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As a hypersonic vehicle travels upward along an ascent trajectory, the static pressure (p3) in the
scramjet combustor will decrease, which can lead to engine flameout. At low pressures the chemical
reactions between the fuel and air become excessively slow. However, during the ascent the flight
Mach number is increasing; this increases the stagnation temperature and the static temperature
(T3) at the combustor entrance so it tends to prevent flameout. To investigate this tradeoff, a general
method to understand how the flameout limit varies during ascent was developed. The method con-
sists of two parts; first the static temperature and pressure at the entrance to the combustor (T3, p3)
are computed as a function of the vehicle altitude; this is done using a reduced-order propulsion
model called MASIV. In the second part the values of (T3, p3) are inserted into an empirical relation
for the critical Damkohler number in order to determine if flameout occurs or not at each altitude.
The empirical flameout relation is based on previous ground-based measurements made at AFRL
and elsewhere.

I. Introduction
Consider the hypersonic wave rider that is shown in Figure 1. This vehicle, called MAX-1, ascends along the constant
dynamic pressure trajectory (the solid line) in Figure 2, which is a plot of altitude versus flight Mach number. It is
desired to compute a second curve that is the engine flameout operability limit; this limit is sketched as the dotted
line in Figure 2. The trajectory curve then can be modified so as to avoid the flameout limit curve. For example, in
a dual-mode ramjet-scramjet engine it is known that whenever the static pressure at the combustor entrance becomes
too small (typically less than 0.5 atm.) then flameout is possible. However, static pressure is only one of several
parameters that govern flameout.

Figure 1. MAX-1 vehicle and flow path dimensions. Engine width is 2.143 m.

The solid curve in Figure 2 represents a constant dynamic pressure (q = 1
2ρ∞U2

∞ = 100 kPa) trajectory. As the
vehicle flight Mach number increases from 4.4 to 7.0 along this trajectory, the altitude must increase from 18 km
to 24 km. It can be shown that for a constant q ascent trajectory, the ambient pressure (p∞) will decrease and is
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proportional to (1/M2
∞). For the special case of an inlet that provides a constant compression ration (p3/p∞), it follows

that combustor pressure p3 will also be proportional to (1/M2
∞). Thus, increasing the Mach number from 4.4 to 7.0,

as sketched in Figure 2, leads to a nearly threefold increase in the combustor pressure. This can cause such a large
decrease in the chemical reaction rate of the fuel chemistry that the result is engine flameout.

The dotted line in Figure 2 is a sketch of a possible flame out limit of the vehicle; this curve is derived in section 7.
It is not a general result but rather depends on the specific geometry of the flame holder and the engine flow path. It has
a shape that shows that flying at excessively high altitudes leads to flameout due to very small combustor pressures.
Also, as flight Mach number increases, the stagnation temperature becomes so large that the air static temperature
exceeds the auto-ignition temperature. A flame holder is no longer necessary, but flameout can still occur if the
ignition delay time exceeds the residence time that the fuel-air mixture spends in the combustor section.

Figure 2. Schematic of a possible flameout limit (dotted line), and a selected vehicle ascent trajectory (solid line, q = 100 kPa).

II. Approach
In order to compute the flameout limit, it is necessary to first assume that a wall-cavity flame holder is employed,
and then use an empirical relation for the measured critical Damkohler number at flameout. This approach has been
used to estimate flameout limits in afterburners, using the Ozawa empirical flameout relation [1] or a similar empirical
relation [2–6]. Damkohler number [1, 4, 7] is an important propulsion parameter that is defined to be:

DaH =
RRF(ER, p3,T3)

U3/H
(1)

The characteristic length scale is the height (H) of the wall-cavity. Cavity flame holders have been studied ex-
tensively [7–12]. RRF is the maximum reaction rate of the fuel (in 1/seconds) that is defined in Section 5 below. It
depends on the equivalence ration (ER), static pressure (p3) and static temperature (T3). Station 3 is defined to be
the combustor entrance; station 1 is the leading edge of the vehicle and station 2 is the entrance to the constant-area
isolator portion of the inlet (as shown in Figure 3). U3 is the air velocity at the combustor entrance.

The critical value of Damkohler number (Da∗H) that causes flameout must be determined from experiments because
no CFD computations can reliably compute this value. Fortunately there are many measured values for a cavity flame
holder already available. Next the quantity U∗3) is defined; it is the maximum air velocity at the combustor entrance
that is allowed before flameout will occur. A formula for U∗3 is determined by rearranging equation (1):

U∗3 =
RRF

Da∗H
H (2)

As the vehicle ascends, the air velocity U3 at the combustor entrance will increase. When the velocity U3 equals
the right side of equation (2), flameout occurs. So, the flameout limit is designed to be:

U3 = U∗3 (3)

Therefore, equations (2) and (3) are the primary relations that are used to compute the flameout limit. However, the
right side of equation (2) changes during ascent and must be computed at each altitude along the trajectory. The reason
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why U3 increases during the ascent is that the increase in the free stream Mach number causes the inlet stagnation
temperature to increase. This raises the static temperature T3 at the combustor entrance, as well as the local speed of
sound, and this tends to increase U3.

III. Previous Related Work
This section is a brief summary of previous reduced-order models (ROMs) of hypersonic vehicles. A reduced order
model is one that rapidly accesses pre-computed lookup tables; the lookup tables were generated using CFD codes for
one particular geometry or for the chemical kinetics of one type of fuel.

In 2006, the Bolender-Doman AFRL model [13, 14] simulated the flight dynamics of a hypersonic vehicle but it
neglected many details of the propulsion system. To improve the AFRL model, a joint effort between the University
of Michigan and AFRL led to the MASIV (Michigan-AFRL Scramjet In-Vehicle) second-generation model [15–
19]. Items that were added include multiple interacting shock waves in the 2-D inlet (and the exhaust nozzle) using
a technique similar to the method of characteristics and 3-D fuel-air mixing. 3-D mixing was added by included
experimentally-measured formulas for the variation of mixture fraction within a fuel jet that is injected into an air
cross-flow. Also added was finite-rate chemistry, by including strained flamelet lookup tables similar to those used
in the CFD code FLUENT. A trim code was added to compute lift, drag and moments in order to trim the vehicle
at the proper angle of attack at each altitude during the ascent. This work led to a series of publications, one of
which demonstrated that the MASIV code can compute the optimum acceleration time-history that minimizes the fuel
required for ascent [15]. MASIV also was used to compute the ram-scram transition boundary [15] and the operability
limit where the initial stages of engine unstrap occurs. Other reduced-order models of hypersonic vehicles have been
reported by O’Neill and Lewis [20]. Bowcutt [21] and others [22–26] developed models for untrimmed vehicles
that are operated far from the flameout limit. However, no previous reduced-order model has attempted to compute
flameout. So the new aspects of this work are that it pro ides a methodology for computing the engine flameout limits,
and the methodology can be applied to a trimmed vehicle undergoing an ascent trajectory to generate operability limits,
such as the dotted line in Figure 2.

There is a strong motivation to develop reduced-order models for hypersonic vehicles. A ROM provides an ap-
proximate solution rapidly; they are commonly used in the design of a control algorithm or to obtain a first estimate of
an optimal aircraft design. A ROM also gives a “first look” at a large parameter space. The ROM can identify certain
optimal conditions; at a later time, relatively few high-fidelity CFD runs then can be performed. The MASIV code
computes aerodynamic forces and engine thrust for the MAX-1 wave rider by solving ordinary differential equations
in less than five seconds on a single 2.6 GHz processor. With multiple processors the computational time drops to a
fraction of a second.

Suppose that it is desired to compute the aircraft forces, moments, and the trimmed angle of attack at each point
along six possible trajectories to determine the optimum trajectory. Forces on the vehicle must be computed approxi-
mately 1800 times. This is because for each trajectory the vehicle must be trimmed at approximately twenty different
altitudes. At each altitude the forces have to be computed about fifteen times to determine (by iteration) what angle
of attack, equivalence ratio, and elevator settings lead to the trim of the vehicle. A ROM does not compete against
high-fidelity CFD, but instead complements it. The full CFD solution is more accurate than the reduced-order model
solutions, but CFD is not appropriate early in the design cycle, where thousands of combinations of flight conditions
and control inputs are needed for quick performance analysis on ascent trajectories, vehicle design optimization, and
control applications.

Two disadvantages of a reduced-order model are that the level of accuracy of the ROM must be determined by
validation studies, and the ROM is only valid for the one specific geometry for which the lookup tables were generated.
In this case, only quasi-steady changes are considered. There are two types of ROMs: one interpolates between full-
oder CFD solution snapshots, and the other is used here in MASIV. MASIV is a first-principles ROM that solves the
fundamental conservation equations. While 2-D or 1-D assumptions are employed, still it is possible to investigate the
physics to better understand any interesting model predictions.

IV. The MAX-1 Hypersonic Vehicle
The MAX-1 wave rider is drawn in Figure 1; it is similar to the generic aircraft that was first considered by Bolender
and Doman [13]. It has a length of 29.1 m and the width of the dual mode ramjet-scramjet is 2.143 m. The inlet is
rectangular with a sufficiently large aspect ration of 15.3 such that it can be considered to be two-dimensional. The
isolated is 1.38 m long and is folioed by the constant area portion of the combustor that is 0.90 m long. Both have
a cross section of 0.14 m by 2.143 m. The second part of the combustor is 0.62 m and it’s upper wall diverges at 4
degrees.
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In previous studies the sizes of the control surfaces were optimized, the weight distribution altered, and aero-elastic
properties were added [14–19]. Forces on each surface panel are computed using a small-angle panel method and the
method to trim the vehicle is described in [15]. The engine inlet is drawn in Figure 1b and it contains multiple shock
waves that interact. A code called SAMURI, described in [16], is used to compute the static pressure rise and the
stagnation pressure loss in the inlet and exhaust nozzle. It assumes that the flow is 2-D, wall deflection angles are
small, no separation occurs, and that the supersonic inlet Mach number is small enough that strong shock/boundary
layer interactions do not occur.

V. MASIV Combustor Model
The MASIV combustor code was described in detail in [17]. This code includes finite-rate chemistry, real gas proper-
ties, a three-dimensional jet mixing model, a separated boundary layer model, and gas dissociation. The air stream is
modeled as a 1-D flow in the duct drawn in Figure 3. It has variable area, friction, wall heat transfer and head addition
due to combustion. A 3-D pattern of fuel jets in a cross flow is superimposed on this 1-D flow. Fuel is injected from 30
ports that are located at one x-location that is 0.14 m downstream of station 3 in Figure 3. The 30 fuel jets are located
at different span-wise locations across the 2.143 m width; each port is 3.45 cm in diameter. Each port is choked and
the hydrogen fuel enters the combustor at 300K at the sonic speed of 1295 m/s.

Figure 3. Dual-mode ramjet-scramjet internal flow path of MAX-1 wave rider.

MASIV solves the following seven ordinary differential equations, which include the conservation of mass (4),
momentum (5), energy (9), and species (10). The equations are derived in [7].

1
ρ

dρ
dx

=
1
ṁ

dṁ
dx
−

1
u

du
dx
−

1
A

dA
dx

(4)

1
u

du
dx

= −
1
ρu2

dp
dx
−

2c f

D
+ (1 −

uF

u
)

1
ṁ

dṁ
dx

(5)

1
p

dp
dx

=
1
ρ

dρ
dx

+
1
T

dT
dx
−

1
W

dW
dx

(6)

1
W

dW
dx

= −

nsp∑
i=1

W
Wi

dYi

dx
(7)

dṁ
dx

=

nsp∑
i=1

dṁi,F

dx
(8)

cp
dT
dx

=
h0,F − h0

ṁ
dṁ
dx
−

2c f cp(Taw − Tw)

Pr2/3D
− u

du
dx
−

nsp∑
i=1

hi
dYi

dx
(9)

dYi

dx
=
ω̄iWiA

ṁ
+

1
ṁ

dṁi,F

dx
−

Yi

ṁ
dṁ
dx

(10)

Equations (6) and (7) define the equation of state and the molecular weight (W) of the gas mixture, respectively.
Equation (8) states that the total mass flow rate is that of the air plus injected fuel.

An important quantity is ω̄i that appears in equation (10). It is the volumetric reaction rate of each species, in
moles/sec/m3. The bar denotes that it has been averaged over the y and z directions so that it is only a function of
the stream wise coordinate x. To compute the volumetric reaction rate ω̄i, a 2-D empirical sub-model for the fuel-air
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mixing and combustion was developed, because mixing cannot be properly simulated in one dimension. The 3-D
mixing model is described in [27]. First it is assumed that the fuel is injected as a jet in a cross-flow. Experiments
show that the centerline of the fuel jet bends over such that its y-coordinate (yC) is proportional to (xC)1/3, as given
in [17–19]:

yC

dF
= c2

(
xC

dF

)1/3

R2/3 (11)

a)

b)

Figure 4. (a) Contours of volumetric reaction rate of hydrogen (ωH2), and (b) the 1-D profiles of volumetric hydrogen reaction rate (ω̄H2).

where xC is the axial distance from the injector, dF is the fuel jet diameter, and R is the fuel jet momentum ratio
[(ρFU2

F)/(ρAU2
A)]1/2. Measurements also show that along the curved jet centerline, the mean fuel mass fraction (YF,C)

is:

YF,C = c3

(
ρF

ρA

)1/3 (
uF

uA

)−1/3 (
xC

dF

)−2/3

(12)

The mean fuel mass fraction (YF) also varies in the direction that is normal to the curved jet centerline; experiments
show that this variation is nearly Gaussian in shape. Figure 4a shows the resulting contours of hydrogen mass fraction
in an x-y plane.

To account for 3-D turbulent mixing, the same mixing equations are used that appear in the CFD code FLUENT
for an assumed-PDF model. At each (x, y, z) location in Figure 4a the mean mixture fraction is known, based
on the empirical formulas stated above. Mixture fraction is related to the fuel mass fraction. Using the assumed-
PDF approach, fluctuations in mixture fraction are assumed to be proportional to the gradient in the mean mixture
fraction. Another relation is used to compute the scalar dissipation rate from these fluctuations. As with the FLUENT
approach, flamelet lookup tables are required to quantify the finite-rate chemistry. These were generated with the

5 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

37
49

 



Stanford FLAMEMASTER code. This code considers strained flamelets and computes the volumetric reaction rate of
hydrogen (ωH2) in moles/sec/m3 at each (x, y, z) location in the jet in cross flow. Then these 3-D profiles are integrated
to determine ω̄H2 from the following equation:

ω̄H2(x) =
1
A

∫∫
ωH2(x, y, z) dy dz (13)

Resulting profiles of ω̄H2(x) appear in Figure 4b. This value is the react nrate that is required in equation (12). The
final step is to compute the maximum fuel reaction rate (RRF) that is defined to be:

RRF = [ω̄H2(x)]max

(
WH2

ρH2

)
(14)

The first term on the right [ω̄H2(x)]max is the maximum value of the curve drawn in Figure 4b. Also appearing in
equation (14) are the known values of the molecular weight of hydrogen (WH2), which is 2.016 g/mole, and the density
of the injected hydrogen (ρH2).

VI. Interpolation of Chemistry Tables using Proper Orthogonal Decomposition (POD)
Sixteen large chemistry lookup tables were generated using the above approach. Each chemistry table corresponds to
one of four different combustor inlet pressures and one of four inlet temperatures. Each table contains the reaction
rates of eight major species as a function of mixture fraction and fluctuations in mixture fraction. Since the combustor
inlet pressure and temperature usually falls in between the values and ranges of the generated lookup tables, a rapid
interpolation method is required to determine correct reaction rates.

For such a large data set, standard interpolation methods between tables for pressures and temperatures were too
slow or inaccurate, so the method of POD was applied and found to be rapid and accurate. The advantages and
scalability of this technique are explored, and select comparisons are made of the full, non-reduced flamelet data to
the results of the POD analysis.

The proper orthogonal decomposition (POD) is a well-defined method of producing reduced-order, but very accu-
rate, models of large or complex data sets. It has been used in computational fluid dynamics (CFD) analysis to examine
correlations of the structure of turbulent flowfields in time [28–30]. Other time-domain applications include construct-
ing reduced-order models (ROM) of cylinder vortex shedding [31] and an aeroelastic model of a two-dimensional
airfoil [32]. Analogous frequency-domain POD techniques have been explored by Kim [33], applied to a spring
damper system and three-dimensional vortex lattice model. ROMs constructed using POD have been combined with
structural dynamic models and applied to aeroelastic systems [34,35]; it has also been found effective for flutter analy-
sis [36, 37]. It has also been used for reduced-order models of atmospheric and oceanographic data, where the control
space is high-dimensional [38]. However, in this work, the application of POD techniques to reduce multidimensional
flamelet chemistry data used in a model for the mixing and combustion of turbulent jets in crossflow is explored.

Finally, using the developed POD architecture, various thermal properties and combustion efficiencies are calcu-
lated over a wide range of combustor operation conditions. As a hypersonic vehicle travels upward along an ascent
trajectory, the static pressure in the scramjet combustor will decrease, which can lead to engine flameout. At low
pressures the chemical reactions between the fuel and air become excessively slow. However, during ascent the flight
Mach number is increasing. This increases the stagnation and static temperatures at the combustor entrance, tending
to prevent flameout. These trends are observed and provide insight to determine flameout limits and ultimately flight
trajectory envelopes for a hypersonic vehicle. Such results using simple and reduced models prove useful for rapid
design and trajectory optimization.

VII. Application of the POD Method
The combustion flamelet data used in MASIV are stored in large, multi-dimensional structures. In particular, the gas
reaction rates are found in 3-D lookup tables for each gas species that contain the rate data for discrete permutations
of mixture fraction f , mixedness s, and scalar dissipation χ. Currently, data is retrieved through an interpolation of the
function along the table near the given dimensions. Proper Orthogonal Decomposition (POD) presents a method of ap-
proximating the function with a linear combination of basis functions, which affords the same data to be reconstructed
from a smaller data set and less storage space.

Consider a model where a vector u j is calculated at J discrete points within some domain for j = 1, 2, . . . , J. The
u j vector may consist of P quantities of interest as shown in equation (15).

For a two-dimensional inviscid flow problem, one might choose a vector u j where P = 4 and the states are density,
x-momentum, y-momentum, and energy. But in general, u j may contain any type of information for points P. In this
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work u j = ω̇ j, the reaction rate for a single species as a function of several flamelet reference variables, as described
in Section III.

Combining the solution vectors u j over the domain of J points, we end up with a column vector of the form

u j =


u j,1

...
u j,P

 , qm =


u1
...

uJ

 (15)

where qm is a snapshot of the configuration for m = 1, 2, . . . , M. Continuing the example of the inviscid CFD
problem, m can be chosen to be snapshots in time. However, m may generally be any parameter or configuration
affecting the solutions at each of the J points.

The goal of POD is to represent all of the data approximately using a linear combination of K ≤ M basis vectors φk.
These vectors are much like snapshots, but are not in general equal to any individual snapshots. Linearly combining
the M snapshots yields

φk =

M∑
m=1

qmvm
k = Svk ⇐⇒ Φ = SV (16)

where vk =
(
v1

k , v
2
k , · · · , v

M
k

)T
and each entry is the contribution of the mth snapshot to the kth basis vector. Φ is a

matrix of dimension J × K such that each colum is a basis vector φk. S is a matrix of dimension J × M such that each
column is a snapshot qm. V is a matrix of dimension M × K such that each column is vk.

Hall et al. [39] shows that this result reduces to an eigenvalue problem of the form

SSHSvk = λkSvk (17)

where SH is the Hermitian or conjugate transpose of S. Solving for the eigenvalues λk provides a correlation
between the eigenvectors vk and the basis vectors φk. The eigenvectors with the largest values of λk contribute the
most to the values of φk.

Rathinam and Petzold [40] explore the corollary for representing data sets in a general real space Rn, using a
subspace S ⊂ Rn. Here, POD minimizes the total square distance of the former data set to the projected data on S, and
S corresponds to the subspace determined by largest eigenvalues of the system.

A. POD On Flamelet Chemistry Data

The reduced-order mixing model examined in this work is part of the MASIV architecture, which is a complete flow
model developed at the University of Michigan for a hypersonic vehicle with specified geometry and gas properties.
It is further described in Torrez et al. [17] The mixing ROM incorporates the pressure, temperature, mean mixture
fraction f , mixture fraction variance s, and the scalar dissipation rate χ of various gas species to determine the reaction
rates throughout the combustion process and subsequently solve the 1D conservation equations. The reaction rate of
each species varies with the aforementioned parameters, and those parameters are functions of the spatial variables
in the vehicle combustor and isolator. As a result, multiple chemistry tables must be generated and stored to capture
the reaction rate behavior for the wide range of pressures, temperatures, scalar dissipation rates, and species. The
chemistry tables are then interpolated to find the particular reaction rate at a given location and condition.

Following the formulation described in Section II, the solution vector, or quantity of interest, u j is set to be the
reaction rate at the jth value of the lookup variables. The mean mixture fraction and variance parameters are bounded
between 0 and 1, so the j-values are chosen to be discrete combinations of f and s, respectively. The data sets contain
n1 = 201 discrete mean mixture fraction points and n2 = 25 mixture fraction variance points, creating J = n1n2 = 5025
combinations of the aforementioned lookup variables. Therefore, one snapshot of the solution qm in configuration m
is defined as

u j = u j = ω̇ j, qm =


ω̇1
...

ω̇5025

 , S =
(
q1, · · · ,qM

)
(18)

This snapshot is graphically shown in Figure 1, for a given configuration. S is then a row vector of the M snapshots. For
the simplest case in this work, these snapshots are chosen to be M = 46 scalar dissipation rates at a fixed temperature
and pressure for one species.
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a) Contours of Reaction Rate b) Contours of Reaction Rate Error

Figure 5. Flamelet conditions: H2O at p = 2.61 bar, T = 1280 K, and χ = 312.3 [1/s].

Discrete methods of POD are analogous to a matrix decomposition called singular value decomposition, which is a
common mathematical tool implemented on many computational platforms, and is used for this analysis. Any matrix
S can be written as the product

S = UΣWH (19)

where U,W are unitary matrices of size J and M, respectively. Σ is a J × M matrix where the diagonal entries
σm =

√
λm are the square roots of the eigenvalues of SHS, and are the only nonzero entries. For discrete POD analysis,

we propose choosing a correlation quantity 0 < Γ ≤ 1 and setting K as the smallest integer such that

K∑
k=1

σk/

M∑
m=1

σm ≥ Γ, K ≤ M (20)

for the Σ matrix. The determination of a satisfying K value subsequently yields the basis functions for the approxima-
tion as described in Section I. An analogous approach for the general real space example in [40] defines a correlation
matrix from which the eigenvalues are determined. A similar procedure is followed in [38] for producing this matrix
to compute the eigenvalues.

For this application, we look to the simplest case of taking the snapshots qm of the S matrix in equation (18) to be a
range of M = 46 scalar dissipation rates for a single species, H2O, at a fixed pressure and temperature. The correlation
quantity is set to be (1 − Γ) = 10−3. Decomposing S and satisfying the condition in equation (20) for Σ, one finds that
K = 4.

We create three new matrices: Σ̃ = diag
(
σ1, · · · , σK=4

)
, with all other entries being zero, and Ũ, W̃ as the (J × 4)

and (M × 4) parts of the U and W matrices, respectively. These three matrices approximate the function of the entire
table with only a fraction of the data and storage. By multiplying Ũ, Σ̃, and W̃ according to equation (19) we can
recover a new data set S̃, which is an accurate approximation of S. A comparison of S and S̃ for the same snapshot is
shown in Figure 2.

The fractional savings can be measured by comparing the number of data points in the decomposition to that of
the full set:

δ =
(J × K) + (K × K) + (K × M)

(J × M)
× 100% (21)

For this example of H2O at p = 2.61 bar and T = 1280 K, we find that δ = 8.78%. This shows that a small percentage
of the data can be retained, while still capturing nearly all of characteristics of the reaction rate behavior over the
domain.
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B. Additional Input Dimensions to the POD Approximation

The POD analysis may be extended to account for additional parameters on which the reaction rate depends. In Section
III, the gas species, pressure, and temperature were specified such that the only variable parameter outside of the J
points of mixture fraction/variance was the scalar dissipation rate. The range of the scalar dissipation rates made up
the M snapshots. Say that we are now interested in the reaction rates for N number of species. We must then obtain
tabulated data for the matrix Sn given in equation (18) for each of the N species. Defining a new matrix Stotal, a
concatentation of the S matrices, we get

Stotal =
(
S1, · · · ,SN

)
(22)

Introducing additional dimensions to the data follows the same procedure. Allowing pressure as a variable will
require the result in equation (22) to be tabulated at each pressure. Accounting for temperature variation again multi-
plies the size of the resulting matrix by the number of temperature points, and so on. Thus, the general Stotal matrix
will be of the form:

Stotal =

[ S1
N︷ ︸︸ ︷

q1, · · · ,qM︸ ︷︷ ︸
S1

, · · · ,SN , · · · ,SR
N

︸ ︷︷ ︸
S1

N,R

, · · · ,SV
N,R, · · ·

]
(23)

for additional dimensions with number of points M, N, R, V , . . . , respectively. Note that while the total number of
snapshots qM×N×R×V×··· increases with the added dimensions, the number of J = 5025 points remains the same.

Table 1 compares the results of POD for increasing numbers of snapshots and dimensions, for the same correlation
quantity (1 − Γ) = 10−3.

Table 1. Scaling POD to Higher Dimensional Data Sets

Varying Parameters # Data Points # Basis Fraction δ
None (1) - no reduction 5025 1 100%
× Scalar Dissipation (46) 231150 4 8.78%
× Species (8) 1849200 8 2.34%
× Pressures (4) 7396800 10 0.75%

The information here shows that POD is highly effective in approximating multidimensional data sets, while only
adding few eigenvalues/basis functions for each new parameter and using a smaller fraction of the total data.

C. Model Accuracy

To determine the accuracy of the POD approximation, we compare the original data set S to the recovered data set
S̃ = ŨΣ̃W̃H after the matrix decomposition and eigenvalue analysis. Integrating the absolute error of the reaction rate
at each point in the matrices is an insufficient approach, as larger data sets will inevitably sum to larger total errors.
Instead, we look to match the aggregate properties of both data sets, the mean, variance, and standard deviation, and
infer the accuracy of the approximation from their likeness. Table 2 shows the percent difference of the root-mean-
square (µ̃, µ), variance (ν̃, ν), and standard deviation (σ̃, σ) of the approximated data set S̃ with respect to S, for each
case discussed in Section IV.

Table 2. Mean, Variance, and Standard Deviation Error

Varying Parameters (µ̃/µ − 1) (ν̃/ν − 1) (σ̃/σ − 1)
None (1) - no reduction −3.8 × 10−8 5.8 × 10−5 2.9 × 10−5

× Scalar Dissipation (46) −8.8 × 10−8 8.0 × 10−6 4.0 × 10−6

× Species (8) −9.2 × 10−8 −1.8 × 10−7 −9.2 × 10−8

× Pressures (4) −8.5 × 10−8 −1.7 × 10−7 −8.5 × 10−8

The results show that even while the size of the data increases significantly with each added dimension, the aggre-
gate behavior of the reaction rate for both the original data set and the POD approximation remain strongly correlated.
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It is important, however, to recognize that this is not necessarily true for the general case. It is possible to construct data
sets such that the matrix S becomes ill-conditioned and the eigenvalue analysis produces less accurate basis vectors.
In such cases, POD is not sufficient and other methods must be used for a better approximation.

We can see that for this application, using POD to reduce and approximate large flamelet chemistry data sets proves
to be very effective and accurate. Where the multidimensionality of the reaction rate requires numerous chemistry
tables to be generated, POD is most useful in reducing the storage and memory footprint, while maintaining the
integrity of the data with low error margins. This allows those computational resources to be allocated elsewhere in
the reduced-order model. If not all of the data is needed, the relevant portions can be recovered by combining only
parts of the decomposition, eliminating the wasted storage of keeping the full chemistry tables. Recovering the full
data set is easily done by multiplying the full matrices from the decomposition.

VIII. Flameout Limits During Ascent
To understand the flameout limit curve, the following simple examples are presented for an idealized hypersonic
vehicle. The critical Damkohler number at flameout is the constant Da∗H , which must be determined from experiment.
From Ozawa [1], the chemical reaction rate is represented as:

RR = C2

[ T
300K

]n [ p3

1atm

]m
[

S L,0

1m/s

]2

(24)

where the constants C2, n and m must be determined from experimental flameout measurements. The factor
(S L,0/1m/s)2 in equation (24) accounts for the different types of fuel that may be used. Each fuel has a known value
of the laminar burning velocity S L,0 which is measured at stoichiometric conditions (pressure at 1 atm, temperature at
298 K). From the definition of Damkohler number in equations (2-4), and equation (24), it follows that at flameout:

U∗3 = H
(

C2

Da∗H

) [ T
300K

]n [ p3

1atm

]m
[

S L,0

1m/s

]2

(25)

For an idealized vehicle, the following assumptions are made. The adjustable inlet is designed to provide a fixed
value of Mach number at the combustor entrance (M3) equal to 2, and a fixed inlet pressure ratio p3/pa equal to 20.
The inlet is adiabatic so the stagnation temperature T0,3 equals T0,a, which is Ta(1 + 0.2M2

∞). The ambient static
temperature Ta does not change significantly with altitude for a short ascent. The left side of equation (25) is the Mach
number times the speed of sound at station 3, so:

U∗3 = M3

[
γR

(
T3

T0,3

)]1/2

(T0,a)1/2 (26)

With the above assumptions, M3, (T3/T0,3), and Ta are constant during ascent. So we obtain:

U∗3 = C ∗ (1 + 0.2M2
∞)1/2 (27)

where C is some constant. The right side of equation (25) becomes the following, under the same assumptions:

U∗3 = C ∗ (1 + 0.2M2
∞)n(pa)m (28)

Now the ambient static pressure varies inversely with altitude (h), and combining equations (27) and (28) leads to:

(1 + 0.2M2
∞)1/2 = C ∗ (1 + 0.2M2

∞)n(pa)m (29)

h = C(1 + 0.2M2
∞)(2n−1)/(2m) (30)

Ozawa’s data shows that n = 2 and m = 1, so the flameout limit curve is determined to be the following relationship
between altitude h and flight Mach number:

h = C(1 + 0.2M2
∞)3/2 (31)

This is the result of the simple scaling analysis. It yields the flameout limit curve in Figure 2 that is drawn as a
dotted line. The many assumptions made in the scaling analysis can be replaced by computations using the MASIV
inlet and combustor codes. This more accurate exercise will be reported in a future paper.
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