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This paper presents an obstacle avoidance method for spacecraft relative motion control. In this approach, a

connectivity graph is constructed for a set of relative framepoints,which formavirtual net centeredaroundanominal

orbital position. The connectivity between points in the virtual net is determined based on the use of safe positively

invariant sets for guaranteed collision freemaneuvering. A graph search algorithm is then applied to find amaneuver

that avoids specified obstacles and adheres to specified thrust limits. As compared to conventional open-loop

trajectory optimization, this approach enables the handling of bounded disturbances, which can represent the effects

of perturbing forces andmodel uncertainty, while rigorously guaranteeing that nonconvex and possibly time-varying

obstacle avoidance constraints are satisfied. Details for handling a single stationary obstacle, multiple stationary

obstacles, moving obstacles, and bounded disturbances are reported and illustrated with simulation case studies.

Nomenclature

A = discrete-time system matrix
Ac = continuous-time system matrix
�A = closed-loop system matrix
B = discrete-time input matrix
Bc = continuous-time input matrix
C = positively invariant ellipsoidal set scaled by ρ
Ck = contractive ellipsoidal set for moving obstacles
�C = positively invariant ellipsoidal set defined by r

and K
D = union of obstacles
ei = vertices of constant polytope
Fx, Fy, Fz = external force coordinates
F = external force vector
int = interior
K = controller gain
K = finite set of controller gains
L = Lagrangian
mc = spacecraft mass
N = finite set of prescribed spacecraft relative

positions
n = mean motion
O = set of obstacle locations q defined by Q
Q = shape matrix of obstacle
q = relative position of obstacle
R = spacecraft position vector with respect to center

of Earth
R0 = nominal orbital position vector
r = relative position vector
S = state-to-position matrix
U = control vector

umax = maximum thrust
V = Lyapunov function
W = disturbance bounding set
w = disturbance
X = state vector
Xe�r� = equilibrium state set
x, y, z = spacecraft relative coordinates
γmin = minimum scaling parameter for positive invari-

ance under disturbance
ΔT = sampling period
δr = spacecraft position vector with respect to target

location
λ1, λ2 = Lagrange multipliers
μ = gravitational parameter
ρ = scaling parameter
ρg = obstacle-dependent growth distance
ρu = maximum thrust growth distance
ρ� = thrust-limited growth distanceL

= Minkowski sum

I. Introduction

T HE need for spacecraft obstacle avoidance techniques has
grown in recent years. Obstacles of concern in space applica-

tions include, for instance, orbital debris. In fact, as many as 40% of
ground trackable objects are pieces of debris that originated from
explosions that now number approximately five per year [1]. Other
obstacles may include appendages and spacecraft components that
must be avoided during proximity operations and docking. There-
fore, spacecraft maneuvering algorithms must address obstacle
avoidance requirements, which result in nonconvex and, in the case
of moving obstacles, time-varying constraints on spacecraft motion.
Although obstacle avoidance is a standard problem in robotics ([2]

p. 66, [3]), the related spacecraft problem has several unique features.
First, the space environment is relatively uncluttered, permitting a
variety of maneuvers that may be optimized with respect to fuel con-
sumption, maneuver time, etc. Second, spacecraft dynamics are quite
different from those of typical robots and are affected by unmodeled
perturbing forces and other sources of model uncertainty. Third, the
states of the spacecraft and the obstacles can only be estimated, often
with significant estimation error. Finally, given limited onboard
computing power and the presence ofmoving objects, computational
algorithmsmust be fast. These unique features providemotivation for
the development of specialized algorithms.
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Interest in spacecraft trajectory optimization with obstacle avoid-
ance has increased in recent years. An optimal control problem with
path constraints constructed as keep out zones to avoid obstacles was
formulated in [4]. The Sparse Optimal Control Software (SOCS) was
then used to solve the problem ([5] pp. 177–180). Another nonlinear
optimal control formulation was used in [6] to solve for minimum-
fuel rendezvous between a target and chaser, where collision
avoidance requirements were incorporated as inequality constraints.
This method involved solving a sequence of unconstrained optimal
control problems, whose solution converges to the solution of the
original problem. A three-dimensional static cost optimization over
final relative position and time-of-flight for obstacle avoidance is
presented in [7], where feedback is incorporated by replanning over
either constant or variable time intervals.
Obstacle avoidance strategies have also been defined using

collision avoidance probabilities. Collision avoidance strategies
based upon the number of evasive maneuvers, expected risk reduc-
tion, false alarm rate, required propellant consumption, and mass
fraction for an accepted collision probability are presented in [8].
Guidance based on an artificial potential function is used in [7,9] to

determine a rendezvous path free of obstacles. A potential function is
developed with the intent that a minimum occurs at a desired relative
position and then a dynamic control law is used to ensure the
trajectory is collision free [9].
The spacecraft obstacle avoidance problem has also been treated

using linear programming techniques [10–13]. In [10], a minimum-
fuel avoidance problem is formulated with linear constraints and
discrete-time dynamics. In [11], the problem is formulated as a linear
program capable of including operational constraints, which results
in the optimal number of maneuvers. In [12], a mixed-integer linear
program resulting from combining collision avoidance, trajectory
optimization, and fleet assignment is solved to obtain the optimal
solution for spacecraft maneuvers. A robust linear programming
technique is proposed in [13], from which a maneuver can be con-
structed by solving a linear programming problem with no integer
constraints, guaranteeing collision avoidance with respect to
bounded navigation uncertainty.
In the present paper, the development of an onboard maneuver

planning approach is based on the use of safe positively invariant sets
[14–17]. These sets determine connectivity between static points,
that is, with zero velocity, in Hills’ relative motion frame ([18]
p. 299). A collection of points forms a virtual net in the vicinity of the
spacecraft, where two points are said to be connected if a linear-
quadratic (LQ) feedback gain can be chosen such that the transition
between them satisfies thrust limits and avoids collision with poten-
tially moving obstacles. A connectivity graph, or node adjacency
matrix, for all the points in the net is constructed based on fast growth
distance computations between ellipsoidal sets, whereas real-time
graph search algorithms are used to optimize a point command
sequence that avoids obstacle collisions. Note that points are used as
artifices in maneuver construction; the spacecraft does not reach or
remain at any of the points (except for the target point), switching
immediately to the next point in the sequence once suitable switching
conditions are satisfied.
The unique features of this problem — that is, the dynamics of

spacecraft relative motion being different from that of ground robots,
the nonconvex and time-dependent constraints imposed due to
moving obstacles, and the handling of unmeasured disturbances and
uncertainties that may in part account for navigation errors —

significantly impede the application of existing open-loop trajectory
optimizers, previous optimal control results, and feedback control
algorithms. The present paper provides a feasible solution to this
complex problem by reducing it to an online graph search, which is
not conceptually or computationally complex. It relies on positively
invariant set techniques similar to well-established ones reported in
([14], [16] pp. 110, 271–335, [17,19,20]) and assures robustness
to unmeasured (but set-bounded) disturbances and uncertainties
through mechanisms similar to those employed in robust model
predictive control (MPC) [21–23]. Computationally, the approach
relies on standard numerical algorithms for graph search, which are
used inmany applications, andwhose complexity can bemanaged by

adjusting the number of nodes in the virtual net. For other uses of
graph-theoretic ideas in spacecraft maneuvering, see [24–27].
Details of online and offline computations are carefully addressed

to ensure that the presented approach has low computational
overhead and strong potential to be real-time implementable onboard
a spacecraft. Maneuver efficiency in terms of time or fuel consump-
tion can be improved within the framework by selecting appropriate
costs for the node adjacency matrix and by employing a multigain
controller switching architecture, where selection of the controller
gain is part of the optimization. It is also expected that the feasible
solution provided by this method can be used as an initial guess
for open-loop trajectory optimizers or robust MPC algorithms. In
problems of this kind, a good initial guess is critical to achieve
numerical convergence within the available time. Finally, note that
this solution, unlike an open-loop trajectory, does not require precise
assignment of spacecraft control inputs vs time, instead relying on
feedback and switching conditions for executing with increased
robustness.
Preliminary versions of some results in this paper have appeared in

various conference publications [28,29]. The differences with
previous work [14,15,20] stem from extending that approach to
handle nonconvex and time-varying obstacle avoidance constraints.
Ong andGilbert [30]motivated the use of growth distances; however,
in [30], these distances are defined between polyhedral sets, whereas
here ellipsoidal sets are considered.
The paper is organized as follows. In Sec. II, the relative motion

model is summarized. In Sec. III, the main features of the approach,
i.e., the virtual net, a multigain LQ controller, and positively invariant
sets, are introduced. To introduce the frameworkwithout overloading
the reader with ancillary details, the case of a single stationary
obstacle is treated first in Sec. IV. Procedures to determine point
connectivity and construct the point connectivity graph are devel-
oped. It is shown that themaneuver construction procedures reduce to
a conventional graph search. The approach is expanded in Sec. V to
handle moving obstacles either by covering the obstacle’s path with a
union of stationary obstacles (in the case of a fast moving obstacle) or
by accounting for the motion of the obstacle in time (in the case of a
slow moving obstacle). In the latter case, sets satisfying a con-
tractivity property are employed, and the connectivity graph vertices
are extendedwith time information. Finally, the treatment of bounded
disturbances is the subject of Sec. VI. Section VII presents simula-
tions that illustrate these approaches for avoiding both stationary and
moving obstacles, and for the case of bounded disturbances. Finally,
Sec. VIII contains concluding remarks.

II. Relative Motion Model

The spacecraft relative motion model presents spacecraft dynamics
in the (noninertial) Hill’s frame, where the origin is a target location on
a nominal circular orbit.

A. Nonlinear Equations of Motion

The relative position vector of a spacecraft with respect to a target
location on an orbit is expressed as

δr � xî� yĵ� zk̂

where x, y, and z are the components of the spacecraft’s position
vector relative to the target location and î, ĵ, and k̂ are the unit vectors
of Hill’s frame. Hill’s frame has its x axis oriented along the orbital
radius, y axis orthogonal to the x axis and in the orbital plane, and z
axis orthogonal to orbital plane.
The position vector of the spacecraft with respect to the center of

the Earth is given by R � R0 � δr, where R0 is the nominal orbital
position vector. The nonlinear equation of motion for the spacecraft
(relative to an inertial frame) is given by

�R � −μ
R

R3
� 1

mc
F (1)
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where F is the vector of external forces applied to the spacecraft,
R � jRj, mc is the mass of the spacecraft, and μ is the gravitational
parameter.

B. Linearized Clohessy–Wiltshire–Hill Equations

For δr≪ R, the linearized Clohessy–Wiltshire–Hill (CWH)
equations [31] approximate the relative motion of the spacecraft on a
circular orbit as

�x − 3n2x − 2n _y � Fx
mc
; �y� 2n _x �

Fy
mc
; �z� n2z � Fz

mc
(2)

where Fx, Fy, Fz are components of the external force vector

(excluding gravity) acting on the spacecraft, n �
�����������
μ∕R3

0

q
denotes the

mean motion of the nominal orbit, and R0 is the nominal orbital
radius. The linearized dynamics account for differences in gravity
between the spacecraft and nominal orbital location, and for relative
motion effects.
The spacecraft relativemotion dynamics in the orbital plane (x and

y) and in the out-of-orbital plane (z) are decoupled. The in-plane
dynamics are Lyapunov unstable (two eigenvalues at the origin and
two eigenvalues on the imaginary axis at �nj), whereas the out-of-
plane dynamics are Lyapunov stable (two eigenvalues on the imagi-
nary axis at�nj). The in-plane dynamics are completely controllable
from Fy input but are not controllable from Fx input. The out-of-
plane dynamics are controllable from Fz input. These dynamics are
clearly very different from typical ground robots.
Assuming a sampling period of ΔTs, the model (2) can be

converted to a discrete-time form

X�t� 1� � AX�t� � BU�t� (3)

where X�t� � �x�t�; y�t�; z�t�; _x�t�; _y�t�; _z�t�	T is the state vector at
the time instant t ∈ Z�, U�t� � �Fx�t�; Fy�t�; Fz�t�	T is the control
vector of thrust forces at the time instant t ∈ Z�, and A �
exp�AcΔT�, B � ∫ ΔT

0 exp�Ac�ΔT − τ�� dτBc are the discretized
matrices obtained based on the continuous-time system realization
�Ac; Bc� in Eq. (2).
Note that alternative formulations of the control vector are possi-

ble. For instance, it may be desirable to prescribe Δv commands
(realized by thrust forces) ([32] pp. 271–279) or employ on–off
thruster time width modulation. These alternative formulations also
lead to a model in the form of Eq. (3); however, the B matrix is
numerically different. For instance, the Δv formulation has the same
A matrix as given previously, but the B matrix is instead given by

B � eAcΔT
�
03×3
I3×3

�
(4)

III. Preliminaries

In this section, the basic features of the framework, specifically, the
virtual net, the multigain LQ controller, and positively invariant sets,
are reviewed.

A. Virtual Net

Thevirtual net comprises a finite set of pointsXe�r� corresponding
to a finite set of prescribed spacecraft relative positions r ∈ N �
fr1; r2; : : : ; rng ⊂ R3

Xe�rk�� �rk 0 	T � �rx;k ry;k rz;k 0 0 0 	T; k� 1; · · · ;n (5)

whose velocity states are zero and where n is the number of points in
the virtual net (see Fig. 1). The dots in Fig. 1 correspond to positions
rk, k � 1; : : : ; n, at points Xe�r� on a virtual net, whereas the
ellipsoid represents the obstacle position and uncertainty. It is
assumed that for all r ∈ N , the corresponding values of control
necessary to support the specified point in steady state satisfy the
imposed thrust limits.

Although the virtual net is based on positions corresponding to
constant control inputs, it may be possible to integrate other motions.
In particular, free motions that correspond to zero propulsion force
trajectories are clearly of interest. The basic idea is to employ
trajectory tracking controllers and positively invariant sets associated
with the trajectory tracking error dynamics to define a notion of
connectivity to and from such a trajectory. Note however, that several
simplifications occur for static points that are not available for more
general trajectories, and as such, the subsequent development only
makes use of static points.

B. Multigain LQ Controller

A conventional LQ feedback

U � K�X − Xe�r�� � Γr � KX�H�K�r (6)

is used to control the spacecraft thrust to arrive at a commanded point
(5), where

Γ �

2
4−3n2mc 0 0

0 0 0

0 0 n2mc

3
5; H�K� � Γ − K

�
I3
03

�

and where I3 denotes the 3 × 3 identity matrix and 03 denotes the
3 × 3 zero matrix. The LQ controller provides an asymptotically
stable closed-loop system but does not enforce obstacle avoidance
constraints.
To provide greater flexibility in handling constraints, a multigain

controller architecture is employed [15]. Specifically, it is assumed
that a finite set of LQ gains K ∈ K � fK1; · · · ; Kmg are available to
control the spacecraft. Although feedback gains can be generated
using other techniques, the use of LQ is practically convenient. By
using a large control weight in the LQ cost functional, motions with
low fuel consumption yet large excursions can be generated; using a
large control weight in the LQcost, motionswith short transition time
can be generated. See [33] for a detailed study of the dependence
between LQ cost weights and fuel consumption metrics.

C. Positively Invariant Sets

An ellipsoidal set, characterized by a relative position r ∈ N and
corresponding to a gain K ∈ K, is defined by

�C�r;K��
�
X∈R6:

1

2
�X−Xe�r��TP�K��X−Xe�r��≤1

�
⊂R6 (7)

where

�A�K�TP �A�K� − P < 0 (8)

�A�K� � �A� BK� and P � P�K� > 0. This set is positively
invariant for closed-loop dynamics. Positive invariance implies that
any trajectory of the closed-loop system that starts in �C�r; K� is
guaranteed to stay in �C�r; K� as long as the same gain K is used and
the set-point command r is maintained.
Positively invariant sets are useful for constraint enforcement. If

the constraints are satisfied pointwise in the positively invariant set
(i.e., the set is not only positively invariant but is also safe), the

Fig. 1 Virtual net for obstacle avoidance.
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trajectory starting in the set will satisfy the constraints for all future
times assuming that the set-point and the gains do not change.
To achieve the positive invariance, the matrix P can be obtained as

the solution of the discrete-time Riccati equation in the LQ problem
or as the solution of the preceding Lyapunov equation for the closed-
loop asymptotically stable system. Note that because the system is
linear, the positive invariance of �C�r; K� implies the positive
invariance of the scaled set

C�r;K;ρ��
�
X∈R6:

1

2
�X−Xe�r��TP�K��X−Xe�r��≤ρ2

�
; ρ≥0

Geometrically, the set C�r; K; ρ� corresponds to an ellipsoid scaled
by the value of ρ and centered around Xe�r�, r ∈ N . In the case of
bounded disturbances, the sets C�r; K; ρ� will be invariant for all
sufficiently large ρ. See Sec. VI.

IV. Single Stationary Obstacle Avoidance

In this section, the virtual net approach is developed for the case of
avoiding a single stationary obstacle. A stationary obstacle refers to
an obstacle whose Hill’s frame coordinates remain constant in time.
Such an obstacle can correspond to an object in the same orbital track
as the spacecraft, to amaneuvering obstacle that manages tomaintain
its relative position, or to an imagined obstacle that is used to cover
a moving obstacle’s path (see Sec. V). The underlying idea is to
maintain the spacecraft within a tube formed by safe positively
invariant sets that do not intersect with the obstacle.
Consider ri ∈ N , representing a possible position on the net that the

spacecraft can move to as a part of the obstacle avoidance maneuver.
Suppose O ⊂ R6 corresponds to the relative positions and velocities
occupied by the obstacle (see Sec. IV.A for the actual obstacle
representation) and that the current state of the spacecraft isX�t0� at the
time instant t0 ∈ Z�. If there exists a ρ ≥ 0 and Kj ∈ K such that

X�t0� ∈ C�ri; Kj; ρ� and O�q;Q� ∩ C�ri; Kj; ρ� � ∅ (9)

the spacecraft can move to the position ri ∈ N by engaging the
control law with r�t� � ri andK�t� � Kj, t ≥ t0, and without hitting
the obstacle confined to O.
The details of the approach are now presented.

A. Obstacle Representation

The set O�q;Q�, centered around the position q ∈ R3, is used to
overbound the position of the obstacle, i.e.

O�q;Q� � fX ∈ R6: �SX − q�TQ�SX − q� ≤ 1g (10)

where Q � QT > 0 and

S �

2
4 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

3
5 (11)

The set O�q;Q� can account for the obstacle and spacecraft physical
sizes and for the uncertainties in the estimation of the obstacle/
spacecraft positions. Note that the setO�q;Q� has an ellipsoidal shape
in the position directions and is unbounded in the velocity directions.
Ellipsoidal sets, rather than polyhedral sets, are used here to overbound
the obstacle, because ellipsoidal bounds are typically produced by
position estimation algorithms, such as the extended Kalman filter.

B. Growth Distances

Motivated by [30], the minimum value of ρ ≥ 0 for which
O�q;Q� ∩ C�r; K; ρ� ≠ ∅ is referred to as the growth distance. This
growth distance can also be viewed as the least upper bound on the
values of ρ for which O�q;Q� and C�r; K; ρ� do not intersect. In
Fig. 2, the positively invariant set is grownuntil touching the obstacle.
The spacecraft can thenmove from any of the points on the virtual net
inside the positively invariant setC�r; K; ρ� toXe�ri�markedwith ‘x’

without colliding with the obstacle. The notation ρg�r; K;Q; q� is
used to reflect the dependence of the growth distance on the set-point
r ∈ N , the control gainK ∈ K, and the obstacle parametersQ and q.
Note that the growth distance depends on the position and shape of

the obstacle (i.e., q and Q), which may be unknown in advance.
Consequently, growth distance computations have to be performed
online.
Because spacecraft have limited thrust, an additional maximum

value of ρ � ρu�r; K� has been defined, for which X ∈ C�r; K;
ρu�r; K�� implies that the thrust U � KX�H�K�r satisfies the
imposed thrust limits. Here, ρu is referred to as the thrust limit on
growth distance. Unlike ρg, the value of ρu does not depend on the
position or shape of the obstacle and can be precomputed offline.
Finally, the thrust-limited growth distance is defined as

ρ��r; K;Q; q� � minfρg�r; K;Q; q�; ρu�r; K�g (12)

Note thatX�t0� ∈ C�ri; Kj; ρ��ri; Kj; Q; q�� implies that the ensuing
closed-loop spacecraft trajectory under the control (6), where r�t� �
ri and K�t� � Kj for t ≥ t0, satisfies the thrust limits and avoids
collisions with an obstacle confined to O�q;Q�.
The preceding definitions were given for the case of a single

stationary obstacle O�q;Q�. In the case of multiple obstacles, the
growth distance is replaced by the multigrowth distance, which is the
minimum growth distance to each of O�ql; Ql�, l � 1; · · · ; nd.

C. Growth Distance Computations

Define �X � X − Xe�r� and α � 2ρ2. The problem of determining
the growth distance ρg�r; K;Q; q� reduces to the constrained
optimization problem

min
α; �X

α

subject to �XTP �X≤ α

��S� �X�Xe�r��−q�TQ��S� �X�Xe�r��−q�≤ 1 (13)

where a minimum size invariant ellipsoid is found that shares a
common point with the obstacle. To solve this optimization problem,
the Karush–Kuhn–Tucker conditions are used ([34] pp. 342–345,
[35] pp. 162–167). Note that standard linear independence constraint
qualification conditions hold given that P > 0. In addition,

L � α� λ1� �XTP �X − α�
� λ2��S� �X� Xe�r�� − z�TQ�S� �X� Xe�r�� − q� − 1�

where λ1 and λ2 are Lagrange multipliers. The stationarity of the La-
grangian (setting partial derivative equal to zero)with respect toα yields
λ1 � 1. The stationarity of the Lagrangian with respect to �X yields

�X � �X�λ2; r; q� � −�P� λ2S
TQS�−1STQ�SXe�r� − q�λ2 (14)

where the scalar λ2 ≥ 0 is to be determined. Note that P > 0,
STQS ≥ 0, λ2 ≥ 0 (as the Lagrange multiplier corresponding to an
inequality constraint) imply that (P� λ2S

TQS) is invertible. The
problem reduces to finding a nonnegative scalar λ2, which is the root of

Fig. 2 Positively invariant set grown until touching obstacle.
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F�λ2; r; q� � �SX − q�TQ�SX − q� − 1 � 0 (15)

where

X � �X�λ2; r; q� � Xe�r�

The scalar root finding problem (15) has to be solved online multiple
times for different r ∈ N , and in the case of avoiding a predicted
obstacle path also for different q. To quickly solve this problem, while
reusing previously found solutions as approximations, a dynamic
Newton–Raphson’s algorithm is used ([35] pp. 308–309, [36]). This
algorithm uses predictor–corrector updates to track the root as a
function of q and r, and is given by

λk�1;�2 � λk2�
�
∂F
∂λ2
�λk2;qk;rk�

�−1�
−F�λk2;qk;rk�

−
∂F
∂z
�λk2;qk;rk��qk�1−qk�−

∂F
∂r
�λk2;qk;rk��rk�1− rk�

�
;

λk�12 �maxf0;λk�1;�2 g

To implement the algorithm, the known functional form for F is taken
advantage of and explicitly compute the partial derivatives

∂ �X
∂λ2
� �P� λ2S

TQS�−1
n
−STQ�SXe�r� − q� − STQS �X

o
;

∂F
∂λ2
� 2�SX − q�TQ

�
S
∂ �X
∂λ2

�
;

∂ �X
∂r
� �P� λ2S

TQS�−1f−STQSΩgλ2;

∂F
∂r
� 2�S �X − q� r�TQ

�
S
∂ �X
∂r
� I3

�
;

∂ �X
∂q
� �P� λ2S

TQS�−1STQSΩλ2;

∂F
∂q
� 2�S �X − q� r�TQ

�
S
∂ �X
∂z

− I3
�

(16)

where, Xe�r� � Ωr

Ω �
�
I3
0

�

and I3 denotes the 3 × 3 identity matrix. Note that SΩ � I3.
Figure 3 illustrates growth distance tracking. For the first 20

iterations, rk is held constant to enable initial convergence of the
algorithm. Then, rk varies through the virtual net. One iteration of the
Newton–Raphson algorithm per value of rk is used to update the root
λk�12 . Figure 3b demonstrates that the growth distance tracking is
accurate. The growth distance is occasionally zero, indicating an
overlap between several rk and the obstacle. Figure 3c illustrates the
trajectory of rk in three dimensions.

D. Thrust Limit on Growth Distance Computations

Suppose that the thrust limits are expressed in the form kLUk ≤ 1
for an appropriately defined matrix L and norm k · k. The computa-
tional procedures to determine ρu�r; K� involve solving a bilevel
optimization problem where kL�KX�H�K�r�k is maximized
subject to the constraint X ∈ C�r; K; α�, and bisections are per-
formed on the value of α so that the maximum value is driven to one.
As demonstrated in this section, in special cases, this computation
can be greatly simplified.
Suppose that the thrust constraints are prescribed in terms of

polyhedral norm bounds, specifically

eTi �KX�Hr� ≤ umax; i � 1; 2; · · · ; m; (17)

where ei denotes the vertices of the unit normpolytope andumax is the
norm bound. The infinity norm, for instance, has m � 6, and
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Fig. 3 Growth distance tracking. a) components of r, rx, ry, and rz varying vs iteration number, b) growth distance vs iteration number computed by the
dynamic Newton–Raphson algorithm, and c) trajectory of r and obstacle (ellipsoid).
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In the case of nonpolyhedral norm bounds, such as the two-norm, an
approximation by a polyhedral norm bound can be employed.
The thrust limit on the growth distance is then determined based on

solving, for i � 1; · · · ; n, the optimization problems

maximize eTi �KX�Hr�

subject to
1

2
�X − Xe�r��TP�X − Xe�r�� ≤ c (19)

If the value of c is found for which the solutionsX�i of Eq. (19) satisfy
maxifeTi �KX�i �Hr�g � umax, then ρu�r; K� �

���
c
p

.
The problem (19) can be solved by diagonalizing the matrix

P � PT > 0, using an orthogonal matrix, V

P � VTΛV; Λ � diag�λ21; · · · ; λ26	; λi > 0

By defining z � X − Xe�r� and ζ so that

z � VTΛ−1
2ζ

it follows that

zTPz � ζTΛ−1
2VPVTΛ−1

2ζ � ζTζ

The problem (19) can now be rewritten as

maximize hTi ζ � eTi Γr

subject to
1

2
ζTζ ≤ c (20)

where

hTi � eTi KVTΛ−1
2

The solution to the constrained maximization problem (20) of
maximizing the inner product of two vectors over a unit two-norm
ball is given by

ζi �
hi
khik

������
2c
p

(21)

where k · k denotes the vector two-norm. The maximum value of the
objective function in Eq. (19) is given by

khik
������
2c
p

� eTi Γr

Consequently, to satisfy Eq. (17), let

c �

8<
:
0; if ∃i: umax ≤ eTi Γr;

min
i

1
2

�
umax−eTi Γr
khik

�
2

; otherwise
(22)

Thus, the problem of finding the thrust limit on the growth distance
for polyhedral norm bounds has an explicit solution given by
Eq. (22). Even though the computation of thrust limits on the growth
distance can be performed offline for the nominal operating condi-
tions, fast computational procedures are beneficial in case of thruster
failures, degradations, and restrictions on thrust directions (e.g.,
caused by the presence of other spacecraft nearby), all of which can
lead to changing constraints on thrust that need to be handled online
during spacecraft missions.
Note that the condition umax ≥ maxifeTi Γrg is satisfied if the

available thrust can maintain the point Xe�r� in steady state. It is also
noted that, based on the form of Γ, c is independent of ry, which is the
in-track component of the point in the virtual net. Hence, the
computations of ρu�r; K� need only be performed with ry � 0.
When a spacecraft does not have independent thrusters in the x, y,

and z directions, a two-norm thrust limit is more practical. Unfor-
tunately Eq. (19) is, in general, a nonconvex problem. In this case, the

two-norm bound can be approximated by a polyhedral norm bound
(17), with the vertices ei selected on the unit two-norm ball in R3.
Note that higher accuracy of this approximation requires a higher
number of vertices in Eq. (17), which complicates Eq. (22).

E. Connectivity Graph and Graph Search

The notion of connectivity between two vertices of the virtual net,
ri ∈ N and rj ∈ N , is now introduced. The vertex ri is connected to
the vertex rj if there exists a gain K ∈ K such that

Xe�ri� ∈ intC�rj; K; ρ��rj; K;Q; q�� (23)

where int denotes the interior of a set. The connectivity implies that a
spacecraft located close to a point corresponding to ri can transition
to a point Xe�rj� by using limited thrust and avoiding collision with
the obstacle. Note that if ri is connected to rj, it does not imply that, in
turn, rj is connected to ri. It is also noted that connectivity depends on
the existence of an appropriate control gain from the set of gainsK but
the condition (23) does not need to hold for all gains.
Because more than one path that avoids the obstacles and satisfies

thrust limits may exist, offline-constructed unconstrained cost of
transition matrices are used to search for an efficient path. For
instance, to produce time- or fuel-efficient paths, offline simulated
transitions between all ri; rj ∈ N for eachK ∈ K are performed, and
the time and fuel necessary to reach a prescribed neighborhood of
Xe�rj� starting from Xe�ri� are recorded. The results are merged into
an unconstrained cost of transition matrix that stores the respective
minimum value, while in parallel, the control selectivity matrix
identifies which gain K��ri; rj� produced said minimum. Note
that constraints are not accounted for in these offline constructed
transitions.
The online motion planning with obstacle avoidance is performed

according to the following procedure:
Step 1: Determine the obstacle location and shape (i.e., q and Q).
Step 2: By using fast growth distance computations, determine the

thrust-limited growth distance based on Eq. (12), with ρg
computed online and ρu precomputed offline.

Step 3: Construct a graph connectivity matrix between all
ri; rj ∈ N . In the graph connectivity matrix, if two vertices
are not connected, the corresponding matrix element is�∞; if
they are connected, the corresponding matrix element is 1. The
graph connectivity matrix is multiplied elementwise by offline
constructed unconstrained cost of transition matrix to produce a
constrained cost of transition matrix.

Step 4: Perform graph search (using any standard graph search
algorithm) to determine a sequence of connected vertices r�k	 ∈
N such that r�1	 satisfies the initial constraints, r�lp	 satisfies the
final constraints, and the cumulative transition cost computed
from the constrained cost of transition matrix is minimized.

After the path has been determined as a sequence of the set-points,
the execution of the path proceeds by checking if the current state
X�t� is in the safe positively invariant set corresponding to the next
reference r� and control gain K� � K��r; r�� in the sequence; if it
is, then the controller switches to this reference and control gain

X�t�∈C�r�;K�;ρ��r�;K�;Q;q��→ r�t�� r�; K�t��K�
(24)

The online tasks of growth distance computation and graph search are
computationally tractable onboard a spacecraft, both of which run in
O�n� time, where n is the number of nodes in the virtual net.
Although the growth distance optimization problem (13) is complex,
the reduction to a scalar root finding problem (15) and use of
Newton–Raphson’s algorithm to track the root (Sec. IV.C) enables
performance linear in the number of nodes. Note that this compu-
tation is further parallelizable, and that the determination of the other
required parameters (P, ρu) is performed offline.
A variety of algorithms for graph search exist, such as A-star,

Breadth-First-Search, and Dijkstra’s algorithm, that have been used
in navigation, routing systems, and autonomous vehicle applications
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with comparable onboard computing power. Note that due to the
existence of thrust limits on growth distance, the connectivity graph is
very sparse and, as such, the time complexity of search is linear in the
number of nodes. Graph search algorithms have been previously
researched in the context of spacecraft control (see [24–27]). Finally,
note that the computation effort vs performance tradeoff can be
managed by reducing the number of nodes in the virtual net.

V. Moving Obstacle Avoidance Approach

An obstacle is considered moving if its relative coordinates in
Hill’s frame change with time. There are two approaches to avoid
moving obstacles. The first approach, suitable for faster moving
obstacles, is to cover the obstacles’ paths by a union of a finite number
of ellipsoidal sets. Then, the problem reduces to that of avoiding
multiple stationary obstacles and can be treated using a slight modi-
fication of the approach already presented in Sec. IV. Note, however,
that this approach is conservative, as it does not account for the
obstacles progressions along their paths vs time. It is appropriate for
obstacles moving at high relative velocity as compared to spacecraft
maneuvering authority. The second approach, which can be used in
the case of slower moving obstacles, is to account for their motion in
time, by expanding the vertices of the connectivity graph, previously
based solely onN, with time information. To reduce conservatism in
this second approach, the sets satisfy a contractivity property.

A. Avoiding Moving Obstacles by Covering their Paths with a Union
of Ellipsoidal Sets

To avoid a nonstationary obstacle, its path can be covered by a
union of a finite number of ellipsoidal sets

D � ∪
l�nd

l�1
O�zl; Ql� (25)

where the center of the lth set is denoted by zl ∈ R3 and the lth set
shape is defined by Ql � QTl > 0. Then, the obstacle avoidance
condition for the closed-loop trajectory that emanates fromX�0�with
the set-point ri and gain Kj is given by

X�0� ∈ C�ri; Kj; ρ� and O�zl; Ql� ∩ C�ri; Kj; ρ� � ∅;

for all l � 1; · · · ; nd
(26)

The same approach, with larger nd, can be used to handle multiple
moving obstacles.

B. Avoiding Moving Obstacles by Accounting for Their Motion in
Time

To treat slower moving obstacles, the notion of time is introduced
into the problem, whereas a transition between ri and rj might not be
feasible if it is initiated at time t1. However, based on the motion of
obstacles, it might become feasible if it is initiated at time t2. To
accommodate moving obstacles, sets Ck�r; K; ρ�, 0 ≤ k ≤ N, sat-
isfying the following contractivity property

�A�K�k�Ck�r; K; ρ� − fXe�r�g� ⊆ �C�r; K; ρ� − fXe�r�g� (27)

are employed. Note that if X�0� ∈ Ck�r; K; ρ�, then X�1� ∈
Ck−1�r; K; ρ�, X�2� ∈ Ck−2�r; K; ρ�; · · · ; X�k� ∈ C0�r; K; ρ� �
C�r; K; ρ�. The set Ck�r; K; ρ� can be much larger than C�r; K; ρ�;
any states in Ck�r; K; ρ� contract to C�r; K; ρ� in k steps.
The connectivity between two vertices of the virtual net ri ∈ N

and rj ∈ N at a specified time t0 is now defined. This notion is based
on the fact that the time to transition from any state in CN�r; K; ρ� to
C�r; K; ρ� is less or equal thanN steps. Suppose that the obstacle path
D�t0: t0 � N · H� has been predicted over the N · H discrete steps
from the time instant t0, where

D�tk: tr� � ∪
t�tr

t�tk
O�z�t�; Q�t��

The node ri ∈ N is connected to ri ∈ N at the time instant tk �
t0 � kN if there exists K ∈ K such that

D�tk: tk � N� ∩ C�ri; K; ρ� � ∅ (28)

The node ri ∈ N is connected to node rj ∈ N at the time instant tk if
there exists K ∈ K such that

D�tk: tk � N� ∩ CN�rj; K; ρ� � ∅ (29)

and

C�ri; K; ρ� ⊂ CN�rj; K; ρ� (30)

The connectivity implies that a spacecraft located close to a point
corresponding to ri, Xe�ri� can transition close to a point Xe�rj�
between the time instants tk and tk � N while avoiding collision with
the obstacle. Note that if ri is connected to rj, it does not imply that,
in turn, rj is connected to ri, and that connectivity depends on the
existence of an appropriate control gain from the set of gains K but
does not need to hold for all gains. Furthermore, because connectivity
depends on the predicted motion of the obstacle, connectivity/
nonconnectivity can depend on time.
The online motion planning with obstacle avoidance is performed

according to the following procedure:
Step 1: Determine the obstacle location and shape and predict the

obstacle path D�t0: t0 � N · H�.
Step 2: Construct graph connectivity matrices corresponding to tk,

k � 0; 1; · · · ; H. In the graph connectivity matrix, if two
vertices ri and rj are not connected at tk, the corresponding
matrix element is�∞; if they are connected, the corresponding
matrix element is the cost of the transition. In parallel, build the
control gain selectivity matrix, which identifies the index of the
highest preference gain K for which ri and rj are connected.
This gain will be applied if the edge connecting ri and rj is
traversed.

Step 3: Perform graph search to determine a sequence r�tk	 ∈ N and
control gains K�k	 ∈ K, k � 1; · · · ; lp, such that r�t1	 satisfies
the initial constraints, r�lp	 satisfies the final constraints, and the
cost function (such as the path length, expected fuel consump-
tion, or expected maneuver time) is minimized.

Note a few facts. First, condition (29) is conservative. It can be
replaced by a less conservative condition

D�tk: tk �m� ∩ CN−m�rj; K; ρ� � f∅g; m � 0; 1; : : : ; N

at the cost of more intensive computations. Second, the condition
(29) is checked computationally using the fast growth distance
algorithm described in Sec. IV.C. The intersection is empty ifCN can
be grown prior to touching D�tk: tk � N�. This fast growth distance
algorithm is essential to rapidly construct the connectivity matrices.
Finally, in the subsequent simulations, the graph search is applied to a
lifted graph, the vertices of which are the pairs �ri; tk�. Note that for
the moving obstacle case, graph-based techniques have an important
advantage in that the computational time and effort associated with
them increases linearly with time horizon.

VI. Bounded Disturbances

The obstacle avoidance approach can be easily extended to handle
bounded disturbances due to spacecraft relative motion perturba-
tions, including the effects of J2 ([32] p. 219, [37] pp. 85–87]),
nonzero eccentricity ([32] p. 104), thrust errors ([37] pp. 93–97), air
drag ([37] p. 81), solar pressure ([37] pp. 87–89), rotational-
translational kinematic coupling ([32] pp. 227–228), etc.
First, the case of multiple stationary obstacles is considered, where

the system model (3) is extended with the disturbance input

X�t� 1� � AX�t� � BU�t� � Bw�t� (31)
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where w�t� ∈ W, W is the convex hull of wi for i � 1; : : : ; nw, w
i

denotes the vertices of a disturbance set, and nw is the number of
vertices. Note thatW is a compact set.
The positive invariance of C�r; K; γ�, γ > 0, for W � f0g has

already been established. When W ≠ f0g, it can be shown by
employing an input-to-state stable-Lyapunov function

V � 1

2
�X − Xe�r��TP�X − Xe�r�� (32)

and by the compactness of W, that there exists γmin such that
C�r; K; γ� is positively invariant for all γ ≥ γmin. Note that
γmin � γmin�K�.
Because C�r; K; γmin�K�� is disturbance invariant, it contains the

minimum invariant set that is an attractor for closed-loop trajectories,
as long as r and K are maintained at constant values. Hence, in the
case of bounded disturbances, connectivity can be redefined by
replacing Xe�ri� in Eq. (23) with C�ri; K; γmin�K��. Specifically, the
vertex ri ∈ N is connected to the vertex rj ∈ N if there existsK ∈ K
such that

C�ri; K; γmin�K�� ⊂ intC�rj; K; ρ��rj; K;Q; q�� (33)

The condition (33) ensures that a switch from ri to rj may occur and
that subsequent dynamics will not lead to collision with the obstacle
once X�t� ∈ C�ri; K; γmin�K��.
To compute γmin under all possiblew ∈ W, it is sufficient to examine

the flow at the vertices wi of the disturbance set and demonstrate
that if Xk ∈ C�r; K; γ�K�� and w ∈ fwi; i � 1; : : : ; nwg, then
Xk�1 ∈ C�r; K; γ�K��. The value γmin is the minimum γ for which
this condition holds.
To find γmin, a bilevel optimization strategy is used,where the inner

loop solves nw optimization problems numerically with respect to X

maximize Fi�X��
1

2
�AX�BU�Bwi�T P�K�

γ2i
�AX�BU�Bwi�;

subject to
1

2
�X−Xe�r��TP�K��X−Xe�r��≤ γ2i (34)

and the outer loop performs bisections on each γi, so that all
Fi�X��γi��, where X��γi� denotes the inner-loop solution, are driven
to 1. Thus, γmin � min�γi� for i � 1; : : : ; nw. Note that γmin is
independent of position r, and so this calculation may be done
once offline for each K ∈ K and stored onboard for real-time
implementation.
The approach of Sec. V for handling moving obstacles while

accounting for their motion in time also admits a straightforward
extension to the bounded disturbance case. The main change is
replacing condition (27) by

�A�K��Ck�r; K; ρ� − fXe�r�g�
M

BW ⊆ �Ck−1�r; K; ρ� − fXe�r�g�;

C0�r; K; ρ� � C�r; K; ρ� (35)

where
L

denotes the Minkowski sum ([14], [16] p. 76).

VII. Simulation Results

Simulations are now provided to illustrate these obstacle avoidance
approaches. For these simulations, consider a nominal circular orbit of
850 km and discretize the CWH equations with a sampling periodΔT
of 30 s. A virtual net covering approximately a 2 km cube is
constructed. The spacecraft mass is m � 140 kg and K � fK1; K2;
K3g, where K1; K2; K3 are the LQ gains associated with state and
control weight matrices Qlqr � diag�100; 100; 100; 107; 107; 107�,
and Rlqr;1 � 2 × 105I3, Rlqr;2 � 2 × 107I3, and Rlqr;3 � 2 × 109I3.
These gains are chosen to represent preferences for fuel considerations
K3, maneuver time considerations K1, and a compromise between
them K2. A maximum thrust constraint of 5 N in each axis is also
imposed. In all simulations, Dijkstra’s algorithm is used to find the
shortest cost path from initial node to final node.

A. Stationary Obstacles

Consider an ellipsoidal set O�z1; Q1� overbounding an obstacle
centered at z1 � � 0.3 0.5 0.5 	T km, where Q1 � 100I3. The
spacecraft’s initial condition is X�0� � Xe�r0�, where r0 �
� 0.32 01.61 	T km, whereas the target’s equilibrium node is Xe�0�.
In the first example, cost of transition between any two nodes in the
virtual net is set to 1 if the nodes are connected and�∞ if not. Using
the stationary obstacle avoidance approach presented in Sec. IVand
the gain K2 results in the closed-loop trajectory shown in Fig. 4. In
Fig. 4a, the “x’s” correspond to the initial and final nodes, the solid
ellipsoid represents the obstacle, the solid curve is the spacecraft
trajectory, and the transparent ellipsoids correspond to the safe
positively invariant sets along the path. Figure 4b shows the
magnitude of the spacecraft’s thrust as a function of time. Note that
the positively invariant sets are grown to different sizes, depending on
both the thrust limit and the constraint that the sets must not intersect
with the obstacle. Using these sets, the spacecraft is able to complete
the desired avoidance maneuver well within maximum thrust
constraints. The simulation is rerun for a grid of initial conditions and
the resultant trajectories are shown in Fig. 5. Each xmarks a different
initial condition, and the solid curves represent the individual paths.
The invariant set ellipsoids are omitted for visual clarity.
Next, a second obstacle O�z2; Q2� centered at z2 �
� 0.3 −0.4 0.5 	T is added, where Q2 � 100I3. In calculating the
growth distance, the minimum distance to each ofO�zi; Qi�, i � 1; 2
is taken. Figure 6 displays the closed-loop path of the spacecraft and
the time history of thrust magnitude.
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Fig. 4 Obstacle avoidance with a single stationary obstacle. a) Obstacle avoidance path and b) time history of thrust magnitude.
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B. Moving Obstacles

Obstacles in Hill’s frame often have a natural, periodic motion.
To account for this motion, consider the case of a nonstationary
obstacle where its path is covered by the union of stationary
obstacles. A union of ellipsoidal sets overbounds the obstacle’
motion, where the obstacle’s positions zi are generated by sampling
the relative motion of the obstacle with the initial condition
� 0 0.5 0 0 0.006 0 	T , and whereQi � 200I3, i � 1 : : : nd.
The spacecraft’s initial condition is X�0� � Xe�r0�, where
r0 � � 0 1 0 	T km. The target equilibrium node is Xe�rd�, where
rd � � 0 −1 0 	T km. Figure 7 demonstrates that the spacecraft is
able to avoid the closed obstacle path by hopping under it.
Cost matrices that reflect time and fuel costs of transition between

nodes are considered next. The graph connectivity matrix is multi-
plied elementwise by these offline constructed unconstrained cost of
transition matrices to produce constrained cost of transition matrices
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Fig. 5 Obstacle avoidance paths for many initial conditions.
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Fig. 6 Obstacle avoidance with two stationary obstacles. a) Obstacle avoidance path and b) time history of thrust magnitude.
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Fig. 7 Nonstationary obstacle avoidance using the stationary obstacle approach. a) Obstacle avoidance path, b) time history of thrust magnitude, and
c) cumulative thrust vs time.
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Fig. 8 Nonstationary obstacle avoidance using the stationary obstacle approach and cost matrices. a) Obstacle avoidance path, b) time history of thrust
magnitude, and c) cumulative thrust vs time.
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Fig. 9 Nonstationary obstacle avoidance using the stationary obstacle approach and gain switching. a) Obstacle avoidance path, b) time history of thrust
magnitude, and c) cumulative thrust vs time.
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for both time and fuel preferenced maneuvers. The simulation is
repeated with these cost matrices and the resultant maneuvers are
shown in Fig. 8. The solid line represents the time-efficient path,
whereas the dashed line represents the fuel-efficient path. In
comparing Figs. 7 and 8, it can be seen that using the costmatrices can
help aid in finding fuel and time-efficient solutions. In Fig. 9,
maneuvers are shown that use cost matrices that have access to all
gains K ∈ K, employing a multigain switching control architecture
in order to produce more efficient maneuvers (see Tables 1 and 2).
The simulations are now repeated, taking into account the obstacle

motion as a function of time using the approach presented in Sec. V.
The spacecraft uses the single gain K2 and uses the appropriate cost
matrices to search for time- and fuel-efficient trajectories. Figure 10
shows that the graph search algorithm is able to find a trajectory that
crosses the path of the obstaclewhile avoiding collision. The spacecraft
waits for the obstacle to move, only then safely proceeding to the
commanded node. Table 3 summarizes the maneuver time and thrust.
The moving obstacle approach is now compared to the union of

stationary obstacles approach. Gain K1 is used when searching for a

time-efficient solution and gainK3 is used when searching for a fuel-
efficient solution. Tables 4 and 5 compare time- and fuel-efficient
maneuvers, respectively. The moving obstacle approach yields
better time- and fuel-efficient solutions than the stationary obstacle
approach at the cost of increased computational complexity.

C. Bounded Disturbances

Finally, the simulations are run for the case when bounded
disturbances are present and themoving obstacle’s path is covered by

Table 1 Total time and thrust for stationary
obstacle approach using gain K2

Path Total time Total thrust

Time-efficient path 3021.50 s 1237.620 N · s
Thrust-efficient path 4098 s 787.078 N · s

Table 2 Total time and thrust for stationary obstacle
approach using the gain switching method

Path Total time Total thrust Gains used

Time-efficient path 2841 s 1264.950 N · s K1, K2

Thrust-efficient path 9177 s 671.297 N · s K2, K3

a) Obstacle avoidance path for moving debris, gain K2
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b) Time history of thrust magnitude
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Fig. 10 Nonstationary obstacle avoidance using the moving obstacle approach and cost matrices. a) Obstacle avoidance path, b) time history of thrust
magnitude, and c) cumulative thrust vs time.

Table 3 Total time and thrust for moving
obstacle approach using gain K2

Path Total time Total thrust

Time-efficient path 5016 s 776.723 N · s
Thrust-efficient path 8355.5 s 745.57 N · s

Table 4 Total time and fuel for time-efficient
trajectory comparison using gain K1, stationary

obstacle approach vs moving obstacle approach

Obstacles Total time Total thrust

Union of static obstacles 2655.0 s 1337.200 N · s
Moving obstacles 2574.5 s 1244.040 N · s

Table 5 Total time and fuel for time-efficient
trajectory comparison using gain K3, stationary

obstacle approach vs moving obstacle approach

Obstacle Total time Total thrust

Union of static obstacles 11276 s 362.967 N · s
Moving obstacles 18875.5 s 272.722 N · s
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a union of stationary obstacles. It is considered that W �
fw: kwk∞ ≤ εg for which nw � 8, that is, disturbances that fit in a
box ofmagnitude ε. Using the approach presented in Sec.VI, the gain
K2, and a uniform distribution of disturbances, for ε � 0.1 N and
ε � 0.2 N, result in the closed-loop trajectories shown in Fig. 11. In
this figure, the large transparent ellipsoids represent the maximally
grown invariant sets C�r; K; ρ��r; K; z�� along the path and the
corresponding smaller ellipsoids represent the disturbance invariant
sets C�r; K; γmin�K�� along the path. The spacecraft is able to safely
avoid the obstacle’s path despite being subjected to disturbances.

VIII. Conclusions

By exploiting the properties of chained positively invariant sets
around points in a virtual net, the problem of spacecraft constrained
maneuver planning can be reduced to a graph search. Graph connec-
tivity can bedetermined online based on thrust-limited growth distance
computations. The application of a predictor-corrector Newton–
Raphson type algorithm yields a fast procedure to determine the
connectivity. With the proposed methodology, stationary and moving
obstacles can be avoided, thrust limits can be enforced, and bounded
additive unmeasured disturbances and uncertainties can be rigorously
accounted for. By using transition cost matrices that emphasize fuel
consumption or transition time, the developed framework effects
maneuvers that consume less fuel or require less time. A moving
obstacle can be avoided by accounting for its motion in time and
exploiting contractive sets, or by avoiding the moving obstacle’s path
covered by a union of ellipsoidal sets. The former approach is less
conservative than the latter and leads to improvements in time and fuel
efficiency of the maneuvers at the cost of increased computation. The
developed methodology generates feasible maneuver solutions to a
difficult control problem with nonconvex, time-varying constraints,
and unmeasured disturbances.
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