the 

years 1998-2008. The model-derived primary production values were within the range of 

satellite-derived values reported for the respective methods.  

Lake-wide, annual mean primary production was more sensitive to phosphorus and warm/cool 

meteorology scenarios than to mussel filter feeding scenarios. Simulation of mussel filter feeding 

reduced primary production by 1-3%, or 3-6% for the “High clearance” scenario, relative to the 

“No mussels, Loads” scenario. The 2000 baseline scenario had 7-11% higher primary production 

(Fig. 13) than the 2010 baseline scenario, representing the combined effect of mussels and lower 

phosphorus in 2010. The effect of cool (1997) versus warm (1998) meteorology scenarios was a 

9-13% decrease in primary production. Among the “High P” scenarios, all had much higher (24-
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36%) primary production than the baseline scenario, even with the “High clearance” filter 

feeding assumption.  

 

Discussion  

Surface mixed layer (SML) depth influenced spatial patterns of chlorophyll-a. SML depth along 

with light attenuation controls mean light exposure to the phytoplankton during the winter-spring 

transition (Fahnenstiel et al., 2000; Rowe et al., 2015a), as described in the conceptual model of 

Sverdrup (1953) for initiation of the spring bloom. Kerfoot et al. (2008) attributed formation of 

the doughnut-shaped winter-spring phytoplankton bloom in southern Lake Michigan to 

entrainment of nutrients derived from tributaries and sediment resuspension into the gyre 

circulation. However, the doughnut pattern was simulated in models that did not include nutrient 

loads or sediment resuspension, e.g. Fig. 9d and Luo et al. (2012), suggesting that the controlling 

mechanism is limitation of the SML depth by bathymetry during deep mixing, and associated 

effect on light exposure averaged over the SML depth. Chlorophyll-a was low in both the deep 

southern and northern basins during times of deep mixing (e.g., Fig. 12 Apr 1998), reflecting the 

control of SML depth and light limitation by bathymetry in both basins. The maximum density of 

fresh water occurs at 4 ºC, thus SML depth can be limited by stratification as a result of cooling 

below (winter stratification) or warming above (summer stratification) 4 ºC. Direct observation of 

enhanced chlorophyll concentration in areas affected by winter stratification was shown in the 

March 2010 PSS transect (Fig. 11), and winter stratification was shown to influence the March-

May spatial patterns of chlorophyll-a through the sensitivity of these patterns to meteorological 

scenarios (Fig. 12).  
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Quagga mussel filter feeding worked together with light limitation to limit phytoplankton net 

growth during times of deep mixing. Reduced chlorophyll-a occurred in areas of high filter-

feeding intensity and deep mixing in model scenarios that included mussels, as observed by 

Rowe et al. (2015b) who showed a significant association between spatial areas of reduced 

chlorophyll-a observed in satellite imagery post-dreissenid invasion and mussel filter feeding 

intensity that exceeded the benchmark spring phytoplankton growth rate of 0.06 d
-1

. Rowe et al. 

(2015a) showed that quagga mussels could reduce chlorophyll-a during the Lake Michigan spring 

bloom under realistic estimates of biomass, clearance rate, and vertical mixing in a one-

dimensional model simulation. Our three-dimensional model simulations provide a more realistic 

estimate of the reduction in phytoplankton biomass by filter feeding through inclusion of a 

realistic spatial distribution of mussel biomass, effects of advection, and by considering 

sensitivity to low and high estimates of clearance rate. These model results were consistent with 

previous empirical studies that associated declines in chlorophyll-a post quagga mussel invasion 

with seasons of deep mixing (Fahnenstiel et al., 2010; Warner and Lesht, 2015).   

In the summer stratified period, spatial patterns of chlorophyll-a were influenced by tributary 

nutrient loads and coastal upwelling/downwelling with mussel filter feeding having minimal 

influence. Sensitivity scenarios showed that tributary nutrient loads supported higher chlorophyll-

a nearshore than offshore, in both stratified and unstratified seasons. Lake Michigan nearshore 

dynamics during summer stratification include internal waves supported by thermal stratification 

and wind-driven upwelling-downwelling (Troy et al., 2012). Even in scenarios without tributary 

nutrient loads, upwelling enhanced surface chlorophyll-a nearshore by bringing the deep 

chlorophyll-a layer to the surface, and by enhancing vertical mixing of nutrients and chlorophyll-

a from the hypolimnion into the euphotic zone.  
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The sensitivity of nearshore chlorophyll-a to tributary nutrient loads underscores the importance 

of having accurate estimates of nutrient loads for simulation of chlorophyll-a and nutrient 

concentrations nearshore. At the 15- and 45-m stations of the Muskegon transect, simulated 

chlorophyll-a was biased high during the spring isothermal period from mid-March to mid-May 

(Fig. 10a,d) in the baseline scenario, but better matched observations in the “No loads” scenario 

(Fig. 10c,f), suggesting that the estimated phosphorus loads may have been too high in this 

period. The assumption of constant concentration that was used to distribute annual loads to daily 

values was a coarse approximation; however, limited monitoring data were available.  

Simulated mussel growth rates were greater nearshore than offshore and showed seasonal 

maxima in spring and fall, following spatial and temporal patterns in chlorophyll-a and mixing 

depth. These seasonal patterns were consistent with measured quagga mussel condition (ratio of 

tissue mass to internal shell capacity) at the Muskegon transect; observed condition increased (or 

decreased least) April through June, decreased June to September, then remained constant or 

improved slightly in October (Glyshaw et al., 2015). Simulated spatial patterns in mussel growth 

at the 15-m, 45-m, and 110-m stations were consistent with observed changes in mussel biomass 

in the comparable < 30, 30-50, and > 90 m depth zones by Rowe et al. (2015b). Limited food 

availability resulted in little simulated mussel growth at the 110-m station (Fig. 7a), consistent 

with very slow observed increase in biomass over time at depths > 90 m (Rowe et al., 2015b). 

There was a net increase in simulated biomass in 2000 at the 45-m station, but a net decrease in 

2005 and 2010 (Fig. 7), showing the effect of food limitation as biomass increased and 

chlorophyll-a decreased in the later years. Similarly, observed biomass increased dramatically 

from 2000 to 2005 in the 30-50 m depth range, but increased little from 2005 to 2010 in southern 

lake Michigan and did not change or declined in central and northern Lake Michigan (Rowe et 
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al., 2015b). Glyshaw et al. (2015) found lower mussel condition at 45-m than at 25 or 110-m in 

2013, suggesting food-limited conditions in the region of peak mussel biomass, which is 

consistent with model results. The largest simulated increase in biomass occurred in 2000 at the 

15-m station (Fig. 7). Observed biomass increased to 5-10 g AFDM m
-2

 from 2000 to 2005 at 

depths < 30 m (Rowe et al., 2015b), while simulated biomass increased to 12-18 g AFDM m
-2

 by 

the end of 2000 (Fig. 7); the model was consistent with observations in showing an increase, 

although the model over-estimated. The model simulation suggests that food availability for 

mussels nearshore is high, which is consistent with higher observed mussel condition at the 

Muskegon 25-m station than at 45 or 110-m (Glyshaw et al., 2015).  

Nearshore mussel biomass may have been overestimated in the model, and may be limited by 

higher mortality rates, which were not simulated. Small and mid-sized mussels (up to 13 mm) are 

susceptible to predation by round gobies, Neogobius melanostomus (Ghedotti et al., 1995), 

another Ponto-Caspian invader that is abundant in nearshore Lake Michigan. Predation by gobies 

has been shown to affect the size structure of mussel populations (Djuricich and Janssen, 2001). 

In addition, mussels may be susceptible to mortality by periodic wave action on sandy substrata 

that dominate much of Lake Michigan at depths < 30 m (Vanderploeg et al., 2010). In hard 

substrate areas, such as near Milwaukee, mussels cover ~80% of the bottom in waters shallower 

than 10 m; however, hard substrates cannot be sampled in surveys by Ponar grab sample, so 

mussel biomass in shallow areas with hard substrate may be underestimated in the maps of Rowe 

et al. (2015b).  

Simulated lake-wide, annual mean primary production declined from 2000 to 2010, consistent 

with an observed decline in primary production over this period (Fahnenstiel et al., 2010; Warner 
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and Lesht, 2015). However, total phosphorus concentration and mussel filter feeding intensity 

both varied over this period, making interpretation of the cause not obvious. Primary production 

was more sensitive to scenarios of phosphorus and cool/warm meteorology than to scenarios of 

mussel filter feeding, suggesting that the decline in spring total phosphorus over 2000 to 2010 

contributed to declining primary production along with the direct effect of filter feeding on 

phytoplankton biomass, consistent with the finding of Warner and Lesht (2015) from a statistical 

analysis. The primary production method of Warner and Lesht (2015) produced higher values 

than the method of Fahnenstiel et al. (2016), as discussed by Fahnenstiel et al. (2016). Because of 

the differences between the two methods, we chose to present results from both methods in our 

model sensitivity analysis; however, the two methods showed similar patterns of sensitivity to the 

model scenarios (Fig. 13). 

Relatively low sensitivity of lake-wide, annual mean primary production to mussel filter feeding 

scenarios may be surprising considering the well-documented disappearance of the spring bloom 

(Kerfoot et al., 2010; Vanderploeg et al., 2010), reduced chlorophyll-a (Pothoven and 

Fahnenstiel, 2013; Rowe et al., 2015a), and reduced primary production (Fahnenstiel et al., 2010) 

post-mussel invasion. In the absence of reduced total phosphorus in the water column, filter 

feeding alone may shift production spatially and temporally, but during periods of stratification, 

mussels are separated from the euphotic zone and nutrients that were not taken up earlier during 

periods of deep mixing may then support phytoplankton production. Relative insensitivity of 

lake-wide, annual mean primary production to mussel filter feeding may be explained as spatial 

and temporal redistribution of primary production by mussels, with overall trophic status being 

determined by the total quantity of limiting nutrient in the water column.  

Page 26 of 55Limnology and Oceanography

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 26

In addition to direct reduction in phytoplankton biomass by filter feeding, mussels may have 

contributed to the progressive decline in lake-wide phosphorus inventory over the years 2000, 

2005, and 2010. In 2010, the lake-wide inventory of phosphorus in mussel soft tissue represented 

the equivalent of 1 µg L
-1

 pelagic phosphorus concentration (Fig. 8c), which can partially, but not 

fully, account for the decline in pelagic total phosphorus of 1.6 µg L
-1

 (4.6 to 3.0 µg L
-1

 TP), 

indicating a net decline in phosphorus inventory even after accounting for the amount transferred 

to mussel soft tissue. The main process by which phosphorus is lost from Lake Michigan is 

through sequestration in the sediment (Chapra and Dolan, 2012). Chapra and Dolan (2012) 

applied mass balance models to show that the rate of loss of phosphorus to the sediments 

increased after the dreissenid invasion for Lakes Michigan, Huron, Erie, and Ontario. Mosley and 

Bootsma (2015) directly measured the ability of quagga mussels to accelerate the deposition of 

particulate phosphorus to the sediment in Lake Michigan. Thus, mussels may have contributed to 

declining primary production by increasing the burial rate of phosphorus into the sediment in 

addition to sequestering an increasing amount of phosphorus in their soft tissue.  

Quagga mussels have had a profound effect on the Lake Michigan ecosystem. Our model 

simulations showed that quagga mussel filter feeding altered the spatial and temporal distribution 

of phytoplankton abundance. Our analysis of observational data that was used to develop initial 

conditions for model simulations showed a progressive decline in lake-wide phosphorus 

inventory in the water column from 2000 to 2010, which was partially attributed to an increasing 

inventory of phosphorus in mussel tissue. The redistribution of spatial and temporal patterns of 

productivity has significant ecological implications. The spring phytoplankton bloom 

traditionally delivered a fast-sinking pulse of large diatoms to the benthos; this was an important 

period for copepod egg production (Vanderploeg et al., 1992), and for lipid accumulation in 
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benthic invertebrates including Mysis diluviana (Pothoven et al., 2012) and Diporeia sp. 

(Gardner et al., 1990). Phytoplankton size has decreased post-dreissenid invasion (Carrick et al., 

2015), likely influencing settling rates and export to the benthos. In addition, the shift to smaller 

phytoplankton may have negatively affected copepods, the dominant mesozooplankton 

consumers, which cannot efficiently feed on phytoplankton < 3 µm (Vanderploeg, 1994). 

Filter feeding reduces net phytoplankton growth and inhibits nutrient uptake by pelagic 

production during deep mixing periods, potentially shifting production to other places and times, 

including stratified periods and nuisance nearshore benthic production. Our sensitivity scenarios 

showed that even though the quagga mussel invasion coincided with a decrease in lake-wide 

primary production, increased tributary phosphorus loads would likely increase lake-wide trophic 

status even in the presence of mussels. However, mussels may mitigate increased productivity 

over longer time scales than our one-year simulations through increased biomass and removal of 

phosphorus from the water column. Furthermore, increased nutrient loads may exacerbate 

nuisance benthic algae production. In future management efforts, it will be necessary to consider 

not only lake-wide productivity, but also the spatial distribution of nutrient sources and their 

transport to nearshore areas that provide an increasingly important supplement to the pelagic food 

web, and also support nuisance benthic algae production.  

 

Supplemental Materials 

Tables S1-S4, Figures S1-S4, and animation files showing the 12-month “baseline” simulations 

(Table 1) for 2000, 2005, and 2010; surface temperature, chlorophyll-a, dissolved phosphorus, 
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and detritus; mussel ration, and mussel biomass. Animations may be viewed at 

https://deepblue.lib.umich.edu/handle/2027.42/136202 
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Table 1. Model scenarios. Mussel biomass spatial distribution was initialized from Rowe et al. 

(2015b) for the given year, or not simulated (-). Dissolved phosphorus (DP) and total phosphorus 

(TP, summed over all model variables) were initialized from a volume-weighted average of the 

USEPA GLNPO spring survey data for the year(s) indicated. Phosphorus load was set from 

Dolan and Chapra (2012), or at the target load of 5600 MTA. Meteorology was from the year 

being simulated, except for cool and warm spring scenarios in which case meteorology was from 

1997 or 1998, respectively. The quagga mussel clearance rate was set at high or low values based 

on feeding experiments by Vanderploeg et al. (2010) on Cryptomonas or Lake Michigan seston, 

respectively. 

Description 

Initial 

Mussels 

Initial TP, 

DP TP, DP load Meteorology 

Clearance 

rate 

Mussels, Loads* 2000 2000 2000 2000 Seston 

Mussels, Loads* 2005 2005 2005 2005 Seston 

Mussels, Loads* 2010 2010 2010 2010 Seston 

No mussels, Loads - 2000 2000 2000 Seston 

No mussels, Loads - 2005 2005 2005 Seston 

No mussels, Loads - 2010 2010 2010 Seston 

Mussels, No loads 2000 2000 None 2000 Seston 

Mussels, No loads 2005 2005 None 2005 Seston 

Mussels, No loads 2010 2010 None 2010 Seston 

High Clearance 2010 2010 2010 2010 Cryptomonas 

Mussels, Loads, Cool 2010 2010 2010 1997 Seston 

High clearance, Cool 2010 2010 2010 1997 Cryptomonas 

No mussels, Loads, Cool - 2010 2010 1997 Seston 

No mussels, Loads, 

Warm - 2010 2010 1998 Seston 

Mussels, Loads, Warm 2010 2010 2010 1998 Seston 

High clearance, Warm 2010 2010 2010 1998 Cryptomonas 

No mussels, High P - 1983-89 5600 MTA 2010 Seston 

Mussels, High P 2010 1983-89 5600 MTA 2010 Seston 

High clearance, High P 2010 1983-89 5600 MTA 2010 Cryptomonas 

* “Baseline” scenarios, used for model calibration and skill assessment 
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Figure Captions 

Fig. 1. Map of Lake Michigan, showing bordering U.S. states of Michigan, Indiana, Illinois, and 

Wisconsin. a) Spatial domain of the hydrodynamic model (white area), bathymetry (50-m 

contours), and locations of U.S. Environmental Protection Agency stations (USEPA), National 

Oceanic and Atmospheric Administration stations offshore of Muskegon (NOAA), National Data 

Buoy Center buoys (NDBC), and locations of tributary phosphorus loads (P loads). Names are 

indicated for the ten highest-loading tributaries. b) Enlarged area of southeastern Lake Michigan, 

showing a portion of the unstructured hydrodynamic model grid and station locations. 

Fig. 2. Process diagram showing biological model compartments, process pathways, and transfer 

of external forcing data. 

 

Fig. 3. Comparison of key process rates to observations. The solid line in a and b are from model 

output at the 110-m station offshore of Muskegon (Fig. 1). a) Surface mixed layer (SML) mean 

phytoplankton growth rate, and comparable literature values. b) SML mean zooplankton grazing 

rate. c) Dependence of ��
��� on dissolved phosphorus concentration for the model 

parameterization (lines) and values from Lohrenz et al. (2004) re-plotted on a DP scale for 

guidance (see Methods). 

 

Fig. 4. Fraction of the water column cleared per day under vertically well-mixed conditions 

(Rowe et al., 2015b) resulting from the initial mussel biomass distributions and clearance rate 

scenarios used in the model simulations. 

 

Fig. 5. Modeled and satellite-derived (SeaWiFS OC4) monthly mean surface chlorophyll-a and 

attenuation coefficient for photosynthetically active radiation, KdPAR. Boxplots represent spatial 

variation.   Fig. 6. Time series of vertical distribution of chlorophyll-a at the 15-, 45-, and 110-m 

depth NOAA Muskegon transect stations (Fig. 1) for the 2000, 2005, and 2010 baseline 

simulations. Modeled and field-sampled chlorophyll-a (symbols) are plotted using the same color 

scale. 

Fig. 7. Modeled quagga mussel biomass at the NOAA stations located at 15, 45, and 110-m depth 

offshore of Muskegon for the 2000, 2005, and 2010 baseline simulations, and corresponding 

sensitivity scenarios with high mussel clearance rate (Table 1). 

 

Fig. 8. Components of the lake-wide phosphorus inventory expressed as the mass divided by the 

lake volume, or the potential contribution of the phosphorus compartment to the lake-wide mean 

phosphorus concentration for the years 2000 (a), 2005 (b), and 2010 (c). 

 

Fig. 9. Model scenarios showing the sensitivity of surface chlorophyll-a to quagga mussels and 

tributary phosphorus loads in seasons characterized by deep mixing (Apr), summer stratification 

(Aug), or deepening of the surface mixed layer (Sep-Nov). Model scenarios were based on the 

2010 baseline simulation (a,f,k,p) with modifications listed in Table 1.  
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Fig. 10. Sensitivity of chlorophyll-a concentration to quagga mussels and tributary phosphorus 

loads for scenarios based on modification of the 2010 baseline simulation (see Table 1). Modeled 

and field-sampled chlorophyll-a (circles) are plotted using the same color scale. 

 

Fig. 11. Comparison of modeled to observed (plankton survey system) chlorophyll-a 

concentration and thermal structure along the Muskegon transect (Fig. 1) in 2010, showing 

effects of deep-mixing (April) versus winter stratification (March, surface cooling < 4 ºC). 

Sensitivity of chlorophyll-a to mussels is shown by comparison of the 2010 baseline simulation 

to the corresponding no-mussel scenario. Mussel biomass was maximum at 30-60 m. 

 

Fig. 12. Model scenarios showing the sensitivity of surface chlorophyll-a and surface mixed layer 

(SML) depth to cool (1997) and warm (1998) winter-spring scenarios in seasons characterized by 

transition from winter stratification to deep mixing to the onset of summer stratification. Model 

scenarios were based on the 2010 baseline simulation with substitution of meteorology from 

1997 or 1998 (Table 1). 

 

Fig. 13. Change in lake-wide, annual mean primary production (excluding Green Bay) for 

sensitivity model scenarios (Table 1), relative to the 2010 baseline scenario (*). Primary 

production was calculated using two methods: filled bar (Fahnenstiel et al., 2016); open bar 

(Warner and Lesht, 2015).  
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