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This paper considers the application of the reduced order and prioritized reference gov-
ernors to protect aircraft gas turbine engines against constraint violation. The aircraft gas
turbine engine control system must enforce various constraints that protect the engine from
surge, over-speed, over-temperature and combustion blowout conditions, while satisfying
actuator magnitude and rate limits. The reference governor is an add-on scheme aug-
mented to a nominal engine controller, that modifies set-points that the nominal controller
responds to if there is a danger of constraint violation. Prioritized reference governors
enforce hard constraints and soft constraints in the order of their priority in cases when
strictly enforcing all the constraints is infeasible. The reduced order reference governor
theory facilitates the rigorous design of reference governors based on reduced order models
so that the constraints are satisfied by the full order system. Simulation results based on a
gas turbine engine model are reported that illustrate constraint handling using prioritized
and reduced order reference governor techniques.

Nomenclature

WFE Fuel flow
AJ Variable area nozzle setting
IGV Inlet guide vane setting
OPR1 Ratio of the HP compressor’s outlet

pressure to engine inlet pressure
LPEMN LP compressors exit Mach number
NH HP compressor’s spool speed
xi State augmented in LQ tracking design
Cthrust The row in C matrix that corresponds to thrust output
0ij Zero matrix with i rows and j columns
r(t) Reference (set-point) command
v(t) Reference governor output, i.e., the command actually applied to the system
H,h Matrices defining inequality constraints
Q Weight matrix in reference governor

Õ∞ Maximum output admissible set
ṽ(t) Augmented reference governor output
ε Slack variable
∆1,∆2 Command constraints bounds
bi The ith component of the command constraint matrix
R1, R2 Weight matrices used by prioritized reference governor
λi The ith diagonal component of the weight matrix
Ex State error set used by the reduced order reference governor
Ey Output error set used by the reduced order reference governor
ξ Design parameter defined in output error set
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yr Reduced order system output

Subscripts
d State space representation of discrete-time system
aug System with augmented states
sd Slow subsystem of discrete-time system after fast-slow decomposition
fd Fast subsystem of discrete-time system after fast-slow decomposition

I. Introduction

This paper considers the application of reference governors to aircraft engine control. The reference
governors are add-on schemes that augment nominally designed controllers to enforce the constraints, see
e.g., References3,9 and citations therein. The reference governor is nominally inactive and minimally modifies
the commands passed to the closed-loop system to ensure that the imposed state and control constraints are
satisfied. This modification is performed based on the prediction into the future of the closed-loop system
response.

In applying the reference governor to practical systems such as aircraft gas turbine engines, there are
several challenges. These challenges include handling situations where satisfying all constraints at once is
infeasible, and situations where the system model is high order thereby leading to a high computational
complexity of the solution. Recent papers5–7 have addressed these challenges. Prioritized reference governor
design can enforce hard constraints and soft constraints in the order of their priority. Slight violation of the
soft constraints is permitted (if all constraints cannot be strictly met) with less violation for higher priority
soft constraints. This is accomplished by introducing and differentially weighting in the cost appropriately
defined slack variables. Reduced order reference governor design facilitates rigorous enforcement of the
constraints based on the low order slow subsystem models, while accounting for the contributions of both
slow states, fast states and observer errors in the prediction. In this paper, these approaches are exemplified
for limit protection in aircraft gas turbine engines.

The aircraft gas turbine engine control system must enforce a variety of constraints such as surge avoid-
ance, over-speed and over-temperature limits, combustion lean blowout limit, actuator magnitude and rate
limits, etc.4,13 Furthermore, the aircraft gas turbine engine models can be high order12 even though for
control design their order is often reduced4 by treating the dynamics of flows and pressures as being faster
than the dynamics of the rotational speeds. In Reference10 the application of the robust reference governor
to aircraft gas turbine engine control based on low order models has been considered. In this paper we exem-
plify the designs enabled by recent advances in References5,6 which include prioritized constraint handling
and the treatment based on the high order model via the reduced order reference governor.

In principle, the reference governor is similar to the classical topping governor4 used already in aircraft
engine control applications. Its main difference with the topping governor is that it accounts for the model-
based prediction of the engine dynamic response to determine command modifications necessary to enforce
the full set of engine constraints. The reference governor is also a different strategy from Model Predictive
Control (MPC) that has been applied to gas turbine engine control previously, see e.g., References.2,11 While
the reference governor is a variant of a predictive controller, the main advantages of the reference governor are
in augmenting a nominal controller (which can be designed by a variety of linear and nonlinear control design
techniques) rather than replacing it with a Model Predictive Controller, rigorously guaranteeing recursive
feasibility under command changes, finite-time convergence properties for constant, nearly constant and
slowly varying commands, and in simpler computations and software structure.

For the simulation case study in this paper, we use the linear engine model published by Skogestad and
Postlethwaite.12 The engine under consideration is a Rolls-Royce 2-spool reheated turbofan Spey engine.
The model represents the engine dynamics at 87% of maximum thrust and sea level static conditions.

The paper is organized as follows. Details of the linear model and nominal control design are given in
Section II. Constraints are discussed in Section III. In Section IV we review the prioritized and reduced
order reference governor design procedures developed in References.5–7 In Section V we consider several case
studies where the use of prioritized reference governor and reduced order reference governor is illustrated.
Concluding remarks are made in Section VI.
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II. Aircraft Engine Model

Our case studies are based on the Spey engine model,12

ẋ = Ax+Bu, (1)

y = Cx+Du. (2)

The model has 18 states (15 engine states and 3 actuator states), and three control inputs,

u =

 WFE

AJ

IGV

 .
where WFE is the fuel flow, AJ is the setting for the variable area nozzle, and IGV is the variable angle
setting for inlet guide vanes. The model has three outputs,

y =

 OPR1

LPEMN

NH

 .
The engine thrust is correlated with the first output (OPR1), which is defined as the ratio of the HP
compressor outlet pressure to engine inlet pressure. The second output is the LP compressor exit Mach
number measurement (LPEMN) which is indicative of and used in enforcing the LP compressor surge
margin constraint. The third output is HP compressor spool speed (NH); this output is used in defining
the over-speed constraint. We do not consider other constraints in this paper as they are not represented in
the model published in Reference.12

In the model (1)-(2), the thrust-related output (OPR1) is scaled so that one unit of it represents a 7.5%
of maximum thrust. Similarly, the surge margin-related output LPEMN is scaled so that one unit of it
corresponds to 5% surge margin. Finally, the HP compressor spool speed output (NH) is scaled so that one
unit of it corresponds to a 2.2% of maximum value. The inputs (WFE,AJ, IGV ) are scaled so that one
unit corresponds to 10% of each of their respective range.

The nominal controller is based on the LQ tracking design. Specifically, we augment an error integrator
to the system with the state xi and use the input WFE to control the output OPR1 to the set-point rOPR1.
Then the augmented system takes the form,

ẋaug = Ãxaug + B̃WFEuWFE + B̃AJ,IGV uAJ,IGV +

[
0n1

−rOPR1

]
, (3)

ythrust = [Cthrust, 0]xaug +D(1, :)u, (4)

where

xaug =

[
x

xi

]
, (5)

Ã =

[
A 0n1

Cthrust 0

]
, B̃WFE =

[
B(:, 1)

D(1, 1)

]
, B̃AJ,IGV =

[
B(:, 2 : 3)

D(1, 2 : 3)

]
, ũAJ,IGV =

[
AJ

IGV

]
, Cthrust = C(1, :).

(6)
The fuel flow (WFE) nominal controller is of the form,

uWFE = −K1x−K2xi, (7)

where the gains K1 and K2 are obtained on the basis of the linear quadratic theory applied to Ã, B̃WFE

and weights Q and R defined by

Q =

[
0nn 0n1

01n 1

]
, R = 1,
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and where n is the dimensionality of x.
With the LQ WFE controller, the closed loop system becomes,

ẋaug = (Ã− B̃WFE [K1,K2])xaug +

[
0n1 B(:, 2 : 3)

−1 D(1, 2 : 3)

]rOPR1

AJ

IGV

 , (8)

y = [C −D(:, 1)K1,−D(:, 1)K2]xaug + [031, D(:, 2 : 3)]

rOPR1

AJ

IGV

 . (9)

In the application of the reference governor, we replace the commanded

r(t) =

rOPR1

AJ

IGV

 ,
by the reference governor output,

v(t) =

vOPR1

vAJ

vIGV

 .
The modified set-points, v(t), may deviate from r(t) if the danger of constraint violation exists.

Converting the continuous-time closed-loop system model to discrete-time with the sampling period of
0.01 sec yields

xaug(t+ 1) = Adxaug(t) +Bdv(t), (10)

y(t) = Cdxaug(t) +Ddv(t), (11)

where Ad is a 19 by 19 matrix (15 engine states, 3 actuator states and 1 controller state), Bd is a 19 by 3
matrix (3 reference inputs), Cd is a 3 by 19 matrix (3 outputs), and Dd is a 3 by 1 zero matrix.

III. Constraints

We consider the following set of constraints. To ensure that an adequate surge margin is maintained, we
impose a lower limit on LPEMN of the form,

LPEMNmin ≤ LPEMN. (12)

To prevent over-speed conditions, we impose an upper limit on NH of the form,

NH ≤ NHmax. (13)

These constraints can be expressed in the following form:

y(t) ∈ Y, Y = {y : Hy ≤ h}, (14)

where

y =

 OPR1

LPEMN

NH

 , H =

[
0 −1 0

0 0 1

]
, h =

[
−LPEMNmin

NHmax

]
.

Finally, we consider another constraint which is to avoid large deviations of the output of the reference
governor, v(t), from the original command, r(t), i.e.,

−∆1 ≤ v(t)− r(t) ≤ ∆2, (15)
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where

r(t) =

rOPR1

AJ

IGV

 , v(t) =

vOPR1

vAJ

vIGV

 , (16)

and the bounds ∆1, ∆2 are given.
We note that the constraint (15) is unusual and is not handled by the conventional reference governor

theory. In applications, imposing this constraint can be useful to ensure that the reference governor does not
create large modifications, however, with no information on future values of r(t), feasibility, if this constraint
is handled as a hard constraint, cannot be guaranteed. This constraint can, however, be treated more easily
by a prioritized reference governor as we discuss next.

IV. Prioritized and reduced order reference governors

The reference governor schematics are shown in Figure 1. The reference governor modifies OPR1 as well
as AJ and IGV settings.

Figure 1: The system architecture. The commands with subscript des and r(t) represent the original
commands, the ones with subscript com and v(t) represent modified commands with the reference governor.
The reference governor enforces constraints y(t) ∈ Y using state estimate, x(t).

A. Reference governor

The conventional reference governor (based on command governor strategy1) is based on determining v(t)
via a solution of the following optimization problem:

minimize (v(t)− r(t))TQ(v(t)− r(t)), (17)

subject to
(v(t), x(t)) ∈ Õ∞,

where Q = QT > 0 and Õ∞ is the maximum output admissible set,3 i.e., the set of all constant commands
and closed-loop system states such that the ensuing response satisfies the imposed constraints. For the
polyhedral-type constraints described in Section III, and under additional, reasonable assumptions, Õ∞ is a
polytope defined by a finite number of linear inequalities.

B. Prioritized reference governor

In the Prioritized Reference Governor (PRG) approach,5 some of the hard constraints are replaced by soft
constraints. For instance, the hard output constraints in (14) can be replaced by soft constraints

Hy ≤ h+ ε1, (18)
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where ε1 ≥ 0 is a vector of slack variables. A similar strategy can be pursued with respect to the constraint
(15) by replacing it with a soft constraint

−∆1 − ε2 ≤ v(t)− r(t) ≤ ∆2 + ε2, (19)

where ε2 ≥ 0 is a vector of slack variables. We define

ε =

[
ε1

ε2

]
. (20)

In the PRG design,5 the closed loop system is extended with the slack variable vector as follows

xaug(t+ 1) = Adxaug(t) +
[
Bd 0

] [v(t)

ε(t)

]
, (21)

y′(t) =

[
y

ε

]
=

[
Cd

0

]
xaug(t) +

[
Dd 0

0 I

][
v(t)

ε(t)

]
, (22)

and the constraint set Y is replaced by Y ′ where

y′ ∈ Y ′ = {(y, ε) : ε = (ε1, ε2), Hy ≤ h+ ε1, ε ≥ 0}. (23)

With ṽ(t) defined as:

ṽ(t) =

[
v(t)

ε(t)

]
, (24)

and Õ′∞ (or its subset satisfying appropriate assumptions3) defined for the augmented system, the PRG
governs the augmented signal based on the minimization of the cost,

minimize (r(t)− v(t))TR1(r(t)− v(t)) + εTR2ε w.r.t v(t), ε, (25)

subject to the constraints,

(ṽ(t), x(t)) ∈ Õ′∞, −∆1 − ε2 ≤ v(t)− r(t) ≤ ∆2 + ε2, ṽ = [vT, εT]T, ε = [εT1 , ε
T
2 ]T, (26)

where R1 = RT
1 > 0, R2 = RT

2 > 0, are weighting matrices. This optimization problem is a quadratic
programming problem with linear inequality constraints that can be easily handled by existing quadratic
programming solvers.

The weight matrix R2 can be defined to give different priorities to different constraints. For instance, if
R2 is diagonal, diagonal entries corresponding to higher priority constraints can be made larger.

To enforce some constraints as hard the corresponding elements of ε1 or ε2 can be constrained to zero.
Alternatively, the corresponding constraints do not have to be relaxed by the slack variables from the start.6

To provide further insight, we note that based on the definition of the maximum output admissible
set (and ignoring some technicalities), the minimization of the cost (25) is basically performed subject to
constraints

−∆1 − ε2 ≤ v(t)− r(t) ≤ ∆2 + ε2, (27)

Hy(t+ k|t, x(t), v(t)) ≤ h+ ε1,∀k = 0, 1, ..., t∗, (28)

ε1 ≥ 0, ε2 ≥ 0, (29)

where y(t+k|t, x(t), v(t)) denotes the output prediction at the time instant t+k given the state x(t) at time
t, command v(t) (assumed constant over the prediction horizon, i.e., v(t+ k) = v(t), k = 0, · · · , t∗), and t∗

is the finite determination index of the maximum output admissible set.3

We note that the use of quadratic penalty functions on the slack variables has certain disadvantages,
e.g., soft constraints can be slightly violated by the solution even if a feasible solution that strictly satisfies
these constraints exists. If such violations are undesirable (i.e., soft constraints have to be strictly satisfied
if possible), one can check for solutions of problem (25)-(26) with slack variables constrained to 0 and
progressively relaxed, with highest priority constraints relaxed last. Another approach is to replace the
quadratic penalty by linear (e.g., 1 or ∞ norm based) penalty with sufficiently large penalty weights.8
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C. Reduced order prioritized reference governor

For the development of a reduced order reference governor we consider a state transformation under which
the closed-loop dynamic model decomposes into slow and fast subsystems6 so that the governing closed-loop
equations are given in discrete-time by,[

xs(t+ 1)

xf (t+ 1)

]
=

[
Asd 0

0 Afd

][
xs(t)

xf (t)

]
+

[
Bsd

Bfd

]
v(t), (30)

y(t) =
[
Csd Cfd

] [xs(t)
xf (t)

]
+Ddv(t), (31)

where xs(t) ∈ Rns and xf (t) ∈ Rnf are the slow and fast state vectors. If it is assumed that the matrices
Asd and Afd are Schur and the eigenvalues of Asd are faster than those of Asf .

The reduced order reference governor is designed based on the reduced order system model,

xs(t+ 1) = Asdxs(t) +Bsdv(t), (32)

yr(t) = Csdxs(t) + (CfdΓf +Dd)v(t). (33)

where
Γf = (I −Afd)−1Bfd, (34)

and yr is the system output that reflects the contributions of the slow states and steady-state contributions
of fast states.

The reduced order reference governor is constructed to satisfy the tightened constraint on yr and an
additional constraint on ∆v(t) = v(t)−v(t−1) which ensures that command changes do not cause excessive
deviations of fast states from their steady-state values:

yr(t+ k|t) ∈ Y ∼ Ey,∀k ≥ 0, (35)

−AfdΓf∆v(t) ∈ Ex ∼ AfdEx, (36)

where the errors sets Ey and Ex are design parameters. The error set Ey is defined as

Ey = εY, (37)

where 0 < ε < 1 is a design parameter. The error set Ex is an Afd-contractive set that can be computed as
the maximum output admissible set corresponding to a scaled Afd matrix and Ey as the output constraint
set,6

Ex = O∞(
1

q
Afd, Cfd, Ey), (38)

where the contraction parameter is 0 ≤ q < 1.
For the development of the prioritized reduced order reference governor, we replace (30)-(31) with[

xs(t+ 1)

xf (t+ 1)

]
=

[
Asd 0

0 Afd

][
xs(t)

xf (t)

]
+

[
Bsd 0

Bfd 0

]
ṽ(t), (39)

y′(t) =

[
Csd Cfd

0 0

][
xs(t)

xf (t)

]
+

[
Dd 0

0 I

]
ṽ(t), (40)

where

ṽ(t) =

[
v(t)

ε(t)

]
, (41)

and ε = (εT1 , ε
T
2 ) is a slack variable as introduced in Section B. The set Y is replaced by Y ′ defined in

Y ′ = {(y, ε) : Hy ≤ h+ ε1, ε ≥ 0},

and the reduced order reference governor design is applied to this system (39)-(40) augmented with the slack
variable ε and with the extended input (41).
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V. Simulation results

For the simulations, we choose LPEMNmin = −1, NHmax = 5 in (12)-(13), and a time-varying set-point
command profile given as

rOPR1(t) = 5(1− e−t), rAJ(t) = 3, rIGV (t) = 2, t > 0. (42)

The command constraints (19) are defined with

∆1 = ∆2 =

 1

1.5

1.5

 . (43)

We first illustrate the operation of the full order PRG and its flexibility in handling different sets of soft
and hard constraints. Three scenarios are considered.

In the first scenario, the surge constraint (12) and speed constraint (13) are treated as soft while the
command constraint (19) is treated as hard. We further assign higher priority to the surge constraint than to
speed constraint, so that the weight corresponding to the surge constraint is higher than that corresponding
to the speed constraint. Then ε2 = 0 (as the command constraints are treated as hard) and the cost (25) is
defined with

R1 = diag([100, 10, 1000]), R2 = diag([100, 100, 0, 0, 0]). (44)

Note that no weighting is applied to ε2 since ε2 is constrained to zero. This first scenario exemplifies a
situation during aircraft emergency maneuvering where the control system accepts some level of risk13 in
enforcing the surge and speed constraints (as these are often set conservatively to begin with) provided it
can ensure adequate thrust response.

In the second scenario we treat the surge constraint as hard and the speed constraint and command
constraints as soft. We assign higher priority to speed constraint than to command constraints. Since there
are three command constraints, the weight on the slack variable corresponding to OPR1 command is larger
than weights corresponding to AJ and IGV commands. In this case, we constrain ε1 to ε1 = [0, ε12], where
ε12 is a scalar and treat ε2 as a three dimensional vector. The PRG weighting matrices are defined as

R1 = diag([100, 10, 1000]), R2 = diag([0, 10000, 1000, 100, 100]). (45)

Note that no penalty is applied to the first component of ε1 since this component is constrained to be zero.
In the third scenario, the constraint and weight matrix are the same as in the second scenario. However,

instead of applying an exponential profile (42) for OPR1, we investigate the response to a step change in
OPR1 to the value 5 at 1 second.

The simulation results for these three scenarios are given in Figures 2-7. For the first simulation scenario,
the speed constraint is violated, the surge constraint is violated less and the commands passed to the closed-
loop system ride the constraint boundary. For the second simulation scenario, the surge constraint is strictly
enforced, speed constraint is violated slightly while vOPR1 exceeds the bounds. For the third simulation
scenario, the surge constraint is strictly enforced, speed constraint is violated slightly while vOPR1 exceeds
the bounds and vAJ is out of bounds for a short time to accommodate the sudden step change of OPR1.

Finally, we illustrate the operation of the reduced order PRG for the first scenario. The absolute values
of the eigenvalues of the continuous-time closed-loop system model are

1.8763, 6.2272, 6.2272, 31.1960, 31.2500, 44.5930, 61.9103, 92.7397, 92.7397,

154.1014, 154.1014, 158.6060, 189.3077, 189.3077, 246.4429, 246.4429, 287.7015, 287.7015, 327.2601.

By considering eigenvalues with absolute values above 100 as fast we obtain a system decomposition into a
slow subsystem with 9 states and a fast subsystem with 10 states. The reduced order PRG uses q = 0.8,
ε = 0.02 (see (37)-(38) where these parameters are defined). The simulation results are given in Figures 8-9.
Further model order reduction has been investigated. With the slow subsystem of 3rd order, the responses
are not significantly different than the ones in Figures 8-9, with somewhat larger soft constraint violation,
see Figures 10-11.
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Figure 2: Response with PRG in scenario 1.
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Figure 3: Commands (original and modified) with PRG in scenario 1.

10 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

11
49

 



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

O
u
tp

u
ts

time (s)

 

 

OPR1−Engine thrust

LPEMN−Surge margin

NH−Spool speed

Surge constraint

NH constraint

Figure 4: Response with PRG in scenario 2.
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Figure 5: Commands (original and modified) with PRG in scenario 2.
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Figure 6: Response with PRG in scenario 3.
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Figure 7: Commands (original and modified) with PRG in scenario 3.
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Figure 8: Responses with the reduced order PRG in scenario 1.
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Figure 9: Commands (original and modified) with the reduced order PRG in scenario 1.
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Figure 10: Responses with the reduced order PRG (subsystem of 3rd order) in scenario 1.
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Figure 11: Commands (original and modified) with the reduced order PRG (subsystem of 3rd order) in
scenario 1.

18 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

11
49

 



VI. Concluding remarks

The paper illustrated the use of recently developed prioritized and reduced order reference governors
for constraint handling in gas turbine engines. The prioritized reference governor addresses the situations
when satisfying all the constraints at once becomes infeasible. It treats some of the constraints as soft (this
selection of the soft constraints can be situation-dependent) and minimizes their violation reflective of the
specified constraint priority. The reduced order reference governor rigorously enforces the constraints based
on a low order model while accounting for the contributions of the omitted states. For the model used in this
paper, the full order model had 19 states and we demonstrated that the design of a reduced order prioritized
reference governor can be based on the 9th and 3rd order slow subsystem models. The full state was assumed
to be available for implementation of the reference governor schemes in the simulations in this paper. While
outside the scope of this paper, the observer estimation errors can also be rigorously handled.6,7
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