
 
American Institute of Aeronautics and Astronautics 

 

 

1

A Quasi-Steady Model for the Lift on a Hovering Flexible 
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In the analysis of flexible flapping wing, the aerodynamic outcome resulting from the 
combined structural dynamics and the unsteady fluid physics of the wing depends on the 
instantaneous angle of attack (AoA) and wing shape, which are a priori unknown. To offer a 
simplified and effective framework to address such challenges, we propose an analytic model 
to predict the unsteady lift on a hovering flexible wing. We model the fluid dynamic force 
with the Morison equation to estimate the instantaneous AoA, resulting from passive pitch. 
The corresponding unsteady lift is obtained using a quasi-steady model. Besides the imposed 
plunge amplitude, the model inputs are the scaling parameters accounting for the wing 
thickness, density, and stiffness. The structural damping coefficient is empirically 
determined. The predicted time histories of the passive pitch and lift can satisfactorily mimic 
the high fidelity aeroelastic solutions. Such analytic models of instantaneous wing 
deformation and lift generation improve our understanding of flexible flapping wing 
aerodynamics and can be used as fast yet reliable tools for design analysis. 

Nomenclature 
c = chord [m] 
cd = structural damping coefficient [1] 
CL = coefficient of lift [1] 
Cv = aerodynamic damping coefficient [1] 
E = Young’s modulus [Pa] 
f = motion frequency [1/s] 
f1 = first natural frequency of the wing [1/s] 
F = fluid force acting on the wing per unit length [N/m] 
h = plunge motion of the wing [m] 
ha = plunge amplitude [m] 
hs = thickness of the wing [m] 
k = reduced frequency, πfc/U [1] 

KC = Keulegan-Carpenter number, π/k [1] 
p = pressure [Pa] 

Re = Reynolds number, Uc/ν [1] 
St = Strouhal number, fha/U [1] 
t = time [s] 
T = period of the motion stroke, 1/f [s] 
U = reference velocity: 2πfha for hover [m/s] 
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u = velocity  [m/s] 
v = wing displacement: v=w+h  [m] 
w = wing deformation relative to the imposed motion h [m] 

α = passive pitch angle [°] 

αa = angular amplitude [°] 

αm = midstroke passive pitch angle [°] 

αe = end-of-the-stroke passive pitch angle [°] 
β = coefficient for the aerodynamic damping term [1] 

γ = non-dimensional tip deformation parameter: 2(1+π/4ρ*hs
*)/{k (f1

2/f2-1)} [1] 

δ = coefficient for the acceleration related term [1] 

ζ = coefficient for the structural damping term [1] 

φ = phase lag between rotational and translational motion [°] 

ν = kinematic viscosity of fluid [m2/s] 

П0 = effective inertia: ρ*hs
*(k/π)2 [1] 

П1 = effective stiffness: Ehs
*3/(12ρfU

2) [1] 

ρf = density of fluid [kg/m3] 

ρs = density of structure [kg/m3] ⋅ ∗ = variables normalized either by c (length), 1/f (time), or ρf (density)  

 = time-averaged variables  

I. Introduction 
iological flyers offer many the desirable flight characteristics that can be applied to the design of Micro-Air 
Vehicles1 (MAVs). They can rapidly accelerate and decelerate in confined spaces as well as exhibit spectacular 

maneuvers to avoid obstacles and to conduct flight missions. For example, a hummingbird frequently utilizes wing-
tail combination with rapid shape changes to respond to wind gusts. The wings of biological flyers, especially those 
of small birds, insects, and bats are flexible and can substantially deform during flight. As a result, the 
aerodynamics, structural dynamics, and flight dynamics are closely linked to each other. Wing motion affects the 
fluid force on the wing, which in turn leads to changes in the wing shapes and motions. These highly coupled 
nonlinearities make the successful design of MAVs challenging. 

For the design and development of conventional passenger airplanes, abstracted model tests have greatly 
enhanced the understanding of the fluid physics around the aircraft wings, engines, or even the whole airplane2. 
Such a model testing is necessary, especially when the behavior of a specific airplane is so complex that a simplified 
theoretical analysis becomes doubtful2. Although full-scale wind tunnels exist, most experiments are performed on a 
scale models by satisfying the requirements of the geometric similarity and the dynamic similarity. Furthermore, 
when the governing equations are known, certain conditions of dynamic similarity may be omitted without loss of 
exactness2 and the rather general outcome from the dimensional analysis can be reduced to a simpler scaling 
relationship as a property of the special problem under consideration. These scaling parameters can identify the main 
physical principle in a complex model and greatly simplify the model design and testing. 

One of the main challenges of the study of flexible flapping wing aerodynamics is that the wing shape and 
motion result from the dynamic balance between the wing inertial force, elastic restoring force, and fluid dynamic 
force and such information is not known a priori and complex. In our previous investigations, we have established 
that there exists scaling relationships between time-averaged aerodynamic performance and the relative shape 
deformation amplitude, based on the so-called γ-parameter3. These scaling relationships are useful for the 
preliminary design phase of MAVs as they provide an estimate for the expected propulsive force or efficiency as a 
function of the structural parameters and wing kinematics. For insects, with a notable exception of butterfly, since 
the flapping time is much faster than that of the vehicle, the instantaneous information from flapping may not be as 
critical1. Nevertheless, to model the flight dynamics for the analysis of stability and control of a flight vehicle, better 
instantaneous aerodynamic force models are needed for improved time-averaged estimate, and both require a 
formulation for the wing deformation and motion as a function of time. 

Recently, we proposed a model to analyze and estimate the instantaneous wing deformation4. We considered a 
passive pitch, active plunge motion of a two-dimensional wing in hover at Re=Uc/ν=100, based on the midstroke 
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velocity U, wing chord length c, and kinematic viscosity of fluid ν. A sinusoidal plunge motion h with amplitude ha 
and frequency f is imposed on the leading-edge (LE) of the wing as 
 

 ℎ = ℎa cos 2  (1) 
 
as a function of time t, see also Fig. 1. In the absence of freestream for hovering flight, we set the maximum 
translational velocity U of the flat plate at the LE as the reference velocity, such that U=2πfha

5–7. Note that reduced 
frequency in hover becomes a geometric quantity: k=πfc/U=c/(2ha). The Strouhal number, another important 
parameter in flapping wing aerodynamics, becomes a constant for hovering motions: St = fha/U=1/(2π). We modeled 
the wing as a linear elastic flat plate and the fluid forces using the Morison equation8, modeling for the added mass 
and aerodynamic damping forces at low Reynolds numbers. The Keulegan-Carpenter number, often used in 
discussion of the Morison equation8, is inversely proportional to the reduced frequency KC = π/k. The added mass 
force is caused by the acceleration of the wing and is linearly proportional to the wing acceleration in the linearized 
aerodynamics theories. The aerodynamic damping forces are associated with the vortices in the flow field and 
depend on the square of the motion velocity. Obtained formulation compared favorably, albeit with a correction for 
the midstroke angle, against numerical data, which are computed using a fully-coupled Navier-Stokes aeroelastic 
solver7. 
 

 
Figure 1. Schematic of the wing motion with amplitude ha. Wing deformations lead to a passive pitch angle α. 
The angles at the mid and end-of-the-strokes are αm and αe, respectively. The directions of the lift and drag 
are normal and parallel to the imposed plunge motion, respectively. Leading-edge of the wing is represented 
with a red dot. From Kang and Shyy7. 
 

The objective of this study is to develop a simplified model to predict the instantaneous aerodynamic lift 
generation of a hovering flexible wing. The use of simplified models is in general limited by the lack of information 
of key aerodynamic coefficients, which we address with the insight gained from our previous high fidelity 
simulations and experimental observations from the literature. For the aerodynamic damping coefficient8 in the 
Morison equation we use an empirical formula as a function of the Reynolds number and the reduced frequency k. 
We then use the quasi-steady model by Dickinson and co-workers7,9 to calculate the resulting lift on a wing that 
translates with the imposed plunge motion and rotates with the estimated pitch angle. The fundamental principle of a 
quasi-steady model is that the fluid dynamic forces depend on the instantaneous wing velocities and accelerations. 
Therefore, a quasi-steady model neglects the influence from the history effects. For example, the nonlinear wing-
wake interaction can play a substantial role for hovering motions, which is not included in this quasi-steady model. 
We assess the performance of the proposed model by comparing the resulting lift against numerical solutions from a 
fully-coupled aeroelastic solver7. 

 

II. Methodology 

A. Governing Equations for the Fluid-Structure Interaction System 

We consider a non-dimensional flow field with unit density initiated by a hovering two-dimensional flat plate 
with unit chord and flat edges7. The flow field is governed by the unsteady Navier-Stokes equations with constant 
density ρf and viscosity  

 
 ∗ ⋅ ∗ = 0 

(2) 
 

∂ ∗∗ + ∗ ⋅ ∗ ∗ = − ∗ ∗ + 1 Δ∗ ∗ 

CL

CD

2ha

α

αm

αe

start of 
backward stroke

end of 
backward stroke
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for the velocity u, pressure p, and time t. The superscript (*) indicates non-dimensional variables. The dimensional 
variables are non-dimensionalized with U, c, and the period of a motion stroke T=1/f, respectively. 

The wing is an elastic flat plate of uniform thickness hs, density ρs, and Young’s modulus E. As the flat plate 
follows the imposed horizontal motion, Eq. (1), at the LE, the resulting fluid dynamic force dynamically balances 
with the wing inertia and the elastic bending forces, modeled locally as a linear Euler-Bernoulli beam as 

 

 Π ∗∗ + d ∗∗ + Π Δ∗ ∗ = ∗, (3) 

 
where v is the displacement due to bending motion, Π0=ρ

*hs
*(k/π)2 is the effective inertia, the inertia of the wing 

normalized by the fluid dynamic variables3, ρ*=ρs/ρf is the density ratio between the wing density and the fluid 
density, cd is the non-dimensional structural damping coefficient, Π1=Ehs

*3/(12ρfU
2) is the effective stiffness, the 

wing stiffness normalized by the fluid dynamic variables3, and F is the distributed transverse fluid force per unit 
length on the wing, such that F*=F/(ρfU

2). The resulting wing camber deformations w=v-h can also be regarded as a 
pitch rotation α(t*), the angle between the trailing-edge (TE) and LE, see also Fig. 1. 

The time-averaged values are indicated with an over-bar, which are defined as 
 

 L̅ = L/
/ , (4) 

 
for example, for CL. The resulting forces in the numerical computations were not periodic7 in time and to have a 
representative value for the time averaged force and to avoid initial transient effects, we choose for m = 3. For a 
more comprehensive treatment of the dimensional analysis and non-dimensionalization we refer to our previous 
work3. 
 

B. Navier-Stokes Equation Solver 
The governing equations for the fluid given by Eq. (2) were solved using an in-house three-dimensional, 

unstructured, pressure-based finite volume solver7,10,11, written in a rule-based framework12. It employs implicit first 
or second order time stepping and treats the convection terms using the second order upwind-type scheme and the 
pressure and viscous terms using second order schemes. The system of equations resulting from the linearized 
momentum equations are handled with the symmetric Gauss-Seidel solver. The pressure correction equation is 
solved with either the GMRES linear solver with the Jacobi preconditioner provided by PETSc13,14, or the 
BoomerAMG15 linear solver provided by hypre. The LOCI-framework is by design rule-based highly parallelizable 
framework for finite volume methods12. The geometric conservation law16, a necessary consideration in domains 
with moving boundaries, is satisfied17. We use the radial basis function interpolation method to deform the 
computational mesh at each time step18. The boundary conditions for the fluid flow were the incompressible inlet 
with zero velocity at the outer boundary of the computational domain and no-slip on the flat plate surface. More 
details including the spatial and temporal sensitivity tests can be found in Kang and Shyy7. 

 

C. Quasi-steady Model 
The quasi-steady model7,9 used in this study has three components as 
 
 = translational + rotational + added	mass (5) 
 

where the translational force component, which estimates the delayed stall, is computed as 
 

 translational = 12 ℎ L,q, (6) 

 
where CL,q is the coefficient of lift 19 is 
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 L,q = 0.025 + 1.58 sin 2.13 − 7.2 . (7) 
 

Equation (7) is obtained from empirically fitted equations from a 180° sweep with fixed angles of attack using a 
dynamically scaled fruit-fly wing in mineral oil. 

The rotational force term, which is only used for actively rotated rigid wings7 and represents the coupling term 
between the translational velocity and the angular velocity, is 

 
 rotational = − r ℎ, (8) 
 

where Cr is an empirical coefficient that depends on the angular velocity. Large pressure differentials exist on 
actively rotating rigid wings near the trailing edge contribute to the total lift at the ends-of-the-strokes. However, 
these lift-enhancing rotational effects are relaxed by the compliant nature for a flexible wing7. Instead of generating 
rotational forces, a flexible wing can streamline its wing shape such that the wing shape and motion are in 
equilibrium with the fluid forces, similar to the drag-reducing reconfiguration of flexible bodies7. 

Finally, the added mass force consists of two components, i.e. 
 
 added	mass = added	mass,1 + added	mass,2 (9) 
 

where the non-circulatory term can be written as 
 

 added	mass,1 = 4 ℎ − 2  (10) 

 
where ah=-1 when the pivot point is located at LE 19. The first term Fadded mass,1 is linearly proporitonal to the 
translational and rotational accelerations. The circulatory term is 
 

 added	mass,2 = 4 ℎ , (11) 

 
proportional to the coupled translation and rotational velocity terms. The second term Fadded mass,2 describes a 
damping in pitch which in fact comes from the circulatory part20. 

The nonlinear wing-wake interaction can play a substantial role for hovering motions, which is not included in 
this quasi-steady model. The complex wake, induced in the previous motion strokes, interacts with the wing during 
its return stroke. Under favorable conditions, added momentum causes the lift to increase during the first portion of 
the stroke, which is called a wake-capture19. The induced downward wake can also lead to a reduced effective angle 
of attack, and, hence, to a lower lift. Intriguingly, a flexible wing can streamline its wing shape with the surrounding 
fluid and mitigate the lift-degrading wing-wake interaction7. As a result, the lack of the model for the wing-wake 
interaction has a less severe effect on the estimation of the lift on a flexible wing than for a rigid wing. 

 
 

III. Results and Discussion 

A. Case Setup 
We compare the passive pitch angle and the unsteady lift on a flexible flapping wing with the results obtained 

from Navier-Stokes equation computations fully coupled to a structural dynamics solver7. 
For the numerical computations, the Reynolds number was Re=100, relevant to a fruit fly. The density ratio is 

ρ*=7.8 and the thickness ratio is hs
*=0.02. The reduced frequency range of 0.25<k<3.04 is motivated from the 

selection of ha of biological relevance7. The frequency ratio is in the range of 0.08<f/f1<0.40, which results in 
advanced and symmetric rotational modes, also motivated from the previous findings that the natural flyers operate 
at a frequency ratio less than the first natural frequency21. The natural frequency f1 is measured in the chordwise 
direction between the LE and TE. More details on the case setup can be found in Kang and Shyy7. 
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B. Scaling of the Force on the Wing 
The coupled fluid dynamics and the structural dynamics of the flow around the wing and the wing shape 

deformations and displacements simultaneously satisfy Eqs. (2) and (3), the Navier-Stokes equation and the beam 
equation, respectively. To model the dynamics of the structural response, we analyze the physics based on Eq. (3) 
with simplifying approximations for the fluid dynamic force F*. The Navier-Stokes equation is nonlinear in its 
convection term and a full explicit expression for F* is not available. 

The fluid dynamic force is often decomposed into two terms, the added mass force and the force induced by the 
vorticity in the flow field3,22, or the aerodynamic damping force term. 

The added mass force is caused by the acceleration of the wing and is linearly proportional to the wing 
acceleration in the linearized aerodynamics theories. With increasing k, the added mass force gains its relative 
contribution to the total fluid dynamic force7. Based on scaling arguments, we found that, for the deformation of 
flexible flapping wings, the fluid dynamics force term could be well approximated by the added mass force for 
various cases at k>O(1) and Re>O(102)3. Moreover, based on Eq. (3) we derived scaling relationships between the 
aerodynamic performance, such as the time-averaged propulsive force and the propulsive efficiency, and the relative 
shape deformation parameter γ defined as  

 

 = 1 + 4 ∗ℎ∗Π ⁄ − 1 , (12) 

 
where γ can be obtained from a priori determined parameters. For the parameters used in the numerical 
computations, i.e. ρ*=7.8, hs

*=0.02, and k of around 0.6 result in a relation between γ and f/f1, which is in a 
comparable range for the typical values for fruit flies with ρ*=1100, hs

*=0.6×10-3, and k = 0.2127. This implies that 
the effects of f/f1 on γ given by Eq. (12) in this study will be similar to that of a fruit fly. 

In our previous work3, we proposed a scaling relationship, see also Fig. 2 for the revised version of the scaling, 
between the time-averaged force C̄F on the flexible flapping wing and γ as 

 

 Π̅ ~ , (13) 

 
which is consistent with the scaling relationship that was based on an experiment in air21,23, where γ becomes 
equivalent to the elastoinertial number ei for air3. More recently, similar experiment has been performed in water24 
from which a scaling relationship was found as 
 

 ℎ 1 ~ ∗ , (14) 

 
for the thrust FT and the aspect ratio AR. The frequency ratio f* was empirically determined by locating the 
maximum wing tip deflection, which includes the effects of added mass. It can be shown that the empirically 
determined scaling for flapping wings in water, Eq. (14), is also consistent with the scaling that we proposed, Eq. 
(13), since 
 

 Π̅ = 12 ℎ12 = ℎ 24 ~ ℎ 1
 (15) 

 
for the LHS of Eq. (14), where S=AR c2 is the area of a rectangular wing. In our study, we considered the added 
mass as an external fluid dynamic force, which is included in the definition of γ. Alternatively, since added mass is 
proportional to the acceleration, a modified natural frequency can be established that includes the effects of added 
mass, i.e. the empirical frequency ratio f* 24. 

The scaling given by Eq. (13) was further revised7 with a correction factor to account for a wider range of f/f1 as 
 

 ̅ ∗ = ̅Π 1 − ⁄ ~ .  (16) 
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These scaling relationships cover a wide variety of wing flexibility and flapping characteristics relevant to insects as 
well as artificially-devised flexible wings, see Fig. 2a. Moreover, γ can be interpreted as a non-dimensional TE 
displacement relative to the LE7. The chordwise wing deformation of the wing acts as passive pitch with an angle of 
attack α, which forms the main idea of this study. Figure 2b illustrates the link between the normalized maximum 
pitch angle during a stroke, α*

max, and the scaling parameter γ. The normalization is given in Eq. (16). A linear fit to 
the numerically determined data is 
 

 α ,∗ = 0.804 log − 1.312 (17) 
 
with a coefficient of determination of R2 = 0.98. The predicted maximum angle αmax,pred for advanced and symmetric 
rotation cases correlates well with the numerically determined values of αmax, as shown in Fig. 2c.  
 
 

Figure 2. Scaling relationships between the normalized lift C̄L
*, normalized maximum pitch angle αmax, and γ. 

Reynolds number is Re = 100. (a) Scaling of C̄L
* by γ (+). From Kang and Shyy7. The current dataset is 

plotted together with data from the literature for a chordwise (○), spanwise (◊), isotropic (□) wing, and insects 
(×), where the lift for the insects are etimated by their weight. (b) Scaling between α*

max and γ. (c) Comparison 
between the predicted maximum angle αmax, pred using the scaling relationship determined in (b) and αmax from 
a high fidelity model7. In (b,c), (●): advanced rotation; (●): symmetric rotation. 

 
 
Although the scaling in terms of the added mass, given in Fig. 2b, can be used to determine the passive pitch 

amplitude, the aerodynamic damping augments the fluid dynamic force on a flapping wing. Therefore, in order to 
predict the instantaneous, dynamic response of the wing motion including the wing deformations with a better 
accuracy, we model the fluid dynamic force F on the moving wing as4 

 

 = a + v = 4 f ℎ + 12 f ℎ ℎ v , (18) 

 
which is the Morison equation8 for the dimensional fluid dynamic force per unit length F. We model the added mass 
force Fa with the classic solution for the force acting normal to a thin flat plate with chord c moving with h(t). The 
second term Fv is the aerodynamic damping term which is proportional to the square of the wing velocity. The 
aerodynamic damping coefficient Cv depends on k, Re, etc. in general8 and may also be a function of space and time. 
Here, we use Eq. (19), which is based on a series of drag force measurements8 on an oscillating rigid flat plate in a 
water tank for various KC=π/k and Re as 

 

 v = 15 . exp 1.88. . (19) 

 
Equation (19) indicates that Cv is proportional to k0.5. Also the magnitude this aerodynamic damping term Cv 
increases when the relative importance of the viscous effects become more important, with reducing Reynolds 
number. 

a) b)
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C. Instantaneous Passive Pitch Model 
The solution of the governing equation for the structural dynamics of the wing given by Eq. (3) with the fluid 

dynamic force Eq. (18) results in the trailing-edge displacement we relative to the leading-edge at the end and 
mistrokes as4 

 

e = −1 + + − 124 −1 + + − 2 14 − −4 +
4 −4 + + 4  (20) 

 
and 

m = 2 − 1 +
4 −1 + + + 2 14 − −4 +

4 −4 + + 4  (21) 

 
respectively, where δ=2π2Stk(1+4ρ*hs

*/π)/Π0, β=Cv/Π0, and the non-dimensional damping factor is ζ=c/П0. The two 
terms on the RHS of Eqs. (20) and (21) indicate the effects of the added mass and aerodynamic damping forces, 
respectively. Note that δ is linked to γ as γ=δ/2π2{(f1/f)

2-1}. See also Kang and Shyy4 for more details on the 
derivation of Eqs. (20) and (21). 

 
  

 
Figure 3. (a) Passive pitch angle αe at the end-of-the-stroke and (b) αm at the midstroke as functions of the 
frequency ratio f/f1. (●) Current model; (×) High fidelity model of Kang and Shyy7. 

 
Figure 3 shows the passive pitch angles αe=arctan(we) and αm=arctan(wm) as functions of f/f1. The unknown 

coefficient for the structural damping cd is empirically determined from the numerical data7. Note that in our 
previous work the reduced frequency is kept as a constant of k=0.6, while in this work, we use the corresponding 
values of k for each case, improving the generality of this model. The correlations between the predicted passive 
pitch angles and the numerical data is good. For lower frequency ratios f/f1<0.19, αe increases. In this range, the 
added mass term has the greatest contribution4. As f/f1 increases further, the aerodynamic damping term starts to 
play a more dominant role4. The rotational mode becomes symmetric at around f/f1=0.32 and decreases further into 
delayed rotational mode with f/f1. 

Based on the angles αmax and αe, a first-order harmonic approximation for the passive pitch αFH(t/T) can be 
constructed by solving for the phase lag φ and the angular amplitude αa, as given by Eq. (22),  
 

 α = 90 − α cos 2 ⁄ + . (22) 
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It is known that the timing between translation and rotation, indicated by the phase lag φ and the amplitude αa are 
critical for lift generation. Specifically, when a rigid wing rotated with an amplitude of 40° <αa< 50° before it 
reaches the end-of-the-stroke, the highest lift coefficients are obtained5,19. This so-called advanced rotation performs 
better than the symmetric or the delayed rotational modes in which the wing reversal is synchronized or delayed 
with respect to the translation, respectively. Despite the predicted optimal lift generation at the advanced rotation 
modes, hovering fruit flies25, honeybees6, beetles26, and hymenopterans exhibit symmetric rotations in general26. The 
gap between the predicted maximum lift generation for advanced rotations and the symmetric rotations exhibited by 
a wide range of insects can be explained by considering the wing flexibility. Although tethered flying fruit flies 
actively control the wing rotation timings to initiate yaw turns27, these natural flyers possess flexible wings that 
deform significantly during flight that can enhance the aerodynamic performance28,29. Hovering flexible flapping 
wings with an imposed harmonic translational motion at the LE of the wing also generate passive pitch rotations 
with advanced, symmetric, and delayed rotational modes, where the phase lag strongly correlates to f/f1

7. More 
importantly, these flexible wings produce the highest lift for symmetric rotations, consistent with the reported 
observations of the aforementioned insects7. 
 

 
Figure 4. Characterization of the passive pitch based on αFH. (a) Angular amplitude αa as a function of f/f1. (b) 
Phase lag φ as a function of f/f1. (●) Current model; (×) High fidelity model of Kang and Shyy7. 

 
The resulting, predicted amplitude αa is illustrated in Fig. 4a along with the numerically computed values. 

Despite its complicated behavior in f/f1, the predicted amplitude shows a good agreement with the numerical results. 
The phase lag φ underpredicts the lag between the imposed translation and the passive pitch for advanced rotations 
(f/f1 < 0.2), but the correlation improves for higher f/f1, see Fig. 4b. Overall, the predicted αa and φ show strong 
agreements with the fully coupled numerical solution and is able to capture the critical trend of the relation between 
the different rotational modes and the frequency ratio. As the model for Cv is determined from measurements on a 
rigid wing without rotation, the correlation between the predicted angles, given by Eqs. (20) and (21) worsened as 
the wing deformations increases. Therefore, we only consider f/f1<0.4, which corresponds to advanced, symmetric, 
and delayed rotations with the resulting phase lag φ>70°. 

With φ and αa, a first-order harmonic representation of the passive pitch αFH can be determined as a function of 
time t/T in Eq. (22). The predicted time evolutions of the unsteady passive pitch as a function of time are shown in 
Fig. 5. We illustrate two representative cases each for advanced (Fig 5a: k=1.125, f/f1=0.25; Fig 5b: k=1.65, 
f/f1=0.21) and symmetric (Fig 5c: k=0.6, f/f1=0.25; Fig 5d: k=1.68, f/f1=0.34) rotational modes. The predicted 
αFH(t/T) matches well with the time history of passive pitch that is determined from the numerical computations7. As 
predicted by the estimation of the angular amplitude αa and the phase lag φ in Fig. 4, respectively, there exists 
certain discrepancies in the detailed shape of the time history of the passive pitch angle due to the involved 
limitations of the simplified model. For example, we empirically determined the coefficient for the structural 
damping terms and the aerodynamic damping was obtained for a rigid flat plate without rotation. In principle, these 
coefficients should be functions of space and time and depend on the Reynolds number and the frequency ratio as 
well. A detailed study on these coefficients is left as a future study. An improvement over the previous passive pitch 
model4 is that we are able to the angular amplitude without any manual correction as shown in Fig. 4a. 

For the advanced rotation case in Fig. 5a and the symmetric rotation case Fig. 5c, the estimated phase lag is 
slightly off. Still, for the most cases, the prediction of the phase lag is accurate, as shown in Figs. 5b,d. The 
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predicted angular amplitude is reasonable for all cases. Figure 5c shows the case with the largest difference in the 
amplitude of α(t/T). For this symmetric rotation case, the wing significantly deforms around the midstroke, resulting 
in a maximum passive pitch angle of 43°. The difference between the maximum angles is evident, also due to the 
higher harmonic modes in the nonlinear transient structural response7. The time history of passive pitch for the 
symmetric rotation case in Fig. 5d is very well predicted by the current model. 

 

 
Figure 5. Representative time histories of the passive pitch angle α for (a,b) two advanced rotation and (c,d) 
symmetric rotation cases. (−) Current quasi-steady model; (−) High fidelity model of Kang and Shyy7. 
 

D. Instantaneous Lift on a Flexible Flapping Wing 
The main objective of this study is to model the unsteady lift generation on a wing as a function of time. The 

hovering, flexible wing moves with a translational motion given by Eq. (1), imposed on the leading-edge of the 
wing, and the corresponding wing deformations can be seen as passive wing rotation αFH, given by Eq. (22). Based 
on these translational and rotational motions, we calculate the lift force CL(t/T) as a function of the non-dimensional 
time using the quasi-steady model, described in Section IIC. 

The resulting time histories of lift CL(t/T) are presented in Fig. 6, for the same representative cases as in Fig. 6. 
Overall, the predicted unsteady lift forced CL(t/T) agrees well with the time history of lift coefficient, obtained from 
a fully coupled aeroelastic numerical framework7. Since the lift generation on a flexible flapping wing is a 
consequence of a complex, nonlinear coupling between unsteady aerodynamics and structural dynamics, this simple, 
analytic model is unable to predict all the details that we obtain from our numerical framework. Indeed, there are 
differences in both the amplitude and the phase, see e.g. Fig. 6a. Also, the symmetric rotation case that is depicted in 
Fig. 6d has a relatively well-predicted passive pitch (Fig. 6d), however the predicted lift has an obvious difference in 
the peak value. Also, the nonlinear wing-wake interaction plays a non-negligible role for hovering motions, which 
cannot be predicted by the quasi-steady model. The vortices, shed in the previous motion stroke, induce a complex 
velocity field around the midstroke30, which in turn interacts with the wing during its return stroke. Under favorable 
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conditions, added momentum causes the lift to increase during the first portion of the stroke19, but the induced 
downward wake can also lead to a reduced effective angle of attack, and, hence, to a lower lift. For flexible wings, 
on the other hand, the streamlining of the wing shape can lead to lift enhancement by mitigating the lift-degrading 
wing-wake interaction7. 

 

 
Figure 6. Representative time histories of the unsteady lift coefficient CL for (a,b) two advanced rotation and 
(c,d) symmetric rotation cases. (−) Current quasi-steady model; (−) High fidelity model of Kang and Shyy7. 

 
Still, the resulting prediction of CL(t/T) captures the main trend with a good accuracy. A comparison of the time-

averaged lift coefficient for all advanced and symmetric rotation modes are illustrated in Fig. 7a. While the quasi-
steady model doesn’t exactly match the lift predicted by the high fidelity model, the overall level of agreement is 
favorable. In particular, it is important to be able to predict the trend that as f/f1 increases, higher lift is generated, 
reaching maximum when the resulting phase lag corresponds to a symmetric rotational mode φ ≈ 90°, corresponding 
to f/f1 ≈ 0.32. The increasing trend of C̄L as a function of f/f1 is well captured by the current model as illustrated in 
Fig. 7a, which shows a comparison of the time-averaged lift coefficient for all advanced and symmetric rotation 
modes. Figure 7b shows the Mean-Squared Error (MSE) of CL(t/T), where 

 

 MSE = 1 , − , , (23) 

 
where = 240 is number of data points per half stroke, to quantify the difference between the predicted and 
numerical time histories of CL(t/T). The MSE increases with f/f1, consistent with the departure from the several 
assumptions that we have used in this model. We modeled the fluid dynamic force coefficients with Eq. (19), which 
was obtained for a rigid wing without rotation. Also, the first-order harmonic representation of the passive pitch αFH 
neglects the higher order transient response of the wing structure, which can contribute to the observed differences 
in the resulting lift7. 
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Figure 7. Integrated comparison of the unsteady lift generation. (a) Time-averaged lift coefficient of the 
unsteady lift coefficient C̄L: (●) Current quasi-steady model; (×) High fidelity model of Kang and Shyy7 (b) 
Mean-squared error of the time histories of CL. 

 

IV. Concluding Remarks 
This paper addresses modeling aspects of the unsteady lift and the corresponding response of the structural 

dynamics of a flapping, flexible wing at Re=100. We model the wing as a linear elastic flat plate and impose a 
sinusoidal plunge motion at the leading edge of the wing. Since the resulting wing motion is an outcome of the 
dynamic balance between the structural dynamics of the wing and the unsteady aerodynamics of the surrounding 
fluid, the wing kinematics is not known a priori. The chordwise deformations of the wing lead to displacements of 
the trailing edge relative to the leading edge of the wing, which can be considered as a passive pitch angle and affect 
the instantaneous angle of attack of the wing. In particular, the numerical solutions of a fully coupled aeroelastic 
framework indicate that relation between the passive pitch angle and the frequency ratio is complex. 

Motivated by the scaling relationship between the γ-parameter and the time-averaged lift3, we overcome this 
challenge by modeling the instantaneous passive pitch angle using the trailing edge deformations. The fluid dynamic 
force term is modeled by the Morison equation, in which the added mass force is proportional to the acceleration of 
the motion and the aerodynamic damping force depends on the square of the imposed translation. The predicted 
passive pitch angle at the end-of-the-stroke and the midstroke show a close agreement with the numerical solutions 
of a fully coupled aeroelastic framework. Based on these two angles, we construct the instantaneous passive pitch as 
a first-order harmonic by calculating the phase lag and the angular amplitude. The predicted amplitude and phase lag 
matched well with the numerical data, resulting in an excellent estimation of time evolution of the passive pitch.  

The resulting unsteady lift on a flexible flapping wing can be obtained by applying the quasi-steady model for 
the imposed plunge motion if the modeled passive pitch can be modeled by the instantaneous wing velocities and 
accelerations, neglecting the influence from the history effects. For hovering motions, the nonlinear wing-wake 
interactions can have a substantial influence on the unsteady lift, although for a flexible wing these effects may be 
mitigated by the wing compliance.  

The proposed model for unsteady lift takes in the a priori known scaling parameters, such as the reduced 
frequency and the frequency ratio, that depend on the wing thickness, wing density, and Young’s modulus, as well 
as the imposed plunge amplitude as input. The use of dimensionless parameters enlarges the applicability of the 
proposed model for a wide range of parameters, regardless of the fluid media, wing structural properties, or imposed 
kinematics. We solve the beam equation for the wing deformations, coupled to the Morison equation accounting for 
both added mass and aerodynamic damping forces, to estimate the passive pitch angle at the end and mid-strokes. 
The instantaneous passive pitch angles are constructed based on these two angles and we use Dickinson’s quasi-
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steady model to estimate the lift on a flexible hovering wing. Despite all the simplifications involved in the model, 
the resulting time histories of lift agree favorably with the numerical data. 

The fundamental limitations of such models are the lack of information of the key input parameters. The lift 
coefficient in the quasi-steady model and the aerodynamic damping coefficient in the Morison equations are 
empirically determined from various experiments. The major merit of this study is that based on the insight learned 
from the previously conducted high fidelity simulations, along with the empirical observations made in the 
literature, we have substantially enhanced the usefulness of the model by providing much improved predictive 
capability. These results are promising and may be highly relevant to understand the complex, but intriguing physics 
of flexible flapping wings. Also, such a model can become a valuable tool for an accurate model of the flight 
dynamics of a flapping wing Micro-Air Vehicles. 
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