
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Interactive Refactoring of Web Service Interfaces
Using Computational Search

Hanzhang Wang, Marouane Kessentini, and Ali Ouni

Abstract— Successful Web services evolve through a process of continuous change due to several reasons such as improving the quality, fixing
bugs and adding new features. However, this evolution process may weaken the design of the Web service’s interface by aggregating many non-
cohesive and semantically unrelated operations. Thus, the service interface becomes unnecessarily complex for users to find relevant operations
to be used by their services-based systems. In this paper, we propose an interactive recommendation approach, based on evolutionary algorithms,
that dynamically adapts and suggests a possible remodularization of the Web services interface design to users/developers and takes their feedback
into consideration. Our approach uses an interactive multi-criteria decision-making algorithm, based on interactive Non-dominated Sorting Genetic
Algorithm (NSGA-II), to find a set of good design interface modularization solutions. These solutions provide a trade-off between improving several
interface design quality metrics (e.g. coupling, cohesion, number of port types, and number of antipatterns) and fix Web services design antipatterns,
maximizing the satisfaction of the interaction constraints learnt from the user feedback during the execution of the algorithm while minimizing the
deviation from the initial design. We evaluated our approach on a set of 22 real world Web services, provided by Amazon and Yahoo. Statistical
analysis of our experiments shows that our dynamic interactive Web services interface modularization approach performed significantly better than
the state-of-the-art modularization techniques in terms of generating well-designed Web services interface for users.

Index Terms— Web services, design, quality, user interface.

——————————  ——————————

1 INTRODUCTION
eb services promote software reuse by providing reusable
services to end users who can compose them to implement

or update an existing system [2]. One of the main key factors for
deploying successful and popular services is guaranteeing a well-
designed interface for users (service’s subscribers) to find relevant
and high-quality operations to implement the features of their ser-
vice-based systems [6]. Web services interfaces could be provided
by different service providers such as FedEx, Google, PayPal and
Google, and represent the most critical component in the service-
oriented architecture (SOA) since the interface is the only visible
component to the users.

The evolution of Web services may have a negative impact on
the design quality of the interface by concatenating many non-co-
hesive operations that are semantically unrelated, and thus make
it unnecessarily complex for users to find relevant operations to
be used in their services-based systems. An example of well-
known interface design antipattern is the God object Web service
(GOWS) [3] which implements many operations related to differ-
ent business and technical abstractions in a single service interface
leading to low cohesion of its operations and high unavailability
to end users because it is overloaded. Indeed, the choice of how
operations should be exposed through a service interface can
have an impact on the performance, popularity and reusability of
the service [7] and it is not a trivial task. On one hand, Web ser-
vices interface exposing a high number of operations allow their
clients to invoke their interfaces many times which significantly
deteriorate the service performance. On the other hand, aggregat-
ing several operations of an interface into one large operation will
reduce the reusability of the service.

Despite its importance, very few studies focused on improving
the design of Web service interfaces for the users/subscribers
[4][5]. The majority of existing work [3][4][5][6][7] addressed the
problem of the detection of design antipatterns of Web services
interface based on declarative rule specification. In these settings,
rules are manually defined to identify the key symptoms that
characterize an interface design antipattern using combinations of
mainly quantitative metrics. For each possible interface design an-
tipattern, rules that are expressed in terms of metric combinations
need high calibration efforts to find the right threshold value for
each metric. Another important issue is that translating symp-
toms into rules is not obvious because there is no consensual
symptom-based definition of design antipatterns. In fact, the
identification of these interface design antipatterns is ultimately a
subjective process and requires integrating the user in the loop.
These difficulties explain a large portion of the high false-positive
rates reported in existing research.

Recent work [4][5] addressed the problem of fixing these de-
sign antipatterns by automatically decomposing Web services in-
terface based only on the cohesion metric. Indeed, deciding on
how to decompose/modularize an interface is subjective and dif-
ficult to automate since it is required to integrate the feedback of
users during the modularization process. In addition, the history
of interactions between the users and the current Web service in-
terface could be important to understand the dependency be-
tween the operations and generate a well-designed interface [1].
However, these aspects related to the users’ feedback, when im-
proving the quality of services interface, were not considered by
existing studies.

In this paper, we propose a recommendation approach that
dynamically adapts and interactively suggests a possible modu-
larization, also called refactoring [15], of the Web services inter-
face to developers and takes their feedback into consideration.
Our approach uses an interactive multi-criteria decision-making

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

W

————————————————

• Hanzhang Wang and Marouane Kessentini are with the Computer and Infor-
mation Science Department, University of Michigan, MI, 48126, USA. E-mail:
wanghanz@umich.edu, marouane@umich.edu.

• Ali Ouni is with the Department of Computer Science, ETS, QC, Canada. E-mail:
ali.ouni@etsmtl.ca

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

algorithm, based on interactive non-dominated sorting genetic al-
gorithm (NSGA-II) [14], to find a set of good design interface
modularization solutions that provide a trade-off between (1) im-
proving several interface design quality metrics (e.g. coupling, co-
hesion, number of portTypes and number of antipatterns), (2)
maximizing the satisfaction of the interaction constraints learnt
from the user feedback during the execution of the algorithm,
while (3) minimizing the deviation from the initial design. To find
a trade-off between these different conflicting objectives, there is
no single possible modularization solution but a set of optimal,
i.e., non-dominated, solutions, so-called Pareto front [14]. The
challenge at this step is how to choose one solution from this front
to present to the Web service’s user or developer? The traditional
approach is to seek a ‘knee point’ [14] from the front that presents
the maximum trade-off between the different objectives. How-
ever, this may ignore the preferences of the user. To address this
issue, we propose to analyze and explore the Pareto front of pos-
sible remodularization solutions interactively and implicitly with
the developer.

Our algorithm starts by finding the most frequently-occurring
remodularization operations among the set of non-dominated so-
lutions. Based on this analysis, a complete interface remodulari-
zation solution is chosen from the front that best matches the most
frequently-occurring operations, i.e., the solution that best repre-
sents the entire front. The recommended modularization opera-
tions are then ranked and suggested to the developer one by one.
The developer can approve, modify or reject each suggested mod-
ularization such as moving operations between port types, or
merging/splitting port types. Each action by the developer par-
ticipates to guide the search process towards a desired solution.
For example, if the user rejects to apply a modularization opera-
tion, the search process will subsequently avoid to reconsider it
when creating new solutions. NSGA-II will continue to execute in
the new modified context to repair and evolve the set of good re-
modularization solutions based on the feedback received from the
Web services developer.

We evaluated our approach on a set of 22 real-world Web ser-
vices, provided by Amazon and Yahoo. Statistical analysis of our
experiments shows that our dynamic interactive Web services in-
terface modularization approach performed significantly better
than the state-of-the-art modularization techniques [4][5]. The pri-
mary contributions of this paper can be summarized as follows:
1. The paper introduces a novel interactive way to modularize

and improve the quality of Web services using interactive
dynamic multi-objective optimization. The proposed tech-
nique supports the adaptation of interface design solutions
based on the user feedback while improving several quality
attributes while minimizing the deviation from the initial de-
sign. To the best of our knowledge, we propose the first ap-
proach to interactively generate a modularized Web services
interface.

2. The paper reports the results of an empirical study on an im-
plementation of our approach. The obtained results provide
evidence to support the claim that our proposal is more effi-
cient, on average, than existing Web services modularization
techniques based on a benchmark of 22 real-world services.
The paper also evaluates the relevance and usefulness of the
suggested interface design improvements for Web service
users.

The remainder of this paper is as follows: Section 2 presents

the relevant background and a motivating example for the pre-
sented work; Section 3 describes the search algorithm; an evalua-
tion of the algorithm is explained and its results are discussed in
Section 4; Section 5 is dedicated to related work. Finally, conclud-
ing remarks and future work are provided in Section 6.
2 BACKGROUND AND CHALLENGES
2.1 Background
The interface of a Web service is described as a WSDL (Web ser-
vice Description Language) document that contains structured in-
formation about the offered operations and their input/output
parameters [6]. A portType is a set of abstract operations. Each
operation refers to an input message and output messages. The
users select the desired operation on their services-based system
implementation via the interface by specifying the name of the
operations and the required parameters (inputs) and they receive
the required outputs without accessing to the source code of these
used operations.
Most of existing real-world Web services interface regroup to-
gether a high number operations implementing different abstrac-
tions such as the Amazon EC2 that contains more than 100 oper-
ations in some releases. There are few WSDL design improvement
tools [4][5] that have emerged to provide basic refactorings on
WSDL files however applying these refactorings is fully manual
and time consuming as discussed in the next section. These inter-
face design refactorings correspond to Interface Decomposition, In-
terface Merging (to merge multiple interfaces) and Move Operation
(to move an operation between different interfaces).
Web service interface antipatterns are defined as bad design
choices that can have a negative impact on the interface quality
such as maintainability, changeability, and comprehensibility
which may impact the usability and popularity of services [12].
They can be also considered as structural characteristics of the in-
terface that may indicate a design problem that makes the service
hard to evolve and maintain, and trigger refactoring. To this end,
recent studies defined different types of Web services design an-
tipatterns [3][7]. In our experiments, we focus on the seven fol-
lowing Web service antipattern types:
− God object Web service (GOWS): implements a high number

of operations related to different business and technical ab-
stractions in a single service.

− Fine grained Web service (FGWS): is a too fine-grained service
whose overhead (communications, maintenance, and so on)
outweighs its utility.

− Chatty Web service (CWS): represents an antipattern where a
high number of operations are required to complete one ab-
straction.

− Data Web service (DWS): contains typically accessor opera-
tions, i.e., getters and setters. In a distributed environment,
some Web services may only perform some simple infor-
mation retrieval or data access operations.

− Ambiguous Web service (AWS): is an antipattern where de-
velopers use ambiguous or meaningless names for denot-
ing the main elements of interface elements (e.g., port types,
operations, messages).

− Redundant PortTypes (RPT): is an antipattern where multiple
portTypes are duplicated with the similar set of operations.

AUTHOR ET AL.: TITLE 3

− CRUDy Interface (CI): is an antipattern where the design en-
courages services the RPC-like behavior by declaring cre-
ate, read, update, and delete (CRUD) operations, e.g., cre-
ateX(), readY(), etc.

We choose these antipattern types in our interactive interface de-
sign tool because they are the most frequent and hard to detect
[18], cover different interface design issues, due to the availability
of antipattern examples and could be detected using a tool pro-
posed in our previous work [3][12]. Our approach supports high-
level refactorings: Interface Decomposition (to split an interface
into multiple port types), Interface Merging (to merge multiple
interfaces) and Move Operation (to move an operation between
different interfaces). Of course, these high-level refactorings are
composed by low-level ones such as delete and add operations
that are also supported by our approach. In addition, the use of
cosine similarity, as highlighted later in the fitness functions sec-
tion, can be used to identify inconsistencies related to the name of
operations. A God Object Web Service could be fixed mainly us-
ing the Interface Decomposition refactoring while Fine Grained
and Chatty antipatterns could be addressed by Interface Merging.
To fix redundant PortTypes, our approach uses a high-level refac-
toring which is Interface Merging to merge the two redundant
PortTypes into one. This high-level refactoring includes, automat-
ically, the deletion of redundant operations (as low-level opera-
tion) as part of the merging where there is a constraint that the
operations within a merged PortType are not redundant. How-
ever, we also give the opportunity to the user to delete an opera-
tion manually for situations where he created manually a new
portType that introduced some redundancies. Both Ambiguous
and CRUDy interface can addressed using a combination of Move
Operation and Interface Decomposition guided mainly by the fit-
ness function including cosine similarity to distribute the behav-
ior or remove ambiguities.

2.2 Problem Statement
In the following, we introduce some issues and challenges re-

lated to restructuring the design quality of the Web service inter-
faces. Figure 1 illustrates a fine-grained service that can lead to a
system with a poor performance due to an excessive number of
calls to one interface regrouping all the operations. Thus, it is crit-
ical to fix this issue by creating new portTypes that group together
the most cohesive operations to decompose the Amazon Simple

Notification Service interface.
Recently, few studies have proposed to restructure the design

of the Web services interface [4][5]. We can distinguish two main
categories: manual and fully-automated techniques. The manual
approaches propose a set of refactorings that the user can select
and execute to split an interface, extract an interface and merge
two interfaces [8]. However, manual refactoring of the interface’s
design is a tedious task for developers that involve exploring the
whole operations in the interface to find the best refactoring solu-
tion that improves the modularity of an interface. In the fully-au-
tomated approach, developers should accept the entire refactor-
ing solution and existing tools do not provide the flexibility to
adapt the suggested solution interactively. In addition, most of
these manual and fully-automated techniques focus on fixing de-
sign antipatterns rather than the modularity of the interface [4][5].
Overall, there is no consensus on how to decide if a design vio-
lates a quality heuristic. In fact, there is a difference between de-
tecting symptoms and asserting that the detected situation is an
actual design antipattern. Another issue is related to the defini-
tion of thresholds when dealing with quantitative information.
For example, the GOWS antipattern detection involves infor-
mation such as the interface size as illustrated in Figure 1. Alt-
hough we can measure the size of an interface, an appropriate
threshold value is not trivial to define. An interface considered
large by a community of service users could be considered aver-
age by others. Thus, it is important to consider the user in the loop
when identifying such design violations.

Several possible levels of interaction are not considered by ex-
isting Web services interface refactoring techniques. It is easy for
developers to identify large interfaces that should be refactored,
but they find it is difficult, in general, to locate a target port type
when applying a move operation. In addition, existing tools do
not update their recommended refactoring solutions based on the
user’s feedback such as accepting, modifying or rejecting certain
refactoring actions. While automation is important, it is essential
to understand the points at which human oversight, intervention,
and decision-making should impact on automation. Human de-
velopers/users might reject changes made by any automated
technique. Especially if they feel that they have little control, there
will be a natural reluctance to trust and use the automated design
restructuring tool.

Fig. 1. Restructuring the design of a Web service Interface example (Amazon Simple Notification Service)

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The main motivations to refactor Web services are not just to
fix antipatterns. Developers want to take control of changes intro-
duced to the interface since they are not interested to fix all possi-
ble antipatterns but they may have preferences to improve some
quality metrics than others. Thus, it is important to consider the
developer in the loop when refactoring services, not because it is
impossible to fix antipatterns automatically but mainly due to the
fact that deciding on how to decompose/modularize an interface
is subjective and difficult to automate since it is required to inte-
grate the feedback of users during the modularization process.

In addition to the above-mentioned limitations, existing stud-
ies propose only few quality metrics such as cohesion to decom-
pose a Web service interface. However, several conflicting metrics
should be considered such as coupling, number of portTypes, co-
hesion, number of design antipatterns, etc. Thus, it is critical to
find a trade-off between these different metrics based on the pref-
erences of the user as discussed by Coscia et al. [24] . Furthermore,
the history of the interaction between the users and the Web ser-
vice interface (invocations) is not considered by existing work
when decomposing Web services design interfaces. In fact, users
in general select operations that are related to each other’s when
implementing a specific feature. Thus, such information could be
useful when regrouping operations together into portTypes.

In this paper, we propose a new way for users to refactor the
design of their Web services interface as a sequence of transfor-
mations based on different levels of interaction and dynamic
adaptive ranking of the suggested remodularizations. The next
section describes the proposed interactive Web services design re-
structuring technique.
3 INTERACTIVE SEARCH ALGORITHM FOR THE

REMODULARIZATION OF WEB SERVICES
In this section, we first detail some required background infor-
mation to understand the technique proposed in this paper, then
we present an overview of our approach and finally we provide
the details of our problem formulation and the solution approach.

3.1 Interactive and Dynamic Evolutionary Multi-Objective
Optimization

In this section, we give a brief overview about two important
aspects in the Evolutionary Multi-Objective Optimization (EMO)
paradigm related to the: (1) Interaction with the user and (2) Dy-
namicity of the problem.

Interacting with the human user means allowing the user to
inject his/her preferences into the computational search algo-
rithm and then using these preferences to guide the search pro-
cess. In most of existing studies [13][14], the user’s preferences are
expressed and handled in the objective space. It is important to
highlight that one of the original aspects of our work in this paper,
as detailed later, is to allow the user to express his preferences in
the decision space and then handling these preferences to help the
user finding the most desired refactoring solution. Moreover, our
approach helps the user in eliciting his preferences, which is im-
portant for preference-based EMO algorithm. These preferences
are introduced implicitly by moving between the Pareto front of
non-dominated solutions after obtaining feedback from the user
about just few parts of the solution to better understand his pref-
erences. This implicit exploration of the Pareto front will be de-
tailed in the next section.

The integration of user preferences is challenging due the
changes introduced to some of the generated solutions based on

the interaction feedback. Applying evolutionary algorithms (EAs)
to solve Dynamic Multi-Objective Problems (DMOPs) has re-
ceived great attention from researchers based on the adaptive be-
havior of evolutionary computation methods. A DMOP consists
of minimizing or maximizing an objective function vector under
some constraints over time. Its general form is the following [14]:

where M is the number of objective functions, t is the time in-
stant, P is the number of inequality constraints, Q is the number
of equality constraints, L

ix and U
ix correspond respectively to the

lower and upper bounds of the variable ix .
A solution ix satisfying the (P+Q) constraints is said to be fea-

sible, and the set of all feasible solutions defines the feasible search
space denoted by Ω. The resolution of an MOP yields a set of
trade-off solutions, called Pareto optimal solutions or non-domi-
nated solutions, and the image of this set in the objective space is
called the PF. Hence, the resolution of a MOP consists in approx-
imating the entire PF. In the following, we provide some back-
ground definitions related to multi-objective optimization. These
definitions remain valid for the case of DMOPs.

Definition 1: Pareto optimality
A solution Ω∈*x is Pareto optimal if Ω∈∀ x and
{ }MI ,...,1= either Im∈∀ we have)()(*xfxf mm = or there

is at least one Im∈ such that)()(*xfxf mm > .
The definition of Pareto optimality states that *x is Pareto

optimal if no feasible vector x exists that would improve some
objectives without causing a simultaneous worsening in at least
one other objective.

Definition 2: Pareto dominance
A solution),...,,(21 nuuuu = is said to dominate another so-

lution),...,,(21 nvvvv = (denoted by)()(vfuf ) if and only
if)(uf is partially less than)(vf . In other words,

{ }Mm ,...,1 ∈∀ we have)()(vfuf mm ≤ and { }Mm ,...,1 ∈∃
where)()(vfuf mm < .

Definition 3: Pareto optimal set
For a given MOP)(xf , the Pareto optimal set is

{ })()'(,' * xfxfxxP Ω∈¬∃Ω∈= .
Definition 4: Pareto optimal front
For a given MOP)(xf and its Pareto optimal set *P , the Pa-

reto front is { }*),(* PxxfPF ∈= .

3.2 Approach Overview
The goal of our approach is to propose a new dynamic interactive
way for users to refactor their Web services interface design. The
general structure of our approach is sketched in Figure 2.
Our technique comprises two main components. The first compo-
nent consists of an offline phase. It is executed first in the back-
ground when the developer uploads the WSDL file to analyze.
During this phase, the multi-objective algorithm, NSGA-II [14], is
executed for several iterations to find the non-dominated solu-
tions balancing the three following objectives:
• Objective 1 maximizes the interface design quality, which cor-

responds to minimize the number of design antipatterns and
improve design quality metrics (coupling and cohesion),

• Objective 2 maximizes the satisfaction of the constraints













=≤≤

==

=≥
=

.1

1 0),(
1 0),(

)],(),...,,(),,([),(21

,...,nixxx

,...,Q;ktxh
,...,P;jtxg

txftxftxftxfMin

U
ii

L
i

k

j

T
M

AUTHOR ET AL.: TITLE 5

learnt from the user interaction,
• Objective 3 minimizes the number of introduced changes to

modify the Web service design and port types.
The output of this first step of the offline phase is a set of Web
services remodularization solutions that optimize the above three
objectives. As explained in Algorithms 1 and 2, the second step of
the offline phase explores this Pareto front in an intelligent man-
ner using our algorithm to rank recommended changes based on
the common features between the non-dominated solutions. In
our adaptation, we assume true the hypothesis that the most fre-
quently occurring remodularization operations in the non-domi-
nated solutions are the most relevant ones for developers and can
fix several antipattern types. Thus, the output of this second step
of the offline phase is a set of ranked solutions based on this fre-
quency score.
The second component of our approach is an online phase to man-
age the interaction with the user. It dynamically updates the list
of interaction constraints based on the feedback of the developer.
This feedback can be to accept/apply or modify or reject some of
the suggested design changes. Thus, the goal is to guide, implic-
itly, the exploration of the search space of possible Web services
modularization solutions. Since the interactions constraints are
updated dynamically, our interactive algorithm allows the im-
plicit move between non-dominated solutions of the Pareto front.
The list of constraints that could be learnt will be discussed in the
next section. For example, when a user accepts a port type then
the operations of that port type should stay together in the next
interactions of the algorithm but new operations could be moved
to that port type. Another interaction option for the user is to spec-
ify desired values of the different metrics then the multi-objective
algorithm will try to restructure the design of the interface to
reach these desired values. The interaction algorithm (Algorithm
2) will be explained later in Section 3.3.4 in more details.
After several interactions, users may have modified or rejected a
high number of suggested design changes or have introduced
several new changes manually. Whenever the users stop the Web
service design modularization session by closing the suggestions
window, the first component of our approach is executed again

on the background to update the last set of non-dominated mod-
ularization solutions by continuing the execution of NSGA-II
based on the three objectives defined in the first component as
described in Algorithm 1 and the new constraints summarizing
the feedback of the user. In fact, we consider the rejected port
types or operations by the developer as constraints to avoid gen-
erating solutions containing similar port types in the next itera-
tions to avoid putting together again the operations of that re-
jected port types in the next iterations of the algorithm. This may
lead to reducing the search space and thus a fast convergence to
better interface modularization solutions. Of course, the next iter-
ations of NSGA-II takes as input the updated version of the inter-
face after the interactions with users. The whole process continues
until the developers decide that there is no necessity to restructure
the Web service anymore. The outcome of the proposed approach
that consists of the modularization of the Web service interface
should have an impact on the implementation of the operations
as well. In fact, the operations that are grouped together into one
sub-interface may give an indication that they should be imple-
mented within the same module. Thus, the proposed interface
modularization could help the services developer to improve the
cohesion and coupling of their implementation of services opera-
tion.

Algorithm 1. Dynamic Interactive NSGA-II at generation t
Input
Sys: Web service interface to evaluate, Pt: parent population

Output
Pt+1
 Begin
/* Test if any user interaction occurred in the previous iteration */
If UserFeedback = TRUE then
/* Rejected or Modified portTypes as constraints */
 Ct ← Get-Constraints();
/* Updated interface after applying changes */
Sys ← Get-Remodulazied-Interface();
 UserFeedback ← FALSE;
End If
St ← Ø, i ← 1;
 Qt ← Variation (Pt);
 Rt ← Pt ∪ Qt;
Pt ← evaluate (Pt, Ct, Sys);
 (F1, F2, ...) ← Non-dominationed-Sort (Rt);

Fig. 2. Approach overview

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 Repeat
 St ← St ∪ Fi; i ← i+1;
 Until | St | ≥ N;
 Fl ← Fi; //Last front to be included
 If | St | = N then
 Pt+1 ← St;
 Else
 Pt+1 ←

1
1

−
=

l
j

Fj;
 /*Number of points to be chosen from Fl*/
 K ← N – |Pt+1|;
 /*Crowding distance of points in Fl */
 Crowding-Distance-Assignment(Fl);
 Sort(Fl);
 /*Choose K solutions with largest distance*/
 Pt+1← Pt+1 ∪ Select(Fl, k);
End If
If t+1 = Threshold then
 UserFeedback ← TRUE;
/* Select and rank the best front */
 Rank-Solution (F1); /* execution of Algorithm 2 */
 Threshold ← Threshold + t+1;
End If
End
Algorithm 2. The ranking procedure to manage the interactions

with the developer (online phase)
Input
RNS: Ranked Non-dominated SolutionSet
Output
M: Map of refactorings along with their occurrences.
Begin
Applied-Refactorings ← Ø;
Rejected-Refactorings ← Ø;
For i=1 to |RNS| do
 ref[i] ← 0;
End for
/* Main loop to suggest refactorings one by one to the user*/
While |Rejected-Refactorings|< α do
/* Select index of the the solution with highest rank*/
 index ← Max-Rank(RNS);
 d ← User-Decision(RNSindex,ref[index]);
/* If the user has applied or modified the operation*/
 If (d = True) then
 Applied-Refactorings ← Applied-Refactorings ∪ RNSin-

dex,ref[index];
/* If the user has rejected the operation*/
 else
 Rejected-Refactorings ← Rejected-Refactorings ∪ RNSin-

dex,ref[index];
 End if
 ref[index] ← ref[index] + 1;
/* Update solutions indexes */
 For i=1 to |RNS| do
 Update-Rank(RNSi; Applied-Refactorings,Rejected-Refactor-

ings)
End While
End

3.3 Solution Approach
We describe in the following subsections the details of the various
components of our framework.

3.3.1 Interactive NSGA-II
Most real world optimization problems encountered in practice
involve multiple criteria to be considered simultaneously. These
criteria, also called objectives, are often conflicting. Usually, there
is no single solution that is optimal with respect to all these objec-
tives at the same time, but rather many different designs exist
which are incomparable per se. Consequently, contrary to Single-

objective Optimization Problems (SOPs) where we look for the
solution presenting the best performance, the resolution of a
multi-objective optimization (MOP) yields a set of compromise
solutions presenting the optimal trade-offs between the different
objectives. When plotted in the objective space, the set of compro-
mise solutions is called the Pareto front. The resolution of a MOP
yields a set of trade-off solutions, called Pareto optimal solutions
or non-dominated solutions, and the image of this set in the ob-
jective space is called the Pareto front. Hence, the resolution of a
MOP consists in approximating the whole Pareto front.
In this paper, we adapted one of the widely used multi-objective
search algorithms called NSGA-II [14] and integrated our interac-
tive component to it. NSGA-II is a powerful search method
stimulated by natural selection that is inspired from the theory of
Darwin. Hence, the basic idea of NSGA-II is to make a population
of candidate solutions evolve toward the near-optimal solution in
order to solve a multi-objective optimization problem. NSGA-II is
designed to find a set of optimal solutions, called non-dominated
solutions, also Pareto set. A non-dominated solution is the one
which provides a suitable compromise between all objectives
without degrading any of them. As described in Algorithm 1, the
first step in NSGA-II is to create randomly a population P0 of
individuals encoded using a specific representation. Then, a child
population Q0 is generated from the population of parents P0
using genetic operators such as crossover and mutation. Both
populations are merged into an initial population R0 of size N. As
a consequence, NSGA-II starts by generating an initial population
based on a specific representation that will be discussed later,
using the exhaustive list of interface operations given as input as
mentioned in the previous section. Thus, this population stands
for a set of possible solutions represented as sequences of port-
Types (including the operations) which are selected and
combined. After a number of iterations, the best solution (inter-
face design modularization) will be presented to the user to get
his feedback then the algorithm will continue to execute taking
into consideration the new learnt interaction constraints.
To summarize, the main NSGA-II loop goal is to make a popula-
tion of candidate solutions evolve toward the best clustering of
interface operations into portTypes, i.e., the sequence that mini-
mizes the coupling, number of antipatterns, number of portTypes
and number of interface changes, and maximizes the cohesion
and the satisfaction of the interaction constraints. During each it-
eration t, an offspring population Qt is generated from a parent
population Pt using genetic operators (selection, crossover and
mutation). Then, Qt and Pt are assembled to create a global popu-
lation Rt. Then, each solution Si in the population Rt is evaluated
using our three fitness functions. We describe in the next sections,
the different steps of adaption of the interactive NSGA-II algo-
rithm to our problem.

3.3.2 Solution Representation

Fig. 3. Example of a solution representation
A solution consists of a sequence of n interface change operations
assigned to a set of port types. A port type could contain one or
many operations but an operation could be assigned to only one

AUTHOR ET AL.: TITLE 7

port type. A vector-based representation is used to cluster the dif-
ferent operations of the original interface, taken as input from the
WSDL file description, into appropriate interfaces, i.e., port types.
Figure 3 describes an example of 5 operations assigned to two
port types. As output, a vector representation is automatically
translated by our tool into a graphical interface as described in
Figure 4.
The initial population is generated by randomly assigning a se-
quence of operations to a randomly chosen set of port types. The
size of a solution, i.e. the vector’s length corresponds to the num-
ber of operations of the Web service however the number of port
types is randomly chosen between upper and lower bound val-
ues. The determination of these two bounds is similar to the prob-
lem of bloat control in genetic programming where the goal is to
identify the tree size limits. The number of required port types
depends on the size of the target interface design. Thus, we per-
formed, for each target design, several trial and error experiments
using the HyperVolume (HP) performance indicator to determine
the upper bound after which, the indicator remains invariant. For
the lower bound, it is arbitrarily chosen. The experiments section
will specify the upper and lower bounds used in this study.

Fig. 5. The user can specify some desired metrics value

3.3.3 Fitness Functions

Objective 1: Maximize the Web services design quality metrics. This fit-
ness function is defined as the average of three measures. The first
measure is the number of design antipatterns that can be detected
using the rules defined in our previous work [3][12]. The list of
antipatterns is discussed in Section 2. The second measure is the
cohesion that corresponds to the degree to which the operations
exposed in a service interface conceptually belong together [4].
We used, in this paper, the definition of cohesion defined by [4]
which is based on communicational and textual similarities be-
tween the operations within the same port type based on cosine
similarity and call-graphs. The third measure is coupling within
a service measures the relationships between implementation el-
ements belonging to the same service [5]. Service interface cou-
pling is a measure of how strongly a service interface is connected
to or relies on other service interfaces. We used the existing defi-
nition of coupling based on the similarity between the operations
within the same port type and the number of calls to other opera-
tions in different port types [5]. The reason of not treating quality
objectives separately are related to redcuing the execution time
and the number of non-dominated solutions (especially for an in-
teractive approach), and also the performance of NSGA-II when
the number of objectives becomes high.

Objective 2: Maximize the interaction-based function. This func-
tion maximizes the satisfaction of the constraints learnt from the
interaction with user or minimizes the distance with the desired
metrics, if specified by the user as described in Figure 4. In case
that the user did not specify these desired values then we just ig-
nore this component of the fitness function. Furthermore, the user
has four other types of interaction, as described in Figures 5 and
6, that correspond to accept a portType, reject a portType, move oper-
ation(s) and delete operation(s). Each of these user actions will gen-
erate a set of constraints for the exploration of the search space.
When a port type is accepted, the list of operations in that port
type should stay together in the next iterations but new opera-
tions could be added to the port type. When a port type is rejected
by the user, a constraint is generated to avoid regrouping together
again these operations into the same port type. The application of
a move operation action will generate a constraint to keep the

Fig. 4. The proposed Web services design modularization tool.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

moved operation in the targeted port type in the next iterations.
When an operation is deleted, a constraint will be generated to
avoid putting again that operation in the source port type in the
next iterations. Formally, the second fitness function to minimize
is defined as follows:

This second fitness function is composed by two components.
The first component is to minimize the distance between the de-
sired metrics value specified by the user (e.g. coupling, cohesion,
number of portTypes, etc.) and the actual values of the solution to
evaluate. The second component is to maximize the number of
satisfied interaction constraints over the total number of learnt
constraints.

Objective 3: Minimize the number of changes comparing to the ini-
tial design. The designer may have some preferences regarding the
degree of the deviation with the initial design of the interface.
Thus, we formally define the fitness function as the following:

The number of design changes is calculated based on the number
of differences between the two vector representations of the initial
design and the generated one, i.e. the number of operations of the
new design assigned to different port types compared to the ini-
tial design.

3.3.4 Interactive Recommendations
The first step of the interactive component is executed as de-
scribed in Algorithm 2, to investigate if there are some common
patterns among the generated non-dominated refactoring solu-
tions. The algorithm checks if the optimal refactoring solutions
have some common features such as similar refactoring opera-
tions among most or all the solutions, and a specific common or-
der/sequence in which to apply the refactorings. Such infor-
mation will be used to rank the suggested refactorings for devel-
opers using the following formula:

where Rx,y is the refactoring operation number x (index in the so-
lution vector) of solution number y, and n is the number of solu-
tions in the front. Si is the solution of index i. All the solutions of
the Pareto front are ranked based on the score of this measure ap-
plied to every solution.
Once all Pareto front solutions are ranked, the second step of the
interactive process is executed as described in Algorithm 3. The
refactorings of the best solution, in terms of ranking, are recom-
mended to the developer based on their order in the vector. Then,
the ranking score of the solutions is updated automatically after
every feedback (interaction) with the developer. Our interactive
algorithm proposes three levels of interaction as described in Fig-
ure 2. The developer can check the ranked list of refactorings and
then apply, modify or reject the refactoring. If the developer prefers
to modify the refactoring, then our algorithm can help them dur-
ing the modification process as described in Figures 5 and 6. In
fact, our tool proposes to the developer a set of recommendations
to modify the refactoring based on the history of changes applied

in the past and the semantic similarity between the port types and
operations. For example, if the developer wants to modify a move
operation refactoring then, having specified the source port type
to move, our interactive algorithm automatically suggests a list of
possible target port types ranked based on the history of changes
and semantic similarity. This is an interesting feature of our ap-
proach since developers often know which operation to move, but
find it hard to determine a suitable target port type [12]. The same
observation is valid for the remaining refactoring types. Another
action that the developers can select is to reject/delete a refactor-
ing from the list. After every action selected by the developer, the
ranking is updated based on the feedback using the following for-
mula:

Where Si is the solution to be ranked, the first component consists
of the sum of the ranks of its operations as explained previously
and the second component will take the value of 1 if the recom-
mended refactoring operation was applied by the developer, or -
1 if the refactoring operation was rejected or 0.5 if it was partially
modified by the developer. We selected 0.5 as a threshold since
most of the operations have very few parameters (up-to two pa-
rameters) that could be modified. The recommended refactorings
will be adjusted based on the updated ranking score.
It is important to note that we calculate the ranking score for each
non-dominated solution using our ranking measure and then the
solution with the highest score is presented refactoring by refac-
toring to the developer. In fact, refactorings tend to be dependent
on one another, thus it is important to ensure the coherence of the
recommended solution. After several modified or rejected refac-
torings, the generated Pareto front of refactoring solutions by
NSGA-II needs to be updated since the original interface was
modified. Thus, the ranking of the solutions will change after
every interaction. If many refactorings are rejected, the NSGA-II
algorithm will continue to execute while taking into consideration
all the feedback from developers as constraints to satisfy during
the search. The rejected refactorings should not be considered as
part of the newly generated solutions and the new Web service
interfaces after refactoring will be considered in the input of the
next iteration of the NSGA-II.
In a non-interactive Web services refactoring approach, the set of
refactorings, suggested by the best-chosen solution, needs to be
fully executed to reach the solution’s promised results. Thus, any
changes applied to the set of refactorings such as changing or
skipping some of them could deteriorate the resulting design
quality. In this context, the goal of this work is to cope with the
above-mentioned limitation by granting to the developer’s the
possibility to customize the set of suggested refactorings either by
accepting, modifying or rejecting them. The novelty of this work
is the approach’s ability to consider the developer’s interaction, in
terms of introduced customization to the existing solution, by
conducting a local search to locate a new solution in the Pareto
Front that is nearest to the newly introduced changes. We believe
that our approach may narrow the gap that exists between auto-
mated and manual Web services refactoring techniques. It allows
the developer to select the refactorings that best match his/her
design preferences.

3.3.5 Change Operators
In each search algorithm, the variation operators play the key role

AUTHOR ET AL.: TITLE 9

of moving within the search space with the aim of driving the
search towards optimal solutions. We considered the widely used
changes operator adaptation used for discrete problems [26]. For
the crossover, we use the one-point crossover operator. It starts
by selecting and splitting at random two parent solutions. Then,
this operator creates two child solutions by putting, for the first
child, the first part of the first parent with the second part of the
second parent, and vice versa for the second child. It is important
to note that in multi-objective optimization, it is better to create
children that are close to their parents to have a more efficient
search process. For mutation, we use the bit-string mutation op-
erator that picks probabilistically one or more refactoring opera-
tions from its or their associated sequence and replaces them by
other ones from the initial list of possible refactorings.
When applying the change operators, different pre- and post-con-
ditions are checked to ensure the applicability of the newly gen-
erated solutions such as removing redundant operations or con-
flicts between operations such as assigning the same operation to
two different port types.
4 VALIDATION
To evaluate the ability of our interactive Web services modulari-
zation framework to generate a good design quality, we con-
ducted a set of experiments based on 22 real-world web services
as described in Table 1. the obtained results are subsequently sta-
tistically analyzed with the aim of comparing our proposal with a
variety of existing fully-automated approaches. In this section, we
first present our research questions and then describe and discuss
the obtained results.
4.1 Research Questions and Evaluation Metrics

We defined three research questions that address the applica-
bility, performance in comparison to existing fully-automated
Web services modularization approaches [4][5], and the useful-
ness of our interactive multi-objective approach. The three re-
search questions are as follows:

RQ1: To what extent can our approach recommend relevant
Web services design improvements?

RQ2: How does our interactive formulation perform com-
pared to fully-automated Web services restructuring techniques
[4][5]?

RQ3: Can our approach be useful for the users of Web services
(the developers of service-based systems)?

To answer these research questions, we considered the best in-
terface design restructuring solutions recommended by our ap-
proach after interactions with the developers as described in the
previous section. To answer RQ1, it is important to validate the
proposed modularization solutions on the different Web services
highlighted in Table 1. We asked a group of developers, as de-
tailed in the next section, to manually modularize the design of
the different interfaces considered in our experiments. Then, we
calculated precision and recall scores to compare between the
generated design and the expected one:

When calculating the precision and recall, we consider a two

port types are similar if they contain the same operations. We di-
vided the participants in groups to make sure that they do not use

our tool on the Web services that they are asked to manually mod-
ularize.

Another metric that we considered for the quantitative evalu-
ation is the percentage of fixed design antipatterns (NF) by the
proposed modularization solution. The detection of design an-
tipatterns after applying a modularization solution is performed
using the detection rules of our previous work [12]. Formally, NF
is defined as:

For the qualitative validation, we asked groups of potential us-
ers of our Web services refactoring tool to evaluate, manually,
whether the suggested interface design refactorings are feasible
and efficient at improving the quality of Web services interface
design. We define the metric Manual Correctness (MC) to mean
the number of meaningful refactorings divided by the total num-
ber of recommended refactorings by our tool. The MC metric is
computed after the user interaction is completed. In fact, the num-
ber of correct refactorings includes the number of design refactor-
ings applied by developers when using our tool, since they can
either apply, modify or reject a refactoring recommendation (e.g.
created port type). MC is given by the following equation:

To avoid the computation of the MC metric being biased by
the developer’s feedback, we asked the developers to manually
evaluate the correctness of the recommended refactorings on the
Web services that they did not refactor using our tool.

We considered also some other useful metrics to answer RQ1
that count the percentage of Web service refactorings that were
accepted (NAC) or rejected (NRE) or applied with some modifica-
tions (NMO). Formally, these metrics are defined as:

To answer RQ2, we compared our approach to two other ex-
isting fully-automated Web services decomposition techniques

[4][5]. Ouni et al. [5] proposed an approach to decompose Web
services using graph partitioning to improve cohesion. Similarly,
Athanasopoulos et al. [4] used a greedy algorithm to decompose
the interface based on cohesion as well. All these existing tech-
niques are fully-automated and do not provide any interaction
with the developers to update their solutions towards a desired
design. Thus, we used the metrics PR, RC, and NF to perform the
comparisons.

To answer RQ3, we used a post-study questionnaire that col-
lects the opinions of Web service developers on our tool as de-
scribed in the next section. Thus, we asked these participants to
use both our interactive tool and the automated framework pro-
posed by Ouni et al. [5] on different sets of Web services. The par-
ticipants were asked to make changes, when appropriate, to the
final solution of the automated approach of Ouni et al. [5]. Thus,
we can check whether the "online phase" of the proposed interac-
tive approach makes a real contribution, or whether the same ef-
fect can be attained by just fixing the output of the automated re-
modularization approaches. Then, we compared between the out-
comes of the survey questions for both interactive and fully auto-
mate techniques.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4.2 Experimental Setting
 We used a benchmark of 22 well-known Web services as detailed
in Table 1. All studied services are widely used in different con-
texts and provided by Amazon and Yahoo, two major Web ser-
vice providers. We selected these Web services for our validation
because they range from medium to large-sized projects, which
have been actively developed and changed over several years.
Our study involved 24 participants from the University of Michi-
gan to use and evaluate our tool. Participants include 16 master
students in Software Engineering and 8 Ph.D. students in Soft-
ware Engineering. All the participants are volunteers and familiar
with Web services and refactoring in general. The experience of
these participants on programming ranged from 2 to 19 years. 11
out of the 24 participants are currently active programmers as
well in software industry with a minimum experience of 2 years.
Participants were first asked to fill out a pre-study questionnaire
containing twelve questions. The questionnaire helped to collect
background information such as their role within the company,
their programming experience, their familiarity with Web ser-
vices. In addition, all the participants attended one lecture about
Web services design quality, modularization and passed five tests
to evaluate their performance to evaluate and suggest interface
design modularization solutions.

Table 1. Studied Web service interfaces
Service interface Provider #operations

i1. AutoScalingPortType Amazon 13
i2. MechanicalTurkRequesterPort-

Type
Amazon 27

i3. AmazonFPSPorttype Amazon 27
i4. AmazonRDSv2PortType Amazon 23
i5. AmazonVPCPortType Amazon 21
i6. AmazonFWSInboundPortType Amazon 18

i7. AmazonS3 Amazon 16
i8. AmazonSNSPortType Amazon 13
i9. ElasticLoadBalancingPortType Amazon 13
i10. MessageQueue Amazon 13
i11. AmazonEC2PortType Amazon 87
i12. KeywordService Yahoo 34
i13. AdGroupService Yahoo 28
i14. UserManagementService Yahoo 28
i15. TargetingService Yahoo 23
i16. AccountService Yahoo 20
i17. AdService Yahoo 20
i18. CompaignService Yahoo 19
i19. BasicReportService Yahoo 12
i20. TargetingConverterService Yahoo 12
i21. ExcludedWordsService Yahoo 10
i22. GeographicalDictionaryService Yahoo 10

As described in Table 2, we formed 4 groups. Each of the four
groups is composed by 6 participants. Table 2 summarizes the
survey organization including the list of Web services and the al-
gorithms evaluated by each of the groups. The groups were
formed based on the pre-study questionnaire and the tests result
to make sure that all the groups have almost the same average
skills. Consequently, each group of participants who accepted to
participate in the study received a questionnaire, a manuscript
guide to help them to fill the questionnaire, the tools and results
to evaluate the Web services design. Since the application of re-
modularization solutions is a subjective process, it is normal that

not all the developers have the same opinion. In our case, we con-
sidered the majority of votes to determine if suggested solutions
are correct or not. We performed a cross-validation between the
groups to avoid the evaluation will be biased by the developer’s
feedback. Thus, the subjects within the same group evaluated
only the desing obtained with the feedback of individual of other
groups.
We executed three different scenarios. In the first scenario, we
asked every participant to manually modularize a set of Web ser-
vices. As an outcome of the first scenario, we calculated the dif-
ferences between the recommended modularizations and the ex-
pected ones (manually suggested by the users/developers). To
evaluate the fixed Web services design antipatterns, we focus on
the ones defined in Section 2. We choose these types in our exper-
iments because they are the most frequent and hard to fix based
on several studies [2][3][7]. In the second scenario, we asked the
users to manually evaluate the last recommended solution by our
algorithm after the interaction with the user. We performed a
cross-validation between the groups to avoid the computation of
the MC metric being biased by the developer’s feedback. In the
third scenario, we collected their opinions of the participants
based on a post-study questionnaire that will be detailed before
in this section. The participants were asked to justify their evalu-
ation of the solutions and these justifications are reviewed by the
organizers of the study.

Table 2. Survey organization
Groups Web Services Algorithms / Approaches

Group 1 i1-i5 Interactive approach
Ouni et al. [4]
Athanasopoulos et al. [5]

Group 2 i6-i10

Group 3 i11-i16
Group 4 i17-i22

Parameter setting influences significantly the performance of a
search algorithm. For this reason, for each algorithm and for each
Web service, we perform a set of experiments using several pop-
ulation sizes: 20, 30, 50, 100 and 200. The stopping criterion was
set to 50,000 evaluations for all algorithms to ensure fairness of
comparison. The other parameters’ values were fixed by trial and
error and are as follows: (1) crossover probability = 0.6; mutation
probability = 0.3 where the probability of gene modification is 0.2;
stopping criterion = 50,000 evaluations. Each algorithm is exe-
cuted 30 times with each configuration and then the comparison
between the configurations is done using the Wilcoxon test. To
achieve significant results, for each couple (algorithm, Web ser-
vice), we use the trial and error method to obtain a good parame-
ter configuration.
Since metaheuristic algorithms are stochastic optimizers, they can
provide different results for the same problem instance from one
run to another. For this reason, our experimental study is based
on 30 independent simulation runs for each problem instance and
the obtained results are statistically analyzed by using the Wil-
coxon rank sum test with a 95% confidence level (α = 5%). The
latter tests the null hypothesis, H0, that the obtained results of two
algorithms are samples from continuous distributions with equal
medians, against the alternative that they are not, H1. The p-value
of the Wilcoxon test corresponds to the probability of rejecting the
null hypothesis H0 while it is true (type I error). A p-value that is
less than or equal to α (≤ 0.05) means that we accept H1 and we
reject H0. However, a p-value that is strictly greater than α (> 0.05)

AUTHOR ET AL.: TITLE 11

means the opposite. In fact, for each problem instance, we com-
pute the p-value obtained by comparing existing studies [4][5] re-
sults with our approach ones. In this way, we determine whether
the performance difference between our technique and one of the
other approaches is statistically significant or just a random result.
The results presented were found to be statistically significant on
30 independent runs using the Wilcoxon rank sum test with a 95%
confidence level (α < 5%) as detailed in the next section.
The Wilcoxon rank sum test verifies whether the results are sta-
tistically different or not; however, it does not give any idea about
the difference in magnitude. To this end, we used the Vargha-
Delaney A measure which is a non-parametric effect size meas-
ure. In our context, given the different performance metrics (such
as PR, RC, NF, MC, etc.), the A statistic measures the probability
that running an algorithm B1 (interactive NSGA-II) yields better
performance than running another algorithm B2 (such as [4].). If
the two algorithms are equivalent, then A = 0.5. In our experi-
ments, we have found the following results: a) On small Web ser-
vices our approach is better than all the other algorithms based on
all the performance metrics with an A effect size higher than 0.91;
and b) On large Web services, our approach is better than all the
other algorithms with an A effect size higher than 0.84.
4.3 Results and Discussions
Results for RQ1. As described in Figures 7 and 8, we found that
a considerable number of proposed port types, with an average of
more than 80% in terms of precision and recall on all the 22 Web
services, were already suggested manually (expected refactor-
ings) by the users (software development team). The achieved re-
call scores are slightly higher, in average, than the precision ones
since we found that some of the port types suggested manually
by developers do not exactly match the solutions provided by our
approach. In addition, we found that the slight deviation with the
expected port types is not related to incorrect ones but to the fact
that different possible modularization solutions could be optimal.
We evaluated the ability of our approach to fix several types of
interface design antipatterns and to improve the quality. Figure 9
depicts the percentage of fixed code smells (NF). It is higher than
79% on all the 22 Web services, which is an acceptable score since
users may not be interested to fix all the antipatterns in the inter-
face. Some Web services, such as AmazonSNSPortType, has a
higher percentage of antipatterns with an average of more than
86%. This can be explained by the fact that this Web service inter-
face includes a lower number of antipatterns than others.
We reported the results of our empirical qualitative evaluation in
Figure 6 (MC). As reported in Figure 6, most of the Web services
modularization solutions recommended by our interactive ap-
proach were correct and approved by developers. On average, for
the different Web services, 89% of the created port types and ap-
plied changes to the initial design are considered as correct, im-
prove the quality, and are found to be useful by the software de-
velopers of our experiments. The highest MC score is 94% and
was achieved for the Web service GeographicalDictionary, while
the lowest score was 79% for AmazonVPCPortType. Thus, this
finding indicates that the results are independent of the size of the
Web services and the number of recommended changes to the in-
itial design.
Since the manual correctness MC metric just evaluates the correct-
ness and not the relevance of the recommended solutions, we also
compared the proposed modularization changes with some ex-

pected ones defined manually by the different groups for the dif-
ferent Web services. Figures 7 and 8 summarize our findings. We
found that a considerable number of proposed port types, with an
average of more than 84% in terms of precision and recall, were
already created by the users manually (expected port types). The
recall scores are higher than precision ones since we found that
the port types suggested manually by developers could be further
decomposed, if necessary. This was confirmed by the qualitative
evaluation (MC). In addition, we found that the slight deviation
with the expected design is not related to incorrect changes but to
the fact that the developers have different scenarios/contexts in
using the different operations.

Fig. 6. Median manual correctness (MC) value over 30 runs on all
22 Web services using the different modularization techniques
with a 95% confidence level (α < 5%).

Fig. 7. Median precision (PR) value over 30 runs on all 22 Web
services using the different modularization techniques with a 95%
confidence level (α < 5%).
We evaluated also the ability of our approach to fix several types
of design antipatterns and to improve the service interface design
quality as described in Figure 9 that depicts the percentage of
fixed antipatterns (NF). It is higher than 83% on all the 22 Web
services, which is an acceptable score since developers may reject
or modify some design changes that fix some antipatterns because
they do not consider some of them as very important (their goal
is not to fix all design antipatterns in the Web service interface) or
because they wanted to focus on improving the cohesion and
minimize coupling. Some Web service interfaces, such as Ama-
zonFWSInboundPortType, have a higher percentage of fixed code
smells with an average of more than 90%. This can be explained
by the fact that these Web services include a higher number of
design antipatterns than others. We have also considered three
other evaluation metrics NMO (percentage of modified port-
Types), NRE (percentage of rejected portTypes) and NAC (per-
centage of accepted portTypes) to evaluate the efficiency of our

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

interactive approach. We collected this data using a feature that
we implemented in our tool to record all the actions performed
by the developers during the remodularization sessions. Figure
10 shows that, on average, more than 81% of the recommended
portTypes were accepted by the developers. In addition, an aver-
age of 9% of the recommended refactorings were modified by the
developers, while 11% of the suggested refactorings were rejected
by the developers. Thus, our recommendation tool successfully
suggested a good set of design changes to apply.

Fig. 8. Median recall (RE) value over 30 runs on all 22 Web ser-
vices using the different modularization techniques with a 95%
confidence level (α < 5%).
To summarize and answer RQ1, the experimentation results con-
firm that our interactive approach helps the participants to re-
structure their Web service interface design efficiently by finding
the relevant portTypes and improve the quality of all the 22 Web
services.

Fig. 9. Median number of fixed Web service antipatterns (NF)
value over 30 runs on all 22 Web services using the different mod-
ularization techniques with a 95% confidence level (α < 5%).
Results for RQ2. Figures 6,7,8 and 9 confirm the average superior
performance of our interactive approach compared to the two ex-
isting fully automated Web service modularization techniques
[4][5]. Figure 6 shows that our approach provides significantly
higher manual correctness results (MC) than all other approaches
having MC scores respectively between 48% and 61%, on average
as MC scores on the different Web services. The same observation
is valid for the precision and recall as described in Figures 8 and
9. The outperformance of our technique in terms of percentage of
fixed antipatterns, as described in Figure 9, can be explained by
the fact that the main goal of existing studies is not to mainly fix
these antipatterns (not considered in the fitness function by the
work of Ouni et al. [5]).
Overall the superior performance of our interactive approach can
be explained by several factors. First, existing studies

[3][4][5][6]use only structural indications (quality metrics) to eval-
uate the remodularization solutions and thus a high number of
changes may lead to a semantically incoherent Web services de-
sign. Our approach reduces the number of semantic incoherencies
when suggesting refactorings and during the interaction with the
developers. Second, the ranking component of our approach im-
proved the quality of the suggested refactoring solutions by using
an interactive approach as compared to a regular NSGA-II where
the developers need to select one solution from the Pareto front
that cannot be updated dynamically. Third, existing work are
mainly limited to the cohesion metric which may not be sufficient
to guide the modularization of Web services.
In conclusion, our interactive approach provides better results, on
average, than all existing fully-automated Web services modular-
ization techniques (answer to RQ2).

Fig. 10. Median percentage of accepted (NAC), modified(NMO)
and rejected(NRE) portTypes over 30 runs on all 22 Web services
using our interactive approach with a 95% confidence level
Results for RQ3. To further analyze the obtained results, we have
have also asked the participants to take a post-study question-
naire after completing the different validation and tasks using our
interactive approach and the two techniques considered in our
experiments. The post-study questionnaires collected the opin-
ions of the participants about their experience in using our ap-
proach compared to fully-automated tools. The post-study ques-
tionnaire asked participants to rate their agreement on a Likert
scale from 1 (complete disagreement) to 5 (complete agreement)
with the following statements: (a) The interactive dynamic inter-
face modularization recommendations are a desirable feature to
improve the quality of Web services interface. (b) The interactive
manner of recommending modularization solutions by our ap-
proach is a useful and flexible way to consider the user perspec-
tive compared to fully-automated tools.
The agreement of the participants was 4.9 and 4.6 for the first and
second statements respectively. This confirms the usefulness of
our approach for the users of our experiments. The remaining
questions of the post-study questionnaire were about the benefits
and the limitations (possible improvements) of our interactive ap-
proach. We summarize in the following the feedback of the users.
Most of the participants mention that our interactive approach is
much faster and easy to use compared to the manual restructur-
ing of the interface since they spent a long time with manual
changes to create port types and move operations. Thus, the de-
velopers liked the functionality of our tool that helps them to
modify a port type based on the recommendations.
Another important feature that the participants mention is that
our interactive approach allows them to take the advantages of
using multi-objective optimization without the need to learn any-
thing about optimization and exploring explicitly the Pareto front

AUTHOR ET AL.: TITLE 13

to select one “ideal” solution. The implicit exploration of the Pa-
reto front in an interactive fashion represents an important ad-
vantage of our tool along with the dynamic update of the recom-
mended design. The participants also suggested some possible
improvements to our interactive approach. Some participants be-
lieve that it will be very helpful to extend the tool by adding a new
feature to decompose multiple services into interfaces based on
the dependency between them.
4.4 Threats to Validity
Conclusion validity is concerned with the statistical relationship be-
tween the treatment and the outcome. The parameter tuning of
the different computational search algorithms used in our exper-
iments creates another internal threat that we need to evaluate in
our future work. The parameters' values used in our experiments
are found by trial-and-error. However, it would be an interesting
perspective to design an adaptive parameter tuning strategy for
our approach so that parameters are updated during the execu-
tion to provide the best possible performance. In addition, our
multi-objective formulation treats the different types of quality
metrics such as coupling and cohesion with the same weight in
terms of complexity when calculating one of the fitness functions.
However, some quality metrics can be more important than oth-
ers when evaluating a Web service design but we considered both
coupling and cohesion as equally important. The same observa-
tion is valid for the different types of considered design antipat-
terns. Another threat is related to the use of our previous work [3]
to detect antipatterns which may include few false positive. How-
ever, this threat may not have a high impact on the validity of the
results since the different proposed refactorings were manually
validated by the participants but some of the rejected recommen-
dations by the developer are related to the detected antipatterns.
Construct validity is concerned with the relationship between the-
ory and what is observed. The different developers involved in
our experiments may have divergent opinions about the recom-
mended modularizations in terms of correctness and readability.
We considered in our experiments the majority of votes from the
developers. For the selection threat, the participant diversity in
terms of experience could affect the results of our study. We ad-
dressed the selection threat by giving a lecture and examples of
Web services modularization already evaluated with arguments
and justification.
5 RELATED WORK
Web Services Design Quality: Detecting and specifying antipat-
terns in SOA and Web services is a relatively new area. The first
book in the literature was written by Dudney et al. [23] and pro-
vides informal definitions of a set of Web service antipatterns.
More recently, Rotem-Gal-Oz described the symptoms of a range
of SOA antipatterns [9]. Furthermore, Rodriguez et al. [21] pro-
vided a set of guidelines for service providers to avoid bad prac-
tices while writing WSDLs. Based on some heuristics, the authors
detected eight bad practices in the writing of WSDL for Web ser-
vices.
In [17], the authors presented a repository of 45 general antipat-
terns in SOA. The goal of this work is a comprehensive review of
these antipatterns that will help developers to work with clear un-
derstanding of patterns in phases of software development and
so avoid many potential problems. Mateos et al. [18] have pro-
posed an interesting approach towards generating WSDL docu-
ments with less antipatterns using text mining techniques. Coscia

et al. [33] discussed the importance of finding a trade-off between
several conflicting quality metrics when improving the design of
Web services interface. In our previous work [12], we proposed a
search-based approach based on standard GP to find regularities,
from examples of Web service antipatterns, to be translated into
detection rules[35][36][37]. However, the proposed approach can
deal only with Web service interface metrics and cannot consider
all Web service antipattern symptoms.
Software Remodularization: Several studies addressed the prob-
lem of clustering and remodularization of object oriented (OO)
applications in terms of packages organiza-
tion[27][28][29][30][31]. Harman et al. [19] used a genetic algo-
rithm to improve subsystems decomposition by combining sev-
eral quality metrics including coupling, cohesion, and complex-
ity. Similarly, Recently, we proposed in our previous work [13] a
multi-objective approach to finding optimal remodularization so-
lutions that improve the structure of packages, minimize the
number of changes, preserve semantics coherence, and reuse the
history of changes[32][33][34]. Praditwing et al. [16] have recently
formulated the software clustering problem as a multi-objective
optimization problem. Their work aim at maximizing the modu-
larization quality measurement, minimizing the inter-package
dependencies, increasing intra-package dependencies, maximiz-
ing the number of clusters having similar sizes and minimizing
the number of isolated clusters. Despite these advances in OO sys-
tems modularization, still this problem is not widely explored in
the context of Web service interfaces.
6 CONCLUSION AND FUTURE WORK
We proposed, in this paper, an interactive recommendation tool
for Web services interface design modularization that dynami-
cally adapts and suggests design changes to developers based on
their feedback and three objective functions. Our interactive ap-
proach allows users to benefit from search-based tools without
explicitly involving any knowledge about optimization and
multi-objective optimization algorithms. In fact, the exploration
of the non-dominated refactoring solutions is implicitly per-
formed based on the interaction with the users. The feedback re-
ceived from the users is used to reduce the search space and con-
verge to better design modularization solutions.
Future work involves validating our technique with additional in-
terfaces and APIs in order to conclude about the general applica-
bility of our methodology. Furthermore, we only focused, in this
paper, on the recommendation of interface design changes. We
plan to extend the approach by considering multiple service in-
terfaces instead of one interface for services composition. In addi-
tion, we will consider the importance of interface antipatterns
during the correction step using previous invocations, interface
complexity, etc. We are also planning to consider the different
quality objectives sepretaly by adapting a many-objective optimi-
zation algorithm to support a high number of objectives.

REFERENCES
[1] J.S. Bridle, M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for pre-

dicting maintainability of service-oriented software,” in the 7th International Confer-
ence on Quality Software, Oct 2007, pp. 328–335.

[2] D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-
grained changes,” in IEEE International Conference on Web Services (ICWS), June
2012, pp. 392–399. ACM Transactions on Embedded Computing Systems, Vol. V,
No. N, Article A, Publication date: January YYYY. A:16

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[3] A. Ouni, M. Kessentini, K. Inoue, and M. O Cinneide, “Search-based web service an-
tipatterns detection,” IEEE Transactions on Services Computing, vol. PP, no. 99, 2015.

[4] D. Athanasopoulos, A. V. Zarras, G. Miskos, and V. Issarny, “Cohesion-Driven De-
composition of Service Interfaces Without Access to Source Code,” IEEE Transac-
tions on Services Computing, vol. 8, no. JUNE, pp. 1–18, 2015.

[5] A. Ouni, Z. Salem, K. Inoue, and M. Soui, “SIM: an automated approach to improve
web service interface modularization,” in IEEE International Conference on Web
Services, ICWS 2016, San Francisco, CA, USA, June 27 - July 2, 2016, 2016, pp. 91–98.

[6] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revising WSDL Docu-
ments: Why and How,” Internet Computing, IEEE, no. 5, pp. 48–56.

[7] M. Perepletchikov, C. Ryan, and Z. Tari, “The impact of service cohesion on the ana-
lyzability of service-oriented software,” IEEE Transactions on Services Computing,
vol. 3, no. 2, pp. 89–103, 2010.

[8] D. Romano and M. Pinzger, “A genetic algorithm to find the adequate granularity
for service interfaces,” in Services (SERVICES), 2014 IEEE World Congress on. IEEE,
2014, pp. 478–485.

[9] R. Haesen, M. Snoeck,W. Lemahieu, and S. Poelmans, “On the definition of service
granularity and its architectural impact,” in Advanced Information Systems Engi-
neering. Springer, 2008, pp. 375–389.

[10] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, “Formalising service-ori-
ented design,” Journal of software, vol. 3, no. 2, pp. 1–14, 2008.

[11] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns.
John Wiley; Sons, Inc., 2003.

[12] Hanzhang Wang, Marouane Kessentini, Ali Ouni: Bi-level Identification of Web Ser-
vice Antipatterns. ICSOC 2016: 352-368

[13] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and A. Ouni,
“Many-objective software remodularization using nsga-iii,” ACM Trans. Softw.
Eng. Methodol., vol. 24, no. 3, pp. 17:1–17:45, May 2015.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on, vol.
6, no. 2, pp. 182–197, 2002.

[15] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[16] K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-ob-
jective search problem,” TSE, vol. 37, no. 2, pp. 264–282, March 2011.

[17] M. A. Torkamani and H. Bagheri, “A Systematic Method for Identification of Anti-
patterns in Service Oriented System Development,” International Journal of Electri-
cal and Computer Engineering, vol. 4, no. 1, pp. 16–23, 2014.

[18] C. Mateos, A. Zunino, and J. L. O. Coscia, “Avoiding WSDL Bad Practices in Code-
First Web Services,” SADIO Electronic Journal of Informatics and Operational Re-
search, vol. 11, no. 1, pp. 31–48, 2012.

[19] M. Harman, R. M. Hierons, and M. Proctor, “A new representation and crossover
operator for search-based optimization of software modularization.” in GECCO, vol.
2, 2002, pp. 1351–1358.

[20] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, “Automatic package coupling and
cycle minimization,” in 16th WCRE. IEEE, 2009, pp. 103–112.

[21] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo. Revising WSDL Documents:
Why and How. Internet Computing, IEEE, (5):48{56.

[22] José Luis Ordiales Coscia, Cristian Mateos, Marco Crasso, and Alejandro Zunino.
2013. Anti-pattern free code-first web services for state-of-the-art Java WSDL gener-
ation tools. Int. J. Web Grid Serv. 9, 2 (May 2013), 107-126.
DOI=http://dx.doi.org/10.1504/IJWGS.2013.054108

[23] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne. J2EE Antipatterns.
John Wiley; Sons, Inc., 2003.

[24] Coscia, J. L. O., Mateos, C., Crasso, M., & Zunino, A. (2014). Refactoring code-first
Web Services for early avoiding WSDL anti-patterns: Approach and comprehensive
assessment. Science of Computer Programming, 89, 374-407.

[25] Noor TH, Sheng QZ, Ngu AH, Dustdar S. Analysis of web-scale cloud services. IEEE
Internet Computing. 2014 Jul;18(4):55-61.

[26] Talbi, El-Ghazali. Metaheuristics: from design to implementation. Vol. 74. John Wiley

& Sons, 2009
[27] Sahin, Dilan, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. "Code-Smell

Detection as a Bilevel Problem", ACM Transactions on Software Engineering and
Methodology, 2014.

[28] Mansoor, Usman, Marouane Kessentini, Manuel Wimmer, and Kalyanmoy Deb.
"Multi-view refactoring of class and activity diagrams using a multi-objective evolu-
tionary algorithm", Software Quality Journal, 2015.

[29] Mkaouer, M.W., Kessentini, M., Bechikh, S., Deb, K., and Ó Cinnéide, M.: ‘Recom-
mendation system for software refactoring using innovization and interactive dy-
namic optimization’. ASE 2014 pp. 331-336

[30] Kalboussi S, Bechikh S, Kessentini M, Said LB. Preference-based many-objective evo-
lutionary testing generates harder test cases for autonomous agents. In International
Symposium on Search Based Software Engineering 2013 Aug 24 (pp. 245-250).
Springer, Berlin, Heidelberg.

[31] Ouni, Ali, Marouane Kessentini, and Houari Sahraoui. "Search-based refactoring us-
ing recorded code changes." In Software Maintenance and Reengineering (CSMR),
2013 17th European Conference on, pp. 221-230. IEEE, 2013.

[32] Bechikh, Slim, Marouane Kessentini, Lamjed Ben Said, and Khaled Ghédira. "Chap-
ter four-preference incorporation in evolutionary multiobjective optimization: A sur-
vey of the state-of-the-art." Advances in Computers 98 (2015): 141-207.

[33] Boussaa, Mohamed, Wael Kessentini, Marouane Kessentini, Slim Bechikh, and
Soukeina Ben Chikha. "Competitive coevolutionary code-smells detection." In Inter-
national Symposium on Search Based Software Engineering, pp. 50-65. Springer,
Berlin, Heidelberg, 2013.

[34] Kessentini, Marouane, Houari Sahraoui, Mounir Boukadoum, and Manuel Wim-
mer. "Search-based design defects detection by example." In International Confer-
ence on Fundamental Approaches to Software Engineering, pp. 401-415. Springer,
Berlin, Heidelberg, 2011.

[35] Kessentini, Marouane, Arbi Bouchoucha, Houari Sahraoui, and Mounir Bouka-
doum. "Example-based sequence diagrams to colored petri nets transformation us-
ing heuristic Search." Modelling Foundations and Applications (2010): 156-172.

[36] Kessentini, Marouane, Philip Langer, and Manuel Wimmer. "Searching models,
modeling search: On the synergies of SBSE and MDE." In Proceedings of the 1st In-
ternational Workshop on Combining Modelling and Search-Based Software Engi-
neering, pp. 51-54. IEEE Press, 2013.

[37] Kessentini, Marouane, Manuel Wimmer, Houari Sahraoui, and Mounir Bouka-
doum. "Generating transformation rules from examples for behavioral models." In
Proceedings of the Second International Workshop on Behaviour Modelling: Foun-
dation and Applications, p. 2. ACM, 2010.

Hanzhang Wang is currently a PhD student in the Search
Based Software Engineering Group at the University of
Michigan. His PhD project is concerned with the application
of SBSE techniques in different areas such as web ser-
vices, MDE, refactoring and automotive industry. His cur-
rent research interests are Search-Based Software Engi-
neering, quality of Web services, model-driven engineering

and software quality.
Marouane Kessentini is an assistant professor in Soft-
ware engineering at the University of Michigan. He received
his PhD in 2012 from University of Montreal. He is the
founding director of the Search-based software engineering
research lab in Michigan and he has several collaborations
with different industrial companies on studying software en-
gineering problems by computational search and artificial

intelligence techniques. Dr. Kessentini has three best paper awards. He pub-
lished over 100 papers. Dr. Kessentini served as a program committee member
and chair of several conferences and associate editor in several journals.

Ali Ouni Ali Ouni is an assistant professor at the depart-
ment of Software Engineering and IT at ETS Montreal, Uni-
versity of Quebec. He received his Ph.D. degree in com-
puter science from University of Montreal in 2014. His re-
search interests are in software engineering including soft-
ware maintenance and evolution, refactoring of software

systems, software quality, service-oriented computing, and the application of ar-
tificial intelligence techniques to software engineering. His work has received
several nominations and Best Paper Awards.

	1 Introduction
	2 Background and Challenges
	2.1 Background
	2.2 Problem Statement

	3 Interactive Search Algorithm For the Remodularization of Web Services
	3.1 Interactive and Dynamic Evolutionary Multi-Objective Optimization
	3.2 Approach Overview
	3.3 Solution Approach
	3.3.1 Interactive NSGA-II
	3.3.2 Solution Representation
	3.3.3 Fitness Functions
	3.3.4 Interactive Recommendations
	3.3.5 Change Operators

	4 Validation
	4.1 Research Questions and Evaluation Metrics
	4.2 Experimental Setting
	4.3 Results and Discussions
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

