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Abstract 

Objective:To detect and quantify peripheral nerve lesions in multiple sclerosis (MS) by 

magnetic resonance neurography (MRN). 

Methods: 36 patients diagnosed with MS based on the 2010 McDonald criteria (34 with the 

relapsing-remitting form, 2 with clinically isolated syndrome) with and without disease 

modifying treatment were compared to 35 healthy age/sex-matched volunteers. All patients 

underwent detailed neurological and electrophysiological examinations. 3T MRN with large 

anatomical coverage of both legs and the lumbosacral plexus was performed by using 2D fat-

saturated, T2-weighted and dual echo turbo-spin-echo sequences as well as a 3D T2-

weighted, fat-saturated SPACE sequence. Besides qualitative visual nerve assessment, a T2w-

signal quantification was performed by calculation of proton-spin-density and T2-relaxation 

time. Nerve diameter was measured as a morphometric criterion.  

Results:T2w-hyperintense nerve lesions were detectable in all MS patients with a mean 

lesion number at thigh level of 151.5±5.7 vs. 19.1±2.4 in controls (p<0.0001). Nerve proton-

spin-density was higher in MS (tibial/peroneal: 371.8±7.7/368.9±8.2) vs. controls 

(tibial/peroneal: 266.0±11.0/276.8±9.7;p<0.0001). In contrast, T2-relaxation time was 

significantly higher in controls (tibial/peroneal:82.0±2.1/78.3±1.7) vs. MS 

(tibial/peroneal:64.3±1.0/61.2±0.9; p<0.0001). Proximal tibial and peroneal nerve caliber was 

higher in MS (tibial:52.4±2.1mm²; peroneal:25.4±1.3mm²) vs. controls (tibial:45.2±1.4mm²; 

p<0.0015; peroneal:21.3±0.7mm²; p=0.0049).  

Interpretation:Peripheral nerve lesions could be visualized and quantified in MS in vivo by 

high resolution MRN. Lesions are defined by an increase of proton-spin-density and a 

decrease of T2-relaxation time, indicating changes in the microstructural organization of the 

extracellular matrix in peripheral nerve tissue in MS. By showing involvement of the 

peripheral nervous system in MS, this proof-of-concept study may offer new insights into the 

pathophysiology and treatment of MS.  

 

Keywords:  

Magnetic resonance neurography, multiple sclerosis, electrophysiology, peripheral nervous 

system, proton spin density 
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Introduction 

Multiple sclerosis (MS), one of the most common acquired chronic neurological diseases, is 

traditionally regarded as restricted to the CNS, but the exact etiology is still unclear. With an 

estimated prevalence of 2 million affected people worldwide, it is one of the leading causes of 

disability in young adults.
1
 The clinical presentation of MS is heterogeneous with sensory, 

motor, visual and autonomic symptoms.  

Clinically, MS is diagnosed based on the principles of symptom dissemination in space and 

time as defined by the Poser criteria.
2
 According to the 2010 McDonald criteria, the early 

diagnosis of MS after a single clinical event can be established by the radiological 

demonstration of lesion dissemination in space and time.
3
   

Few studies, most of them case reports, suggest the concurrence of demyelination in the 

central nervous system (CNS) and peripheral nervous system (PNS) in MS. Earlier 

neuropathological reports described segmental demyelination, hypertrophic neuropathy and 

reduction in myelin thickness in few MS patients.
4,5

 Large electrophysiological studies of 

nerve conduction abnormalities in MS are rare and documented results are inhomogeneous 

regarding type, frequency and extent of PNS involvement.
6,7

  

High-resolution magnetic resonance neurography (MRN) enables early detection and precise 

localization of peripheral nerve lesions with high sensitivity, down to the level of nerve 

fascicles in various neuropathies, and thus can overcome typical diagnostic limitations of 

nerve conduction studies (NCS).
8,9

 With an extensive MRN imaging protocol and in 

correlation with NCS, we 1) tested the involvement of the PNS in MS, 2) analyzed peripheral 

nerve lesions by in vivo visualization, localization and T2w-signal quantification, and 3) 

compared MRN findings of healthy volunteers to those of MS patients in correlation with the 

presence of spinal cord lesions. 

 

Materials and methods 

Study design and patients  

The local ethics committee approved this study (University of Heidelberg S-405/2012; J.P., 

M.B.) and all participants gave written informed consent. 36 MS patients (21 female, 15 male, 

mean age 32.1 years, range 18-43, 2010 McDonald criteria fulfilled in all patients) with either 

relapsing-remitting MS (>3 years, range 3-13; n=34) or with clinically isolated syndrome 
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(n=2) and 35 sex and age matched healthy volunteers (19 female, 16 male, mean age 31.6, 

range 22-40), were included in this prospective, cross-sectional, single center study between 

May 2015 and September 2016. Current Gadolinium-enhanced MRI studies of the brain and 

spine were available in all patients with MS. The mean time gap between the acquisition of 

the MRN scans and the most recent available CNS MRI was 1.5±0.3 months (median = 1 

month) for imaging of the brain and 5.5±1.3 months (median = 3 months) for imaging of the 

spinal cord. Overall exclusion criteria were, age <18 or >45, pregnancy, any contraindications 

for MRI, any risk factors for neuropathy such as diabetes mellitus, alcoholism, malignant or 

infectious diseases, any therapy with steroids in the eight weeks immediately prior to the MRI 

scans, and any previous exposure to neurotoxic agents. Additionally, by taking a detailed past 

medical history, any sensory or motor symptoms in the upper or lower extremities, any 

history of neuropathy, any previous spine surgery, and any permanent medication was ruled 

out in all healthy volunteers.  

 

Clinical and electrophysiological examination 

A detailed medical history was documented for each patient and a comprehensive 

neurological examination (R.D.; B.W.; M.K.K.) was performed, including evaluation of the 

Expanded Disability Status Scale.
10

 NCS of the left leg included: distal motor latencies, 

compound muscle action potentials, and F-waves of the tibial and peroneal nerves, nerve 

conduction velocities of the tibial, peroneal and sural nerves, and sensory nerve action 

potentials of the sural nerve (M.W.). Skin temperature was controlled at a minimum of 32°C. 

Detailed clinical and electrophysiological data are presented in Table 1 and 2. 

 

MRN protocol 

All participants underwent high-resolution MRN in a 3.0 Tesla MR-scanner (Magnetom TIM-

TRIO, Siemens Healthcare, Erlangen, Germany):  

(1) 3D T2-weighted inversion recovery SPACE (Sampling Perfection with Application-

optimized Contrasts using different flip angle Evolution) sequence for imaging of the 

lumbar plexus and spinal nerves with 50 axial reformations/patient: repetition time / 

effective echo time / inversion time 3000 / 62 / 210 ms, field of view 305 x 305 mm
2
, 
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matrix size 320 x 320 x 104, slice thickness 1.0 mm, no gap, voxel size 1.0 x 1.0 x 1.0 

mm
3
, acquisition time 8:32 min. 

(2) Axial high resolution T2-weighted turbo spin echo 2D-sequences with spectral fat-

saturation (three slabs at the right leg). Slab 1: proximal thigh to mid-thigh; slab 2: 

lower leg with alignment of its proximal edge with the tibiofemoral joint space; slab 3: 

ankle level with alignment of the distal edge of the imaging slab on the tibiotalar joint 

space. Repetition time / echo time 5970 / 55 ms, field of view 150 x 150 mm
2
, matrix 

size 512 x 512, slice thickness 3.5 mm, interslice gap 0.35 mm, voxel size 0.4 x 0.3 x 

3.5 mm
3
, 35 slices, acquisition time per slab 4:42 min. 

(3) Axial high-resolution dual echo turbo spin echo 2D-sequence with spectral fat 

saturation (one slab per leg, equaling two slabs per subject): mid-thigh to distal thigh 

with alignment of the distal edge of this imaging-slab on the tibiofemoral joint space. 

Repetition time 5210 ms, echo time1 / echo time2 12 / 73 ms, field of view 150 x 150 

mm
2
, matrix size 512 x 512, slice thickness 3.5 mm, interslice gap 0.35 mm, voxel 

size 0.4 x 0.3 x 3.5 mm
3
, 35 slices, acquisition time per slab 7:30 min.  

 

Net imaging time including survey scans was 38:02 min. Patient and coil repositioning 

required additional time, resulting in a total examination time of 60-70 min per participant. A 

4-channel body-array flex-coil (Siemens Healthcare) was used for imaging of the lumbar 

plexus (sequence 1), and a 15-channel Transmit-Receive extremity-coil (INVIVO) for 

imaging of the right and left leg, respectively (sequence (2) and (3)). All coils used in this 

study are commercially available. 

 

Image post-processing and statistical analysis  

All images generated by MRI sequences (2) and (3) were pseudonymized (M.B.; J.P.) and 

subsequently analyzed in FSL, a dedicated software for neuroimaging data evaluation.
11

 

Tibial and peroneal fascicles of the sciatic nerve and their distal continuation as either tibial or 

peroneal nerve were manually segmented by one neuroradiologist (G.H.H.) from proximal 

thigh down to distal ankle level on 140 axial slices for the left leg, and only at thigh level on 

additional 35 slices for the right leg. The contour between nerve fascicles and the epineurium 

was used as a reliably visible segmentation border. Slice numbering for the tibial nerve was 

from 0 (most proximal slice at proximal thigh level) to 139 (most distal slice at ankle level) 

and from 0 to 60 (level of the fibular head) for the peroneal nerve. For simplification, we refer 

Page 5 of 29

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
6 

 

to tibial fascicles of the sciatic nerve and corresponding tibial nerve as tibial nerve only, and 

to peroneal fascicles of the sciatic nerve and corresponding common peroneal nerve as 

peroneal nerve.  

 

Qualitative evaluation of nerve lesions 

Based on the 2010 McDonald criteria, the evaluation of T2w hyperintense lesions in the brain 

and spinal cord is an established method in the initial diagnostic work-up of patients with MS, 

as well as in their lifelong radiological follow up. According to this standard procedure, two 

experienced, independent neuroradiologists (J.J; J.K.) who were blinded to clinical data, 

performed a visual evaluation and determination of the total sciatic nerve lesion count on 20 

representative axial imaging slices at left proximal thigh level. We defined a nerve lesion as a 

nerve fascicle with an abnormally high T2w signal. Lesion number per slice position was 

counted and then summed to a total lesion number within the imaged volume per participant. 

Subsequently, mean values were calculated over all participants within either the MS or the 

control group.   

Recent spinal cord MRIs of all MS patients were additionally analyzed to exclude potential 

external sources of nerve affection such as spinal cord or nerve root compression due to 

herniated vertebral disks or spinal tumors. Once external reasons for nerve damage were ruled 

out, the total number of T2w hyperintense lesions to the spinal cord was evaluated. The total 

number of spinal cord lesions was then correlated with the total number of sciatic nerve 

lesions at thigh level. 

 

Tibial and peroneal nerve T2w signal 

In previous studies on nerve lesion detection and quantification in two different 

polyneuropathies,
12,13

 we performed an extensive histogram based normalization of nerve 

T2w signal intensities and an fully-automatic and operator-independent binary classification 

of respective tibial and peroneal nerve voxels as either nerve lesion voxels or non-lesion 

voxels. With this method we have already proven, that an increase of nerve T2w signal 

reflects true nerve lesions.
12,13

 To facilitate statistical evaluations, we analyzed nerve T2w 

signal without any further signal normalization in the current study. 
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Mean nerve T2w signal was calculated per slice position for each subject and for each left leg. 

To receive detailed information about the anatomical distribution of nerve lesions and thereby 

information about the location of predominant nerve affection, we compared mean tibial 

nerve T2w signals of 35 slices at proximal to mid-thigh level (slice positions 0-35) to its distal 

equivalent of 35 slices at the lower leg (proximal to middle part; slice positions 70-105). The 

peroneal nerve was evaluated from proximal to mid-thigh level (slice positions 0-35) only. 

Averaged mean values within all proximal slices were statistically compared between the two 

groups (MS versus controls) by using the Mann-Whitney test; additional mean values within 

all distal slices were evaluated for the tibial nerve only.   

 

Nerve lesion quantification: apparent T2 relaxation time and proton-spin-density 

Quantification of nerve lesions was performed by calculating the apparent T2 relaxation time 

(T2app, Equation 1) and  proton spin density (ρ, Equation 2), by the following formulas:
14

 

 

 

 

 

 

 

As indicated by the two formulas, calculation of T2app and ρ required the acquisition of an 

additional pulse sequence at two different echo times (sequence (3) with echo time1 = 12 ms 

and echo time2 = 73 ms). To hold a reasonable total acquisition time, the dual echo sequence 

was acquired at thigh level only. That was done in accordance with previous studies in 

different neuropathies, where we have already proven their feasibility of application in the 

PNS, and their high sensitivity for early nerve lesion detection.
12 13

 

 

Morphometric quantification: Nerve diameter 

Nerve caliber was analyzed by measuring the complete cross sectional area of the tibial and 

peroneal nerve on each axial slice. Two-way ANOVA was performed to test group 

differences (MS versus controls) and differences between anatomical regions (proximal slice 

1) 

 

2) 
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positions 0-69 versus distal slice positions 70-139). Peroneal nerve caliber was analyzed from 

proximal thigh level down to the level of the fibular head only (slice positions 0-60). 

 

Lumbosacral plexus and spinal nerves 

Bilateral dorsal root ganglia and corresponding proximal spinal nerves L5 and S1 were 

segmented on axial reformations of sequence (1) by manually delineating the nerve 

circumference as the intraneural region of interest. In the same manner, the lumbosacral 

plexus was segmented at level of the sciatic notch on both sides. Subsequently, signal ratios 

between intraneural regions of interest and ipsilateral psoas (L5 and S1) or piriformis muscle 

(plexus) were calculated. Additional quantification of spinal nerve and plexus caliber was 

performed by measuring the cross sectional area of the corresponding nerve on each axial 

slice. 

 

Statistical analysis 

Statistical data analysis was performed with GraphPad Prism 6 (J.K; J.M.H.). Differences 

between MS patients and controls were evaluated with the Mann-Whitney test. Where 

appropriate, a one-way or two-way ANOVA was used for a priori assumptions, and 

subsequent post hoc comparisons were evaluated with the Fisher test. Statistical tests were 

two-tailed and an alpha-level of significance was defined at p < 0.05. All results are 

documented as mean values ± Standard Error of the Mean (SEM). 

 

Results 

Clinical and electrophysiological data 

There was no significant difference between MS patients and controls for age, sex, body 

weight and height (Table 1). In MS patients, the mean overall EDSS score was 2.0 ± 0.3. 31 

patients received disease-modifying medical treatment (EDSS 2.0 ± 0.3), while five patients 

had been free of immunomodulating medical treatment during the course of their disease 

(EDSS 2.1 ± 0.9). All patients fulfilled the revised 2010 McDonald criteria (Supplementary 

Table 1). Electrophysiological findings were normal with the exception of four patients 

having marginally amplitude-reduced sural sensory nerve action potentials (ID 11, 13, 15; 
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Supplementary Table 2), one patient having non-elicitable F-waves of the peroneal nerve (ID 

23; Supplementary Table 2), and another one with non-elicitable F-waves of the tibial and 

peroneal nerves (ID 15; Supplementary Table 2) in otherwise normal electroneurographic 

parameters and without clinical evidence of peripheral nerve dysfunction (Supplementary 

Table 2).  Moreover, there was no evidence for metabolic or vasculitic neuropathy in CSF- or 

blood tests (e.g. metabolic panel, vitamin B12) at the time of diagnosis. Lumbar MRI ruled 

out concurrent nerve root compression.  

 

Qualitative evaluation of nerve lesions  

Qualitative visual evaluation revealed marked T2w-hyperintense nerve lesions in all MS 

patients independent of their prior medication and with a mean lesion number at thigh level of 

152.7 ± 4.1 versus 19.3 ± 1.7 in controls (p < 0.0001). Further subgroup analyses between 

treated MS patients versus controls and also between untreated MS patients versus controls 

revealed high differences for both groups (p < 0.0001; Fig 1 and 2), while differences 

between treated and untreated MS patients were not significant (p = 0.64). Calculated Cohens 

kappa was 1.000 for inter-observer reliability to visually classify all participants into either 

MS or non-MS. High inter-observer reliability was also found for the subsequent evaluation 

of the sciatic nerve lesion count (lesion number) with a Pearson´s r of 0.9978 (control group) 

and 0.9892 (MS group). Fascicular lesions in all MS patients showed a diffuse distribution 

pattern with a median length of 7.35 mm, not involving fascicular segments longer than 11.2 

mm.  

The additional evaluation of spinal cord T2w lesions in MS patients revealed a strong 

negative correlation between spinal cord lesions and sciatic nerve lesions (r=-0.51; p=0.002). 

In all MS patients we found no spinal cord T2w lesions below lumbar segment 1 (L1) and no 

signs of spinal cord or nerve root compression. 

 

Proton spin density 

The Mann-Whitney test revealed higher ρ in MS patients (tibial nerve: 371.8 ± 7.7; peroneal 

nerve: 368.9 ± 8.2 a.u.) versus healthy controls (tibial nerve: 266.0 ± 11.0; peroneal nerve: 

276.8 ± 9.7 a.u.; p < 0.0001 for both nerves).  
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As ρ was found to be the parameter with highest sensitivity for detecting PNS affection in MS 

patients, and to rule out that an increase of ρ was not related to the appearance of spinal cord 

lesions, we evaluated ρ in subgroups of MS patients with and without spinal cord lesions. 

One-way ANOVA revealed marked differences between the three groups (MS patients with 

spinal cord lesions versus MS patients without spinal cord lesions versus controls) with p < 

0.0001. Post-hoc comparisons showed significant differences of mean tibial nerve ρ between 

controls (26.0 ± 11.0 a.u.) versus MS with spinal cord lesions (368.0 ± 8.0 a.u.; p < 0.0001) 

and versus MS without spinal cord lesions (387.3 ± 21.9 a.u.; p < 0.0001; Fig 4), while 

differences between MS patients with and without spinal cord lesions were not significant (p 

= 0.45).  

 

Apparent T2 relaxation time 

Differences of T2app between MS patients and controls was highly significant (p < 0.0001 for 

both nerves), with higher T2app in controls (tibial nerve: 82.0 ± 2.1 ms; peroneal nerve: 78.3 

± 1.7 ms) compared to MS patients (tibial nerve: 64.3 ± 1.0 ms; peroneal nerve: 61.2 ± 0.9 

ms). 

Mean ρ and T2app are plotted for each group and nerve in Fig. 3. 

 

Nerve T2w-signal 

Proximal tibial and peroneal nerve T2w signal was not significantly different between MS 

patients (tibial nerve: 218.5 ± 6.3; peroneal nerve: 157.6 ± 4.6 a.u.) and controls (tibial nerve: 

210.6 ± 7.5; p = 0.40; peroneal nerve: 148.3 ± 4.6 a.u.; p = 0.12). T2w signal of the distal 

tibial nerve was also not significantly different between MS patients (148.3 ± 5.1) and 

controls (153.8 ± 6.5 a.u.; p = 0.55). A significantly higher tibial nerve T2w signal could be 

observed at thigh level versus lower leg level in MS as well as in controls (p < 0.0001).  

 

Morphometric quantification: Nerve diameter 

Differences in proximal nerve caliber (measured as mean cross-sectional area) between MS 

patients and controls were significant at the level of the lumbosacral plexus and spinal nerves, 

(MS group: lumbosacral plexus 90.6 ± 4.8, spinal nerve L5 47.6 ± 1.9, spinal nerve S1 / 47.8 
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± 2.0 mm²; control group: lumbosacral plexus 34.3 ± 1.5, spinal nerve L5 16.4 ± 0.6, spinal 

nerve S1 13.2 ± 0.6 mm²; p < 0.0001 for all locations). Differences in proximal nerve caliber 

were also significant for the tibial nerve (MS group 52.4 ± 2.1 mm²; controls 45.2 ± 1.4 mm²; 

p = 0.0015) and the peroneal nerve (MS group 25.4 ± 1.3 mm²; controls 21.3 ± 0.7 mm²; p = 

0.0049). However, distally, at lower leg level, there was no significant difference of tibial 

nerve caliber between MS patients (34.2 ± 1.8 mm²) and controls (32.1 ± 0.9 mm²; p = 0.35).  

 

Discussion 

To date, it is widely accepted that pathological changes in MS are restricted to the CNS and 

cranial nerves. This is reflected by the revised 2010 McDonald criteria which only consider 

cerebral or spinal cord inflammatory lesions. Moreover, electrophysiological tests are 

commonly negative for signs of PNS involvement in MS. However, in many patients 

suffering from MS, there is a large, yet inexplicable gap, between the severity of clinical 

symptoms and a comparably low burden of CNS lesions.
15,16

 Few studies have indicated that 

damage might occur in parts of the PNS as well,
17,5,18,7

 but to date, there is no solid proof of a 

distinct PNS affection in vivo.  

 

To the best of our knowledge, our study is the first to prove an involvement of the PNS in MS 

patients by high-resolution MRN regardless of disease duration or medical treatment. Similar 

to the established diagnostic evaluation of T2w-hyperintense lesions in the brain and spinal 

cord, lesion number of the PNS can be determined visually by counting single T2w-

hyperintense fascicles within lower extremity peripheral nerves with high inter-rater 

reliability (Fig. 1 and 2). Further signal quantification revealed a highly significant increase of 

ρ in MS patients compared to healthy controls, while T2app was significantly lower in the MS 

cohort (Fig. 3). Both, ρ and T2app contribute to the T2w signal. However, as defined by the T2 

decay, which can be calculated according to the formula S(TE)=ρ*exp(-TE/T2app) (S=signal, 

TE=echo time), an overall T2w signal increase is possible when there is an increase in ρ or 

T2app, or the increase of one of the two parameters outweighs the decrease of the other. In 

our study cohort, the observed visual increase of fascicular T2w signal was mainly generated 

by an increase of ρ, which according to the T2 decay formula, outweighed the decrease of 

T2app with regards to the signal in the T2 weighted sequence.  
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The subsequent classification of PNS lesions as areas of elevated ρ and slightly reduced T2app 

suggests, that an increase in free-water protons, as one would expect in endoneural edema, is 

not the main underlying pathomechanism of PNS involvement in MS.
19,20

 Instead, an 

increasing ρ indicates that damage to the PNS in MS is more likely induced by changes in the 

microstructural organization of the extracellular matrix as a consequence of an increase in 

plasma protein leakage through the endovascular barrier, and the pathogenesis of a pro-

inflammatory milieu.
21

 This mechanism was previously hypothesized as key factor in the 

pathomechanism of typical PNS diseases like amyloidotic or diabetic neuropathy.
12,13

 

Additionally, previous MRI studies focusing on changes of ρ in CNS lesions related to MS, 

found a clear correlation between an increased ρ and areas of demyelination in the brain and 

spinal cord,
22

 suggesting that our findings represent a peripheral co-demyelination of the PNS 

in MS. Thus, an increase in ρ supports the assumption that PNS lesions or rather a peripheral 

co-demyelination is likely to be caused by immunologic reactions and destruction of 

molecules such as connexin 32 or myelin associated glycoproteins that are common to 

myelinating cells in both, the PNS and the CNS.
23,24,25

.  

 

Alterations of T2app in MS are still not fully understood.
26

 Previous studies described an initial 

increase of T2app in acute MS lesions with a subsequent decrease in chronic lesions, but 

results are controversial.
27,28,29,30

 One possible explanation might be a balance change of the 

total water pool, towards a higher amount of bound water and a lower amount of free water 

molecules, as it would be the case in the suggested hypotheses of an inflammatory process 

combined with an impairment of the blood nerve barrier, a pathologically high plasma protein 

leakage and an impairment of the lipid-rich myelin sheath. 
1,21

 

 

Peripheral nerve lesion detection by means of the described qualitative and quantitative 

analysis of the MR signal was further validated by an additional increase of proximal tibial 

and peroneal nerve caliber in MS, representing a pure morphometric MRN criterion for nerve 

impairment. This proximal nerve caliber increase might also point towards an inflammatory 

process, especially as it was associated with a higher PNS lesions number and an increased ρ.   

However, differences between MS patients and healthy controls were insignificant for distal 

tibial nerve caliber, suggesting a proximal predominance of PNS affection  

 

This study is limited by the fact that most enrolled patients were under disease-modifying 

treatment.  An argument could be made that lesions are attributed to secondary effects of MS 
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modifying medications rather than to the disease itself. To the contrary, we found no 

difference in the lesion number of patients with and without medication. Furthermore, MS 

patients were treated with a multitude of different immunomodulating drugs, of which none 

have known acute or chronic neurotoxic side effects. One might also argue that, in 

comparison to controversial results in previous studies, but also in the absence of positive 

electrophysiological examination results, our finding of an elevated number of PNS lesions in 

all included patients seem improbable. An explanation might be that PNS involvement is very 

subtle in many cases and thus may escape detection by regular NCV exams, as in our study. 

However, recent studies focusing on demyelinating processes in corneal fibers of the 

trigeminal nerve have shown that PNS demyelination is present in more patients than clinical 

symptoms might suggest.
31

 Both, corneal fiber microscopy and MRN have already shown that 

damage to PNS fibers is detectable prior to the beginning of clinical symptoms.
12,31,32

  

 

A potential factor that might contribute to the occurrence of PNS lesions might be that PNS 

lesions are the result of Wallerian degeneration caused by spinal cord lesions in MS.
9
 

Although we cannot fully exclude such secondary effects of CNS lesions, we found no 

differences in MRN markers between patients with and without spinal cord lesions (Fig. 4). 

The finding of a negative correlation between PNS lesions and spinal cord lesions and also the 

exclusion of any other potential sources of CNS damage in the additionally available spinal 

MRIs, makes it even more unlikely that the observed PNS lesions occur as a direct 

consequence of spinal cord lesions. Furthermore, the diffuse, non-focal PNS lesion 

distribution in our study cohort that involved only short continuous fascicular segments, 

points more towards an underlying inflammatory or demyelinating pathomechanism as one 

would expect in MS. In contrast, an involvement of longer fascicular segments or a 

somatotopic fascicular organization as it has been demonstrated in Wallerian 

degeneration,
33,34,35,36

 could be excluded. Electrophysiological examinations also revealed no 

abnormalities due to an axonal loss, as they typically occur in Wallerian degeneration. For all 

these reasons, our study results indicate a potential occurrence of different antibodies in MS 

with and without CNS predominance.  

 

Future studies should point at differences in patients with MS and clinically isolated 

syndrome with and without PNS lesions. Special attention should be paid to individuals with 

a relatively low CNS lesion burden in comparison to severe clinical symptoms, and to the 

influence of different disease modifying drugs on the development of PNS lesions.  
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In summary, this proof-of-concept study evidences PNS lesions in young MS patients in vivo 

by MRN with high structural resolution. The identification of PNS lesions suggests a 

peripheral co-demyelination, which may guide to a better understanding of discrepancies 

between clinical symptoms and CNS lesions detected by MRI. Most importantly it provides 

options for new pathophysiological concepts, and the identification of potential distinct 

immunoreactions targeting PNS antigens in MS with future implications on therapeutic 

approaches.  
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Figure legend 

Figure 1: MRN source images. Representative MRN of the left sciatic nerve at mid-thigh 

level (high-resolution T2-weighted turbo spin echo sequence with spectral fat-saturation, 3T) 

in (A) a healthy control subject, (B) a patient with MS without disease modifying treatment 

and (C) a MS patient under disease modifying treatment. A high lesion number, measured as 

a marked T2w-hyperintensity in a multitude of sciatic nerve fascicles can be seen in MS 

patients without (B) and with (C) disease modifying treatment. Normal sciatic nerve T2w 

signal in a representative healthy control (A).    

 

Figure 2: Total sciatic nerve T2w lesion count. Mean values of the visually evaluated total 

nerve lesion number plotted for MS patients under immunomodulatory therapy (MS treated), 

MS patients without any current or previous immunomodulatory therapy (MS untreated), and 

controls. While differences between treated and untreated MS patients were not significant 

(p=0.64), differences between controls and each of the two MS subgroups were highly 

significant (p<0.0001).    

 

Figure 3: Quantitative MRN markers of nerve T2w signal. Mean values of tibial (left) and 

peroneal (right) proton spin density (A, B) and apparent T2 relaxation time (C, D) are plotted 

for MS patients and controls. Proton spin density of the tibial (A) and peroneal nerves (B) was 

significantly higher in MS patients versus healthy controls (p<0.0001). In contrast, tibial (C) 

and peroneal (D) apparent T2 relaxation time was significantly higher in controls versus MS 

patients (p<0.0001). 

 

Figure 4: Proton spin density. Mean values of tibial nerve proton spin density are plotted for 

MS patients with and without spinal cord T2w lesions and for controls. Note that differences 

in proton spin density between MS patients with and without T2w lesions to the spinal cord 

were not significant (p=0.45), while differences between controls and either MS subgroup 

were remarkable (p<0.0001). 
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Table 1: Demographic, clinical, radiological and electrophysiological data 

 

Parameter          MS patients          Controls            p value 

Age 32.1 ± 1.0 31.6 ± 1.3 0.25 (ns) 

Sex (M/F) 15/21 16/19 n.a. 

Body weight (kg) 73.6 ± 3.0 66.2 ± 1.5 0.10 (ns) 

Height (cm) 179.1 ± 3.6 175.9 ± 2.2 
 

0.49 (ns) 

MS duration (months) 81.9 ± 7.3 n.a. n.a. 

Relapsing-remitting MS 34 n.a. n.a. 

Clinically isolated syndrome 2 n.a. n.a. 

Tibial nerve caliber (mm²) 52.4 ± 2.1 45.2 ± 1.4 0.0015 (**) 

Peroneal nerve caliber (mm²) 25.4 ± 1.3 21.3 ± 0.7 0.0049 (**) 

Total sciatic nerve T2w lesion number 152.7 ± 4.1 19.3 ± 1.7 <0.0001 (***) 

ρ tibial nerve 371.8 ± 7.7 266.0 ± 11.0 <0.0001 (***) 

ρ peroneal nerve 368.9 ± 8.2 276.8 ± 9.7 <0.0001 (***) 

Total CNS T2w lesions 27.9 ± 3.9 n.a. n.a. 

Cerebral T2w lesions 25.9 ± 3.7 n.a. n.a. 

Spinal T2w lesions 2.0 ± 0.4 n.a. n.a. 

CNS lesions with contrast enhancement 3 n.a. n.a. 

Tibial nerve CMAP [mV] 21.1 ± 1.4 n.a. n.a. 

Tibial nerve NCV [m/s] 54 ± 1 n.a. n.a. 

Tibial nerve F-wave [ms] 48.9 ± 0.6 n.a. n.a. 

Tibial nerve DML [ms] 3.6 ± 0.1 n.a. n.a. 

Peroneal nerve CMAP [mV] 7.7 ± 0.8 n.a. n.a. 

Peroneal nerve NCV [m/s] 50 ± 1 n.a. n.a. 

Peroneal nerve F-wave [ms] 46.2 ± 0.7 n.a. n.a. 

Peroneal nerve DML [ms] 3.7 ± 0.1 n.a. n.a. 

Sural nerve SNAP [µV] 14.0 ± 1.4 n.a. n.a. 

Sural nerve NCV [m/s] 57 ± 1 n.a. n.a. 

 
 
DML = distal motor latency; CMAP = compound muscle action potential; NCV = nerve conduction velocity; SNAP 
= sensory nerve action potential; ns = not significant, ** = significant, *** = highly significant 
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MRN source images. Representative MRN of the left sciatic nerve at mid-thigh level (high-resolution T2-
weighted turbo spin echo sequence with spectral fat-saturation, 3T) in (A) a healthy control subject, (B) a 

patient with MS without disease modifying treatment and (C) a MS patient under disease modifying 

treatment. A high lesion number, measured as a marked T2w-hyperintensity in a multitude of sciatic nerve 
fascicles can be seen in MS patients without (B) and with (C) disease modifying treatment. Normal sciatic 

nerve T2w signal in a representative healthy control (A).    
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Total sciatic nerve T2w lesion count. Mean values of the visually evaluated total nerve lesion number plotted 
for MS patients under immunomodulatory therapy (MS treated), MS patients without any current or previous 
immunomodulatory therapy (MS untreated), and controls. While differences between treated and untreated 

MS patients were not significant (p=0.64), differences between controls and each of the two MS subgroups 
were highly significant (p<0.0001).    
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Quantitative MRN markers of nerve T2w signal. Mean values of tibial (left) and peroneal (right) proton spin 
density (A, B) and apparent T2 relaxation time (C, D) are plotted for MS patients and controls. Proton spin 
density of the tibial (A) and peroneal nerves (B) was significantly higher in MS patients versus healthy 

controls (p<0.0001). In contrast, tibial (C) and peroneal (D) apparent T2 relaxation time was significantly 
higher in controls versus MS patients (p<0.0001).  
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Proton spin density. Mean values of tibial nerve proton spin density are plotted for MS patients with and 
without spinal cord T2w lesions and for controls. Note that differences in proton spin density between MS 
patients with and without T2w lesions to the spinal cord were not significant (p=0.45), while differences 

between controls and either MS subgroup were remarkable (p<0.0001).  
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Supplementary Table 1. Individual neurological deficits, EDSS scoring and current 
medications in MS patients 

 

ID Age/Sex EDSS 
Current neurologic 
examination findings 

Current medication 

1 33/F 4 Sensory: lower extremities Natalizumab 

2 36/F 2 Sensory: lower extremities Dimethyl fumarate 

3 30/M 0 Normal Interferon beta-1a 

4 39/F 1,5 Sensory: lower extremities Interferon beta-1a 

5 27/F 2 
Sensory: lower extremities 
Cranial nerves 

Fingolimod 

6 30/M 3 
Motoric: lower extremities 

Dimethyl fumarate 
Sensory: lower extremities 

7 34/F 3 
Motoric: lower extremities 

Interferon beta-1a 
Sensory: lower extremities 

8 38/F 3,5 
Sensory: lower extremities 
Autonomic nervous system 

No medication 

9 35/M 1,5 Normal Dimethyl fumarate 

10 39/M 3 

Sensory: upper and lower 
extremities 

No medication Motoric: upper and lower 
extremities 

Cranial nerves 

11 31/M 0 Normal Fingolimod 

12 22/F 3 
Sensory: upper and lower 
extremities 

Fingolimod 

13 36/M 0 Normal Dimethyl fumarate 

14 35/M 0 Normal Fingolimod 

15 39/M 4 

Motoric: upper and lower 
extremities 

Dimethyl fumarate 
Sensory: upper and lower 
extremities 

16 27/F 4 Motoric: lower extremities Natalizumab 

Page 25 of 29

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Sensory: lower extremities 

17 21/F 1,5 Sensory: upper extremities Fingolimod 

18 34/F 0 Normal Fingolimod 

19 35/M 6,5 

Motoric: upper and lower 
extremities 

Natalizumab 
Sensory: upper and lower 
extremities 

Cranial nerves 

Autonomic nervous system 

20 40/M 2 Autonomic nervous system Natalizumab 

21 40/F 2 
Sensory: upper and lower 
extremities 

Natalizumab 

22 25/F 0 Normal Fingolimod 

23 18/F 3,5 

Motoric: upper and lower 
extremities 

Alemtuzumab      Sensory: upper and lower 
extremities 

Autonomic nervous system 

24 28/F 2,5 
Sensory: upper extremities 

Fingolimod 
Autonomic nervous system 

25 28/F 3,5 

Motoric: lower extremities 

Alemtuzumab 
Sensory: upper and lower 
extremities 

Autonomic nervous system 

26 25/F 2,5 

Motoric: upper and lower 
extremities 

Alemtuzumab Sensory: upper and lower 
extremities 

Cranial nerves 

27 39/M 2,5 Motoric: lower extremities Fingolimod 

28 35/M 0 
Motoric: lower extremities 

Dimethyl fumarate 
Autonomic nervous system 

29 27/F 1 Motoric: lower extremities Fingolimod 

30 31/F 3,5 

Motoric: upper and lower 
extremities 

Fingolimod Sensory: upper and lower 
extremities 

Cranial nerves 
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31 24/F 0 

Sensory: upper and lower 
extremities 

Dimethyl fumarate 

32 38/F 2 

Motoric: upper extremities 

Natalizumab Sensory: upper and lower 
extremities 

33 36/M 2 

Motoric: upper and lower 
extremities 

Alemtuzumab 
Sensory: lower extremities 

Cranial nerves 

34 28/F 0 Motoric: lower extremities No medication 

35 43/M 4 
Motoric: lower extremities 

No medication 
Autonomic nervous system 

36 31/M 0 Normal No medication 

 
Sensory = sensory dysfunction / symptoms; motoric = motoric dysfunction / symptoms 
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Supplementary Table 2. Individual electrophysiological study results in MS patients 

ID 
Tibial nerve 

motor conduction study 
 

Peroneal nerve  
motor conduction study 

 

Sural nerve 
sensory conduction 

study 
 

No. DML [ms] 
CMAP 
[mV] 

NCV [m/s] 
F-wave 

[ms] 
DML [ms] 

CMAP 
[mV] 

NCV [m/s] 
F-wave 

[ms] 
SNAP [µV] NCV [m/s] 

1 3.0 (N) 15.2 (N) 56 (N) 47.8 (N) 3.4 (N) 4.5 (N) 52 (N) 45.1 (N) 12.2 (N) 63 (N) 

2 4.1 (N) 21.6 (N) 59 (N) 45.7 (N) 3.6 (N) 8.6 (N) 52 (N) 42.1 (N) 19.4 (N) 52 (N) 

3 3.8 (N) 21.3 (N) 51 (N) 52.0 (N) 3.5 (N) 13.3 (N) 47 (N) 46,2 (N) 18.3 (N) 54 (N) 

4 3.2 (N) 24.0 (N) 55 (N) 45.9 (N) 3.0 (N) 7.6 (N) 52 (N) 42.2 (N) 14.9 (N) 55 (N) 

5 3.3 (N) 24.2 (N) 51 (N) 47.6 (N) 3.6 (N) 11.7 (N) 50 (N) 46.5 (N) 12.1 (N) 62 (N) 

6 2.7 (N) 14.1 (N) 54 (N) N/A 4.1 (N) 6.3 (N) 48 (N) 48.4 (N) 11.3 (N) 60 (N) 

7 3.8 (N) 29.1 (N) 51 (N) 43.7 (N) 3.0 (N) 7.4 (N) 58 (N) 40.7 (N) 22.2 (N) 59 (N) 

8 4.9 (N) 17.6 (N) 67 (N) 48.7 (N) 3.1 (N) 6.0 (N) 48 (N) 44.8 (N) 22.6 (N) 60 (N) 

9 3.8 (N) 24.5 (N) 53 (N) 48.1 (N) 4.2 (N) 17.0 (N) 50 (N) 45.9 (N) 27.9 (N) 61 (N) 

10 3.2 (N) 25.2 (N) 52 (N) 49.7 (N) 3.4 (N) 6.1 (N) 48 (N) 48.1 (N) 10.1 (N) 58 (N) 

11 4.4 (N) 23.7 (N) 53 (N) 51.7 (N) 3.9 (N) 6.5 (N) 51 (N) 48.4 (N) 6.3 (P) 52 (N) 

12 3.3 (N) 30.4 (N) 55 (N) 50.1 (N) 3.4 (N) 5.3 (N) 51 (N) 47.6 (N) 10.3 (N) 58 (N) 

13 3.2 (N) 25.2 (N) 55 (N) 51.1 (N) 3.8 (N) 12.7 (N) 51 (N) 48.6 (N) 6.9 (P) 59 (N) 

14 3.3 (N) 28.9 (N) 50 (N) 51.1 (N) 4.4 (N) 5.1 (N) 47 (N) 49.9 (N) 11.5 (N) 59 (N) 

15 3.6 (N) 7.1 (N) 44 (N) Absent (P) 3.8 (N) 4.9 (N) 41 (N) Absent (P) 5.0 (P) 58 (N) 

16 4.1 (N) 22.3 (N) 59 (N) 47,3 (N) 3.2 (N) 8.0 (N) 54 (N) 40.3 (N) 21.1 (N) 58 (N) 

17 4.0 (N) 12.3 (N) 51 (N) 49.4 (N) 4.9 (N) 4.8 (N) 46 (N) 51.4 (N) 13.7 (N) 48 (N) 

18 3.0 (N) 19.3 (N) 52 (N) 46.3 (N) 3.1 (N) 4.1 (N) 51 (N) 43.2 (N) 11.7 (N) 55 (N) 
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DML = distal motor latency; CMAP = compound muscle action potential; NCV = nerve conduction velocity; SNAP = sensory nerve action potential; N = normal; P 

= pathological 

19 5.0 (N) 13.1 (N) 54 (N) 54.7 (N) 4.4 (N) 4.7 (N) 49 (N) 49.8 (N) 10.0 (N) 48 (N) 

20 3.2 (N) 22.0 (N) 49 (N) 49.8 (N) 4.0 (N) 8.7 (N) 50 (N) 48.0 (N) 11.6 (N) 56 (N) 

21 3.5 (N) 33.6 (N) 53 (N) 47.7 (N) 3.5 (N) 5.5 (N) 51 (N) 45.7 (N) 15.6 (N) 55 (N) 

22 3.1 (N) 35.5 (N) 61 (N) 43.3 (N) 3.3 (N) 8.5 (N) 57 (N) 40.9 (N) 22.4 (N) 59 (N) 

23 4.6 (N) 33.9 (N) 49 (N) 44.7 (N) 3.6 (N) 6.1 (N) 48 (N) Absent (P) 11.7 (N) 49 (N) 

24 5.0 (N) 13.6 (N) 45 (N) 54.6 (N) 4.0 (N) 10.5 (N) 44 (N) 49.0 (N) 14.6 (N) 54 (N) 

25 3.3 (N) 23.5 (N) 53 (N) 48.0 (N) 4.3 (N) 5.4 (N) 49 (N) 48.0 (N) 14.8 (N) 55 (N) 

26 4.0 (N) 24.1 (N) 49 (N) 52.9 (N) 4.3 (N) 8.3 (N) 50 (N) 48.9 (N) 10.6 (N) 51 (N) 

27 3.9 (N) 16.1 (N) 53 (N) 52.8 (N) 4.2 (N) 5.0 (N) 45 (N) 53.2 (N) 12.3 (N) 61 (N) 

28 4.3 (N) 19.4 (N) 55 (N) 51.7 (N) 4.7 (N) 9.2 (N) 51 (N) 48.7 (N) 14.7 (N) 50 (N) 

29 3.2 (N) 19.4 (N) 51 (N) 48.4 (N) 3.9 (N) 10.0 (N) 49 (N) 45.1 (N) 12.6 (N) 57 (N) 

30 3.0 (N) 33.7 (N) 54 (N) 44.8 (N) 3.9 (N) 5.4 (N) 50 (N) 42.7 (N) 17.4 (N) 63 (N) 

31 3.1 (N) 28.2 (N) 51 (N) 49.0 (N) 4.1 (N) 11.4 (N) 48 (N) 42.9 (N) 13.0 (N) 59 (N) 

32 3.4 (N) 22.4 (N) 61 (N) 42.6 (N) 3.4 (N) 9.8 (N) 51 (N) 41.5 (N) 18.0 (N) 66 (N) 

33 3.4 (N) 30.7 (N) 52 (N) 49.2 (N) 3.9 (N) 6.5 (N) 49 (N) 46.2 (N) 13.6 (N) 55 (N) 

34 3.2 (N) 28.0 (N) 50 (N) 43.0 (N) 4.1 (N) 8.0 (N) 57 (N) 44.0 (N) 15.1 (N) 66 (N) 

35 3.8 (N) 26.0 (N) 49 (N) 51.0 (N) 4.0 (N) 9.2 (N) 49 (N) 48.0 (N) 8.7 (P) 50 (N) 

36 2.9 (N) 24.7 (N) 53 (N) 53.0 (N) 4.4 (N) 8.4 (N) 54 (N) 48.0 (N) 18.5 (N) 46 (N) 

Page 29 of 29

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.


