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ABSTRACT

Protein structure and function are largely specified by the distribution of different atoms
and residues relative to the core and surface of the molecule. Relative depths of atoms
therefore are key attributions that have been widely used in protein structure modeling and
function annotation. However, accurate calculation of depth is time consuming. Here, we
developed an algorithm which uses Euclidean distance transform (EDT) to convert the
target protein structure into a 3D gray-scale image, where depths of atoms in the protein can
be conveniently and precisely derived from the minimum distance of the pixels to the surface
of the protein. We tested the proposed EDT-based method on a set of 261 non-redundant
protein structures, which shows that the method is 2.6 times faster than the widely used
method proposed by Chakravarty and Varadarajan. Depth values by EDT method are
highly accurate with a Pearson’s correlation coefficient &1 compared to the calculations
from exhaustive search. To explore the usefulness of the method in protein structure pre-
diction, we add the calculated residue depth to the scoring function of the state of the art,
profile–profile alignment based fold-recognition program, which shows an additional 3%
improvement in the TM-score of the alignments. The data demonstrate that the EDT-based
depth calculation program can be used as an efficient tool to assist protein structure analysis
and structure-based function annotation.

1. INTRODUCTION

Most proteins perform the biochemical functions through the contact interactions with other li-

gands and proteins, where the detailed shapes of the molecules are essential to determine the inter-

actions and functions. Accordingly, solvent accessibility (SA) of the atoms and residues, along with the

surface of the molecules, has often been used to help analyze the structure and function of the proteins. Given

a target structure, SA value can be calculated exactly by Euclidean Distance Transform based Surface

generation program (EDTSurf) (Xu and Zhang, 2009) or approximately by Dictionary of Secondary

Structure of Proteins (DSSP) (Kabsch and Sander, 1983).

However, SA usually specifies the residues in a binary form. For the residues that are completely buried

in the protein structure, it does not describe where the residues locate inside the molecule. Depth, which

measures the distance of each atom/residue to the solvent accessible surface in a continuous form, greatly
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complements the missing information by SA, which is important to analyze the fold and function of the

protein. In fact, depths of residues in a protein are highly related to their effects of mutations on protein

stability and on protein–protein interactions (Chakravarty and Varadarajan, 1999). Residue depth has also

been widely used to specify protein folds in protein structure prediction ( Zhou and Zhou, 2005; Liu et al.,

2007; Wu and Zhang, 2008) and assist structure-based protein function annotation (Roy et al., 2012).

Despite the importance, there are by far very few methods that can calculate the depth for protein

structures efficiently at either an atom level or a residue level. Chakravarty and Varadarajan (1999)

proposed calculating the residue depth by rotating the protein in a box where the closest water molecule is

identified for each atom in the protein. The accuracy of the method is compromised since the calculated

depth value depends on the positions and orientations of the water molecules. One can also calculate the

depth by first generating the explicit solvent accessibility surface (e.g., by EDTSurf or Michel Sanner’s

Molecular Surface (MSMS) (Sanner et al., 1996)) and then identifying the vertex on the triangulated

surface which is the closest one to the atom (Yuan and Wang, 2008; Zhang et al., 2008). However, the

computation of this kind of method is quite time-consuming since all the atoms in the protein need to be

searched against the huge number of vertices on the mesh surface.

In a recent study, we have established the unified relationship between the three kinds of macromo-

lecular surfaces and Euclidean distance transform (EDT) theoretically and developed a fast algorithm for

generating their triangulated surfaces precisely (Xu and Zhang, 2009). In this work, we apply the EDT

technique to the calculation of protein atom depth and residue depth. The algorithm is fast since the

explicit triangulated surface is not required. To investigate the efficiency and accuracy of this method, we

compare the computational time and depth value with that by Chakravarty and Varadarajan (CV). We

also analyze the relation of protein depth with the commonly used radius of gyration and solvent

accessibility and prove that they are independent structural features. Matching of residue depth is also

added to the scoring function of our fold recognition program, which shows incremental improvement

over solvent accessibility.

2. MATERIAL AND METHODS

2.1. Depth definition

Atom depth is the shortest distance between the center of the atom and the outer solvent accessible

surface (SAS) of the molecule, as illustrated in Figure 1. SAS is the area traced out by the center of a probe

sphere when it is rolling over the whole molecule (Lee and Richards, 1971). When an atom is exposed (e.g.,

atom i in the figure), its depth will equal to the sum of its van de Waals radius and the radius of the probe

sphere rp which is often set to 1.4 Å. For atoms that are completely buried inside (e.g., atoms j and k in the

figure), their solvent accessibilities are all equal to zero, but their depths may be different. Residue depth is

the average value of the atom depths of all the atoms in the residue.

The definition of atom depth by Chakravarty and Varadarajan is a little different, which is the shortest

distance to the explicit bulk water rather than the solvent accessible surface. Since water molecules do not

have spherical shapes and may have different poses around the molecule, this difference will result in the

slightly different depth values.

2.2. Euclidean distance transform

Euclidean distance transform (EDT) is the transformation that converts a digital binary image to another

gray-scale image where the value of each pixel is the minimum Euclidean distance between that pixel and

the boundary. We have developed a fast algorithm that can conduct EDT in arbitrary dimensional space

(Xu and Li, 2006). EDT has been widely used in the fields of image processing and computer graphics, in

applications of skeleton extraction (Choi et al., 2003), shortest path planning (Shih and Wu, 2004), and

geometric shape description (Xu and Li, 2007).

Given a protein structure, we suppose it has N atoms, each of which locates at pi and has a van der Waals

radius ri. To calculate the atom depth in the protein, we first build the solvent accessible solid using

Equation (1), which is the union of all the spheres with radius equal to the sum of the van der Waals radius

and the radius of the probe sphere. The union operation is conducted in the discrete 3D space using space-

filling technique, with each sphere represented by a set of grid points.
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OSA =
[N
i = 1

sphere(pi‚ ri + rp) (1)

Then we can easily determine the outer shell of the solvent accessible solid, which is the discrete

representation of solvent accessible surface GOSA. EDT is then carried out to the shell, which converts the

whole solid into Euclidean distance map (EDM). We can directly obtain the shortest Euclidean distance of

each atom to the shell, which happens to be the depth value of the atom, as formulized in Equation (2).

Although there are several other distance functions, such as City-block distance and Chessboard distance,

only Euclidean distance has the direct relationship with the three macromolecular surfaces as well as the

depth.

dep(pi) = EDM(GOSA‚ pi) (2)

In the original CV method and its recent extension (Tan et al., 2011), non-bulk water molecules are

removed in the regions of narrow cavities and internal voids. Otherwise, atoms around those regions will

have small values of depths. Using Equation (1), the solvent accessible solid has already filled most of the

empty space in the same regions since the radius of each atom is enlarged by the radius of the probe sphere.

Therefore, EDT method is not affected in those special regions and has the consistent depth values with that

by the CV method.

Figure 2 shows an example of the EDT result to the same shape of the SAS in Figure 1, where the red

curve stands for the SAS. After the EDT, every position has a shortest distance to the SAS, as represented

by the gray-scale pixel value in the image. The lighter the point is, the longer distance to the surface it will

have. Based on the definition of the depth, we can see that the gray-scale pixel value calculated by the EDT

at each point exactly is the depth value of that point. In the figure, the centers of the three atoms, as

represented by the blue dots, have different depth values.

Solvent accessibility of each residue is defined as the ratio of the total SAS area of all the atoms in the

residue to the maximum SAS area of that residue type. Hence, we have to build the explicit triangulated

surface from the discrete shell by surface triangulation algorithms such as the Marching Cube method

(Lorensen and Cline, 1987). Different than the solvent accessibility derivation, depth calculation does not

require the generation of the explicit triangulated SAS.

Given the shell of the discrete SAS, we can also calculate the depth of each atom by exhaustive search

(ES). That is to say, we search for the point on the shell that is the closest to the center of the atom.

2.3. Protein fold recognition using residue depth

For template-based structure prediction, the most crucial step is template identification and fold rec-

ognition, which determines the initial structural fold for the query sequence. Solvent accessibility has been

proved to be a useful term for fold recognition, in threading programs such as SP4 (Liu et al., 2007) and

MUlti-Sources ThreadER (MUSTER) (Wu and Zhang, 2008). The matching score is often defined as the

FIG. 1. Illustration of three atoms with different depth values

in a 2D plane. The outer boundary stands for the solvent ac-

cessible surface.
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difference between the predicted solvent accessibility of the query sequence and the accurately pre-

calculated solvent accessibility of each template structure. They did not directly use the residue depth for

matching. Instead, a structure profile is built using fragments of similar RMSDs (Root-mean-square de-

viation) and depth values.

Here, residue depths of the query sequence are predicted by a two-layer back-propagation neural network

(Rumelhart et al., 1986), which has architecture similar to that used for the solvent accessibility prediction

(Xu and Zhang, 2012). The scoring function for matching depth of residue i in the query sequence and

residue j in the template is the negative logarithm of the probability of residue type aa(i) having depth

difference DRD(i, j) divided by the background probability, which is close to that of SPARKSX (Yang et al.,

2011). Similar equations are used for the matching of secondary structure types and solvent accessibility.

m RD(i‚ j) = - ln
P(DRD(i‚ j)jaa(i))

P(DRD(i‚ j))

� �
(3)

The complete scoring function for matching two residues is given in Equation (4), where the profile

matching term (Xu and Zhang, 2013) is the dot-product of the frequency profile calculated from multiple

sequence alignments and the log-odds profile from the Position-Specific Substitution Matrix, both of which

come from Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST) (Altschul et al.,

1997). The weighting factors w1, w2, and w3 in the equation are equal to 1.3, 1.0, and 0.2, separately.

Needleman–Wunsch (Needleman and Wunsch, 1970) dynamic programming algorithm is adopted to

generate the optimal global alignments between every two proteins.

FIG. 2. Illustration of EDT to the solvent accessible surface (red) in a 2D plane. Centers of the three

atoms are marked in blue.
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f (i‚ j) =
X20

k = 1

Pq(i‚ k)Lt(j‚ k) + w1 · m SS(i‚ j) + w2 · m SA(i‚ j) + w3 · m RD(i‚ j) (4)

3. RESULTS AND DISCUSSION

3.1. Visualization of depth

In order to visually check the depth information generated by the method described above, we have

embedded the EDT-based depth calculation algorithm into our Macromolecular Visualization and Pro-

cessing (MVP) program.

Figure 3 shows two snapshots of the MVP visualization result of a hypothetical protein from thermus

thermophilus HB8 (PDB ID: 1whz, chain A), which contains 122 residues and 937 atoms. Atoms in the left

figure are in ball-stick style. Red color means high value of atom depth, while blue means low. In the right

image, we show the protein structure in backbone style, where the color of each residue is also correlated

with its residue depth. From both images, we can clearly see the layers of the protein structure, especially

the hydrophobic core which is in red.

3.2. Depth distributions of different residue types

Since different residue types have different hydrophobicities, their depth distributions should also be

different. Therefore, we choose 36,556 protein domains used by our threading programs (Wu and Zhang,

2007, 2008) for validation, which can be downloaded at http://zhanglab.ccmb.med.umich.edu/library/.

Those structures are nonhomologous to each other with sequence identity cutoff 70%. Protein chains which

contain multiple domains are discarded from the list in this test, since multiple-domain proteins are often

not well packed.

The distributions of residue depths of the 20 residue types are shown in Figure 4, which are arranged in

the order of their hydrophobicity scales (Kyte and Doolittle, 1982). Residue depths normally are in the

range of 2.9 Å and 8.9 Å. Almost all the residue depths are less than 5 Å for the 8 hydrophilic residues on

the top TWO rows. Tryptophan (TRP) and serine (SER) have similar hydrophobicities, but TRP has more

depths that are deeper than 5 Å. This is probably because TRP has a longer side-chain and its depth can be

large even part of the residue is exposed. For the six most hydrophobic residues on the bottom two rows,

more depth values are around 6 Å than that of the hydrophilic residues. However, majority of the depths are

still close to 3.1 Å, which means many hydrophobic residues still locate around the surface of the domain

structures. It is understandable if the protein is stable only in the complex form instead of the monomeric

form. Hydrophobic residues in the interface will have deep residue depths if we treat the complex as a

whole.

FIG. 3. Visualization of (A) atom depth and (B) residue depth of protein 1whz chain A by MVP.
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3.3. Comparison of depth generation methods

We compare the depth results by the algorithm described by Chakravarty and Varadarajan (CV) and

exhaustive search (ES) and EDT-based method (EDT) mentioned above. The test set here we choose

contains 261 nonhomologous protein chains randomly selected from the PISCES list (Wang and Dunbrack,

2003). In the CV algorithm, 216 three-site water molecules are put in a box with edge length 18.856 Å. We

rotate each protein at 25 different orientations in the box and find the shortest distance to the outer water

molecule for each atom. For both ES and EDT, we first enlarge each protein four times and put it into its

minimum bounding box. Then we create the voxel shell that represents the solvent accessible surface. ES

method directly searches the closest voxel for each atom without using EDT. The EDT method only

requires the EDT to the voxel shell to get the depth value for each atom.

We first compare the similarities of the depth values generated by the three methods. The Pearson’s

correlation coefficients (PCC) of the residue depths by the three kinds of methods are shown in Table 1.

Results by ES and EDT methods are highly close to each other. Although CV method is quite different to

the other two, it still has a high correlation (>0.90) with them.

The difference of the depth values by CV and EDT mainly comes from two sources. First, the depth

definitions by the two methods are slightly different, which have been described before. Second, since CV

is an approximation method, depth value is highly dependent on the water molecules placed outside of the

protein. Sometimes the depth value is close to the real depth if the water molecule happens to be the closest

one, while sometimes it does not. In contrast, depth values calculated by ES and EDT are close to the real

one. The only error of the EDT method stems from the discretization of the protein which makes the

discrete shell not exactly the same as the actual continuous SAS.

FIG. 4. Distributions of residue depths for the 20 residue types.
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We then compare the average computational time by the three methods, which is tabulated in the last row

of the Table 1. The calculation is performed on a single node with a 2.27 GHZ Intel E5520 Xeon processor

and 24 GB memory. EDT method is 2.6 times faster than CV and 1.9 times faster than ES. We can imagine

the CPU time taken by the ES method will increase rapidly if we increase the scale factor to generate the

more accurate SAS shell. We have also tried the new version of the DEPTH program using the CV method

in (Tan et al., 2011), which takes even longer time (data not shown) due to the extensive search for the

nonbulk water molecules.

Compared with the accuracy, speed may be not an issue if we only calculate the depth once for each

protein structure. However, a lot of computational resources could be saved if depth information of

thousands of structures has to be calculated. For example, in the application of protein fold recognition, the

non-redundant template library often contains more than 40,000 protein chains/domains extracted from the

Protein Data Bank (PDB) (Berman et al., 2000).

3.4. Depth versus radius of gyration

Radius of gyration (RG) refers to the root mean square distance of the protein atoms from the center of

gravity. Due to the simplicity of calculation, RG has been widely used to characterize the global shape and

compactness of protein tertiary structure in protein structure prediction (Zhang et al., 2003) and function

annotation (Roy and Zhang, 2012). However, due to the high specificity of protein tertiary structure

packing, the simple RG calculation cannot precisely reflect the shape and residue distribution related to the

exposed surfaces on specific proteins. In this section, we examine the quantitative relation of RG and depth

calculated from EDT technique which highlights the advantage of depth in characterizing the overall shape

of protein tertiary structure.

We compare the radius of gyration with the maximum residue depth (MD) and the average residue depth

(AD) in Figure 5(A) and 5(B) separately. The data are acquired still based on the 36,556 domain structures

in our threading template library. In the left figure, we can see that the two features have some correlation in

most of the regions. Most times, when the radius of gyration is large, the maximum depth will also be very

high. Especially when the protein structure is compact and has a globular shape, its maximum depth will be

highly correlated with its radius of gyration, such as the protein in Figure 6(A). It is the chain A of the

Desulfovibrio vulgaris apoflavodoxin-riboflavin complex (PDB ID: 1bu5), which has the radius of gyration

Table 1. Comparison of Residue Depths by Methods of Chakravarty

and Varadarajan (CV), exhaustive search (ES), and EDT-Based Method (EDT)

CV ES EDT

PCC

CV 1.00 0.91 0.90

ES 0.91 1.00 1.00

EDT 0.90 1.00 1.00

Time(sec) 2.23 1.69 0.88

FIG. 5. Comparison of radius of gyration with (A) the maximum residue depth and (B) the average

residue depth. Reduced numbers of points are shown in the figure by Origin.
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around 14 Å. Since the five beta-strands and four helices are densely organized, the maximum depth is also

very high and very close to the radius of gyration.

There are also exceptions where the radius of gyration is high but the maximum depth is extremely low.

This is because some single-domain proteins (e.g., a super-long helix) have loose arrangements of secondary

structure elements which make depth values of most residues very low. Figure 6(B) shows the chain L of the

Bacteriophage phi29 head-tail connector protein (PDB ID: 1ijg). If we solely consider this chain, only one

end is well-shaped. There are three other helices in the middle, which connect two short beta-strands and one

short helix in the other end. This structure has an extremely large radius of gyration of 30 Å. However, since

this chain is not compact and most of the residues are exposed, the maximum depth is only 7.603 Å.

The scatter plot between the average depth and the radius of gyration in Figure 5(B) has the similar

distribution to that between the maximum depth and the radius of gyration in Figure 5(A). This is because

the Pearson’s correlation coefficient between the maximum depth and the average depth is very high (0.92

in Table 2).

Another measurement describing the overall shape is the radius of the bounding sphere (RS), which is the

minimum radius of the sphere that could cover all the atoms in the protein structure. It has a very high

correlation (0.96) with the radius of gyration, which is probably because the center of the bounding sphere

is close to the center of gravity for most proteins.

All the PCC values between the four global structural features are listed in Table 2. As we have explained,

RG and RS have no obvious correlations with the maximum and average depths due to the irregular shapes of

some proteins. For RG and RS, distances are calculated between the positions of all the residues and one fixed

point (e.g., the center of gravity or the center of the bounding sphere). Those distances have no strong

physical meaning when the protein has a nonglobular shape and residues are far away from this point. On the

contrary, depth is a local measurement since different atoms have different closest points on the SAS.

From the above analysis, we can draw the conclusion that RG and RS are very rough measurements of

protein shapes. The maximum/average residue depth provides independent information to RG/RS. They

FIG. 6. Cartoon style of two protein chains with color representing the residue depth. (A) 1bu5 chain

A, radius of gyration = 13.840 Å, maximum depth = 10.459 Å; (B) 1ijg chain L, radius of gyra-

tion = 30.428 Å, maximum depth = 7.603 Å.

Table 2. Pearson’s Correlation Coefficients Between

the Four Global Features

RG RS MD AD

RG 1.00 0.96 0.07 0.02

RS 0.96 1.00 0.05 - 0.02

MD 0.07 0.05 1.00 0.92

AD 0.02 - 0.02 0.92 1.00
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can help characterize the unique features of protein tertiary structures including the overall 3D shape and in

particular the residue distribution relative to the surface exposition.

3.5. Depth versus solvent accessibility

The range of solvent accessibility value is in [0, 1] after we normalize the SAS area by the maximum

SAS area of each residue type. For the residues which are partially exposed to solvation, they may have the

same solvent accessibility but different depth values due to the various sizes of the different residue types.

By comparing the non-zero solvent accessibility and residue depth for each residue type based on the

36,556 protein domains, we find that SA and RD follow an exponential function:

RD = y + A · e - SA=t (5)

Table 3. Parameters of the Exponential Functions

for the 20 Amino Acid Types

y A t y A t

ARG 2.96 1.20 0.14 SER 2.89 0.84 0.11

LYS 2.96 1.18 0.16 THR 2.97 0.90 0.12

ASN 2.93 0.98 0.11 GLY 2.87 0.64 0.06

ASP 2.91 0.97 0.11 ALA 2.96 0.77 0.07

GLU 2.92 1.09 0.12 MET 3.08 1.17 0.08

GLN 2.95 1.09 0.12 CYS 2.93 0.98 0.11

HIS 3.00 1.20 0.11 PHE 3.17 1.29 0.07

PRO 3.04 0.83 0.11 LEU 3.16 1.05 0.06

TYR 3.08 1.35 0.10 VAL 3.13 0.95 0.07

TRP 3.12 1.44 0.10 ILE 3.18 1.05 0.06

FIG. 7. Scatter plot between solvent accessibility and residue depth for aspartic acid. Black curve

is the fitting curve by an exponential function. Reduced numbers of points are shown in the figure

by Origin.
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In Table 3, we list values of the three parameters in equation (5) for all the 20 amino acids. As expected,

those parameters are different for different residue types. The amplitude parameter A seems proportional to

the size of each amino acid. For example, small amino acids glycine (GLY) and alanine (AlA) have small

amplitudes, while large amino acids arginine (ARG) and TRP have big amplitudes. More hydrophilic

residues tend to have a larger scale parameter t, such as ARG and lysine (LYS), while more hydrophobic

residues have a higher y parameter [e.g., phenylalanine (PHE) and isoleucine (ILE)].

In Figure 7, we compare solvent accessibility and residue depth for aspartic acid as an example.

Generally, points in the scatter plot follow the exponential function, as illustrated by the black fitting curve.

Depth difference is not significant when solvent accessibility is high, which means majority part of the

residue is exposed. However, when SA is low (majority is buried), depth value can be quite different.

Diversity of depth values might be caused by two reasons. The first one is the different relative positions

and orientations of the residue to the solvent accessible surface while the second one is the different side-

chain conformations. The shape of each residue type is not unique due to the degrees of freedom of side-

chain torsion angles.

3.6. Comparison of fold recognition results

We first group the 20 amino acids into two sets, hydrophobic residues and hydrophilic residues based on

their hydrophobicity scales (Kyte and Doolittle, 1982) and then evaluate their prediction errors for both

solvent accessibility and residue depth. From Table 4, we clearly see that hydrophobic residues have

smaller prediction error for solvent accessibility than hydrophilic residues because their solvent accessi-

bility values are close to zero at most times. For residue depth, difference between the two types of residues

is even larger. Hydrophobic residues have almost twice as much error as hydrophilic residues because their

various depth values are harder to predict. This table highly suggests that the two structural features should

be used together to avoid the high prediction error of one residue type.

We select 148 ‘‘hard’’ sequences as the test set, whose difficulties are defined by LOMETS (Wu and

Zhang, 2007) meta-threading server after homologous templates are removed from the template library for

each sequence. Alignment accuracy of the initial backbone structure, which is directly copied from the

corresponding template, is measured by the Template Modeling Score (TM-score) (Zhang and Skolnick,

2004). We start with the sequence profile matching term in the scoring function and add structural features

one by one. The detailed result is shown in Table 5. The three kinds of structural features indeed have

positive effects on fold recognition, which provide complementary information to sequence profile

matching. As expected, adding residue depth also could help improve alignment accuracy and optimize

template selection without increasing the alignment length, which is about 3% higher than that only uses

secondary structure types and solvent accessibility.

Table 4. Difference Between the Real Value

and Predicted Value of Solvent Accessiblity and Residue Depth

for the Two Different Residue Types

Solvent accessibility Residue depth

Hydrophobic residues 0.075 0.118

Hydrophilic residues 0.101 0.060

Ratio 0.743 = 1/1.347 1.967

Table 5. Threading Alignment Accuracy of Hard Sequences

as Evaluated by TM Score

1st Coverage Best in top20 Coverage

Profile 0.309 0.893 0.399 0.902

Profile + SS 0.353 0.885 0.440 0.881

Profile + SS + SA 0.369 0.880 0.454 0.894

Profile + SS + SA + RD 0.379 0.877 0.455 0.881

MUSTER 0.344 0.875 0.439 0.888
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The evaluation of alignments produced by MUSTER is shown in the last row of the table. Although

MUSTER also includes the depth information, the direct depth matching in this paper seems more efficient,

which is about 10% better than MUSTER.

In addition, we have also tried to include / and w torsion angles and 4-Ca-based torsion angle into the

scoring function, as did by MUSTER. However, they could not further improve the alignment accuracy,

probably because the prediction errors are high for those features ( > 20� on average), although they seem to

be independent structural features.

4. CONCLUSIONS

We have developed a computational algorithm for the fast and accurate calculation of the atom/residue

depth through Euclidean distance transform. The method was tested on a set of 261 nonredundant protein

structures. It was shown that EDT-based method is 2.6 times faster than the widely used method developed

by Chakravarty and Varadarajan, but the accuracy of the EDT-based method is higher than that of the latter

compared with the actual depth from exhaustive search.

Depth data are systematically analyzed in the large-scale proteins that cover the entire PDB library at the

sequence identity cutoff of 70%. It is found that the maximum/average residue depth has no obvious

correlation with the commonly used radius of gyration and radius of the bounding sphere. Hence, the

maximum/average depth could be considered as a new geometric feature for describing the global shape of

protein tertiary structure. It is of potential use for protein fold classification and structure comparison.

When the residue is not completely buried inside of the protein molecule, solvent accessibility and

residue depth follow an exponential relation. Different residue types have different parameters of the fitting

functions and different distributions of residue depths even their hydrophobic scales are close to each other.

The various sizes of the amino acids seem to be the major factors which cause the differences.

When the residue is completely buried inside of the protein structure, residue depth becomes a useful

measurement as solvent accessibility of the residue remains zero in this situation. Hence, we use residue

depth as a complementary feature to the solvent accessibility as an additional term in the scoring function

for fold recognition, which indeed could improve template selection and alignment accuracy. On the other

hand, depth attribution clearly illustrates the shape distribution of residues in the protein structure and could

help to identify the cavity region, which potentially contains the active site or binding site. Correctly

identification of residues around this region could accelerate the structure-based binding site prediction and

aid the consequent function annotation (Roy and Zhang, 2012).

The source code and executable program for computing atom depth and residue depth are freely available at

http://zhanglab.ccmb.med.umich.edu/EDTSurf/. The associated software MVP (Macromolecular Visualiza-

tion and Processing) for visualizing the depth information is downloadable at http://zhanglab.ccmb.med

.umich.edu/MVP/.
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