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This paper describes a method for recovering linear controllability for the attitude of an underactuated spacecraft

by accounting for the effects of solar radiation pressure in the spacecraft attitudemodel. The developments are based

ona spacecraftmodel that has at least two functional reactionwheels.A solar radiationpressure torquemodel that is a

function of spacecraft attitude is incorporated and, under suitable assumptions, can be simplified for spacecraft with

body symmetry. Conditions are given under which a symmetric-body spacecraft will experience zero solar radiation

pressure torque. The stability of the underactuated spacecraft model is discussed, and necessary and sufficient

conditions are given for linear controllability to be regainedwhen solar radiation pressure torques are included in the

spacecraft attitude model. With linear controllability restored, conventional controllers can be designed for under-

actuated spacecraft. Controllability of a cuboid spacecraft under the influence of solar radiation pressure is then

analyzed. Nonlinear simulations illustrate this novel approach to recover pointing by controlling two functioning

reaction wheels while two other wheels undergo subsequent failures.

Nomenclature

A = dynamics matrix of an open-loop linear model
Aw = dynamics matrix of an open-loop linear model

for angular velocities
Aj = area of panel j
B = input matrix of a linear model
B = spacecraft bus-fixed frame
Cdiff;j = diffusion coefficient of panel j
c = speed of light
di;j = distance to point i on panel j from the center of

the sun
d0 = 1 AU
ĝi,
i � 1,2,3,4

= physical spin axis vectors of reaction wheels 1,
2, 3, and 4, respectively

�gi,
i � 1,2,3,4

= mathematical vector corresponding to the
expression ĝi expressed in B

H = physical total angular momentum vector
I = inertial frame
Ij = indicator function for determining if panel j

contributes to solar radiation pressure torque
J = diag(J1,J2,J3)
~J = locked inertia matrix
�J = modified locked inertia matrix

Jind = controllability index
Jw = moment of inertia of a reaction wheel about its

spin axis

J1,J2,J3 = spacecraft principal moments of inertia

Lx, Ly, Lz = dimensions of the cuboid spacecraft
lx, ly, lz = components of �rC∕O
Mext = physical external moment vector

M�tf; t0� = controllability gramian
n1, n2, n3 = components of �us
OB∕I = orientation matrix of B relative to I
Pj = physical vector of solar radiation pressure of

panel j
Q, R = weight matrices for linear quadratic controller

rC∕O = physical position vector of the center of mass
of the spacecraft C from a reference point O

�rC∕O = mathematical vector corresponding to rC∕O
expressed in B

�rj = mathematical vector corresponding to rj∕O
expressed in B when considering a pair of

symmetric panels

rj∕O = physical position vector of the center of the jth
panel from a reference point O

T = linearized solar radiation pressure torques
influence matrix

�uj = mathematical vector corresponding to the ex-
pression of ûn;j expressed in B when consid-
ering a pair of symmetric panels

ûn;j = outward physical normal vector to panels j
ûs = sun direction physical vector
�us = mathematical vector corresponding to the

expression of ûs expressed in I
Wa = matrix of all operational reaction wheel spin

axes
�za = mathematical vector of control inputs corre-

sponding to the accelerations of operational
reaction wheels

�za;0; = control input values at the linearization point
of operational reaction wheels
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zi; i � 1,2,3,4 = control inputs corresponding to the accelerations
of reaction wheels 1, 2, 3, and 4, respectively

δ• = deviation from values at the linearization point
λ = eigenvalue of A
λw = eigenvalue of Aw

�Θ = mathematical vector of Euler angles
�νa; = mathematical vector of operational reaction

wheels speeds
�νa;0 = reaction wheel speeds at the linearization point
νi; i � 1,2,3,4 = speeds (spin rates) of reaction wheels 1, 2, 3,

and 4, respectively
τp = solar radiation pressure torque physical vector

induced by a pair of symmetric panels
τsrp = physical solar radiation pressure torque vector
�τsrp = mathematical vector corresponding to τsrp

expressed in B
τsrp;x,
τsrp;y, τsrp;z

= physical vectors of solar radiation pressure
torques aligned with the principal axes of the
cuboid spacecraft

�τsrp;x,
�τsrp;y, �τsrp;z

= mathematical vectors of τx;srp, τy;srp, and τz;srp
expressed in B

Φsun;tot = solar flux at 1 AU
ψ , θ, ϕ = 3-2-1 Euler angles yaw, pitch, and roll
ω = physical angular velocity vector
�ω = mathematical vector corresponding to → ω

expressed in B
ω1, ω2, ω3 = components of �ω

I. Introduction

T HE failure of reaction wheels (RWs) in an array can impair a
spacecraft’s ability to perform imagingmissions, duringwhich a

prescribed inertial orientation has to be achieved andmaintainedwith
high accuracy and precision. The far ultraviolet spectroscopic
explorer (FUSE) had three out of its four RWs fail within their
expected lifetime and consequently had to perform attitude
maneuvers using magnetic actuators and one RW [1]. The Kepler
telescope lost two out of its four RWs before its mission was
complete. Although its gas thruster can also be used to perform
attitude maneuvers, this type of actuation expends fuel and was not
designed to provide the precise orientation needed [2]. The Japanese
Hayabusa satellite also lost two out its four RWs. Its mission profile
had to be modified to conserve fuel to have enough propellant to
return to Earth after performing the necessary attitude maneuvers
with gas thrusters [3]. We note that RW failures cannot be addressed
simply by increasing redundancy (i.e., adding more RWs) due to
stringent volume, power, and weight constraints onboard the
spacecraft. Control strategies to deal with underactuated spacecraft
hence need to be developed.
In the case of an underactuated spacecraft with two internal torque

actuators, the linearized dynamics are not controllable. In [4], the
nonlinear dynamics are shown to be inaccessible with two or fewer
reactionwheels due to the conservation of angularmomentum. In [5],
it is shown that if a spacecraft with two reaction wheels has zero
angular momentum, the system becomes small-time locally con-
trollable in a restricted (rest-to-rest) sense. However, the spacecraft
cannot be smoothly or continuously stabilized by any time-invariant
feedback law [6–9]. Stabilization is possible by time-periodic
feedback laws, but exponential convergence rates cannot be achieved
if the feedback law is smooth [10]. For a spacecraft with zero total
angular momentum, open-loop reorientation methods are studied in
[11–13], and discontinuous feedback laws are proposed in [5,14–17].
We note that the assumption of total zero angular momentum is

limiting in practical spacecraft applications. It is difficult to achieve it
in space environment, and it is undesirable for spacecraft with less
than four RWs because thewheels must be spun down during inertial
pointing and operated in the zero crossing region, where their
accuracy is decreased, the friction coefficient is increased, and their
operational life is reduced.
The case of an underactuated spacecraft with nonzero total angular

momentum is less studied. Boyer and Alamir [18] define a set of

feasible attitudes defined by the law of angular momentum con-
servation and give a procedure for constructing an open-loop control.
A spin-axis stabilization is performed about the uncontrollable axis
of a spacecraft with nonzero angular momentum in [19], but inertial
pointing is not treated. Petersen et al. [20] exploit results in [21,22]
to develop a hybrid feedback control scheme, which is, however,
dependent on the assumption of angular momentum conservation and
does not guarantee inertial pointing in the casewhere there is a nonzero
projection of the angular momentum on the uncontrollable spacecraft
axis. The techniques proposed in the aforementioned papers not
only suffer from several limitations but are also unconventional and
thus unfamiliar to many practicing aerospace engineers.
The approach presented in this paper is based on including the

effects of solar radiation pressure (SRP) torques, modeled following
[23], into the spacecraft model. Our analysis shows that, under
appropriate assumptions, linear controllability is regained, and hence
spacecraft stabilization can be achieved with conventional control
schemes. In particular, a linear quadratic (LQ) approach will be first
applied. The LQ approach is chosen due to its robustness, its optimal
control properties, and its familiarity to aerospace engineers. A pole
placement schemewill also be used to improve convergence time. By
taking advantage of the change in the dynamics induced by SRP
torques, two RWs are able to slowly correct the attitude errors over
time. This method is different from the previous approaches discussed
previously. First, it exploits external disturbance torques, which many
control techniques typically either neglect or reject. Second, this
method is not restricted to zero total angularmomentumor the constant
angular momentum assumption. Third, using SRP torques allows
designers to use conventional and familiar feedback control schemes
that are guaranteed to locally stabilize the equilibrium.
As compared to a preliminary version of thiswork that has appeared

in a conference paper [24], this paper contains several new results,
extensions, and generalizations. These include 1) the characterization
and discussion of the effects of SRP, specifically on symmetric-body
spacecraft, 2) sufficient conditions for zero SRP torque acting on a
symmetric spacecraft, 3) results on the fixed-attitude stability of an
underactuated spacecraft with and without SRP, 4) necessary and suf-
ficient conditions under which linear controllability is regained with
SRP, and 5) extending a novel pathway to recover linear controllability
and perform control of underactuated spacecraft by taking advantage
of SRP torques to a broader class of spacecraft.
After [24] was submitted for publication, the press release [25]

appeared, suggesting that SRP is actually used (in an unspecified
control scheme) to restore Kepler’s mission controllability. The con-
trollability analysis and results in [24] and in this paper, obtained
independently of [25], are thus indirectly corroborated by experimental
evidence in [25].
The paper is organized as follows. The equations of spacecraft

attitude kinematics and dynamics are derived in Secs. II.A and II.B.
The SRP torque properties are characterized in Sec. II.C, and a
linearized spacecraft model is presented in Sec. II.D. The SRPmodel
is made specific to a symmetric spacecraft in Sec. III, and conditions
under which SRP torque is zero for all attitudes for a symmetric
spacecraft are subsequently derived in Sec. IV. The results on stability
of an underactuated spacecraft are presented in Sec. V. Necessary and
sufficient conditions for linear controllability of an underactuated
spacecraft with twoRWs exposed to SRP are given in Sec. VI.A, and a
relative controllability metric is introduced in Sec. VI.B. The specific
case of SRP torques acting on a cuboid shaped spacecraft is treated in
Sec. VII and includes conditions for zero SRP torque for all attitudes as
well as discussions on equilibria and controllability. The linear control
design based on linear quadratic regulator theory and pole placement
techniques is presented in Sec. VIII. Simulation results based on the
nonlinear spacecraft model are reported in Sec. IX, where the con-
troller is demonstrated to recover pointing after a sequence of two RW
wheels failures. Concluding remarks are made in Sec. X.
Throughout this paper, the following notation is used. Frames are

denoted by script, S. A physical vector is designated by boldface
italics, r. Physical unit vectors are expressedwith an overscript hat, r̂.
The notation for a mathematical vector obtained by resolving a
physical vector in a given frame S is rjS . Mathematical vectors are
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denoted by an overscript bar, �r. The time derivative of a physical
vector r with respect to a given frame S is r

S·
. The orientation matrix

(direction cosinematrix), representing the transformation from frame
S to frame R is OR∕S . An m by n zero matrix is denoted by 0m×n,
whereas an m by m identity matrix is denoted by Im×m. The nomen-
clature is summarized at the beginning of the paper.

II. Spacecraft Modeling

In this paper, a spacecraft configuration consisting of a bus and
four RWs is considered. During the spacecraft’s mission, two of the
RWs fail and spin down to zero speed, leaving two operational RWs.
Let the inertial frame be denoted by I and a spacecraft bus-fixed
frame, with origin at the center of mass of the spacecraft bus, be
denoted by B. The axes of B are aligned with the spacecraft’s
principal axes.
All RWs rotors are assumed thin and identical, with moments of

inertia about the spin axis being equal to Jw and moments of inertia
about axes transversal to the spin axis being zero. The RWs are
mounted such that the center of mass of the entire spacecraft assem-
bly is the same as that of the spacecraft bus. The four RWs spin at
angular rates ν1, ν2, ν3, and ν4 about the spin axes specified by unit
vectors ĝ1, ĝ2, ĝ3, and ĝ4, which are fixed inB. Let �gi � ĝi

��
B, i � 1,

2, 3, 4. Define

�νa � � : : : νb : : : �T; b ∈ f1; 2; 3; 4g
(1)

to be the vector of all operational RWs angular rates and

Wa � � : : : �gb : : : �; b ∈ f1; 2; 3; 4g (2)

to be a matrix whose columns are the unit vectors of the spin axes of
the operational RWs. For instance, if wheels 3 and 4 have failed, then
�νa � � ν1 ν2 �T and Wa � � �g1 �g2 �.

A. Kinematics of the Spacecraft

The orientation of B relative to I is characterized by three
successive rotations, defined by 3-2-1 Euler anglesψ (yaw), θ (pitch),
and ϕ (roll). Note that any three-parameter representation of orien-
tation will contain singularities. It is assumed that the spacecraft’s
mission will not require large attitude transients and never approach
the singularity. This assumption is reasonable, considering that we
are interested in using RWs for accurate pointing near the target
orientation. The kinematic equations, following the derivations of
[26], are given by

_�Θ � F� �Θ� �ω (3)

where �Θ � �ϕ θ ψ �T, �ω � ωjB � �ω1 ω2 ω3 �T is the
angular velocity vector resolved in B, and

F� �Θ� � 1

cos�θ�

2
4 cos�θ� sin�ϕ� sin�θ� cos�ϕ� sin�θ�

0 cos�ϕ� cos�θ� − sin�ϕ� cos�θ�
0 sin�ϕ� cos�ϕ�

3
5 (4)

B. Dynamics of the Spacecraft

The evolution of the spacecraft’s angular momentum in time with
respect to the inertial frame I is given by

H
I ·

� H
B·
� ω ×H � Mext (5)

where H is the total angular momentum of the spacecraft (i.e.,
including the spacecraft bus and RWs), and Mext is a vector of
external moments about the center of mass of the spacecraft. It is
assumed that the only external moments acting upon the spacecraft
are torques induced by SRP (i.e., Mext � τsrp). The total system’s
angular momentum expressed in B is

HjB � J �ω� JwWc��νc �WT
c �ω� (6)

where

J � diag� J1; J2; J3 �;
�νc � � ν1 ν2 ν3 ν4 �T;

Wc � � �g1 �g2 �g3 �g4 � (7)

All RWs are accounted for in Eq. (6) because any residual angular

rate a failed RW has before it spins down to zero affects the angular

momentum of the spacecraft. Taking the time derivative of Eq. (6)

with respect to B and substituting this and Eq. (6) into Eq. (5) gives

J _�ω� JwWc�_�νc �WT
c
_�ω� � �ω × �J �ω� JwWc��νc �WT

c �ω�� � �τsrp
(8)

where �τsrp � τsrpjB. Let

~J � J � JwWcW
T
c (9)

which is often referred to as the locked inertia matrix. Then, Eq. (8)

simplifies to

~J _�ω � − �ω × � ~J �ω�JwWc �νc� − JwWc
_�νc � �τsrp (10)

The contribution of the failed RWs to the dynamics in Eq. (10)

vanishes once their speeds reach zero. Assuming that the failed RWs

are at zero speed, the dynamics can be rewritten to account for the

contributions of only operation RWs:

�J _�ω � − �ω × � �J �ω�JwWa �νa� − JwWa
_�νa � �τsrp (11)

where

�J � J � JwWaW
T
a (12)

is the modified locked inertia matrix.
The operational RWaccelerations are treated as the control inputs:

_�νa � �za (13)

where

�za � � : : : zb : : : �T; b ∈ f1; 2; 3; 4g (14)

For instance, if wheels 1 and 2 are operational but wheels 3 and 4

have failed, �za � � z1 z2 �T.

C. Solar Radiation Pressure Torque Model

Assume that the spacecraft is covered with ρ flat panels. The SRP
torques induced by the panels are modeled based on the develop-

ments in [23]. Define

αi;j �
Φsun;tot

c�di;j∕d0�2
(15)

βj �
4

9
Cdiff;j (16)

where c is the speed of light, d0 is the nominal distance from the sun

equal to 1 AU, Φsun;tot is the solar flux at d0, Cdiff;j is the diffusion

coefficient for panel j, and di;j is the distance to a point i on panel j
from the center of the sun. The SRP at point i on panel j is given by

Pi;j � −αi;j�ûn;j · ûs��ûn;j � βjûs� (17)
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where ûn;j is the normal to panel j pointing outward from the
spacecraft, and ûs is the unit vector representing the sun direction.
Figure 1 depicts the sun direction ûs and normal vectors
ûn;j; j � 1; 2; 3, as they apply to a cuboid spacecraft.
The distance between two points i and l on panels j and k (where j

and k can represent the same panel) is very small when compared to
di;j and dl;k. Therefore the difference between di;j∕d0 and dl;k∕d0
becomes negligible, and αi;j can be treated as a constant parameter α
for all points across all panels. Thus, the SRP exerted at every point
along the same panel is assumed to be identical. Note that there will
be a variation in SRP between panels j and k if βj and βk are different.
The SRP exerted at each point on panel j is then

Pj � −α�ûn;j · ûs��ûn;j � βjûs� (18)

Under the assumption that SRP acts identically across all points on
the same panel, the total SRP torque about the spacecraft’s center of
mass due to the jth panel can be expressed as

τj;srp � �rj∕O − rC∕O� × AjPj (19)

where rj∕O is the vector from a reference pointO to the center of the
jth panel, rC∕O is the vector fromO to the center ofmass, andAj is the
area of the jth panel. Because SRP is additive across all panels,

τsrp �
Xρ
j

τj;srpIj (20)

where Ij is an indicator function used to identify which panels are
facing the sun and are acted on by solar pressure. Assuming a regular,
convex shape of the spacecraft, the indicator function is given by

Ij �
�
1 if �ûn;j · ûs� > 0;
0 otherwise

(21)

Observe that the total SRP torque in Eq. (20) is only a function of
�Θ. In reality, SRP is a pressure-based torque and hence, strictly
speaking, also depends on spacecraft velocities due to dynamic
pressure effects. These effects are very small and are assumed to be
negligible.

D. Linearized Model

For analysis and controller design, the equations of motion
[Eqs. (3) and (11)] are linearized.Without loss of generality, �Θ � 0 is
chosen as the desired attitude because I can be oriented to reflect
desired pointing. Theorem 1 gives the requirement for the spacecraft
to maintain �Θ � �ω � 0 in steady state (assuming no constraints on
functioning RW speeds).
Theorem 1: �Θ � �ω � 0 can be maintained as a (relative)

equilibrium by the closed-loop system if and only if �τsrp�0� is in the
range ofWa.
Proof: For the spacecraft bus, if �ω�t� � 0 for all t, then _�Θ�t� � 0

and _�ω�t� � 0. If _�ω � 0, then Eq. (11) implies

0 � −JwWa �za � �τsrp�0� (22)

Equation (22) can be satisfied if and only if �τsrp�0� is in the range of
Wa. □

Remark 1: Theorem 1 gives conditions under which �Θ � �ω � 0
can be maintained as a (relative) equilibrium for the spacecraft bus.
The reaction wheels may be accelerating to compensate for SRP
torque, in which case the (relative) equilibrium can be maintained
until the RWs reach their saturation limits.
For three or more RWs, assuming thatWa is full rank, �Θ � �ω � 0

will always be a feasible equilibrium. With two or fewer RWs,
Theorem 1 restricts the set of physical pointing orientations that can
be maintained in steady state with functioning RWs.
Assuming that Theorem 1 holds, Eqs. (3) and (11) are linearized

about �Θ � �ω � 0, �νa � �νa;0, and �za � �za;0 � Ξ, where Ξ is the
commanded RW accelerations to make �Θ � �ω � 0 a feasible
equilibrium, i.e.,

Ξ �
� �WT

aWa�−1WT
a �τsrp�0� if rank�Wa� ≤ 3;

an arbitrary �za such thatWa �za � �τsrp�0� otherwise

(23)

Assuming that there arem operational RWs and the failed RWs are
at zero speed, the linearization yields the system of equations

�
_�Θ
_�ω

�
�

�
03×3 I3×3
�J−1T �J−1JwS�Wa �νa;0�

��
�Θ
�ω

�
�

�
03×m

− �J−1JwWa

�
δ�za

(24)

where δ�za � �za − �za;0, T is the linearized matrix of �τsrp (i.e.,
�τsrp � �τsrp�0� � T �Θ), and S��� is the 3 × 3 skew-symmetric matrix
formed off a 3 × 1 mathematical vector. That is, if
�a � � a1 a2 a3 �T, then

S� �a� �
2
4 0 −a3 a2

a3 0 −a1
−a2 a1 0

3
5 (25)

Letting �x � � �Θ �ω �T, it follows that

_�x � A �x� Bδ�za (26)

where

A�
�
03×3 I3×3
�J−1T �J−1JwS�Wa �νa;0 �

�
; B�

�
03×m

− �J−1JwWa

�
(27)

III. Solar Radiation Pressure Torque on a Symmetric-
Body Spacecraft

To provide insight into the effects of SRP, a general class of
symmetric-body spacecraft that have pairs of panels with the same
area and diffusion coefficients (i.e., same βj), located on the opposite
ends of the spacecraft, is now considered. The panels are equal
distance away from the reference point O, and the normals to the
panels are parallel but opposite in direction. Denote one panel in this
pair by “p�” and another by “p−”. Then,

rp�∕O � −rp−∕O � rp;

ûn;p� � −ûn;p− � ûp;

βp� � βp− � βp;

Ap− � Ap� � Ap (28)

The SRP torque exerted by each individual panel, assuming they
are exposed to the sun, is

Fig. 1 Cuboid spacecraft with physical vector description.
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τp� � �rp� − rC∕O� × Ap�Pp�;

� γp��rp × ûp� � βp�rp × ûs� − �rC∕O × ûp� − βp�rC∕O × ûs��
(29)

τp− ��rp− − rC∕O�×Ap−Pp−;

� γp�−�rp× ûp��βp�rp× ûs�− �rC∕O× ûp��βp�rC∕O× ûs��
(30)

where γp � −αAp�ûp · ûs�. The total SRP torque induced by the two
panels is

τp � τp�Ip� � τp−Ip− (31)

By the assumption on directions of ûp� and ûp−, Ip� takes on the
opposite binary value of Ip− if γp ≠ 0. If γp � 0, then the pair of
panelsAU: The sentence that begins “If γp = 0, then : : : ” is unclear,
specifically the portion that reads “the pair of panels does to induce.”
Please review this sentence carefully, and edit/revise as necessary.
does to induce any SRP torque. Knowing this, and noting that the
second and third terms of Eqs. (29) and (30) are the same, whereas the
first and fourth terms differ by a sign, Eq. (31) can be written as

τp � γp��−rC∕O × ûp� � βp�rp × ûs� � sign�ûp · ûs���rp × ûp�
− βp�rC∕O × ûs��� (32)

IV. Conditions for Zero Solar Radiation Pressure
Torque for All Orientations

There are cases in which the total SRP torque exerted on the
spacecraft is zero for all possible orientations. Hence, utilization of
SRP for control is not possible. Theorem 2 gives a condition for
which a symmetric-body spacecraft covered in pairs of symmetric
panels will experience zero SRP torque, regardless of �Θ.
Theorem 2: Let a symmetric-body spacecraft be covered with ρs

pairs of panels, having characteristics satisfying Eq. (28). Then, the
SRP torque induced on the spacecraft is zero for all �Θ if the three
relations

rijjûi; i � 1 : : : ρs;

rC∕O � 0;

∃a ∈ R∶
Xρs
i�1

βiAi �ri �u
T
i � aI3×3 (33)

are all satisfied, where �ri � rijB and �ui � ûijB.
Proof: The total SRP torque exerted on the symmetric spacecraft

can be written using Eq. (32):

τsrp �
Xρs
i�1

γi��−rC∕O × ûi� � βi�ri × ûi�

� sign�ûi · ûs���ri × ûi� − βi�rC∕O × ûs��� (34)

If the first two conditions of Eq. (33) hold, Eq. (34) becomes

τsrp �
Xρs
i�1

γiβi�ri × ûi� (35)

Let �us � ûsjI . Resolving Eq. (35) in B yields

�τsrp � −α
��Xρs

i�1

βiAi �ri �u
T
i

�
OB∕I �us

�
×
�
OB∕I �us

	
(36)

If the third condition of Eq. (33) holds, then there exists an a ∈ R
such that

�τsrp � −aαOB∕I �us ×OB∕I �us � 0 (37)

Therefore, regardless of orientation, the SRP will not exert any
torques on the spacecraft.□
An example of when Theorem 2 holds is for a cuboid spacecraft

where the reference point O coincides both with the center of mass
and the center of solar radiation pressure of the spacecraft. See
Sec. VII.A.

V. Stability of a Spacecraft

In general, the open-loop spacecraft attitude dynamics for a fixed-
attitude equilibrium without SRP are unstable, though the dynamics
of the angular velocities can be stable depending on the axis of
rotation [27]. As we discuss in this section, a fixed-attitude
equilibrium of an underactuated spacecraft with SRP has similar
open-loop instability properties.

A. Linear Stability with Zero Solar Radiation Pressure

Consider the case of an underactuated spacecraft with two opera-
tional RWs, where effects of SRP torques are zero (i.e., τsrp � 0). The
state matrix A in Eq. (27) becomes

A �
�
03×3 I3×3
03×3 �J−1JwS�Wa �νa;0 �

�
(38)

The eigenvalues of matrix A, denoted as λ, are given by

λ � 0; 0; 0; 0;	Jw
















































�Wa �νa;0 �TD�Wa �νa;0�

q
(39)

where D � −�diag� J2J3; J1J3; J1J2 ��−1. The matrix D is
negative definite, and therefore, A might have one pair of purely
imaginary eigenvalues, provided that at least one of the RW speeds at
the equilibrium is nonzero. Therefore, all eigenvalues lie on the
imaginary axis.
The requirement for stability of a linear systemwith eigenvalues on

the imaginary axis and in the open left half-plane is that each such
eigenvaluewith zero real part must be semisimple (i.e., the geometric
multiplicity of the eigenvalue must be equal to its algebraic multi-
plicity). There is only one pair of purely imaginary eigenvalues, and
so both are semisimple. Any instability may thus be caused only by
the zero eigenvalue. It can be shown that the algebraic multiplicity of
the zero eigenvalue of A is 4, whereas its geometric multiplicity is 3.
Thus, the linearized system is open-loop unstable.
We note that the angular velocity variables are decoupled from the

orientation variables for this linearized system. The state matrix for
the angular velocities, denoted as Aω, is given by

Aw � �J−1JwS�Wa �νa;0� (40)

whose eigenvalues λw are

λw � 0;	Jw













































�Wa �νa;0�TD�Wa �νa;0�

q
(41)

All the eigenvalues of Aw are semisimple, and hence it can be
shown that the linearized angular velocity dynamics are stable but not
asymptotically stable. Because of the double integrator structure ofA,
bounded angular velocitiesmay cause unbounded drift in the attitude,
resulting in instability.

B. Stability Analysis of Linearized Underactuated Spacecraft Dynam-
ics with Solar Radiation Pressure Torque

We now consider the case with nonzero SRP torque (i.e., τsrp ≠ 0)
and two functioning RWs spinning about the first and second
principal axes. We analyze the stability properties of the spacecraft
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bus (relative) equilibrium corresponding to �Θ � �ω � 0. It is as-
sumed that �τsrp�0� is consistent with Theorem 1 so that the (relative)
equilibrium can be maintained. Let the RW accelerations be set
according to the following control law:

δ�za � −�CTC�−1CT �J−1T �Θ (42)

where C � −� �J−1JwWa�. The feedback law in Eq. (42) cancels out
the SRP torque components that are in the range of Wa. Then, the
dynamics matrix has the following form:

A �
�
03×3 I3×3
~T �J−1JwS�Wa �νa;0�

�
(43)

where

~T �
2
4 0 0 0

0 0 0
~t31 ~t32 ~t33

3
5 (44)

and ~t3j ∈ R, j � 1; 2; 3. Computing the eigenvalues of Ac yields
three zero eigenvalues, a pair of complex eigenvalues, and an eigen-
value that is purely real (the equations for these eigenvalues are
omitted due to lack of space). The zero eigenvalue has a geometric
multiplicity of 2 and is, therefore, not semisimple. Hence, the
equilibrium is unstable based on the linearized model. In addition, as
apparent fromEq. (26), the SRP torque causes a coupling between the
attitude and angular velocity dynamics, which does not allow the
independent analysis of the stability of angular velocity dynamics.

C. Nonlinear Stability

The previous analysis is based on the linear model in Eq. (26).
Because the linearized model has eigenvalues on the imaginary axis,
the stability analysis is inconclusive because the stability/instability
of an equilibrium in such a casemay depend on nonlinear terms. Note
that, without SRP, there do exist stable equilibriawhere the spacecraft
canmaintain directional pointingwhile rotating about an axis parallel
to the pointing direction [27]. However, the previous analysis
suggests that a fixed-attitude equilibrium either with or without SRP
can be unstable. Intuitively, if one of the angular velocities is per-
turbed away from zero, a bounded drift in the Euler angles away from
equilibrium can occur. This instability conclusion, supported by the
linear analysis, has been verified through extensive simulations on a
nonlinear model. The formal mathematical proof of instability (e.g.,
based on an application of Chetaev’s theorem [28]) is left to
future work.

VI. Regaining Linear Controllability Using Solar
Radiation Pressure

A. Necessary and Sufficient Conditions for Regaining Linear
Controllability

Without the effects of SRP included in Eq. (26), the spacecraft
dynamics are linearly uncontrollable byRWaccelerations if only two
RWs are functioning. The following theorem gives necessary and
sufficient conditions for restoring linear controllability to a spacecraft
with two functioning RWs when SRP torques are included.
Theorem 3: Let the spacecraft have two operational RWs whose

spin axis are nonparallel, i.e., rank�Wa� � 2. The system [Eq. (26)] is
linearly controllable if and only if, for every eigenvalue λ ofA and for
any vector �ηu in the null space of W

T
a ,

�ηTu� �Jλ2 − S�Wa �νa;0�λ − T� ≠ 0 (45)

Proof: The Popov–Belevitch–Hautus test for controllability
implies that Eq. (26) is linearly controllable if and only if

rank�� λI6×6 − A� B� � dim�A� (46)

for every eigenvalue λ of A; see [29]. By the converse, the system in

Eq. (26) is uncontrollable if and only if there exists a nonzero vector
�η ∈ C6 such that

�η��� λI6×6 − A� B� � 0 (47)

for at least one eigenvalue, where �η� is the conjugate transpose of �η.
Equation (47) can be reduced to two conditions:

�η�� λI6×6 − A � � 0; �η�B � 0 (48)

Let �η � � �η�1 �η�2 ��, �η1, �η2 ∈ C3. Expanding the first condition of

Eq. (48), it follows that

�η�1λ− �η�2 �J
−1T� 0; −�η�1 � �η�2�I3×3− �J−1JwS�Wa �νa;0��� 0 (49)

Multiplying the second part of Eq. (49) by λ and adding it together
with the first part of Eq. (49) gives

�η�2�I3×3λ2 − �J−1JwS�Wa �νa;0� − �J−1T� � 0 (50)

The second condition of Eq. (48) can be simplified to

�η�2 �J
−1JwWa � 0 (51)

Taking the conjugate transpose of Eq. (51), and noting that

W�
a � WT

a , J
�
w � Jw, and � �J−1�� � �J−1, yields

JwW
T
a
�J−1 �η2 � 0 (52)

Let ~η2 be the real part of �η2. Then, �J
−1 ~η2 is in the null space ofW

T
a .

Denoting �ηu � �J−1 ~η2, Eq. (50) can be written as

�ηTu� �Jλ2 − S�Wa �νa;0�λ − T� � 0 (53)

Thus, for Eq. (26) to be uncontrollable, theremust exist an �ηu in the
null space of WT

a and an eigenvalue λ such that Eq. (53) holds.

Reversing the arguments, it can be similarly shown that if, for each

eigenvalue of A, Eq. (53) cannot be satisfied with �ηu in the null space
of WT

a , then the system is controllable. □

Corollary 3.1:Theorem3 can be simplified for the casewhen there

are two operational RWs about the first two principal moments of

inertia, i.e.,

Wa �
2
4 1 0

0 1

0 0

3
5 (54)

Let t3;i, i � 1; 2; 3 be the ith entry of the third row of T. Because ~ηu is
in the null ofWT

a , �ηu � � 0 0 η �T, where η ∈ R. Equation (53) can
be rewritten as

ηλ2�0 0 J3 �−ηλ�−Jwν0;2 Jwν0;1 0 � � η� t31 t32 t33 � (55)

which gives the following three equations:

J3λ
2 � t33; Jwν0;2λ � t31; Jwν0;1λ � −t32 (56)

For the system to be uncontrollable, the three parts of Eq. (56)must

all hold for at least one eigenvalue of A. By the converse, if for each
eigenvalue ofA, one of the parts in Eq. (53) is not satisfied (it does not
have to be the same equation for each eigenvalue), the system is

controllable.
Theorem4 is a consequence of Theorem3 and provides a sufficient

condition for an underactuated system to remain linearly uncon-

trollable even if SRP torques are added into the math model.
Theorem 4: Let the spacecraft be equipped with two operational

RWs whose spin axes are not parallel. The system [Eq. (26)] is

linearly uncontrollable if �ηTuT � 0 for �ηu in the null space of W
T
a .
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Proof: Suppose that, for �ηu in the null space ofWT
a ,

�ηTuT � 0 (57)

By Theorem 3, if there exists an eigenvalue λ of A such that

�ηTu� �Jλ2 − S�Wa �νa;0�λ − T� � 0 (58)

then the system is uncontrollable. Equation (57) simplifies Eq. (58) to

�ηTu� �Jλ2 − S�Wa �νa;0�λ� � 0 (59)

If Eq. (57) holds, then T is not full rank, which implies thatA is not

full rank and contains a zero eigenvalue. The eigenvalue λ � 0
satisfies Eq. (59), and therefore the system is uncontrollable.□
Remark 2: The results in Theorem 3, Corollary 3.1, Theorem 4,

and numerical examples suggest that the dynamics of the spacecraft

with two RWs and SRP effects included are linearly controllable in a

broad range of cases. Theorem 4 indicates that the linearized SRP

torquemust have nonzero projection on the uncontrolled direction for

linear controllability to hold.

B. Relative Controllability

To assess the relative controllability of different spacecraft

configurations, we consider the following controllability index:

Jind � λmax�eAT�tf−t0�M�tf; t0�−1eA�tf−t0�� (60)

where λmax denotes the maximum eigenvalue of a matrix, t0 is the

initial time of the maneuver, tf is the final time of the maneuver, and

M�tf; t0� denotes the controllability gramian. The controllability

index Jind corresponds to themaximum effort (where effort is defined

as the minimum of the integral of the input squared) required to bring

an initial state x�t0� of unit norm to zero. Note that the metric is

defined over a finite time interval, given that the system is open-loop

unstable. This metric will be used later to assess the controllability of

the cuboid spacecraft.

VII. Solar Radiation Pressure Effects on a Cuboid
Spacecraft

Suppose that the spacecraft of interest is a cuboid, which is a

commonly used spacecraft shape. This spacecraft has a symmetric

body and has dimensions Lx, Ly, and Lz. Let û1, û2, and û3 be the
normals to the panels covering the spacecraft sides, which, because

the structure of the cuboid, are parallel to the principal axes. The

reference point O is chosen as the geometric center of the cuboid

spacecraft. Using the notation from Sec. III, the parameters to obtain

the SRP torque are defined as

�r1 �
2
4

Lx

2

0

0

3
5; �r2 �

2
4 0

Ly

2

0

3
5; �r3 �

2
4 0

0
Lz

2

3
5 (61)

�u1 �
2
4 1

0

0

3
5; �u2 �

2
4 0

1

0

3
5; �u3 �

2
4 0

0

1

3
5 (62)

A1 � LyLz; A2 � LxLz; A3 � LxLy (63)

The center of mass of the spacecraft will also be offset fromO, and

�rC∕O � rC∕OjB � � lx ly lz �T. (64)

This offset is of particular importance because it influences the
relative controllability of the system.

A. Conditions for Zero Solar Radiation Pressure

Based on Theorem 2, it may be shown that, under certain
conditions, the cuboid spacecraft can experience zero SRP torque for
all �Θ. By the physical structure of the cuboid spacecraft, rijjûi,
i � 1; 2; 3, and so the first condition of Eq. (33) in Theorem 2 is
satisfied. If O is aligned with the center of mass (i.e., rC∕O � 0), the
second condition of Eq. (33) is satisfied. Assume that the diffusion
coefficient is the same for all panels (β1 � β2 � β3 � β). Then,
using the definitions in Eqs. (61–63),

X3
i�1

βiAi �ri �u
T
i � βLxLyLz

2
I3×3 (65)

which satisfies the third condition of Eq. (33) with a � LxLyLz∕2.
Therefore, by Theorem 2, if rC∕O � 0 and all panels have the same
diffusion properties, a cuboid spacecraft will experience zero SRP
torque. It should be noted that, if βi, i � 1; 2; 3, were different, the
conditions for zero SRP torquegiven byTheorem2may not hold, and
it may be possible to take advantage of SRP torques to recover linear
controllability.

B. Equilibrium Analysis

Let τsrp;x, τsrp;y, and τsrp;z be the SRP torques exerted on the cuboid
spacecraft by panels whose normals are parallel with the principal
axes. Suppose that �us � � n1 n2 n3 �T, and let �Θ � 0. Then the
SRP torques exerted on the spacecraft, given by Eq. (32), resolved in
B, are

τsrp;x
��
B � �τsrp;x

�A1αn1
2

2
4 0

2lz�Lxβn3
−2ly−Lxβn2

3
5� sign�n1�A1αn1β

2
4 lyn3− lzn2
lzn1− lxn3
lxn2− lyn1

3
5
(66)

τsrp;y
��
B � �τsrp;y

� A2αn2
2

2
4−2lz − Lyβn3

0

2lx � Lyβn1

3
5� sign�n2�A2αn2β

2
4 lyn3 − lzn2
lzn1 − lxn3
lxn2 − lyn1

3
5

(67)

τsrp;z
��
B � �τsrp;z

� A3αn3
2

2
4 2ly � Lzβn2
−2lx − Lzβn1

0

3
5� sign�n3�A3αn3β

2
4 lyn3 − lzn2
lzn1 − lxn3
lxn2 − lyn1

3
5

(68)

The conditions for �Θ � �ω � 0 to be a feasible closed-loop
(relative) equilibrium are given by Theorem 1 and supported by
Eqs. (66–68). Suppose, for instance, lx � lz � 0while ly is nonzero,
whereas the operational RWs have spin axes alignedwith the first and
second principal axes. If n1 � 0, n2 � 1, and n3 � 0, then based on
the aforementioned expressions, τsrp�0� � 0, and the spacecraft can
remain at the relative equilibrium with �Θ � �ω � 0without any RWs
accelerating. If the possibility of RWs accelerating to maintain the
(relative) equilibrium at �Θ � �ω � 0 is acceptable (e.g., to enable the
spacecraft to obtain images while compensating for nonzero SRP
with RWs), then the condition can be relaxed. In this case, as long
as n1 � 0 (i.e., the third principal axis is not pointed toward the sun),
the SRP torque is of the form τsrp�0� � � �; �; 0 �T and can be
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compensated by the available RWs that are along the first and second
principal axes.

C. Relative Controllability of the Cuboid Spacecraft

To demonstrate controllability of the cuboid spacecraft, it is
assumed that the spacecraft has parameters listed in Table 1, the first
and second RWs are operational, and �νa;0 � � 100 100 �T rad=s.
The third and fourth RWs are assumed to have previously failed and
are now at zero speed. The plot of Jind in Eq. (60) versus ly and the
time of the maneuver tf (t0 � 0) is given in Fig. 2. The spacecraft is
more controllable for larger ly, and the control effort decreases if
longer maneuver time is available. Intuitively, more SRP torque is
produced when the distance between the center of pressure and the
center of mass is greater. This torque can be exploited to enhance
controllability.

VIII. Controller Design

Because the linearized dynamics of a spacecraft body with certain
asymmetry properties are linearly controllable with the addition of
SRP torques to the spacecraft model, a controller based on conven-
tional linear quadratic (LQ) theory [30] can be used to stabilize the
system to equilibrium. The LQ controller minimizes the cost

JLQ �
Z

∞

0

x�τ�TQx�τ� � δ�za�τ�TRδ�za�τ� dτ (69)

where Q � QT ≥ 0 and R � RT > 0 are weighting matrices. The
controller has the following form:

δ�za � KLQx (70)

where KLQ is the LQ gain.

In the subsequent simulations, R � 1000Im×m, where m
is the number of operational RWs. If m ≥ 3, Q �
diag�10; 10; 10; 0.01; 0.01; 0.01� is used. If m � 2 and the only
operational RWs spin about the first and second principal axes,
Q � diag�40; 10; 10; 0.04; 0.01; 0.01� is used to emphasize faster
regulation of ϕ and ω1, which improves the transient response.

IX. Results

In this section, nonlinear simulations are presented where four
wheels are initially operational. Two separate wheel failures occur
during these simulations: one wheel fails at 5 h and the other at 20 h.
The speed response of a failed wheel spinning down is modeled by a
first-order lag with a 10 min settling time. The simulations are run on
the full nonlinear model of the spacecraft kinematics and dynamics,
including the nonlinear model of SRP torques. All spacecraft
parameters are given by Table 1. Nominally, �us � � 0 1 0 �T, and
simulation results are presented for two different sequences of wheel
failures. Additional simulation results are then reported for the case
when �us � �01∕ 




2
p

1




2

p �T, creating a situation where the RWs must
accelerate to maintain spacecraft pointing. Finally, convergence
times from different initial conditions are quantified.

A. Wheel 3 Fails First

The first case considered is when RW3 fails first, followed by RW
4. The offset of the center of pressure from the center of mass is given
by ly � 0.5 m and lx � lz � 0m. The responses are shown in Fig. 3.
There is a much larger disturbance to orientation when the second
wheel fails. The controller manages the first wheel failure quickly,
then reconfigures and handles the second wheel failure over a longer
period of time, coordinating two operational RWs in presence of SRP.

B. Wheel 4 Fails First, Reduced ly

Now, the case is considered when ly is reduced to 0.1 m so that the
spacecraft is less controllable (see Sec. VI.B). In this simulation, RW
4 fails first, followed byRW3.The responses are shown in Fig. 4. The
controller is able to manage the failures and reduce the spacecraft
orientation error over time. However, the responses are slower due to
worse spacecraft controllability.

C. Wheel 4 Fails First, Skewed Pointing

In this case study, which is referred to as the skewed pointing,
ly � 0.1 m while �us � �01∕ 




2
p

1




2

p �T. The controller is modified
with an additional feedforward term, which cancels out �τsrp�0�. Note
that the third component of �τsrp�0� is zero; hence, canceling the
steady-state value of SRP torque by the acceleration ofRWs 1 and 2 is
feasible. The response is shown in Fig. 5. Observe that the controller
handles RW 3 and 4 failures and that RWs 1 and 2 continue to
accelerate to be able to maintain the spacecraft orientation in steady
state with desired pointing.

D. Achieving Faster Closed-Loop Response Time

A faster linear controller may be designed using the pole place-
ment method. As confirmed by simulations, more aggressive con-
trollers, however, have smaller regions of attraction (ROAs) for
the nonlinear system and are not able to always recover after the
simulated sequence of wheel failures. If spacecraft thrusters (which
are not as precise as reaction wheels) are employed to first reduce the
attitude and angular velocity errors before the two functional RWs are
used, the implementation of more aggressive controllers for RWs
becomes feasible. Toward this end, a pole-placement-based linear
controller was designed with the closed-loop poles of −0.0137	
0.0068i, −0.0208	 .0021i, −0.0001, and −0.0075 (versus
−0.0012	 0.0068i, −0.0019	 .0021i, −6.4906 × 10−6, and
−0.007 for the nominal LQcontroller), andMonte–Carlo simulations
were performed to characterize the closed-loop response from
various initial conditions. For each simulation, the initial Euler angles
were selected from a uniform distribution in the interval [−2, 2 deg],
and the angular velocity was initially zero. Only two RWs (those
aligned with the first two principal axes) were assumed to be

Table 1 Model parameters

Parameter Units Value

J kg · m2 diag(430, 1210, 1300)
Jw kg · m2 0.043
Lx m 2
Ly m 2.5
Lz m 5
lx m 0
ly m 0.1 and 0.5
lz m 0

W — —
2
4 1 0 0 1∕





3

p
0 1 0 1∕





3

p
0 0 1 1∕





3

p

3
5

Φsun W∕m2 1367
Cdiff;j — — 0.2
c m=s 299792458.0

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20
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30

l
y

J/
10

6

t
f
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t
f
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Fig. 2 Controllabilitymetric (scaled by 106) vs ly andmaneuver time, tf .
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0 50 100 150 200
−1

−0.5

0

0.5

1

Time (h)

E
ul

er
 a

ng
le

s 
(r

ad
)

Roll (φ)
Pitch (θ)
Yaw (ψ)

10 20 30
−0.2

0

0.2

0 50 100 150 200
−2

−1

0

1

2

3
x 10

−3

Time (h)

A
ng

ul
ar

 v
el

oc
iti

es
 (

ra
d/

s)

ω
1

ω
2

ω
3

10 20 30
−1

0

1
x 10

−5

0 50 100 150 200
0

100

200

300

400

Time (h)

W
he

el
 s

pe
ed

s 
(r

ad
/s

)

ν
1

ν
2

ν
3

ν
4

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (h)

W
he

el
 a

cc
el

er
at

io
ns

 (
ra

d/
s2 )

u
1

u
2

u
3

u
4

10 20 30
−0.02

0

0.02

a) b)

c) d)
Fig. 4 Representations of a) Euler angles, b) angular velocities, c) RW speeds, and d) RW accelerations in the nonlinear simulation when wheel 4 fails
first, ly � 0.1 m.

834 PETERSEN ETAL.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
14

46
 



functional, each initially rotating at a speed of 100 rad=s. 1900
simulation runs were performed. The average time it took for the
spacecraft orientation to enter a 0.001 deg box around the equilibrium
was 35.1554 h, with a standard deviation of 4.2532 h. In all cases,

the controller was convergent and able to bring the Euler angles to the
target box. The maximum angular speed and accelerations of the
wheels in these simulationswere 247.5929 rad=s and 9.7833 rad=s2,
respectively, which are within actuator capability limits.

E. Regions of Attractions

Each controller has associatedwith it a unique ROA such that if the
spacecraft starts within this region, the controller will stabilize the
system to equilibrium. Such regions can be estimated by using scaled
sublevel sets of the Lyapunov function for the linearized system, but
these estimates may be quite conservative [31]. The ROA in our case
cannot be easily or analytically described for an arbitrary spacecraft
because the dynamics depend on the shape of spacecraft, the desired
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Fig. 6 Numeric ROA calculation for the LQ controller.
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inertial pointing direction, the spin axis directions of operational
RWs, and the chosen control scheme. Therefore, nonlinear simula-
tions are used to approximate the ROA for a cuboid spacecraft using
the LQ and the pole placement controllers in this work. 5000 random
test simulations were run using each controller with initial Euler
angles belonging to the interval of [−60, 60 deg], initial zero angular
velocity, and RW speeds initially at 100 rad=s. The operational RWs
are aligned with the first and second principal axes. The results for
both controllers are shown in Figs. 6 and 7, inwhich theX’s designate
all the initial attitudes that the controllers can stabilize to the desired
pointing equilibrium. As is to be expected, the LQ controller has a
larger ROA than the more aggressive pole placement controller.

X. Conclusions

This paper treated an inertial pointing attitude control problem for
an underactuated spacecraft with two reaction wheels. An uncon-
ventional pathway to recover linear controllability was demonstrated
through incorporating solar radiation pressure torques into the
spacecraft model. For certain fixed inertial pointing directions and
realistic spacecraft configurations, linear controllability is recovered,
and spacecraft control becomes feasible with conventional linear
quadratic and pole placement techniques. Although the maneuvers
take time, the approach presented is not restricted to the assumption
of zero angular momentum; in fact, because of the presence of solar
radiation pressure torques, the total angular momentum may not be
zero and is not conserved. The results open up the possibility of
applying a variety of conventional control techniques to the under-
actuated spacecraft control problem.
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