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I. Introduction

I NMANYengineering applications, knowledge of a system’s state
is needed. Because states are rarely measured directly, the states

are usually estimated using noise corrupted measurements. To
improve upon the accuracy of the estimate, information from the
measurements can be combined with knowledge of the system’s
assumed dynamics. This is the essence of state estimation.
In real-time applications, sequential state estimation methods are

often employed. Sequential estimators operate by using the most
recentmeasurements and state estimate. For linear systems, a popular
method that yields an optimal solution is the Kalman filter [1]. Two
nonlinear variants of the Kalman filter are the extended Kalman filter
(EKF) ([2] pp. 400–409) and the unscented Kalman filter (UKF) [3].
State estimation in the presence of state constraints must be

handled with care. Two popular approaches for addressing state con-
straints within the Kalman filter framework are the pseudomeasure-
ment method and the projection method. The pseudomeasurement
method, as discussed in [4–6], augments the Kalman filter by
considering the constraint as a perfect measurement without noise.
The drawback to this method is that it causes the measurement noise
covariance to be singular, which in turn can lead to numerical
problemswhen implemented [7]. The projectionmethod presented in
[8] projects the unconstrained solution to the Kalman filter onto a
constraint surface for linear equality constraints. This work was
extended in [9] to accommodate nonlinear equality constraints.
In [10], the projection method is applied to the UKF. Further
information concerning these methods and other algorithms for
handling linear and nonlinear constraints applied to the discrete-time
Kalman filter can be found in [7].
Estimating the state can be further complicated if additional

parameters, such as measurement biases, are poorly known and left
unaccounted for [11,12]. This issue can be addressed by either
augmenting the filter’s state vector to estimate parameters directly or
accounting for the uncertainty by using the approach taken in the
Schmidt–Kalman filter. The Schmidt–Kalman filter or consider

Kalman filter (CKF) accounts for uncertainty in parameters used in
the filter’s process andmeasurementmodels by updating the state and
covariance using an estimated parameter covariance [11,13]. This
approach can yield computational and processing savings if the
number of parameters is large. Derivation and further discussion of
the CKF can be found in [11], ([14] pp. 281–286), and ([15] pp. 387–
438). There has been some recent interest in consider analysis.
Consider analysis has been applied to the problem of planetary entry
[16] and orbit determination [12]. A UKF using the consider frame-
work is derived in [17], consider square-root filters and smoothers are
developed in [18], and a UDU formulation of the consider filter is
presented in [19].
The contribution of this work is the presentation of a consider filter

applicable to both discrete and hybrid systems subject to a norm-
constrained state estimate. This is accomplished by adjusting the
Kalman gain to solve the minimum variance estimation problem,
while taking into account the constraint on the state estimate, as was
done in [20]. Section II reviews the unconstrained discrete and hybrid
forms of theminimum variance CKF. Section III outlines the discrete
and hybrid norm-constrained CKF (NCCKF). Finally, in Sec. IV, the
NCCKF is applied to a nonlinear attitude estimation problem through
the EKF framework, and its performance is compared with the norm-
constrained Kalman filter developed in [20] through a numerical
simulation example.

II. Preliminaries

The linear discrete-time dynamic system to which the CKF is
applied is given by [11]

xk � Fx;k−1xk−1 � Fp;k−1p�Gk−1wk−1; wk−1 ∼N �0;Qk−1�

wherexk ∈ Rn is the state at time tk,p is a set of uncertain parameters
on which the system depends, and wk−1 is the zero-mean Gaussian
process noisewith covarianceQk−1 � QT

k−1 ≥ 0. The corresponding
continuous-time dynamic system is given by

_x�t��Fx�t�x�t��Fp�t�p�G�t�w�t�; w�t�∼N �0;Q�t�δ�t−τ��

For discrete-timemeasurements at time tk, the measurement model is
given by

yk � Hx;kxk �Hp;kp�Mkvk; vk ∼N �0;Rk�

where yk is the measurement vector at time tk,Mk has full row rank,
and vk is the measurement noise with covariance Rk � RT

k > 0.
The derivation of theminimumvariance CKF for both the discrete-

time and hybrid systems is presented in [11]. The minimum variance
CKF is obtained by including the consider states along with the
original states in the state vector and partitioning the gain and the co-
variance matrices with respect to the original states and the consider
states. By constraining the gain partition multiplying the consider
state to zero, the minimum variance gain for the original states is
found and the update equations for the consider states are discarded.
These filters are summarized in [11].

III. Norm-Constrained Consider Kalman Filter

A. Fully Constrained State

Consider the same systems in Sec. II. It is desired that the
posterior estimate x̂k satisfy the constraint kx̂kk �

���
l
p

. This can be
expressed as
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x̂Tk x̂k � l (1)

To enforce this constraint in the correction step of the CKF, the
objective function for the minimum variance estimator Jk � trfPxx;kg
is augmented with the constraint using a Lagrange multiplier:

Ĵk � tr�Pxx;k� � λk�x̂Tk x̂k − l�

Following [11], the updated covariance is given by

Pxx;k � P−
xx;k −Kk�Hx;kP

−
xx;k �Hp;kP

−
px;k�

− �P−
xx;kH

T
x;k � Pxp;kH

T
p;k�KT

k �KkWkK
T
k (2)

where Wk � Hx;kP
−
xx;kH

T
x;k �Hx;kP

−
xp;kH

T
p;k �Hp;kP

−
px;kH

T
x;k�

Hp;kPpp;kH
T
p;k �MkRkM

T
k . This equation has a similar form to the

update covariance for the regular Kalman filter

Pk � P−
k −KkHkP

−
k − P−

kH
T
kKk �KkVkK

T
k

where Vk � HkP
−
kH

T
k �MkRkM

T
k . Thus, the derivation of the

norm-constrained CKF can follow the same methodology as the
derivation for the discrete-time norm-constrained Kalman filter
presented in [20] by substitutingPxx;k forPk, �Hx;kP

−
xx;k �Hp;kP

−
px;k�

forHkP
−
k , �P−

xx;kH
T
x;k � Pxp;kH

T
p;k� for P−

kH
T
k , andWk for Vk.

The discrete-time and hybridminimumvariance norm-constrained
CKFs are outlined in Table 1. In these equations, the prior estimate is
denoted by a superscript �·�− and the quantities p̂k and p̂�t� denote the
values of p that are assumed by the discrete-time and the hybrid
filters. Because the CKF does not estimate these parameters, p̂k �
p̂k−1 and

_̂p � 0.
Both the discrete-time and the hybrid filters differ only in how the

state dynamics are propagated. However, the structure of their
gain and update steps displayed in Table 1 uses notation consistent
with the discrete-time filter. When applying these equations to the
hybrid case, the prior estimates are taken to be the propagated

continuous-time values at tk. For example, the prior estimate for the
state covariance is P−

xx;k � Pxx�tk�.

B. Partially Constrained State

Suppose now that only part of the state estimate is constrained.
Let x̂k � � q̂Tk ẑTk �T where q̂k satisfies a norm constraint and ẑk is
unconstrained. The Kalman gain and covariance matrices can be
partitioned as

Kk �
�
Kq;k

Kz;k

�
; Pxx;k � �P1;k P2;k � �

�
Pzz;k Pqz;k
Pzq;k Pqq;k

�
;

Pzp;k �
�
Pqp;k
Pzp;k

�

Substituting these partitioned matrices into the updated covariance
matrix yields

Pxx;k �
"
P−
qq;k P−

qz;k

P−
zq;k P−

zz;k

#
−

"
Kq;k

Kz;k

#
�Hx;k�P−

1;k P−
2;k �

�Hp;k�P−T
qp;k P−T

zp;k ��

−

 "
P−T
1;k

P−T
2;k

#
HT
x;k �

"
P−
qp;k

P−
zp;k

#
HT
p;k

!
�KT

q;k KT
z;k �

�
"
Kq;k

Kz;k

#
Wk�KT

q;k KT
z;k �

Recognizing that Pqz � PTzq, the partitions of the updated covariance
are given by

Pqq;k � P−
qq;k −Kq;kHx;kP

−
1;k �Kq;kHp;kP

−T
qp;k − P−T

1;kH
T
x;kK

T
q;k

� P−
qp;kH

T
p;kK

T
q;k �Kq;kWkK

T
q;k;

Pqz;k � P−
qz;k −Kq;kHx;kP

−
2;k �Kq;kHp;kP

−T
zp;k − P−T

1;kH
T
x;kK

T
z;k

� P−
qp;kH

T
p;kK

T
z;k −Kq;kWkK

T
z;k;

Pzz;k � P−
zz;k −Kz;kHx;kP

−
2;k �Kz;kHp;kP

−T
zp;k − P−T

2;kH
T
x;kK

T
q;k

� P−
zp;kH

T
p;kK

T
z;k �Kz;kWkK

T
z;k

Notice that Pqq;k and Pzz;k are only dependent on their respective
partitions of the Kalman gain matrix, Kq;k and Kz;k. Given that the
objective function of the minimum covariance filter takes the trace of
Pxx;k, then

Jk � tr�Pxx;k� � tr�Pqq;k� � tr�Pzz;k�

Because Pqq;k is only dependent onKq;k and Pzz;k is only dependent
onKz;k, minimizing Jk with respect toKk allows for each partition of

Kk to be calculated independent of one another. Thus,Kq;k is given

by the gain matrix in Table 1, substituting q̂k for x̂k, andKz;k can be

found using the traditional formulation.

IV. Application to Spacecraft Attitude Estimation

One application to which the norm-constrained CKF can be
applied is the spacecraft attitude estimation problem using a unit-
length quaternion. It is often the case that the spacecraft is endowed
with a rate gyro that measures the spacecraft’s angular velocity in the
spacecraft’s body frame. Unfortunately, gyro measurements are
usually corrupted by both noise and a bias. Often this bias is directly
estimated. However, modeling the bias is only useful insofar as it
helps estimate the attitude. Thus, for this investigation, the quaternion
q will be the state vector and the bias β will be considered as a
parameter in the consider framework presented.

Table 1 Minimum variance norm-constrained consider Kalman

filter

CKF step Equations

Discrete
propagation

x̂−
k � Fx;k−1x̂k−1 � Fp;k−1p̂k−1
p̂k � p̂k−1

P−
xx;k � Fx;k−1Pxx;k−1F

T
x;k−1 � Fx;k−1Pxp;k−1F

T
p;k−1

�Fp;k−1Ppx;k−1FTx;k−1 � Fp;k−1Ppp;k−1F
T
p;k−1

�Gk−1Qk−1G
T
k−1

P−
xp;k � Fx;k−1Pxp;k−1 � Fp;k−1Ppp;k−1

P−
px;k � Ppx;k−1F

T
x;k−1 � Ppp;k−1Fp;k−1 � P−T

xp;k

Ppp;k � Ppp;k−1
Continuous
propagation

_̂x�t� � Fx�t�x̂�t� � Fp�t�p̂�t�
_̂p�t� � 0

_Pxx�t� � Fx�t�Pxx�t� � Pxx�t�FTx �t� � Pxp�t�FTp�t�
�Fp�t�Ppx�t� �G�t�Q�t�GT�t�

_Pxp�t� � Fx�t�Pxp�t� � Fp�t�Ppp�t�
_Ppp�t� � 0

Gain Wk � Hx;kP
−
xx;kH

T
x;k �Hx;kP

−
xp;kH

T
p;k �Hp;kP

−
px;kH

T
x;k

�Hp;kP
−
pp;kH

T
p;k �MkRkM

T
k

~Kk � �P−
xx;kH

T
x;k � P−

xp;kHp;k�W−1
k

rk � yk −Hx;kx̂
−
k −Hp;kp̂k

~rk � rTkW
−1
k rk

~xk � x̂−
k � ~Kkrk

Kk � ~Kk � �
���
l
p

jj ~xkjj − 1� ~xk
rT
k
W−1

k

~rk

Update x̂k � x̂−
k �Kkrk

Pxx;k � P−
xx;k −Kk�Hx;kP

−
xx;k �Hp;kP

−
px;k�

−�P−
xx;kH

T
x;k � P−

xp;kH
T
p;k�KT

k �KkWkK
T
k

Pxp;k � �1 −KkHx;k�P−
xp;k −KkHp;kPpp;k
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A. Process Model

For a principal angle of ϕ about an axis a, the quaternion
representation is given by

q �

2
4 a sin

�
ϕ
2

�
cos
�
ϕ
2

�
3
5 � � ϵ

η

�

where kak � 1 and jjqjj � 1. By using a power series approach ([21]
pp. 457–460), the following discrete-time approximation of the
quaternion kinematics can be made:

qk ≈
�
1 cos

�
kωk−1kΔt

2

�
�Ω�ωk−1�
kωk−1k

sin

�
kωk−1kΔt

2

��
qk−1

� fk−1�qk−1;ωk−1� (3)

where Δt is the time elapsed from tk−1 and tk, ωk−1 is the angular
velocity at tk−1,

Ω�ωk−1� �
�
−ω×

k−1 ωk−1
−ωTk−1 0

�

and the superscript �·�× denotes the a cross-product matrix as defined
in ([21] p. 611). Equation (3) is in fact exact if the angular velocity is
constant over Δt.
As previously mentioned, the gyro measurement of the spacecraft

angular velocity uk is corrupted by noise wω;k and a static bias β:

uk � ωk � wω;k � β

An estimate of the angular velocity is given by

ω̂k � uk − ŵω;k − β̂k (4)

where ŵω;k � 0. It should be noted that in the CKF, β̂k � β̂k−1.
The norm-constrained CKF presented in this paper is for linear

systems. To apply it to the nonlinear attitude estimation problem,
the filter can be modified using the EKF framework. This is
accomplished by propagating the estimate using the nonlinear equa-
tions, assuming no noise and calculating the covariances using
linearized Jacobians about the filter’s estimate.
The propagation of the estimated state and covariance in discrete

time can be found by substituting q̂k for x̂k, β̂k for p̂k, and
fk−1�q̂k−1; ω̂k−1� for �Fx;k−1x̂k−1 � Fp;k−1p̂k−1� in Table 1 where

ω̂k−1 is given in Eq. (4). The discrete-time Jacobians for the discrete-
time covariance propagation equations are

Fq;k−1 ≈ 1 cos

�
kω̂k−1kΔt

2

�
� Ω�ω̂k−1�
kω̂k−1k

sin

�
kω̂k−1kΔt

2

�
;

Fβ;k−1 ≈
Ω�ω̂k−1�Ξ�q̂k−1�
kω̂k−1k2

cos

�
kω̂k−1kΔt

2

�

−
Ξ�q̂k−1�
kω̂k−1k

sin

�
kω̂k−1kΔt

2

�
−
Ω�ω̂k−1�Ξ�q̂k−1�
kω̂k−1k2

;

Gk−1 � Fβ;k−1

where Ξ�q̂k� � � �η̂k1� ϵ̂×k �T −ϵ̂k �T .

B. Measurement Model

The exteroceptive measurements, measurements of external fea-
tures relative to the spacecraft, are assumed to be taken by sensors that
each provide a vector. The measurement vector has the form

yk �

2
64
ym;1b;k

..

.

ym;nb;k

3
75 �

2
64
Cbi�qk�y1i;k

..

.

Cbi�qk�yni;k

3
75�

2
64
v1k
..
.

vnk

3
75

�

2
64
Y�y1i;k;qk�

..

.

Y�yni;k;qk�

3
75qk � vk � h�qk; vk�

where n is the number of sensors, ym;jb;k is the jth vector measurement
in the body frame, Cbi�qk� is the rotation matrix from the inertial

frame to the body frame corresponding toqk, y
j
i;k is the corresponding

reference vector expressed in the inertial frame, vjk is the zero-mean

white noise with covariance Rj
k � RjT

k > 0, and [22]

Y�yji;k;qk� � � ηk1 − ϵ×k −ϵk �
�

yj×i;k yji;k
−yjTi;k 0

��
ϵk
ηk

�

As with the propagation step, the measurement update also needs to
be modified to work with this nonlinear system. Using the EKF
framework, the innovation is computed using the nonlinear measure-
ment equation, and the Kalman gain and the covariance update are
calculated using Jacobians linearized about the estimated state. The
correction of the estimated state and covariance can be found by

substituting q̂k for x̂k, β̂k for p̂k, andh�q̂k; 0� forHx;kx̂
−
k �Hp;kp̂k in

Table 1. The measurement Jacobians are given by

Hq;k �
∂h�qk; vk�

∂qk

				
q̂−
k
;0

�

2
6664

�Y�y1i;k; q̂−
k �

..

.

�Y�yni;k; q̂−
k �

3
7775;

Hβ;k �
∂h�qk; vk�

∂β

				
q̂−
k
;0

� 0; Mk �
∂h�qk; vk�

∂vk

				
q̂−
k
;0

� 1

where

�Y�yji;k;qk� � Y�yji;k;qk�

�
�
��yj×i;kϵk � yji;kηk�

× � yjTi;kϵk1� �y
j×
i;kϵk � yji;kηk�

�

C. Numerical Simulation Results

To evaluate the performance of the norm-constrained consider
filter, the filter is used to estimate the attitude of a rigid-body
spacecraft in a circular orbit. The orbit inclination and altitude are
97.6 deg and 600 km, respectively. The spacecraft’s inertia matrix
is I � diagf17; 25; 27g kg · m2, its initial attitude is q�0� �
� 0 0 0 1 �T , and it is tumbling with an initial angular velocity
of ω0 � � 0.001 0.001 0.002 �T rad∕s.
The spacecraft is outfitted with a rate gyro and a magnetometer.

Earth’s magnetic field is modeled as a magnetic dipole. All measure-
ments are corrupted by zero-mean Gaussian white noise. The
covariance of the gyroscope measurement noise is Qk � σ2ω1 with
σω � 3.1623 × 10−7 rad∕s and the standard deviation of the
magnetometer noise is given byRk � σ2m1with σm � 150 nT. Gyro
measurements are taken every 0.1 s, and magnetometer measure-
ments are taken once every 2 s.
The performance of this norm-constrained consider EKF

(NCCEKF-q) is compared with the norm-constrained EKF
developed in [20] in the presence of a relatively small bias and a
relatively large bias. In the first case, the bias is β � 0.04 deg ∕h, and
in the second case, β � 0.5 deg ∕h. The EKF from [20] is imple-
mented by both directly estimating the bias (NCEKF-qb) and
ignoring the bias (NCEKF-q).
Because β̂k is treated differently in the NCEKF-qb and the

NCCEKF-q, the role of its covariance Pββ;k differs as well. When
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estimating β, the filter will minimize trfPββ;kg. When considering
β, Pββ;k is used by the filter to account for the uncertainty of β when
estimating qk.
Because the purpose of the simulations is to compare the ability of

these filters to cope with a bias, only a modest 3 deg initial attitude
estimate error about each of the principal body axes is applied to

the filters. At time t0 the bias is assumed to be β̂0 � 0 by all the filters.
The initial quaternion covariance and quaternion-bias cross co-
variance are Pqq;0 � �0.2�1 and Pqβ;0 � 0 for both cases. The initial
bias covariances are Pββ;0 � �0.08�21 �deg ∕h�2 for case 1 and

Pββ;0 � 1 �deg ∕h�2 for case 2.

1. Case 1

Figure 1 shows the attitude error in terms of an angle δϕk for each
of the filters over one orbit, where δϕk is the principal angle obtained
from the error quaternion δqk � qk;true ⊗ q̂−1

k . The quaternion

multiplication operator ⊗ is defined in ([21] p. 614) and

q̂−1
k � �−ϵ̂Tk η̂k �T . From Fig. 1, it can be seen that the performance

of the NCEKF-qb and NCCEKF-q are relatively close, whereas the
NCEKF-q starts to diverge.
Although the attitude error plots and bias plots are omitted for

brevity, it was found that both theNCEKF-qb and theNCCEKF-q are
consistent with respect to attitude, where consistency implies that the
state estimate remains within the �3σ bounds at all times. The bias
estimates for the NCEKF-qb are also consistent, as is the treatment
of the bias as a parameter in the NCCEKF-q. The relatively close
performance of the NCEKF-qb and the NCCEKF-q can be attributed
to the initial bias having small enough values that the process noise
causes the NCEKF-qb to make only a modest improvement on the
bias estimate. However, the NCEKF-q becomes inconsistent because
it does not consider the bias.
For the case considered, there are four states of interest associated

with the quaternion and three considered parameters associated
with the bias. By considering the number of operations required for
the calculations in the prediction and correction steps as outlined in
([23], pp. 661–664), it was found that the NCCEKF-q performs
approximately 1798 less floating point operations compared with
the NCEKF-qb for the correction step, and 1069 less operations for
the propagation step. For a contemporary desktop computer, this
difference may be imperceptible. The savings would likely be more
significant in the case where the hardware was more restrictive or
if there were a larger number of considered parameters compared
with the number of variables of interest.

2. Case 2

Figure 2 shows the attitude error for each of the filters over one
orbit. From Fig. 2 it is apparent that the NCCEKF-q no longer
performs aswell as theNCEKF-qb. In this case, the larger bias causes

the process noise to have a lesser effect on the bias estimate and the
NCEKF-qb can make a more dramatic improvement in the bias
estimate. Nevertheless, both the NCEKF-qb and the NCCEKF-q are
consistent. For brevity, plots of the quaternion error are omitted.

3. Remarks on Results

These two cases develop a profile of the usefulness of the
NCCEKF-q versus the NCEKF-qb. For the first case, it is seen that,
if the uncertainty in the unknown parameters are small, the per-
formance of the NCCEKF-q is close to the NCEKF-qb. Thus, one
may consider the parameters rather than estimate them, because the
smaller state results in less computational load. From case 2, it is seen
that the NCCEKF-q does not perform as well as the NCEKF-qb for
larger uncertainties in the unknown parameters. As such, if a better
state estimate is needed and the extra computational load associated
with estimating parameters is of no concern, one should estimate the
parameterswith larger uncertainties. That said, theNCCEKF-q is still
able to copewith the larger uncertainties and remain consistent while
considering the uncertain parameters, rather than directly estimating
them. Finally, neglecting the bias altogether leads to inconsistent state
estimates.

V. Conclusions

In this study, a consider Kalman filter that directly accounts for a
norm-constrained state estimate has been derived for discrete-time
and hybrid systems. This is done by solving the minimum variance
optimization problem while accommodating for the norm constraint
using a Lagrangian multiplier. The norm-constrained consider
Kalman filter was then applied to a nonlinear spacecraft attitude
estimation problem by employing the EKF framework. Numerical
simulation results were presented showing that, depending on the
size of the gyro bias, the bias can be considered rather than estimated
directly, yielding consistent resultswith comparable performance to a
filter that directly estimates the bias.

Acknowledgments

The authors thank the anonymous reviewers and the associate
editor for their comments and suggestions that helped improve
the paper.

References

[1] Kalman, R. E., “New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, Vol. 82, No. 1, 1960, pp. 35–45.
doi:10.1115/1.3662552

[2] Simon, D., Optimal State Estimation: Kalman, H Infinity, and

Nonlinear Approaches, Wiley, Hoboken, NJ, 2006, pp. 400–412.
[3] Julier, S. J., Uhlmann, J.K., andDurrant-Whyte,H. F., “NewMethod for

the Nonlinear Transformation of Means and Covariance in Filters andFig. 1 Attitude error for case 1.

Fig. 2 Attitude error for case 2.

J. GUIDANCE, VOL. 37, NO. 6: ENGINEERING NOTES 2051

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
03

44
 

http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552


Estimators,” IEEE Transactions on Automatic Control, Vol. 45, No. 3,
March 2000, pp. 477–482.
doi:10.1109/9.847726

[4] Alouani, A. T., and Blair, W. D., “Use of a Kinematic Constraint in
TrackingConstant Speed,ManeuveringTargets,” IEEETransactions on

Automatic Control, Vol. 38, No. 7, July 1993, pp. 1107–1111.
doi:10.1109/9.231465

[5] Richards, P. W., “Constrained Kalman Filtering Using Pseudo-
Measurements,” Proceedings of the IEE Colloquium on Algorithms for

Target Tracking, IEEE Publ., Piscataway, NJ, May 1995, pp. 75–79.
doi:10.1049/ic:19950676

[6] Gupta, N., “Kalman Filtering in the Presence of State Space Equality
Constraints,” Proceedings of the 26th Chinese Control Conference,
IEEE Publ., Piscataway, NJ, July 2007, pp. 107–113.
doi:10.1109/CHICC.2006.4347158

[7] Simon, D., “Kalman Filtering with State Constraints: A Survey
of Linear and Nonlinear Algorithms,” IET Control Theory and

Applications, Vol. 4, No. 8, 2010, pp. 1303–1318.
doi:10.1049/iet-cta.2009.0032

[8] Simon, D., and Chia, T. L., “Kalman Filtering with State Equality
Constraints,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 38, No. 1, Jan. 2002, pp. 128–136.
doi:10.1109/7.993234

[9] Yang, C., and Blasch, E., “Kalman Filtering with Nonlinear State
Constraints,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 45, No. 1, Jan. 2009, pp. 70–84.
doi:10.1109/TAES.2009.4805264

[10] Julier, S. J., and LaViola, J. J., “On Kalman Filtering with Nonlinear
Equality Constraints,” IEEE Transactions on Signal Processing,
Vol. 55, No. 6, June 2007, pp. 2774–2784.
doi:10.1109/TSP.2007.893949

[11] Woodbury, D. P., and Junkins, J. L., “On the Consider Kalman Filter,”
AIAA Guidance, Navigation, and Control Conference, AIAA Paper
2010-7752, Aug. 2010.
doi:10.2514/6.2010-7752

[12] Hough, M. E., “Orbit Determination with Improved Covariance
Fidelity, Including Sensor Measurement Biases,” Journal of Guidance,
Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 903–911.
doi:10.2514/1.53053

[13] Schmidt, S. F., “Application of State-Space Methods to Navigation
Problems,” Advances in Control Systems, edited by Leondes, C. T.,
Vol. 3, Academic Press, New York, 1966, pp. 293–340.

[14] Jazwinski, A. H., Stochastic Processes and Filtering Theory,
Mathematics in Science and Engineering, Academic Press, New York,
1970, pp. 281–286.

[15] Tapley, B. D., Schutz, B. E., and Born, G. H., Statistical Orbit

Determination, Elsevier, New York, 2004, pp. 387–438.
[16] Zanetti, R., and Bishop, R. H., “Precision Entry Navigation Dead-

Reckoning Error Analysis: Theoretical Foundations of the Discrete-
Time Case,” Proceedings of the AAS/AIAA Astrodynamics Specialist

Conference, Vol. 129, Univelt Inc., San Diego, CA, Aug. 2007,
pp. 979–994.

[17] Lisano, M. E., “Nonlinear Consider Covariance Analysis Using a
Sigma-Point Filter Formulation,” Annual AAS Guidance and Control

Conference, Univelt Inc., San Diego, CA, Feb. 2006, pp. 129–144.
[18] Hinks, J. C., and Psiaki, M. L., “Generalized Square-Root Information

Consider Covariance Analysis for Filters and Smoothers,” Journal of

Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1105–1118.
doi:10.2514/1.57891

[19] Zanetti, R., and D’Souza, C., “Recursive Implementations of the
Consider Filter,” Proceedings of the Jer-Nan Juang Astrodynamics

Symposium, Univelt Inc., San Diego, CA, June 2012, pp. 297–313.
[20] Zanetti, R., Majji, M., Bishop, R. H., and Mortari, D., “Norm-

Constrained Kalman Filtering,” Journal of Guidance, Control, and

Dynamics, Vol. 32, No. 5, 2009, pp. 1458–1465.
doi:10.2514/1.43119

[21] Crassidis, J. L., and Junkins, J. L., Optimal Estimation of Dynamic

Systems, Chapman & Hall/CRC Applied Mathematics and Nonlinear
Science Series, 2nd ed., CRC Press, Boca Raton, FL, 2012, pp. 457–
460, 611–612, 614.

[22] Leung, W. S., and Damaren, C. J., “Comparison of the Pseudo-Linear
and Extended Kalman Filter for Spacecraft Attitude Estimation,” AIAA
Guidance, Navigation, and Control Conference, AIAA Paper 2004-
5341, Aug. 2004.
doi:10.2514/6.2004-5341

[23] Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge
Univ. Press, New York, 2004, pp. 661–664.

2052 J. GUIDANCE, VOL. 37, NO. 6: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
03

44
 

http://dx.doi.org/10.1109/9.847726
http://dx.doi.org/10.1109/9.847726
http://dx.doi.org/10.1109/9.847726
http://dx.doi.org/10.1109/9.231465
http://dx.doi.org/10.1109/9.231465
http://dx.doi.org/10.1109/9.231465
http://dx.doi.org/10.1049/ic:19950676
http://dx.doi.org/10.1049/ic:19950676
http://dx.doi.org/10.1109/CHICC.2006.4347158
http://dx.doi.org/10.1109/CHICC.2006.4347158
http://dx.doi.org/10.1109/CHICC.2006.4347158
http://dx.doi.org/10.1109/CHICC.2006.4347158
http://dx.doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1109/7.993234
http://dx.doi.org/10.1109/7.993234
http://dx.doi.org/10.1109/7.993234
http://dx.doi.org/10.1109/TAES.2009.4805264
http://dx.doi.org/10.1109/TAES.2009.4805264
http://dx.doi.org/10.1109/TAES.2009.4805264
http://dx.doi.org/10.1109/TAES.2009.4805264
http://dx.doi.org/10.1109/TSP.2007.893949
http://dx.doi.org/10.1109/TSP.2007.893949
http://dx.doi.org/10.1109/TSP.2007.893949
http://dx.doi.org/10.1109/TSP.2007.893949
http://dx.doi.org/10.2514/6.2010-7752
http://dx.doi.org/10.2514/6.2010-7752
http://dx.doi.org/10.2514/6.2010-7752
http://dx.doi.org/10.2514/1.53053
http://dx.doi.org/10.2514/1.53053
http://dx.doi.org/10.2514/1.53053
http://dx.doi.org/10.2514/1.57891
http://dx.doi.org/10.2514/1.57891
http://dx.doi.org/10.2514/1.57891
http://dx.doi.org/10.2514/1.43119
http://dx.doi.org/10.2514/1.43119
http://dx.doi.org/10.2514/1.43119
http://dx.doi.org/10.2514/6.2004-5341
http://dx.doi.org/10.2514/6.2004-5341
http://dx.doi.org/10.2514/6.2004-5341

