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Optimization of square composite laminates, with variable stiffness properties, for ther-
mal buckling is presented. Spatially varying fiber paths produce material properties that
are functions of position. In this work, a predefined fiber configuration is controlled by
varying two global parameters; the angle at the edge and center of the plate. The criti-
cal buckling temperatures for such laminates are obtained numerically based on classical
lamination theory and finite element method. The discretized domain simplifies analysis
by transforming nonlinear fiber path functions to linear piecewise functions. Using this
method, thermal responses for symmetric balanced laminates under constant thermal load
is investigated. Optimal fiber angle configurations that maximize the critical buckling tem-
peratures are obtained. Spatially varying fiber path configurations are found that increase
the resistance of thermal buckling in comparison to straight fiber configurations.

Nomenclature

N Stress Resultant vector
M Moment Resultant vector
ε Mid-plane Strain vector
κ Curvature vector
A Extensional Stiffness Matrix
B Coupling Stiffness Matrix
D Bending Stiffness Matrix
U Material Invariants
h Total Thickness of Plate
t Thickness single layer
L Total Length of Plate
θ Fiber Angle
β0 Fiber Angle at Plate Center
β1 Fiber Angle at Plate Edge
w Out of Plane Displacement
θ̄ Local Fiber Angle
∆T Change in Temperature
KM Material Stiffness Matrix
KG Geometric Stiffness Matrix
∆T Change in Temperature
α Coefficient of Thermal Expansion
E Young’s Modulus
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ν Poisson’s Ratio
G Shear Modulus

I. Introduction

Spacecrafts are subject to severe temperature fluctuations during flights. To maintain the structural
integrity under high temperature environments, vehicle structural design concepts must differ from those of
low Mach number aircrafts. In particular, management of high thermal stresses that occur during high speed
flights involve development of materials that can withstand thermal bucking. Response of composite plate
panels in compression (due to thermal loading and edge restraints) is a classical plate buckling problem.
Earlier works have shown that composite plates offer superior buckling performance when compared to
isotropic plates. Optimization methods and techniques have been applied to these material systems. Walker
et. al.1 use a golden section method to find the optimal design for symmetric laminates subjected to
nonuniform temperature distributions. In their work, plate geometry and boundary conditions are varied.
Similarly, Topal et. al.2 investigate the effects of plate aspect ratios and boundary conditions on the optimal
design configuration. A Modified Feasible Design optimization method is applied and antisymetric layups are
considered. In general, for square symmetric balanced laminates, with simply sported boundary conditions,
the the optimal configuration is given by [±45]ns.

However, current technology allows us to relax the assumption that the fibers be straight for a laminated
fiber composite. Advanced manufacturing techniques, such as fiber steering, allow fibers to be oriented
along a desired path. Variable fiber path laminates produce unique boundary conditions that produce local
transverse and compressive stresses which develop simultaneously.3 These stress fields may be exploited
to increase buckling resistance in local areas where panels tend to buckle. Towards this end, Gürdal and
Olmedo4–6 have developed material models for variable stiffness composites and have continued to, along with
others, produce works for in-plane and buckling responses. Similar to straight fiber composites, optimization
has been applied to these complex material systems. At the global level where the fiber path function is
predefined, Negendra et. al.7 use a basis shape optimization approach to maximize critical buckling load for
a plate with a hole. Similarly, Jegley et. al.8 optimize a curvilinear fiber path for a plate with a hole. In
their work, they minimize stress concentrations using genetic discrete-valued optimizer. Alternatively, one
could also optimize the fiber angle using a local parameterization of the fiber path. Hyer and Charette9

allow the fiber angle to vary at each element. In their work, they calculate the stress of each element and
align fibers with the principal stress direction. Both Setoodeh et. al.10 and IJsselmuiden et. al.11 optimize
the fiber angle locally at each node with respect to buckling and stiffness. As a result IJsselmuiden et.
al. investigates the trade off between buckling and stiffness. Alternatively by minimizing the total thermal
expansion, Rangarajan et. al.12 have shown that straight fibers paths are the optimum configuration to
minimize total thermal expansion along principal material directions. In their work, a constant strain state
is assumed and results are obtained analytically.

Although structural buckling of variable stiffness panels have been investigated, numerical optimization
approaches applied specifically for thermal buckling performance is yet to be considered. In this work,
this optimization problem is studied using a global parameterization of the fiber path, with the fiber path
described by two design variables β0 and β1. The stacking sequence is restricted to symmetric and balanced
[±θ]ns. As an example, simply supported panels subjected to uniform temperature loading are investigates.
The constitutive models are developed first, followed by buckling analysis of the out of plane equilibrium
equation. The results are obtained numerically using an in-house finite element code for Eigen buckling
analysis and validated with known results for straight fiber orientations. Finally, fiber paths are varied and
the optimum configurations to resist thermal buckling are found using a gradient based optimization method.
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II. Modeling

1. Material Model

The constitutive relations for a thin laminate are based on classical lamination theory and are given in the
form, {

N

M

}
=

[
A B

B D

]{
ε

κ

}
(1)

Here, the stiffness matrices are functions of panel position and are not constant. They are written compactly
in the following form in terms of invariants4

[A,B,D] =

 e11 e12 e16

e12 e22 e26

e16 e26 e66

 (2)

where
e11 = U1V0 + U2V1 + U3V3

e12 = U4V0 − U3V3,

e16 = −1

2
U2V2 − U3V4, (3)

e22 = U1V0 − U2V1 + U3V3,

e26 = −1

2
U2V2 + U3V4,

e66 = U5V0 − U3V3.

The invariants for an orthotropic material, Ui, are shown in Appendix A. The form of Vi will change
depending on the constitutive matrix. They are defined as,

V0(A,B,D) = [h, 0,
h3

12
]

V1(A,B,D) =

∫ h
2

−h
2

cos(2θ)[1, z, z2]dz

V2(A,B,D) =

∫ h
2

−h
2

sin(2θ)[1, z, z2]dz (4)

V3(A,B,D) =

∫ h
2

−h
2

cos(4θ)[1, z, z2]dz

V4(A,B,D) =

∫ h
2

−h
2

sin(4θ)[1, z, z2]dz

Here, θ is a function of position. For symmetric balanced laminates, the coupling stiffness matrix and the
in-plane shear and normal coupling terms are eliminated; i.e. Bij = A16 = A26 = 0. Now there is no
in-plane/bending coupling and Eq. 1 is reduced to,

Mx

My

Mxy

 =

 D11 D12 D16

D12 D22 D26

D16 D26 D66




κx

κy

κxy

 (5)

Using Eq 2 - 5 the bending stiffness terms are defined by

D11 =
h3

12
(U1 + U2cos2θ + U3cos4θ)
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D12 =
h3

12
(U4 − U3cos4θ)

D16 =
h3

12
(−1

2
U2sin2θ − U3sin4θ) (6)

D22 =
h3

12
(U1 − U2cos2θ + U3cos4θ)

D26 =
h3

12
(−1

2
U2sin2θ + U3sin4θ)

D66 =
h3

12
(U5 − U3cos4θ)

Note that the bending-twisting coupling terms (D16,D26) are present.

2. Fiber Path

For simplicity, fibers are made to vary along one of the coordinate directions. This analysis may easily be
extended for fibers that vary along multiple coordinate axes. A linear variation along the x-coordinate axis
is achieved by defining the fiber orientation as,

θ(x) =

{
2(β1−β0)

L x+ β0 for 0 ≤ x < L
2 ;

2(β0−β1)
L x+ β0 for −L2 ≤ x < 0

(7)

The angle β1 is fiber angle at the edges of the plate (x = ±L2 ), and β0 is the angle of the fiber at the
center of the plate (x = 0). The path of the fiber that passes through the origin as a function of x is shown
in Fig.1. Here the origin is located at the geometric center of the plate with a fiber angle β0 = 60 ◦, while
the angle at edge is β1 = 20 ◦.

𝛽0 𝛽1 

Figure 1. Curvilinear fiber path for β1 = 20 ◦ and β0 = 60 ◦.
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III. Buckling Analysis

For a simply supported symmetric balanced laminate, the Von Karman linearized out of plane buckling
equation is given by,

−N i
x

∂2w

∂x2
−N i

y

∂2w

∂y2
− 2N i

xy

∂2w

∂x∂y
+D11

∂4w

∂x4

+ 2(D12 + 2D16)
∂4w

∂x2∂y2
+D22

∂4w

∂y4

+ 4D16
∂4w

∂x3∂y
+ 4D26

∂4w

∂y3∂x
= 0 (8)

Entries denoted with superscript “i” correspond to the pre-buckled configuration. The presence of the
bending-twisting coupling terms (D16, D26) in the Eq.8 makes it difficult to assume a series solution in
solving this equation; therefore, the finite element method is used. For the finite element formulation, the
discretized domain will produce locally straight, constant angle, fiber paths; each element will have a local
fiber angle associated with it. Therefore, we model the global fiber orientation angle as a linear piecewise
function. For this treatment, the local angle θ̄ is calculated by taking the elemental average of the angle θ
(Eq 7). The local element laminate layup is then assumed to be [±θ̄]ns. Now the stiffness matrices (A,B,D)
are constant for each element. This process is shown in Fig.2 below. For an symmetric balanced laminate

Figure 2. Curvilinear fiber path is approximated constant from each element.

with prescribed constant thermal load ∆T , the pre-buckled loads are easily found using classical lamination
theory.

N i
x = −∆T (A11α11 +A12α22)

N i
y = −∆T (A12α11 +A22α22) (9)

N i
xy = 0

The critical buckling temperature ∆Tcrit is determined using the following eigenvalue problem,

|KM + λKG| = 0 (10)
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where the smallest eigenvalue λmin corresponds to the critical buckling temperature ∆Tcrit. The material
stiffness matrix KM and the geometric stiffness matrix KG are found using Galerkin method and are stated
in Appendix B. This formulation uses 4-noded Kirchhoff plate elements13 with degrees of freedom w, ∂w/∂x,
and ∂w/∂y.

IV. Validation

A. Cross-Ply Layup

Validation is achieved by comparing results to straight angle configurations. For the first case, a four layer
cross-ply layup [0/90]s is considered. The angles β0 and β1 are equal for straight fiber configurations. The
critical buckling temperature found in reference14 is ∆Tcrit = 0.0996◦C. This work predicts a buckling
temperature of ∆Tcrit = 0.0996◦C and is in good agreement with the work cited.

B. Angle-Ply Layup

Next a Graphite/Epoxy angle-ply layup is considered. Material properties are given in Appendix C where
L = 0.15m and the h = 1.016mm. Again the angles β0 and β1 are equal and for a angle-ply layup β0 = β1 = θ.
Figure 3 below shows the critical buckling temperature distribution as a function of angle-ply angle θ. For
a four layer angle-ply layup this work predicts an optimal configuration of [±45]s which can be found as the
optimal configuration to resist thermal buckling in other works.1,15

0 10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

∆ 
T

[± θ]
s

Figure 3. Critical buckling temperature distribution as a function of angle-ply angle.

C. Complex Layup

For the final case, a complex layup of [+45/-45/0/90]s is considered. The same geometry and materials are
used from the previous example. Results obtained numerically by a Rayleigh-Ritz formulation results in a
critical buckling temperature of ∆Tcrit = 38.6◦C.15 This work predicts a higher critical buckling temperature
of ∆Tcrit = 39.4◦C. Results from this section validate this method and analysis is continued with confidence.
Now the fiber path is varied spatially for the same Graphite/Epoxy composite.
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V. Results

A. Graphite/Epoxy Composite

The critical buckling temperature for multiple configurations is found by performing an exhaustive search;
the angles β0 and β1 are equally varied from −90 ◦ to 90 ◦. A contour plot of the critical buckling temperature
∆Tcrit as a function of the fiber angles β0 and β1 is shown in Fig. 4. These results show a temperature profile
that contains multiple maxima and minima. Here, a diagonal across the figure represents a straight angle
configuration (β0 = β1 = θ) where values in the positive domain reproduce results from Fig.3. The straight
angle configuration with the largest resistance to thermal buckling is [±45]s corresponding to ∆Tcrit =
32.45◦C. As expected the lowest critical buckling temperature corresponds to a β1 = β0 = 0 orientation
where all fibers are aligned in one direction, giving little buckling resistance in the direction perpendicular to
the fibers. The temperature profile is skew symmetric and, therefore, is not unique over −90 ◦ to 90 ◦ domain
and ∆T (β0, β1) = ∆T (−β0,−β1). Although Fig.4 shows a complex temperature profile with multiple local
maximums, it is obvious that a strong maximum exists.

β
0

β 1

 

 

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
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−75

−60

−45

−30
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30

45

60
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∆ T

crit
 ( ° C)

14

16

18

20

22

24

26

28

30

32

34

Figure 4. Temperature contour as a function of fiber angles for Graphite/Epoxy.

Finding the optimal fiber configuration that resists thermal buckling is a multi-variable optimization
problem. A quasi-Newton method16 is implemented to find the maxima efficiently by maximizing ∆Tcrit
with respect to β0 and β1. Sensitivities are calculated using finite differences with a step size of 10−7. Fig.
5 shows the effect of the quasi-Newton method on the fiber path. The initial configuration of [±45]s, where
β0 = β1 = θ, produces a straight fiber path. As the solution progresses, the fiber path begins to curve and
becomes nonlinear. Fig.6 shows the progression of the solution on the contour of the temperature profile.
The solution converges to the optimal configuration of β0 = 60.70◦ and β1 = 32.19◦ corresponding to the
maximum critical buckling temperature of ∆Tcrit = 34.26◦C. Theses values give a 5.6% increase in thermal
buckling load when compared to the optimum straight fiber configuration of [±45]s.

B. Angle Optimization for Multiple Materials

Next, analysis is performed on multiple composite materials in an effort to further improve on percent
increase of critical buckling temperature. Material constants are shown in Appendix C. Optimal results
for these materials are reported on Table 1. The largest increase in critical buckling temperature is for
Carbon/Epoxy where there is a 36.9% increase in buckling temperature for β1 = 69.0◦ and β0 = −5.71◦.
Interestingly, since the fiber angle in not restricted, the optimal angle at the edge of the plate is negative
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Initial Fiber Path
Optimal Fiber Path

Figure 5. Quasi-Newton method effect on fiber
path
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Figure 6. Quasi-Newton iterations to optimal an-
gle configuration.

(Fig.7) or greater than 90◦. This is also the case for the Boron/Epoxy (Fig.8) where the optimal angle at the
center of the plate is negative. These result show that varying the fiber angle spatially provides a significant
increase to resisting thermal buckling.

Material β0 β1 ∆Tcrit(
◦C) [±45]s% increase

E-Glass/Epoxy 6.710◦ 58.04◦ 5.58 2.8

S-Glass/Epoxy 16.12◦ 54.74◦ 5.04 1.6

Kevlar/Epoxy 66.05◦ 11.73◦ 22.18 24.1

Carbon/Epoxy 69.00◦ −5.705◦ 57.79 36.9

Carbon/Peek 63.07◦ 29.50◦ 38.08 7.3

Carbon/Polyimide 56.30◦ 36.68◦ 78.28 2.9

Boron/Epoxy −6.57◦ 63.28◦ 7.50 10.9

Table 1. Optimization of fiber angle path for multiple materials

VI. Conclusion

Thermal buckling of composite plates with spatially varying fiber orientations have been investigated.
In this work square plates with simply supported boundary conditions, subjected to uniform temperature
distribution, were considered. Optimization of the thermal buckling load was performed for multiple material
models with respect to two fiber path parameters. It was found that curved fiber angle orientations provided
better resistance to thermal buckling than straight fiber configurations in all cases. For the Carbon/Epoxy
composite the optimal configuration obtained from this analysis provides a 36.9% increase to critical buckling
temperature over the straight angle fiber configuration of [±45]s. Future work includes a sensitivity analysis
on the optimal fiber paths with respect to other material properties. This approach may be used in other
work to investigate complex fiber paths with angles that vary in multiple spatial directions and for composite
rectangular plates with varying layups.
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0 a/2
−a/2

0
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Figure 7. Optimum fiber path for Carbon/Epoxy.

0 a/2
−a/2

0

a/2

Figure 8. Optimum fiber path for Boron/Epoxy.

Appendix

A. Orthotropic Invariants

The invariants for an orthotropic material are given as

U1 =
3Q11 + 3Q22 + 2Q12 + 4Q66

8

U2 =
Q11 −Q22

2

U3 =
Q11 +Q22 − 2Q12 − 4Q66

8
(11)

U4 =
Q11 +Q22 + 6Q12 − 4Q66

8

U5 =
Q11 +Q22 + 2Q12 − 4Q66

8

where

Q11 =
E11

1− ν12ν21

Q12 =
ν12E22

1− ν12ν21
(12)

Q22 =
E22

1− ν12ν21
Q66 = G12

B. Stiffness Matrices

The material stiffness matrix is given by

KM =

∫
y

∫
x

[S]T [D][S]t dx dy (13)
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where t is the element thickness, D is the bending stiffness matrix (Eq.6) and

S =


∂2/∂x2

∂2/∂y2

2∂2/∂x∂y


[
φ

]
(14)

Here, the φ matrix is the shape functions corresponding to a 4-node Kirchhoff plate element. The geometric
stiffness matrix is given by

KGij =

∫
y

∫
x

[φix
∂φi
∂x

∂φj
∂x

+ φiy
∂φi
∂y

∂φj
∂y

+ φixy(
∂φi
∂x

∂φj
∂y

+
∂φi
∂y

∂φj
∂x

)]t dx dy (15)

C. Material Properties

Material and thermal properties are given on Tables 2 and 317

Material E1(GPa) E2(GPa) G12(GPa) ν12

Graphite/Epoxy 155 8.07 4.55 0.22

E-Glass/Epoxy 41 10.04 4.3 0.28

S-Glass/Epoxy 45 11.0 4.5 0.29

Kevlar/Epoxy 80 5.5 2.2 0.34

Carbon/Epoxy 147 10.3 7.0 0.27

Carbon/Peek 138 8.7 5.0 0.28

Carbon/Polyimide 216 5.0 4.5 0.25

Boron/Epoxy 201 21.7 5.4 0.17

Table 2. Material properties

Material α1(◦C−1)E − 6 α2(◦C−1)E − 6

Graphite/Epoxy −0.07 30.1

E-Glass/Epoxy 7.0 26

S-Glass/Epoxy 7.1 30

Kevlar/Epoxy −2.0 60

Carbon/Epoxy −0.9 27

Carbon/Peek −0.2 24

Carbon/Polyimide 0.0 25

Boron/Epoxy 6.1 30

Table 3. Coefficients of thermal expansion
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