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Summary

1. Protected areas are the cornerstone of global conservation, yet financial support for basic

monitoring infrastructure is lacking in 60% of them. Citizen science holds potential to

address these shortcomings in wildlife monitoring, particularly for resource-limited conserva-

tion initiatives in developing countries – if we can account for the reliability of data produced

by volunteer citizen scientists (VCS).

2. This study tests the reliability of VCS data vs. data produced by trained ecologists, pre-

senting a hierarchical framework for integrating diverse datasets to assess extra variability

from VCS data.

3. Our results show that while VCS data are likely to be overdispersed for our system, the

overdispersion varies widely by species. We contend that citizen science methods, within the

context of East African drylands, may be more appropriate for species with large body sizes,

which are relatively rare, or those that form small herds. VCS perceptions of the charisma of

a species may also influence their enthusiasm for recording it.

4. Tailored programme design (such as incentives for VCS) may mitigate the biases in citizen

science data and improve overall participation. However, the cost of designing and imple-

menting high-quality citizen science programmes may be prohibitive for the small protected

areas that would most benefit from these approaches.

5. Synthesis and applications. As citizen science methods continue to gain momentum, it is

critical that managers remain cautious in their implementation of these programmes while

working to ensure methods match data purpose. Context-specific tests of citizen science data

quality can improve programme implementation, and separate data models should be used

when volunteer citizen scientists’ variability differs from trained ecologists’ data. Partnerships

across protected areas and between protected areas and other conservation institutions could

help to cover the costs of citizen science programme design and implementation.
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Introduction

In an attempt to stem biodiversity loss, over 200 000 pro-

tected areas have been created world-wide – resulting in a

rate of establishment that far exceeds our capacity to

monitor (Ervin 2003; Chape et al. 2005; IUCN & UNEP-

WCMC 2016). Protected areas have become the corner-

stone of global conservation (Caro 2011), yet financial

support for basic monitoring infrastructure is lacking in

60% of them (Leverington et al. 2010). Citizen science, or

public participation in scientific research, has the potential

to address these shortcomings in protected area monitor-

ing by decreasing monitoring costs and increasing public

engagement in conservation issues (Bonney et al. 2009).

Citizen science programmes can cover larger geographic

areas and time-scales than individual research teams (Sil-

vertown 2009; Dickinson, Zuckerberg & Bonter 2010). A

growing number of programmes are now being deployed,

potentially mitigating the high costs of species monitoring

by resource-limited governments and conservation
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organizations (Danielsen, Burgess & Balmford 2005;

Chandler et al. 2012).

Despite the potential of citizen science for species

monitoring, questions remain over the reliability and

quality of data produced by volunteer citizen scientists

(VCS), and how these data differ from those produced

by professional scientists and resource managers (Cohn

2008; Bonney et al. 2014). A recent literature review

estimated only 3% of articles related to citizen science

were investigations of data validation techniques (Follett

& Strezov 2015) and there is varied evidence on the

quality, reliability and utility of citizen science data for

wildlife monitoring. For example, Bernard et al. (2013)

found that data collected by VCS were of lower quality

than scientists when looking at the community-level fish

abundance in a marine ecosystem, while others found

no difference (Darwall & Dulvy 1996). Bernard et al.

(2013) reported that VCS and scientists produced simi-

lar data when counting only common species with high

detection probabilities. Dickinson, Zuckerberg & Bonter

(2010) observed the opposite, where VCS tend to over-

report rare species and under-report common species.

Delaney et al. (2007) reported age as a significant pre-

dictor of VCS observer skill, while Newman, Buesching

& Macdonald (2003) did not find this to be the case.

Ericsson & Wallin (1999) suggested that VCS observa-

tions of moose (Alces alces) reflect the overall popula-

tion size and fluctuations well, but these data cannot

directly replace conventional (and expensive) sampling

methods unless they first undergo a calibration process.

These findings demonstrate that citizen science data

quality and reliability vary widely depending on the spe-

cies and ecosystem (Dickinson, Zuckerberg & Bonter

2010; Vianna et al. 2014).

Citizen science has great relevance for African countries

where funding for basic monitoring is extremely limited.

In East Africa, this need is particularly acute given that

wildlife densities and distributions are some of the highest

in the world (Waithaka 2004), and that there are rapid

population declines occurring in and around protected

areas (Homewood et al. 2001; Craigie et al. 2010; Ogutu

et al. 2016). Scientists have studied these declining popu-

lations for decades, yet there remain differing claims as to

the drivers of the declines (Homewood et al. 2001; Odadi

et al. 2011; Butt & Turner 2012). Part of this confusion is

because existing abundance estimates of East African

mammals are conducted through aerial surveys with

coarse spatial resolution (5 km2) (Norton-Griffiths 1978),

thus making inference on the causal mechanisms of decli-

nes difficult to support (Ogutu et al. 2011; Bhola et al.

2012a, b; Ogutu et al. 2016).

In cases where new and smaller protected areas are

being established, information on species distributions

and landscape preferences at local scales are critical to

develop adequate conservation plans (Rushton, Ormerod

& Kerby 2004; Ogutu et al. 2006). Mismatch between

suitable habitat and realized species distributions is

predicted by niche theory, as biotic interactions, dispersal

and spatiotemporal habitat variability are thought to

restrict the fundamental niche of a species (Hutchinson

1957; Pulliam 2000). Furthermore, ecological inference is

impacted by the scale at which habitat selection is moni-

tored; studies conducted at different spatial scales can

yield markedly different results (Garshelis 2000). The high

degree of spatial and temporal heterogeneity in primary

productivity within East African dryland ecosystems

requires finer scale understanding of species density and

distributions (Gillson 2004). However, methods that accu-

rately capture wildlife locations at fine scales over large

landscapes have proven to be prohibitively difficult,

expensive and time-consuming given the financial and

logistical constraints of East African protected areas (Wit-

mer 2005; Lung & Schaab 2010). Citizen science therefore

appeals greatly to protected area managers, but tests of

citizen science data reliability in East African dryland

landscapes remain scarce.

Given these contexts, our analysis tests differences in

the quality and quantity of data produced from citizen

science methods of wildlife monitoring vs. traditional eco-

logical sampling, with results that are directly relevant to

protected area managers throughout East Africa.

Materials and methods

STUDY SITE

The study was conducted in the Olare Motorogi Conservancy

(1°21000″S, 35°12000″E), bordering the Maasai Mara National

Reserve in Kenya. Established in 2006, the 137 km2 conservancy

is comprised of land leased from Maasai landowners (Butt 2014).

Elevation ranges between 1525 m (SW) and 1762 m (NE). Vege-

tation is open grass plains, with patches of Acacia gerrardii and

Terminalia trees, shrublands, and riverine woodlands (Bhola et al.

2012a). The region forms the northern extension of the wildlife

rich Serengeti-Mara Ecosystem (Waithaka 2004). Rainfall is

bimodal, with the short rains in late November–December, and

long rains in March–June (Pennycuick & Norton-Griffiths 1976).

Maasai pastoralists sometimes graze their livestock within the

protected area and have been historically sympatric with wildlife.

Tourists from five tourist lodges within the conservancy regularly

go on wildlife viewing game drives (Fig. 1). This makes the con-

servancy one of the least densely visited protected areas in the

region.

FIELDWORK

Fieldwork was conducted during a 13-week period (May to

August 2013) to compare two independent methods of distance

sampling of wildlife. In method 1, ‘Safari Science’, tourists as citi-

zen scientists voluntarily collected data using inexpensive hand-

held tablet computers equipped with an open source application

while on safari game drives. In method 2, ‘Traditional Sampling’,

a research team collected data using ground-vehicle line transect

surveys. This method is widely used for scientifically estimating

animal populations (Ogutu et al. 2006; Singh & Milner-Gulland

2011).
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Safari Science method

Tourists were recruited from four lodges in the conservancy. Par-

ticipants were given a 15-min training programme before depart-

ing on game drives, explaining the process of using the tablet and

software, rangefinder, compass and estimating animal counts. A

card containing the procedure and a set of frequently asked ques-

tions was inserted into the casing of the tablet for future refer-

ence by participants.

Traditional Sampling method

Four road transects (each ~11�5 km) were selected in collabora-

tion with conservancy management that were representative of

the extent and density of tourist visitation within the conservancy

(Fig. 1).

To account for diurnal fluctuations, both methods involved

morning (06.00–10.00 h) and afternoon (14.00–18.00 h) sampling

sessions. The citizen science method was conducted on an oppor-

tunistic basis (given the voluntarily exercise), while each transect

was sampled once a week (twice in a single day – morning and

evening). Observations were obtained as follows: (i) upon sighting

an animal or group of animals, the vehicle stopped and a GPS

location was recorded; (ii) distance to the animal (or to the centre

of the group) was measured with a Simmons laser rangefinder

(model 801405, 548 m range) up to a maximum distance of

200 m; (iii) direction to the animal (or group) from the observer

location in the vehicle was taken with a Suunto compass; and (iv)

species and numbers of animals were counted (Table 1). We focus

on eight species, including elephant (Loxodonta africana), giraffe

(Giraffa camelopardalis), Grant’s gazelle (Nanger granti), impala

(Aepyceros melampus), Thomson’s gazelle (Eudorcas thomsonii),

topi (Damaliscus korrigum), wildebeest (Connochaetes taurinus)

and zebra (Equus quagga burchellii) because they are the most

common within the ecosystem and represent a range of guilds

and body sizes.

DATA PROCESSING

In addition to the wildlife sighting data, we include four environ-

mental covariates in our hierarchical model. These covariates rep-

resent the primary environmental determinants of large mammal

distributions in East African drylands. A 30-m ASTER DEM

was used to generate slope and elevation layers and calculate the

Topographic Wetness Index (TWI) which is related to the poten-

tial for higher plant productivity (Wilson & Gallant 2000). TWI

was calculated as,

TWI ¼ log
AS

s

� �

where AS is the catchment area (determined by elevation) and s

is the slope. Topographic wetness has been correlated with spe-

cies abundance in this region (Bhola et al. 2012b), and ecologists

have noted certain species’ tendency to prefer soils with good

drainage and thus firm footing (Estes 1991). Additionally, areas

with high TWI are expected to have increased predation risk and

low food quality (Ogutu et al. 2006; Anderson et al. 2010). The

DEM was then used to create streams and calculate distance to

river. Distance to river is a commonly used covariate that can

represent increased predation risk due to high vegetative cover

(Hopcraft, Sinclair & Packer 2005; Anderson et al. 2010). It can

also reflect a species inability to go long periods without drinking

(Estes 1991). TWI and distance to river values were extracted to

the wildlife location points.

The third covariate is the Normalized Difference Vegetation

Index (NDVI) – a reliable proxy for above-ground biomass.

NDVI is used to represent photosynthetically active vegetation

Fig. 1. Map of Olare Motorogi Conservancy with active tourism

lodges, roads and transects. [Colour figure can be viewed at

wileyonlinelibrary.com]

Table 1. Number and range of observations for both methods.

Traditional Sampling followed standardized transects averaging

11�5 km, while Safari Science observations were made oppor-

tunistically on game drives of varying lengths

Traditional Sampling Safari Science

Count Count

Mean (SD) Mean (SD)

Elephant 33 26

4�55 (3�76) 6�15 (5�66)
Giraffe 54 17

4�69 (4�58) 5�82 (3�84)
Grant’s gazelle 244 18

4�08 (3�54) 6�44 (5�04)
Impala 607 27

11�45 (22�87) 21�26 (28�59)
Thomson’s gazelle 1313 14

10�70 (13�17) 9�57 (12�53)
Topi 700 32

7�50 (13�78) 13�91 (35�08)
Wildebeest 896 34

39�11 (92�58) 310�88 (697�53)
Zebra 374 21

16�87 (25�71) 25�38 (43�40)
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(Pettorelli et al. 2005), and has been shown to correlate with spe-

cies abundances in this area (Bhola et al. 2012b). However, the

scale at which NDVI is measured has been shown to affect the

strength and sign of the relationship for topi abundance in partic-

ular (Bro-Jorgensen, Brown & Pettorelli 2008). NDVI was

derived from five Landsat 8 scenes at 30-m resolution, which

were obtained from the USGS/Earth Explorer interface. We cal-

culated NDVI for each scene, removed the second scene (15 June)

due to excessive cloud cover, and calculated a surrogate using the

average NDVI of the 30 May and 1 July scenes. The wildlife

location data were separated into groups spanning 16 days, which

were centred on each of the Landsat scenes, and the NDVI val-

ues were extracted to those locations.

Finally, we include a distance to livestock covariate given the

sympatricity of wildlife and livestock within the ecosystem. Other

studies in this area have used livestock density to explain wildlife

abundance, often inferring competition from results that show

wildlife occurring in different areas than livestock (Bhola et al.

2012b). Alternatively, many scholars contend that livestock graz-

ing facilitates wildlife grazing and movement (Reid, Galvin &

Kruska 2008; Butt, Shortridge & WinklerPrins 2009). Data on

the location and abundance of livestock over the study period

were separated into the same 16-day groups as the NDVI scenes

and Euclidean distance calculations to wildlife were used to gen-

erate the variable.

ANALYSIS

We constructed a hierarchical modelling framework for integrat-

ing citizen science and traditional sampling wildlife count data

that accounts for variability introduced by the citizen science

data. The effective combination of datasets of varying strengths

and weaknesses is a common problem in ecological modelling,

and our approach follows what Hanks, Hooten & Baker (2011)

refer to as ‘Bayesian data reconciliation’. Our approach allows

the modeller to assess the quality of citizen science data in rela-

tion to a reliable baseline of traditionally collected data. We

model the citizen science data using the mean of the traditional

sampling data in order to understand whether the citizen science

dataset show signs of overdispersion (i.e. whether the variance of

the citizen science data exceeds the mean of the traditional sam-

pling data). In this context, we interpret overdispersion as extra

variability introduced by the observer and reporting biases of citi-

zen science data. Because our model relates traditional sampling

counts to a set of environmental variables, we are able to predict

wildlife abundance at citizen science locations. Comparing pre-

dicted abundance to VCS observations allows us to derive esti-

mates of over- and under-reporting by VCS across the landscape

in relation to wildlife species and landscape characteristics.

In our Bayesian hierarchical framework, the data model repre-

sents the relationship between the Safari Science dataset (wi) and

the traditional sampling dataset (yi), and can be written as:

wi � negative binomialðyi;NcÞ;

where yi is the mean of the negative binomial distribution, esti-

mated from the traditional sampling data, and Nc is the overdis-

persion parameter for the citizen science data. The overdispersion

(or ‘size’) parameter accounts for extra variability in the data,

with smaller values indicating higher variability. In practice, when

Nc > 10, the variance approaches the mean and the negative

binomial distribution is virtually identical to a Poisson

distribution; however, in ecological data, Nc is often less than 1,

indicating strong overdispersion (Bolker 2008).

The process model represents the distribution of the traditional

sampling data:

yi �Poisson kiTSð Þ;

and relates the log of animal intensity (kTS) to a set of four envi-

ronmental covariates

logðkTSÞ ¼ Xb;

where X represents a matrix of values for the four covariates.

These covariates were standardized to have mean 0 and standard

deviation 1, and the associated coefficients were assigned a multi-

variate normal prior,

b�Normalð0;r2IÞ

where r2 = 100. The regression coefficient for the intercept was

assigned a similar prior, but with mean 1. Finally, the overdisper-

sion parameter (Nc) was assigned a gamma prior with mean 0�5
and variance 0�125,

Nc �Gammað2; 0�25Þ:

We fit the model using a Monte Carlo Markov Chain

(MCMC) algorithm with Metropolis–Hastings updates. We gen-

erated 100 000 samples using our MCMC algorithm, retaining

90 000 after determining that a burn in of 10 000 samples was

adequate. The trace plots showed excellent mixing. A simula-

tion study showed that no bias was introduced through the

modelling framework because simulation parameters were

recovered by the model within a 95% credible interval (CI).

Posterior means and CI were calculated after model conver-

gence (Table 2) and the simulated marginal posterior distribu-

tions for b and Nc are plotted with means and prior

distributions for reference (Fig. 2, for topi only; see Figs S1–

S20, Supporting Information for other species). The bias of the

Safari Science dataset was derived as the difference between the

predicted yunobserved values and the actual Safari Science counts

at those locations (Fig. 3, for topi only). These errors were

plotted spatially to aid our understanding of whether landscape

characteristics might influence the over- or under-counting of

species by VCS (Fig. 4, for topi and elephant only). All analy-

ses were performed in R (R Core Team 2013), and the code

for our model is provided in the Supporting Information

(Appendix S1). This model was fit to data on each of the eight

species in our analysis.

Results

SAFARI SCIENCE EFFORT AND ERROR

Volunteer citizen scientists recorded very few data points

in this study compared to the Traditional Sampling team

(Table 1). Safari Science data are overdispersed for most

species, with Nc values under 1 (Table 2; Bolker 2008). Of

our eight species, only Grant’s gazelle and giraffe had Nc

values whose CI exceeded 10, (i.e. their distribution is vir-

tually indistinguishable from a Poisson distribution).
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Wildebeest data were highly overdispersed, with

Nc ¼ 0 � 01. Thomson’s gazelle and Grant’s gazelle were

both under-counted by VCS, as they reported an average

of one and four individuals fewer (respectively) than the

predicted yunobserved values at those locations (Table 2).

All other species were over-counted, sometimes by an

average of over 270 individuals in the case of wildebeest.

The wildebeest model also had the largest root-mean-

square error (RMSE) of all species by a large margin,

eight times higher than the RMSE in our simulation study

(Table 2). All other species displayed RMSE values that

were lower than our simulation study, and overestimated

counts ranging from 3 to 10 individuals.

NORMALIZED DIFFERENCE VEGETATION INDEX

Elephant, Grant’s gazelle, Thomson’s gazelle and zebra

models reflected positive relationships between species

abundance and NDVI, indicating greater abundance in

areas of high vegetative productivity. Giraffe and wilde-

beest displayed negative relationships. Topi and impala

showed no significant relationship.

DISTANCE TO RIVER

Thomson’s gazelle, topi and zebra models reflected posi-

tive relationships between species abundance and distance

to river, indicating that those species avoid riparian areas.

Grant’s gazelle, impala and wildebeest displayed negative

relationships. Elephant and giraffe showed no significant

relationship.

TOPOGRAPHIC WETNESS INDEX

Grant’s gazelle, impala, topi and zebra models reflected

negative relationships between species abundance and

TWI, indicating those species avoid areas with poor drai-

nage. Wildebeest displayed a positive relationship. Ele-

phant, giraffe and Thomson’s gazelle showed no

significant relationship.

DISTANCE TO LIVESTOCK

All models reflected significant relationships between wild-

life abundance and distance to livestock. Giraffe, impala,

Thomson’s gazelle, wildebeest and zebra models reflected

negative relationships between species abundance and dis-

tance to livestock, indicating that larger numbers of those

species are often found in close proximity to livestock.

Elephant, Grant’s gazelle and topi showed positive rela-

tionships.

Discussion

Citizen science data are increasingly used to model the

distribution and abundance of wildlife species (Dickinson

et al. 2012; Ruiz-Gutierrez, Hooten & Campbell Grant

2016), yet questions remain as to whether these data can

be useful in approximating the quality and quantity of

traditionally collected ecological data. Our results demon-

strated that while citizen science data are likely to be

overdispersed, the amount of overdispersion varies widely

by species. We find that citizen science approaches, within

Table 2. Posterior means and credible intervals for all species. Significant species–environment relationships (where the credible interval

does not include zero) are highlighted in bold

Simulation Elephant Giraffe Grant’s gazelle Impala

Thomson’s

gazelle Topi Wildebeest Zebra

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Mean

(2�5%, 97�5%)

Species–environment relationship variables

Intercept 1�03 1�48 1�41 1�38 2�43 2�36 1�91 3�51 2�69
(0�98, 1�09) (1�38, 1�50) (1�33, 1�38) (1�35, 1�42) (2�41, 2�44) (2�35, 2�37) (1�91, 1�95) (3�50, 3�51) (2�68, 2�72)

NDVI (B2) 0�48 0�20 �0�28 0�05 �0�01 0�09 �0�004 �0�59 0�39
(0�45, 0�52) (0�09, 0�30) (�0�38, �0�20) (0�01, 0�09) (�0�02, 0�006) (0�08, 0�09) (�0�02, 0�01) (�0�60, �0�58) (0�38, 0�40)

Distance

to river

(B3)

0�48 �0�08 0�03 �0�06 �0�1 0�07 0�39 �0�11 0�3
(0�45, 0�52) (�0�18, 0�01) (�0�06, 0�10) (�0�10, �0�02) (�0�12, �0�09) (0�06, 0�08) (0�37, 0�40) (�0�12, �0�10) (0�29, 0�31)

TWI (B4) 0�5 0�03 �0�03 �0�04 �0�08 �0�01 �0�04 0�09 �0�04
(0�46, 0�53) (�0�08, 0�14) (�0�11, 0�05) (�0�08, �0�003) (�0�09, �0�06) (�0�02, 0�002) (�0�06, �0�02) (0�08, 0�09) (�0�05, �0�02)

Distance to

livestock

(B5)

0�48 0�08 �0�17 0�06 �0�05 �0�03 0�04 �0�21 �0�06
(0�44, 0�52) (2e�4, 0�17) (�0�26, �0�08) (0�03, 0�10) (�0�06, �0�03) (�0�04, �0�02) (0�03, 0�06) (�0�21, �0�20) (�0�08, �0�05)

Safari Science error variables

Nc 0�1 1�51 5�54 5�65 0�31 0�8 0�27 0�01 0�38
(0�03, 0�19) (0�58, 3�48) (1�91, 11�62) (2�37, 11�05) (0�18, 0�50) (0�39, 1�39) (0�15, 0�43) (0�005, 0�02) (0�20, 0�62)

Count

difference

�20�1 �1�22 �1�72 4�34 �10�04 1�22 �6�13 �271�15 �10�26
(�20�81, �19�34) (�1�83, �0�58) (�2�29, �1�10) (3�77, 4�91) (�10�79, �9�30) (0�24, 2�24) (�6�68, �5�56) (�272�38, �269�91) (�11�24, �9�27)

RMSE 84 5�46 3�65 4�34 29�64 11�82 34�56 738�65 43�27
(82�62, 85�21) (4�81, 6�18) (3�09, 4�23) (3�35, 5�33) (28�90, 30�34) (10�78, 12�83) (33�96, 35�12) (737�46, 739�81) (42�31, 44�18)

NDVI, Normalized Difference Vegetation Index; TWI, Topographic Wetness Index; RMSE, root-mean-square error.
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the context of East African dryland systems, may be more

appropriate for species with large body sizes that are rela-

tively rare, or those that form small herds. Additionally,

the data model we present is a general guide for future

work that seeks to integrate any datasets of varying relia-

bility, such as data produced by multiple laboratory tech-

nicians or field assistants. The specific results of our study

can also be used as informative priors for other East Afri-

can hierarchical models using citizen science data, thus

improving their convergence and inferential power (Hobbs

& Hooten 2015).

Safari Scientists recorded very few data points in this

study compared to the Traditional Sampling team

(Table 1), which we attribute to programme design (Steger

& Butt 2015). The combination of rangefinder, compass

and tablet was overwhelming for several VCS, who were

often trying to balance Safari Science use with their own

photography. Complex protocols for VCS can result in

reduced data accuracy (Dickinson, Zuckerberg & Bonter

2010) though simpler protocols do not necessarily produce

the type of data needed for system understanding. For

example, GPS-enabled cameras may be a viable alternative

citizen science method in this area that would be more

attractive to VCS. However, this method would result in

substantial interpretive work for end users (i.e. counting

animals in photos; Maddock & Mills 1994), and the lack of

data on direction and distance to animal would make it

impossible to determine fine-scale animal locations.

Another barrier in our programme design was the lack

of incentives, such as personalized maps and wildlife

counts for game drives. The addition of these rewards

could feasibly increase both recruitment rates and the

number of observations recorded by individual VCS

(Hochachka et al. 2012), although there are financial and

logistical costs associated with designing and implement-

ing such a programme (Hamilton et al. 2012). Finally, it

is possible that tourists in high-end lodges like the ones

in Olare Motorogi Conservancy may be less likely to

engage with citizen science if they feel it detracts from

their costly and time-constrained holiday experience.

Incorporating research game drives into the packages

being sold to tourists may help manage tourists’ expecta-

tions before arriving at the lodge by establishing the

research as an integral part of the safari experience (Ste-

ger & Butt 2015). Designing citizen science programmes

that collect reliable data while also meeting the interests

and motivations of the participants will be a critical

challenge for the success of future endeavours.

The ratio of citizen science to traditional sampling

observations differs considerably across species, casting

doubt as to whether VCS accurately report every species

they observe. VCS reported a similar number of elephant

sightings as trained ecologists (Table 1), but drastically

under-reported Thomson’s gazelle, which were the most

common species encountered by the Traditional Sampling

team. Our models reveal overdispersion in six of the eight

species-specific models, indicating that data produced by

VCS are not equivalent to data collected using trained eco-

logical researchers. However, the level of overdispersion

varies widely by species, revealing that VCS in this

Fig. 2. Posterior histograms for the topi

model. Posterior means are shown using

vertical dashed lines and prior distribu-

tions are shown in red. [Colour figure can

be viewed at wileyonlinelibrary.com]
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context display effort at recording only certain species

accurately. There are several explanations for overdisper-

sion in the Safari Science data, which we interpret as aris-

ing from observer or reporting bias in the count process.

While many factors influence overdispersion (e.g. weather,

predation risk and species movement; Linden & Man-

tyniemi 2011), we suggest that the amount of effort to

minimize differences in data collection between our two

methods (e.g. restricting observations to the conservancy,

synchronizing sampling times) validates our interpretation

of overdispersion as a measure of observer error.

Our findings that Grant’s gazelle and giraffe were the

only species without highly overdispersed data are attribu-

ted to the rarity of these species within the conservancy;

game drivers have a tendency to stop and point out rare

or uncommon species to tourists, making those species

Fig. 3. Histograms showing the mean

count difference (predicted minus

observed) for topi and the root-mean-

square error (RMSE).

Fig. 4. Count differences for topi (left

panel) and elephant (right panel) plotted

spatially. Purple dots indicate areas where

tourists are overestimating abundance, and

yellow dots indicate areas of underestima-

tion. [Colour figure can be viewed at

wileyonlinelibrary.com]
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appealing to record. Giraffe and Grant’s gazelle also tra-

vel in small herds, making them easier to count than

wildebeest or Thomson’s gazelle. Elephants, which are

easy to count due to their large body size, showed less

overdispersion than the rest of the species. Therefore, the

rarity of a species, body size and small herd size are all

characteristics explaining why VCS are better at estimat-

ing those numbers than for other species. The charisma of

a species also makes it more appealing for VCS to record

and observe. VCS in this study showed a strong prefer-

ence for carnivores, reporting four times as many lion

encounters as were observed using traditional sampling

methods (Steger & Butt 2015). These data were often dou-

ble-counts of the same lion pride, and thus require clean-

ing by analysts, but the quantity of the data indicates that

enthusiasm for a particular species can improve the par-

ticipation of VCS.

Conversely, the wildebeest model displayed a very high

degree of overdispersion in the Safari Science data, which

may be attributable to the large numbers that migrate dur-

ing these months (Serneels & Lambin 2001). When species

occurrence is high, it is perhaps unreasonable to expect

tourists to accurately estimate numbers within the 200-m

area closest to the road. It is also likely that game drivers

did not give tourists the opportunity to stop and record an

individual wildebeest if they encountered it alone, as this

would detract from finding and observing more rare species

like lion, cheetah and leopard (Steger & Butt 2015). Partici-

pant observation in both methods revealed that the Tradi-

tional Sampling team was likely to record each individual

encountered, accounting for the overestimation seen in the

Safari Science dataset. Because 1–2 animals is the most

common count in the traditional sampling wildebeest data-

set, predictions at Safari Science locations tend to be lower

than the large groups tourists stopped to record. Therefore,

the Safari Science dataset does not accurately represent the

distribution of wildebeest at fine scales, as it is biased

towards large aggregations.

Finally, we determined whether certain landscape charac-

teristics influenced VCS count biases in certain locations. A

spatial plot of count differences reveals that the largest

overestimations of topi occur on the western side of the

conservancy, closest to the tourist lodges along the Ntiaki-

tiak River, while the eastern area have mostly underestima-

tions (Fig. 4). However, this pattern is reversed for

elephants, where overestimates are concentrated on the

eastern side of the conservancy, and underestimates on the

western side (Fig. 4). Despite the clear spatial correlation

of these count differences, we were unable to identify land-

scape characteristics influencing the ability of VCS to accu-

rately count animals in those areas. One possibility is that

vegetation type, rather than vegetation productivity mea-

sured as NDVI, could be a physical difference in these loca-

tions. However, it is difficult to ascertain land cover in

dryland systems due to the dominant spectral signal of the

soil over vegetation that experiences only brief growing

periods (Bartholom�e & Belward 2005).

MANAGEMENT IMPLICATIONS

Our study has several implications for protected area

management strategies throughout East Africa. As citizen

science methods are gaining momentum in the region, it is

important that managers remain cautious in their imple-

mentation of these programmes while working to ensure

methods match the data purpose. The presence of vari-

ability does not necessarily preclude citizen science data

from being useful to managers, but that variability must

be measured and accounted for during decision-making

(Milner-Gulland & Shea 2017). In our study, the level of

overdispersion varies widely according to species, and

managers might be content with the uncertainty in citizen

science data for certain species. For example, overestimat-

ing topi counts by six individuals might be an acceptable

range of error in a species with herd sizes that range up

to 200, but small herds like giraffe have a lower margin

of error, and an overestimation of only two individuals

might be unacceptable to managers. These findings

advance our understanding of citizen science programme

design and implementation throughout East African dry-

lands, and support programmes conducting a similar

methodological comparison in their specific contexts

before investing in large-scale citizen science programmes

for wildlife monitoring.

It is critical that managers recognize the interests and

motivations of VCS when designing site-specific citizen

science programmes. In the context of this study, narrow-

ing the list of species to charismatic species that are easily

counted may have made the task seem more feasible and

appealing to VCS, potentially resulting in higher quanti-

ties of data and thus mitigating some of the extra variabil-

ity of those data. Similarly, the implementation of reward

systems may result in greater buy-in from VCS. Citizen

science monitoring is more cost-effective than traditional

sampling, but the costs of designing and maintaining a

high quality programme may still be prohibitive for the

small protected areas that would most benefit from citizen

science methods (Hamilton et al. 2012). Partnerships that

share costs with other protected areas, conservation

NGOs or government agencies hold great potential for

the implementation of high-quality citizen science pro-

grammes that transcend logistical barriers in East African

drylands.
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