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I. Introduction

WAHBA’S problem was introduced in 1965 by Grace Wahba
[1] and is an important problem in aerospace engineering that

typically involves finding an optimal rotation to fit a series of vector
measurements. There have been many different methods developed
to solve Wahba’s problem, both directly in terms of the rotation
matrix [2,3] and in terms of the unit quaternion [4], the most famous
method being QUEST [5]. A good survey of the different methods
may be found in [6] and the references therein. Recently, a useful
generalization of Wahba’s problem has been made, allowing the
determination of both attitude and body rate using a time history of
vector measurements (see [7–9]). However, this Note does not
examine this problem and treats only Wahba’s original problem.
This Note presents a new characterization of the solution to

Wahba’s problem, directly in terms of the rotation matrix. It is shown
that, under a mild condition (that is satisfied in many practical
applications), Wahba’s problem may be recast as a convex linear
matrix inequality (LMI) optimization problem. This opens the door
to a whole new class of solvers for Wahba’s problem. This is
accomplished by relaxing the nonconvex special orthogonal group
[SO�3�] constraint on the rotation matrix to a convex LMI constraint.
This constraint relaxation approach has applications beyond the
solution of Wahba’s problem and can potentially be useful for other
optimization problems involving vehicle attitude, such as guidance
and control problems.
The remainder of the Note is organized as follows. Section II

presents an overview ofWahba’s problem and its solution in terms of
the singular value decomposition (SVD) [3]. Section III demonstrates
that, under a mild condition, the Wahba problem may be recast as a
LMI problem, leading to an identical solution, and conditions under
which this mild condition is satisfied are investigated. Section IV
presents a pair of numerical examples comparing the LMI-based
solution to existing well-established solutions to Wahba’s problem.
Section V contains concluding remarks. The appendix contains a
technical mathematical result, which is used in the Note.

II. Wahba’s Problem and Solution

Wahba’s problem was originally posed by Grace Wahba in 1965
[1]. This section presents a brief overview of Wahba’s problem, a
well-known reformulation, and its solution based upon the SVD. The
SVD solution is reviewed because it will be referenced when the
LMI-based solution is derived in the next section.
Problem 1: (Wahba’s problem) Given N vectors, smb;k ∈ R3, with

corresponding vectors sI;k ∈ R3, Wahba’s Problem is to find the
matrix C ∈ SO�3�, where

SO�3� � fC ∈ R3×3: CTC � I; det C � �1g

to minimize the cost function

J �
XN
k�1

wk�smb;k − CsI;k�T�smb;k − CsI;k�; (1)

where 0 < wk < ∞ are positive weights for k � 1; : : : ; N.
Problem 1 is readily shown to be equivalent to solving the

minimization problem [6],

minimize Ĵ � −tr�CBT � subject toC ∈ SO�3� (2)

where

BT �
XN
k�1

wksI;ks
mT
b;k (3)

In some instances, it may be desirable to orthonormalize a given
matrix D ∈ R3×3. For example, when C ∈ SO�3�, its kinematics
satisfy Poisson’s equation _C � −ω×C [10, chapter 2], with initial
condition C�t0� ∈ SO�3�. Direct numerical integration will result
in a solution Ĉ�t� that is no longer in SO�3� due to numerical
inaccuracies. It is therefore desirable to orthonormalize Ĉ�t� after
each numerical integration step. Orthonormalization of a rotation
matrix estimate Ĉ�t� can be thought of in the same manner as
normalization of a quaternion estimate.
Considering the matrix D to be an approximation of a matrix

C ∈ SO�3�, it is reasonable to expect det�D� > 0 (otherwise, it
would be a very poor approximation). It would be desirable to
orthonormalize the matrixD ∈ R3×3 in an optimal manner, as stated
in the next problem. Note that this is very similar to the orthogonal
Procrustes problem [11], in which C is only required to be
orthonormal, without any restriction on the sign of its determinant.
Problem 2: (Matrix orthonormalization) Let D ∈ R3×3, with

det D > 0,

minimize J � tr��D − C�T�D − C�� (4)

subject to C ∈ SO�3�.
In fact, since det D > 0, the solution of problem 2 is identical to

the orthogonal Procrustes problem.
Analogously to Wahba’s problem (problem 1), it is readily shown

that the minimization problem in Eq. (4) is equivalent to the
minimization problem

minimize Ĵ � −tr�CDT � subject toC ∈ SO�3� (5)

Comparing Eqs. (2) and (5), it can be seen that problems 1 and 2 are
identical in form. As such, only problem 1 shall be considered from
this point on.
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It is well known that the set of all solutions to problem 1 is given
by [3]

C � V diagf1; 1; det V det UgUT (6)

where V and U are obtained from a SVD of B such that

B � VΣUT (7)

where VTV � I, UTU � I and Σ � diagfσ1; σ2; σ3g with
σ1 ≥ σ2 ≥ σ3 ≥ 0. Furthermore, the solution is unique when
det B > 0, or rank�B� � 2.
From Eq. (6), it can be seen that

C � VUT; if detB > 0 (8)

and

C � V diagf1; 1;−1gUT; if det B < 0 (9)

III. LMI-Based Solution

Relax the constraint in Eq. (2) (which is equivalent to problem 1) to
obtain the new problem.
Problem 3: Let B ∈ R3×3,

minimize Ĵ � −tr�CBT � subject to kCk ≤ 1 (10)

where kAk � σmax�A� is the induced 2-norm of the matrix A, and
σmax is the maximum singular value.
Note that kCk � 1 for all C ∈ SO�3�, so the constraint set in

problem 3 includes the constraint set in Eq. (2).
The constraint set in problem 3 is compact. As such, a global

minimizing solution exists. Furthermore, since the cost function Ĵ is
linear in C, the minimizing solution must lie on the boundary of the
constraint set. That is, theminimizing solutionmust satisfy kCk � 1.
Next, consider any C1 and C2 satisfying kC1k ≤ 1 and kC2k ≤ 1,

and form the convex combination αC1 � �1 − α�C2 for some
α ∈ �0; 1�. Then,

kαC1 � �1 − α�C2k ≤ αkC1k � �1 − α�kC2k ≤ 1

which shows that the constraint set is convex. Consequently, any
local minimizing solution of Eq. (10) must be a global minimizing
solution. The minimizing solutions are now found in the cases
rank�B� � 3 and rank�B� � 2.
Consider a SVD of B, as given in Eq. (7). Since V and U are

nonsingular, without loss of generality, one may write

C � VSUT (11)

for some S ∈ R3×3 (e.g., simply set S � VTCU given C). Then,
problem 3 is equivalent to

minimize Ĵ � −tr�SΣ� subject to kSk ≤ 1 (12)

Denote the ijth term of S by sij. Then, the cost function in Eq. (12)
becomes

Ĵ � −
X3
i�1

siiσi (13)

By corollary 1 (see the Appendix), if kSk ≤ 1, it must be that
jsiij ≤ 1. As such, one has

Ĵ�S� ≥ −
X3
i�1

σi; ∀ S satisfying kSk ≤ 1 (14)

Noting that S � I is a member of the constraint set, the lower bound
in Eq. (14) is in fact the global minimum for Eq. (12). Therefore, all
minimizing S of Eq. (12) must have

sii � 1 if σi > 0

Correspondingly, by proposition 1 (see the Appendix), they must
have

sij � sji � 0 for j ≠ i if σi > 0

Hence, if rank�B� ≥ 2, any minimizing S of Eq. (12) takes the form

S � diagf1; 1; s33g (15)

where

s33 � 1; if rank�B� � 3

and

js33j ≤ 1; if rank�B� � 2

When rank�B� � 2 (and thus σ33 � 0), then s33 has no effect on the
cost function given in Eq. (13), and, as such, s33 may arbitrarily be
chosen subject to the norm constraint kSk ≤ 1.

A. Case 1: rank�B� � 3

When B has full rank, from Eqs. (16) and (11), the minimizing C
for problem 3 is unique and is given by

C � VUT (16)

Comparing this to Eq. (8), it can be seen that it coincides with the
solution toWahba’s problem (problem 1) when det B > 0. However,
it does not coincide when det B < 0 [compare Eq. (16) to Eq. (9)].

B. Case 2: rank�B� � 2

When rank�B� � 2, from Eqs. (16) and (11), the minimizing
solutions of problem 3 are nonunique and are given by

C � V diagf1; 1; s33gUT (17)

where

js33j ≤ 1; if rank�B� � 2

Consequently, problem 3 is only equivalent to Wahba’s problem
(problem 1) when det B > 0.
Problem 3 shall now be reformulated as a convex optimization

problem with a LMI constraint. To this end, note that the norm
constraint in problem 3 is equivalent to

CTC ≤ I (18)

Recall the Schur complement [12, chapter 2]: For Φ11 �
ΦT

11 ∈ Rp×p, Φ12 ∈ Rp×q, Φ21 ∈ Rq×p, Φ22 � ΦT
22 ∈ Rq×q, where

Φ22 > 0, then

Φ11 −Φ12Φ−1
22Φ21 ≥ 0 ⇔

�
Φ11 Φ12

Φ21 Φ22

�
≥ 0

Therefore, settingΦ11 � I,Φ12 � CT ,Φ21 � C,Φ22 � I and using
the Schur complement, Eq. (18) is in turn equivalent to the LMI,

�
I CT

C I

�
≥ 0

Therefore, problem 3 may be recast as the following LMI problem.
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Problem 4: Let B ∈ R3×3. Find C ∈ R3×3 to

minimize Ĵ � −tr�CBT � (19)

subject to �
I CT

C I

�
≥ 0 (20)

The previous analysis is now summarized in the following theorem.
Theorem 1: Problem 4 with det B > 0 has a unique global

minimum, with no other local minima. In this case, the solution of
problem 4 is equal to the unique solution of problem 1.
Problem 4 may be easily solved using existing LMI solvers.
The limitation of requiring det�B� > 0 for the LMI-based solution

to Wahba’s problem is now examined. Suppose that the measured
vectors smb;k ∈ R3 are generated according to

smb;k � sb;k � vk (21)

where

sb;k � CsI;k; (22)

and vk ∈ R3 is a measurement error. Then, Eq. (3) becomes

BT � �BT � ΔBT (23)

where

�BT �
XN
k�1

wksI;ks
T
b;k; ΔBT �

XN
k�1

wksI;kv
T
k (24)

Rewrite �BT and ΔBT in Eq. (24) as

�BT � SI �WSTb ; ΔBT � SI �W �VT (25)

where

SI � � sI;1 · · · sI;N �; �W � diagfw1; : : : ; wNg;
Sb � � sb;1 · · · sb;N �

and

�V � � v1 · · · vN �

From Eq. (22), one obtains

Sb � CSI

Therefore,

�BT � SIWSTI CT (26)

Consequently, one has

det �B � det�SI �WSTI � det C

When �B has full rank, the matrix SI �WS
T
I is positive definite, and

sign�det �B� � sign�det C� (27)

Finally, by continuity of the determinant and Eq. (23) together with
Eq. (25), it is concluded that for a given SI and weight �W, there exists
δ > 0 such that

sign�det B� � sign�det C�; ∀ �V ∈ R3×N such that k �Vk < δ (28)

That is, if the collection of vectors si;k is geometrically rich enough,
and the measurement errors vk are small enough, det Bwill have the
same sign as det C. Clearly, there must therefore be at least three
vector measurements. On the other hand, if the objective is to solve
problem 2, then the determinant condition is automatically satisfied.

IV. Numerical Examples

The LMI-based solution toWahba’s problem is now demonstrated
with a pair of numerical examples. In the first example, a noise-free
set of measurement vectors is used, demonstrating that the LMI-
based method returns the original rotation matrix, which in this case
is the known optimal solution to Wahba’s problem. In the second
example, a set of noise-corruptedmeasurement vectors is used. In this
case, the LMI-based solution is compared to the SVD-based solution
in Eq. (6), as well as other well-established solution methods
including the q-method [13, chapter 12], QUEST [5], and ESOQ2
[14], each of which returns the same solution. All numerical work is
done on a MacBook Pro with a 2.3 GHz Intel Core i5 processor and
4 GB of RAM running MATLAB® 7.12.0 (R2011a).
Both examples use the vectors and weights

sI;1 �
1���
5
p

"
0

1

2

#
; sI;2 �

1������
10
p

"
1

3

0

#
;

sI;3 �
1������
26
p

"−5
0

1

#
; sI;4 �

1������
18
p

"
1

−1
4

#
; sI;5 �

1���
3
p

"
1

1

1

#

and

wk �
1

σ2i
; k � 1 : : : 5

where

σ1 � 0.0100; σ2 � 0.0325; σ3 � 0.0550;

σ4 � 0.0775; σ5 � 0.1000

Assume the true attitude is given by

C� C3�60°�C2�−30°�C1�45°� �
"

0.4330 0.4356 0.7891

−0.7500 0.6597 0.0474

−0.5000 −0.6124 0.6124

#

where C1�·�, C2�·�, and C3�·� are principal rotations about the 1, 2,
and 3 axes, respectively [10, chapter 2].

A. Case 1: Noise-Free Measurements

Consider the case in which the vector measurements are not
corrupted by any noise, that is, smb;k � CsI;k. In this case, it is simple to
show that rank�B� � 3 and det�B� > 0, and, as such, the solution to
problem 4, equals the unique solution to problem 1. Using the
software YALMIP [15] and SeDuMi [16] to solve problem 4, C is
exactly recovered, as expected.

B. Case 2: Noisy Measurements

Next, consider the case in which the vector measurements are
corrupted by noise. Specifically, consider the following vector
measurements:

smb;1 �
"
0.9082

0.3185

0.2715

#
; smb;2 �

"
0.5670

0.3732

−0.7343

#
;

smb;3 �
"−0.2821

0.7163

0.6382

#
; smb;4 �

"
0.7510

−0.3303
0.5718

#
;

smb;5 �
"

0.9261

−0.2053
−0.3166

#

Again, it is straightforward to verify that rank�B� � 3 and det�B� > 0.
As such, the solution to problem 4 equals the unique solution to
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problem 1. Using the software YALMIP and SeDuMi to solve
problem 4, the best estimate of C, called Ĉ, is found to be

Ĉ �

2
4 0.4153 0.4472 0.7921

−0.7562 0.6537 0.0274

−0.5056 −0.6104 0.6097

3
5

Define the error between C and Ĉ to be Ce � ĈCT . Recall that any
element ofSO�3� can be expressed in terms of aEuler axis and aEuler
angle [10, chapter 2]. To assess how close Ĉ is to C, the Euler angle
associated with Ce will be computed. The Euler angle of Ce is
ϕe � 1.27°, where cos ϕe � cos�0.5�traceCe − 1��, indicating that
Ĉ is a good estimate of C.
Using either the q-method [13, chapter 12], QUEST [5], the SVD

method [3], or ESOQ2 [14] to find Ĉyields the same result as the LMI
solution presented. This is expected, as they are each a solution to the
same problem, that being problem 1. The execution time is computed
using MATLAB®’s tic and toc functions. As expected, ESOQ2 is
the fastest algorithm (0.000607732 s) [6], followed by QUEST
(0.00077290 s), the q-method (0.00143210 s), the SVD method
(0.00307701 s), and finally the proposed LMImethod (0.0662991 s).
The fact that the LMI method is the slowest is due to the fact that

the YALMIP and SeDuMi have been used; these are general tools
used to solve LMI problems. ESOQ2, the q-method, and QUESTare
taylored to find the quaternion representing the attitude, and, as such,
their execution time is much faster. Additionally, the q-method uses
MATLAB®’s custom eigenvalue solver, and the SVD method uses
MATLAB®’s custom SVD solver, both of which are highly
optimized. Future work will focus on designing a custom computer
code to solve problem 4, exploiting the specific structure of the
objective function and LMI constraint. A custom computer code is
expected to decrease the execution time significantly. As discussed in
[17,18], a custom computer code can be executed much faster than a
standard code, depending on the application.
Remark:Although the LMI form of the constraint given in Eq. (20)

has been used to solve for the attitude in Wahba’s problem, Eq. (20)
can be used as a constraint in other optimization problems, such as
guidance and control problems involving attitude. For example, in
the domain of Mars powered-decent guidance, convex optimization
methods are often employed [19]. Future work will investigate the
use of Eq. (20) in guidance and control problems.

V. Conclusions

This Note has presented a new characterization of the solution to
the famous Wahba problem. It has been shown that, when a mild
condition is satisfied (which is demonstrated to hold for many
practical problems of interest), the Wahba problem can be recast as a
LMI optimization problem. This opens the door to a whole new class
of solution methods for these types ofWahba problems. Equivalence
between the Wahba problem and the LMI problem is accomplished
by relaxing the nonconvex constraint on the rotation matrix
C ∈ SO�3�, creating instead a convex constraint of the form
kCk ≤ 1, which is equivalently represented in LMI form. While this
approach has been demonstrated for the Wahba problem, it has
applicability to other optimization problems involving attitude, such
as guidance and navigation problems.

Appendix: Useful Matrix Results

Proposition 1: Consider any matrix A ∈ Rn×m, with kAk � l, for
some l ≥ 0. Denote the ijth term of A as aij. Then,��������������Xn

i�1
a2ij

s
≤ l; j � 1; : : : ; m (29)

and

��������������Xm
j�1

a2ij

vuut ≤ l; i � 1; : : : ; n (30)

Proof: By definition,

kAk � max
kxk2�1

kAxk2

where kxk2 �
��������
xTx
p

denotes the vector 2-norm. Let us now set
x � ej � �ej;1; : : : ; ej;m�T , for some j ∈ f1; : : : ; mg, where

ej;k �
�
1; k � j;
0; otherwise

Clearly, kxk2 � 1, and

Ax � �a1;j; : : : ; an;j�T

Then, by definition of the matrix norm previously mentioned, one
must have

kAxk2 �
��������������Xn
i�1

a2ij

s
≤ kAk � l

which is Eq. (29). Since kAk � kATk, repeating the previous
argument for AT yields Eq. (30).
The following corollary is an immediate consequence of

proposition 1.
Corollary 1: Consider any matrix A ∈ Rn×m, with kAk � l, for

some l ≥ 0. Denote the ijth term of A as aij. Then,

jaijj ≤ l:
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