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Filtering algorithms are theworkhorse of spacecraft attitude estimation, but recent research has shown that the use

of batch estimation techniques can result in higher accuracy per unit of computational cost. This paper presents an

approach for singularity-free batch estimation of attitude in continuous time using B-Spline curves on unit-length

quaternions. It extends existing theory of unit-length quaternion B-splines to general Lie groups and arbitrary B-

spline order. It is shown how to use these curves for continuous-time batch estimation using Gauss–Newton or

Levenberg–Marquardt, including efficient curve initialization, a parameter update step that preserves the Lie group

constraint within an unconstrained optimization framework, and the derivation of Jacobians of the B-spline’s value

and its time derivatives with respect to an update of its parameters. For unit-length quaternion splines, the equations

for angular velocity and angular acceleration are derived. An implementation of this algorithm is evaluated on two

problems: spacecraft attitude estimationusinga three-axismagnetometer, a sun sensor, and1) a three-axis gyroscope,

and 2) a continuous-time vehicle dynamics model based on Euler’s equation. Its performance is compared against a

standard multiplicative extended Kalman filter and a recently published batch attitude estimation algorithm. The

results show that B-splines have equal or superior performance over all test cases and provide two key tuning

parameters, the number of knots and the spline order, that an engineer can use to trade off accuracy and

computational efficiency when choosing a spline representation for a given estimation problem.

Nomenclature

A = associative algebra and ambient space of G
Ainv = group of multiplicative invertible elements in A
G = general Lie group
g = G’s Lie algebra
g = element of G
H = skew field of quaternions
I = number of knots in the B-spline
ι = multiplicative identity element
K = I −O, number of control vertices in the B-spline
O = B-spline order
q = unit-length quaternion
R = field of real numbers
Rotq = rotation associated with q
T = end time
T = time range �0; T�
k · k = Euclidean 2-norm in Rn, for any n ∈ N

I. Introduction

R ECENTwork on online state estimation in robotics has moved
away from filtering algorithms toward batch processing based

on Gauss–Newton. Strasdat et al. [1] showed that, using modern
sparse matrix methods, batch processing results in higher accuracy
per unit of computational work. This move toward batch processing
has resulted in a number of new approaches to state estimation such
as efficient and accurate iterative fixed-lag smoothing [2] and
incremental batch estimation [3]. The benefits of treating data in
batch were clearly shown by Vandersteen et al. [4] who presented a
moving-horizon estimator for spacecraft attitude estimation based on
an efficient sparse matrix solution to the Gauss–Newton problem.
Although this method shows excellent results when compared to
filtering algorithms, it requires an estimate of the attitude at each
measurement time, limiting it to low-rate sensors.
The requirement to estimate the state at each measurement time is

fundamentally tied to the discrete-time approximation made by the
vast majority of estimators. However, Furgale et al. [5] proposed an
alternate approach, leaving the batch estimation problem in continu-
ous time and approximating the state as a weighted sum of a finite
number of temporal basis functions (such as a B-spline curve). A
primary benefit to this approach is that it decouples the number of
parameters in the estimation problem from the number of measure-
ments as the vehicle state may be queried at any time.
In discrete time, the question of how to parameterize a three-

degree-of-freedom orientation, a member of the noncommutative
group SO(3), has been subject of decades of research and debate.
Algorithms such as the Q-method [6], the QUESTalgorithm [7], and
the more recent ESOQ [8] and ESOQ2 [9], which are batch methods
that are computationally light and suitable for online and real-time
use, use unit-length quaternions. Although one of the first applica-
tions of the Kalman filter employed Euler angles [10], the vast major-
ity of Kalman-type filters, i.e., the extended Kalman filter (EKF) or
unscented Kalman filter (UKF), use unit-length quaternions or a
combination of unit-length quaternions and Gibbs parameters [11–
14]. The question is no less important in continuous time, where we
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must decide how to parameterize a continuously time-varying orien-
tation. Furgale et al. [5] use the simple approach of defining a 3 × 1B-
spline of Cayley–Gibbs–Rodrigues parameters [15]. The B-spline
provides analytical formulas for parameter rates, allowing the com-
putation of angular velocity at any point ([16] Table 2.3).
However, analogously to the discrete-time case, any curve through

the parameter space of aminimal attitude parameterizationwill suffer
from a number of problems. In the absence of other information, a
batch estimator will produce an answer that takes the shortest
distance in parameter space, which is not necessarily the same as the
shortest distance in the space of rotations. Consequently, the estimate
produced may be dependent on the coordinate frame in which we
choose to express the problem because this coordinate frame decides
what part of parameter space the answer lives in. Furthermore, every
minimal parameterization of rotation has a singularity, and so, when
using this approach, there may be a danger of approaching this
singularity during the estimation process.
Kim et al. [17] propose a method of generating B-splines on SO(3)

using unit-length quaternions and their associated exponential map.
The curves generated by this approach are valid unit-length quater-
nions at every point, and time derivatives of the curve are found by a
straightforward use of the properties of the exponential map. Conse-
quently, we would like to evaluate the approach proposed in Furgale
et al. [5] with the one proposed in Kim et al. [17]. To do so, we must
further develop the theory presented in Kim et al. to be suitable for
estimation. Specifically, we offer the following contributions.
1)We extend the unit-length quaternion B-spline approach of Kim

et al. [17] to apply to any Lie group and present all derivations needed
to build an estimator for a broad subclass of Lie groups.
2) We prove that this construction has the desirable property of

biequivariance (applying a group operation from the left and right to
each control vertex applies this same operation to every part of the
curve), which ensures that the result of the estimation is independent
of the chosen coordinate system.
3) We present a method of including arbitrary nonlinear

continuous-time motion models in the estimator.
4)We develop amethod of initializing the spline control vertices to

act as an initial guess for batch, nonlinear minimization.
5) We derive the specific equations for unit-length quaternion

curves including a) the equation for angular velocity of a body, b) the
equation for angular acceleration of a body, and c) analytical Jaco-
bians that relate small changes in the (unit-length quaternion) spline
control vertices to small changes in orientation, angular velocity, and
angular acceleration.
6) Finally, we compare a family of spline-based estimators to

standard approaches on two simulated spacecraft-attitude-estimation
problems: one using measured dynamics from a gyroscope, and the
other using dynamics based on Euler’s equation. In both cases, we
compare against a standard multiplicative extended Kalman filter
(MEKF) and the batch discrete-time estimator recently proposed by
Vandersteen et al. [4].

II. Related Work

An increasing body of literature in robotics shows that state
estimation based on batch optimization has a higher accuracy than
filtering approaches per unit of computational work. A primary study
in this is provided by Strasdat et al. [1], who show that, for the
particular problem of camera-based simultaneous localization and
mapping, keyframe-based optimization that chooses a subset of
informativemeasurements outperforms filtering. Similar results have
been shown for other problems, especially the fusion of visual and
inertial measurements. Leutenegger et al. [2] directly use nonlinear
optimization for online visual inertial sensor fusion, showing higher
accuracy than an EKF approach while still running at sensor rate.
Mourikis et al. [18] take a different approach, proposing a filtering
framework that keeps multiple clones of the state and uses batch
optimization of landmark locations as an efficient update step for
spacecraft entry, descent, and landing. Their follow-on work shows
the clear benefit of optimizing over temporally consecutive state
clones when compared to pure filtering [19].

These “online batch” algorithms follow the established formula for
continuous-time filteringwith discretemeasurements first proposed by
Moore and Tam [20]. For the continuous system dynamics, they use
measured dynamics (from the inertialmeasurement unit) in the place of
the filter’s control input and implement an integration scheme between
exteroceptive observations. This inherently links the size of the state
vector to the number of observations. For some problems, there is no
drawback to this coupling. For others, such as the alignment of
pushbroom imagery from satellites (see Poli and Toutin [21] and
references therein), the processing of data from rolling shutter cameras
[22–24], or continuously moving sweeping laser scanners [25–28], an
estimate of the state is required at such a high rate that a discrete-time
formulation becomes intractable for all but the smallest problems. To
maintain a tractable estimation problem, each of these papers uses a
continuous-time state representation to decouple the size of the state
vector from the measurement times, either parametric curves
[21,22,24–27] or Gaussian process (GP) regression [28]. These two
competing approaches both consider all measurements at once, and
they both useGauss–Newton to derive amaximum likelihood estimate
for the state variables. The key difference is on the state representation.
Tong et al. [29] describe the Gaussian process Gauss–Newton

(GPGN) algorithm, which uses a finite set of samples of the state at
different times as the set of parameters to estimate. The GP prediction
equation is used to look up the state in between the sample times. The
GP covariance function acts as a regularizer to keep the state estimate
smooth. This approach has three shortcomings. First, the GP predic-
tion equations require one to build and invert a dense matrix the
size of the state vector, limiting the applicability to large problems.
Second, the covariance function of the GP, which defines the
smoothnessof the solutions,mustbe chosen aheadof timeanddoes not
represent a physical process. Hence, it is currently unknown how to
incorporate nonlinear continuous-time systems models into GPGN.
Finally, it is not yet clear how to define a GP and a covariance function
onaLiegroup such asSO(3).For these reasons,wepursue a parametric
approach, which allows us to naturally handle each of these issues.
The parametric curve approach uses a weighted sum of known

temporal basis functions to represent the state. Although there have
been many isolated publications using parametric curves over the
years, Furgale et al. [5] showed how it relates back to continuous-time
maximum likelihood estimation [30], presented the mathematics in
their most general basis-function form, and expanded the derivation
to include an arbitrary nonlinear continuous-time system model.
However, in this and follow-on work, they limited their applications
to problems where it was possible to use curves in attitude parameter
space and simple, white-noise motion system models (cf. Oth et al.
[24] and Furgale et al. [31]).
Continuous-time representation of attitude has mostly used either

curves through parameter space [5,21,24,31] or spherical linear
interpolation on SO(3) [22,23,26]. Linear interpolation is singularity-
free, but curves are only C0 continuous, which is not a good fit for
smooth vehicle motion. Anderson and Barfoot [27] model the trajec-
tory as a curve through velocity space, which is able to represent
attitude change with no singularities, but requires numerical integra-
tion of the curve if the pose is required. Kim et al. [17] present a general
approach for cubic B-spline unit quaternion curves but their target was
computer graphics. This approach was adapted for state estimation by
Lovegrove et al. [32], who use the same curve construction technique
to build curves on SE(3). In contrast, we extend this curve construction
scheme to arbitrary B-spline order (second order corresponds to
spherical linear interpolation) and provide general formulas for the
time derivatives and Jacobians needed for optimization.
To the best of our knowledge, this is the first work to include an

arbitrary nonlinear systemmodel into basis-function formulated state
estimation. A similar optimization process was previously proposed
by [33] for trajectory generation for mobile robot planning on rough
terrain. They estimated a polynomial curve through the control inputs
of a wheeled mobile robot that would take the robot from the current
pose to the goal pose. They forward-simulated the vehicle dynamics
using numerical integration and used the error between the final pose
and the goal pose to iteratively update the polynomial coefficients
until convergence. In contrast, we assume the control inputs are
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known and use a numerical integration scheme to apply the system
model to the parameterized state.
Spacecraft attitude estimation is an ideal problem to test advances in

the mathematical representation of orientation, and for this reason, it
has been at the center of attitude estimation research for decades. Early
spacecraft-centric batch attitude determinationmethods, such as theQ-
method [6] and QUEST [7], are solutions to Wahba’s problem [34].
The Q-method and QUEST, as well as ESOQ and ESOQ2 [8,9],
employ unit-length quaternions when estimating attitude. Other
solutions toWahba’s problem, such as Farrel et al. [35], Markley [36],
and Forbes and de Ruiter [37], estimate the attitude rotation matrix
rather than an attitude parameterization. Wahba’s problem in SO(n) is
considered in de Ruiter and Forbes [38]. There is a vast literature
devoted to spacecraft attitude estimation using Kalman-type filters
such as the EKF and the UKF [39]. Unit-length quaternions are the
preferred attitude descriptionwhenKalman filtering due to the absence
of singularities; for example, see Lefferts et al. [11], Bar-Itzhack and
Oshman [12], Shuster [13], Crassidis and Markley [14], Bar-Itzhack
and Reiner [40], and Choukroun et al. [41]. Often a three-parameter
attitude representation, such as Gibbs parameters, are used together
with a quaternion in a multiplicative framework [14,42,43]. Rather
than trying to circumvent various issues associated the unit-length
quaternion constraint within multiplicative filtering structure, Zanetti
et al. [44] and Chee and Forbes [45] revisit the derivation of the
discrete-time Kalman filter and directly incorporate the unit-length
quaternion constraint (which is in effect a norm constraint) into the
derivation. Normalization of an unconstrained estimate is shown to be
optimal. Forbes et al. [46] presents a continuous-time generalization of
Zanetti et al. [44]. Various authors have also considered estimating the
rotation matrix directly in both stochastic and deterministic settings.
Bar-Itzhack and Reiner [40] and Choukroun et al. [47,48] consider
rotation matrix estimation within a Kalman filtering framework.
Khosravian and Namvar [49] and Firoozi and Namvar [50] consider
rotationmatrix estimation of a spacecraft endowedwith a rate gyro and
one vector measurement, generalizing the SO(3) estimator structure
presented in [51–54]. Similar rotationmatrixestimators can be found in
Kinsey and Whitcomb [55] and Grip et al. [56].
The closest work to ours is that of Vandersteen et al. [4], who

propose a batch discrete time estimation framework for attitude
estimation and spacecraft calibration. They show that batch or mov-
ing horizon estimates outperform filters in terms of accuracy and
convergence rate. However, in this formulation, the number of states
is tied to the number of measurement times. This limits the approach
to low-rate sensors.

III. Theory

This section will present theoretical background and contributions.
Wewill assume that the reader is familiarwith thebasics ofB-splines and
the very basics of Lie groups. For a thorough introduction to B-splines,
seeBartels et al. [57]. For abrief overviewwith a focusonestimation, see
Furgale et al. [5]. For a thorough introduction to Lie groups, seeKirillov
et al. [58], and for a more applied approach, see Hall [59].

A. Continuous-Time Batch State Estimation

This section will briefly review the continuous-time batch state
estimation framework used in this paper and originally presented
in Furgale et al. [5]. The probabilistic derivation for estimation of a
continuous-time process x�t� with discrete measurements seeks an
estimate of the joint posterior density p�x�t�ju�t�; z1∶N� over the
interval T � �0; T�, where u�t� is a control input to the system, and zi
is a measurement taken at time ti ∈ T , 1 ≤ i ≤ N. Assuming the
probability density of the initial state,p�x�t0��, is known, this density
is commonly factored as

p�x�t�ju�t�; z1∶N� �
p�x�t�ju�t��

Q
N
i�1 p�zijx�ti��

p�z1∶N�
(1)

by using Bayes’s rule and assuming that the measurements’
distributions given the state 1) do not depend on the control inputs,
and 2) are mutually independent.

By assuming that the densities involved are Gaussian, we canwrite
the measurement model:

zi � hi�x�t�� � ni; ni ∼N �0;Ri� (2)

and measurement distribution:

p�zijx�t�� � N �hi�x�t��;Ri� (3)

where i refers to the ith measurement; hi�·� is a nonlinear
measurement model, typically evaluating x and its derivatives at
a measurement time ti; and Ri is the covariance matrix of the
measurement noise.
We may also write down the process model as a continuous

stochastic dynamical system ([30] p. 143) described formally by the
differential equation:

_x�t� � f�x�t�; u�t�� �w�t�; w�t� ∼ GP�0;Qδ�t − t 0�� (4)

where the overdot represents the time derivative; f�·� is a deter-
ministic function; w�t� is a zero-mean, white Gaussian process with
power-spectral-density matrix Q; and δ�·� is Dirac’s delta function.
The notation denotes a Gaussian process in the same way that N �·�
denotes a Gaussian distribution [60]. The process distribution may
then be written as ([30] p. 156)

p�x�t�ju�t�� ∝ p�x�t0�� exp
�
−
1

2

Z
T

0

eu�τ�TQ−1eu�τ� dτ
�

(5)

where

eu�t� ≔ _x�t� − f�x�t�; u�t� (6)

A batch estimator for x�t� may be derived by taking the negative
logarithm of the posterior likelihood:

fx�t�⋆g � argmin
x�t�
�− log�p�x�t�ju�t�; z1∶N�� (7)

The key innovation presented in Furgale et al. [5] was to leave the
problem in continuous time and make estimation of Eq. (7) tractable
by modeling the process as a weighted sum of a finite number of
known analytical basis functions:

Φ�t� ≔ �ϕ1�t� : : :ϕM�t��; x�t� ≔ Φ�t�c (8)

where each ϕm�t� is aD × 1 basis function,Φ�t� is aD ×M stacked
basis matrix, and c is a M × 1 column of coefficients. Hence, by
making the substitution in Eq. (8), we have turned a difficult problem
(estimate a process at the infinite number of points in T ) to a simpler
problem that we know how to solve: estimate the column of
coefficients c. We call this the basis function formulation:

fc⋆g � argmin
c
�− log�p�x�t�ju�t�; z1∶N��

≈ argmin
x�t�
�− log�p�x�t�ju�t�; z1∶N�� (9)

where the approximation sign indicates thatwe are approximating the
process x�t� with Eq. (8). This problem is easily solved using stan-
dard methods like Gauss–Newton or Levenberg–Marquardt.
The basis function formulation works very well when the process

lives in a vector space. However, this does not cover common cases in
spacecraft attitude estimation or robotics, where vehicle states usu-
ally are of non-vector space type like the Lie groups SO(3) or SE(3).
The next section derives one approach to address this issue.

B. Construction of a Lie-Group-Valued B-Spline

In this section, we derive a method to construct a B-spline curve
on a finite-dimensional Lie group. Our derivation is based on the
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unit-length quaternionB-spline curve fromKimet al. [17]. They define
a curve based on cumulative B-spline basis functions. Cumulative
basis functions represent an alternative but equivalent method of
constructing a B-spline function on R-vector spaces. The derivation
presented later is valid for any nondecreasing knot sequence.
Wewill quickly motivate that alternative form. Let f be a B-spline

function of order O defined on a nondecreasing sequence of knots,
�ti�Ii�1 with I ≥ 2O. At time t ∈ �ti; ti�1�, f , when i ≥ O and
i ≤ K ≔ I −O, may be written as

f�t� �
Xi
j�s�i�

bj�t�cj (10)

where s�i� ≔ i − �O − 1�, �cj�Kj�1 ∈ V denotes the control vertices
in anR-vector space V, and bj ≔ Bj;O denotes the jth B-spline basis
function, where Bj;O is defined as in [17] or de Boor [61]. The B-
spline orderO is precisely the spline’s polynomial degree plus 1. This
construction, (10), is illustrated in Fig. 1 for the case dimV � 1 and
O � 4. For t < tO and t ≥ tI−O�1 (outside the gray shaded area in
Fig. 1), there are fewer than O nonzero basis functions, and we treat
the B-spline as undefined and assume for the rest of the paper that
t ∈ �tO; tI−O�1�. This expression may be rearranged into the
cumulative form as follows

f�t� � cs�i� �
Xi

j�s�i��1

�Xi
k�j

bk�t�
�
�cj − cj−1�

� cs�i� �
XO−1
j�1

βi;j�t��cs�i��j − cs�i��j−1� (11)

defining the cumulative basis functions

βi;j�t� ≔
Xi

k�s�i��j
bk�t�

for 1 ≤ j ≤ O − 1. They are related to the notation used in Kim et al.
[17] according to βi;j�t� � ~Bs�i��j;O�t� but only for t ≤ ti�1. Hence,
they share for this t range also their derivatives:

d

dt
βi;j�t� �

O − 1

ti�j − ts�i��j
Bs�i��j;O−1�t�

Note that the assumption t ∈ �tO; tI−O�1� (or equivalent O ≤ i ≤
I −O) is crucial for Eqs. (10) and (11) to hold in the given form. This
assumption contrasts Kim et al. [17], where the first summand in
Eq. (11) does not depend on t for any admissible t. For Eqs. (10) and
(11) to hold without this assumption, the weight

Xmin�i;I−O�

j�1
bj�t�

is needed, and this weight is 1 if and only if i ≥ O, given that
t ∈ �ti; ti�1�. The fact that this weight would prevent the B-spline
from having the biequivariance property proven in Sec. III.E is an
important reason for this assumption.
Wewill nowgeneralize this formEq. (11) to the Lie groupG, just as

Kim et al. [17] do it for unit-length quaternions. Let �G; ·� be a
connected finite-dimensional Lie group,with Lie algebrag. Let ι ∈ G
denote its identity element. Instead of vectors ci, a Lie group-valued
curve is defined by a tuple of Lie group elements as control vertices
gi ∈ G. The sum of vectors is naturally identified with the corre-
sponding sequence of Lie group operations (written here as multi-
plication) in the order given by the indices. The vector difference
(ck − ck−1), where k � s�i� � j, is generalized to the left fraction
(g−1k−1gk). The scaling of these “differences” (by the βi;j�t�) is done “in
the Lie algebra” by exploiting the exponential and logarithmmaps of
G. This way one gets the generalized form of Eq. (11) as

g�t� ≔ gs�i�
YO−1
j�1
ri;j�t� (12a)

where

ri;j�t� ≔ exp�βi;j�t�φs�i��j�; and φk ≔ log�g−1k−1gk� (12b)

This construction requires that the log function is defined on
g−1k−1gk. To guarantee this, one has to make sure that there are enough
intermediate points to have all g−1k−1gk close enough to identity. In a
connected Lie group, this should always be possible with finite many
gi. Note that the vector space construction [Eq. (11)] is equivalent to
the Lie group approach [Eq. (12)]when �G; ·� is chosen as the additive
group �V;�� of the vector space V, which is always a commutative
Lie group. In that sense, these Lie group-valued B-splines are a true
generalization of the traditional vector space-valued B-splines.

C. Theoretical Preparations

To facilitate the analysis of Lie group-valued B-splines, we will
start with some theoretical preparations.

1. Ambient Algebra Assumption

Assumption 1:We assume the Lie group �G; ·� to be an embedded
differentialmanifold of a unital associativeR-algebra �A;�; ·�¶ and a
subgroup of �Ainv; ·�, the group of multiplicative invertible elements
in A.
Assumption 1 allows us to take derivatives of curves through G in

the ambient algebraA, where we can easily use the product rule and
benefit from a single global tangent space. All real matrix Lie groups,
the unit-length quaternions, the unit-magnitude dual quaternions, and
the unit-length complex numbers all naturally fulfill this assumption.
Those who feel uncomfortable with the abstract concept of an R-
algebra are encouraged to think of the unit-length quaternions as G
and the quaternions as A, or the group SO(3) as G and R3×3 as A.

2. Matrix Isomorphy

Given a vector a ∈ A, we will use special operators to retrieve the
matrices that represent the left, aL, or right, aR, multiplication by a
(with respect to a fixed default basis for A), that is, Ψ�ab� �
aLΨ�b� � bRΨ�a�, for all b ∈ A, where Ψ: A → RdimA maps the
vectors to their coordinate tuples. In the following, wewill implicitly
identifyA vectors with their coordinates. These operators, restricted
to G, are injective Lie group-homomorphism �·�L and antihomo-
morphism** �·�R, from G into GL�A�, the General Linear group over
A. Hence, these operators give us the opportunity to reduce com-
putational complexity of Jacobian matrix evaluation by choosing to
apply the multiplication to elements of G rather than GL or GR. The
mapping �·�L also leads to the following theorem.

Theorem 1: AL is a sub-R-algebra of RdimA×dimA, GL is a matrix
Lie group embedded in AL, and this pair is fully isomorphic to the
pair of G and A.
We will use this theorem to import knowledge about matrix Lie

groups to our general setting. It also tells us that Assumption 1
restricts us, up to isomorphism, precisely to R-matrix Lie groups.
However, it is still of practical use to know that all derivations are
correct in the nonmatrix examples, such as the unit-length qua-
ternions. A proof is provided in Appendix D.

3. Exponential Maps

In both A and G, there is a canonical definition of an exponential
map. For the algebraA, the exponential map expA is defined by the

¶A unital associative algebra is an R-vector space equipped with an R-
bilinear associative vector multiplication and a multiplicative identity element.

**The “anti-” prefix refers to the antihomomorphy identity, which one gets
from the homomorphy identity by swapping the arguments of one of the
binary operations.
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usual power series. Applied to matrices, this yields the matrix
exponential map. The exponential map expG of a Lie group G is
required to be smooth, and for all v ∈ g, the directional exponential
map expvG: R → G, t↦ expG�tv� must fulfill two identities: the
classical exponentiation identity expvG�α� β� � expvG�α�expvG�β�,
for all α; β ∈ R, and the differential identity d∕dt expvG�t�jt�0 � v.

Theorem 2: In our setting, expG is a restriction of expA to g ⊂ A,
employing the natural identification of G’s tangent spaces with sub-
vector spaces of A.
We exploit this property to simplify Jacobian calculation by inter-

preting our B-spline construction [Eq. (12)] as construction in A. A
proof is provided in Appendix E. From now on, we will not distin-
guish anymore formally between both exponential maps and write
just exp.

D. Continuous-Time Batch State Estimation on Lie Groups

In Sec. III.B, we present a construction for Lie group-valued B-
splines. We will now illustrate how they can be exploited to extend
continuous-time batch state estimation (see Sec. III.A) to Lie groups.
To minimize the negative log-likelihood function L, as given in

Eq. (9), but with x�t� ≔ g�t; �gk�Kk�1� given as Lie group-valued B-
spline, it is necessary to perform a nonlinear minimization involving
variables in the Lie group in question, namely the control vertices
�gk�Kk�1 ∈ G.
In the following formulation, we assume L to be given in the form
kek2, where e ∈ Rν, ν ∈ N. We call e the error function because it
typically consists of the normalized residuals. To implement Gauss–
Newton or Levenberg–Marquardt optimization algorithms to mini-
mize the cost functionL, wemust have access to an expression for the
Jacobian of ewith respect to small changes in the estimated variables.
For a estimated variable g ∈ G of Lie group type (e.g., one of the
control vertices), this requires a generalized Jacobian concept. It is
usual to use a minimal perturbation, ϕ ∈ Rm (with m � dimG), in
the Lie algebra, mapped to the Lie group via an exponential chartΦ �g

centered at the current guess �g

g�ϕ� � Φ �g�ϕ� ≔ exp�Bgϕ� �g (13)

where Bgϕ ≔
P

m
k�1 ϕkbk denotes the vector in g corresponding to

the coordinatesϕ, with respect toBg, denoting the default basis for g.
This yields the concept of a Jacobian for a function e: G → Rν at �g in
the local chart Φ �g, which is defined to be the traditional Jacobian at
0 ∈ Rm of the composed function e ∘ Φ �g: Rm → Rν. Unfortunately,
although the concept of charts is well known from differential
geometry, there seems to be no standard notation for these gener-
alized Jacobians. We will denote it in this paper as ∂e∕∂ϕ, while the
local chart used is specified based on context, for the sake of brevity.
This generalized Jacobian is used like a normal Jacobian in a

Gauss–Newton or Levenberg–Marquardt iteration, except that after
it produces an answer for ϕ, the current guess is updated as
�g← exp�Bgϕ� �g. This update is constraint sensitive in that the
updated �g is guarantied to not leave G, even when a nonminimal
representation such as a vector inAwould theoretically allow such a
departure.
An outline of the algorithm is provided in Algorithm 1. The um-

brella variable �X comprises the current guesses for all the estimated
variables. For example, the state B-spline’s control vertices �gk�K1 . In

practice it can contain control vertices of multiple splines and other
state variables.
The error function e� �X;Z� will typically depend on the state

B-spline via its value and derivatives, e.g., via the hi in Eq. (2), and
integrals along the trajectory, e.g., for Eq. (5). Therefore, we need
analytical expression for the Lie group-valued B-spline’s value
(Sec. III.B), its timederivatives (Sec. III.F.1), a concept how to evaluate
integrals (Sec. III.H), andgeneralized Jacobians (line5 inAlgorithm1),
for all involved expressions with respect to changes in its control
vertices (Sec. III.F.2). To initialize the control vertices (line 3 in
Algorithm 1), we also require an initialization strategy (Sec. III.G).

E. Biequivariance of This B-Spline Construction

In this section, wewill prove that this B-spline construction has an
important property for a Lie group-valued parameterized curvewhen
used for physical modeling, called “bi-invariance” by Park and
Ravani [62] for the special case of SO(3). From our point of view, the
term biequivariance is a better fit because it requires the curve’s value
to transform the sameway as its control vertices when transformed by
left or rightmultiplication with a group element. The term “invariant”
would indicate no change in the curve’s value for the same opera-
tions, but that is neither the case nor intended for our splines or for the
curves presented in [62]. In contrast equivariance of a map with
respect to a group action is exactly that: the function’s value changes
according to the same group action as applied on its argument. First,
we consider left-equivariance: equivariance with respect to left
multiplication by any u ∈ Ainv, Lu: A → A, a ↦ ua. The expres-
sion for ri;j in Eq. (12b) only depends on the control vertices through
expressions like g−1k−1gk. Such expressions are invariant with respect
to Lu, rendering all the r invariant, too. It follows that

g��Lu�gk��K1 ; t��Lu�gs�i��
YO−1
j�1
ri;j�t��Lu�g��Lu�gk��K1 ; t�� (14)

Next, we consider the right equivariance proof. For u ∈ Ainv, the
conjugation by u, πu∶ A → A, a ↦ uau−1 is an R-algebra
automorphism. Therefore, any (partial) function of typeAk → A for
some k ∈ N is automatically equivariant with respect to conjugation
by u if the function is A-intrinsically defined. A function from
Ak → A is calledA-intrinsically defined if and only if its definition is
purely based on the structure of A; informally this means that its
value and its domain can be defined by only referring to its
arguments, real numbers, 0; 1 ∈ A, the operations�, �, the limit in
A, the identity relation, set or logical operators, or other A-
intrinsically defined functions. This implies that the exp and log
mappings on A, and ultimately our whole B-spline construction
[Eq. (12)], are equivariant with respect to conjugation by uwhen the
time parameter is considered a constant real number. The B-spline’s
right-equivariance immediately follows from the simple fact that the
right multiplication, Ru: A → A, a ↦ au, is equal to a left
multiplication after a conjugation, Ru � Lu ∘ πu−1.
These equivariances hold for any u ∈ Ainv, but the transformed

spline will remain G-valued if and only if u ∈ G. Therefore, in
practice, only the equivariances with respect to left or right
multiplication by u ∈ G will be of interest.

Algorithm 1 Continuous-time batch state estimation on Lie groups

1) Z← GETMEASUREMENTS

2) e← SETUPERRORFUNCTION (Z)
3) �X← COMPUTEINITIALGUESSES (e, Z)
4) repeat ⊳Minimize quadratic negative log likelihood function kek2
5) J← COMPUTEJACOBIANS (e, �X)
6) U← COMPUTEUPDATES (e, �X, J, Z) ⊳ Gauss–Newton or Levenberg–Marquardt
7) �X← exp�U� �X
8) until HASCONVERGED (e, �X, Z)

246 SOMMER ETAL.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
11

49
 



F. Derivatives

1. Time Derivatives

We can calculate the B-splines derivatives with respect to t using
the usual product rule supported byAssumption 1,which allows us to
interpret the whole B-spline construction [Eq. (12)] as defined more
generally in A:

dk

dtk
g�t�� dk

dtk
gs�i�

YO−1
j�1
ri;j�t��k!gs�i�

X
α∈NO−1;P

α�k

YO−1
j�1

1

αj!
dαj

dtαj
ri;j�t� (15)

To be complete, it requires the time derivatives of ri;j up to order k.
We will exploit the directional exponential map’s well known
differential identity (guaranteed in A by Theorem 1):

d

dt
expa�t� � a expa�t�; where expa�t� ≔ exp�ta� (16)

where a ∈ A and t ∈ R.
Using Theorem 2 to identify the exp and log in Eq. (12b) with their

extensions to A, we get, with k ≔ s�i� � j,

d

dt
ri;j�t� �

d

dt
expφk�βi;j�t�� � β 0i;j�t�φk expφk�βi;j�t��

� β 0i;j�t�φkri;j�t� (17a)

d2

dt2
ri;j�t� � �β 0i;j�t�2φk � β 0 0i;j�t�ι�φkri;j�t� (17b)

d3

dt3
ri;j�t��

�
β 0i;j�t�φk�β 0i;j�t�2φk�β 00i;j�t��2β 0i;j�t�β 00i;j�t�φk�β 000i;j�t�ι

�
·φkri;j�t� (17c)

We will not need higher-order derivatives for our experiments. For
how to compute the β derivatives, see our comment after Eq. (11) and
in de Boor [61].

2. Jacobians with Respect to Changes in the Control Vertices

In this section, wewill derive the partial Jacobians of theB-spline’s
value and derivatives with respect to small changes, ϕl, while
considering the control vertices,gl�ϕl� ≔ Φ �gl�ϕ� � exp�Bgϕ� �gl, as
functions ofϕk, as explained in Sec. III.D. Because the chart mapΦ �g

is centered at �g, all Jacobians will be implicitly at 0 ∈ Rm. The value
∈ G ⊂ A and time derivatives ∈ A of the B-spline will be implicitly
identified with their coordinates with respect to A’s default basis.
Omitting the time parameter we get for l ∈ f1 : : : Kg,

∂g
∂ϕl
� ∂

∂ϕl
gs�i�

YO−1
j�1
ri;j �

�YO−1
j�1
ri;j

�R ∂gs�i�
∂ϕl

� gLs�i�
XO−1
ĵ�1

�Yĵ−1
j�1
ri;j

�L� YO−1
j�ĵ�1

ri;j

�R ∂ri;ĵ
∂ϕl

(18)

For the first summand, we get

∂gs�i�
∂ϕl
� ∂

∂ϕl
exp�Bgϕs�i�� �gs�i� � �gRs�i�

∂
∂ϕl

exp�Bgϕs�i��

� δl;s�i� �g
R
s�i�V (19)

where δ is the Kronecker delta, and V is the Jacobian matrix of
G’s exponential map in coordinates at 0. Note that, because the
differential of the exp map in A at zero is the identity map, this V
matrix is also the Jacobian of the implicit identification g intoA. We

can use V to convert coordinates with respect to Bg to coordinates
in A.
Next, we derive the Jacobian �∂∕∂ϕl�ri;j, for any 1 ≤ j < O and

with k ≔ s�i� � j. To begin, we will use the exponential chart to
decompose ri;j into a chain of maps between vector spaces allowing
application of the traditional chain rule:

ri;j � exp�βi;jφk� � exp�βi;j log�g−1k−1gk��
� exp|{z}

I

∘ �βi;j ·� ∘ �log ∘ Φ �d�|�����{z�����}
II

∘ �Φ−1
�d

∘ d�|����{z����}
III

(20)

with d ≔ g−1k−1�ϕk−1�gk�ϕk�, and �d � �g−1k−1 �gk.
The Jacobian for I, G’s exponential map at �v ≔ βi;j �φk, is usually

known for the specific G. We label it with E� �v� and assume it to be
given. If it is instead available for the exponential map in exponential
chart,Φ−1

exp�v� ∘ exp, here denoted with S� �v�, one can use the identity
E � exp � �v�RVS� �v� to retrieve it. It holds because exp � �v�RV is the
Jacobian of Φexp� �v� at zero. In case none is available, a general
formula for this S matrix is well known ([59] p. 70]):

S�v� �
X∞
k�0

�−1�k
�k� 1�! �adv�

k (21)

where adv denotes the matrix representing the adjoint action
w ↦ �v;w�, where the Lie bracket �v;w� equals vw −wv, using the
algebra multiplication, in our assumed setting.
The Jacobian of II, the logarithm in the exponential chart, log ∘ Φ �d,

we label withL� �d� and assume it to be given as well. If not, it can be
retrieved as the inverse of S�log� �d�� because log ∘ Φd ∘ Φ−1

exp�log� �d�� ∘
exp � Id.
The last piece is the Jacobian of III:

∂
∂ϕl

Φ−1
d �d� � �δl;k − δl;k−1�C� �g−1k−1� (22)

as proven in Appendix C, with

C�g� ≔ WgLgRV (23)

the Jacobian at identity of the adjoint operation of g on g, whereW
denotes the Jacobian of the log at ι.
Altogether, we have

∂ri;j
∂ϕl
� E�βi;j �φk�βi;j

∂φk
∂ϕl
� �rRi;jVS�βi;j �φk�βi;j

∂φk
∂ϕl

(24a)

with

∂φk
∂ϕl
� �δl;k − δl;k−1�L� �g−1k−1 �gk�C� �g−1k−1� (24b)

According to Sec. III.D, we also need the corresponding Jacobians
for the time derivatives of the B-spline. Starting with Eq. (15) and
applying the same method as for Eq. (18), we have

∂
∂ϕl

dk

dtk
g � k! ∂

∂ϕl
gs�i�ak;1;O (25a)

� k!ak;1;O−1
∂gs�i�
∂ϕl
� k!gLs�i�

XO−1
ĵ�1

X
γ∈N3 ;P

γ�k

aLγ1;1;j−1a
R
γ2;j�1;O

∂
∂ϕl

Dγ3ri;ĵ

(25b)
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� k!aRk;1;O−1
∂gs�i�
∂ϕl

� k!gLs�i�
XO−1
ĵ�1

Xk
γ1�0

aLγ1 ;1;j−1

�Xk−γ1
γ2�0

aRγ2 ;j�1;O
∂
∂ϕl

Dk−γ1−γ2ri;ĵ

�
(25c)

with

ak;jF;jL ≔
X

α∈NjL−jF ;P
α�k

YjL−1
j�jF

Dαj−jF�1ri;j;

if jL − 1 > jF else ι; andD
μ ≔

1

μ!

dμ

dtμ
(25d)

The last transformation [Eq. (25c)] is only to reduce computational
complexity by exploiting the distributive law of matrix multi-
plication. Combining Eqs. (17) and (24), we have (not expanding the
derivatives of φk and only up to k � 2 for the sake of readability):

∂
∂ϕl

d

dt
ri;j�t� � β 0i;j�t�

∂
∂ϕl
�Vφk�ri;j�t�

� β 0i;j�t�
 
ri;j�t�RV

∂φk
∂ϕl
� �Vφk�L

∂ri;j�t�
∂ϕl

!
(26a)

∂
∂ϕl

d2

dt2
ri;j�t� � �β 0i;j�t�2Vφk � β 0 0i;j�t�ι�L

×
�
ri;j�t�RV

∂φk
∂ϕl
� �Vφk�L

∂ri;j�t�
∂ϕl

�
� ��Vφk�ri;j�t��R

�
β 0i;j�t�2V

∂φk
∂ϕl

�
(26b)

G. Rough B-Spline Fitting for Initialization

To initialize the nonlinear optimization of a G-valued curve, we
will need a strategy to come to a suitable initial guess. Formally, this is
the problem of fitting a curve defined on T � �0; T� to a time series in
G, α ≔ �τk;gk�Kk�1 ∈ T × G, while somehow penalizing high
acceleration, and preventing overfitting. For our experiments, we
used the following strategy to get a rough fit of our B-spline by
making use of Assumption 1. Because we have g�t; �gk�Kk�1� ∈ G ⊂
Ainv ⊂ A for all times t ∈ T and control vertices gk ∈ G, we can
consider the whole G-valued B-spline construct as a Lie group B-
spline in the Lie group �Ainv; ·�, i.e., based on themultiplication inA.
InA, we also have theR-vector space structure and we can define for
eachmultiplicative g�t; �gk�Kk�1� the corresponding additive B-spline
gadd�t; �gk�Kk�1� as defined in the additive Lie group, �A;��. These
are now traditional vector space-valued B-splines, and we know how
to efficiently fit them to the time series α. This is a linear problem,
even with the acceleration penalty as regularization (see the solution
of Schoenberg and Reinsch as described in Chap. 14 of [61]). After
the linear fit, we may need to modify the control vertices to make
themelements inG. As long as they are not too far off, this can be done
uniquely and, for some common examples, also efficiently. For
example in the case of unit-length quaternions, this just means
normalizing the resulting vectors in R4 to unit length.
To summarize, we get our initial guess for optimization using the

following steps.
1) Acquire control vertices gk ∈ A by doing a least-squares fit of

gadd to αwhile keeping the integral over the spline’s acceleration low
(by introducing an appropriate, linear cost scaledwith an acceleration
penalty factor).
2) Project the gk into G.

3) Use the modified gk as control vertices for a multiplicative
spline in G.
Despite being very simple, this method worked extremely well in

all of our experiments up to B-spline order 12, where the linear
solution for the initialization fell into local likelihood maxima for
tight knot spacing when using our default acceleration penalty. This
could be solved by rising the acceleration penalty factor from 104 to
106. Automatic tuning of this parameter is out of the scope of
this paper.
Note that it is not equally good to just use a subset of the values in α

as control vertices, even though this would also result in a somewhat
close to curve. This would leave us no means to penalize high
acceleration, which would allow outliers to badly affect the result.

H. Integrals Along Curves

To deal with cost function (summands) that involve integrals along
our B-splines (e.g., to impose dynamic system models), we used the
following approach. Given a time interval T � �0; T� and a cost
functional J defined on continuous curves through G, γ: T → G such
that

J�γ� �
Z
T

0

f�γ�t��TW�t�f�γ�t�� dt

where l ∈ N,W: T → Rl×l andf: G → Rl, each also continuous,we
apply a nonadaptive numeric integration scheme �w; ξ�: f1 : : : kg →
R × T (e.g., Simpson’s, Trapezoidal rule, etc.), such that

∀
g∈C�T ;R�

Xk
i�1

wig�ξi� ≈
Z
T

0

g�t� dt

to convert J into a sequence of quadratic error terms (to interface a
Gauss–Newton optimization package), this becomes

J�γ� ≈
Xk
i�1

wif�γ�ξi��TW�ξi�f�γ�ξi��

I. Unit-Length Quaternions Lie Group

In this section, wewill focus on special aspects for the Lie group of
unit-length quaternions when used as representative for SO(3). To be
prepared for that, we will shortly define some notation. First, let H
denote the skew field and R-algebra of quaternions and

S3 ≔ fq ∈ Hjjqj � 1g

denote the three-dimensionalR-Lie group of unit-length quaternions.
We can make use of the theory in Sec. III.C using the following
identification. In this setting,H is the the ambientR-algebra (A), and
S3 is the embedded Lie group (G).
We will rely on the notation presented in Barfoot et al. [63]. Let ι

denote the identity element of S3, which is equal to the multiplicative
identity element in H. By using �i; j; k; ι� as a basis for H, we can
write the coordinates of a quaternion q as

q ≕
�
ϵ
η

�
(27)

where ϵ is 3 × 1, and η is a scalar. We will denote the product of two
quaternions p; q ∈ H with p · q or just pq and assume Hamilton’s
multiplication order (i.e., ij � k holds). The left and right
multiplication matrices, �·�L and �·�R, are

qL �
�
η1� ϵ× ϵ
−ϵT η

�
and qR �

�
η1 − ϵ× ϵ
−ϵT η

�
(28)

where 1 is the 3 × 3 identity matrix, and ϵ× denotes the matrix such
that for all x ∈ R3, ϵ × x � ϵ×x. The quaternion compound
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operators, �·�	, �·�� of Barfoot et al. [63], are precisely �·�L and �·�R.
Given a unit-length quaternion q ∈ S3, the complex conjugate
operator coincides with the multiplicative inverse operator:

q−1 �
�
−ϵ
η

�
(29)

The Lie algebra of S3 consists exactly of the pure imaginary
quaternions.We pick the usual basisBg ≔ �i; j; k� and represent this
Lie algebra’s vectors with coordinate vectors ϕ ∈ R3. To convert
from three to four-vectors and back, we use the matrices

V �
� 1

0T

�
; implyingVϕ �

�ϕ
0

�
;

and W � VT ; implyingWV � 1 (30)

which correspond to the matrices introduced after Eqs. (19) and (23),
respectively, as the Jacobians of the exponential map, at zero, and
logarithm map, at identity.
We will identify a unit quaternion q with the formal rotation

Rotq: R3 → R3; x ↦ W�q�Vx�q−1� (31)

The proper orthogonalmatrixC ∈ SO�3� associatedwith the same
rotation by ∀x∈R3 Cx � Rotq�x� may be computed using

C � WqLq−1RV (32)

This is precisely the matrix C defined in Eq. (23).
This unit-length quaternion’s log and exp functions can be

calculated in the following way:

exp�ϕ��

8<: ι; ϕ� 0h
sin�ϕ�a
cos ϕ

i
; ϕ≠ 0 ; log�q��

8<:
0; q� ι

arccos η								
1−η2
p ϵ; q≠
ι

undefined; q�−ι
(33)

whereϕ and the log’s value are 3 × 1 coordinate vectors with respect
toBg,ϕ ≔ kϕk, anda ≔ ϕ∕ϕ. A derivation of Eq. (33) can be found
in the appendix of Kim and Nam [64].

J. Derivatives of Quaternion B-Splines

In this section, we give the time derivative and Jacobian formulas
specific to our formulation for curves over S3. The B-spline time
derivatives we calculated for the general case in Eq. (17) apply
immediately to a unit-length quaternion curve, q�t� � �ϵ�t�Tη�t��T ,
giving us directly quantities like _ϵ�t�, �ϵ�t�, _η�t�, �η�t�, etc. However,
when we use such a curve to represent rotations as part of a physical
model, we also need expressions for the angular velocity ω and
angular acceleration α of a rotating frame.
To derive formulas for ω or α, as physical notions, we need to

specify how we interpret the formal rotation [Eq. (31)] in a physical
context. We will identify the rotation from frame F

→a
, an inertial

frame, to F
→b

, one attached to a rigid body, by the unit-length

quaternion qba, such that

∀v∈E3 Rotqba �va� � vb (34)

whereva andvb denote the coordinates of avectorv inEuclidean space
(E) with respect toF

→a
andF

→b
, respectively. The quaternionqba is only

uniquely defined up tonegation, and thus all physical equations need to
be invariant with respect to negation of this variable.

1. Angular Velocity

For the angular velocity ω of F
→b

with respect to F
→a

given by a

quaternion-valued curve through time qba�t� � �ϵ�t�Tη�t��T , we get
(omitting the time parameter for clarity):

ωa � −2W�q−1ba _qba� � −2��η_ϵ − _ηϵ� − ϵ× _ϵ� (35)

when expressed in F
→a

, and

ωb � −2W� _qbaq−1ba� � −2��η_ϵ − _ηϵ� − _ϵ×ϵ� (36)

when expressed in F
→b

. Both equations are proven in Appendix A.

2. Angular Acceleration

It follows for the angular acceleration α, omitting the subscripts for
qba for brevity:

αb� _ωb�−2W
�
d

dt
� _qq−1�

�
�−2W� _q−1 _q� �qq−1��−2W� �qq−1�

(37)

� −2��η�ϵ − �ηϵ� − �ϵ×ϵ� (38)

3. Jacobians of Quaternion B-Splines with Respect to the Control

Vertices

To use the results from Sec. III.F.2, we will need the specific
matrices for the unit-length quaternions. The Jacobian of the
exponential map, S�ϕ�, and of the logarithm map, L�q�, using the
same variables as in Eq. (33), additionally assuming for L�q� that
log�q� � ϕ. Both are 1 ∈ R3×3 in case ϕ � 0 and q � ι,
respectively. Otherwise,

S�ϕ� � 1 −
1

ϕ
sin2 ϕa× �

�
1 −

1

2ϕ
sin 2ϕ

�
a×a× (39)

and

L�q� � 1� ϕ× �
�
1 −

ϕ

tan ϕ

�
a×a× for q ≠ 
ι (40)

These formulas are proven/derived in Appendix B.

4. Jacobians of Angular Velocity

The Jacobians of the angular velocity with respect to minimal
perturbations of the control vertices are also required. For 1 ≤ j < O
and l ∈ f1 : : : Kg, we get

∂ωa
∂ϕl
� −2

�
∂η
∂ϕl

_ϵ� η
∂_ϵ
∂ϕl

−
∂_η
∂ϕl

ϵ − _η
∂ϵ
∂ϕl
� _ϵ×

∂ϵ
∂ϕl

− ϵ×
∂_ϵ
∂ϕl

�
(41)

5. Jacobians of Angular Acceleration

For the angular acceleration, it yields analogously

∂αa
∂ϕl
� −2

�
∂η
∂ϕl

�ϵ� η
∂�ϵ
∂ϕl

−
∂�η
∂ϕl

ϵ − �η
∂ϵ
∂ϕl
� �ϵ×

∂ϵ
∂ϕl

− ϵ×
∂�ϵ
∂ϕl

�
(42)

K. Associating a Unit Quaternion Time Series to a Rotation Time

Series

To fit a unit quaternion curve to a time series of noisy rotations can
be a challenge. For the fitting procedure described in Sec. III.G, one
has to first convert it to a unit quaternion time series. We will refer to
this step in the initialization process as the association step.
The association of unit-length quaternions to rotations is ambigu-

ous as Eq. (31) maps any pair of antipodal unit quaternions to the
same rotation. Choosing the wrong quaternion of the pair during
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association results in jumps in the unit-length quaternion curve and
can cause the optimization to diverge. The obvious solution is to
retrieve theminimum-length sequence of corresponding quaternions,
measured as the sum of distances of all adjacent pairs.
This can be approximated by iterating over the rotation time series

starting from one side and appending in each step to the target
quaternion time series the one among the two unit-length quaternions
equally well corresponding to the current rotation, which has
minimal distance to its predecessor quaternion chosen in the step
before. However, this strategy can perform badly in the presence of
outliers. Our current implementation iterates through the time series
of rotations choosing in each iteration the unit-length quaternion
candidate that minimizes the total distance to its (up to) three
predecessors. This workedwell enough in our experiments, except as
noted when we tested with high sensor noise (see Sec. V.B).

IV. Experiments

In this section,we apply the state representation derived previously
to the spacecraft attitude estimation problem. The goal is to estimate
the attitude of a reference frame attached to the vehicle body, F

→B
,

with respect to an inertial frame, F
→ I

, over a time interval of interest,

T � �0; T�. We would like to estimate a unit-length quaternion
trajectory describing the rotation from the inertial frame to the body
frame, qBI�t�, over T .
The vehicle may have bearing sensors (we will consider one or

two).A bearing sensor takesmeasurements at discrete time instances,
�tm�Mm�1 ∈ T . The sensor’s frameF

→S
is rigidly attached to thevehicle

body frame. We assume that the orientation of the sensor frame with
respect to the body frame, CSB, is known. Let b

ml
I be the known

bearing of beacon l (in case of sun sensors or star trackers) or the
magnetic field (in case of a magnetometers) at time tm, expressed in
the inertial frame.An instantaneousmeasurement of this bearing (i.e.,
a discrete-time measurement), written yml, is modeled as

yml � h�CSBCqBI�tm�bmlI � � nml; nml ∼N �0;Rml� (43)

where the bearing vector is first rotated into the sensor frame;h�·� is a
nonlinear observation model; Cq is the proper orthogonal matrix
given by a quaternion q, as in Eq. (32), here acting as the direction
cosine matrix from the inertial frame to the body frame; and nml is
zero-mean Gaussian noise with covariance Rml.
Following the standard practice of maximum likelihood estima-

tion, we define the error term associated with this measurement to be

eml ≔ yml − h�CSBCqBI�tm�bmlI � (44)

These errors contribute to the term Jy in our overall objective
function,

Jy ≔
1

2

XM
m�1

eTmlR
−1
mleml (45)

Later,wepresent simulated experiments using this common setup for
the exteroceptive measurements; they differ in terms of bearing sensors
and dynamicsmodel used. Based on the latter, we distinguish two types
of experiments. In the first type of experiments, we use measured
angular velocities from a gyroscope. In the second, we use a dynamics
model based on Euler’s equation and the vehicle inertia matrix.

A. Attitude Estimation Based on Gyroscope Measurements

In experiment 1, we consider an estimation problem that neglects
analytical vehicle dynamics in favor of measured dynamics from a
three-axis gyroscope. For simplicity, we choose to place our vehicle
body frame at the center of our gyroscope measurement frame. The
gyroscope measurement model follows the one commonly used in
robotics [65,66]:

ϖg � ω�tg� � b�tg� � ngω; ngω ∼N �0;Rgω� (46a)

_b�t� � wb�t�; wb ∼ GP�0; δ�t − t 0�Qb� (46b)

whereϖg denotes the angular velocity measurement at tg, and ω is
the angular velocity of the body as seen from the inertial frame but
expressed in the body frame (see Sec. III.A for the notation). It is
related to the quaternion trajectory qBI�t� via Eq. (36). The gyroscope
measurements are assumed to be subject to both zero-mean Gaussian
measurement noise ngω and a slowly evolving bias b�t�. We will
model the bias with a traditional B-spline function in R3 in every
experiment with the same order as the attitude unit quaternion B-
spline. The error for a single gyroscope measurement may be
written as

egω ≔ ϖg − ω�tg� − b�tg� (47)

which becomes a term Jω in our objective function:

Jω ≔
1

2

XG
g�1

eTgωR
−1
gωegω (48)

The bias motion error may be written as

eb�t� ≔ _b�t� (49)

This error contributes to our objective function as

Jb ≔
1

2

Z
T

0

eTb �t�Q−1
b eb�t� dt (50)

Together, Eqs. (45), (48), and (50) define the combined objective
function J ≔ Jy � Jω � Jb. Let Q be the stacked matrix of
quaternion control vertices and cb the stacked vector of bias spline
control vertices. The control vertices for the maximum likelihood
estimate of the trajectories qBI�t� and b�t�,Q⋆, c⋆b can then approxi-
mately be found by minimizing J�Q; cb�:

�Q⋆; c⋆b � � argmin
Q;cb

J�Q; cb� (51)

B. Attitude Estimation Based on Euler’s Equation

In this type of experiments, we consider a spacecraft attitude
estimation problem that uses a vehicle dynamics model based on
Euler’s equation. The dynamics model is (expressed in the body
frame)

I _ω�t� � ω×�t�Iω�t� � u�t� �w�t� (52)

where t is time, I is the vehicle inertia matrix, ω�t� is again the
angular velocity of the body as seen from the inertial frame, u�t� is a
known control input, and w is a zero-mean white Gaussian process
with covariance Qd:

w ∼ GP�0; δ�t − t 0�Qd� (53)

Following Furgale et al. [5] (Sec. III.A), we define the error for the
dynamics model at time t to be

ed�t� ≔ I _ω�t� � ω×�t�Iω�t� − u�t� (54)

The resulting term in our objective function is
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Jd∶ �
1

2

Z
T

0

eTd �t�Q−1
d ed�t�dt (55)

Together, Eqs. (45) and (55) define the combined objective
function J ≔ Jy � Jd. LetQ be, again, the stacked matrix of quater-
nion control vertices. The trajectory estimate is then given by the J-
minimizing quaternion control vertices:

Q⋆ � argmin
Q

J�Q� (56)

C. Simulation Configurations

We simulated the attitude trajectory of a spacecraft at 350 km
altitude, with a 35 deg inclination and an initial angular velocity of
square norm 0.5 deg ∕s. This configuration is intentionally similar to
those used in [4,14] so that the result can be directly compared. To
stress test the dynamic model-based approach, we also simulated
trajectories with a sinusoidal thruster turned on. The thruster’s
sinusoidal torque τ is simulated at a time t for a given thruster factor
fτ as follows:

aτ ≔
h
0.001 0.0005 0.00075

i
T
N · m (57)

ωτ ≔
h
0.1 0.05 0.075

i
T rad

s
(58)

ϕτ ≔
h
0 π

2
− π

4

i
T
rad (59)

τ0 ≔
h
0.005 −0.005 0.000

i
T
N · m (60)

τ�t� ≔ fτ�aτ sin�tωτ � ϕτ� � τ0� (61)

where the sinus is applied componentwise. This torque is used as the
inputu in Eq. (52). The angular acceleration induced by the thruster is
determined by the assumed inertia tensor of the spacecraft in the same
frame:

I ≔ diag�� 27 17 25 �� kg · m2 (62)

ατ�t� ≔ I−1τ�t� (63)

We chose our system process noise, described in Eq. (53), to be
defined by Qd � �1 μNm�2 1

s
1. We simulated a three-axis magne-

tometer (TAM), a sun sensor, and a rate gyroscope. They were all
sampled at 1 Hz, as in [4] ([14] use 0.1 Hz). We used the following
parameters for the sensors.
1) Gyroscope: Rgω � �0.3 μ rad

s
�21,Qb � �3 � 104 μ rad

s2
�2 1

s
1; see

Eq. (46).
2) Magnetometer: RB � �50 nT�21; see Eq. (43).
3) Sun sensor: RS � �5 mrad�21; see Eq. (43).
The simulated gyroscope bias was started at 0 or 1000 deg ∕h,

depending on the experiment. To the best of our knowledge, these
parameters are identical to [4,14], except that they did not simulate a
sun sensor. For some tests, we introduced a noise factor F ∈ �1; 100�
applied to the standard deviation of the sensor measurements and the
gyroscope bias process noise. For every simulation configuration, we
simulated an ensemble of 100 different seeds for the pseudorandom
number generators used to simulate process and sensor noise.
The typical simulated attitude trajectory is depicted in Fig. 2. It

depicts the three imaginary components of the attitude quaternion qBI
over ourmaximal durationT � 2 h and zooms in to the first [0, 0.2] h
interval as used in most of the short experiments.

D. Estimators

For our comparison, we have implemented the proposed spline
estimators for continuous-time estimation capable of integrating all
sensor output, including the gyroscope, as described in Sec. IV.A, and

Fig. 1 Graph of a B-spline f∶�tO;tI−O�1�→ ℝ �with O � 4; I � 11; tj ≔ j − 1�. It shows basis functions, bj (solid bumps), knots, tj, (dashed lines),
control vertices, cj, (black dots). Only the highlighted basis functions contribute to f’s value in the dark gray shaded area.

Fig. 2 Typical simulated attitude trajectory plotted as the three imaginary components of qBI over the longest run timeT � 2 h and a zoomed plot of the
first 0.2 h.
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the dynamics model, as described in Sec. IV.B with arbitrary spline
order (starting at 2 corresponding to a polynomial order of 1, i.e., a
“linear spline”). Wewill refer to these estimators with (label, marker)
on all plots:
1) (splXX,XX): our quaternion spline implementation where XX is

the B-spline order.
2) (MEKF, K): a multiplicative EKF implementation.
3) (splVan, V): a modified linear spline that uses the symplectic

integration scheme described in [4] to calculate its angular velocity.
Although our optimization algorithm will certainly use a different
path through the parameter space of the spline, the result should be
(up to the solver precision) the same as of a full implementation of the
estimator described in [4].

E. Estimator Configurations

As estimator configurations we consider a specification of 1) the
prior attitude distribution as normal distribution on SO(3),N �μA;PA�;
2) the prior bias distribution as normal distribution onR3,N �μb;Pb�;
3) the observation duration T; 4) the sensor period, for all sensors
(adjustable by subsampling the simulated sensor readings); 5) the knot
spacing for the splines; and 6) the set of sensors used (rate gyro,
sun, TAM).
The system dynamics model is used if and only if the gyroscope is

not used.
To initialize the spline batch estimators, we start with calculating a

quaternion sequence using different strategies, depending on the
sensor configuration.
1) If both bearing sensors are used,weuse theQ-method [6] to get a

quaternion for each measurement time.
2) Otherwise, if the rate gyroscope is available, we integrate its

angular velocitymeasurements starting at the prior’smean. Tomitigate
the drift of the gyroscope integration in long experiments, we initialize
the full spline in subbatches of about 10 min. For each subbatch, we
integrate the gyroscope, perform a full estimation with all sensor data,
and then repeat the process for the next subbatch using the final value of
the previous subbatch at the start of the integration time.
3) If neither is available, we use a constant sequence equal to the

prior’s mean.
In each case, we roughly fit the quaternion spline to this sequence

to initialize the nonlinear optimization (Sec. III.G), then run a full
batch optimization.
To employ the systemmodel in the second type of experiments, we

used Simpson’s rule and twice as many evaluations for the numeric
integration (Sec. III.H) as knots in the spline.
For the prior attitude, we chose the mean μA to be 120 deg off

ground truth, and the covariance matrix PA � �180 deg�21 and
Pb � �0.2 deg ∕h�21. The prior bias mean is always 0 ∈ R3. We use
T � 0.2 h as the observation time and 1 s as the default sensor period
(corresponding to the 1Hz simulation frequency). As the default knot
spacing, we chose the sensor period for the linear splines (B-spline
and Vandersteen) and twice the sensor period for all other splines
because this gave the best results in each case. All experiment
descriptions in Sec. V will be relative to this default configuration.

V. Results

We defined several experiments by picking a simulator configu-
ration and an estimator configuration up to one open parameter. This

parameter will be varied in a specific interval andmake up the abscissa
of the two-dimensional result plots. As ordinates, we plot mean and
standard deviation over the simulated ensemble for a temporally
averagedangular distance betweenground truth andestimated attitude.
To allow the different estimators time to converge, this temporal
average is taken over the last ΔT s of the observation time T. We will
denote this measurewithMADE(ΔT) for mean angular distance error.
To compute theMADE�ΔT�, we evaluate

MADE�ΔT� ≔ 1

jUj
X
t∈U
dangle�q̂�t�; q�t�� (64)

where dangle denotes the angular distance (in degrees) of two unit
quaternions (≔ Riemannian distance of the represented rotations);
q̂�t� is the estimated attitude quaternion at time t; q�t� is the simulated
attitude quaternion;U ⊂�T − ΔT; T� is the set of all time instances for
which both q̂�t� and q�t� are available; and jUj is its cardinality. For
all continuous estimators, U are the time instances in �T − ΔT; T� for
which q�t�was simulated (at 10Hz). The discreteMEKFalways runs
on a regular subset (depending on the experiment) of the simulated
times and hence defines the U for its MADE evaluation.
This approximates a temporally averaged angular distance because

U is always evenly spaced, which yields for two continuous unit
quaternion-valued functions q1, q2 on �T − ΔT; T�

1

jUj
X
t∈U
dangle�q1�t�; q2�t�� ≃

1

ΔT

Z
T

T−ΔT
dangle�q1�t�; q2�t�� dt (65)

We decided to use the Riemannian distance (Eluclidean norm of
the relative rotation vector) instead of the root sum squared (RSS) of
roll, pitch, and yaw used in Vandersteen et al. [4] and Crassidis and
Markley [14] because the latter is not isotropic and would render the
result dependent of the current pose of the spacecraft. For small
errors, they are very similar in magnitude, and thus the results are still
comparable.
Except for this difference in the error metric at a point in time,

MADE�T� is like the integral cost J defined in Eq. (46) of Crassidis
and Markley [14].

A. Gyroscope Based

First, the experiments based on gyroscope measurements,
corresponding to Sec. IV.A.
Figure 3 shows the results for the extreme initial bias test case of

[4]. This experiment uses an initial bias of 1000 deg ∕h and only a
gyroscope and magnetometer (no sun sensor). It shows how the
MEKF recovers very slowly from the bad prior (120 deg away from
ground truth), whereas all spline estimators have good results after
0.5 h, at the latest. The fourth-order spline has more problems with
the high bias error than the linear ones and the sixth-order. The former
is probably mainly an effect of the fact that the linear splines have
twice asmany knots. Qualitatively, these results fit the results of [4] as
far as they overlap. However, there are twomajor differences. First, in
our experiment, theMEKFwas able to converge for all randomseeds,
just very slowly. And second, the limiting accuracy was about
5 × 10−3 deg in our case and 10−3 deg in theirs. These differences
are most likely caused by differences in the simulated sensor data

Fig. 3 MADE(100 s) over the observation time T given a simulated initial bias of 1000 deg ∕h. T ∈ �0;2� h. Sensors: rate gyroscope, magnetometer.
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because we do not know the initial angular velocity or the simulated
system noise used in [4].
In Fig. 4, we show the response of each estimator to a bad prior

mean after T � 0.2 h of simulation time. Here, all batch estimators
converge with essentially the same accuracy, whereas the Kalman
filter has trouble converging as the prior mean failure gets large. The
low variance of the MEKF measurements indicates that the MEKF’s
estimate is not only spoiled by noise but has systematic problems
when facing a prior with a mean far off the truth.
In Fig. 5, we test the effect of sensor noise on each estimator. The

splines excel in low noise range but are on par with the MEKF when
sensor noise increases. TheMEKF converges in every case due to the
high sensor rate.
In Fig. 6, we tested the effect on higher angular velocity and

acceleration due to activated thruster. Only the Kalman filter and the
Vandersteen spline are noticeably affected by this addition. In the
case of theVandersteen spline, we suspect that this is due to the use of

the symplectic integration scheme to approximate the angular
velocity. In contrast, state derivatives are exact and analytical for all
B-spline solutions.
In Fig. 7, we examined the effect of the sensor rate (defined

by its period). Again, the Kalman filter and the Vandersteen
spline are much more negatively affected. The similarity between
Figs. 6 and 7 (especially in the beginning) is because the accuracy of
the simulated sensor is not affected by the spacecraft’s velocity;
increasing the sensor period has virtually the same effect as speeding
up the whole motion and leaving the period fixed. The effect of the
thruster at 100% power roughly corresponds to the sensor period of
20 s. The fourth- and sixth-order splines becomeworse than the linear
spline (spline order 2) because they have only half the number of
knots, and in this experiment they all reach their bounds of their
expressiveness (the frequency of motion they can represent) because
they have to model a much longer trajectory with a fixed number
of knots.

Fig. 4 MADE(100 s) over the distance of the prior mean to ground truth. T � 0.2 h. Sensors: rate gyroscope, magnetometer.

Fig. 5 MADE(100 s) over a factor multiplying the standard deviation of all sensor noise.T � 0.2 h. Sensors: rate gyroscope, sun sensor, magnetometer.

Fig. 6 MADE(100 s) over the thruster’s power factor in percentage. T � 0.2 h. Sensors: rate gyroscope, sun sensor, magnetometer.

Fig. 7 MADE�18T� over the sensors’ period. T is determined by a fixed amount of 64 measurements per sensor. Sensors: rate gyroscope, sun sensor,
magnetometer.
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B. Euler’s Equation Based

Next, we present the experiments based on Euler’s equation. Here,
we cannot use the two linear splineversionswe used in former section
because their angular acceleration is zero or undefined, which does
not allow a straightforward application of the system model. In this
section, we skip the first convergence experiment (corresponding to
Fig. 3) becausewe do not have a initializationmethod reliable enough
for the extreme initial bias case. Apart from that, we first follow
roughly the same program as for the gyroscope-based experiments.
In Fig. 8, we show the response of each estimator to a bad prior

mean after T � 0.2 h of simulation time. It shows again how all
splines perform superior to the MEFK.
In Fig. 9, we test the effect of sensor noise on each estimator. The

system-model-based spline estimators excel in the low noise range.
Their bad performance for the highest noise case is caused by
wrongly signed quaternions in the result of the quaternion association
step (Sec. III.K). In the case of such a bad initialization, the system
model pulls strongly toward an incorrect solution. When we use
gyroscope measurements instead of the system model (Fig. 5), the
estimator is able to find its way back to the correct solution.
In Fig. 10, we compare the performance of the estimators while

varying the intensity of the thruster. Only the Kalman filter and the
fourth-order spline are noticeably affected. Here, the high-order
splines clearly excel. The poor performance of the fourth-order spline
is caused by its bad compatibility with the ordinary differential
equation (ODE) given by the system model, especially when the
thruster is activated. This incompatibility pulls the estimator away
from the good solutions because the low noise on the dynamics
makes the estimator trust the system model more than the sensors.
Whenwe increase the noisew in the simulated system [Eq. (52)], this

difference continuously decreases.Wewill analyze that effect further
in Sec. V.C.
In Fig. 11, we tested the effect of the sensor rate (as in Fig. 7).

Again, the Kalman filter is much more negatively affected than the
high-order splines. Figure 10 is again quite similar to the first 20 s.
The bad effect on the fourth-order spline is more severe than in the
gyroscope experiment. We believe that this is again caused by the
incompatibility between cubic B-splines and the system model. This
difference becomes small when we increase the system noise.

C. Discussion

1. Impact of the B-Spline Order

The most surprising discovery we had while evaluating these
experiments was the strong influence of the spline order on the
estimation results. The numbers of parameters for a B-spline with N
usable segments (between the knots tO and tO�N) and spline orderO
is proportional to O� N. These parameters N and O, are the tuning
parameters through which one may influence the expressiveness of a
B-spline curve, i.e., which trajectories can be expressed. This does
not only affect how close the splines can approximate the true
trajectory (see Sec. V.C.5) but also how much a continuous-time
batch estimator is supported in finding realistic solutions given the
measurements. For a given system (represented mathematically by a
stochastic ODE), the leap from cubic to quintic piece wise
polynomials (requiring only two more control vertices for any curve
length) may result in a much better fit to the probable motions
produced by the system (solutions of theODE) than adding twomore
segments. B-splines (with increasing knots) are CO−1 continuous at
the knots and infinitely differentiable everywhere else. This means
that increasing the number of knots, N, creates more times at which

Fig. 9 MADE(100 s) over a factor multiplying the standard deviation of all sensor noise. T � 0.2 h. Sensors: sun sensor, magnetometer.

Fig. 8 MADE(100 s) over the angular distance error of the prior. T � 0.2 h. Sensors: magnetometer.

Fig. 10 MADE(100 s) over the thruster’s power factor. T � 0.2 h. Sensors: sun sensor, magnetometer.
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the curve is not infinitely differentiable, whereas leavingN fixed and
increasing the spline order O increases how often the curves are
differentiable everywhere. For our spacecraft dynamics, the fourth-
order spline produces significantlyworse estimates than a sixth-order
spline.
To demonstrate the role of spline order vs segment number for our

batch estimator, we came up with the following experiment. In
Fig. 12, we assessed the estimation accuracy while changing the
uniform knot spacingΔtknots for different spline orders up to 13. This
implies dividing the run time T � 0.2 h into different numbers of
segments, N � ceil�720s∕Δtknots�, ranging from 115 to 8. The
higher-order splines (≥12) were more difficult to initialize for high
knot spacing (above 80 s), as mentioned in Sec. III.G, and required to
raise the acceleration penalty. The drastic effect of the order catches
the eye. In the system model experiment, increasing the order from 4
to 5 (adding one quaternion more to the parameters) corresponds
roughly to reducing the number of segments from 20 to 10, yielding a
reduction of parameters from 24 to 15 quaternions. In the gyroscope
experiment, the effect is lower but still significant; the step from 4 to 5
corresponds to a decrease in segments from 20 to 12.
In the high-accuracy range, the result is even more extreme. For

example, in the gyroscope-based experiment, a fourth-order spline
requires at least eight times more segments to achieve the same
accuracy as a 12th-order spline. In the systemmodel experiment, it is
16 times more.
In these plots, the linear splines seem even worse than in the other

experiments because they are using the sameknot spacing as the other
splines. Recall that, in the other experiments, they used twice as
many knots.

2. Computational Cost

Of course, the estimation accuracy needs to be compared with the
corresponding computational cost. Because the Jacobian evaluation

has a big impact, it is hard to theoretically derive the computational
complexity. Thus, we only provide single-core CPU time
measurements on a workstation in Fig. 13. It shows surprisingly
little effect of the number of segments on a single iteration. The
majority of time is spent on the evaluation of the Jacobians, which
only depends on the number of measurements (fixed here) and spline
order O.

3. Convergence Behavior

Inmost of the experiments, the convergence behavior is as follows.
There is typically a big step after the first iteration, followed byminor
improvements in subsequent iterations, except for the linear splines
that converge slower andmutually very similar. That is why in Fig. 14
we show the convergence behavior in a very difficult setup instead.
The B-spline gets initialized with a constant value, which is 120 deg
off the simulated initial attitude, and the estimators are only using the
magnetometer and the rate gyroscope. In the gyroscope case, the
order seems to heavily influence if and how long it takes to recover
from the bad initial value but without any obvious rule how. In the
system model experiment, the typical independence of the order is
clearly visible, except for very high-order B-splines (here 10th order).
The sensor rates almost have no impact on the convergence behavior.
However, the assumed sensor noise has a surprisingly big impact.
Interestingly, increasing the sensor noise in thegyroscope casewill first
increase the convergence speed, even in absolute accuracy. Further
rising the noise magnitude results in slower convergence, and even-
tually, the convergence behavior will become independent of the
order.

4. Under-Determined Case

To demonstrate howwell the systemmodel can prevent the splines
from overfitting, we run another experiment, very similar to Fig. 12,
by starting the knot spacing below the sensor period (1 s) and

a) With gyroscope

b) With system model

Fig. 12 MADE�T� over the time between knots. T � 0.2 h. Sensors: sun sensor, magnetometer.

Fig. 11 MADE�18T� over the sensors’ period. T is determined by a fixed amount of 64 measurements per sensor. Sensors: sun sensor, magnetometer.
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a) With gyroscope

b) With system model
Fig. 14 MADE�T� over iterations (0 � after initialization) after a very bad B-spline initialization: constant, at 120 deg off the initial attitude.T � 0.2 h.
Sensors: rate gyroscope, magnetometer.

a) With gyroscope

b) With system model
Fig. 13 Time for one iteration over knot spacing on a single Intel Xeon E5 core at 3.6 GHz. T � 0.2 h, yielding 720 readings per sensor. Sensors: sun
sensor, magnetometer.

a) With gyroscope

b) With system model

Fig. 15 MADE�T� over the time between knots on a logarithmic scale. The sensor rate is at 1s� 100 s. T � 0.2 h. Sensors: sun sensor, magnetometer.
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exponentially increasing the number of knots. The result is depicted
in Fig. 15. Obviously, the gyroscope-based estimation becomes
inaccurate and unstable when the knot rate is below or close to the
sensor rate (100 s) while the system model based estimation keeps
maximal accuracy.

5. Approximation Capacity Analysis

In our estimation experiments, we do not distinguish between
estimation error and approximation error. In a next step, we therefore
determine the smallest possible analyze the pure approximation error
in a separate experiment.
Figure 16 shows the result of this experiment. The color encoded

approximation error is clamped to the interval [10−1; 10−6] deg for
better readability.
We analyze two types of trajectories 1) the simulated space craft

trajectories as used for the estimation experiments (T ∈ f0.2; 2g h)
and 2) sinusoidal attitude trajectories, turning around a fixed axis
with amplitute, A ∈ f10; 90; 180g deg and N � 5 periods of 1 s
(T � 5 s). The second type we include for comparison and to give
some intuition about how to approximate accelerated trajectories.
Each trajectory is approximated with evenly spaced unit-length

quaternion B-splines of varying order, O ∈ f2 : : : 9g, and varying
number of valid segments S ≔ I − 2O� 1. When increasing S,
typically there is a big leap to good accuracy between S � 3Nand
S � 6N.
All our estimation experiments have S∕N ≥ 360 (≃ 2 s knot

spacing) except for the experiments in Figs. 12 and 15, which have
variable knot spacing. The approximation accuracy S∕N � 360, is
clearly better than 10−4 deg. It follows that for these experiments the
approximation error is negligible, because their accuracy is always
even worse than 10−3 deg. The same is true for all the other
estimation experiments with higher knot spacing but to show this
requires a detailed sub-experiment wise comparison skipped here for
the sake of brevity.

VI. Conclusions

In this paper, an existing unit-length quaternion B-spline formula-
tion is extended to any order and all Lie groups, and all necessary
Jacobian formulas needed for batch continuous-time state estimation
on Lie groups are derived both in the general case and in the specific
case for attitude estimation using unit-length quaternion splines, a
singularity-free continuous-time attitude representation. The
performance of these curves is evaluated for estimating spacecraft
attitude against a state-of-the-art approach. B-splines are shown to
have equal or superior performance over all test cases and provide
two key tuning parameters, the number of knots and the spline order,
that an engineer can use to trade off accuracy and computational
efficiency when choosing a spline representation for a given estima-
tion problem.

Appendix A: Proofs for Angular Velocity Equations

Let r�t; v� ≔ Rotp�t��v� [see Eq. (31)] describe the rotation by the
unit-length quaternionp�t� of any coordinate triplev ∈ R3 expressed
in the frame F

→a
. Then, the following equation defines the angular

velocity ωa�t� in the same frame F
→a

for this rotation of the

coordinates v:

∂r�t; v�
∂t

� ωa�t�×r�t; v�

Please note that we introduced p to represent the rotation actively
in F

→a
as opposed to the definition of qba, which passively describes

the change of coordinates from F
→a

to F
→b

. We start this way because

the physical notion of angular velocity is conceptually closer to the
active rotation concept. With ~v ≔ Vv, we have

∂r�t;v�
∂t
� ∂
∂t
W�p�t� ~vp−1�t���W� _p�t� ~vp−1�t��p�t� ~v _p−1�t��

(A1)

� W� _p�t�p−1�t�p�t� ~vp−1�t� − p�t� ~vp−1�t� _p�t�p−1�t�� (A2)

� W� _p�t�p−1�t�Vr�t; v�� �W�−r�t; v� _p�t�p−1�t��|�����������������{z�����������������}
�W� _p�t�p−1�t�r�t;v��

(A3)

� 2W� _p�t�p−1�t�Vr�t; v�� (A4)

� 2W� _p�t�p−1�t��×r�t; v� (A5)

Because the latter equation has to be true for any v, it follows that
(omitting the time parameter)

ωa � 2W� _pp−1� (A6)

In the case that F
→b

is F
→a

rotated by p, it holds that qba � 
p−1.
Inserting in Eq. (A6) yields, when omitting the subscript of qba,

ωa � 2W� _pp−1� � 2W� _q−1q� � −2W�q−1 _q� (A7)

because _q−1 � −q−1 _qq−1. This proves Eq. (35).
Angular velocity expressed inF

→b
can be acquired by transforming

the coordinates using qba by applying Eq. (34):

Fig. 16 Artificial sinusoidal attitude trajectory, turning around a fixed axis with amplitudeA ∈ f10;45;90g deg, and period of 1 s is approximated with
evenly spaced until-length quaternionB-splines of various orderO ∈ f2 : : : 9g and number of segmentsS. The abscissa is the fractionS∕N, withN � 5 the
number of simulated periods.
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ωb � W�q�Vωa�q−1� � −2W�q�VW�q−1 _q��q−1� � −2W� _qq−1�
(A8)

becauseVW acts as identity on the pure imaginary valueq−1 _q. Itmust
be pure imaginary because complex conjugation (denoted with a hat
in the following) negates it because q is of unit length (⇒q−1 � q̂):

ĉq _q� q̂ _q � _̂qq� q̂ _q � _̂qq� q̂ _q � d

dt
q̂q � 0

The second equivalence follows from the fact that taking derivative
commutes with complex conjugation. And Eq. (A8) proves Eq. (36).

Appendix B: Proofs for Unit-Length Quaternion
Exponential and Logarithm Maps’ Jacobian Formulas

Let ϕ ∈ R3 \ f0g represent a purely imaginary quaternion and
ϕ ≔ kϕk, ϕa ≔ ϕ. First, we derive the exponential map’s Jacobian
S�ϕ�, as given in Eq. (39) by starting with Eq. (21):

S�ϕ� �
X∞
k�0

�−1�k
�k� 1�! �adϕ�

k (B1a)

� �adϕ�0 �
X∞
k�1

�−1�2k−1
�2k − 1� 1�! �adfϕ�

2k−1

�
X∞
k�0

�−1�2k�2
�2k� 2� 1�! �adϕ�

2k�2 (B1b)

� 1�
X∞
k�1

−1
�2k�! ��−1�

k−122k−1ϕ2k−1a×�

�
X∞
k�0

1

�2k� 2� 1�! ��−1�
k�2ϕ�2k�2a×a×� (B1c)

�1−
1

ϕ
sin2ϕa×�−1

2ϕ

�X∞
k�0

�−1�k
�2k�1�!�2ϕ�

2k�1−2ϕ

�
a×a× (B1d)

� 1 −
1

ϕ
sin2 ϕa× �

�
1 −

1

2ϕ
sin�2ϕ�

�
a×a× (B1e)

We use to get Eq. (B1c) that for allw ∈ H, also purely imaginary,
adϕw � �ϕ;w� � ϕw − ϕw � 2ϕ ×w, which implies that 2ϕ× is
the matrix representation of ϕ’s adjoint action in Bg � �i; j;k�, and
that for the cross product it holds �a×�3 � −a×, which implies
�ϕ×�2k�1 � �−1�kϕ2k�1a× and �ϕ×�2k�2 � �−1�kϕ2k�2a×a× for
k ∈ N. To get Eqs. (B1d) and (B1e), we only use well known power
series expansions for sin2 and sin, respectively.
Next, we prove Eq. (40) by showing that S�log�q��L�q� � 1 for

q ≠ 
j. Let ϕ ≔ log�q�, then

S�ϕ�L�q� �
�
1 −

1

ϕ
sin2 ϕa× �

�
1 −

1

2ϕ
sin�2ϕ�

�
a×a×

�
×
�
1� ϕ× �

�
1 −

ϕ

tan ϕ

�
a×a×

�
(B2a)

� 1�
�
ϕ −

1

ϕ
sin2 ϕ� 1

ϕ
sin2 ϕ

�
1 −

ϕ

tan ϕ

�
− ϕ

�
1 −

1

2ϕ
sin�2ϕ�

��
a× (B2b)

�
�
1 −

ϕ

tan ϕ
− sin2 ϕ� 1 −

1

2ϕ
sin�2ϕ�

−
�
1 −

1

2ϕ
sin�2ϕ�

��
1 −

ϕ

tan ϕ

��
a×a× (B2c)

� 1�
�
−
sin2 ϕ

tan ϕ
� 1

2
sin�2ϕ�

�
a×

�
�
1 − sin2 ϕ −

1

2
sin�2ϕ� 1

tan ϕ

�
a×a× (B2d)

� 1 (B2e)

In the first step, only �a×�3 � −a× is used. In the last step, we used
1
2
sin�2ϕ� � cos ϕ sin ϕ, tan � sin ∕ cos, and 1 � sin2 � cos2.

Appendix C: Proof of Equation (22)

∂
∂ϕl

Φ−1
�d
�d� � ∂

∂ϕl
log�d �d−1� � W ∂

∂ϕl
�d �d−1�

� W ∂
∂ϕl
� �g−1k−1 exp�−ϕk−1� exp�ϕk� �gk� �g−1k−1 �gk�−1�

� W� �g−1k−1�L� �gk−1�R
∂
∂ϕl

exp�−ϕk−1� exp�ϕk�

� W� �g−1k−1�L� �gk−1�RV|��������������{z��������������}
�C� �g−1

k−1�

�δl;k − δl;k−1�1

Appendix D: Proof of Theorem 1

Theorem 1: AL is a sub-R-algebra of RdimA×dimA; GL is a matrix
Lie group embedded in AL; and this pair is fully isomorphic to the
pair of G and A.
Proof: It is enough to show that ·L is an algebra-monomorphism

into RdimA×dimA because its image AL is then a subalgebra and the
mapping an algebra-isomorphism onto it. The existence of this
isomorphism yields already that A is isomorphic to AL, that GL is a
multiplicative subgroup in it, and its restriction to G, ·L jG, must be a
group isomorphism. Because any vector space isomorphism is also
smooth with respect to the canonical differential structure of a finite-
dimensional vector space, we also have isomorphic Lie groups
because we assumed the differential structure on G to be identical
with the one induced from A.
Let a;b ∈ A be arbitrary vectors, 1 ∈ A denote the multiplicative

identity element, andΨ the coordinate mapA → RdimA with respect
to the default basis forA, as before.Wewill now prove the injectivity
and homomorphy of ·L, which together implies it to be an
monomorphism.
1) The injectivity basically follows from A having a one and Ψ

being injective:

aL�bL⇒aLΨ�1��bLΨ�1�⇒
def
Ψ�a1��Ψ�b1�⇒a1�b1⇒a�b

2) Algebra-homomorphy:
Let α ∈ R be an arbitrary real number and v ∈ A be a further
arbitrary vector.
From the fact that A’s vector multiplication, the matrix

multiplication, and Ψ are (bi)linear follows then

�a� b�LΨ�v��
def
Ψ��a� b�v� � Ψ�av� bv��

def
aLΨ�v�

� bLΨ�v� � �aL � bL�Ψ�v� (D1)

and
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�αa�LΨ�v��
def
Ψ��αa�v� � Ψ�a�αv���

def
aLΨ�αv�

� aL�αΨ�v�� � �αaL�Ψ�v� (D2)

From the associativity of both theA-vector multiplication and the
matrix product, it follows that

�ab�LΨ�v��
def
Ψ��ab�v��Ψ�a�bv���

def
aL�bLΨ�v��� �aLbL�Ψ�v�

(D3)

Because v, and with itΨ�v�, was arbitrary, it follows from the last
three equations by the the fact that two squarematrices are identical if
they always yield the same when multiplied with arbitrary vectors
that

�a� b�L � aL � bL; �αa�L � αaL and �ab�L � aLbL

Becausea and bwere arbitrary, it follows the homomorphy for the
three algebra operations, the addition, and the scalar and vectorial
multiplications. □

Appendix E: Proof of Theorem 2

Theorem 2: In our setting, expG is a restriction of expA to g ⊂ A,
employing the natural identification of G’s tangent spaces with
subvector spaces of A.
Proof: It is a well known fact for matrix Lie groups that Theorem 2

holds for the pair �GL;RdimA×dimA�. The exponential map on AL is
obviously a restriction of the matrix exponential on RdimA×dimA to
AL. Restricting expRdimA×dimA first to AL and then to GL yields the
same as restricting directly to GL, and therefore the statement follows
for the pair �GL;AL�. Finally, because of Theorem 1, the statement
also follows for the isomorphic pair �G;A� because both notions of
exponential maps are intrinsically defined. □
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