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A framework for uncertainty propagation in hypersonic aeroelastic and aerothermoelastic analyses is presented.

First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is

examined. Variability in the uncoupled natural frequencies of the system is modeled using beta probability

distributions. Uncertainty in the flutterMach number is computed using stochastic collocation. Next, the stability of an

aerodynamically heated panel representing a component of the skin of a hypersonic vehicle is considered. In this case,

uncertainty is due to the location of transition from laminar to turbulent flow and the heat flux prediction. The effect of

propagating theseuncertainties onvehicle behavior is determined. Forbothcases, uncertainty is treatedusing stochastic

collocation, which is a new and effective approach for incorporating uncertainty in this class of problems.

Nomenclature

Aj = fitting coefficients
A, B = coefficients for beta distribution
An�t� = deformed shape coefficients
a = normalized elastic axis location, positive aft
b = c∕2 semichord
C1; : : : ; C4 = deformed shape coefficients
c = chord
D = bending stiffness of the panel
f̂�ξ� = polynomial response surface of the output

of interest
H = altitude
h = plunge degree of freedom
hp = panel thickness
h1 = radiation shield thickness
h2 = thermal insulation thickness
Iα = static moment of inertia of the wing section

about elastic axis
Kh = spring constant in plunge
Kα = spring constant in pitch
k = thermal conductivity
L = lift
lp = panel length

Mea = aerodynamic moment

Mf = flutter Mach number

Mfd = deterministic flutter Mach number

MT = thermal bending moment

M∞ = freestream Mach number

m = cross-sectional mass of the cross section
mf ≡ hfi = mean of f
NI = number of points in the numerical

integration scheme

Nv = number of random variables
Nx = in-plane stress resultant
P�x; t� = pressure
P� 1 = number of interpolating function
P3 = pressure behind the leading-edge shock
p�ξ� = probability density function

pf�β� = probability of failure

p�A;B��ξ� = beta �A;B� probability density function
Qaero = aerodynamic heat flux
Qrad = radiation heat flux
qa = P�x; t� − P3, aerodynamic pressure on the panel
rα = nondimensional radius of gyration
Sα = static mass moment of the wing section

about elastic axis
T = temperature
T0 = initial panel temperature
Twall = wall temperature
Tf = flight Time
t = time
th = τb, airfoil thickness
U∞ = freestream velocity
vn = velocity of the airfoil surface in the z direction
w�x; t� = out-of-plane panel displacement
wk = numerical integration scheme weights
x = coordinate on the panel
xe = distance of panel location from leading edge
xti = location of transition point from laminar to

turbulent flow from leading edge
xα = normalized center of gravity location, positive aft
y � f�x� = output of interest
Zs�x; y� = structural shape
α = pitch degree of freedom
αq = aerodynamic heat flux scaling factor
αs = static angle of attack

β =
Mf

Mfd
, flutter Mach number ratio

βs = shock angle
Γ = gamma function
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γ = specific heat ratio
ΔTf = Tf − Tfd, variation of flight time
δjk = Kronecker symbol
θ = forebody surface inclination
−1 ≤ ξ ≤ 1 = normalized random variable associated

with uncertain input
μL = laminar coefficient of viscosity
μT = turbulent coefficient of viscosity
ξ = vector of uncertain inputs
ξk = numerical integration scheme points
hξi = mean of ξ
ρp = density of the panel
σf = standard deviation of f
τ = normalized airfoil thickness
ϕi�ξ� = interpolating polynomials functions

ωh =
�������������
Kh∕m

p
, plunge natural frequency

ωα =
�������������
Kα∕Iα

p
, pitch natural frequency

I. Introduction

H YPERSONIC flight is an active area of research motivated by
interest in unmanned rapid response to threats and reusable

launch vehicles for affordable access to space [1–6]. Such vehicles
are based on lifting-body designs,which tightly integrate the airframe
and propulsion system. For hypersonic cruise applications, the
propulsion system is expected to consist of air-breathing engines that
operate for sustained periods in atmospheric flight [5,7,8]. Flying at
hypersonic speeds within the atmosphere causes severe aerodynamic
heating. Accurate modeling of the resulting aerothermoelastic inter-
actions is important for hypersonic vehicle performance, stability,
and reliability analyses.
Hypersonic flows are inherently complex and involve phenomena

that are not present in supersonic conditions such as dissociations,
chemically reacting flow, viscous interactions, and higher levels of
aerodynamic heat flux [7,8]. There are no suitable high-speed, high-
enthalpy tunnels capable of testing scaled models of hypersonic
vehicles. Furthermore, hypersonic aerothermoelastic scaling laws are
not available at high Mach numbers [9]. Therefore, the development
of accurate computational aerothermoelastic simulation capabilities
is critical for the design and analysis of hypersonic vehicles.
High-fidelity numerical simulations of the complex hypersonic

flow environment are computationally expensive, and the state of
art is at a relatively early stage of development where the precise role
of important factors such as real gas effects, chemically reacting
flows, and complex viscous interactions are not understood. Current
analysis tools employ computationally efficient models based on
simplifying assumptions of the physics and/or reduced-order
modeling (ROM) of full-order computations. Compensating for
these shortcomings in modeling requires the use of uncertainty
propagation techniques in hypersonic aerothermoelastic analyses.
Two common simplifying assumptions used in aerothermoelastic

analysis of hypersonic vehicles are piston theory for computing the
aerodynamic loading [1] and Eckert’s reference temperature or
enthalpy method for calculating aerodynamic heat flux [7]. Use of
these assumptions requires the introduction of uncertainty because
several important effects are neglected. Similarly, the use of ROMs
currently under development for a hypersonic vehicle [10–15]
introduces additional sources of error. Thus, the uncertainty due to
unmodeled physics as well as the approximation errors associated
with ROMs have to be modeled. Several approaches for propagating
uncertainty in aeroelastic problems have been considered, such as
direct Monte Carlo simulation (MCS) [16], polynomial chaos
expansion (PCE) [17], and adaptive finite elements [18]. Stochastic
collocation (SC), which is employed in the present study, is an
effective alternative to directMonte Carlo simulation, which requires
prohibitive computational costs for complex problems. Furthermore,
SC does not require modifications to deterministic analyses codes
(i.e., it is nonintrusive) and was shown to outperform PCE in a recent
study [19].

The overall objective of this paper is to investigate the effects of
several uncertainty sources relevant to hypersonic vehicle design.
The approach used for propagating the uncertainty is stochastic
collocation [19], which has never been used for hypersonic
aeroelasticity or aerothermoelasticity.
1) The aeroelastic stability of a typical section representative of a

control surface on a hypersonic vehicle is investigated first. In this
case, uncertainty is associated with the natural bending and torsional
frequencies, and SC is used to quantify the effect of uncertainty on the
flutter Mach number.
2) The aerothermoelastic stability of a panel located on a vehicle

flying at hypersonic speeds is considered next. For this case,
uncertainties due to modeling assumptions associated with the
aerodynamic heat flux and laminar to turbulent transition predictions
are quantified, and their effects on flight time before the onset of panel
flutter is examined.

II. Uncertainty Propagation

Once the outputs of interest have been defined and the uncertain
inputs have been identified, probabilistic approaches can be used to
quantify uncertainty effects. In this study, the effects of uncertain
inputs ξ are propagated through a computational analysis
symbolically represented by f to quantify uncertainty effects on the
output of interest f�ξ�. The uncertainty propagation analysis is
illustrated in Fig. 1. The function f represents the aeroelastic or the
aerothermoelastic stability analyses described in Secs. III.A.1,
III.B.1, where ξ are the uncertain input parameters. The probabilistic
approach to uncertainty quantification consists of the following steps.
1) Each uncertain input is treated as a random variable

characterized by a probability distribution p�ξ�.
2) SC is used to approximate the computationally expensive

functional dependance of the output of interest on the uncertain
inputs, i.e., f�ξ� is approximated.
3) Conventional MCS methods are applied to the computationally

efficient approximate representation obtained fromSC.The effects of
the uncertain inputs on the output of interest are quantified in terms of
probability distributions denoted by p�y�.
Detailed descriptions of the probabilistic characterizations of the

uncertain inputs and the SC function approximations are provided
next.

A. Characterization of Input Probability Distribution

Variability associated with an uncertain input is modeled by a
probability density function (PDF) p�ξ�, and p�ξ0�dξ is the
probability that ξ0 − dξ∕2 ≤ ξ ≤ ξ0 � dξ∕2. Thus, the PDF p�ξ0�
describes the probability of occurrence that the randomvariable ξwill
have the value of ξ0. Commonly used PDFs include normal, log-
normal, exponential, or Cauchy distributions, which are defined on
unbounded domains. Using such PDFs may require evaluating the
output of interest at input combinations with no physical significance
and/or leading to unfeasible computations. In contrast, beta
distributions, given in Eq. (1), represent a family of bounded
probability distributions in which the range of the random input
variables can be controlled by prescribing bounds. Moreover, the
choice of the two parameters A and B permits one to control the PDF
shape as illustrated in Fig. 2. The parameters A and B control the
shape of the tail of the PDF at the bounds ξ � −1 and ξ � 1,
respectively. The valuesA � 1 andB � 1 yield a nonzero PDF at the
two edges. A value for A, B greater than 1 produces a flat tail as
illustrated in Fig. 2. Thus, high values of A andB produce a PDF that
assigns small probabilities to uncertain parameters at the outer edges,
thus emphasizing the central portion. Thus, uniform, symmetric, or

y = f (ξ)

p(ξ)p(ξ) p(y)

y

ξ
2

ξξ Nv

ξ
1

y

Fig. 1 Uncertainty propagation approach.
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nonsymmetric PDFs can be accommodated over the input range by
using beta distributions [20]. A beta distribution corresponding to
particular values of A and B is denoted by Beta�A; B�:

p�A;B��ξ� �
Γ�A� B�
Γ�A�Γ�B�

�1� ξ�A−1�1 − ξ�B−1
2A�B−1

(1)

B. Stochastic Collocation

Once the sources of uncertainty are identified and quantified by
appropriate probability distributions, the effects of uncertainty can be
studied using two types of approaches: intrusive [18,21–23] and
nonintrusive [16,19,24]. Hypersonic aerothermoelastic problems
require the use of nonintrusive methods due to the complexity of
comprehensive analysis codes.
Direct Monte Carlo simulation is the simplest nonintrusive

approach used in relatively simple aeroelastic studies [16,17,25–31].
This method requires numerous evaluations of the function of
interest (e.g., flutter Mach number) at values of the uncertain inputs
dictated by their probability distributions. The computational cost
associated with numerous analysis evaluations is prohibitive for
complex problems such as hypersonic aeroelastic and aerothermoe-
lastic analysis. Therefore, SC is employed in this study as a
computationally efficient alternative to direct MCS.
In SC, computationally efficient polynomial response surfaces are

used to approximate the functional relationship between uncertain
inputs ξ and the output of interest f�ξ�, where ξ is a normalized
random variable varying between the limits −1 and 1:

f�ξ� ≈ f̂�ξ� �
XP�1
j�1

Ajϕj�ξ� (2)

The response surface f̂ given by Eq. (2) consists of an expansion
in terms of polynomial basis functions �ϕj�ξ��1<j<P�1, in which
Aj are fitting coefficients, and P� 1 represents the number of
basis functions. Once constructed, MCS can be applied to the
computationally inexpensive polynomial response surface to obtain
the probability distribution associated with the output of interest.
In the current study, the expensive analyses are evaluated at a set of

inputs ξ, called collocation points. The collocation points are chosen
such that mean mf, given by Eq. (3), and variance σ2f, given by
Eq. (4), are estimated using a numerical integration scheme defined
by NI integration points, �ξk�k�1;NI and their corresponding weights
�wk�k�1;NI . Thus, the collocation points correspond to the numerical
integration points:

mf �
Z
Ω
p�ξ�f�ξ� dξ ≃

XNI
k�1

wkf�ξk� (3)

σ2f �
Z
Ω
p�ξ��f�ξ� − hfi�2 dξ ≃

XNI
k�1

wk�f�ξk� − hfi�2 (4)

For the one-dimensional case, the polynomial response surface,
given by Eq. (2), is generated using Lagrange polynomials
�ϕj�j�1;P�1 [Eq. (5)] associated with the collocations points
�ξk�k�1;NI [Eq. (6)]:

ϕj�ξ� �
YNI

k�1;k≠j

ξ − ξk
ξj − ξk

j � 1; P� 1 (5)

ϕj�ξk� � δjk k � 1; NI j � 1; P� 1 (6)

The degree of the polynomial approximation P in Eqs. (5) and (6) is
equal to NI − 1.
For a multidimensional random input space, ξ � �ξiv �iv�1;Nv , in

which Nv is the number of uncertain inputs, the multivariate
extension of Eq. (5) is given by Eq. (7):

ϕj�ξ� �
YNv
iv�1

YNI
k�1;k≠j

ξiv − ξivk
ξivj − ξivk

j � 1; P� 1 (7)

For beta distributions, the corresponding numerical integration
scheme is computed using Gaussian quadrature [32]. For a single
random variable, the numerical integrations points are the roots of the
Legendre polynomial function of degreeNI associated with the beta
probability distribution of the input. The numerical integration
scheme is exact for polynomial functions of order less than 2NI − 1.
In the two-dimensional case, the collocation points are depicted in
Fig. 3 for beta distributions corresponding to various combinations of
A and B for NI � 72. This method tends to concentrate collocation

Fig. 2 Examples of beta PDF shapes for different combinations of A
and B.

a) Beta (1,1) b) Beta (2,3) c) Beta (3,3)
Fig. 3 Collocation points for two random variables for different beta distributions, NI � 72.
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points in the regions of higher probability. For instance, integration
points associated with the Beta�3; 3� PDF have a higher
concentration at the center of the domain compared to the grid
associated with Beta�1; 1�.
Because there is ample evidence that the SC approach is superior to

polynomial chaos expansion [19] (another widely used technique),
SC was selected for this study. Note, however, that this method
suffers from the curse of dimensionality, which implies that
increasing the number of random inputs exponentially increases the
number of analyses and the computational cost of the method. The
number of analyses required for the implementation of the SC
approach is �P� 1�Nv . Furthermore, the collocation points
associated with most integration schemes are located strictly within
the domain of the input variable. Therefore, extrapolation is required
for response surface evaluations close to the domain boundaries,
which may adversely affect accuracy. Other efficient interpolation
techniques can be considered to create the response surface such as
adaptive sparse grid interpolation [33,34], Kriging surrogates [35], or
multivariable splines [36,37] if discontinuities are present. The
investigation of such approaches is beyond the scope of this paper.

III. Results

Two representative case studies are considered. The first
corresponds to the aeroelastic analysis of a hypersonic control
surface section. Next, the aerothermoelastic stability of a panel
located on the surface of a hypersonic vehicle is examined.
The importance of nondeterministic approaches for hypersonic

vehicle aeroelastic analysis is characterized by comparing the results
with those obtained from deterministic analyses. In all results, the
95% confidence interval for the flutter Mach number and minimum
and maximum values are obtained by conducting 105 Monte Carlo
simulations on the approximate problem (i.e., the polynomial
response surface) using the MATLAB random number generator for
beta distributions betarnd.

A. Aeroelastic Stability of a Two-Dimensional Typical Section

1. Description of the Aeroelastic Problem

The flutter Mach number associated with a double wedge typical
section representative of a control surface of a hypersonic vehicle is
examined first. The typical section, shown in Fig. 4, is characterized
by pitch (α) and plunge (h) degrees of freedom. This problem was
treated deterministically in [2].
For this particular problem, the equations of motion given in

Eq. (8) can be obtained using Lagrange’s equations assuming small
deflections and no structural damping:

�
m Sα
Sα Iα

��
�h
�α

�
�
�
Kh 0

0 Kα

��
h
α

�
�
�
−L
Mea

�
(8)

The aerodynamic loading is obtained from third-order piston theory
given by Eq. (9), where vn is the velocity normal to the chord line of
the airfoil given in Eq. (10) and Zs accounts for the thickness of the
airfoil and w for the deformation:

P�x; t� − P∞

P∞
� γ

�
vn
a∞
� γ � 1

4

�
vn
a∞

�
2

� γ � 1

12

�
vn
a∞

�
3
�

(9)

vn�x;w; _w� �
∂w
∂t
�U∞

�
∂
∂x
�Zs �w� � αs

�
(10)

As the freestream Mach number increases, flutter ensues, and the
flutter Mach number Mf corresponds to zero damping in one of
the two modes of the aeroelastic system. The output of interest is
the flutter Mach number Mf. In the probabilistic approach, the
probability that the flutter Mach number is less than some percentage
of the deterministic prediction as given by Eq. (11) is quantified. In
this example, the value of β � 85% is assumed to be an acceptable
limit for the flutter Mach number; it corresponds to an aeroelastic
stability margin of 15%:

pf�β� � p�Mf < βMfd� (11)

The variability is introduced in the uncoupled natural frequencies
ωα and ωh to account for uncertainty from possible changes in
frequencies due to aerodynamic heating. Therefore, the output of
interest for this problem is a function of two uncertain inputs, denoted
ξ1 and ξ2, which correspond to the natural frequencies. The
aerodynamic loading is obtained from third-order piston theory. The
aeroelastic stability is determined using an efficient damping
identification method known as the ARMA model [38]. Damping is
extracted from the transient response of the system. As dynamic
pressure increases, flutter ensues, and the flutter Mach number Mf

corresponds to zero damping in one of the two modes of the system.
The flutterMach numberMf depends also on the offseta between the
elastic axis and the midchord.

2. Uncertainty Propagation for the Two-Dimensional Typical Section

The system is represented by the parameters given inTable 1, taken
from [2]. As indicated in [39], changes in frequencies can be also
considered to be representative of the combined effects of material
degradation and thermal stresses that occur in a heated structure. The
bending frequency increases as the structure heats up, and the
torsional frequency decreases [39]. The range of variation of the
bending and torsional frequencies observed for typical trajectories of
a airbreathing hypersonic vehicle are �−3;�14%� and �−30;�0%�,
respectively [39], and these were selected as representative values.
The respective probability distribution is chosen to be uniform as
summarized in Table 2.
Selection of the degree of the polynomial required for the SC

expansion is based on a convergence study. In the convergence study,
a andH are fixed at 0.0 and 40,000 ft, respectively. Themean and the
variance associated with the flutter Mach number obtained from
polynomial expansion up to 10th order are compared to results
obtained from a 15th-order expansion based on �15� 1�2 � 256
analysis evaluations. The relative errors associatedwith themean and
standard deviation are shown in Fig. 5. Furthermore, the accuracy ofFig. 4 Two-degree-of-freedom typical section geometry.

Table 1 Baseline configuration for the
typical section

Parameter Value

H � 0 100; 000 ft �
a �−0.4 0.4 �
c 2.35 m
τ 3.36%
xα 0.2
ωh 13.4 Hz
ωα 37.6 Hz

Table 2 Uncertain parameters associated
with the two-dimensional typical section

Parameter Range Distribution

ωh �−3% �14% � Uniform
ωα �−30% �0% � Uniform

LAMORTE ETAL. 195

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
22

33
 



the various polynomial expansions is quantified by comparing the
response surface predictions with the exact values obtained for a 16
by 16 Cartesian uniform grid spanning the uncertain variables space.
For the corresponding 256-point set, the maximum and sum of
squares (L2) relative errors between the computed value and the
response surface prediction is computed and shown in Fig. 5. The
maximum error is close to the expected accuracy of the analysis for a
response surface based on a sixth-order expansion (i.e., 49
collocation points). Similar convergence is observed for all of the
combinations of altitude and elastic axis offset considered in this
study. Therefore, the sixth-order polynomial expansions are used in
generating the results corresponding to various values for the elastic
axis offset a and the altitude H.
Note that certain parameters associated with the analysis had to be

modified to obtain reliable results when propagating uncertainty; the
time step is divided by 2, and the simulated time is increased by a
factor of 5 compared to that used in the deterministic calculations.
These modifications are necessary to allow the ARMA method to
identify both frequencies and damping coefficients in the transient
response, particularly when ωh and ωα are close to each other.
Uncertainties associated with the pitch and plunge natural

frequencies are propagated to the flutter Mach number using a sixth-
order polynomial response surface generated by stochastic
collocation. The results are depicted in Figs. 6a and 6b and concisely
summarized in Table 3. In both figures, the deterministic flutterMach
number, represented by a thick line and diamond symbols, is
compared to the mean in flutter Mach numbers due to the
uncertainties. The expected value of flutter Mach number is depicted
using the cross symbols. Furthermore, an interval likely to include the
flutterMach numberwith 95%confidence (95%CI) is represented by
a shaded area. The dashed and dash–dotted lines corresponds to the
minimum and maximum values respectively. The 15% margin in

flutter Mach number is represented by the plain line with the point
symbols.
In Fig. 6a, the elastic axis offset a varies from −0.4 to 0.4, and the

altitude is constant and equal to 40,000 ft. The results show that the
maximum of the flutter Mach number is close to the deterministic
value. Recall that the baseline analysis does not correspond to the
mean values of the uncertain parameters but to ξ1 � 0 and ξ2 � 0,
which are close to the bounds of the uncertain parameters interval.
The mean of ξ1 and ξ2 correspond to a modification of ωh and ωα by
�11.5 and −15%, respectively. As a result of uncertainty modeling
for the probabilistic case, the natural frequencies are closer to each
other for 99.7% of the cases when compared to the deterministic
analysis; ωh increases, and ωα decreases. It yields a lower flutter
Mach number inmost cases. The standard deviationvaries from 11 to
16%of the deterministic value. The 95%CIs interval varies from−61
to �1% of the deterministic value. Similarly, the variation of the
flutter Mach number with altitude is depicted in Fig. 6b, and the
elastic axis offset is equal to 0.1. Finally, in both cases, the 15%
margin lies inside the interval given by the expected value and the
standard deviation as well as the 95% CI, which corresponds to high
probability of the flutter Mach number to be less than this limit.
The probability distributions of the flutter Mach number are given

in Figs. 7a–7c for various elastic axis offsets a. The bars represents
the PDF, and the curved line represents the cumulative distribution
function (CDF) of the flutter Mach number. The deterministic value
and its probability are indicated on the CDF curve by a diamond
symbol. The 15% margin is indicated by a the left-pointing triangle
symbol. It shows that there is a significant probability that the system
will flutter before the value predicted based on the baseline
parameters and the margin selected. This illustrates the significance
of using nondeterministic approaches to properly quantify the
aeroelastic stability boundary.
Additional information can be extracted from the probabilistic

nature of the uncertainty quantification analysis, as illustrated in
Fig. 8a, which shows the probability that the flutter Mach number is
less than some percentage of the deterministic prediction given by
Eq. (11). For example, depending on the value of the elastic offset,
there is a 63–78% probability that the control surface will flutter at a
Mach number that is 15% less than the deterministic prediction,when
assuming a PDF corresponding to Beta�1; 1�.
These results demonstrate that uncertain inputs can produce

significant levels of variability in predicted flutterMach numbers. By
treating the problem in a probabilistic manner, more information
about the flutter margin is extracted. In this particular case, the
deterministic analysis is not sufficient because large variations in the
flutter Mach number due to the assumed uncertainties are found.
The effect of the input probability distribution shape of the random

inputs on the stochastic output probability distribution is also
considered using the framework developed. The range for the
frequencies is unchanged. Both ξ1 and ξ2 have the identical
probability distribution for all cases shown in Figs. 8 and 9. The

Fig. 5 Convergence study for SC method; a � 0, andH � 40;000 ft.

−0.4 −0.3 −0.2

a) H = 40,000 ft b) a = 0

−0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25 95% CI
Deterministic
Mean
Max
Min
Limit

4 5 6 7

x 10
4

0

5

10

15

20

25

30

35
95% CI
Deterministic
Mean
Max
Min
Limit

Fig. 6 Uncertainty propagation results for varying a) elastic axis, and b) altitude.
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results illustrate the effect of the probability distribution of the input
as illustrated by Figs. 8b–8d and Figs. 9a–9c. The choice of input
probability distribution affects all the stochastic analysis quantities
(i.e., mean or expected value, standard deviation, 95% confidence
interval, and probability of failure). As expected, maximum and
minimum are not modified because the ranges of the uncertain inputs
are the same. In all cases, theCI is reduced. This behavior is a result of
the monotonic relation between the inputs and output as well as the
shape of the probability distributions chosen for the inputs. All three
distributions give more probability to the interior of the domain of
uncertain inputs. Therefore, the CI of the uncertain inputs is smaller,
which yields a smaller CI for the output. In addition, the CI of the
flutter Mach number moves closer to the maximum in the case of

Beta�3; 2� and closer to the minimum in the case of Beta�2; 3�. In
fact, the Beta�2; 3� distribution gives more probability to the lower
values of the frequencies compared to Beta�3; 2�. Therefore there is
more probability given to the lower Mach numbers. It shows that the
statistical results should be interpreted in the context of the
assumptions made regarding the uncertainty of the inputs.
When considering these results, it is important to note that the

altitude (H � 40; 000 ft) at which the aeroelastic studies are
conducted is not realistic of hypersonic flight. Howevermore realistic
altitudes of 80,000–100,000 ft result in high Mach numbers, and
therefore the altitude is artificially reduced to obtain more practical
values. However, as pointed out in [2] and shown here through the
uncertainty propagation approach, incorporation of aerodynamic

Table 3 Flutter Mach number variability;H � 40;000 ft

Elastic offset Mf hMfi σMf
95 CI Normalized 95 CI, % Range Normalized range, %

a � −0.4 22.84 18.23 (−20.17%) 2.60 (11.40%) [13.47, 22.28] �−41.09; −2.48 � [12.52, 23.03] �−45.18; 0.86 �
a � 0 13.25 9.75 (−26.38%) 1.93 (14.59%) [6.44, 12.84] �−15.47; −3.15 � [5.97, 13.36] �−54.92; 0.85 �
a � 0.4 9.22 6.41 (−30.46%) 1.50 (16.26%) [3.92, 8.88] �−27.54; −3.76 � [3.61, 9.32] �−60.89; 1.06 �

a) a = –0.4 b) a = 0 c) a = 0.4
Fig. 7 Flutter Mach number PDF prediction using a sixth-order polynomial expansion in SC;H � 40;000 ft.

a) Beta(1,1)=Uniform b) Beta(3,2)

c) Beta(2,3) d) Beta(3,3)

Fig. 8 pf �β� for different inputs probability distributions;H � 40;000 ft.
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heating leads to a reduction of the flutter Mach number, and thus
aerothermoelastic studies that account for the effects of heat transfer
will produce operating altitudes and Mach numbers more
representative of hypersonic vehicle operating regime.

B. Aerothermoelastic Behavior of a Panel

1. Description of the Aerothermoelastic Problem

The second problem is the aerothermoelastic stability of an
aerodynamically heated two-dimensional panel. A detailed
deterministic study of this problem was performed in [13]. The
panel depicted in Fig. 10 is located on the surface of a vehicle flying at
hypersonic speeds. It is assumed that the panel is covered by a thermal
protection system consisting of a radiation shield and thermal
insulation, shown in Fig. 11. The radiation shield is a PM-2000
honeycomb sandwich, and the thermal insulation is internal
multiscreen insulation. The plate structure is composed of a high-
temperature grade of titanium (Ti-6Al-2Sn-4Zr-2Mo). The material
properties are given at 300 K in Table 4. Specific heat and thermal
conductivity are temperature-dependent [13,40,41].

The aeroelastic model for this problem is obtained by combining
the two-dimensional, moderate deflection von Kármán plate theory
given in Eq. (12) with unsteady aerodynamic loading qa, based on
third-order piston theory. It accounts for thermal stresses as well as
change inmaterial properties due to effect of temperature. The effects
of thermal loading due to arbitrary in-plane and through-thickness
temperature distributions are included in Nx and MT , respectively.
The TPS contributes to the mass but not to the stiffness.

D
∂4w
∂x4

− Nx
∂2w
∂x2
� ρp

∂2w
∂t2
� qa �

∂2MT

∂x2
� 0 (12)

The nonlinear equations of motion are solved using a Galerkin
approach to discretize the spatial dependance, and the time-domain
panel response is obtained from a fourth-order Runge–Kutta scheme.
The out-of-plane displacement w�x; t� [Eq. (13)] is expressed as a
combination of sine modes and a third-order polynomial function
uniquely defined to satisfy nonhomogeneous boundary conditions
due to thermal loads:

w�x; t� �
X6
n�1

An�t� sin
�
nπ

x

lp

�
� C1�t� � C2�t�x� C3�t�x2

� C4�t�x3 (13)

The heat transfer problem is treated using Eckert’s reference enthalpy
model for evaluating the aerodynamic heat flux [42]. The temperature
distribution in the structure is computed from a finite-difference
solution of the heat transfer problem given by Eq. (14):

ρc
∂T
∂t
� kx

∂2T
∂x2
� kz

∂2T
∂z2

(14)

It is assumed that the vehicle is in straight and level flight, at a
constant altitude and Mach number. Because the edges of the panel
are fixed at its end points, thermal stresses develop as the panel is
heated, leading to buckling and eventual aerothermoelastic
instability. The through-the-thickness temperature gradients bend
the panel upward before it flutters. The instantwhen the panel starts to
flutter determines the flight time Tf that characterizes the stability
boundary of the system, and it represents the time to failure. This
flight time corresponds to the instant when the out-of-plane panel
displacement at the midchord point reaches −10% of the panel
thickness. This metric is chosen as a useful value for identifying the
onset of flutter from the transient response of the panel. This value for

95% CI
Deterministic
Mean
Max
Min
Limit

a) Beta (3,2) b) Beta (2,3) c) Beta (3,3)
Fig. 9 Uncertainty propagation results for different input probability distribution;H � 40;000 ft.

Fig. 10 Panel located on an inclined surface of a wedge-shaped
forebody.

Fig. 11 Two-dimensional model of the thermal structure.

Table 4 Properties of the thermal structure at 300 K

ρ, kg∕m3 c, J∕kg∕K k,W∕m∕K hi, mm

Radiation shield 359 465 0.250 7.4
Thermal insulation 73.0 729 0.0258 10.0
Plate structure 4540 463 6.89 5.0
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the out-of-plane displacement signifies the onset of oscillating values
forw, which is indicative of panel flutter. This metric for the onset of
flutter is accurate towithin�1 s of flight time, based on the nature of
the results generated.
Because aerodynamic loading, elastic deformation, inertial loads,

and heat transfer are tightly coupled [13], heat flux prediction is a key
component of the analysis. The use of Eckert’s reference enthalpy
model implies several assumptions about themodeling of the heating
problem, which introduce sources of uncertainty and affect the
stability of the system. Therefore, uncertainty in the heat flux
prediction has to be quantified. A scaling factor αq for the heat flux is
introduced and treated as the first random variable ξ1. The location of
the transition from laminar to turbulent flow, xti, is treated as the
second random variable ξ2.

2. Uncertainty Propagation for the Aerothermoelastic Problem of a Panel

This problem is defined by the parameters provided in Table 5. The
altitude considered is 98,500 ft, and the freestream Mach number
varies between 8 and 12. The forebody inclination is 5 deg; the panel
is assumed to be 1.5 m long and is located at a distance of 1.0 m from

the leading edge of the vehicle. The flow over the panel is assumed to
be fully turbulent because transition is assumed to start at the leading
edge of the vehicle and to end before the leading edge of the panel.
Thus, in this problem, uncertainty is introduced in the heat flux
transfer computations.
Appropriate modeling of turbulence and gas properties is a key

factor for accurate prediction of the aerodynamic heat flux on the
structure. In [13], two sources of uncertainty have been identified.
The first is associated with uncertainty in turbulence modeling, and
the second pertains to uncertainty in the transition from laminar to
turbulent flow. Both influence the heat flux and thus have a direct
impact on the aerothermoelastic stability of the panel.

a. Turbulence Modeling. The uncertainty due to turbulence modeling
was quantified by comparing Eckert’s reference enthalpy model [42]
with full-order CFD results based on two turbulence models; this
comparison is depicted in Fig. 12. The full-order results were
generated with the CFL3D code [43] for a flight Mach number of 8.0
and a surface temperature on the panel of 900 K. For the panel
deflections shown in Figs. 12a and 12c, the predicted heat flux
distributions along the panel computed using the various models are
illustrated in Figs. 12b and 12d. It is evident that the results depend on
the model used to compute the convective heat flux. Four different
predictions are compared: two based on CFD computations with
different turbulence models, namely Menter and Wilcox available in
CFL3D [43], and two based on Eckert’s reference enthalpy and
reference temperature models. The models considered in Fig. 12
result in similar spatial distribution shapes for the heat flux and differ
only in the magnitude of the heat flux.
Based on these results, the uncertainty due to turbulence modeling

is characterized by the variation in heat flux predictions based on the
differences between Eckert’s reference enthalpy model, and the CFD
results based on different turbulence models are accounted for by
using a scaling factor αq that modifies the Eckert’s reference enthalpy

Table 5 Baseline configuration for the
panel

Parameter Value

H 98,500 ft
M∞ 8–12
θ 5 deg
lp 1.5 m
hp 5 mm
T0 300 K
xe 1.0 m
xti 1.0 m

Fig. 12 Comparison of aerodynamic heating predictions over two deformed panel shapes; Twall � 900 K, andM � 8 (from [13,14]).
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heat flux Qaero to yield αqQaero. The range for αq is chosen to be
0.95 < αq < 1.25 to encompass the difference between Eckert’s
reference enthalpy and both CFD results shown in Figs. 12b and 12d.
A value of αq � 1 corresponds to the baseline value employed in
[14]. The probability distribution for αq is assumed to be uniform,
i.e., Beta�1; 1�.

b. Transition Location Prediction. In addition to the uncertainty
associatedwith the turbulencemodel, the uncertainty associatedwith
the location of the onset of transition is also modeled. In [13], the
location at which the flow transitions from laminar to turbulent was
arbitrarily selected to correspond to the distance between the leading
edge of the vehicle and the leading edge of the panel. Transition
modeling in hypersonic flow is a complex issue. The location of the
transition region depends on numerous parameters such as flight
conditions, wall temperature, surface roughness, or disturbances
levels present in the flow [7].
Uncertainty in the transition is quantified by using CFD++, a

commercially available computational fluid dynamics (CFD) solver.
The CFD++ code contains several turbulence models. A turbulence
model recommended for external hypersonic aerodynamic
predictions is the k-ϵ model. To model the transition location, an
algebraic transition (AT) model is used in conjunction with the k-ϵ

model [44]. It triggers transition based on detection of local flow
curvature by augmenting local shear stress.
For each of the additional turbulence equations, boundary

conditions are needed. The dependent variable associated with each
freestream boundary condition can be computed given two
freestream turbulence characteristic parameters: the turbulent kinetic
energy intensity Tu (which varies from 0.1 to 1% for external flows
according to [44]) and the turbulent-to-laminar viscosity ratio μT∕μL
(which varies from 2 to 5). The combination of both parameters
characterizes the level of turbulence in the freestream flow. However,
these parameters are rarely known [44] and therefore should be
treated as uncertain parameters. To estimate their impact on the heat
flux prediction that depends on laminar-to-turbulent transition region
location on the vehicle, four simulations were conducted for different
cases that correspond to the extreme values of both parameters. For
level flight at Mach 8 and a constant wall temperature of 900 K, the
location of the turbulence transition region can be determined from
the heat flux distributions shown in Fig. 13. The sharp vertical
increases in heat flux indicate transition from laminar to turbulent
flow. Turbulence transition location for different values of kinetic
energy intensity varies from close to the leading edge of the vehicle,
which corresponds to x∕lp � −0.67, up to the leading edge of the
panel (x∕lp � 0).
In the deterministic analysis, it was assumed that the panel is

exposed to fully developed turbulent flow. This assumption is
conservative. For laminar flows, the aerodynamic heat flux on the
panel is approximately one-fifth of the heat flux due to turbulent
flows. However, there is uncertainty associated with the location of
the transition due to variability in the turbulence level of the
freestream flows. To quantify the effects of uncertainty associated
with the turbulence onset location, xti, the distance of the onset
location from the leading edge of the panel is varied from 0.2 to 1 m,
corresponding to −0.67 ≤ xti∕lp ≤ −0.1. The distance of 1 m

Fig. 13 Heat flux prediction using CFD++ k-ϵ augmented with AT

model; Twall � 900 K, andM � 8.

Table 6 Uncertain parameters

Parameter Baseline value Range Distribution

αq 1 [0.95 1.25] Uniform
xti, m 1 [0.2 1] Uniform

a) Flight time b) Normalized flight time
Fig. 14 Flight time as a function of flight Mach number.

Fig. 15 PDF for the flight time at Mach 8;H � 98;500 ft.
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corresponds to an onset of turbulent flow at the leading edge of the
vehicle, which represents the baseline value assumed in [13]. The
turbulence onset location is assumed to be uniformly distributed
between 0.2 and 1 m.
Both uncertainties associated with the turbulence model and the

transition location, summarized in Table 6, are propagated through
the analysis and their impact on the flight time is determined, where
flight time is used as metric for onset of instability. A sixth-order
polynomial response surface is constructed based on 49 analysis runs
(i.e., seven collocation points for the two random variables).
Uncertainty propagation results for different Mach numbers are
shown Figs. 14a and 14b. In both figures, the lines correspond to the
deterministic values. The thick bars correspond to the expected
values plus/minus the standard deviation, and the error bars
correspond to the 95% CI. The downward and upward pointing
triangles correspond to the maximum and minimum values,
respectively. In Fig. 14b, the results depicted in Fig. 14a are replotted
in terms of variation of flight timeΔTf and normalizedwith respect to
the deterministic value Tfd.
At Mach 8, the mean value of the flight time is 922 s, compared to

the deterministic value of 1003 s. The standard deviation and range
are 45.1 s (4.5%) and 820–1032 s (�−18%;�3%�), respectively,
where percentages are in terms of the deterministic value. The results
indicate that the expected flight time is less than the deterministic
value, which is close to the maximum flight time at each specified
Mach number. This trend is to be expected, considering the choice of
the uncertain variables and their respective ranges. The range of the
coefficient αq leads to increased heat flux amplitude in 83% of the

cases. When transition is located closer to the leading edge of the
panel, the heat flux on the panel is also increased. These effects
reduce the flight time.
Additional details can be gleaned from the probability distribution

shown in Fig. 15. The bars represent the PDF and the curved line
corresponds to the CDF. The deterministic value is identified by the
vertical line and the diamond symbol. The output probability
distribution indicates a significant probability that the flight timewill
be much less than its deterministic value at Mach 8. These results
illustrate the importance of incorporating uncertainty in a more
complicated aerothermoelastic problem.
The same uncertainty is also propagated at different Mach

numbers, and a concise summary of the probability results is
presented in Table 7. The probability distributions for the additional
Mach numbers are given in Fig. 16. The ranges for αq and the
transition location determined from Mach 8 results are used in these
computations. The trends observed for Mach 9 and 10 depicted in
Figs. 16a and 16b are similar. However, discrepancies are observed
for Mach numbers 11 and 12, as shown in Figs. 16c and 16d,
respectively. The shapes of the PDF curves are not smooth despite
lack for any physical reasons that would justify strong nonlinear
relation between the uncertain inputs and output. Approximately
�1 s errors occur in the estimations of flight time, as described in
Sec. III.B.1. For lower Mach numbers, this error is insignificant
compared to the magnitude of the deterministic value and the
stochastic variability of the output. However, for higher Mach
numbers, this error grows and becomes significant compared to the
estimated flight times and significatively affects the response surface

Table 7 Flight time variability

Mach number Tf , s hTfi, s σTf , s 95% CI, s Normalized 95 CI, % Range, s Normalized range, %

M∞ � 8 1002.8 922.4 (−8.0%) 45.1 (4.5%) [842.5, 1009.2] �−16.0; �0.6 � [819.3, 1031.5] �−18.3; �2.9 �
M∞ � 9 294.3 273.9 (−6.9%) 11.6 (3.9%) [253.5, 296.0] �−13.9; �0.57 � [247.1, 301.6] �−16.0; �2.5 �
M∞ � 10 82.8 79.7 (−3.71%) 1.8 (2.2%) [76.6, 83.1] �−7.5; �0.4 � [75.2, 83.9] �−9.1; �1.3 �

a) M∞ = 9 b) M∞ = 10

c) M∞ = 11 d) M∞ = 12

Fig. 16 PDF of the flight time for other Mach numbers (9 to 12).
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fit. These results indicate what happens when the stochastic
variability is close to the error present in the deterministic analysis.

IV. Conclusions

Stochastic collocation is an efficient approach for propagating
uncertainty in aeroelastic and aerothermoelastic analyses. Reduced-
order models used in hypersonic aeroelastic and aerothermoelastic
analyses based on insufficient knowledge of pertinent physics
associated with this class of problems require an uncertainty
quantification approach. The results demonstrate that deterministic
quantification of aeroelastic and aerothermoelastic stability
boundaries may be inadequate for hypersonic vehicle analysis, and
nondeterministic approaches may be required.
1) The effect of thermal loading on the aeroelastic stability of a

typical section is estimated using the uncertainty propagation
framework. The predicted flutterMach number can decrease by up to
60%. The deterministic flutterMach number is close to themaximum
flutter Mach number for each particular flight condition and elastic
offset.
2) The probability distributions of the random inputs affect

significantly the probabilistic results of the flutter Mach number and
thus the probability of failure.
3) For the aerothermoelastic stability of a panel, the uncertainty

inherent with turbulence modeling and transition prediction
introduce additional sources of error. In this problem, uncertainties
associated with transition location and the heat flux prediction
influence the onset of instability. A 20% variation range for the heat
flux amplitude combined with the uncertainty in transition location
yield to up to a 18% decrease in flight time. Note, however, that the
transition is considered only before the leading edge of the panel and
not on the panel itself.
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